My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 75KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "ConfigurationStore.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #if NUM_SERVOS > 0
  35. #include "Servo.h"
  36. #endif
  37. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  38. #include <SPI.h>
  39. #endif
  40. #define VERSION_STRING "1.0.0"
  41. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  42. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  43. //Implemented Codes
  44. //-------------------
  45. // G0 -> G1
  46. // G1 - Coordinated Movement X Y Z E
  47. // G2 - CW ARC
  48. // G3 - CCW ARC
  49. // G4 - Dwell S<seconds> or P<milliseconds>
  50. // G10 - retract filament according to settings of M207
  51. // G11 - retract recover filament according to settings of M208
  52. // G28 - Home all Axis
  53. // G90 - Use Absolute Coordinates
  54. // G91 - Use Relative Coordinates
  55. // G92 - Set current position to cordinates given
  56. //RepRap M Codes
  57. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  58. // M1 - Same as M0
  59. // M104 - Set extruder target temp
  60. // M105 - Read current temp
  61. // M106 - Fan on
  62. // M107 - Fan off
  63. // M109 - Wait for extruder current temp to reach target temp.
  64. // M114 - Display current position
  65. //Custom M Codes
  66. // M17 - Enable/Power all stepper motors
  67. // M18 - Disable all stepper motors; same as M84
  68. // M20 - List SD card
  69. // M21 - Init SD card
  70. // M22 - Release SD card
  71. // M23 - Select SD file (M23 filename.g)
  72. // M24 - Start/resume SD print
  73. // M25 - Pause SD print
  74. // M26 - Set SD position in bytes (M26 S12345)
  75. // M27 - Report SD print status
  76. // M28 - Start SD write (M28 filename.g)
  77. // M29 - Stop SD write
  78. // M30 - Delete file from SD (M30 filename.g)
  79. // M31 - Output time since last M109 or SD card start to serial
  80. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  81. // M80 - Turn on Power Supply
  82. // M81 - Turn off Power Supply
  83. // M82 - Set E codes absolute (default)
  84. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  85. // M84 - Disable steppers until next move,
  86. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  87. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  88. // M92 - Set axis_steps_per_unit - same syntax as G92
  89. // M114 - Output current position to serial port
  90. // M115 - Capabilities string
  91. // M117 - display message
  92. // M119 - Output Endstop status to serial port
  93. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  94. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  95. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  96. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  97. // M140 - Set bed target temp
  98. // M190 - Wait for bed current temp to reach target temp.
  99. // M200 - Set filament diameter
  100. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  101. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  102. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  103. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  104. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  105. // M206 - set additional homeing offset
  106. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  107. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  108. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  109. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  110. // M220 S<factor in percent>- set speed factor override percentage
  111. // M221 S<factor in percent>- set extrude factor override percentage
  112. // M240 - Trigger a camera to take a photograph
  113. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  114. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  115. // M301 - Set PID parameters P I and D
  116. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  117. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  118. // M304 - Set bed PID parameters P I and D
  119. // M400 - Finish all moves
  120. // M500 - stores paramters in EEPROM
  121. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  122. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  123. // M503 - print the current settings (from memory not from eeprom)
  124. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  125. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  126. // M907 - Set digital trimpot motor current using axis codes.
  127. // M908 - Control digital trimpot directly.
  128. // M350 - Set microstepping mode.
  129. // M351 - Toggle MS1 MS2 pins directly.
  130. // M928 - Start SD logging (M928 filename.g) - ended by M29
  131. // M999 - Restart after being stopped by error
  132. //Stepper Movement Variables
  133. //===========================================================================
  134. //=============================imported variables============================
  135. //===========================================================================
  136. //===========================================================================
  137. //=============================public variables=============================
  138. //===========================================================================
  139. #ifdef SDSUPPORT
  140. CardReader card;
  141. #endif
  142. float homing_feedrate[] = HOMING_FEEDRATE;
  143. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  144. int feedmultiply=100; //100->1 200->2
  145. int saved_feedmultiply;
  146. int extrudemultiply=100; //100->1 200->2
  147. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  148. float add_homeing[3]={0,0,0};
  149. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  150. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  151. // Extruder offset, only in XY plane
  152. #if EXTRUDERS > 1
  153. float extruder_offset[2][EXTRUDERS] = {
  154. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  155. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  156. #endif
  157. };
  158. #endif
  159. uint8_t active_extruder = 0;
  160. int fanSpeed=0;
  161. #ifdef SERVO_ENDSTOPS
  162. int servo_endstops[] = SERVO_ENDSTOPS;
  163. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  164. #endif
  165. #ifdef BARICUDA
  166. int ValvePressure=0;
  167. int EtoPPressure=0;
  168. #endif
  169. #ifdef FWRETRACT
  170. bool autoretract_enabled=true;
  171. bool retracted=false;
  172. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  173. float retract_recover_length=0, retract_recover_feedrate=8*60;
  174. #endif
  175. //===========================================================================
  176. //=============================private variables=============================
  177. //===========================================================================
  178. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  179. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  180. #ifdef DELTA
  181. static float delta[3] = {0.0, 0.0, 0.0};
  182. #endif
  183. static float offset[3] = {0.0, 0.0, 0.0};
  184. static bool home_all_axis = true;
  185. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  186. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  187. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  188. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  189. static bool fromsd[BUFSIZE];
  190. static int bufindr = 0;
  191. static int bufindw = 0;
  192. static int buflen = 0;
  193. //static int i = 0;
  194. static char serial_char;
  195. static int serial_count = 0;
  196. static boolean comment_mode = false;
  197. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  198. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  199. //static float tt = 0;
  200. //static float bt = 0;
  201. //Inactivity shutdown variables
  202. static unsigned long previous_millis_cmd = 0;
  203. static unsigned long max_inactive_time = 0;
  204. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  205. unsigned long starttime=0;
  206. unsigned long stoptime=0;
  207. static uint8_t tmp_extruder;
  208. bool Stopped=false;
  209. #if NUM_SERVOS > 0
  210. Servo servos[NUM_SERVOS];
  211. #endif
  212. //===========================================================================
  213. //=============================ROUTINES=============================
  214. //===========================================================================
  215. void get_arc_coordinates();
  216. bool setTargetedHotend(int code);
  217. void serial_echopair_P(const char *s_P, float v)
  218. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  219. void serial_echopair_P(const char *s_P, double v)
  220. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  221. void serial_echopair_P(const char *s_P, unsigned long v)
  222. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  223. extern "C"{
  224. extern unsigned int __bss_end;
  225. extern unsigned int __heap_start;
  226. extern void *__brkval;
  227. int freeMemory() {
  228. int free_memory;
  229. if((int)__brkval == 0)
  230. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  231. else
  232. free_memory = ((int)&free_memory) - ((int)__brkval);
  233. return free_memory;
  234. }
  235. }
  236. //adds an command to the main command buffer
  237. //thats really done in a non-safe way.
