My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.cpp 63KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.cpp - temperature control
  24. */
  25. #include "Marlin.h"
  26. #include "ultralcd.h"
  27. #include "temperature.h"
  28. #include "thermistortables.h"
  29. #include "language.h"
  30. #if ENABLED(HEATER_0_USES_MAX6675)
  31. #include "spi.h"
  32. #endif
  33. #if ENABLED(BABYSTEPPING)
  34. #include "stepper.h"
  35. #endif
  36. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  37. #include "endstops.h"
  38. #endif
  39. #if ENABLED(USE_WATCHDOG)
  40. #include "watchdog.h"
  41. #endif
  42. #ifdef K1 // Defined in Configuration.h in the PID settings
  43. #define K2 (1.0-K1)
  44. #endif
  45. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  46. static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
  47. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  48. #else
  49. static void* heater_ttbl_map[HOTENDS] = ARRAY_BY_HOTENDS((void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE, (void*)HEATER_2_TEMPTABLE, (void*)HEATER_3_TEMPTABLE, (void*)HEATER_4_TEMPTABLE);
  50. static uint8_t heater_ttbllen_map[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN, HEATER_4_TEMPTABLE_LEN);
  51. #endif
  52. Temperature thermalManager;
  53. // public:
  54. float Temperature::current_temperature[HOTENDS] = { 0.0 },
  55. Temperature::current_temperature_bed = 0.0;
  56. int16_t Temperature::current_temperature_raw[HOTENDS] = { 0 },
  57. Temperature::target_temperature[HOTENDS] = { 0 },
  58. Temperature::current_temperature_bed_raw = 0,
  59. Temperature::target_temperature_bed = 0;
  60. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  61. float Temperature::redundant_temperature = 0.0;
  62. #endif
  63. uint8_t Temperature::soft_pwm_bed;
  64. #if ENABLED(FAN_SOFT_PWM)
  65. uint8_t Temperature::fanSpeedSoftPwm[FAN_COUNT];
  66. #endif
  67. #if ENABLED(PIDTEMP)
  68. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  69. float Temperature::Kp[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kp),
  70. Temperature::Ki[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Ki) * (PID_dT)),
  71. Temperature::Kd[HOTENDS] = ARRAY_BY_HOTENDS1((DEFAULT_Kd) / (PID_dT));
  72. #if ENABLED(PID_EXTRUSION_SCALING)
  73. float Temperature::Kc[HOTENDS] = ARRAY_BY_HOTENDS1(DEFAULT_Kc);
  74. #endif
  75. #else
  76. float Temperature::Kp = DEFAULT_Kp,
  77. Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
  78. Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
  79. #if ENABLED(PID_EXTRUSION_SCALING)
  80. float Temperature::Kc = DEFAULT_Kc;
  81. #endif
  82. #endif
  83. #endif
  84. #if ENABLED(PIDTEMPBED)
  85. float Temperature::bedKp = DEFAULT_bedKp,
  86. Temperature::bedKi = ((DEFAULT_bedKi) * PID_dT),
  87. Temperature::bedKd = ((DEFAULT_bedKd) / PID_dT);
  88. #endif
  89. #if ENABLED(BABYSTEPPING)
  90. volatile int Temperature::babystepsTodo[XYZ] = { 0 };
  91. #endif
  92. #if WATCH_HOTENDS
  93. int Temperature::watch_target_temp[HOTENDS] = { 0 };
  94. millis_t Temperature::watch_heater_next_ms[HOTENDS] = { 0 };
  95. #endif
  96. #if WATCH_THE_BED
  97. int Temperature::watch_target_bed_temp = 0;
  98. millis_t Temperature::watch_bed_next_ms = 0;
  99. #endif
  100. #if ENABLED(PREVENT_COLD_EXTRUSION)
  101. bool Temperature::allow_cold_extrude = false;
  102. float Temperature::extrude_min_temp = EXTRUDE_MINTEMP;
  103. #endif
  104. // private:
  105. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  106. int Temperature::redundant_temperature_raw = 0;
  107. float Temperature::redundant_temperature = 0.0;
  108. #endif
  109. volatile bool Temperature::temp_meas_ready = false;
  110. #if ENABLED(PIDTEMP)
  111. float Temperature::temp_iState[HOTENDS] = { 0 },
  112. Temperature::temp_dState[HOTENDS] = { 0 },
  113. Temperature::pTerm[HOTENDS],
  114. Temperature::iTerm[HOTENDS],
  115. Temperature::dTerm[HOTENDS];
  116. #if ENABLED(PID_EXTRUSION_SCALING)
  117. float Temperature::cTerm[HOTENDS];
  118. long Temperature::last_e_position;
  119. long Temperature::lpq[LPQ_MAX_LEN];
  120. int Temperature::lpq_ptr = 0;
  121. #endif
  122. float Temperature::pid_error[HOTENDS];
  123. bool Temperature::pid_reset[HOTENDS];
  124. #endif
  125. #if ENABLED(PIDTEMPBED)
  126. float Temperature::temp_iState_bed = { 0 },
  127. Temperature::temp_dState_bed = { 0 },
  128. Temperature::pTerm_bed,
  129. Temperature::iTerm_bed,
  130. Temperature::dTerm_bed,
  131. Temperature::pid_error_bed;
  132. #else
  133. millis_t Temperature::next_bed_check_ms;
  134. #endif
  135. uint16_t Temperature::raw_temp_value[MAX_EXTRUDERS] = { 0 },
  136. Temperature::raw_temp_bed_value = 0;
  137. // Init min and max temp with extreme values to prevent false errors during startup
  138. int16_t Temperature::minttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP, HEATER_4_RAW_LO_TEMP),
  139. Temperature::maxttemp_raw[HOTENDS] = ARRAY_BY_HOTENDS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP, HEATER_4_RAW_HI_TEMP),
  140. Temperature::minttemp[HOTENDS] = { 0 },
  141. Temperature::maxttemp[HOTENDS] = ARRAY_BY_HOTENDS1(16383);
  142. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  143. uint8_t Temperature::consecutive_low_temperature_error[HOTENDS] = { 0 };
  144. #endif
  145. #ifdef MILLISECONDS_PREHEAT_TIME
  146. millis_t Temperature::preheat_end_time[HOTENDS] = { 0 };
  147. #endif
  148. #ifdef BED_MINTEMP
  149. int16_t Temperature::bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
  150. #endif
  151. #ifdef BED_MAXTEMP
  152. int16_t Temperature::bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  153. #endif
  154. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  155. int16_t Temperature::meas_shift_index; // Index of a delayed sample in buffer
  156. #endif
  157. #if HAS_AUTO_FAN
  158. millis_t Temperature::next_auto_fan_check_ms = 0;
  159. #endif
  160. uint8_t Temperature::soft_pwm[HOTENDS];
  161. #if ENABLED(FAN_SOFT_PWM)
  162. uint8_t Temperature::soft_pwm_fan[FAN_COUNT];
  163. #endif
  164. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  165. int Temperature::current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  166. #endif
  167. #if HAS_PID_HEATING
  168. void Temperature::PID_autotune(float temp, int hotend, int ncycles, bool set_result/*=false*/) {
  169. float input = 0.0;
  170. int cycles = 0;
  171. bool heating = true;
  172. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  173. long t_high = 0, t_low = 0;
  174. long bias, d;
  175. float Ku, Tu;
  176. float workKp = 0, workKi = 0, workKd = 0;
  177. float max = 0, min = 10000;
  178. #if HAS_AUTO_FAN
  179. next_auto_fan_check_ms = temp_ms + 2500UL;
  180. #endif
  181. if (hotend >=
  182. #if ENABLED(PIDTEMP)
  183. HOTENDS
  184. #else
  185. 0
  186. #endif
  187. || hotend <
  188. #if ENABLED(PIDTEMPBED)
  189. -1
  190. #else
  191. 0
  192. #endif
  193. ) {
  194. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  195. return;
  196. }
  197. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  198. disable_all_heaters(); // switch off all heaters.
