My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 249KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float position_shift[3] = { 0 };
  264. float home_offset[3] = { 0 };
  265. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  266. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  267. #if FAN_COUNT > 0
  268. int fanSpeeds[FAN_COUNT] = { 0 };
  269. #endif
  270. uint8_t active_extruder = 0;
  271. bool cancel_heatup = false;
  272. const char errormagic[] PROGMEM = "Error:";
  273. const char echomagic[] PROGMEM = "echo:";
  274. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  275. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  276. static int serial_count = 0;
  277. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  278. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  279. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  280. // Inactivity shutdown
  281. millis_t previous_cmd_ms = 0;
  282. static millis_t max_inactive_time = 0;
  283. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  284. Stopwatch print_job_timer = Stopwatch();
  285. static uint8_t target_extruder;
  286. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  287. int xy_travel_speed = XY_TRAVEL_SPEED;
  288. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  289. #endif
  290. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  291. float z_endstop_adj = 0;
  292. #endif
  293. // Extruder offsets
  294. #if EXTRUDERS > 1
  295. #ifndef EXTRUDER_OFFSET_X
  296. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  297. #endif
  298. #ifndef EXTRUDER_OFFSET_Y
  299. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  300. #endif
  301. float extruder_offset[][EXTRUDERS] = {
  302. EXTRUDER_OFFSET_X,
  303. EXTRUDER_OFFSET_Y
  304. #if ENABLED(DUAL_X_CARRIAGE)
  305. , { 0 } // Z offsets for each extruder
  306. #endif
  307. };
  308. #endif
  309. #if HAS_SERVO_ENDSTOPS
  310. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  311. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  312. #endif
  313. #if ENABLED(BARICUDA)
  314. int ValvePressure = 0;
  315. int EtoPPressure = 0;
  316. #endif
  317. #if ENABLED(FWRETRACT)
  318. bool autoretract_enabled = false;
  319. bool retracted[EXTRUDERS] = { false };
  320. bool retracted_swap[EXTRUDERS] = { false };
  321. float retract_length = RETRACT_LENGTH;
  322. float retract_length_swap = RETRACT_LENGTH_SWAP;
  323. float retract_feedrate = RETRACT_FEEDRATE;
  324. float retract_zlift = RETRACT_ZLIFT;
  325. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  326. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  327. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  328. #endif // FWRETRACT
  329. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  330. bool powersupply =
  331. #if ENABLED(PS_DEFAULT_OFF)
  332. false
  333. #else
  334. true
  335. #endif
  336. ;
  337. #endif
  338. #if ENABLED(DELTA)
  339. #define TOWER_1 X_AXIS
  340. #define TOWER_2 Y_AXIS
  341. #define TOWER_3 Z_AXIS
  342. float delta[3] = { 0 };
  343. #define SIN_60 0.8660254037844386
  344. #define COS_60 0.5
  345. float endstop_adj[3] = { 0 };
  346. // these are the default values, can be overriden with M665
  347. float delta_radius = DELTA_RADIUS;
  348. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  349. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  350. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  351. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  352. float delta_tower3_x = 0; // back middle tower
  353. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  354. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  355. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  356. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  357. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  358. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  359. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  360. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  361. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  362. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  363. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  364. int delta_grid_spacing[2] = { 0, 0 };
  365. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  366. #endif
  367. #else
  368. static bool home_all_axis = true;
  369. #endif
  370. #if ENABLED(SCARA)
  371. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  372. static float delta[3] = { 0 };
  373. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  374. #endif
  375. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  376. //Variables for Filament Sensor input
  377. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  378. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  379. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  380. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  381. int filwidth_delay_index1 = 0; //index into ring buffer
  382. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  383. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  384. #endif
  385. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  386. static bool filrunoutEnqueued = false;
  387. #endif
  388. static bool send_ok[BUFSIZE];
  389. #if HAS_SERVOS
  390. Servo servo[NUM_SERVOS];
  391. #endif
  392. #ifdef CHDK
  393. millis_t chdkHigh = 0;
  394. boolean chdkActive = false;
  395. #endif
  396. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  397. int lpq_len = 20;
  398. #endif
  399. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  400. // States for managing Marlin and host communication
  401. // Marlin sends messages if blocked or busy
  402. enum MarlinBusyState {
  403. NOT_BUSY, // Not in a handler
  404. IN_HANDLER, // Processing a GCode
  405. IN_PROCESS, // Known to be blocking command input (as in G29)
  406. PAUSED_FOR_USER, // Blocking pending any input
  407. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  408. };
  409. static MarlinBusyState busy_state = NOT_BUSY;
  410. static millis_t next_busy_signal_ms = 0;
  411. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  412. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  413. #else
  414. #define host_keepalive() ;
  415. #define KEEPALIVE_STATE(n) ;
  416. #endif // HOST_KEEPALIVE_FEATURE
  417. /**
  418. * ***************************************************************************
  419. * ******************************** FUNCTIONS ********************************
  420. * ***************************************************************************
  421. */
  422. void get_available_commands();
  423. void process_next_command();
  424. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  425. bool setTargetedHotend(int code);
  426. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  431. void gcode_M114();
  432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  433. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  434. SERIAL_ECHO(prefix);
  435. SERIAL_ECHOPAIR(": (", x);
  436. SERIAL_ECHOPAIR(", ", y);
  437. SERIAL_ECHOPAIR(", ", z);
  438. SERIAL_ECHOLNPGM(")");
  439. }
  440. void print_xyz(const char* prefix, const float xyz[]) {
  441. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  442. }
  443. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  444. void print_xyz(const char* prefix, const vector_3 &xyz) {
  445. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  446. }
  447. #endif
  448. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  449. #endif
  450. #if ENABLED(DELTA) || ENABLED(SCARA)
  451. inline void sync_plan_position_delta() {
  452. #if ENABLED(DEBUG_LEVELING_FEATURE)
  453. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  454. #endif
  455. calculate_delta(current_position);
  456. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  457. }
  458. #endif
  459. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  460. float extrude_min_temp = EXTRUDE_MINTEMP;
  461. #endif
  462. #if ENABLED(HAS_Z_MIN_PROBE)
  463. extern volatile bool z_probe_is_active;
  464. #endif
  465. #if ENABLED(SDSUPPORT)
  466. #include "SdFatUtil.h"
  467. int freeMemory() { return SdFatUtil::FreeRam(); }
  468. #else
  469. extern "C" {
  470. extern unsigned int __bss_end;
  471. extern unsigned int __heap_start;
  472. extern void* __brkval;
  473. int freeMemory() {
  474. int free_memory;
  475. if ((int)__brkval == 0)
  476. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  477. else
  478. free_memory = ((int)&free_memory) - ((int)__brkval);
  479. return free_memory;
  480. }
  481. }
  482. #endif //!SDSUPPORT
  483. /**
  484. * Inject the next "immediate" command, when possible.
  485. * Return true if any immediate commands remain to inject.
  486. */
  487. static bool drain_queued_commands_P() {
  488. if (queued_commands_P != NULL) {
  489. size_t i = 0;
  490. char c, cmd[30];
  491. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  492. cmd[sizeof(cmd) - 1] = '\0';
  493. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  494. cmd[i] = '\0';
  495. if (enqueue_and_echo_command(cmd)) { // success?
  496. if (c) // newline char?
  497. queued_commands_P += i + 1; // advance to the next command
  498. else
  499. queued_commands_P = NULL; // nul char? no more commands
  500. }
  501. }
  502. return (queued_commands_P != NULL); // return whether any more remain
  503. }
  504. /**
  505. * Record one or many commands to run from program memory.
  506. * Aborts the current queue, if any.
  507. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  508. */
  509. void enqueue_and_echo_commands_P(const char* pgcode) {
  510. queued_commands_P = pgcode;
  511. drain_queued_commands_P(); // first command executed asap (when possible)
  512. }
  513. /**
  514. * Once a new command is in the ring buffer, call this to commit it
  515. */
  516. inline void _commit_command(bool say_ok) {
  517. send_ok[cmd_queue_index_w] = say_ok;
  518. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  519. commands_in_queue++;
  520. }
  521. /**
  522. * Copy a command directly into the main command buffer, from RAM.