  238. //needs overworking someday
  239. void enquecommand(const char *cmd)
  240. {
  241. if(buflen < BUFSIZE)
  242. {
  243. //this is dangerous if a mixing of serial and this happsens
  244. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  245. SERIAL_ECHO_START;
  246. SERIAL_ECHOPGM("enqueing \"");
  247. SERIAL_ECHO(cmdbuffer[bufindw]);
  248. SERIAL_ECHOLNPGM("\"");
  249. bufindw= (bufindw + 1)%BUFSIZE;
  250. buflen += 1;
  251. }
  252. }
  253. void enquecommand_P(const char *cmd)
  254. {
  255. if(buflen < BUFSIZE)
  256. {
  257. //this is dangerous if a mixing of serial and this happsens
  258. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  259. SERIAL_ECHO_START;
  260. SERIAL_ECHOPGM("enqueing \"");
  261. SERIAL_ECHO(cmdbuffer[bufindw]);
  262. SERIAL_ECHOLNPGM("\"");
  263. bufindw= (bufindw + 1)%BUFSIZE;
  264. buflen += 1;
  265. }
  266. }
  267. void setup_killpin()
  268. {
  269. #if defined(KILL_PIN) && KILL_PIN > -1
  270. pinMode(KILL_PIN,INPUT);
  271. WRITE(KILL_PIN,HIGH);
  272. #endif
  273. }
  274. void setup_photpin()
  275. {
  276. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  277. SET_OUTPUT(PHOTOGRAPH_PIN);
  278. WRITE(PHOTOGRAPH_PIN, LOW);
  279. #endif
  280. }
  281. void setup_powerhold()
  282. {
  283. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  284. SET_OUTPUT(SUICIDE_PIN);
  285. WRITE(SUICIDE_PIN, HIGH);
  286. #endif
  287. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  288. SET_OUTPUT(PS_ON_PIN);
  289. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  290. #endif
  291. }
  292. void suicide()
  293. {
  294. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  295. SET_OUTPUT(SUICIDE_PIN);
  296. WRITE(SUICIDE_PIN, LOW);
  297. #endif
  298. }
  299. void servo_init()
  300. {
  301. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  302. servos[0].attach(SERVO0_PIN);
  303. #endif
  304. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  305. servos[1].attach(SERVO1_PIN);
  306. #endif
  307. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  308. servos[2].attach(SERVO2_PIN);
  309. #endif
  310. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  311. servos[3].attach(SERVO3_PIN);
  312. #endif
  313. #if (NUM_SERVOS >= 5)
  314. #error "TODO: enter initalisation code for more servos"
  315. #endif
  316. // Set position of Servo Endstops that are defined
  317. #ifdef SERVO_ENDSTOPS
  318. for(int8_t i = 0; i < 3; i++)
  319. {
  320. if(servo_endstops[i] > -1) {
  321. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  322. }
  323. }
  324. #endif
  325. }
  326. void setup()
  327. {
  328. setup_killpin();
  329. setup_powerhold();
  330. MYSERIAL.begin(BAUDRATE);
  331. SERIAL_PROTOCOLLNPGM("start");
  332. SERIAL_ECHO_START;
  333. // Check startup - does nothing if bootloader sets MCUSR to 0
  334. byte mcu = MCUSR;
  335. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  336. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  337. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  338. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  339. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  340. MCUSR=0;
  341. SERIAL_ECHOPGM(MSG_MARLIN);
  342. SERIAL_ECHOLNPGM(VERSION_STRING);
  343. #ifdef STRING_VERSION_CONFIG_H
  344. #ifdef STRING_CONFIG_H_AUTHOR
  345. SERIAL_ECHO_START;
  346. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  347. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  348. SERIAL_ECHOPGM(MSG_AUTHOR);
  349. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  350. SERIAL_ECHOPGM("Compiled: ");
  351. SERIAL_ECHOLNPGM(__DATE__);
  352. #endif
  353. #endif
  354. SERIAL_ECHO_START;
  355. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  356. SERIAL_ECHO(freeMemory());
  357. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  358. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  359. for(int8_t i = 0; i < BUFSIZE; i++)
  360. {
  361. fromsd[i] = false;
  362. }
  363. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  364. Config_RetrieveSettings();
  365. tp_init(); // Initialize temperature loop
  366. plan_init(); // Initialize planner;
  367. watchdog_init();
  368. st_init(); // Initialize stepper, this enables interrupts!
  369. setup_photpin();
  370. servo_init();
  371. lcd_init();
  372. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  373. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  374. #endif
  375. }
  376. void loop()
  377. {
  378. if(buflen < (BUFSIZE-1))
  379. get_command();
  380. #ifdef SDSUPPORT
  381. card.checkautostart(false);
  382. #endif
  383. if(buflen)
  384. {
  385. #ifdef SDSUPPORT
  386. if(card.saving)
  387. {
  388. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  389. {
  390. card.write_command(cmdbuffer[bufindr]);
  391. if(card.logging)
  392. {
  393. process_commands();
  394. }
  395. else
  396. {
  397. SERIAL_PROTOCOLLNPGM(MSG_OK);
  398. }
  399. }
  400. else
  401. {
  402. card.closefile();
  403. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  404. }
  405. }
  406. else
  407. {
  408. process_commands();
  409. }
  410. #else
  411. process_commands();
  412. #endif //SDSUPPORT
  413. buflen = (buflen-1);
  414. bufindr = (bufindr + 1)%BUFSIZE;
  415. }
  416. //check heater every n milliseconds
  417. manage_heater();
  418. manage_inactivity();
  419. checkHitEndstops();
  420. lcd_update();
  421. }
  422. void get_command()
  423. {
  424. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  425. serial_char = MYSERIAL.read();
  426. if(serial_char == '\n' ||
  427. serial_char == '\r' ||
  428. (serial_char == ':' && comment_mode == false) ||
  429. serial_count >= (MAX_CMD_SIZE - 1) )
  430. {
  431. if(!serial_count) { //if empty line
  432. comment_mode = false; //for new command
  433. return;
  434. }
  435. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  436. if(!comment_mode){
  437. comment_mode = false; //for new command
  438. fromsd[bufindw] = false;
  439. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  440. {
  441. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  442. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  443. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  444. SERIAL_ERROR_START;
  445. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  446. SERIAL_ERRORLN(gcode_LastN);
  447. //Serial.println(gcode_N);
  448. FlushSerialRequestResend();
  449. serial_count = 0;
  450. return;
  451. }
  452. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  453. {
  454. byte checksum = 0;
  455. byte count = 0;
  456. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  457. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  458. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  459. SERIAL_ERROR_START;
  460. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  461. SERIAL_ERRORLN(gcode_LastN);
  462. FlushSerialRequestResend();
  463. serial_count = 0;
  464. return;
  465. }
  466. //if no errors, continue parsing
  467. }
  468. else
  469. {
  470. SERIAL_ERROR_START;
  471. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  472. SERIAL_ERRORLN(gcode_LastN);
  473. FlushSerialRequestResend();
  474. serial_count = 0;
  475. return;
  476. }
  477. gcode_LastN = gcode_N;
  478. //if no errors, continue parsing
  479. }
  480. else // if we don't receive 'N' but still see '*'
  481. {
  482. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  483. {
  484. SERIAL_ERROR_START;
  485. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  486. SERIAL_ERRORLN(gcode_LastN);
  487. serial_count = 0;
  488. return;
  489. }
  490. }
  491. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  492. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  493. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  494. case 0:
  495. case 1:
  496. case 2:
  497. case 3:
  498. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  499. #ifdef SDSUPPORT
  500. if(card.saving)
  501. break;
  502. #endif //SDSUPPORT
  503. SERIAL_PROTOCOLLNPGM(MSG_OK);
  504. }
  505. else {
  506. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  507. LCD_MESSAGEPGM(MSG_STOPPED);
  508. }
  509. break;
  510. default:
  511. break;
  512. }
  513. }
  514. bufindw = (bufindw + 1)%BUFSIZE;
  515. buflen += 1;
  516. }
  517. serial_count = 0; //clear buffer
  518. }
  519. else
  520. {
  521. if(serial_char == ';') comment_mode = true;
  522. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  523. }
  524. }
  525. #ifdef SDSUPPORT
  526. if(!card.sdprinting || serial_count!=0){
  527. return;
  528. }
  529. while( !card.eof() && buflen < BUFSIZE) {
  530. int16_t n=card.get();
  531. serial_char = (char)n;
  532. if(serial_char == '\n' ||
  533. serial_char == '\r' ||
  534. (serial_char == ':' && comment_mode == false) ||
  535. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  536. {
  537. if(card.eof()){
  538. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  539. stoptime=millis();
  540. char time[30];
  541. unsigned long t=(stoptime-starttime)/1000;
  542. int hours, minutes;
  543. minutes=(t/60)%60;
  544. hours=t/60/60;
  545. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  546. SERIAL_ECHO_START;
  547. SERIAL_ECHOLN(time);