  199. #if HAS_PID_FOR_BOTH
  200. if (hotend < 0)
  201. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  202. else
  203. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  204. #elif ENABLED(PIDTEMP)
  205. soft_pwm[hotend] = bias = d = (PID_MAX) >> 1;
  206. #else
  207. soft_pwm_bed = bias = d = (MAX_BED_POWER) >> 1;
  208. #endif
  209. wait_for_heatup = true;
  210. // PID Tuning loop
  211. while (wait_for_heatup) {
  212. millis_t ms = millis();
  213. if (temp_meas_ready) { // temp sample ready
  214. updateTemperaturesFromRawValues();
  215. input =
  216. #if HAS_PID_FOR_BOTH
  217. hotend < 0 ? current_temperature_bed : current_temperature[hotend]
  218. #elif ENABLED(PIDTEMP)
  219. current_temperature[hotend]
  220. #else
  221. current_temperature_bed
  222. #endif
  223. ;
  224. NOLESS(max, input);
  225. NOMORE(min, input);
  226. #if HAS_AUTO_FAN
  227. if (ELAPSED(ms, next_auto_fan_check_ms)) {
  228. checkExtruderAutoFans();
  229. next_auto_fan_check_ms = ms + 2500UL;
  230. }
  231. #endif
  232. if (heating && input > temp) {
  233. if (ELAPSED(ms, t2 + 5000UL)) {
  234. heating = false;
  235. #if HAS_PID_FOR_BOTH
  236. if (hotend < 0)
  237. soft_pwm_bed = (bias - d) >> 1;
  238. else
  239. soft_pwm[hotend] = (bias - d) >> 1;
  240. #elif ENABLED(PIDTEMP)
  241. soft_pwm[hotend] = (bias - d) >> 1;
  242. #elif ENABLED(PIDTEMPBED)
  243. soft_pwm_bed = (bias - d) >> 1;
  244. #endif
  245. t1 = ms;
  246. t_high = t1 - t2;
  247. max = temp;
  248. }
  249. }
  250. if (!heating && input < temp) {
  251. if (ELAPSED(ms, t1 + 5000UL)) {
  252. heating = true;
  253. t2 = ms;
  254. t_low = t2 - t1;
  255. if (cycles > 0) {
  256. long max_pow =
  257. #if HAS_PID_FOR_BOTH
  258. hotend < 0 ? MAX_BED_POWER : PID_MAX
  259. #elif ENABLED(PIDTEMP)
  260. PID_MAX
  261. #else
  262. MAX_BED_POWER
  263. #endif
  264. ;
  265. bias += (d * (t_high - t_low)) / (t_low + t_high);
  266. bias = constrain(bias, 20, max_pow - 20);
  267. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  268. SERIAL_PROTOCOLPAIR(MSG_BIAS, bias);
  269. SERIAL_PROTOCOLPAIR(MSG_D, d);
  270. SERIAL_PROTOCOLPAIR(MSG_T_MIN, min);
  271. SERIAL_PROTOCOLPAIR(MSG_T_MAX, max);
  272. if (cycles > 2) {
  273. Ku = (4.0 * d) / (M_PI * (max - min) * 0.5);
  274. Tu = ((float)(t_low + t_high) * 0.001);
  275. SERIAL_PROTOCOLPAIR(MSG_KU, Ku);
  276. SERIAL_PROTOCOLPAIR(MSG_TU, Tu);
  277. workKp = 0.6 * Ku;
  278. workKi = 2 * workKp / Tu;
  279. workKd = workKp * Tu * 0.125;
  280. SERIAL_PROTOCOLLNPGM("\n" MSG_CLASSIC_PID);
  281. SERIAL_PROTOCOLPAIR(MSG_KP, workKp);
  282. SERIAL_PROTOCOLPAIR(MSG_KI, workKi);
  283. SERIAL_PROTOCOLLNPAIR(MSG_KD, workKd);
  284. /**
  285. workKp = 0.33*Ku;
  286. workKi = workKp/Tu;
  287. workKd = workKp*Tu/3;
  288. SERIAL_PROTOCOLLNPGM(" Some overshoot");
  289. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  290. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  291. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  292. workKp = 0.2*Ku;
  293. workKi = 2*workKp/Tu;
  294. workKd = workKp*Tu/3;
  295. SERIAL_PROTOCOLLNPGM(" No overshoot");
  296. SERIAL_PROTOCOLPAIR(" Kp: ", workKp);
  297. SERIAL_PROTOCOLPAIR(" Ki: ", workKi);
  298. SERIAL_PROTOCOLPAIR(" Kd: ", workKd);
  299. */
  300. }
  301. }
  302. #if HAS_PID_FOR_BOTH
  303. if (hotend < 0)
  304. soft_pwm_bed = (bias + d) >> 1;
  305. else
  306. soft_pwm[hotend] = (bias + d) >> 1;
  307. #elif ENABLED(PIDTEMP)
  308. soft_pwm[hotend] = (bias + d) >> 1;
  309. #else
  310. soft_pwm_bed = (bias + d) >> 1;
  311. #endif
  312. cycles++;
  313. min = temp;
  314. }
  315. }
  316. }
  317. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  318. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  319. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  320. return;
  321. }
  322. // Every 2 seconds...
  323. if (ELAPSED(ms, temp_ms + 2000UL)) {
  324. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  325. print_heaterstates();
  326. SERIAL_EOL;
  327. #endif
  328. temp_ms = ms;
  329. } // every 2 seconds
  330. // Over 2 minutes?
  331. if (((ms - t1) + (ms - t2)) > (10L * 60L * 1000L * 2L)) {
  332. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  333. return;
  334. }
  335. if (cycles > ncycles) {
  336. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  337. #if HAS_PID_FOR_BOTH
  338. const char* estring = hotend < 0 ? "bed" : "";
  339. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kp ", workKp); SERIAL_EOL;
  340. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Ki ", workKi); SERIAL_EOL;
  341. SERIAL_PROTOCOLPAIR("#define DEFAULT_", estring); SERIAL_PROTOCOLPAIR("Kd ", workKd); SERIAL_EOL;
  342. #elif ENABLED(PIDTEMP)
  343. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kp ", workKp); SERIAL_EOL;
  344. SERIAL_PROTOCOLPAIR("#define DEFAULT_Ki ", workKi); SERIAL_EOL;
  345. SERIAL_PROTOCOLPAIR("#define DEFAULT_Kd ", workKd); SERIAL_EOL;
  346. #else
  347. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKp ", workKp); SERIAL_EOL;
  348. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKi ", workKi); SERIAL_EOL;
  349. SERIAL_PROTOCOLPAIR("#define DEFAULT_bedKd ", workKd); SERIAL_EOL;
  350. #endif
  351. #define _SET_BED_PID() do { \
  352. bedKp = workKp; \
  353. bedKi = scalePID_i(workKi); \
  354. bedKd = scalePID_d(workKd); \
  355. updatePID(); } while(0)
  356. #define _SET_EXTRUDER_PID() do { \
  357. PID_PARAM(Kp, hotend) = workKp; \
  358. PID_PARAM(Ki, hotend) = scalePID_i(workKi); \
  359. PID_PARAM(Kd, hotend) = scalePID_d(workKd); \
  360. updatePID(); } while(0)
  361. // Use the result? (As with "M303 U1")
  362. if (set_result) {
  363. #if HAS_PID_FOR_BOTH
  364. if (hotend < 0)
  365. _SET_BED_PID();
  366. else
  367. _SET_EXTRUDER_PID();
  368. #elif ENABLED(PIDTEMP)
  369. _SET_EXTRUDER_PID();
  370. #else
  371. _SET_BED_PID();
  372. #endif
  373. }
  374. return;
  375. }
  376. lcd_update();
  377. }
  378. if (!wait_for_heatup) disable_all_heaters();
  379. }
  380. #endif // HAS_PID_HEATING
  381. /**
  382. * Class and Instance Methods
  383. */
  384. Temperature::Temperature() { }
  385. void Temperature::updatePID() {
  386. #if ENABLED(PIDTEMP)
  387. #if ENABLED(PID_EXTRUSION_SCALING)
  388. last_e_position = 0;
  389. #endif
  390. #endif
  391. }
  392. int Temperature::getHeaterPower(int heater) {
  393. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  394. }
  395. #if HAS_AUTO_FAN
  396. void Temperature::checkExtruderAutoFans() {
  397. constexpr int8_t fanPin[] = { E0_AUTO_FAN_PIN, E1_AUTO_FAN_PIN, E2_AUTO_FAN_PIN, E3_AUTO_FAN_PIN, E4_AUTO_FAN_PIN };
  398. constexpr int fanBit[] = {
  399. 0,
  400. AUTO_1_IS_0 ? 0 : 1,
  401. AUTO_2_IS_0 ? 0 : AUTO_2_IS_1 ? 1 : 2,
  402. AUTO_3_IS_0 ? 0 : AUTO_3_IS_1 ? 1 : AUTO_3_IS_2 ? 2 : 3,
  403. AUTO_4_IS_0 ? 0 : AUTO_4_IS_1 ? 1 : AUTO_4_IS_2 ? 2 : AUTO_4_IS_3 ? 3 : 4
  404. };
  405. uint8_t fanState = 0;
  406. HOTEND_LOOP() {
  407. if (current_temperature[e] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  408. SBI(fanState, fanBit[e]);
  409. }
  410. uint8_t fanDone = 0;
  411. for (uint8_t f = 0; f < COUNT(fanPin); f++) {
  412. int8_t pin = fanPin[f];
  413. if (pin >= 0 && !TEST(fanDone, fanBit[f])) {
  414. uint8_t newFanSpeed = TEST(fanState, fanBit[f]) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  415. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  416. digitalWrite(pin, newFanSpeed);
  417. analogWrite(pin, newFanSpeed);
  418. SBI(fanDone, fanBit[f]);
  419. }
  420. }
  421. }
  422. #endif // HAS_AUTO_FAN
  423. //
  424. // Temperature Error Handlers
  425. //
  426. void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
  427. static bool killed = false;
  428. if (IsRunning()) {
  429. SERIAL_ERROR_START;
  430. serialprintPGM(serial_msg);
  431. SERIAL_ERRORPGM(MSG_STOPPED_HEATER);
  432. if (e >= 0) SERIAL_ERRORLN((int)e); else SERIAL_ERRORLNPGM(MSG_HEATER_BED);
  433. }
  434. #if DISABLED(BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE)
  435. if (!killed) {
  436. Running = false;
  437. killed = true;
  438. kill(lcd_msg);
  439. }
  440. else
  441. disable_all_heaters(); // paranoia
  442. #endif
  443. }
  444. void Temperature::max_temp_error(int8_t e) {
  445. #if HAS_TEMP_BED
  446. _temp_error(e, PSTR(MSG_T_MAXTEMP), e >= 0 ? PSTR(MSG_ERR_MAXTEMP) : PSTR(MSG_ERR_MAXTEMP_BED));
  447. #else
  448. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
  449. #if HOTENDS == 1
  450. UNUSED(e);
  451. #endif
  452. #endif
  453. }
  454. void Temperature::min_temp_error(int8_t e) {
  455. #if HAS_TEMP_BED
  456. _temp_error(e, PSTR(MSG_T_MINTEMP), e >= 0 ? PSTR(MSG_ERR_MINTEMP) : PSTR(MSG_ERR_MINTEMP_BED));
  457. #else
  458. _temp_error(HOTEND_INDEX, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
  459. #if HOTENDS == 1
  460. UNUSED(e);
  461. #endif
  462. #endif
  463. }
  464. float Temperature::get_pid_output(int e) {
  465. #if HOTENDS == 1
  466. UNUSED(e);
  467. #define _HOTEND_TEST true
  468. #else
  469. #define _HOTEND_TEST e == active_extruder
  470. #endif
  471. float pid_output;
  472. #if ENABLED(PIDTEMP)
  473. #if DISABLED(PID_OPENLOOP)
  474. pid_error[HOTEND_INDEX] = target_temperature[HOTEND_INDEX] - current_temperature[HOTEND_INDEX];
  475. dTerm[HOTEND_INDEX] = K2 * PID_PARAM(Kd, HOTEND_INDEX) * (current_temperature[HOTEND_INDEX] - temp_dState[HOTEND_INDEX]) + K1 * dTerm[HOTEND_INDEX];