  523. * Returns true if successfully adds the command
  524. */
  525. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  526. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  527. strcpy(command_queue[cmd_queue_index_w], cmd);
  528. _commit_command(say_ok);
  529. return true;
  530. }
  531. void enqueue_and_echo_command_now(const char* cmd) {
  532. while (!enqueue_and_echo_command(cmd)) idle();
  533. }
  534. /**
  535. * Enqueue with Serial Echo
  536. */
  537. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  538. if (_enqueuecommand(cmd, say_ok)) {
  539. SERIAL_ECHO_START;
  540. SERIAL_ECHOPGM(MSG_Enqueueing);
  541. SERIAL_ECHO(cmd);
  542. SERIAL_ECHOLNPGM("\"");
  543. return true;
  544. }
  545. return false;
  546. }
  547. void setup_killpin() {
  548. #if HAS_KILL
  549. SET_INPUT(KILL_PIN);
  550. WRITE(KILL_PIN, HIGH);
  551. #endif
  552. }
  553. void setup_filrunoutpin() {
  554. #if HAS_FILRUNOUT
  555. pinMode(FILRUNOUT_PIN, INPUT);
  556. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  557. WRITE(FILRUNOUT_PIN, HIGH);
  558. #endif
  559. #endif
  560. }
  561. // Set home pin
  562. void setup_homepin(void) {
  563. #if HAS_HOME
  564. SET_INPUT(HOME_PIN);
  565. WRITE(HOME_PIN, HIGH);
  566. #endif
  567. }
  568. void setup_photpin() {
  569. #if HAS_PHOTOGRAPH
  570. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  571. #endif
  572. }
  573. void setup_powerhold() {
  574. #if HAS_SUICIDE
  575. OUT_WRITE(SUICIDE_PIN, HIGH);
  576. #endif
  577. #if HAS_POWER_SWITCH
  578. #if ENABLED(PS_DEFAULT_OFF)
  579. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  580. #else
  581. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  582. #endif
  583. #endif
  584. }
  585. void suicide() {
  586. #if HAS_SUICIDE
  587. OUT_WRITE(SUICIDE_PIN, LOW);
  588. #endif
  589. }
  590. void servo_init() {
  591. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  592. servo[0].attach(SERVO0_PIN);
  593. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  594. #endif
  595. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  596. servo[1].attach(SERVO1_PIN);
  597. servo[1].detach();
  598. #endif
  599. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  600. servo[2].attach(SERVO2_PIN);
  601. servo[2].detach();
  602. #endif
  603. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  604. servo[3].attach(SERVO3_PIN);
  605. servo[3].detach();
  606. #endif
  607. #if HAS_SERVO_ENDSTOPS
  608. z_probe_is_active = false;
  609. /**
  610. * Set position of all defined Servo Endstops
  611. *
  612. * ** UNSAFE! - NEEDS UPDATE! **
  613. *
  614. * The servo might be deployed and positioned too low to stow
  615. * when starting up the machine or rebooting the board.
  616. * There's no way to know where the nozzle is positioned until
  617. * homing has been done - no homing with z-probe without init!
  618. *
  619. */
  620. for (int i = 0; i < 3; i++)
  621. if (servo_endstop_id[i] >= 0)
  622. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  623. #endif // HAS_SERVO_ENDSTOPS
  624. }
  625. /**
  626. * Stepper Reset (RigidBoard, et.al.)
  627. */
  628. #if HAS_STEPPER_RESET
  629. void disableStepperDrivers() {
  630. pinMode(STEPPER_RESET_PIN, OUTPUT);
  631. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  632. }
  633. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  634. #endif
  635. /**
  636. * Marlin entry-point: Set up before the program loop
  637. * - Set up the kill pin, filament runout, power hold
  638. * - Start the serial port
  639. * - Print startup messages and diagnostics
  640. * - Get EEPROM or default settings
  641. * - Initialize managers for:
  642. * • temperature
  643. * • planner
  644. * • watchdog
  645. * • stepper
  646. * • photo pin
  647. * • servos
  648. * • LCD controller
  649. * • Digipot I2C
  650. * • Z probe sled
  651. * • status LEDs
  652. */
  653. void setup() {
  654. #ifdef DISABLE_JTAG
  655. // Disable JTAG on AT90USB chips to free up pins for IO
  656. MCUCR = 0x80;
  657. MCUCR = 0x80;
  658. #endif
  659. setup_killpin();
  660. setup_filrunoutpin();
  661. setup_powerhold();
  662. #if HAS_STEPPER_RESET
  663. disableStepperDrivers();
  664. #endif
  665. MYSERIAL.begin(BAUDRATE);
  666. SERIAL_PROTOCOLLNPGM("start");
  667. SERIAL_ECHO_START;
  668. // Check startup - does nothing if bootloader sets MCUSR to 0
  669. byte mcu = MCUSR;
  670. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  671. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  672. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  673. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  674. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  675. MCUSR = 0;
  676. SERIAL_ECHOPGM(MSG_MARLIN);
  677. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  678. #ifdef STRING_DISTRIBUTION_DATE
  679. #ifdef STRING_CONFIG_H_AUTHOR
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  682. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  683. SERIAL_ECHOPGM(MSG_AUTHOR);
  684. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  685. SERIAL_ECHOPGM("Compiled: ");
  686. SERIAL_ECHOLNPGM(__DATE__);
  687. #endif // STRING_CONFIG_H_AUTHOR
  688. #endif // STRING_DISTRIBUTION_DATE
  689. SERIAL_ECHO_START;
  690. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  691. SERIAL_ECHO(freeMemory());
  692. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  693. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  694. // Send "ok" after commands by default
  695. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  696. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  697. Config_RetrieveSettings();
  698. lcd_init();
  699. tp_init(); // Initialize temperature loop
  700. plan_init(); // Initialize planner;
  701. #if ENABLED(DELTA) || ENABLED(SCARA)
  702. // Vital to init kinematic equivalent for X0 Y0 Z0
  703. sync_plan_position_delta();
  704. #endif
  705. #if ENABLED(USE_WATCHDOG)
  706. watchdog_init();
  707. #endif
  708. st_init(); // Initialize stepper, this enables interrupts!
  709. setup_photpin();
  710. servo_init();
  711. #if HAS_CONTROLLERFAN
  712. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  713. #endif
  714. #if HAS_STEPPER_RESET
  715. enableStepperDrivers();
  716. #endif
  717. #if ENABLED(DIGIPOT_I2C)
  718. digipot_i2c_init();
  719. #endif
  720. #if ENABLED(Z_PROBE_SLED)
  721. pinMode(SLED_PIN, OUTPUT);
  722. digitalWrite(SLED_PIN, LOW); // turn it off
  723. #endif // Z_PROBE_SLED
  724. setup_homepin();
  725. #ifdef STAT_LED_RED
  726. pinMode(STAT_LED_RED, OUTPUT);
  727. digitalWrite(STAT_LED_RED, LOW); // turn it off
  728. #endif
  729. #ifdef STAT_LED_BLUE
  730. pinMode(STAT_LED_BLUE, OUTPUT);
  731. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  732. #endif
  733. }
  734. /**
  735. * The main Marlin program loop
  736. *
  737. * - Save or log commands to SD
  738. * - Process available commands (if not saving)
  739. * - Call heater manager
  740. * - Call inactivity manager
  741. * - Call endstop manager
  742. * - Call LCD update
  743. */
  744. void loop() {
  745. if (commands_in_queue < BUFSIZE) get_available_commands();
  746. #if ENABLED(SDSUPPORT)
  747. card.checkautostart(false);
  748. #endif
  749. if (commands_in_queue) {
  750. #if ENABLED(SDSUPPORT)
  751. if (card.saving) {
  752. char* command = command_queue[cmd_queue_index_r];
  753. if (strstr_P(command, PSTR("M29"))) {
  754. // M29 closes the file
  755. card.closefile();
  756. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  757. ok_to_send();
  758. }
  759. else {
  760. // Write the string from the read buffer to SD
  761. card.write_command(command);
  762. if (card.logging)
  763. process_next_command(); // The card is saving because it's logging
  764. else
  765. ok_to_send();
  766. }
  767. }
  768. else
  769. process_next_command();
  770. #else
  771. process_next_command();
  772. #endif // SDSUPPORT
  773. commands_in_queue--;
  774. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  775. }
  776. checkHitEndstops();
  777. idle();
  778. }
  779. void gcode_line_error(const char* err, bool doFlush = true) {
  780. SERIAL_ERROR_START;
  781. serialprintPGM(err);
  782. SERIAL_ERRORLN(gcode_LastN);
  783. //Serial.println(gcode_N);
  784. if (doFlush) FlushSerialRequestResend();
  785. serial_count = 0;
  786. }
  787. inline void get_serial_commands() {
  788. static char serial_line_buffer[MAX_CMD_SIZE];
  789. static boolean serial_comment_mode = false;
  790. // If the command buffer is empty for too long,
  791. // send "wait" to indicate Marlin is still waiting.