  548. lcd_setstatus(time);
  549. card.printingHasFinished();
  550. card.checkautostart(true);
  551. }
  552. if(!serial_count)
  553. {
  554. comment_mode = false; //for new command
  555. return; //if empty line
  556. }
  557. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  558. // if(!comment_mode){
  559. fromsd[bufindw] = true;
  560. buflen += 1;
  561. bufindw = (bufindw + 1)%BUFSIZE;
  562. // }
  563. comment_mode = false; //for new command
  564. serial_count = 0; //clear buffer
  565. }
  566. else
  567. {
  568. if(serial_char == ';') comment_mode = true;
  569. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  570. }
  571. }
  572. #endif //SDSUPPORT
  573. }
  574. float code_value()
  575. {
  576. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  577. }
  578. long code_value_long()
  579. {
  580. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  581. }
  582. bool code_seen(char code)
  583. {
  584. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  585. return (strchr_pointer != NULL); //Return True if a character was found
  586. }
  587. #define DEFINE_PGM_READ_ANY(type, reader) \
  588. static inline type pgm_read_any(const type *p) \
  589. { return pgm_read_##reader##_near(p); }
  590. DEFINE_PGM_READ_ANY(float, float);
  591. DEFINE_PGM_READ_ANY(signed char, byte);
  592. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  593. static const PROGMEM type array##_P[3] = \
  594. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  595. static inline type array(int axis) \
  596. { return pgm_read_any(&array##_P[axis]); }
  597. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  598. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  599. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  600. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  601. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  602. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  603. static void axis_is_at_home(int axis) {
  604. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  605. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  606. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  607. }
  608. static void homeaxis(int axis) {
  609. #define HOMEAXIS_DO(LETTER) \
  610. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  611. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  612. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  613. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  614. 0) {
  615. // Engage Servo endstop if enabled
  616. #ifdef SERVO_ENDSTOPS
  617. if (SERVO_ENDSTOPS[axis] > -1) {
  618. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  619. }
  620. #endif
  621. current_position[axis] = 0;
  622. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  623. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  624. feedrate = homing_feedrate[axis];
  625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  626. st_synchronize();
  627. current_position[axis] = 0;
  628. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  629. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  630. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  631. st_synchronize();
  632. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  633. feedrate = homing_feedrate[axis]/2 ;
  634. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  635. st_synchronize();
  636. axis_is_at_home(axis);
  637. destination[axis] = current_position[axis];
  638. feedrate = 0.0;
  639. endstops_hit_on_purpose();
  640. // Retract Servo endstop if enabled
  641. #ifdef SERVO_ENDSTOPS
  642. if (SERVO_ENDSTOPS[axis] > -1) {
  643. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  644. }
  645. #endif
  646. }
  647. }
  648. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  649. void process_commands()
  650. {
  651. unsigned long codenum; //throw away variable
  652. char *starpos = NULL;
  653. if(code_seen('G'))
  654. {
  655. switch((int)code_value())
  656. {
  657. case 0: // G0 -> G1
  658. case 1: // G1
  659. if(Stopped == false) {
  660. get_coordinates(); // For X Y Z E F
  661. prepare_move();
  662. //ClearToSend();
  663. return;
  664. }
  665. //break;
  666. case 2: // G2 - CW ARC
  667. if(Stopped == false) {
  668. get_arc_coordinates();
  669. prepare_arc_move(true);
  670. return;
  671. }
  672. case 3: // G3 - CCW ARC
  673. if(Stopped == false) {
  674. get_arc_coordinates();
  675. prepare_arc_move(false);
  676. return;
  677. }
  678. case 4: // G4 dwell
  679. LCD_MESSAGEPGM(MSG_DWELL);
  680. codenum = 0;
  681. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  682. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  683. st_synchronize();
  684. codenum += millis(); // keep track of when we started waiting
  685. previous_millis_cmd = millis();
  686. while(millis() < codenum ){
  687. manage_heater();
  688. manage_inactivity();
  689. lcd_update();
  690. }
  691. break;
  692. #ifdef FWRETRACT
  693. case 10: // G10 retract
  694. if(!retracted)
  695. {
  696. destination[X_AXIS]=current_position[X_AXIS];
  697. destination[Y_AXIS]=current_position[Y_AXIS];
  698. destination[Z_AXIS]=current_position[Z_AXIS];
  699. current_position[Z_AXIS]+=-retract_zlift;
  700. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  701. feedrate=retract_feedrate;
  702. retracted=true;
  703. prepare_move();
  704. }
  705. break;
  706. case 11: // G10 retract_recover
  707. if(!retracted)
  708. {
  709. destination[X_AXIS]=current_position[X_AXIS];
  710. destination[Y_AXIS]=current_position[Y_AXIS];
  711. destination[Z_AXIS]=current_position[Z_AXIS];
  712. current_position[Z_AXIS]+=retract_zlift;
  713. current_position[E_AXIS]+=-retract_recover_length;
  714. feedrate=retract_recover_feedrate;
  715. retracted=false;
  716. prepare_move();
  717. }
  718. break;
  719. #endif //FWRETRACT
  720. case 28: //G28 Home all Axis one at a time
  721. saved_feedrate = feedrate;
  722. saved_feedmultiply = feedmultiply;
  723. feedmultiply = 100;
  724. previous_millis_cmd = millis();
  725. enable_endstops(true);
  726. for(int8_t i=0; i < NUM_AXIS; i++) {
  727. destination[i] = current_position[i];
  728. }
  729. feedrate = 0.0;
  730. #ifdef DELTA
  731. // A delta can only safely home all axis at the same time
  732. // all axis have to home at the same time
  733. // Move all carriages up together until the first endstop is hit.
  734. current_position[X_AXIS] = 0;
  735. current_position[Y_AXIS] = 0;
  736. current_position[Z_AXIS] = 0;
  737. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  738. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  739. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  740. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  741. feedrate = 1.732 * homing_feedrate[X_AXIS];
  742. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  743. st_synchronize();
  744. endstops_hit_on_purpose();
  745. current_position[X_AXIS] = destination[X_AXIS];
  746. current_position[Y_AXIS] = destination[Y_AXIS];
  747. current_position[Z_AXIS] = destination[Z_AXIS];
  748. // take care of back off and rehome now we are all at the top
  749. HOMEAXIS(X);
  750. HOMEAXIS(Y);
  751. HOMEAXIS(Z);
  752. calculate_delta(current_position);
  753. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  754. #else // NOT DELTA
  755. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  756. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  757. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  758. HOMEAXIS(Z);
  759. }
  760. #endif
  761. #ifdef QUICK_HOME
  762. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  763. {
  764. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  765. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  766. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  767. feedrate = homing_feedrate[X_AXIS];
  768. if(homing_feedrate[Y_AXIS]<feedrate)
  769. feedrate =homing_feedrate[Y_AXIS];
  770. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  771. st_synchronize();
  772. axis_is_at_home(X_AXIS);
  773. axis_is_at_home(Y_AXIS);
  774. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  775. destination[X_AXIS] = current_position[X_AXIS];
  776. destination[Y_AXIS] = current_position[Y_AXIS];
  777. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  778. feedrate = 0.0;
  779. st_synchronize();
  780. endstops_hit_on_purpose();
  781. current_position[X_AXIS] = destination[X_AXIS];
  782. current_position[Y_AXIS] = destination[Y_AXIS];
  783. current_position[Z_AXIS] = destination[Z_AXIS];
  784. }
  785. #endif
  786. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  787. {
  788. HOMEAXIS(X);
  789. }
  790. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  791. HOMEAXIS(Y);
  792. }
  793. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  794. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  795. HOMEAXIS(Z);
  796. }
  797. #endif
  798. if(code_seen(axis_codes[X_AXIS]))
  799. {
  800. if(code_value_long() != 0) {
  801. current_position[X_AXIS]=code_value()+add_homeing[0];
  802. }
  803. }
  804. if(code_seen(axis_codes[Y_AXIS])) {
  805. if(code_value_long() != 0) {
  806. current_position[Y_AXIS]=code_value()+add_homeing[1];
  807. }
  808. }