  476. temp_dState[HOTEND_INDEX] = current_temperature[HOTEND_INDEX];
  477. if (pid_error[HOTEND_INDEX] > PID_FUNCTIONAL_RANGE) {
  478. pid_output = BANG_MAX;
  479. pid_reset[HOTEND_INDEX] = true;
  480. }
  481. else if (pid_error[HOTEND_INDEX] < -(PID_FUNCTIONAL_RANGE) || target_temperature[HOTEND_INDEX] == 0) {
  482. pid_output = 0;
  483. pid_reset[HOTEND_INDEX] = true;
  484. }
  485. else {
  486. if (pid_reset[HOTEND_INDEX]) {
  487. temp_iState[HOTEND_INDEX] = 0.0;
  488. pid_reset[HOTEND_INDEX] = false;
  489. }
  490. pTerm[HOTEND_INDEX] = PID_PARAM(Kp, HOTEND_INDEX) * pid_error[HOTEND_INDEX];
  491. temp_iState[HOTEND_INDEX] += pid_error[HOTEND_INDEX];
  492. iTerm[HOTEND_INDEX] = PID_PARAM(Ki, HOTEND_INDEX) * temp_iState[HOTEND_INDEX];
  493. pid_output = pTerm[HOTEND_INDEX] + iTerm[HOTEND_INDEX] - dTerm[HOTEND_INDEX];
  494. #if ENABLED(PID_EXTRUSION_SCALING)
  495. cTerm[HOTEND_INDEX] = 0;
  496. if (_HOTEND_TEST) {
  497. long e_position = stepper.position(E_AXIS);
  498. if (e_position > last_e_position) {
  499. lpq[lpq_ptr] = e_position - last_e_position;
  500. last_e_position = e_position;
  501. }
  502. else {
  503. lpq[lpq_ptr] = 0;
  504. }
  505. if (++lpq_ptr >= lpq_len) lpq_ptr = 0;
  506. cTerm[HOTEND_INDEX] = (lpq[lpq_ptr] * planner.steps_to_mm[E_AXIS]) * PID_PARAM(Kc, HOTEND_INDEX);
  507. pid_output += cTerm[HOTEND_INDEX];
  508. }
  509. #endif // PID_EXTRUSION_SCALING
  510. if (pid_output > PID_MAX) {
  511. if (pid_error[HOTEND_INDEX] > 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  512. pid_output = PID_MAX;
  513. }
  514. else if (pid_output < 0) {
  515. if (pid_error[HOTEND_INDEX] < 0) temp_iState[HOTEND_INDEX] -= pid_error[HOTEND_INDEX]; // conditional un-integration
  516. pid_output = 0;
  517. }
  518. }
  519. #else
  520. pid_output = constrain(target_temperature[HOTEND_INDEX], 0, PID_MAX);
  521. #endif //PID_OPENLOOP
  522. #if ENABLED(PID_DEBUG)
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPAIR(MSG_PID_DEBUG, HOTEND_INDEX);
  525. SERIAL_ECHOPAIR(MSG_PID_DEBUG_INPUT, current_temperature[HOTEND_INDEX]);
  526. SERIAL_ECHOPAIR(MSG_PID_DEBUG_OUTPUT, pid_output);
  527. SERIAL_ECHOPAIR(MSG_PID_DEBUG_PTERM, pTerm[HOTEND_INDEX]);
  528. SERIAL_ECHOPAIR(MSG_PID_DEBUG_ITERM, iTerm[HOTEND_INDEX]);
  529. SERIAL_ECHOPAIR(MSG_PID_DEBUG_DTERM, dTerm[HOTEND_INDEX]);
  530. #if ENABLED(PID_EXTRUSION_SCALING)
  531. SERIAL_ECHOPAIR(MSG_PID_DEBUG_CTERM, cTerm[HOTEND_INDEX]);
  532. #endif
  533. SERIAL_EOL;
  534. #endif //PID_DEBUG
  535. #else /* PID off */
  536. pid_output = (current_temperature[HOTEND_INDEX] < target_temperature[HOTEND_INDEX]) ? PID_MAX : 0;
  537. #endif
  538. return pid_output;
  539. }
  540. #if ENABLED(PIDTEMPBED)
  541. float Temperature::get_pid_output_bed() {
  542. float pid_output;
  543. #if DISABLED(PID_OPENLOOP)
  544. pid_error_bed = target_temperature_bed - current_temperature_bed;
  545. pTerm_bed = bedKp * pid_error_bed;
  546. temp_iState_bed += pid_error_bed;
  547. iTerm_bed = bedKi * temp_iState_bed;
  548. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  549. temp_dState_bed = current_temperature_bed;
  550. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  551. if (pid_output > MAX_BED_POWER) {
  552. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  553. pid_output = MAX_BED_POWER;
  554. }
  555. else if (pid_output < 0) {
  556. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  557. pid_output = 0;
  558. }
  559. #else
  560. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  561. #endif // PID_OPENLOOP
  562. #if ENABLED(PID_BED_DEBUG)
  563. SERIAL_ECHO_START;
  564. SERIAL_ECHOPGM(" PID_BED_DEBUG ");
  565. SERIAL_ECHOPGM(": Input ");
  566. SERIAL_ECHO(current_temperature_bed);
  567. SERIAL_ECHOPGM(" Output ");
  568. SERIAL_ECHO(pid_output);
  569. SERIAL_ECHOPGM(" pTerm ");
  570. SERIAL_ECHO(pTerm_bed);
  571. SERIAL_ECHOPGM(" iTerm ");
  572. SERIAL_ECHO(iTerm_bed);
  573. SERIAL_ECHOPGM(" dTerm ");
  574. SERIAL_ECHOLN(dTerm_bed);
  575. #endif //PID_BED_DEBUG
  576. return pid_output;
  577. }
  578. #endif //PIDTEMPBED
  579. /**
  580. * Manage heating activities for extruder hot-ends and a heated bed
  581. * - Acquire updated temperature readings
  582. * - Also resets the watchdog timer
  583. * - Invoke thermal runaway protection
  584. * - Manage extruder auto-fan
  585. * - Apply filament width to the extrusion rate (may move)
  586. * - Update the heated bed PID output value
  587. */
  588. /**
  589. * The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
  590. * compile error.
  591. * thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  592. *
  593. * This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
  594. *
  595. * The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
  596. */
  597. //void Temperature::manage_heater() __attribute__((__optimize__("O2")));
  598. void Temperature::manage_heater() {
  599. if (!temp_meas_ready) return;
  600. updateTemperaturesFromRawValues(); // also resets the watchdog
  601. #if ENABLED(HEATER_0_USES_MAX6675)
  602. if (current_temperature[0] > min(HEATER_0_MAXTEMP, MAX6675_TMAX - 1)) max_temp_error(0);
  603. if (current_temperature[0] < max(HEATER_0_MINTEMP, MAX6675_TMIN + 0.01)) min_temp_error(0);
  604. #endif
  605. #if WATCH_HOTENDS || WATCH_THE_BED || DISABLED(PIDTEMPBED) || HAS_AUTO_FAN
  606. millis_t ms = millis();
  607. #endif
  608. // Loop through all hotends
  609. HOTEND_LOOP() {
  610. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  611. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  612. #endif
  613. float pid_output = get_pid_output(e);
  614. // Check if temperature is within the correct range
  615. soft_pwm[e] = (current_temperature[e] > minttemp[e] || is_preheating(e)) && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  616. // Check if the temperature is failing to increase
  617. #if WATCH_HOTENDS
  618. // Is it time to check this extruder's heater?
  619. if (watch_heater_next_ms[e] && ELAPSED(ms, watch_heater_next_ms[e])) {
  620. // Has it failed to increase enough?
  621. if (degHotend(e) < watch_target_temp[e]) {
  622. // Stop!
  623. _temp_error(e, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  624. }
  625. else {
  626. // Start again if the target is still far off
  627. start_watching_heater(e);
  628. }
  629. }
  630. #endif // THERMAL_PROTECTION_HOTENDS
  631. // Check if the temperature is failing to increase
  632. #if WATCH_THE_BED
  633. // Is it time to check the bed?
  634. if (watch_bed_next_ms && ELAPSED(ms, watch_bed_next_ms)) {
  635. // Has it failed to increase enough?
  636. if (degBed() < watch_target_bed_temp) {
  637. // Stop!
  638. _temp_error(-1, PSTR(MSG_T_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  639. }
  640. else {
  641. // Start again if the target is still far off
  642. start_watching_bed();
  643. }
  644. }
  645. #endif // THERMAL_PROTECTION_HOTENDS
  646. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  647. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  648. _temp_error(0, PSTR(MSG_REDUNDANCY), PSTR(MSG_ERR_REDUNDANT_TEMP));
  649. }
  650. #endif
  651. } // HOTEND_LOOP
  652. #if HAS_AUTO_FAN
  653. if (ELAPSED(ms, next_auto_fan_check_ms)) { // only need to check fan state very infrequently
  654. checkExtruderAutoFans();
  655. next_auto_fan_check_ms = ms + 2500UL;
  656. }
  657. #endif
  658. // Control the extruder rate based on the width sensor
  659. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  660. if (filament_sensor) {
  661. meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
  662. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  663. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  664. // Get the delayed info and add 100 to reconstitute to a percent of
  665. // the nominal filament diameter then square it to get an area
  666. const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
  667. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
  668. }
  669. #endif // FILAMENT_WIDTH_SENSOR
  670. #if DISABLED(PIDTEMPBED)
  671. if (PENDING(ms, next_bed_check_ms)) return;
  672. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  673. #endif
  674. #if TEMP_SENSOR_BED != 0
  675. #if HAS_THERMALLY_PROTECTED_BED
  676. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  677. #endif
  678. #if ENABLED(PIDTEMPBED)
  679. float pid_output = get_pid_output_bed();
  680. soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0;
  681. #elif ENABLED(BED_LIMIT_SWITCHING)
  682. // Check if temperature is within the correct band
  683. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  684. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  685. soft_pwm_bed = 0;
  686. else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
  687. soft_pwm_bed = MAX_BED_POWER >> 1;
  688. }
  689. else {
  690. soft_pwm_bed = 0;
  691. WRITE_HEATER_BED(LOW);
  692. }
  693. #else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
  694. // Check if temperature is within the correct range
  695. if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
  696. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  697. }
  698. else {
  699. soft_pwm_bed = 0;
  700. WRITE_HEATER_BED(LOW);
  701. }
  702. #endif
  703. #endif //TEMP_SENSOR_BED != 0
  704. }
  705. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  706. // Derived from RepRap FiveD extruder::getTemperature()
  707. // For hot end temperature measurement.