  792. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  793. static millis_t last_command_time = 0;
  794. millis_t ms = millis();
  795. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  796. SERIAL_ECHOLNPGM(MSG_WAIT);
  797. last_command_time = ms;
  798. }
  799. #endif
  800. /**
  801. * Loop while serial characters are incoming and the queue is not full
  802. */
  803. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  804. char serial_char = MYSERIAL.read();
  805. /**
  806. * If the character ends the line
  807. */
  808. if (serial_char == '\n' || serial_char == '\r') {
  809. serial_comment_mode = false; // end of line == end of comment
  810. if (!serial_count) continue; // skip empty lines
  811. serial_line_buffer[serial_count] = 0; // terminate string
  812. serial_count = 0; //reset buffer
  813. char* command = serial_line_buffer;
  814. while (*command == ' ') command++; // skip any leading spaces
  815. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  816. char* apos = strchr(command, '*');
  817. if (npos) {
  818. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  819. if (M110) {
  820. char* n2pos = strchr(command + 4, 'N');
  821. if (n2pos) npos = n2pos;
  822. }
  823. gcode_N = strtol(npos + 1, NULL, 10);
  824. if (gcode_N != gcode_LastN + 1 && !M110) {
  825. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  826. return;
  827. }
  828. if (apos) {
  829. byte checksum = 0, count = 0;
  830. while (command[count] != '*') checksum ^= command[count++];
  831. if (strtol(apos + 1, NULL, 10) != checksum) {
  832. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  833. return;
  834. }
  835. // if no errors, continue parsing
  836. }
  837. else {
  838. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  839. return;
  840. }
  841. gcode_LastN = gcode_N;
  842. // if no errors, continue parsing
  843. }
  844. else if (apos) { // No '*' without 'N'
  845. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  846. return;
  847. }
  848. // Movement commands alert when stopped
  849. if (IsStopped()) {
  850. char* gpos = strchr(command, 'G');
  851. if (gpos) {
  852. int codenum = strtol(gpos + 1, NULL, 10);
  853. switch (codenum) {
  854. case 0:
  855. case 1:
  856. case 2:
  857. case 3:
  858. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  859. LCD_MESSAGEPGM(MSG_STOPPED);
  860. break;
  861. }
  862. }
  863. }
  864. // If command was e-stop process now
  865. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  866. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  867. last_command_time = ms;
  868. #endif
  869. // Add the command to the queue
  870. _enqueuecommand(serial_line_buffer, true);
  871. }
  872. else if (serial_count >= MAX_CMD_SIZE - 1) {
  873. // Keep fetching, but ignore normal characters beyond the max length
  874. // The command will be injected when EOL is reached
  875. }
  876. else if (serial_char == '\\') { // Handle escapes
  877. if (MYSERIAL.available() > 0) {
  878. // if we have one more character, copy it over
  879. serial_char = MYSERIAL.read();
  880. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  881. }
  882. // otherwise do nothing
  883. }
  884. else { // it's not a newline, carriage return or escape char
  885. if (serial_char == ';') serial_comment_mode = true;
  886. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  887. }
  888. } // queue has space, serial has data
  889. }
  890. #if ENABLED(SDSUPPORT)
  891. inline void get_sdcard_commands() {
  892. static bool stop_buffering = false,
  893. sd_comment_mode = false;
  894. if (!card.sdprinting) return;
  895. /**
  896. * '#' stops reading from SD to the buffer prematurely, so procedural
  897. * macro calls are possible. If it occurs, stop_buffering is triggered
  898. * and the buffer is run dry; this character _can_ occur in serial com
  899. * due to checksums, however, no checksums are used in SD printing.
  900. */
  901. if (commands_in_queue == 0) stop_buffering = false;
  902. uint16_t sd_count = 0;
  903. bool card_eof = card.eof();
  904. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  905. int16_t n = card.get();
  906. char sd_char = (char)n;
  907. card_eof = card.eof();
  908. if (card_eof || n == -1
  909. || sd_char == '\n' || sd_char == '\r'
  910. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  911. ) {
  912. if (card_eof) {
  913. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  914. print_job_timer.stop();
  915. char time[30];
  916. millis_t t = print_job_timer.duration();
  917. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  918. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  919. SERIAL_ECHO_START;
  920. SERIAL_ECHOLN(time);
  921. lcd_setstatus(time, true);
  922. card.printingHasFinished();
  923. card.checkautostart(true);
  924. }
  925. if (sd_char == '#') stop_buffering = true;
  926. sd_comment_mode = false; //for new command
  927. if (!sd_count) continue; //skip empty lines
  928. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  929. sd_count = 0; //clear buffer
  930. _commit_command(false);
  931. }
  932. else if (sd_count >= MAX_CMD_SIZE - 1) {
  933. /**
  934. * Keep fetching, but ignore normal characters beyond the max length
  935. * The command will be injected when EOL is reached
  936. */
  937. }
  938. else {
  939. if (sd_char == ';') sd_comment_mode = true;
  940. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  941. }
  942. }
  943. }
  944. #endif // SDSUPPORT
  945. /**
  946. * Add to the circular command queue the next command from:
  947. * - The command-injection queue (queued_commands_P)
  948. * - The active serial input (usually USB)
  949. * - The SD card file being actively printed
  950. */
  951. void get_available_commands() {
  952. // if any immediate commands remain, don't get other commands yet
  953. if (drain_queued_commands_P()) return;
  954. get_serial_commands();
  955. #if ENABLED(SDSUPPORT)
  956. get_sdcard_commands();
  957. #endif
  958. }
  959. bool code_has_value() {
  960. int i = 1;
  961. char c = seen_pointer[i];
  962. while (c == ' ') c = seen_pointer[++i];
  963. if (c == '-' || c == '+') c = seen_pointer[++i];
  964. if (c == '.') c = seen_pointer[++i];
  965. return NUMERIC(c);
  966. }
  967. float code_value() {
  968. float ret;
  969. char* e = strchr(seen_pointer, 'E');
  970. if (e) {
  971. *e = 0;
  972. ret = strtod(seen_pointer + 1, NULL);
  973. *e = 'E';
  974. }
  975. else
  976. ret = strtod(seen_pointer + 1, NULL);
  977. return ret;
  978. }
  979. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  980. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  981. bool code_seen(char code) {
  982. seen_pointer = strchr(current_command_args, code);
  983. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  984. }
  985. #define DEFINE_PGM_READ_ANY(type, reader) \
  986. static inline type pgm_read_any(const type *p) \
  987. { return pgm_read_##reader##_near(p); }
  988. DEFINE_PGM_READ_ANY(float, float);
  989. DEFINE_PGM_READ_ANY(signed char, byte);
  990. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  991. static const PROGMEM type array##_P[3] = \
  992. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  993. static inline type array(int axis) \
  994. { return pgm_read_any(&array##_P[axis]); }
  995. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  996. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  997. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  998. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  999. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1000. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1001. #if ENABLED(DUAL_X_CARRIAGE)
  1002. #define DXC_FULL_CONTROL_MODE 0
  1003. #define DXC_AUTO_PARK_MODE 1
  1004. #define DXC_DUPLICATION_MODE 2
  1005. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1006. static float x_home_pos(int extruder) {
  1007. if (extruder == 0)
  1008. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1009. else
  1010. /**
  1011. * In dual carriage mode the extruder offset provides an override of the
  1012. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1013. * This allow soft recalibration of the second extruder offset position
  1014. * without firmware reflash (through the M218 command).
  1015. */
  1016. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1017. }
  1018. static int x_home_dir(int extruder) {
  1019. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1020. }
  1021. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1022. static bool active_extruder_parked = false; // used in mode 1 & 2
  1023. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1024. static millis_t delayed_move_time = 0; // used in mode 1
  1025. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1026. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1027. bool extruder_duplication_enabled = false; // used in mode 2
  1028. #endif //DUAL_X_CARRIAGE
  1029. /**
  1030. * Software endstops can be used to monitor the open end of
  1031. * an axis that has a hardware endstop on the other end. Or
  1032. * they can prevent axes from moving past endstops and grinding.
  1033. *
  1034. * To keep doing their job as the coordinate system changes,
  1035. * the software endstop positions must be refreshed to remain
  1036. * at the same positions relative to the machine.
  1037. */
  1038. static void update_software_endstops(AxisEnum axis) {
  1039. float offs = home_offset[axis] + position_shift[axis];
  1040. #if ENABLED(DUAL_X_CARRIAGE)
  1041. if (axis == X_AXIS) {
  1042. float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1043. if (active_extruder != 0) {
  1044. min_pos[X_AXIS] = X2_MIN_POS + offs;
  1045. max_pos[X_AXIS] = dual_max_x + offs;
  1046. return;
  1047. }
  1048. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1049. min_pos[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1050. max_pos[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1051. return;
  1052. }
  1053. }
  1054. else
  1055. #endif
  1056. {
  1057. min_pos[axis] = base_min_pos(axis) + offs;
  1058. max_pos[axis] = base_max_pos(axis) + offs;
  1059. }
  1060. }
  1061. static void set_home_offset(AxisEnum axis, float v) {
  1062. current_position[axis] += v - home_offset[axis];
  1063. home_offset[axis] = v;
  1064. update_software_endstops(axis);
  1065. }
  1066. static void set_axis_is_at_home(AxisEnum axis) {
  1067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1068. if (DEBUGGING(LEVELING)) {
  1069. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1070. SERIAL_ECHOLNPGM(") >>>");
  1071. }
  1072. #endif
  1073. position_shift[axis] = 0;
  1074. #if ENABLED(DUAL_X_CARRIAGE)
  1075. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1076. if (active_extruder != 0)
  1077. current_position[X_AXIS] = x_home_pos(active_extruder);
  1078. else
  1079. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1080. update_software_endstops(X_AXIS);
  1081. return;
  1082. }
  1083. #endif
  1084. #if ENABLED(SCARA)
  1085. if (axis == X_AXIS || axis == Y_AXIS) {
  1086. float homeposition[3];
  1087. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1088. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1089. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1090. /**
  1091. * Works out real Homeposition angles using inverse kinematics,
  1092. * and calculates homing offset using forward kinematics
  1093. */
  1094. calculate_delta(homeposition);
  1095. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1096. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1097. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1098. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1099. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1100. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1101. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1102. calculate_SCARA_forward_Transform(delta);
  1103. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1104. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1105. current_position[axis] = delta[axis];
  1106. /**
  1107. * SCARA home positions are based on configuration since the actual
  1108. * limits are determined by the inverse kinematic transform.