  809. if(code_seen(axis_codes[Z_AXIS])) {
  810. if(code_value_long() != 0) {
  811. current_position[Z_AXIS]=code_value()+add_homeing[2];
  812. }
  813. }
  814. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  815. #endif // DELTA
  816. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  817. enable_endstops(false);
  818. #endif
  819. feedrate = saved_feedrate;
  820. feedmultiply = saved_feedmultiply;
  821. previous_millis_cmd = millis();
  822. endstops_hit_on_purpose();
  823. break;
  824. case 90: // G90
  825. relative_mode = false;
  826. break;
  827. case 91: // G91
  828. relative_mode = true;
  829. break;
  830. case 92: // G92
  831. if(!code_seen(axis_codes[E_AXIS]))
  832. st_synchronize();
  833. for(int8_t i=0; i < NUM_AXIS; i++) {
  834. if(code_seen(axis_codes[i])) {
  835. if(i == E_AXIS) {
  836. current_position[i] = code_value();
  837. plan_set_e_position(current_position[E_AXIS]);
  838. }
  839. else {
  840. current_position[i] = code_value()+add_homeing[i];
  841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  842. }
  843. }
  844. }
  845. break;
  846. }
  847. }
  848. else if(code_seen('M'))
  849. {
  850. switch( (int)code_value() )
  851. {
  852. #ifdef ULTIPANEL
  853. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  854. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  855. {
  856. LCD_MESSAGEPGM(MSG_USERWAIT);
  857. codenum = 0;
  858. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  859. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  860. st_synchronize();
  861. previous_millis_cmd = millis();
  862. if (codenum > 0){
  863. codenum += millis(); // keep track of when we started waiting
  864. while(millis() < codenum && !lcd_clicked()){
  865. manage_heater();
  866. manage_inactivity();
  867. lcd_update();
  868. }
  869. }else{
  870. while(!lcd_clicked()){
  871. manage_heater();
  872. manage_inactivity();
  873. lcd_update();
  874. }
  875. }
  876. LCD_MESSAGEPGM(MSG_RESUMING);
  877. }
  878. break;
  879. #endif
  880. case 17:
  881. LCD_MESSAGEPGM(MSG_NO_MOVE);
  882. enable_x();
  883. enable_y();
  884. enable_z();
  885. enable_e0();
  886. enable_e1();
  887. enable_e2();
  888. break;
  889. #ifdef SDSUPPORT
  890. case 20: // M20 - list SD card
  891. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  892. card.ls();
  893. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  894. break;
  895. case 21: // M21 - init SD card
  896. card.initsd();
  897. break;
  898. case 22: //M22 - release SD card
  899. card.release();
  900. break;
  901. case 23: //M23 - Select file
  902. starpos = (strchr(strchr_pointer + 4,'*'));
  903. if(starpos!=NULL)
  904. *(starpos-1)='\0';
  905. card.openFile(strchr_pointer + 4,true);
  906. break;
  907. case 24: //M24 - Start SD print
  908. card.startFileprint();
  909. starttime=millis();
  910. break;
  911. case 25: //M25 - Pause SD print
  912. card.pauseSDPrint();
  913. break;
  914. case 26: //M26 - Set SD index
  915. if(card.cardOK && code_seen('S')) {
  916. card.setIndex(code_value_long());
  917. }
  918. break;
  919. case 27: //M27 - Get SD status
  920. card.getStatus();
  921. break;
  922. case 28: //M28 - Start SD write
  923. starpos = (strchr(strchr_pointer + 4,'*'));
  924. if(starpos != NULL){
  925. char* npos = strchr(cmdbuffer[bufindr], 'N');
  926. strchr_pointer = strchr(npos,' ') + 1;
  927. *(starpos-1) = '\0';
  928. }
  929. card.openFile(strchr_pointer+4,false);
  930. break;
  931. case 29: //M29 - Stop SD write
  932. //processed in write to file routine above
  933. //card,saving = false;
  934. break;
  935. case 30: //M30 <filename> Delete File
  936. if (card.cardOK){
  937. card.closefile();
  938. starpos = (strchr(strchr_pointer + 4,'*'));
  939. if(starpos != NULL){
  940. char* npos = strchr(cmdbuffer[bufindr], 'N');
  941. strchr_pointer = strchr(npos,' ') + 1;
  942. *(starpos-1) = '\0';
  943. }
  944. card.removeFile(strchr_pointer + 4);
  945. }
  946. break;
  947. case 928: //M928 - Start SD write
  948. starpos = (strchr(strchr_pointer + 5,'*'));
  949. if(starpos != NULL){
  950. char* npos = strchr(cmdbuffer[bufindr], 'N');
  951. strchr_pointer = strchr(npos,' ') + 1;
  952. *(starpos-1) = '\0';
  953. }
  954. card.openLogFile(strchr_pointer+5);
  955. break;
  956. #endif //SDSUPPORT
  957. case 31: //M31 take time since the start of the SD print or an M109 command
  958. {
  959. stoptime=millis();
  960. char time[30];
  961. unsigned long t=(stoptime-starttime)/1000;
  962. int sec,min;
  963. min=t/60;
  964. sec=t%60;
  965. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  966. SERIAL_ECHO_START;
  967. SERIAL_ECHOLN(time);
  968. lcd_setstatus(time);
  969. autotempShutdown();
  970. }
  971. break;
  972. case 42: //M42 -Change pin status via gcode
  973. if (code_seen('S'))
  974. {
  975. int pin_status = code_value();
  976. int pin_number = LED_PIN;
  977. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  978. pin_number = code_value();
  979. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  980. {
  981. if (sensitive_pins[i] == pin_number)
  982. {
  983. pin_number = -1;
  984. break;
  985. }
  986. }
  987. #if defined(FAN_PIN) && FAN_PIN > -1
  988. if (pin_number == FAN_PIN)
  989. fanSpeed = pin_status;
  990. #endif
  991. if (pin_number > -1)
  992. {
  993. pinMode(pin_number, OUTPUT);
  994. digitalWrite(pin_number, pin_status);
  995. analogWrite(pin_number, pin_status);
  996. }
  997. }
  998. break;
  999. case 104: // M104
  1000. if(setTargetedHotend(104)){
  1001. break;
  1002. }
  1003. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1004. setWatch();
  1005. break;
  1006. case 140: // M140 set bed temp
  1007. if (code_seen('S')) setTargetBed(code_value());
  1008. break;
  1009. case 105 : // M105
  1010. if(setTargetedHotend(105)){
  1011. break;
  1012. }
  1013. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1014. SERIAL_PROTOCOLPGM("ok T:");
  1015. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1016. SERIAL_PROTOCOLPGM(" /");
  1017. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1018. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1019. SERIAL_PROTOCOLPGM(" B:");
  1020. SERIAL_PROTOCOL_F(degBed(),1);
  1021. SERIAL_PROTOCOLPGM(" /");
  1022. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1023. #endif //TEMP_BED_PIN
  1024. #else
  1025. SERIAL_ERROR_START;
  1026. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1027. #endif
  1028. SERIAL_PROTOCOLPGM(" @:");
  1029. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1030. SERIAL_PROTOCOLPGM(" B@:");
  1031. SERIAL_PROTOCOL(getHeaterPower(-1));
  1032. SERIAL_PROTOCOLLN("");
  1033. return;
  1034. break;
  1035. case 109:
  1036. {// M109 - Wait for extruder heater to reach target.
  1037. if(setTargetedHotend(109)){
  1038. break;
  1039. }
  1040. LCD_MESSAGEPGM(MSG_HEATING);
  1041. #ifdef AUTOTEMP
  1042. autotemp_enabled=false;
  1043. #endif
  1044. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1045. #ifdef AUTOTEMP
  1046. if (code_seen('S')) autotemp_min=code_value();
  1047. if (code_seen('B')) autotemp_max=code_value();
  1048. if (code_seen('F'))
  1049. {
  1050. autotemp_factor=code_value();
  1051. autotemp_enabled=true;
  1052. }
  1053. #endif
  1054. setWatch();
  1055. codenum = millis();
  1056. /* See if we are heating up or cooling down */
  1057. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1058. #ifdef TEMP_RESIDENCY_TIME
  1059. long residencyStart;
  1060. residencyStart = -1;
  1061. /* continue to loop until we have reached the target temp
  1062. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1063. while((residencyStart == -1) ||
  1064. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1065. #else
  1066. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1067. #endif //TEMP_RESIDENCY_TIME
  1068. if( (millis() - codenum) > 1000UL )
  1069. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1070. SERIAL_PROTOCOLPGM("T:");
  1071. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1072. SERIAL_PROTOCOLPGM(" E:");
  1073. SERIAL_PROTOCOL((int)tmp_extruder);
  1074. #ifdef TEMP_RESIDENCY_TIME
  1075. SERIAL_PROTOCOLPGM(" W:");
  1076. if(residencyStart > -1)
  1077. {
  1078. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1079. SERIAL_PROTOCOLLN( codenum );
  1080. }
  1081. else
  1082. {
  1083. SERIAL_PROTOCOLLN( "?" );
  1084. }
  1085. #else
  1086. SERIAL_PROTOCOLLN("");
  1087. #endif
  1088. codenum = millis();
  1089. }
  1090. manage_heater();
  1091. manage_inactivity();
  1092. lcd_update();
  1093. #ifdef TEMP_RESIDENCY_TIME
  1094. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1095. or when current temp falls outside the hysteresis after target temp was reached */
  1096. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1097. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1098. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1099. {
  1100. residencyStart = millis();
  1101. }
  1102. #endif //TEMP_RESIDENCY_TIME
  1103. }
  1104. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1105. starttime=millis();
  1106. previous_millis_cmd = millis();
  1107. }
  1108. break;
  1109. case 190: // M190 - Wait for bed heater to reach target.