  708. float Temperature::analog2temp(int raw, uint8_t e) {
  709. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  710. if (e > HOTENDS)
  711. #else
  712. if (e >= HOTENDS)
  713. #endif
  714. {
  715. SERIAL_ERROR_START;
  716. SERIAL_ERROR((int)e);
  717. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  718. kill(PSTR(MSG_KILLED));
  719. return 0.0;
  720. }
  721. #if ENABLED(HEATER_0_USES_MAX6675)
  722. if (e == 0) return 0.25 * raw;
  723. #endif
  724. if (heater_ttbl_map[e] != NULL) {
  725. float celsius = 0;
  726. uint8_t i;
  727. short(*tt)[][2] = (short(*)[][2])(heater_ttbl_map[e]);
  728. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  729. if (PGM_RD_W((*tt)[i][0]) > raw) {
  730. celsius = PGM_RD_W((*tt)[i - 1][1]) +
  731. (raw - PGM_RD_W((*tt)[i - 1][0])) *
  732. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i - 1][1])) /
  733. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i - 1][0]));
  734. break;
  735. }
  736. }
  737. // Overflow: Set to last value in the table
  738. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i - 1][1]);
  739. return celsius;
  740. }
  741. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  742. }
  743. // Derived from RepRap FiveD extruder::getTemperature()
  744. // For bed temperature measurement.
  745. float Temperature::analog2tempBed(int raw) {
  746. #if ENABLED(BED_USES_THERMISTOR)
  747. float celsius = 0;
  748. byte i;
  749. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  750. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  751. celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]) +
  752. (raw - PGM_RD_W(BEDTEMPTABLE[i - 1][0])) *
  753. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i - 1][1])) /
  754. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i - 1][0]));
  755. break;
  756. }
  757. }
  758. // Overflow: Set to last value in the table
  759. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i - 1][1]);
  760. return celsius;
  761. #elif defined(BED_USES_AD595)
  762. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * (TEMP_SENSOR_AD595_GAIN)) + TEMP_SENSOR_AD595_OFFSET;
  763. #else
  764. UNUSED(raw);
  765. return 0;
  766. #endif
  767. }
  768. /**
  769. * Get the raw values into the actual temperatures.
  770. * The raw values are created in interrupt context,
  771. * and this function is called from normal context
  772. * as it would block the stepper routine.
  773. */
  774. void Temperature::updateTemperaturesFromRawValues() {
  775. #if ENABLED(HEATER_0_USES_MAX6675)
  776. current_temperature_raw[0] = read_max6675();
  777. #endif
  778. HOTEND_LOOP()
  779. current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
  780. current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
  781. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  782. redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
  783. #endif
  784. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  785. filament_width_meas = analog2widthFil();
  786. #endif
  787. #if ENABLED(USE_WATCHDOG)
  788. // Reset the watchdog after we know we have a temperature measurement.
  789. watchdog_reset();
  790. #endif
  791. CRITICAL_SECTION_START;
  792. temp_meas_ready = false;
  793. CRITICAL_SECTION_END;
  794. }
  795. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  796. // Convert raw Filament Width to millimeters
  797. float Temperature::analog2widthFil() {
  798. return current_raw_filwidth / 16383.0 * 5.0;
  799. //return current_raw_filwidth;
  800. }
  801. // Convert raw Filament Width to a ratio
  802. int Temperature::widthFil_to_size_ratio() {
  803. float temp = filament_width_meas;
  804. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  805. else NOMORE(temp, MEASURED_UPPER_LIMIT);
  806. return filament_width_nominal / temp * 100;
  807. }
  808. #endif
  809. #if ENABLED(HEATER_0_USES_MAX6675)
  810. #ifndef MAX6675_SCK_PIN
  811. #define MAX6675_SCK_PIN SCK_PIN
  812. #endif
  813. #ifndef MAX6675_DO_PIN
  814. #define MAX6675_DO_PIN MISO_PIN
  815. #endif
  816. Spi<MAX6675_DO_PIN, MOSI_PIN, MAX6675_SCK_PIN> max6675_spi;
  817. #endif
  818. /**
  819. * Initialize the temperature manager
  820. * The manager is implemented by periodic calls to manage_heater()
  821. */
  822. void Temperature::init() {
  823. #if MB(RUMBA) && (TEMP_SENSOR_0 == -1 || TEMP_SENSOR_1 == -1 || TEMP_SENSOR_2 == -1 || TEMP_SENSOR_BED == -1)
  824. // Disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  825. MCUCR = _BV(JTD);
  826. MCUCR = _BV(JTD);
  827. #endif
  828. // Finish init of mult hotend arrays
  829. HOTEND_LOOP() maxttemp[e] = maxttemp[0];
  830. #if ENABLED(PIDTEMP) && ENABLED(PID_EXTRUSION_SCALING)
  831. last_e_position = 0;
  832. #endif
  833. #if HAS_HEATER_0
  834. SET_OUTPUT(HEATER_0_PIN);
  835. #endif
  836. #if HAS_HEATER_1
  837. SET_OUTPUT(HEATER_1_PIN);
  838. #endif
  839. #if HAS_HEATER_2
  840. SET_OUTPUT(HEATER_2_PIN);
  841. #endif
  842. #if HAS_HEATER_3
  843. SET_OUTPUT(HEATER_3_PIN);
  844. #endif
  845. #if HAS_HEATER_4
  846. SET_OUTPUT(HEATER_3_PIN);
  847. #endif
  848. #if HAS_HEATER_BED
  849. SET_OUTPUT(HEATER_BED_PIN);
  850. #endif
  851. #if HAS_FAN0
  852. SET_OUTPUT(FAN_PIN);
  853. #if ENABLED(FAST_PWM_FAN)
  854. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  855. #endif
  856. #endif
  857. #if HAS_FAN1
  858. SET_OUTPUT(FAN1_PIN);
  859. #if ENABLED(FAST_PWM_FAN)
  860. setPwmFrequency(FAN1_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  861. #endif
  862. #endif
  863. #if HAS_FAN2
  864. SET_OUTPUT(FAN2_PIN);
  865. #if ENABLED(FAST_PWM_FAN)
  866. setPwmFrequency(FAN2_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  867. #endif
  868. #endif
  869. #if ENABLED(HEATER_0_USES_MAX6675)
  870. OUT_WRITE(SCK_PIN, LOW);
  871. OUT_WRITE(MOSI_PIN, HIGH);
  872. SET_INPUT_PULLUP(MISO_PIN);
  873. max6675_spi.init();
  874. OUT_WRITE(SS_PIN, HIGH);
  875. OUT_WRITE(MAX6675_SS, HIGH);
  876. #endif // HEATER_0_USES_MAX6675
  877. #ifdef DIDR2
  878. #define ANALOG_SELECT(pin) do{ if (pin < 8) SBI(DIDR0, pin); else SBI(DIDR2, pin - 8); }while(0)
  879. #else
  880. #define ANALOG_SELECT(pin) do{ SBI(DIDR0, pin); }while(0)
  881. #endif
  882. // Set analog inputs
  883. ADCSRA = _BV(ADEN) | _BV(ADSC) | _BV(ADIF) | 0x07;
  884. DIDR0 = 0;
  885. #ifdef DIDR2
  886. DIDR2 = 0;
  887. #endif
  888. #if HAS_TEMP_0
  889. ANALOG_SELECT(TEMP_0_PIN);
  890. #endif
  891. #if HAS_TEMP_1
  892. ANALOG_SELECT(TEMP_1_PIN);
  893. #endif
  894. #if HAS_TEMP_2
  895. ANALOG_SELECT(TEMP_2_PIN);
  896. #endif
  897. #if HAS_TEMP_3
  898. ANALOG_SELECT(TEMP_3_PIN);
  899. #endif
  900. #if HAS_TEMP_4
  901. ANALOG_SELECT(TEMP_4_PIN);
  902. #endif
  903. #if HAS_TEMP_BED
  904. ANALOG_SELECT(TEMP_BED_PIN);
  905. #endif
  906. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  907. ANALOG_SELECT(FILWIDTH_PIN);
  908. #endif
  909. #if HAS_AUTO_FAN_0
  910. #if E0_AUTO_FAN_PIN == FAN1_PIN
  911. SET_OUTPUT(E0_AUTO_FAN_PIN);
  912. #if ENABLED(FAST_PWM_FAN)
  913. setPwmFrequency(E0_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  914. #endif
  915. #else
  916. SET_OUTPUT(E0_AUTO_FAN_PIN);
  917. #endif
  918. #endif
  919. #if HAS_AUTO_FAN_1 && !AUTO_1_IS_0
  920. #if E1_AUTO_FAN_PIN == FAN1_PIN
  921. SET_OUTPUT(E1_AUTO_FAN_PIN);
  922. #if ENABLED(FAST_PWM_FAN)
  923. setPwmFrequency(E1_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  924. #endif
  925. #else
  926. SET_OUTPUT(E1_AUTO_FAN_PIN);
  927. #endif
  928. #endif
  929. #if HAS_AUTO_FAN_2 && !AUTO_2_IS_0 && !AUTO_2_IS_1
  930. #if E2_AUTO_FAN_PIN == FAN1_PIN
  931. SET_OUTPUT(E2_AUTO_FAN_PIN);
  932. #if ENABLED(FAST_PWM_FAN)