  1109. */
  1110. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1111. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1112. }
  1113. else
  1114. #endif
  1115. {
  1116. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1117. update_software_endstops(axis);
  1118. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1119. if (axis == Z_AXIS) {
  1120. current_position[Z_AXIS] -= zprobe_zoffset;
  1121. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1122. if (DEBUGGING(LEVELING)) {
  1123. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1124. SERIAL_EOL;
  1125. }
  1126. #endif
  1127. }
  1128. #endif
  1129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1130. if (DEBUGGING(LEVELING)) {
  1131. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1132. DEBUG_POS("", current_position);
  1133. }
  1134. #endif
  1135. }
  1136. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1137. if (DEBUGGING(LEVELING)) {
  1138. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1139. SERIAL_ECHOLNPGM(")");
  1140. }
  1141. #endif
  1142. }
  1143. /**
  1144. * Some planner shorthand inline functions
  1145. */
  1146. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1147. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1148. int hbd = homing_bump_divisor[axis];
  1149. if (hbd < 1) {
  1150. hbd = 10;
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1153. }
  1154. feedrate = homing_feedrate[axis] / hbd;
  1155. }
  1156. //
  1157. // line_to_current_position
  1158. // Move the planner to the current position from wherever it last moved
  1159. // (or from wherever it has been told it is located).
  1160. //
  1161. inline void line_to_current_position() {
  1162. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1163. }
  1164. inline void line_to_z(float zPosition) {
  1165. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1166. }
  1167. //
  1168. // line_to_destination
  1169. // Move the planner, not necessarily synced with current_position
  1170. //
  1171. inline void line_to_destination(float mm_m) {
  1172. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1173. }
  1174. inline void line_to_destination() {
  1175. line_to_destination(feedrate);
  1176. }
  1177. /**
  1178. * sync_plan_position
  1179. * Set planner / stepper positions to the cartesian current_position.
  1180. * The stepper code translates these coordinates into step units.
  1181. * Allows translation between steps and units (mm) for cartesian & core robots
  1182. */
  1183. inline void sync_plan_position() {
  1184. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1185. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1186. #endif
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. }
  1189. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1190. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1191. static void setup_for_endstop_move() {
  1192. saved_feedrate = feedrate;
  1193. saved_feedrate_multiplier = feedrate_multiplier;
  1194. feedrate_multiplier = 100;
  1195. refresh_cmd_timeout();
  1196. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1197. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1198. #endif
  1199. enable_endstops(true);
  1200. }
  1201. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1202. #if ENABLED(DELTA)
  1203. /**
  1204. * Calculate delta, start a line, and set current_position to destination
  1205. */
  1206. void prepare_move_raw() {
  1207. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1208. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1209. #endif
  1210. refresh_cmd_timeout();
  1211. calculate_delta(destination);
  1212. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1213. set_current_to_destination();
  1214. }
  1215. #endif
  1216. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1217. #if DISABLED(DELTA)
  1218. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1219. //plan_bed_level_matrix.debug("bed level before");
  1220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1221. plan_bed_level_matrix.set_to_identity();
  1222. if (DEBUGGING(LEVELING)) {
  1223. vector_3 uncorrected_position = plan_get_position();
  1224. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1225. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1226. }
  1227. #endif
  1228. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1229. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1230. vector_3 corrected_position = plan_get_position();
  1231. current_position[X_AXIS] = corrected_position.x;
  1232. current_position[Y_AXIS] = corrected_position.y;
  1233. current_position[Z_AXIS] = corrected_position.z;
  1234. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1235. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1236. #endif
  1237. sync_plan_position();
  1238. }
  1239. #endif // !DELTA
  1240. #else // !AUTO_BED_LEVELING_GRID
  1241. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1242. plan_bed_level_matrix.set_to_identity();
  1243. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1244. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1245. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1246. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1247. if (planeNormal.z < 0) {
  1248. planeNormal.x = -planeNormal.x;
  1249. planeNormal.y = -planeNormal.y;
  1250. planeNormal.z = -planeNormal.z;
  1251. }
  1252. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1253. vector_3 corrected_position = plan_get_position();
  1254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1255. if (DEBUGGING(LEVELING)) {
  1256. vector_3 uncorrected_position = corrected_position;
  1257. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1258. }
  1259. #endif
  1260. current_position[X_AXIS] = corrected_position.x;
  1261. current_position[Y_AXIS] = corrected_position.y;
  1262. current_position[Z_AXIS] = corrected_position.z;
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1265. #endif
  1266. sync_plan_position();
  1267. }
  1268. #endif // !AUTO_BED_LEVELING_GRID
  1269. static void run_z_probe() {
  1270. /**
  1271. * To prevent stepper_inactive_time from running out and
  1272. * EXTRUDER_RUNOUT_PREVENT from extruding
  1273. */
  1274. refresh_cmd_timeout();
  1275. #if ENABLED(DELTA)
  1276. float start_z = current_position[Z_AXIS];
  1277. long start_steps = st_get_position(Z_AXIS);
  1278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1279. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1280. #endif
  1281. // move down slowly until you find the bed
  1282. feedrate = homing_feedrate[Z_AXIS] / 4;
  1283. destination[Z_AXIS] = -10;
  1284. prepare_move_raw(); // this will also set_current_to_destination
  1285. st_synchronize();
  1286. endstops_hit_on_purpose(); // clear endstop hit flags
  1287. /**
  1288. * We have to let the planner know where we are right now as it
  1289. * is not where we said to go.
  1290. */
  1291. long stop_steps = st_get_position(Z_AXIS);
  1292. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1293. current_position[Z_AXIS] = mm;
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1296. #endif
  1297. sync_plan_position_delta();
  1298. #else // !DELTA
  1299. plan_bed_level_matrix.set_to_identity();
  1300. feedrate = homing_feedrate[Z_AXIS];
  1301. // Move down until the Z probe (or endstop?) is triggered
  1302. float zPosition = -(Z_MAX_LENGTH + 10);
  1303. line_to_z(zPosition);
  1304. st_synchronize();
  1305. // Tell the planner where we ended up - Get this from the stepper handler
  1306. zPosition = st_get_axis_position_mm(Z_AXIS);
  1307. plan_set_position(
  1308. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1309. current_position[E_AXIS]
  1310. );
  1311. // move up the retract distance
  1312. zPosition += home_bump_mm(Z_AXIS);
  1313. line_to_z(zPosition);
  1314. st_synchronize();
  1315. endstops_hit_on_purpose(); // clear endstop hit flags
  1316. // move back down slowly to find bed
  1317. set_homing_bump_feedrate(Z_AXIS);
  1318. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1319. line_to_z(zPosition);
  1320. st_synchronize();
  1321. endstops_hit_on_purpose(); // clear endstop hit flags
  1322. // Get the current stepper position after bumping an endstop
  1323. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1324. sync_plan_position();
  1325. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1326. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1327. #endif
  1328. #endif // !DELTA
  1329. }
  1330. /**
  1331. * Plan a move to (X, Y, Z) and set the current_position
  1332. * The final current_position may not be the one that was requested
  1333. */
  1334. static void do_blocking_move_to(float x, float y, float z) {
  1335. float oldFeedRate = feedrate;
  1336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1337. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1338. #endif
  1339. #if ENABLED(DELTA)
  1340. feedrate = XY_TRAVEL_SPEED;
  1341. destination[X_AXIS] = x;
  1342. destination[Y_AXIS] = y;
  1343. destination[Z_AXIS] = z;
  1344. prepare_move_raw(); // this will also set_current_to_destination
  1345. st_synchronize();
  1346. #else
  1347. feedrate = homing_feedrate[Z_AXIS];
  1348. current_position[Z_AXIS] = z;
  1349. line_to_current_position();
  1350. st_synchronize();
  1351. feedrate = xy_travel_speed;
  1352. current_position[X_AXIS] = x;
  1353. current_position[Y_AXIS] = y;
  1354. line_to_current_position();
  1355. st_synchronize();
  1356. #endif
  1357. feedrate = oldFeedRate;
  1358. }
  1359. inline void do_blocking_move_to_xy(float x, float y) {
  1360. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1361. }
  1362. inline void do_blocking_move_to_x(float x) {
  1363. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1364. }
  1365. inline void do_blocking_move_to_z(float z) {
  1366. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1367. }
  1368. inline void raise_z_after_probing() {
  1369. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1370. }
  1371. static void clean_up_after_endstop_move() {
  1372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1373. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1374. #endif
  1375. endstops_not_homing();
  1376. feedrate = saved_feedrate;
  1377. feedrate_multiplier = saved_feedrate_multiplier;
  1378. refresh_cmd_timeout();
  1379. }
  1380. #if ENABLED(HAS_Z_MIN_PROBE)
  1381. static void deploy_z_probe() {
  1382. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1383. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1384. #endif
  1385. if (z_probe_is_active) return;
  1386. #if HAS_SERVO_ENDSTOPS
  1387. // Engage Z Servo endstop if enabled
  1388. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1389. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1390. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1391. // If endstop is already false, the Z probe is deployed
  1392. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1393. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1394. if (z_probe_endstop)
  1395. #else
  1396. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1397. if (z_min_endstop)
  1398. #endif
  1399. {
  1400. // Move to the start position to initiate deployment