  1110. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1111. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1112. if (code_seen('S')) setTargetBed(code_value());
  1113. codenum = millis();
  1114. while(isHeatingBed())
  1115. {
  1116. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1117. {
  1118. float tt=degHotend(active_extruder);
  1119. SERIAL_PROTOCOLPGM("T:");
  1120. SERIAL_PROTOCOL(tt);
  1121. SERIAL_PROTOCOLPGM(" E:");
  1122. SERIAL_PROTOCOL((int)active_extruder);
  1123. SERIAL_PROTOCOLPGM(" B:");
  1124. SERIAL_PROTOCOL_F(degBed(),1);
  1125. SERIAL_PROTOCOLLN("");
  1126. codenum = millis();
  1127. }
  1128. manage_heater();
  1129. manage_inactivity();
  1130. lcd_update();
  1131. }
  1132. LCD_MESSAGEPGM(MSG_BED_DONE);
  1133. previous_millis_cmd = millis();
  1134. #endif
  1135. break;
  1136. #if defined(FAN_PIN) && FAN_PIN > -1
  1137. case 106: //M106 Fan On
  1138. if (code_seen('S')){
  1139. fanSpeed=constrain(code_value(),0,255);
  1140. }
  1141. else {
  1142. fanSpeed=255;
  1143. }
  1144. break;
  1145. case 107: //M107 Fan Off
  1146. fanSpeed = 0;
  1147. break;
  1148. #endif //FAN_PIN
  1149. #ifdef BARICUDA
  1150. // PWM for HEATER_1_PIN
  1151. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1152. case 126: //M126 valve open
  1153. if (code_seen('S')){
  1154. ValvePressure=constrain(code_value(),0,255);
  1155. }
  1156. else {
  1157. ValvePressure=255;
  1158. }
  1159. break;
  1160. case 127: //M127 valve closed
  1161. ValvePressure = 0;
  1162. break;
  1163. #endif //HEATER_1_PIN
  1164. // PWM for HEATER_2_PIN
  1165. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1166. case 128: //M128 valve open
  1167. if (code_seen('S')){
  1168. EtoPPressure=constrain(code_value(),0,255);
  1169. }
  1170. else {
  1171. EtoPPressure=255;
  1172. }
  1173. break;
  1174. case 129: //M129 valve closed
  1175. EtoPPressure = 0;
  1176. break;
  1177. #endif //HEATER_2_PIN
  1178. #endif
  1179. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1180. case 80: // M80 - ATX Power On
  1181. SET_OUTPUT(PS_ON_PIN); //GND
  1182. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1183. break;
  1184. #endif
  1185. case 81: // M81 - ATX Power Off
  1186. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1187. st_synchronize();
  1188. suicide();
  1189. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1190. SET_OUTPUT(PS_ON_PIN);
  1191. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1192. #endif
  1193. break;
  1194. case 82:
  1195. axis_relative_modes[3] = false;
  1196. break;
  1197. case 83:
  1198. axis_relative_modes[3] = true;
  1199. break;
  1200. case 18: //compatibility
  1201. case 84: // M84
  1202. if(code_seen('S')){
  1203. stepper_inactive_time = code_value() * 1000;
  1204. }
  1205. else
  1206. {
  1207. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1208. if(all_axis)
  1209. {
  1210. st_synchronize();
  1211. disable_e0();
  1212. disable_e1();
  1213. disable_e2();
  1214. finishAndDisableSteppers();
  1215. }
  1216. else
  1217. {
  1218. st_synchronize();
  1219. if(code_seen('X')) disable_x();
  1220. if(code_seen('Y')) disable_y();
  1221. if(code_seen('Z')) disable_z();
  1222. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1223. if(code_seen('E')) {
  1224. disable_e0();
  1225. disable_e1();
  1226. disable_e2();
  1227. }
  1228. #endif
  1229. }
  1230. }
  1231. break;
  1232. case 85: // M85
  1233. code_seen('S');
  1234. max_inactive_time = code_value() * 1000;
  1235. break;
  1236. case 92: // M92
  1237. for(int8_t i=0; i < NUM_AXIS; i++)
  1238. {
  1239. if(code_seen(axis_codes[i]))
  1240. {
  1241. if(i == 3) { // E
  1242. float value = code_value();
  1243. if(value < 20.0) {
  1244. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1245. max_e_jerk *= factor;
  1246. max_feedrate[i] *= factor;
  1247. axis_steps_per_sqr_second[i] *= factor;
  1248. }
  1249. axis_steps_per_unit[i] = value;
  1250. }
  1251. else {
  1252. axis_steps_per_unit[i] = code_value();
  1253. }
  1254. }
  1255. }
  1256. break;
  1257. case 115: // M115
  1258. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1259. break;
  1260. case 117: // M117 display message
  1261. starpos = (strchr(strchr_pointer + 5,'*'));
  1262. if(starpos!=NULL)
  1263. *(starpos-1)='\0';
  1264. lcd_setstatus(strchr_pointer + 5);
  1265. break;
  1266. case 114: // M114
  1267. SERIAL_PROTOCOLPGM("X:");
  1268. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1269. SERIAL_PROTOCOLPGM("Y:");
  1270. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1271. SERIAL_PROTOCOLPGM("Z:");
  1272. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1273. SERIAL_PROTOCOLPGM("E:");
  1274. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1275. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1276. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1277. SERIAL_PROTOCOLPGM("Y:");
  1278. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1279. SERIAL_PROTOCOLPGM("Z:");
  1280. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1281. SERIAL_PROTOCOLLN("");
  1282. break;
  1283. case 120: // M120
  1284. enable_endstops(false) ;
  1285. break;
  1286. case 121: // M121
  1287. enable_endstops(true) ;
  1288. break;
  1289. case 119: // M119
  1290. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1291. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1292. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1293. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1294. #endif
  1295. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1296. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1297. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1298. #endif
  1299. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1300. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1301. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1302. #endif
  1303. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1304. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1305. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1306. #endif
  1307. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1308. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1309. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1310. #endif
  1311. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1312. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1313. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1314. #endif
  1315. break;
  1316. //TODO: update for all axis, use for loop
  1317. case 201: // M201
  1318. for(int8_t i=0; i < NUM_AXIS; i++)
  1319. {
  1320. if(code_seen(axis_codes[i]))
  1321. {
  1322. max_acceleration_units_per_sq_second[i] = code_value();
  1323. }
  1324. }
  1325. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1326. reset_acceleration_rates();
  1327. break;
  1328. #if 0 // Not used for Sprinter/grbl gen6
  1329. case 202: // M202
  1330. for(int8_t i=0; i < NUM_AXIS; i++) {
  1331. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1332. }
  1333. break;
  1334. #endif
  1335. case 203: // M203 max feedrate mm/sec
  1336. for(int8_t i=0; i < NUM_AXIS; i++) {
  1337. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1338. }
  1339. break;
  1340. case 204: // M204 acclereration S normal moves T filmanent only moves
  1341. {
  1342. if(code_seen('S')) acceleration = code_value() ;
  1343. if(code_seen('T')) retract_acceleration = code_value() ;
  1344. }
  1345. break;
  1346. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1347. {
  1348. if(code_seen('S')) minimumfeedrate = code_value();
  1349. if(code_seen('T')) mintravelfeedrate = code_value();