  933. setPwmFrequency(E2_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  934. #endif
  935. #else
  936. SET_OUTPUT(E2_AUTO_FAN_PIN);
  937. #endif
  938. #endif
  939. #if HAS_AUTO_FAN_3 && !AUTO_3_IS_0 && !AUTO_3_IS_1 && !AUTO_3_IS_2
  940. #if E3_AUTO_FAN_PIN == FAN1_PIN
  941. SET_OUTPUT(E3_AUTO_FAN_PIN);
  942. #if ENABLED(FAST_PWM_FAN)
  943. setPwmFrequency(E3_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  944. #endif
  945. #else
  946. SET_OUTPUT(E3_AUTO_FAN_PIN);
  947. #endif
  948. #endif
  949. #if HAS_AUTO_FAN_4 && !AUTO_4_IS_0 && !AUTO_4_IS_1 && !AUTO_4_IS_2 && !AUTO_4_IS_3
  950. #if E4_AUTO_FAN_PIN == FAN1_PIN
  951. SET_OUTPUT(E4_AUTO_FAN_PIN);
  952. #if ENABLED(FAST_PWM_FAN)
  953. setPwmFrequency(E4_AUTO_FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  954. #endif
  955. #else
  956. SET_OUTPUT(E4_AUTO_FAN_PIN);
  957. #endif
  958. #endif
  959. // Use timer0 for temperature measurement
  960. // Interleave temperature interrupt with millies interrupt
  961. OCR0B = 128;
  962. SBI(TIMSK0, OCIE0B);
  963. // Wait for temperature measurement to settle
  964. delay(250);
  965. #define TEMP_MIN_ROUTINE(NR) \
  966. minttemp[NR] = HEATER_ ##NR## _MINTEMP; \
  967. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ##NR## _MINTEMP) { \
  968. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  969. minttemp_raw[NR] += OVERSAMPLENR; \
  970. else \
  971. minttemp_raw[NR] -= OVERSAMPLENR; \
  972. }
  973. #define TEMP_MAX_ROUTINE(NR) \
  974. maxttemp[NR] = HEATER_ ##NR## _MAXTEMP; \
  975. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ##NR## _MAXTEMP) { \
  976. if (HEATER_ ##NR## _RAW_LO_TEMP < HEATER_ ##NR## _RAW_HI_TEMP) \
  977. maxttemp_raw[NR] -= OVERSAMPLENR; \
  978. else \
  979. maxttemp_raw[NR] += OVERSAMPLENR; \
  980. }
  981. #ifdef HEATER_0_MINTEMP
  982. TEMP_MIN_ROUTINE(0);
  983. #endif
  984. #ifdef HEATER_0_MAXTEMP
  985. TEMP_MAX_ROUTINE(0);
  986. #endif
  987. #if HOTENDS > 1
  988. #ifdef HEATER_1_MINTEMP
  989. TEMP_MIN_ROUTINE(1);
  990. #endif
  991. #ifdef HEATER_1_MAXTEMP
  992. TEMP_MAX_ROUTINE(1);
  993. #endif
  994. #if HOTENDS > 2
  995. #ifdef HEATER_2_MINTEMP
  996. TEMP_MIN_ROUTINE(2);
  997. #endif
  998. #ifdef HEATER_2_MAXTEMP
  999. TEMP_MAX_ROUTINE(2);
  1000. #endif
  1001. #if HOTENDS > 3
  1002. #ifdef HEATER_3_MINTEMP
  1003. TEMP_MIN_ROUTINE(3);
  1004. #endif
  1005. #ifdef HEATER_3_MAXTEMP
  1006. TEMP_MAX_ROUTINE(3);
  1007. #endif
  1008. #if HOTENDS > 4
  1009. #ifdef HEATER_4_MINTEMP
  1010. TEMP_MIN_ROUTINE(4);
  1011. #endif
  1012. #ifdef HEATER_4_MAXTEMP
  1013. TEMP_MAX_ROUTINE(4);
  1014. #endif
  1015. #endif // HOTENDS > 4
  1016. #endif // HOTENDS > 3
  1017. #endif // HOTENDS > 2
  1018. #endif // HOTENDS > 1
  1019. #ifdef BED_MINTEMP
  1020. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  1021. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1022. bed_minttemp_raw += OVERSAMPLENR;
  1023. #else
  1024. bed_minttemp_raw -= OVERSAMPLENR;
  1025. #endif
  1026. }
  1027. #endif //BED_MINTEMP
  1028. #ifdef BED_MAXTEMP
  1029. while (analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  1030. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  1031. bed_maxttemp_raw -= OVERSAMPLENR;
  1032. #else
  1033. bed_maxttemp_raw += OVERSAMPLENR;
  1034. #endif
  1035. }
  1036. #endif //BED_MAXTEMP
  1037. }
  1038. #if WATCH_HOTENDS
  1039. /**
  1040. * Start Heating Sanity Check for hotends that are below
  1041. * their target temperature by a configurable margin.
  1042. * This is called when the temperature is set. (M104, M109)
  1043. */
  1044. void Temperature::start_watching_heater(uint8_t e) {
  1045. #if HOTENDS == 1
  1046. UNUSED(e);
  1047. #endif
  1048. if (degHotend(HOTEND_INDEX) < degTargetHotend(HOTEND_INDEX) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  1049. watch_target_temp[HOTEND_INDEX] = degHotend(HOTEND_INDEX) + WATCH_TEMP_INCREASE;
  1050. watch_heater_next_ms[HOTEND_INDEX] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
  1051. }
  1052. else
  1053. watch_heater_next_ms[HOTEND_INDEX] = 0;
  1054. }
  1055. #endif
  1056. #if WATCH_THE_BED
  1057. /**
  1058. * Start Heating Sanity Check for hotends that are below
  1059. * their target temperature by a configurable margin.
  1060. * This is called when the temperature is set. (M140, M190)
  1061. */
  1062. void Temperature::start_watching_bed() {
  1063. if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
  1064. watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
  1065. watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
  1066. }
  1067. else
  1068. watch_bed_next_ms = 0;
  1069. }
  1070. #endif
  1071. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  1072. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  1073. Temperature::TRState Temperature::thermal_runaway_state_machine[HOTENDS] = { TRInactive };
  1074. millis_t Temperature::thermal_runaway_timer[HOTENDS] = { 0 };
  1075. #endif
  1076. #if HAS_THERMALLY_PROTECTED_BED
  1077. Temperature::TRState Temperature::thermal_runaway_bed_state_machine = TRInactive;
  1078. millis_t Temperature::thermal_runaway_bed_timer;
  1079. #endif
  1080. void Temperature::thermal_runaway_protection(Temperature::TRState* state, millis_t* timer, float current, float target, int heater_id, int period_seconds, int hysteresis_degc) {
  1081. static float tr_target_temperature[HOTENDS + 1] = { 0.0 };
  1082. /**
  1083. SERIAL_ECHO_START;
  1084. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  1085. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHO(heater_id);
  1086. SERIAL_ECHOPAIR(" ; State:", *state);
  1087. SERIAL_ECHOPAIR(" ; Timer:", *timer);
  1088. SERIAL_ECHOPAIR(" ; Temperature:", current);
  1089. SERIAL_ECHOPAIR(" ; Target Temp:", target);
  1090. SERIAL_EOL;
  1091. */
  1092. int heater_index = heater_id >= 0 ? heater_id : HOTENDS;
  1093. // If the target temperature changes, restart
  1094. if (tr_target_temperature[heater_index] != target) {
  1095. tr_target_temperature[heater_index] = target;
  1096. *state = target > 0 ? TRFirstHeating : TRInactive;
  1097. }
  1098. switch (*state) {
  1099. // Inactive state waits for a target temperature to be set
  1100. case TRInactive: break;
  1101. // When first heating, wait for the temperature to be reached then go to Stable state
  1102. case TRFirstHeating:
  1103. if (current < tr_target_temperature[heater_index]) break;
  1104. *state = TRStable;
  1105. // While the temperature is stable watch for a bad temperature
  1106. case TRStable:
  1107. if (current >= tr_target_temperature[heater_index] - hysteresis_degc) {
  1108. *timer = millis() + period_seconds * 1000UL;
  1109. break;
  1110. }
  1111. else if (PENDING(millis(), *timer)) break;
  1112. *state = TRRunaway;
  1113. case TRRunaway:
  1114. _temp_error(heater_id, PSTR(MSG_T_THERMAL_RUNAWAY), PSTR(MSG_THERMAL_RUNAWAY));
  1115. }
  1116. }
  1117. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  1118. void Temperature::disable_all_heaters() {
  1119. HOTEND_LOOP() setTargetHotend(0, e);
  1120. setTargetBed(0);
  1121. // If all heaters go down then for sure our print job has stopped
  1122. print_job_timer.stop();
  1123. #define DISABLE_HEATER(NR) { \
  1124. setTargetHotend(0, NR); \
  1125. soft_pwm[NR] = 0; \
  1126. WRITE_HEATER_ ##NR (LOW); \
  1127. }
  1128. #if HAS_TEMP_HOTEND
  1129. DISABLE_HEATER(0);
  1130. #if HOTENDS > 1
  1131. DISABLE_HEATER(1);
  1132. #if HOTENDS > 2
  1133. DISABLE_HEATER(2);
  1134. #if HOTENDS > 3
  1135. DISABLE_HEATER(3);
  1136. #if HOTENDS > 4
  1137. DISABLE_HEATER(4);
  1138. #endif // HOTENDS > 4
  1139. #endif // HOTENDS > 3