  1401. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1402. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1403. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1404. prepare_move_raw(); // this will also set_current_to_destination
  1405. // Move to engage deployment
  1406. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1407. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1408. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1409. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1410. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1411. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1412. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1413. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1414. prepare_move_raw();
  1415. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1416. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1417. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1418. // Move to trigger deployment
  1419. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1420. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1421. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1422. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1423. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1424. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1425. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1426. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1427. prepare_move_raw();
  1428. #endif
  1429. }
  1430. // Partially Home X,Y for safety
  1431. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1432. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1433. prepare_move_raw(); // this will also set_current_to_destination
  1434. st_synchronize();
  1435. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1436. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1437. if (z_probe_endstop)
  1438. #else
  1439. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1440. if (z_min_endstop)
  1441. #endif
  1442. {
  1443. if (IsRunning()) {
  1444. SERIAL_ERROR_START;
  1445. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1446. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1447. }
  1448. Stop();
  1449. }
  1450. #endif // Z_PROBE_ALLEN_KEY
  1451. #if ENABLED(FIX_MOUNTED_PROBE)
  1452. // Noting to be done. Just set z_probe_is_active
  1453. #endif
  1454. z_probe_is_active = true;
  1455. }
  1456. static void stow_z_probe(bool doRaise = true) {
  1457. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1458. UNUSED(doRaise);
  1459. #endif
  1460. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1461. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1462. #endif
  1463. if (!z_probe_is_active) return;
  1464. #if HAS_SERVO_ENDSTOPS
  1465. // Retract Z Servo endstop if enabled
  1466. if (servo_endstop_id[Z_AXIS] >= 0) {
  1467. #if Z_RAISE_AFTER_PROBING > 0
  1468. if (doRaise) {
  1469. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1470. if (DEBUGGING(LEVELING)) {
  1471. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1472. SERIAL_EOL;
  1473. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1474. SERIAL_EOL;
  1475. }
  1476. #endif
  1477. raise_z_after_probing(); // this also updates current_position
  1478. st_synchronize();
  1479. }
  1480. #endif
  1481. // Change the Z servo angle
  1482. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1483. }
  1484. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1485. // Move up for safety
  1486. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1487. #if Z_RAISE_AFTER_PROBING > 0
  1488. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1489. prepare_move_raw(); // this will also set_current_to_destination
  1490. #endif
  1491. // Move to the start position to initiate retraction
  1492. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1493. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1494. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1495. prepare_move_raw();
  1496. // Move the nozzle down to push the Z probe into retracted position
  1497. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1498. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1499. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1500. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1501. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1502. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1503. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1504. prepare_move_raw();
  1505. // Move up for safety
  1506. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1507. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1508. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1509. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1510. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1511. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1512. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1513. prepare_move_raw();
  1514. // Home XY for safety
  1515. feedrate = homing_feedrate[X_AXIS] / 2;
  1516. destination[X_AXIS] = 0;
  1517. destination[Y_AXIS] = 0;
  1518. prepare_move_raw(); // this will also set_current_to_destination
  1519. st_synchronize();
  1520. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1521. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1522. if (!z_probe_endstop)
  1523. #else
  1524. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1525. if (!z_min_endstop)
  1526. #endif
  1527. {
  1528. if (IsRunning()) {
  1529. SERIAL_ERROR_START;
  1530. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1531. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1532. }
  1533. Stop();
  1534. }
  1535. #endif // Z_PROBE_ALLEN_KEY
  1536. #if ENABLED(FIX_MOUNTED_PROBE)
  1537. // Nothing to do here. Just clear z_probe_is_active
  1538. #endif
  1539. z_probe_is_active = false;
  1540. }
  1541. #endif // HAS_Z_MIN_PROBE
  1542. enum ProbeAction {
  1543. ProbeStay = 0,
  1544. ProbeDeploy = _BV(0),
  1545. ProbeStow = _BV(1),
  1546. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1547. };
  1548. // Probe bed height at position (x,y), returns the measured z value
  1549. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1551. if (DEBUGGING(LEVELING)) {
  1552. SERIAL_ECHOLNPGM("probe_pt >>>");
  1553. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1554. SERIAL_EOL;
  1555. DEBUG_POS("", current_position);
  1556. }
  1557. #endif
  1558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1559. if (DEBUGGING(LEVELING)) {
  1560. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1561. SERIAL_EOL;
  1562. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1563. SERIAL_EOL;
  1564. }
  1565. #endif
  1566. // Move Z up to the z_before height, then move the Z probe to the given XY
  1567. do_blocking_move_to_z(z_before); // this also updates current_position
  1568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1569. if (DEBUGGING(LEVELING)) {
  1570. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1571. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1572. SERIAL_EOL;
  1573. }
  1574. #endif
  1575. // this also updates current_position
  1576. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1577. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1578. if (probe_action & ProbeDeploy) {
  1579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1580. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1581. #endif
  1582. deploy_z_probe();
  1583. }
  1584. #endif
  1585. run_z_probe();
  1586. float measured_z = current_position[Z_AXIS];
  1587. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1588. if (probe_action & ProbeStow) {
  1589. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1590. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1591. #endif
  1592. stow_z_probe();
  1593. }
  1594. #endif
  1595. if (verbose_level > 2) {
  1596. SERIAL_PROTOCOLPGM("Bed X: ");
  1597. SERIAL_PROTOCOL_F(x, 3);
  1598. SERIAL_PROTOCOLPGM(" Y: ");
  1599. SERIAL_PROTOCOL_F(y, 3);
  1600. SERIAL_PROTOCOLPGM(" Z: ");
  1601. SERIAL_PROTOCOL_F(measured_z, 3);
  1602. SERIAL_EOL;
  1603. }
  1604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1605. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1606. #endif
  1607. return measured_z;
  1608. }
  1609. #if ENABLED(DELTA)
  1610. /**
  1611. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1612. */
  1613. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1614. if (bed_level[x][y] != 0.0) {
  1615. return; // Don't overwrite good values.
  1616. }
  1617. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1618. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1619. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1620. float median = c; // Median is robust (ignores outliers).
  1621. if (a < b) {
  1622. if (b < c) median = b;
  1623. if (c < a) median = a;
  1624. }
  1625. else { // b <= a
  1626. if (c < b) median = b;
  1627. if (a < c) median = a;
  1628. }
  1629. bed_level[x][y] = median;
  1630. }
  1631. /**
  1632. * Fill in the unprobed points (corners of circular print surface)
  1633. * using linear extrapolation, away from the center.
  1634. */
  1635. static void extrapolate_unprobed_bed_level() {
  1636. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1637. for (int y = 0; y <= half; y++) {
  1638. for (int x = 0; x <= half; x++) {
  1639. if (x + y < 3) continue;
  1640. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1641. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1642. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1643. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1644. }
  1645. }
  1646. }
  1647. /**
  1648. * Print calibration results for plotting or manual frame adjustment.
  1649. */
  1650. static void print_bed_level() {
  1651. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1652. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1653. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1654. SERIAL_PROTOCOLCHAR(' ');
  1655. }
  1656. SERIAL_EOL;
  1657. }
  1658. }
  1659. /**
  1660. * Reset calibration results to zero.
  1661. */
  1662. void reset_bed_level() {
  1663. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1664. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1665. #endif
  1666. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1667. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1668. bed_level[x][y] = 0.0;
  1669. }
  1670. }
  1671. }
  1672. #endif // DELTA
  1673. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1674. void raise_z_for_servo() {
  1675. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1676. /**
  1677. * The zprobe_zoffset is negative any switch below the nozzle, so
  1678. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1679. */
  1680. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1681. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1682. }
  1683. #endif
  1684. #endif // AUTO_BED_LEVELING_FEATURE
  1685. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1686. static void axis_unhomed_error() {
  1687. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1688. SERIAL_ECHO_START;
  1689. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1690. }
  1691. #endif
  1692. #if ENABLED(Z_PROBE_SLED)
  1693. #ifndef SLED_DOCKING_OFFSET
  1694. #define SLED_DOCKING_OFFSET 0
  1695. #endif
  1696. /**
  1697. * Method to dock/undock a sled designed by Charles Bell.