  1350. if(code_seen('B')) minsegmenttime = code_value() ;
  1351. if(code_seen('X')) max_xy_jerk = code_value() ;
  1352. if(code_seen('Z')) max_z_jerk = code_value() ;
  1353. if(code_seen('E')) max_e_jerk = code_value() ;
  1354. }
  1355. break;
  1356. case 206: // M206 additional homeing offset
  1357. for(int8_t i=0; i < 3; i++)
  1358. {
  1359. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1360. }
  1361. break;
  1362. #ifdef FWRETRACT
  1363. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1364. {
  1365. if(code_seen('S'))
  1366. {
  1367. retract_length = code_value() ;
  1368. }
  1369. if(code_seen('F'))
  1370. {
  1371. retract_feedrate = code_value() ;
  1372. }
  1373. if(code_seen('Z'))
  1374. {
  1375. retract_zlift = code_value() ;
  1376. }
  1377. }break;
  1378. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1379. {
  1380. if(code_seen('S'))
  1381. {
  1382. retract_recover_length = code_value() ;
  1383. }
  1384. if(code_seen('F'))
  1385. {
  1386. retract_recover_feedrate = code_value() ;
  1387. }
  1388. }break;
  1389. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1390. {
  1391. if(code_seen('S'))
  1392. {
  1393. int t= code_value() ;
  1394. switch(t)
  1395. {
  1396. case 0: autoretract_enabled=false;retracted=false;break;
  1397. case 1: autoretract_enabled=true;retracted=false;break;
  1398. default:
  1399. SERIAL_ECHO_START;
  1400. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1401. SERIAL_ECHO(cmdbuffer[bufindr]);
  1402. SERIAL_ECHOLNPGM("\"");
  1403. }
  1404. }
  1405. }break;
  1406. #endif // FWRETRACT
  1407. #if EXTRUDERS > 1
  1408. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1409. {
  1410. if(setTargetedHotend(218)){
  1411. break;
  1412. }
  1413. if(code_seen('X'))
  1414. {
  1415. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1416. }
  1417. if(code_seen('Y'))
  1418. {
  1419. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1420. }
  1421. SERIAL_ECHO_START;
  1422. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1423. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1424. {
  1425. SERIAL_ECHO(" ");
  1426. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1427. SERIAL_ECHO(",");
  1428. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1429. }
  1430. SERIAL_ECHOLN("");
  1431. }break;
  1432. #endif
  1433. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1434. {
  1435. if(code_seen('S'))
  1436. {
  1437. feedmultiply = code_value() ;
  1438. }
  1439. }
  1440. break;
  1441. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1442. {
  1443. if(code_seen('S'))
  1444. {
  1445. extrudemultiply = code_value() ;
  1446. }
  1447. }
  1448. break;
  1449. #if NUM_SERVOS > 0
  1450. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1451. {
  1452. int servo_index = -1;
  1453. int servo_position = 0;
  1454. if (code_seen('P'))
  1455. servo_index = code_value();
  1456. if (code_seen('S')) {
  1457. servo_position = code_value();
  1458. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1459. servos[servo_index].write(servo_position);
  1460. }
  1461. else {
  1462. SERIAL_ECHO_START;
  1463. SERIAL_ECHO("Servo ");
  1464. SERIAL_ECHO(servo_index);
  1465. SERIAL_ECHOLN(" out of range");
  1466. }
  1467. }
  1468. else if (servo_index >= 0) {
  1469. SERIAL_PROTOCOL(MSG_OK);
  1470. SERIAL_PROTOCOL(" Servo ");
  1471. SERIAL_PROTOCOL(servo_index);
  1472. SERIAL_PROTOCOL(": ");
  1473. SERIAL_PROTOCOL(servos[servo_index].read());
  1474. SERIAL_PROTOCOLLN("");
  1475. }
  1476. }
  1477. break;
  1478. #endif // NUM_SERVOS > 0
  1479. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1480. case 300: // M300
  1481. {
  1482. int beepS = code_seen('S') ? code_value() : 110;
  1483. int beepP = code_seen('P') ? code_value() : 1000;
  1484. if (beepS > 0)
  1485. {
  1486. #if BEEPER > 0
  1487. tone(BEEPER, beepS);
  1488. delay(beepP);
  1489. noTone(BEEPER);
  1490. #elif defined(ULTRALCD)
  1491. lcd_buzz(beepS, beepP);
  1492. #endif
  1493. }
  1494. else
  1495. {
  1496. delay(beepP);
  1497. }
  1498. }
  1499. break;
  1500. #endif // M300
  1501. #ifdef PIDTEMP
  1502. case 301: // M301
  1503. {
  1504. if(code_seen('P')) Kp = code_value();
  1505. if(code_seen('I')) Ki = scalePID_i(code_value());
  1506. if(code_seen('D')) Kd = scalePID_d(code_value());
  1507. #ifdef PID_ADD_EXTRUSION_RATE
  1508. if(code_seen('C')) Kc = code_value();
  1509. #endif
  1510. updatePID();
  1511. SERIAL_PROTOCOL(MSG_OK);
  1512. SERIAL_PROTOCOL(" p:");
  1513. SERIAL_PROTOCOL(Kp);
  1514. SERIAL_PROTOCOL(" i:");
  1515. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1516. SERIAL_PROTOCOL(" d:");
  1517. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1518. #ifdef PID_ADD_EXTRUSION_RATE
  1519. SERIAL_PROTOCOL(" c:");
  1520. //Kc does not have scaling applied above, or in resetting defaults
  1521. SERIAL_PROTOCOL(Kc);
  1522. #endif
  1523. SERIAL_PROTOCOLLN("");
  1524. }
  1525. break;
  1526. #endif //PIDTEMP
  1527. #ifdef PIDTEMPBED
  1528. case 304: // M304
  1529. {
  1530. if(code_seen('P')) bedKp = code_value();
  1531. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1532. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1533. updatePID();
  1534. SERIAL_PROTOCOL(MSG_OK);
  1535. SERIAL_PROTOCOL(" p:");
  1536. SERIAL_PROTOCOL(bedKp);
  1537. SERIAL_PROTOCOL(" i:");
  1538. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1539. SERIAL_PROTOCOL(" d:");
  1540. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1541. SERIAL_PROTOCOLLN("");
  1542. }
  1543. break;
  1544. #endif //PIDTEMP
  1545. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1546. {
  1547. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  1548. const uint8_t NUM_PULSES=16;
  1549. const float PULSE_LENGTH=0.01524;
  1550. for(int i=0; i < NUM_PULSES; i++) {
  1551. WRITE(PHOTOGRAPH_PIN, HIGH);
  1552. _delay_ms(PULSE_LENGTH);
  1553. WRITE(PHOTOGRAPH_PIN, LOW);
  1554. _delay_ms(PULSE_LENGTH);
  1555. }
  1556. delay(7.33);
  1557. for(int i=0; i < NUM_PULSES; i++) {
  1558. WRITE(PHOTOGRAPH_PIN, HIGH);
  1559. _delay_ms(PULSE_LENGTH);
  1560. WRITE(PHOTOGRAPH_PIN, LOW);
  1561. _delay_ms(PULSE_LENGTH);
  1562. }
  1563. #endif
  1564. }
  1565. break;
  1566. #ifdef PREVENT_DANGEROUS_EXTRUDE
  1567. case 302: // allow cold extrudes, or set the minimum extrude temperature
  1568. {
  1569. float temp = .0;
  1570. if (code_seen('S')) temp=code_value();
  1571. set_extrude_min_temp(temp);
  1572. }
  1573. break;
  1574. #endif
  1575. case 303: // M303 PID autotune
  1576. {
  1577. float temp = 150.0;
  1578. int e=0;
  1579. int c=5;
  1580. if (code_seen('E')) e=code_value();
  1581. if (e<0)
  1582. temp=70;
  1583. if (code_seen('S')) temp=code_value();
  1584. if (code_seen('C')) c=code_value();
  1585. PID_autotune(temp, e, c);
  1586. }
  1587. break;
  1588. case 400: // M400 finish all moves
  1589. {
  1590. st_synchronize();
  1591. }
  1592. break;
  1593. case 500: // M500 Store settings in EEPROM
  1594. {
  1595. Config_StoreSettings();
  1596. }
  1597. break;
  1598. case 501: // M501 Read settings from EEPROM
  1599. {
  1600. Config_RetrieveSettings();
  1601. }
  1602. break;
  1603. case 502: // M502 Revert to default settings
  1604. {
  1605. Config_ResetDefault();
  1606. }
  1607. break;
  1608. case 503: // M503 print settings currently in memory
  1609. {
  1610. Config_PrintSettings();
  1611. }
  1612. break;
  1613. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  1614. case 540:
  1615. {
  1616. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  1617. }
  1618. break;
  1619. #endif
  1620. #ifdef FILAMENTCHANGEENABLE