  1140. #endif // HOTENDS > 2
  1141. #endif // HOTENDS > 1
  1142. #endif
  1143. #if HAS_TEMP_BED
  1144. target_temperature_bed = 0;
  1145. soft_pwm_bed = 0;
  1146. #if HAS_HEATER_BED
  1147. WRITE_HEATER_BED(LOW);
  1148. #endif
  1149. #endif
  1150. }
  1151. #if ENABLED(HEATER_0_USES_MAX6675)
  1152. #define MAX6675_HEAT_INTERVAL 250u
  1153. #if ENABLED(MAX6675_IS_MAX31855)
  1154. uint32_t max6675_temp = 2000;
  1155. #define MAX6675_ERROR_MASK 7
  1156. #define MAX6675_DISCARD_BITS 18
  1157. #define MAX6675_SPEED_BITS (_BV(SPR1)) // clock ÷ 64
  1158. #else
  1159. uint16_t max6675_temp = 2000;
  1160. #define MAX6675_ERROR_MASK 4
  1161. #define MAX6675_DISCARD_BITS 3
  1162. #define MAX6675_SPEED_BITS (_BV(SPR0)) // clock ÷ 16
  1163. #endif
  1164. int Temperature::read_max6675() {
  1165. static millis_t next_max6675_ms = 0;
  1166. millis_t ms = millis();
  1167. if (PENDING(ms, next_max6675_ms)) return (int)max6675_temp;
  1168. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  1169. CBI(
  1170. #ifdef PRR
  1171. PRR
  1172. #elif defined(PRR0)
  1173. PRR0
  1174. #endif
  1175. , PRSPI);
  1176. SPCR = _BV(MSTR) | _BV(SPE) | MAX6675_SPEED_BITS;
  1177. WRITE(MAX6675_SS, 0); // enable TT_MAX6675
  1178. // ensure 100ns delay - a bit extra is fine
  1179. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1180. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1181. // Read a big-endian temperature value
  1182. max6675_temp = 0;
  1183. for (uint8_t i = sizeof(max6675_temp); i--;) {
  1184. max6675_temp |= max6675_spi.receive();
  1185. if (i > 0) max6675_temp <<= 8; // shift left if not the last byte
  1186. }
  1187. WRITE(MAX6675_SS, 1); // disable TT_MAX6675
  1188. if (max6675_temp & MAX6675_ERROR_MASK) {
  1189. SERIAL_ERROR_START;
  1190. SERIAL_ERRORPGM("Temp measurement error! ");
  1191. #if MAX6675_ERROR_MASK == 7
  1192. SERIAL_ERRORPGM("MAX31855 ");
  1193. if (max6675_temp & 1)
  1194. SERIAL_ERRORLNPGM("Open Circuit");
  1195. else if (max6675_temp & 2)
  1196. SERIAL_ERRORLNPGM("Short to GND");
  1197. else if (max6675_temp & 4)
  1198. SERIAL_ERRORLNPGM("Short to VCC");
  1199. #else
  1200. SERIAL_ERRORLNPGM("MAX6675");
  1201. #endif
  1202. max6675_temp = MAX6675_TMAX * 4; // thermocouple open
  1203. }
  1204. else
  1205. max6675_temp >>= MAX6675_DISCARD_BITS;
  1206. #if ENABLED(MAX6675_IS_MAX31855)
  1207. // Support negative temperature
  1208. if (max6675_temp & 0x00002000) max6675_temp |= 0xFFFFC000;
  1209. #endif
  1210. return (int)max6675_temp;
  1211. }
  1212. #endif //HEATER_0_USES_MAX6675
  1213. /**
  1214. * Get raw temperatures
  1215. */
  1216. void Temperature::set_current_temp_raw() {
  1217. #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
  1218. current_temperature_raw[0] = raw_temp_value[0];
  1219. #endif
  1220. #if HAS_TEMP_1
  1221. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  1222. redundant_temperature_raw = raw_temp_value[1];
  1223. #else
  1224. current_temperature_raw[1] = raw_temp_value[1];
  1225. #endif
  1226. #if HAS_TEMP_2
  1227. current_temperature_raw[2] = raw_temp_value[2];
  1228. #if HAS_TEMP_3
  1229. current_temperature_raw[3] = raw_temp_value[3];
  1230. #if HAS_TEMP_4
  1231. current_temperature_raw[4] = raw_temp_value[4];
  1232. #endif
  1233. #endif
  1234. #endif
  1235. #endif
  1236. current_temperature_bed_raw = raw_temp_bed_value;
  1237. temp_meas_ready = true;
  1238. }
  1239. #if ENABLED(PINS_DEBUGGING)
  1240. /**
  1241. * monitors endstops & Z probe for changes
  1242. *
  1243. * If a change is detected then the LED is toggled and
  1244. * a message is sent out the serial port
  1245. *
  1246. * Yes, we could miss a rapid back & forth change but
  1247. * that won't matter because this is all manual.
  1248. *
  1249. */
  1250. void endstop_monitor() {
  1251. static uint16_t old_endstop_bits_local = 0;
  1252. static uint8_t local_LED_status = 0;
  1253. uint16_t current_endstop_bits_local = 0;
  1254. #if HAS_X_MIN
  1255. if (READ(X_MIN_PIN)) SBI(current_endstop_bits_local, X_MIN);
  1256. #endif
  1257. #if HAS_X_MAX
  1258. if (READ(X_MAX_PIN)) SBI(current_endstop_bits_local, X_MAX);
  1259. #endif
  1260. #if HAS_Y_MIN
  1261. if (READ(Y_MIN_PIN)) SBI(current_endstop_bits_local, Y_MIN);
  1262. #endif
  1263. #if HAS_Y_MAX
  1264. if (READ(Y_MAX_PIN)) SBI(current_endstop_bits_local, Y_MAX);
  1265. #endif
  1266. #if HAS_Z_MIN
  1267. if (READ(Z_MIN_PIN)) SBI(current_endstop_bits_local, Z_MIN);
  1268. #endif
  1269. #if HAS_Z_MAX
  1270. if (READ(Z_MAX_PIN)) SBI(current_endstop_bits_local, Z_MAX);
  1271. #endif
  1272. #if HAS_Z_MIN_PROBE_PIN
  1273. if (READ(Z_MIN_PROBE_PIN)) SBI(current_endstop_bits_local, Z_MIN_PROBE);
  1274. #endif
  1275. #if HAS_Z2_MIN
  1276. if (READ(Z2_MIN_PIN)) SBI(current_endstop_bits_local, Z2_MIN);
  1277. #endif
  1278. #if HAS_Z2_MAX
  1279. if (READ(Z2_MAX_PIN)) SBI(current_endstop_bits_local, Z2_MAX);
  1280. #endif
  1281. uint16_t endstop_change = current_endstop_bits_local ^ old_endstop_bits_local;
  1282. if (endstop_change) {
  1283. #if HAS_X_MIN
  1284. if (TEST(endstop_change, X_MIN)) SERIAL_PROTOCOLPAIR("X_MIN:", !!TEST(current_endstop_bits_local, X_MIN));
  1285. #endif
  1286. #if HAS_X_MAX
  1287. if (TEST(endstop_change, X_MAX)) SERIAL_PROTOCOLPAIR(" X_MAX:", !!TEST(current_endstop_bits_local, X_MAX));
  1288. #endif
  1289. #if HAS_Y_MIN
  1290. if (TEST(endstop_change, Y_MIN)) SERIAL_PROTOCOLPAIR(" Y_MIN:", !!TEST(current_endstop_bits_local, Y_MIN));
  1291. #endif
  1292. #if HAS_Y_MAX
  1293. if (TEST(endstop_change, Y_MAX)) SERIAL_PROTOCOLPAIR(" Y_MAX:", !!TEST(current_endstop_bits_local, Y_MAX));
  1294. #endif
  1295. #if HAS_Z_MIN
  1296. if (TEST(endstop_change, Z_MIN)) SERIAL_PROTOCOLPAIR(" Z_MIN:", !!TEST(current_endstop_bits_local, Z_MIN));
  1297. #endif
  1298. #if HAS_Z_MAX
  1299. if (TEST(endstop_change, Z_MAX)) SERIAL_PROTOCOLPAIR(" Z_MAX:", !!TEST(current_endstop_bits_local, Z_MAX));
  1300. #endif
  1301. #if HAS_Z_MIN_PROBE_PIN
  1302. if (TEST(endstop_change, Z_MIN_PROBE)) SERIAL_PROTOCOLPAIR(" PROBE:", !!TEST(current_endstop_bits_local, Z_MIN_PROBE));
  1303. #endif
  1304. #if HAS_Z2_MIN
  1305. if (TEST(endstop_change, Z2_MIN)) SERIAL_PROTOCOLPAIR(" Z2_MIN:", !!TEST(current_endstop_bits_local, Z2_MIN));
  1306. #endif
  1307. #if HAS_Z2_MAX
  1308. if (TEST(endstop_change, Z2_MAX)) SERIAL_PROTOCOLPAIR(" Z2_MAX:", !!TEST(current_endstop_bits_local, Z2_MAX));
  1309. #endif
  1310. SERIAL_PROTOCOLPGM("\n\n");
  1311. analogWrite(LED_PIN, local_LED_status);
  1312. local_LED_status ^= 255;
  1313. old_endstop_bits_local = current_endstop_bits_local;
  1314. }
  1315. }
  1316. #endif // PINS_DEBUGGING
  1317. /**
  1318. * Timer 0 is shared with millies so don't change the prescaler.
  1319. *
  1320. * This ISR uses the compare method so it runs at the base
  1321. * frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
  1322. * in OCR0B above (128 or halfway between OVFs).
  1323. *
  1324. * - Manage PWM to all the heaters and fan
  1325. * - Prepare or Measure one of the raw ADC sensor values
  1326. * - Check new temperature values for MIN/MAX errors (kill on error)
  1327. * - Step the babysteps value for each axis towards 0
  1328. * - For PINS_DEBUGGING, monitor and report endstop pins
  1329. * - For ENDSTOP_INTERRUPTS_FEATURE check endstops if flagged
  1330. */
  1331. ISR(TIMER0_COMPB_vect) { Temperature::isr(); }
  1332. volatile bool Temperature::in_temp_isr = false;
  1333. void Temperature::isr() {
  1334. // The stepper ISR can interrupt this ISR. When it does it re-enables this ISR
  1335. // at the end of its run, potentially causing re-entry. This flag prevents it.