  1698. *
  1699. * dock[in] If true, move to MAX_X and engage the electromagnet
  1700. * offset[in] The additional distance to move to adjust docking location
  1701. */
  1702. static void dock_sled(bool dock, int offset = 0) {
  1703. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1704. if (DEBUGGING(LEVELING)) {
  1705. SERIAL_ECHOPAIR("dock_sled(", dock);
  1706. SERIAL_ECHOLNPGM(")");
  1707. }
  1708. #endif
  1709. if (z_probe_is_active == dock) return;
  1710. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1711. axis_unhomed_error();
  1712. return;
  1713. }
  1714. float oldXpos = current_position[X_AXIS]; // save x position
  1715. if (dock) {
  1716. #if Z_RAISE_AFTER_PROBING > 0
  1717. raise_z_after_probing(); // raise Z
  1718. #endif
  1719. // Dock sled a bit closer to ensure proper capturing
  1720. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1721. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1722. }
  1723. else {
  1724. float z_loc = current_position[Z_AXIS];
  1725. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1726. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1727. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1728. }
  1729. do_blocking_move_to_x(oldXpos); // return to position before docking
  1730. z_probe_is_active = dock;
  1731. }
  1732. #endif // Z_PROBE_SLED
  1733. /**
  1734. * Home an individual axis
  1735. */
  1736. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1737. static void homeaxis(AxisEnum axis) {
  1738. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1739. if (DEBUGGING(LEVELING)) {
  1740. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1741. SERIAL_ECHOLNPGM(")");
  1742. }
  1743. #endif
  1744. #define HOMEAXIS_DO(LETTER) \
  1745. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1746. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1747. int axis_home_dir =
  1748. #if ENABLED(DUAL_X_CARRIAGE)
  1749. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1750. #endif
  1751. home_dir(axis);
  1752. // Set the axis position as setup for the move
  1753. current_position[axis] = 0;
  1754. sync_plan_position();
  1755. #if ENABLED(Z_PROBE_SLED)
  1756. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1757. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1758. #define _Z_DEPLOY (dock_sled(false))
  1759. #define _Z_STOW (dock_sled(true))
  1760. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1761. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1762. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1763. #define _Z_DEPLOY (deploy_z_probe())
  1764. #define _Z_STOW (stow_z_probe())
  1765. #elif HAS_SERVO_ENDSTOPS
  1766. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1767. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1768. #endif
  1769. if (axis == Z_AXIS) {
  1770. // If there's a Z probe that needs deployment...
  1771. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1772. // ...and homing Z towards the bed? Deploy it.
  1773. if (axis_home_dir < 0) _Z_DEPLOY;
  1774. #endif
  1775. }
  1776. #if HAS_SERVO_ENDSTOPS
  1777. // Engage an X or Y Servo endstop if enabled
  1778. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1779. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1780. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1781. }
  1782. #endif
  1783. // Set a flag for Z motor locking
  1784. #if ENABLED(Z_DUAL_ENDSTOPS)
  1785. if (axis == Z_AXIS) In_Homing_Process(true);
  1786. #endif
  1787. // Move towards the endstop until an endstop is triggered
  1788. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1789. feedrate = homing_feedrate[axis];
  1790. line_to_destination();
  1791. st_synchronize();
  1792. // Set the axis position as setup for the move
  1793. current_position[axis] = 0;
  1794. sync_plan_position();
  1795. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1796. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1797. #endif
  1798. enable_endstops(false); // Disable endstops while moving away
  1799. // Move away from the endstop by the axis HOME_BUMP_MM
  1800. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1801. line_to_destination();
  1802. st_synchronize();
  1803. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1804. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1805. #endif
  1806. enable_endstops(true); // Enable endstops for next homing move
  1807. // Slow down the feedrate for the next move
  1808. set_homing_bump_feedrate(axis);
  1809. // Move slowly towards the endstop until triggered
  1810. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1811. line_to_destination();
  1812. st_synchronize();
  1813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1814. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1815. #endif
  1816. #if ENABLED(Z_DUAL_ENDSTOPS)
  1817. if (axis == Z_AXIS) {
  1818. float adj = fabs(z_endstop_adj);
  1819. bool lockZ1;
  1820. if (axis_home_dir > 0) {
  1821. adj = -adj;
  1822. lockZ1 = (z_endstop_adj > 0);
  1823. }
  1824. else
  1825. lockZ1 = (z_endstop_adj < 0);
  1826. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1827. sync_plan_position();
  1828. // Move to the adjusted endstop height
  1829. feedrate = homing_feedrate[axis];
  1830. destination[Z_AXIS] = adj;
  1831. line_to_destination();
  1832. st_synchronize();
  1833. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1834. In_Homing_Process(false);
  1835. } // Z_AXIS
  1836. #endif
  1837. #if ENABLED(DELTA)
  1838. // retrace by the amount specified in endstop_adj
  1839. if (endstop_adj[axis] * axis_home_dir < 0) {
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1842. #endif
  1843. enable_endstops(false); // Disable endstops while moving away
  1844. sync_plan_position();
  1845. destination[axis] = endstop_adj[axis];
  1846. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1847. if (DEBUGGING(LEVELING)) {
  1848. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1849. DEBUG_POS("", destination);
  1850. }
  1851. #endif
  1852. line_to_destination();
  1853. st_synchronize();
  1854. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1855. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1856. #endif
  1857. enable_endstops(true); // Enable endstops for next homing move
  1858. }
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. else {
  1861. if (DEBUGGING(LEVELING)) {
  1862. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1863. SERIAL_EOL;
  1864. }
  1865. }
  1866. #endif
  1867. #endif
  1868. // Set the axis position to its home position (plus home offsets)
  1869. set_axis_is_at_home(axis);
  1870. sync_plan_position();
  1871. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1872. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1873. #endif
  1874. destination[axis] = current_position[axis];
  1875. feedrate = 0.0;
  1876. endstops_hit_on_purpose(); // clear endstop hit flags
  1877. axis_known_position[axis] = true;
  1878. axis_homed[axis] = true;
  1879. // Put away the Z probe
  1880. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1881. if (axis == Z_AXIS && axis_home_dir < 0) {
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1884. #endif
  1885. _Z_STOW;
  1886. }
  1887. #endif
  1888. // Retract Servo endstop if enabled
  1889. #if HAS_SERVO_ENDSTOPS
  1890. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1892. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1893. #endif
  1894. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1895. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1896. }
  1897. #endif
  1898. }
  1899. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1900. if (DEBUGGING(LEVELING)) {
  1901. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1902. SERIAL_ECHOLNPGM(")");
  1903. }
  1904. #endif
  1905. }
  1906. #if ENABLED(FWRETRACT)
  1907. void retract(bool retracting, bool swapping = false) {
  1908. if (retracting == retracted[active_extruder]) return;
  1909. float oldFeedrate = feedrate;
  1910. set_destination_to_current();
  1911. if (retracting) {
  1912. feedrate = retract_feedrate * 60;
  1913. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1914. plan_set_e_position(current_position[E_AXIS]);
  1915. prepare_move();
  1916. if (retract_zlift > 0.01) {
  1917. current_position[Z_AXIS] -= retract_zlift;
  1918. #if ENABLED(DELTA)
  1919. sync_plan_position_delta();
  1920. #else
  1921. sync_plan_position();
  1922. #endif
  1923. prepare_move();
  1924. }
  1925. }
  1926. else {
  1927. if (retract_zlift > 0.01) {
  1928. current_position[Z_AXIS] += retract_zlift;
  1929. #if ENABLED(DELTA)
  1930. sync_plan_position_delta();
  1931. #else
  1932. sync_plan_position();
  1933. #endif
  1934. //prepare_move();
  1935. }
  1936. feedrate = retract_recover_feedrate * 60;
  1937. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1938. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1939. plan_set_e_position(current_position[E_AXIS]);
  1940. prepare_move();
  1941. }
  1942. feedrate = oldFeedrate;
  1943. retracted[active_extruder] = retracting;
  1944. } // retract()
  1945. #endif // FWRETRACT
  1946. /**
  1947. * ***************************************************************************
  1948. * ***************************** G-CODE HANDLING *****************************
  1949. * ***************************************************************************
  1950. */
  1951. /**
  1952. * Set XYZE destination and feedrate from the current GCode command
  1953. *
  1954. * - Set destination from included axis codes
  1955. * - Set to current for missing axis codes
  1956. * - Set the feedrate, if included
  1957. */
  1958. void gcode_get_destination() {
  1959. for (int i = 0; i < NUM_AXIS; i++) {
  1960. if (code_seen(axis_codes[i]))
  1961. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1962. else
  1963. destination[i] = current_position[i];
  1964. }
  1965. if (code_seen('F')) {
  1966. float next_feedrate = code_value();
  1967. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1968. }
  1969. }
  1970. void unknown_command_error() {
  1971. SERIAL_ECHO_START;
  1972. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1973. SERIAL_ECHO(current_command);
  1974. SERIAL_ECHOPGM("\"\n");
  1975. }
  1976. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1977. /**
  1978. * Output a "busy" message at regular intervals
  1979. * while the machine is not accepting commands.
  1980. */
  1981. void host_keepalive() {
  1982. millis_t ms = millis();
  1983. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1984. if (PENDING(ms, next_busy_signal_ms)) return;
  1985. switch (busy_state) {
  1986. case IN_HANDLER:
  1987. case IN_PROCESS:
  1988. SERIAL_ECHO_START;
  1989. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1990. break;
  1991. case PAUSED_FOR_USER:
  1992. SERIAL_ECHO_START;
  1993. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1994. break;
  1995. case PAUSED_FOR_INPUT:
  1996. SERIAL_ECHO_START;
  1997. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1998. break;
  1999. default:
  2000. break;
  2001. }
  2002. }
  2003. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2004. }
  2005. #endif //HOST_KEEPALIVE_FEATURE
  2006. /**
  2007. * G0, G1: Coordinated movement of X Y Z E axes
  2008. */
  2009. inline void gcode_G0_G1() {
  2010. if (IsRunning()) {
  2011. gcode_get_destination(); // For X Y Z E F
  2012. #if ENABLED(FWRETRACT)
  2013. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2014. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2015. // Is this move an attempt to retract or recover?