  1621. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  1622. {
  1623. float target[4];
  1624. float lastpos[4];
  1625. target[X_AXIS]=current_position[X_AXIS];
  1626. target[Y_AXIS]=current_position[Y_AXIS];
  1627. target[Z_AXIS]=current_position[Z_AXIS];
  1628. target[E_AXIS]=current_position[E_AXIS];
  1629. lastpos[X_AXIS]=current_position[X_AXIS];
  1630. lastpos[Y_AXIS]=current_position[Y_AXIS];
  1631. lastpos[Z_AXIS]=current_position[Z_AXIS];
  1632. lastpos[E_AXIS]=current_position[E_AXIS];
  1633. //retract by E
  1634. if(code_seen('E'))
  1635. {
  1636. target[E_AXIS]+= code_value();
  1637. }
  1638. else
  1639. {
  1640. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  1641. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  1642. #endif
  1643. }
  1644. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1645. //lift Z
  1646. if(code_seen('Z'))
  1647. {
  1648. target[Z_AXIS]+= code_value();
  1649. }
  1650. else
  1651. {
  1652. #ifdef FILAMENTCHANGE_ZADD
  1653. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  1654. #endif
  1655. }
  1656. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1657. //move xy
  1658. if(code_seen('X'))
  1659. {
  1660. target[X_AXIS]+= code_value();
  1661. }
  1662. else
  1663. {
  1664. #ifdef FILAMENTCHANGE_XPOS
  1665. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  1666. #endif
  1667. }
  1668. if(code_seen('Y'))
  1669. {
  1670. target[Y_AXIS]= code_value();
  1671. }
  1672. else
  1673. {
  1674. #ifdef FILAMENTCHANGE_YPOS
  1675. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  1676. #endif
  1677. }
  1678. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1679. if(code_seen('L'))
  1680. {
  1681. target[E_AXIS]+= code_value();
  1682. }
  1683. else
  1684. {
  1685. #ifdef FILAMENTCHANGE_FINALRETRACT
  1686. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  1687. #endif
  1688. }
  1689. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  1690. //finish moves
  1691. st_synchronize();
  1692. //disable extruder steppers so filament can be removed
  1693. disable_e0();
  1694. disable_e1();
  1695. disable_e2();
  1696. delay(100);
  1697. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  1698. uint8_t cnt=0;
  1699. while(!lcd_clicked()){
  1700. cnt++;
  1701. manage_heater();
  1702. manage_inactivity();
  1703. lcd_update();
  1704. if(cnt==0)
  1705. {
  1706. #if BEEPER > 0
  1707. SET_OUTPUT(BEEPER);
  1708. WRITE(BEEPER,HIGH);
  1709. delay(3);
  1710. WRITE(BEEPER,LOW);
  1711. delay(3);
  1712. #else
  1713. lcd_buzz(1000/6,100);
  1714. #endif
  1715. }
  1716. }
  1717. //return to normal
  1718. if(code_seen('L'))
  1719. {
  1720. target[E_AXIS]+= -code_value();
  1721. }
  1722. else
  1723. {
  1724. #ifdef FILAMENTCHANGE_FINALRETRACT
  1725. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  1726. #endif
  1727. }
  1728. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  1729. plan_set_e_position(current_position[E_AXIS]);
  1730. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  1731. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  1732. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  1733. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  1734. }
  1735. break;
  1736. #endif //FILAMENTCHANGEENABLE
  1737. case 907: // M907 Set digital trimpot motor current using axis codes.
  1738. {
  1739. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1740. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  1741. if(code_seen('B')) digipot_current(4,code_value());
  1742. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  1743. #endif
  1744. }
  1745. break;
  1746. case 908: // M908 Control digital trimpot directly.
  1747. {
  1748. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1749. uint8_t channel,current;
  1750. if(code_seen('P')) channel=code_value();
  1751. if(code_seen('S')) current=code_value();
  1752. digitalPotWrite(channel, current);
  1753. #endif
  1754. }
  1755. break;
  1756. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  1757. {
  1758. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1759. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  1760. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  1761. if(code_seen('B')) microstep_mode(4,code_value());
  1762. microstep_readings();
  1763. #endif
  1764. }
  1765. break;
  1766. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  1767. {
  1768. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1769. if(code_seen('S')) switch((int)code_value())
  1770. {
  1771. case 1:
  1772. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  1773. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  1774. break;
  1775. case 2:
  1776. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  1777. if(code_seen('B')) microstep_ms(4,-1,code_value());
  1778. break;
  1779. }
  1780. microstep_readings();
  1781. #endif
  1782. }
  1783. break;
  1784. case 999: // M999: Restart after being stopped
  1785. Stopped = false;
  1786. lcd_reset_alert_level();
  1787. gcode_LastN = Stopped_gcode_LastN;
  1788. FlushSerialRequestResend();
  1789. break;
  1790. }
  1791. }
  1792. else if(code_seen('T'))
  1793. {
  1794. tmp_extruder = code_value();
  1795. if(tmp_extruder >= EXTRUDERS) {
  1796. SERIAL_ECHO_START;
  1797. SERIAL_ECHO("T");
  1798. SERIAL_ECHO(tmp_extruder);
  1799. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1800. }
  1801. else {
  1802. boolean make_move = false;
  1803. if(code_seen('F')) {
  1804. make_move = true;
  1805. next_feedrate = code_value();
  1806. if(next_feedrate > 0.0) {
  1807. feedrate = next_feedrate;
  1808. }
  1809. }
  1810. #if EXTRUDERS > 1
  1811. if(tmp_extruder != active_extruder) {
  1812. // Save current position to return to after applying extruder offset
  1813. memcpy(destination, current_position, sizeof(destination));
  1814. // Offset extruder (only by XY)
  1815. int i;
  1816. for(i = 0; i < 2; i++) {
  1817. current_position[i] = current_position[i] -
  1818. extruder_offset[i][active_extruder] +
  1819. extruder_offset[i][tmp_extruder];
  1820. }
  1821. // Set the new active extruder and position
  1822. active_extruder = tmp_extruder;
  1823. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1824. // Move to the old position if 'F' was in the parameters
  1825. if(make_move && Stopped == false) {
  1826. prepare_move();
  1827. }
  1828. }
  1829. #endif
  1830. SERIAL_ECHO_START;
  1831. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1832. SERIAL_PROTOCOLLN((int)active_extruder);
  1833. }
  1834. }
  1835. else
  1836. {
  1837. SERIAL_ECHO_START;
  1838. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1839. SERIAL_ECHO(cmdbuffer[bufindr]);
  1840. SERIAL_ECHOLNPGM("\"");
  1841. }
  1842. ClearToSend();
  1843. }
  1844. void FlushSerialRequestResend()
  1845. {
  1846. //char cmdbuffer[bufindr][100]="Resend:";
  1847. MYSERIAL.flush();
  1848. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1849. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1850. ClearToSend();
  1851. }
  1852. void ClearToSend()
  1853. {
  1854. previous_millis_cmd = millis();
  1855. #ifdef SDSUPPORT
  1856. if(fromsd[bufindr])
  1857. return;
  1858. #endif //SDSUPPORT
  1859. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1860. }
  1861. void get_coordinates()
  1862. {
  1863. bool seen[4]={false,false,false,false};
  1864. for(int8_t i=0; i < NUM_AXIS; i++) {
  1865. if(code_seen(axis_codes[i]))
  1866. {
  1867. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1868. seen[i]=true;
  1869. }
  1870. else destination[i] = current_position[i]; //Are these else lines really needed?