  1336. if (in_temp_isr) return;
  1337. in_temp_isr = true;
  1338. // Allow UART and stepper ISRs
  1339. CBI(TIMSK0, OCIE0B); //Disable Temperature ISR
  1340. sei();
  1341. static int8_t temp_count = -1;
  1342. static ADCSensorState adc_sensor_state = StartupDelay;
  1343. static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
  1344. // avoid multiple loads of pwm_count
  1345. uint8_t pwm_count_tmp = pwm_count;
  1346. // Static members for each heater
  1347. #if ENABLED(SLOW_PWM_HEATERS)
  1348. static uint8_t slow_pwm_count = 0;
  1349. #define ISR_STATICS(n) \
  1350. static uint8_t soft_pwm_ ## n; \
  1351. static uint8_t state_heater_ ## n = 0; \
  1352. static uint8_t state_timer_heater_ ## n = 0
  1353. #else
  1354. #define ISR_STATICS(n) static uint8_t soft_pwm_ ## n = 0
  1355. #endif
  1356. // Statics per heater
  1357. ISR_STATICS(0);
  1358. #if HOTENDS > 1
  1359. ISR_STATICS(1);
  1360. #if HOTENDS > 2
  1361. ISR_STATICS(2);
  1362. #if HOTENDS > 3
  1363. ISR_STATICS(3);
  1364. #if HOTENDS > 4
  1365. ISR_STATICS(4);
  1366. #endif // HOTENDS > 4
  1367. #endif // HOTENDS > 3
  1368. #endif // HOTENDS > 2
  1369. #endif // HOTENDS > 1
  1370. #if HAS_HEATER_BED
  1371. ISR_STATICS(BED);
  1372. #endif
  1373. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1374. static unsigned long raw_filwidth_value = 0;
  1375. #endif
  1376. #if DISABLED(SLOW_PWM_HEATERS)
  1377. constexpr uint8_t pwm_mask =
  1378. #if ENABLED(SOFT_PWM_DITHER)
  1379. _BV(SOFT_PWM_SCALE) - 1
  1380. #else
  1381. 0
  1382. #endif
  1383. ;
  1384. /**
  1385. * Standard PWM modulation
  1386. */
  1387. if (pwm_count_tmp >= 127) {
  1388. pwm_count_tmp -= 127;
  1389. soft_pwm_0 = (soft_pwm_0 & pwm_mask) + soft_pwm[0];
  1390. WRITE_HEATER_0(soft_pwm_0 > pwm_mask ? HIGH : LOW);
  1391. #if HOTENDS > 1
  1392. soft_pwm_1 = (soft_pwm_1 & pwm_mask) + soft_pwm[1];
  1393. WRITE_HEATER_1(soft_pwm_1 > pwm_mask ? HIGH : LOW);
  1394. #if HOTENDS > 2
  1395. soft_pwm_2 = (soft_pwm_2 & pwm_mask) + soft_pwm[2];
  1396. WRITE_HEATER_2(soft_pwm_2 > pwm_mask ? HIGH : LOW);
  1397. #if HOTENDS > 3
  1398. soft_pwm_3 = (soft_pwm_3 & pwm_mask) + soft_pwm[3];
  1399. WRITE_HEATER_3(soft_pwm_3 > pwm_mask ? HIGH : LOW);
  1400. #if HOTENDS > 4
  1401. soft_pwm_4 = (soft_pwm_4 & pwm_mask) + soft_pwm[4];
  1402. WRITE_HEATER_4(soft_pwm_4 > pwm_mask ? HIGH : LOW);
  1403. #endif // HOTENDS > 4
  1404. #endif // HOTENDS > 3
  1405. #endif // HOTENDS > 2
  1406. #endif // HOTENDS > 1
  1407. #if HAS_HEATER_BED
  1408. soft_pwm_BED = (soft_pwm_BED & pwm_mask) + soft_pwm_bed;
  1409. WRITE_HEATER_BED(soft_pwm_BED > pwm_mask ? HIGH : LOW);
  1410. #endif
  1411. #if ENABLED(FAN_SOFT_PWM)
  1412. #if HAS_FAN0
  1413. soft_pwm_fan[0] = (soft_pwm_fan[0] & pwm_mask) + fanSpeedSoftPwm[0] >> 1;
  1414. WRITE_FAN(soft_pwm_fan[0] > pwm_mask ? HIGH : LOW);
  1415. #endif
  1416. #if HAS_FAN1
  1417. soft_pwm_fan[1] = (soft_pwm_fan[1] & pwm_mask) + fanSpeedSoftPwm[1] >> 1;
  1418. WRITE_FAN1(soft_pwm_fan[1] > pwm_mask ? HIGH : LOW);
  1419. #endif
  1420. #if HAS_FAN2
  1421. soft_pwm_fan[2] = (soft_pwm_fan[2] & pwm_mask) + fanSpeedSoftPwm[2] >> 1;
  1422. WRITE_FAN2(soft_pwm_fan[2] > pwm_mask ? HIGH : LOW);
  1423. #endif
  1424. #endif
  1425. }
  1426. else {
  1427. if (soft_pwm_0 <= pwm_count_tmp) WRITE_HEATER_0(0);
  1428. #if HOTENDS > 1
  1429. if (soft_pwm_1 <= pwm_count_tmp) WRITE_HEATER_1(0);
  1430. #if HOTENDS > 2
  1431. if (soft_pwm_2 <= pwm_count_tmp) WRITE_HEATER_2(0);
  1432. #if HOTENDS > 3
  1433. if (soft_pwm_3 <= pwm_count_tmp) WRITE_HEATER_3(0);
  1434. #if HOTENDS > 4
  1435. if (soft_pwm_4 <= pwm_count_tmp) WRITE_HEATER_4(0);
  1436. #endif // HOTENDS > 4
  1437. #endif // HOTENDS > 3
  1438. #endif // HOTENDS > 2
  1439. #endif // HOTENDS > 1
  1440. #if HAS_HEATER_BED
  1441. if (soft_pwm_BED <= pwm_count_tmp) WRITE_HEATER_BED(0);
  1442. #endif
  1443. #if ENABLED(FAN_SOFT_PWM)
  1444. #if HAS_FAN0
  1445. if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
  1446. #endif
  1447. #if HAS_FAN1
  1448. if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
  1449. #endif
  1450. #if HAS_FAN2
  1451. if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
  1452. #endif
  1453. #endif
  1454. }
  1455. // SOFT_PWM_SCALE to frequency:
  1456. //
  1457. // 0: 16000000/64/256/128 = 7.6294 Hz
  1458. // 1: / 64 = 15.2588 Hz
  1459. // 2: / 32 = 30.5176 Hz
  1460. // 3: / 16 = 61.0352 Hz
  1461. // 4: / 8 = 122.0703 Hz
  1462. // 5: / 4 = 244.1406 Hz
  1463. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1464. #else // SLOW_PWM_HEATERS
  1465. /**
  1466. * SLOW PWM HEATERS
  1467. *
  1468. * For relay-driven heaters
  1469. */
  1470. #ifndef MIN_STATE_TIME
  1471. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1472. #endif
  1473. // Macros for Slow PWM timer logic
  1474. #define _SLOW_PWM_ROUTINE(NR, src) \
  1475. soft_pwm_ ##NR = src; \
  1476. if (soft_pwm_ ##NR > 0) { \
  1477. if (state_timer_heater_ ##NR == 0) { \
  1478. if (state_heater_ ##NR == 0) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1479. state_heater_ ##NR = 1; \
  1480. WRITE_HEATER_ ##NR(1); \
  1481. } \
  1482. } \
  1483. else { \
  1484. if (state_timer_heater_ ##NR == 0) { \
  1485. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1486. state_heater_ ##NR = 0; \
  1487. WRITE_HEATER_ ##NR(0); \
  1488. } \
  1489. }
  1490. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1491. #define PWM_OFF_ROUTINE(NR) \
  1492. if (soft_pwm_ ##NR < slow_pwm_count) { \
  1493. if (state_timer_heater_ ##NR == 0) { \
  1494. if (state_heater_ ##NR == 1) state_timer_heater_ ##NR = MIN_STATE_TIME; \
  1495. state_heater_ ##NR = 0; \
  1496. WRITE_HEATER_ ##NR (0); \
  1497. } \
  1498. }
  1499. if (slow_pwm_count == 0) {
  1500. SLOW_PWM_ROUTINE(0);
  1501. #if HOTENDS > 1
  1502. SLOW_PWM_ROUTINE(1);
  1503. #if HOTENDS > 2
  1504. SLOW_PWM_ROUTINE(2);
  1505. #if HOTENDS > 3
  1506. SLOW_PWM_ROUTINE(3);
  1507. #if HOTENDS > 4
  1508. SLOW_PWM_ROUTINE(4);
  1509. #endif // HOTENDS > 4
  1510. #endif // HOTENDS > 3
  1511. #endif // HOTENDS > 2
  1512. #endif // HOTENDS > 1
  1513. #if HAS_HEATER_BED
  1514. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1515. #endif
  1516. } // slow_pwm_count == 0
  1517. PWM_OFF_ROUTINE(0);
  1518. #if HOTENDS > 1
  1519. PWM_OFF_ROUTINE(1);
  1520. #if HOTENDS > 2
  1521. PWM_OFF_ROUTINE(2);
  1522. #if HOTENDS > 3
  1523. PWM_OFF_ROUTINE(3);
  1524. #if HOTENDS > 4
  1525. PWM_OFF_ROUTINE(4);
  1526. #endif // HOTENDS > 4
  1527. #endif // HOTENDS > 3
  1528. #endif // HOTENDS > 2
  1529. #endif // HOTENDS > 1
  1530. #if HAS_HEATER_BED
  1531. PWM_OFF_ROUTINE(BED); // BED
  1532. #endif
  1533. #if ENABLED(FAN_SOFT_PWM)
  1534. if (pwm_count_tmp >= 127) {
  1535. pwm_count_tmp = 0;
  1536. #if HAS_FAN0
  1537. soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
  1538. WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW);
  1539. #endif
  1540. #if HAS_FAN1
  1541. soft_pwm_fan[1] = fanSpeedSoftPwm[1] >> 1;
  1542. WRITE_FAN1(soft_pwm_fan[1] > 0 ? HIGH : LOW);
  1543. #endif
  1544. #if HAS_FAN2
  1545. soft_pwm_fan[2] = fanSpeedSoftPwm[2] >> 1;
  1546. WRITE_FAN2(soft_pwm_fan[2] > 0 ? HIGH : LOW);
  1547. #endif
  1548. }
  1549. #if HAS_FAN0
  1550. if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
  1551. #endif
  1552. #if HAS_FAN1
  1553. if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
  1554. #endif
  1555. #if HAS_FAN2
  1556. if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
  1557. #endif
  1558. #endif // FAN_SOFT_PWM
  1559. // SOFT_PWM_SCALE to frequency:
  1560. //
  1561. // 0: 16000000/64/256/128 = 7.6294 Hz
  1562. // 1: / 64 = 15.2588 Hz
  1563. // 2: / 32 = 30.5176 Hz
  1564. // 3: / 16 = 61.0352 Hz
  1565. // 4: / 8 = 122.0703 Hz
  1566. // 5: / 4 = 244.1406 Hz
  1567. pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
  1568. // increment slow_pwm_count only every 64th pwm_count,
  1569. // i.e. yielding a PWM frequency of 16/128 Hz (8s).