  2016. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2017. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2018. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  2019. retract(!retracted[active_extruder]);
  2020. return;
  2021. }
  2022. }
  2023. #endif //FWRETRACT
  2024. prepare_move();
  2025. }
  2026. }
  2027. /**
  2028. * G2: Clockwise Arc
  2029. * G3: Counterclockwise Arc
  2030. */
  2031. inline void gcode_G2_G3(bool clockwise) {
  2032. if (IsRunning()) {
  2033. #if ENABLED(SF_ARC_FIX)
  2034. bool relative_mode_backup = relative_mode;
  2035. relative_mode = true;
  2036. #endif
  2037. gcode_get_destination();
  2038. #if ENABLED(SF_ARC_FIX)
  2039. relative_mode = relative_mode_backup;
  2040. #endif
  2041. // Center of arc as offset from current_position
  2042. float arc_offset[2] = {
  2043. code_seen('I') ? code_value() : 0,
  2044. code_seen('J') ? code_value() : 0
  2045. };
  2046. // Send an arc to the planner
  2047. plan_arc(destination, arc_offset, clockwise);
  2048. refresh_cmd_timeout();
  2049. }
  2050. }
  2051. /**
  2052. * G4: Dwell S<seconds> or P<milliseconds>
  2053. */
  2054. inline void gcode_G4() {
  2055. millis_t codenum = 0;
  2056. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2057. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2058. st_synchronize();
  2059. refresh_cmd_timeout();
  2060. codenum += previous_cmd_ms; // keep track of when we started waiting
  2061. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2062. while (PENDING(millis(), codenum)) idle();
  2063. }
  2064. #if ENABLED(FWRETRACT)
  2065. /**
  2066. * G10 - Retract filament according to settings of M207
  2067. * G11 - Recover filament according to settings of M208
  2068. */
  2069. inline void gcode_G10_G11(bool doRetract=false) {
  2070. #if EXTRUDERS > 1
  2071. if (doRetract) {
  2072. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2073. }
  2074. #endif
  2075. retract(doRetract
  2076. #if EXTRUDERS > 1
  2077. , retracted_swap[active_extruder]
  2078. #endif
  2079. );
  2080. }
  2081. #endif //FWRETRACT
  2082. /**
  2083. * G28: Home all axes according to settings
  2084. *
  2085. * Parameters
  2086. *
  2087. * None Home to all axes with no parameters.
  2088. * With QUICK_HOME enabled XY will home together, then Z.
  2089. *
  2090. * Cartesian parameters
  2091. *
  2092. * X Home to the X endstop
  2093. * Y Home to the Y endstop
  2094. * Z Home to the Z endstop
  2095. *
  2096. */
  2097. inline void gcode_G28() {
  2098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2099. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2100. #endif
  2101. // Wait for planner moves to finish!
  2102. st_synchronize();
  2103. // For auto bed leveling, clear the level matrix
  2104. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2105. plan_bed_level_matrix.set_to_identity();
  2106. #if ENABLED(DELTA)
  2107. reset_bed_level();
  2108. #endif
  2109. #endif
  2110. /**
  2111. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2112. * on again when homing all axis
  2113. */
  2114. #if ENABLED(MESH_BED_LEVELING)
  2115. uint8_t mbl_was_active = mbl.active;
  2116. mbl.active = false;
  2117. #endif
  2118. setup_for_endstop_move();
  2119. /**
  2120. * Directly after a reset this is all 0. Later we get a hint if we have
  2121. * to raise z or not.
  2122. */
  2123. set_destination_to_current();
  2124. feedrate = 0.0;
  2125. #if ENABLED(DELTA)
  2126. /**
  2127. * A delta can only safely home all axis at the same time
  2128. * all axis have to home at the same time
  2129. */
  2130. // Pretend the current position is 0,0,0
  2131. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2132. sync_plan_position();
  2133. // Move all carriages up together until the first endstop is hit.
  2134. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2135. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2136. line_to_destination();
  2137. st_synchronize();
  2138. endstops_hit_on_purpose(); // clear endstop hit flags
  2139. // Destination reached
  2140. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2141. // take care of back off and rehome now we are all at the top
  2142. HOMEAXIS(X);
  2143. HOMEAXIS(Y);
  2144. HOMEAXIS(Z);
  2145. sync_plan_position_delta();
  2146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2147. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2148. #endif
  2149. #else // NOT DELTA
  2150. bool homeX = code_seen(axis_codes[X_AXIS]),
  2151. homeY = code_seen(axis_codes[Y_AXIS]),
  2152. homeZ = code_seen(axis_codes[Z_AXIS]);
  2153. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2154. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2155. if (home_all_axis || homeZ) {
  2156. HOMEAXIS(Z);
  2157. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2158. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2159. #endif
  2160. }
  2161. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2162. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2163. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2164. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2165. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2166. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2167. if (DEBUGGING(LEVELING)) {
  2168. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2169. SERIAL_EOL;
  2170. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2171. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2172. }
  2173. #endif
  2174. line_to_destination();
  2175. st_synchronize();
  2176. /**
  2177. * Update the current Z position even if it currently not real from
  2178. * Z-home otherwise each call to line_to_destination() will want to
  2179. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2180. */
  2181. current_position[Z_AXIS] = destination[Z_AXIS];
  2182. }
  2183. #endif
  2184. #if ENABLED(QUICK_HOME)
  2185. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2186. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2187. #if ENABLED(DUAL_X_CARRIAGE)
  2188. int x_axis_home_dir = x_home_dir(active_extruder);
  2189. extruder_duplication_enabled = false;
  2190. #else
  2191. int x_axis_home_dir = home_dir(X_AXIS);
  2192. #endif
  2193. sync_plan_position();
  2194. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2195. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2196. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2197. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2198. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2199. line_to_destination();
  2200. st_synchronize();
  2201. set_axis_is_at_home(X_AXIS);
  2202. set_axis_is_at_home(Y_AXIS);
  2203. sync_plan_position();
  2204. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2205. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2206. #endif
  2207. destination[X_AXIS] = current_position[X_AXIS];
  2208. destination[Y_AXIS] = current_position[Y_AXIS];
  2209. line_to_destination();
  2210. feedrate = 0.0;
  2211. st_synchronize();
  2212. endstops_hit_on_purpose(); // clear endstop hit flags
  2213. current_position[X_AXIS] = destination[X_AXIS];
  2214. current_position[Y_AXIS] = destination[Y_AXIS];
  2215. #if DISABLED(SCARA)
  2216. current_position[Z_AXIS] = destination[Z_AXIS];
  2217. #endif
  2218. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2219. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2220. #endif
  2221. }
  2222. #endif // QUICK_HOME
  2223. #if ENABLED(HOME_Y_BEFORE_X)
  2224. // Home Y
  2225. if (home_all_axis || homeY) HOMEAXIS(Y);
  2226. #endif
  2227. // Home X
  2228. if (home_all_axis || homeX) {
  2229. #if ENABLED(DUAL_X_CARRIAGE)
  2230. int tmp_extruder = active_extruder;
  2231. extruder_duplication_enabled = false;
  2232. active_extruder = !active_extruder;
  2233. HOMEAXIS(X);
  2234. inactive_extruder_x_pos = current_position[X_AXIS];
  2235. active_extruder = tmp_extruder;
  2236. HOMEAXIS(X);
  2237. // reset state used by the different modes
  2238. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2239. delayed_move_time = 0;
  2240. active_extruder_parked = true;
  2241. #else
  2242. HOMEAXIS(X);
  2243. #endif
  2244. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2245. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2246. #endif
  2247. }
  2248. #if DISABLED(HOME_Y_BEFORE_X)
  2249. // Home Y
  2250. if (home_all_axis || homeY) {
  2251. HOMEAXIS(Y);
  2252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2253. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2254. #endif
  2255. }
  2256. #endif
  2257. // Home Z last if homing towards the bed
  2258. #if Z_HOME_DIR < 0
  2259. if (home_all_axis || homeZ) {
  2260. #if ENABLED(Z_SAFE_HOMING)
  2261. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2262. if (DEBUGGING(LEVELING)) {
  2263. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2264. }
  2265. #endif
  2266. if (home_all_axis) {
  2267. /**
  2268. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2269. * No need to move Z any more as this height should already be safe
  2270. * enough to reach Z_SAFE_HOMING XY positions.
  2271. * Just make sure the planner is in sync.
  2272. */
  2273. sync_plan_position();
  2274. /**
  2275. * Set the Z probe (or just the nozzle) destination to the safe
  2276. * homing point
  2277. */
  2278. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2279. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2280. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2281. feedrate = XY_TRAVEL_SPEED;
  2282. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2283. if (DEBUGGING(LEVELING)) {
  2284. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2285. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2286. }
  2287. #endif
  2288. // Move in the XY plane
  2289. line_to_destination();
  2290. st_synchronize();
  2291. /**
  2292. * Update the current positions for XY, Z is still at least at
  2293. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2294. */
  2295. current_position[X_AXIS] = destination[X_AXIS];
  2296. current_position[Y_AXIS] = destination[Y_AXIS];
  2297. // Home the Z axis
  2298. HOMEAXIS(Z);
  2299. }
  2300. else if (homeZ) { // Don't need to Home Z twice
  2301. // Let's see if X and Y are homed
  2302. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2303. /**
  2304. * Make sure the Z probe is within the physical limits
  2305. * NOTE: This doesn't necessarily ensure the Z probe is also
  2306. * within the bed!