  1871. }
  1872. if(code_seen('F')) {
  1873. next_feedrate = code_value();
  1874. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1875. }
  1876. #ifdef FWRETRACT
  1877. if(autoretract_enabled)
  1878. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1879. {
  1880. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1881. if(echange<-MIN_RETRACT) //retract
  1882. {
  1883. if(!retracted)
  1884. {
  1885. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1886. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1887. float correctede=-echange-retract_length;
  1888. //to generate the additional steps, not the destination is changed, but inversely the current position
  1889. current_position[E_AXIS]+=-correctede;
  1890. feedrate=retract_feedrate;
  1891. retracted=true;
  1892. }
  1893. }
  1894. else
  1895. if(echange>MIN_RETRACT) //retract_recover
  1896. {
  1897. if(retracted)
  1898. {
  1899. //current_position[Z_AXIS]+=-retract_zlift;
  1900. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1901. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1902. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1903. feedrate=retract_recover_feedrate;
  1904. retracted=false;
  1905. }
  1906. }
  1907. }
  1908. #endif //FWRETRACT
  1909. }
  1910. void get_arc_coordinates()
  1911. {
  1912. #ifdef SF_ARC_FIX
  1913. bool relative_mode_backup = relative_mode;
  1914. relative_mode = true;
  1915. #endif
  1916. get_coordinates();
  1917. #ifdef SF_ARC_FIX
  1918. relative_mode=relative_mode_backup;
  1919. #endif
  1920. if(code_seen('I')) {
  1921. offset[0] = code_value();
  1922. }
  1923. else {
  1924. offset[0] = 0.0;
  1925. }
  1926. if(code_seen('J')) {
  1927. offset[1] = code_value();
  1928. }
  1929. else {
  1930. offset[1] = 0.0;
  1931. }
  1932. }
  1933. void clamp_to_software_endstops(float target[3])
  1934. {
  1935. if (min_software_endstops) {
  1936. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1937. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1938. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1939. }
  1940. if (max_software_endstops) {
  1941. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1942. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1943. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1944. }
  1945. }
  1946. #ifdef DELTA
  1947. void calculate_delta(float cartesian[3])
  1948. {
  1949. delta[X_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
  1950. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  1951. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  1952. ) + cartesian[Z_AXIS];
  1953. delta[Y_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
  1954. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  1955. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  1956. ) + cartesian[Z_AXIS];
  1957. delta[Z_AXIS] = sqrt(sq(DELTA_DIAGONAL_ROD)
  1958. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  1959. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  1960. ) + cartesian[Z_AXIS];
  1961. /*
  1962. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  1963. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  1964. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  1965. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  1966. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  1967. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  1968. */
  1969. }
  1970. #endif
  1971. void prepare_move()
  1972. {
  1973. clamp_to_software_endstops(destination);
  1974. previous_millis_cmd = millis();
  1975. #ifdef DELTA
  1976. float difference[NUM_AXIS];
  1977. for (int8_t i=0; i < NUM_AXIS; i++) {
  1978. difference[i] = destination[i] - current_position[i];
  1979. }
  1980. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  1981. sq(difference[Y_AXIS]) +
  1982. sq(difference[Z_AXIS]));
  1983. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  1984. if (cartesian_mm < 0.000001) { return; }
  1985. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  1986. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  1987. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  1988. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  1989. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  1990. for (int s = 1; s <= steps; s++) {
  1991. float fraction = float(s) / float(steps);
  1992. for(int8_t i=0; i < NUM_AXIS; i++) {
  1993. destination[i] = current_position[i] + difference[i] * fraction;
  1994. }
  1995. calculate_delta(destination);
  1996. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  1997. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  1998. active_extruder);
  1999. }
  2000. #else
  2001. // Do not use feedmultiply for E or Z only moves
  2002. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2003. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2004. }
  2005. else {
  2006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2007. }
  2008. #endif
  2009. for(int8_t i=0; i < NUM_AXIS; i++) {
  2010. current_position[i] = destination[i];
  2011. }
  2012. }
  2013. void prepare_arc_move(char isclockwise) {
  2014. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2015. // Trace the arc
  2016. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2017. // As far as the parser is concerned, the position is now == target. In reality the
  2018. // motion control system might still be processing the action and the real tool position
  2019. // in any intermediate location.
  2020. for(int8_t i=0; i < NUM_AXIS; i++) {
  2021. current_position[i] = destination[i];
  2022. }
  2023. previous_millis_cmd = millis();
  2024. }
  2025. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2026. #if defined(FAN_PIN)
  2027. #if CONTROLLERFAN_PIN == FAN_PIN
  2028. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2029. #endif
  2030. #endif
  2031. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2032. unsigned long lastMotorCheck = 0;
  2033. void controllerFan()
  2034. {
  2035. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2036. {
  2037. lastMotorCheck = millis();
  2038. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2039. #if EXTRUDERS > 2
  2040. || !READ(E2_ENABLE_PIN)
  2041. #endif
  2042. #if EXTRUDER > 1
  2043. || !READ(E1_ENABLE_PIN)
  2044. #endif
  2045. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2046. {
  2047. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2048. }
  2049. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2050. {
  2051. digitalWrite(CONTROLLERFAN_PIN, 0);
  2052. analogWrite(CONTROLLERFAN_PIN, 0);
  2053. }
  2054. else
  2055. {
  2056. // allows digital or PWM fan output to be used (see M42 handling)
  2057. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2058. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2059. }
  2060. }
  2061. }
  2062. #endif
  2063. void manage_inactivity()
  2064. {
  2065. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2066. if(max_inactive_time)
  2067. kill();
  2068. if(stepper_inactive_time) {
  2069. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2070. {
  2071. if(blocks_queued() == false) {
  2072. disable_x();
  2073. disable_y();
  2074. disable_z();
  2075. disable_e0();
  2076. disable_e1();
  2077. disable_e2();
  2078. }
  2079. }
  2080. }
  2081. #if defined(KILL_PIN) && KILL_PIN > -1
  2082. if( 0 == READ(KILL_PIN) )
  2083. kill();
  2084. #endif
  2085. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2086. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2087. #endif
  2088. #ifdef EXTRUDER_RUNOUT_PREVENT
  2089. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2090. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2091. {
  2092. bool oldstatus=READ(E0_ENABLE_PIN);
  2093. enable_e0();
  2094. float oldepos=current_position[E_AXIS];
  2095. float oldedes=destination[E_AXIS];
  2096. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2097. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2098. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2099. current_position[E_AXIS]=oldepos;
  2100. destination[E_AXIS]=oldedes;
  2101. plan_set_e_position(oldepos);
  2102. previous_millis_cmd=millis();
  2103. st_synchronize();
  2104. WRITE(E0_ENABLE_PIN,oldstatus);
  2105. }
  2106. #endif
  2107. check_axes_activity();
  2108. }
  2109. void kill()
  2110. {
  2111. cli(); // Stop interrupts
  2112. disable_heater();
  2113. disable_x();
  2114. disable_y();
  2115. disable_z();
  2116. disable_e0();
  2117. disable_e1();
  2118. disable_e2();
  2119. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2120. pinMode(PS_ON_PIN,INPUT);
  2121. #endif
  2122. SERIAL_ERROR_START;
  2123. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2124. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2125. suicide();
  2126. while(1) { /* Intentionally left empty */ } // Wait for reset
  2127. }
  2128. void Stop()
  2129. {
  2130. disable_heater();
  2131. if(Stopped == false) {
  2132. Stopped = true;
  2133. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2134. SERIAL_ERROR_START;
  2135. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2136. LCD_MESSAGEPGM(MSG_STOPPED);
  2137. }
  2138. }
  2139. bool IsStopped() { return Stopped; };
  2140. #ifdef FAST_PWM_FAN
  2141. void setPwmFrequency(uint8_t pin, int val)
  2142. {
  2143. val &= 0x07;
  2144. switch(digitalPinToTimer(pin))
  2145. {
  2146. #if defined(TCCR0A)
  2147. case TIMER0A:
  2148. case TIMER0B:
  2149. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2150. // TCCR0B |= val;
  2151. break;
  2152. #endif
  2153. #if defined(TCCR1A)
  2154. case TIMER1A:
  2155. case TIMER1B:
  2156. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2157. // TCCR1B |= val;
  2158. break;
  2159. #endif
  2160. #if defined(TCCR2)
  2161. case TIMER2:
  2162. case TIMER2:
  2163. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2164. TCCR2 |= val;
  2165. break;
  2166. #endif
  2167. #if defined(TCCR2A)
  2168. case TIMER2A:
  2169. case TIMER2B:
  2170. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2171. TCCR2B |= val;
  2172. break;
  2173. #endif
  2174. #if defined(TCCR3A)
  2175. case TIMER3A:
  2176. case TIMER3B:
  2177. case TIMER3C:
  2178. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2179. TCCR3B |= val;
  2180. break;
  2181. #endif
  2182. #if defined(TCCR4A)
  2183. case TIMER4A:
  2184. case TIMER4B:
  2185. case TIMER4C:
  2186. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2187. TCCR4B |= val;
  2188. break;
  2189. #endif
  2190. #if defined(TCCR5A)
  2191. case TIMER5A:
  2192. case TIMER5B:
  2193. case TIMER5C:
  2194. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2195. TCCR5B |= val;
  2196. break;
  2197. #endif
  2198. }
  2199. }
  2200. #endif //FAST_PWM_FAN
  2201. bool setTargetedHotend(int code){
  2202. tmp_extruder = active_extruder;
  2203. if(code_seen('T')) {
  2204. tmp_extruder = code_value();
  2205. if(tmp_extruder >= EXTRUDERS) {
  2206. SERIAL_ECHO_START;
  2207. switch(code){
  2208. case 104:
  2209. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2210. break;
  2211. case 105:
  2212. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2213. break;
  2214. case 109:
  2215. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2216. break;
  2217. case 218:
  2218. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2219. break;
  2220. }
  2221. SERIAL_ECHOLN(tmp_extruder);
  2222. return true;
  2223. }
  2224. }
  2225. return false;
  2226. }