  1570. if (((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0) {
  1571. slow_pwm_count++;
  1572. slow_pwm_count &= 0x7F;
  1573. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1574. #if HOTENDS > 1
  1575. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1576. #if HOTENDS > 2
  1577. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1578. #if HOTENDS > 3
  1579. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1580. #if HOTENDS > 4
  1581. if (state_timer_heater_4 > 0) state_timer_heater_4--;
  1582. #endif // HOTENDS > 4
  1583. #endif // HOTENDS > 3
  1584. #endif // HOTENDS > 2
  1585. #endif // HOTENDS > 1
  1586. #if HAS_HEATER_BED
  1587. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1588. #endif
  1589. } // ((pwm_count >> SOFT_PWM_SCALE) & 0x3F) == 0
  1590. #endif // SLOW_PWM_HEATERS
  1591. //
  1592. // Update lcd buttons 488 times per second
  1593. //
  1594. static bool do_buttons;
  1595. if ((do_buttons ^= true)) lcd_buttons_update();
  1596. /**
  1597. * One sensor is sampled on every other call of the ISR.
  1598. * Each sensor is read 16 (OVERSAMPLENR) times, taking the average.
  1599. *
  1600. * On each Prepare pass, ADC is started for a sensor pin.
  1601. * On the next pass, the ADC value is read and accumulated.
  1602. *
  1603. * This gives each ADC 0.9765ms to charge up.
  1604. */
  1605. #define SET_ADMUX_ADCSRA(pin) ADMUX = _BV(REFS0) | (pin & 0x07); SBI(ADCSRA, ADSC)
  1606. #ifdef MUX5
  1607. #define START_ADC(pin) if (pin > 7) ADCSRB = _BV(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1608. #else
  1609. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1610. #endif
  1611. switch (adc_sensor_state) {
  1612. case SensorsReady: {
  1613. // All sensors have been read. Stay in this state for a few
  1614. // ISRs to save on calls to temp update/checking code below.
  1615. constexpr int extra_loops = MIN_ADC_ISR_LOOPS - (int)SensorsReady;
  1616. static uint8_t delay_count = 0;
  1617. if (extra_loops > 0) {
  1618. if (delay_count == 0) delay_count = extra_loops; // Init this delay
  1619. if (--delay_count) // While delaying...
  1620. adc_sensor_state = (ADCSensorState)(int(SensorsReady) - 1); // retain this state (else, next state will be 0)
  1621. break;
  1622. }
  1623. else
  1624. adc_sensor_state = (ADCSensorState)0; // Fall-through to start first sensor now
  1625. }
  1626. #if HAS_TEMP_0
  1627. case PrepareTemp_0:
  1628. START_ADC(TEMP_0_PIN);
  1629. break;
  1630. case MeasureTemp_0:
  1631. raw_temp_value[0] += ADC;
  1632. break;
  1633. #endif
  1634. #if HAS_TEMP_BED
  1635. case PrepareTemp_BED:
  1636. START_ADC(TEMP_BED_PIN);
  1637. break;
  1638. case MeasureTemp_BED:
  1639. raw_temp_bed_value += ADC;
  1640. break;
  1641. #endif
  1642. #if HAS_TEMP_1
  1643. case PrepareTemp_1:
  1644. START_ADC(TEMP_1_PIN);
  1645. break;
  1646. case MeasureTemp_1:
  1647. raw_temp_value[1] += ADC;
  1648. break;
  1649. #endif
  1650. #if HAS_TEMP_2
  1651. case PrepareTemp_2:
  1652. START_ADC(TEMP_2_PIN);
  1653. break;
  1654. case MeasureTemp_2:
  1655. raw_temp_value[2] += ADC;
  1656. break;
  1657. #endif
  1658. #if HAS_TEMP_3
  1659. case PrepareTemp_3:
  1660. START_ADC(TEMP_3_PIN);
  1661. break;
  1662. case MeasureTemp_3:
  1663. raw_temp_value[3] += ADC;
  1664. break;
  1665. #endif
  1666. #if HAS_TEMP_4
  1667. case PrepareTemp_4:
  1668. START_ADC(TEMP_4_PIN);
  1669. break;
  1670. case MeasureTemp_4:
  1671. raw_temp_value[4] += ADC;
  1672. break;
  1673. #endif
  1674. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1675. case Prepare_FILWIDTH:
  1676. START_ADC(FILWIDTH_PIN);
  1677. break;
  1678. case Measure_FILWIDTH:
  1679. if (ADC > 102) { // Make sure ADC is reading > 0.5 volts, otherwise don't read.
  1680. raw_filwidth_value -= (raw_filwidth_value >> 7); // Subtract 1/128th of the raw_filwidth_value
  1681. raw_filwidth_value += ((unsigned long)ADC << 7); // Add new ADC reading, scaled by 128
  1682. }
  1683. break;
  1684. #endif
  1685. case StartupDelay: break;
  1686. } // switch(adc_sensor_state)
  1687. if (!adc_sensor_state && ++temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1688. temp_count = 0;
  1689. // Update the raw values if they've been read. Else we could be updating them during reading.
  1690. if (!temp_meas_ready) set_current_temp_raw();
  1691. // Filament Sensor - can be read any time since IIR filtering is used
  1692. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  1693. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1694. #endif
  1695. ZERO(raw_temp_value);
  1696. raw_temp_bed_value = 0;
  1697. #define TEMPDIR(N) ((HEATER_##N##_RAW_LO_TEMP) > (HEATER_##N##_RAW_HI_TEMP) ? -1 : 1)
  1698. int constexpr temp_dir[] = {
  1699. #if ENABLED(HEATER_0_USES_MAX6675)
  1700. 0
  1701. #else
  1702. TEMPDIR(0)
  1703. #endif
  1704. #if HOTENDS > 1
  1705. , TEMPDIR(1)
  1706. #if HOTENDS > 2
  1707. , TEMPDIR(2)
  1708. #if HOTENDS > 3
  1709. , TEMPDIR(3)
  1710. #if HOTENDS > 4
  1711. , TEMPDIR(4)
  1712. #endif // HOTENDS > 4
  1713. #endif // HOTENDS > 3
  1714. #endif // HOTENDS > 2
  1715. #endif // HOTENDS > 1
  1716. };
  1717. for (uint8_t e = 0; e < COUNT(temp_dir); e++) {
  1718. const int16_t tdir = temp_dir[e], rawtemp = current_temperature_raw[e] * tdir;
  1719. if (rawtemp > maxttemp_raw[e] * tdir && target_temperature[e] > 0) max_temp_error(e);
  1720. if (rawtemp < minttemp_raw[e] * tdir && !is_preheating(e) && target_temperature[e] > 0) {
  1721. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1722. if (++consecutive_low_temperature_error[e] >= MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED)
  1723. #endif
  1724. min_temp_error(e);
  1725. }
  1726. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  1727. else
  1728. consecutive_low_temperature_error[e] = 0;
  1729. #endif
  1730. }
  1731. #if HAS_TEMP_BED
  1732. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1733. #define GEBED <=
  1734. #else
  1735. #define GEBED >=
  1736. #endif
  1737. if (current_temperature_bed_raw GEBED bed_maxttemp_raw && target_temperature_bed > 0) max_temp_error(-1);
  1738. if (bed_minttemp_raw GEBED current_temperature_bed_raw && target_temperature_bed > 0) min_temp_error(-1);
  1739. #endif
  1740. } // temp_count >= OVERSAMPLENR
  1741. // Go to the next state, up to SensorsReady
  1742. adc_sensor_state = (ADCSensorState)((int(adc_sensor_state) + 1) % int(StartupDelay));
  1743. #if ENABLED(BABYSTEPPING)
  1744. LOOP_XYZ(axis) {
  1745. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1746. if (curTodo > 0) {
  1747. stepper.babystep((AxisEnum)axis,/*fwd*/true);
  1748. babystepsTodo[axis]--; //fewer to do next time
  1749. }
  1750. else if (curTodo < 0) {
  1751. stepper.babystep((AxisEnum)axis,/*fwd*/false);
  1752. babystepsTodo[axis]++; //fewer to do next time
  1753. }
  1754. }
  1755. #endif //BABYSTEPPING
  1756. #if ENABLED(PINS_DEBUGGING)
  1757. extern bool endstop_monitor_flag;
  1758. // run the endstop monitor at 15Hz
  1759. static uint8_t endstop_monitor_count = 16; // offset this check from the others
  1760. if (endstop_monitor_flag) {
  1761. endstop_monitor_count += _BV(1); // 15 Hz
  1762. endstop_monitor_count &= 0x7F;
  1763. if (!endstop_monitor_count) endstop_monitor(); // report changes in endstop status
  1764. }
  1765. #endif
  1766. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  1767. extern volatile uint8_t e_hit;
  1768. if (e_hit && ENDSTOPS_ENABLED) {
  1769. endstops.update(); // call endstop update routine
  1770. e_hit--;
  1771. }
  1772. #endif
  1773. cli();
  1774. in_temp_isr = false;
  1775. SBI(TIMSK0, OCIE0B); //re-enable Temperature ISR
  1776. }