  2307. */
  2308. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2309. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2310. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2311. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2312. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2313. // Home the Z axis
  2314. HOMEAXIS(Z);
  2315. }
  2316. else {
  2317. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2318. SERIAL_ECHO_START;
  2319. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2320. }
  2321. }
  2322. else {
  2323. axis_unhomed_error();
  2324. }
  2325. } // !home_all_axes && homeZ
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) {
  2328. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2329. }
  2330. #endif
  2331. #else // !Z_SAFE_HOMING
  2332. HOMEAXIS(Z);
  2333. #endif // !Z_SAFE_HOMING
  2334. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2335. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2336. #endif
  2337. } // home_all_axis || homeZ
  2338. #endif // Z_HOME_DIR < 0
  2339. sync_plan_position();
  2340. #endif // else DELTA
  2341. #if ENABLED(SCARA)
  2342. sync_plan_position_delta();
  2343. #endif
  2344. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2345. enable_endstops(false);
  2346. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2347. if (DEBUGGING(LEVELING)) {
  2348. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2349. }
  2350. #endif
  2351. #endif
  2352. // For mesh leveling move back to Z=0
  2353. #if ENABLED(MESH_BED_LEVELING)
  2354. if (mbl_was_active && home_all_axis) {
  2355. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2356. sync_plan_position();
  2357. mbl.active = 1;
  2358. current_position[Z_AXIS] = 0.0;
  2359. set_destination_to_current();
  2360. feedrate = homing_feedrate[Z_AXIS];
  2361. line_to_destination();
  2362. st_synchronize();
  2363. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2364. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2365. #endif
  2366. }
  2367. #endif
  2368. feedrate = saved_feedrate;
  2369. feedrate_multiplier = saved_feedrate_multiplier;
  2370. refresh_cmd_timeout();
  2371. endstops_hit_on_purpose(); // clear endstop hit flags
  2372. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2373. if (DEBUGGING(LEVELING)) {
  2374. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2375. }
  2376. #endif
  2377. gcode_M114(); // Send end position to RepetierHost
  2378. }
  2379. #if ENABLED(MESH_BED_LEVELING)
  2380. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2381. inline void _mbl_goto_xy(float x, float y) {
  2382. saved_feedrate = feedrate;
  2383. feedrate = homing_feedrate[X_AXIS];
  2384. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2385. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2386. + MIN_Z_HEIGHT_FOR_HOMING
  2387. #endif
  2388. ;
  2389. line_to_current_position();
  2390. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2391. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2392. line_to_current_position();
  2393. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2394. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2395. line_to_current_position();
  2396. #endif
  2397. feedrate = saved_feedrate;
  2398. st_synchronize();
  2399. }
  2400. /**
  2401. * G29: Mesh-based Z probe, probes a grid and produces a
  2402. * mesh to compensate for variable bed height
  2403. *
  2404. * Parameters With MESH_BED_LEVELING:
  2405. *
  2406. * S0 Produce a mesh report
  2407. * S1 Start probing mesh points
  2408. * S2 Probe the next mesh point
  2409. * S3 Xn Yn Zn.nn Manually modify a single point
  2410. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2411. *
  2412. * The S0 report the points as below
  2413. *
  2414. * +----> X-axis 1-n
  2415. * |
  2416. * |
  2417. * v Y-axis 1-n
  2418. *
  2419. */
  2420. inline void gcode_G29() {
  2421. static int probe_point = -1;
  2422. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2423. if (state < 0 || state > 4) {
  2424. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2425. return;
  2426. }
  2427. int ix, iy;
  2428. float z;
  2429. switch (state) {
  2430. case MeshReport:
  2431. if (mbl.active) {
  2432. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2433. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2434. SERIAL_PROTOCOLCHAR(',');
  2435. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2436. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2437. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2438. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2439. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2440. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2441. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2442. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2443. SERIAL_PROTOCOLPGM(" ");
  2444. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2445. }
  2446. SERIAL_EOL;
  2447. }
  2448. }
  2449. else
  2450. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2451. break;
  2452. case MeshStart:
  2453. mbl.reset();
  2454. probe_point = 0;
  2455. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2456. break;
  2457. case MeshNext:
  2458. if (probe_point < 0) {
  2459. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2460. return;
  2461. }
  2462. // For each G29 S2...
  2463. if (probe_point == 0) {
  2464. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2465. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2466. sync_plan_position();
  2467. }
  2468. else {
  2469. // For G29 S2 after adjusting Z.
  2470. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2471. }
  2472. // If there's another point to sample, move there with optional lift.
  2473. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2474. mbl.zigzag(probe_point, ix, iy);
  2475. _mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
  2476. probe_point++;
  2477. }
  2478. else {
  2479. // One last "return to the bed" (as originally coded) at completion
  2480. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2481. #if MIN_Z_HEIGHT_FOR_HOMING > 0
  2482. + MIN_Z_HEIGHT_FOR_HOMING
  2483. #endif
  2484. ;
  2485. line_to_current_position();
  2486. st_synchronize();
  2487. // After recording the last point, activate the mbl and home
  2488. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2489. probe_point = -1;
  2490. mbl.active = true;
  2491. enqueue_and_echo_commands_P(PSTR("G28"));
  2492. }
  2493. break;
  2494. case MeshSet:
  2495. if (code_seen('X')) {
  2496. ix = code_value_long() - 1;
  2497. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2498. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2499. return;
  2500. }
  2501. }
  2502. else {
  2503. SERIAL_PROTOCOLPGM("X not entered.\n");
  2504. return;
  2505. }
  2506. if (code_seen('Y')) {
  2507. iy = code_value_long() - 1;
  2508. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2509. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2510. return;
  2511. }
  2512. }
  2513. else {
  2514. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2515. return;
  2516. }
  2517. if (code_seen('Z')) {
  2518. z = code_value();
  2519. }
  2520. else {
  2521. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2522. return;
  2523. }
  2524. mbl.z_values[iy][ix] = z;
  2525. break;
  2526. case MeshSetZOffset:
  2527. if (code_seen('Z')) {
  2528. z = code_value();
  2529. }
  2530. else {
  2531. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2532. return;
  2533. }
  2534. mbl.z_offset = z;
  2535. } // switch(state)
  2536. }
  2537. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2538. void out_of_range_error(const char* p_edge) {
  2539. SERIAL_PROTOCOLPGM("?Probe ");
  2540. serialprintPGM(p_edge);
  2541. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2542. }
  2543. /**
  2544. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2545. * Will fail if the printer has not been homed with G28.
  2546. *
  2547. * Enhanced G29 Auto Bed Leveling Probe Routine
  2548. *
  2549. * Parameters With AUTO_BED_LEVELING_GRID:
  2550. *
  2551. * P Set the size of the grid that will be probed (P x P points).
  2552. * Not supported by non-linear delta printer bed leveling.
  2553. * Example: "G29 P4"
  2554. *
  2555. * S Set the XY travel speed between probe points (in mm/min)
  2556. *
  2557. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2558. * or clean the rotation Matrix. Useful to check the topology
  2559. * after a first run of G29.
  2560. *
  2561. * V Set the verbose level (0-4). Example: "G29 V3"
  2562. *
  2563. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2564. * This is useful for manual bed leveling and finding flaws in the bed (to
  2565. * assist with part placement).
  2566. * Not supported by non-linear delta printer bed leveling.
  2567. *
  2568. * F Set the Front limit of the probing grid
  2569. * B Set the Back limit of the probing grid
  2570. * L Set the Left limit of the probing grid
  2571. * R Set the Right limit of the probing grid
  2572. *
  2573. * Global Parameters:
  2574. *
  2575. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2576. * Include "E" to engage/disengage the Z probe for each sample.
  2577. * There's no extra effect if you have a fixed Z probe.
  2578. * Usage: "G29 E" or "G29 e"
  2579. *
  2580. */
  2581. inline void gcode_G29() {
  2582. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2583. if (DEBUGGING(LEVELING)) {
  2584. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2585. DEBUG_POS("", current_position);
  2586. }
  2587. #endif
  2588. // Don't allow auto-leveling without homing first
  2589. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2590. axis_unhomed_error();
  2591. return;
  2592. }
  2593. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2594. if (verbose_level < 0 || verbose_level > 4) {
  2595. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2596. return;
  2597. }
  2598. bool dryrun = code_seen('D'),
  2599. deploy_probe_for_each_reading = code_seen('E');
  2600. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2601. #if DISABLED(DELTA)
  2602. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2603. #endif
  2604. if (verbose_level > 0) {
  2605. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2606. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2607. }
  2608. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2609. #if DISABLED(DELTA)
  2610. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2611. if (auto_bed_leveling_grid_points < 2) {
  2612. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2613. return;
  2614. }
  2615. #endif
  2616. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2617. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2618. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2619. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2620. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2621. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2622. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2623. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2624. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2625. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2626. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2627. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2628. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2629. if (left_out || right_out || front_out || back_out) {
  2630. if (left_out) {
  2631. out_of_range_error(PSTR("(L)eft"));
  2632. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2633. }
  2634. if (right_out) {
  2635. out_of_range_error(PSTR("(R)ight"));
  2636. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2637. }
  2638. if (front_out) {
  2639. out_of_range_error(PSTR("(F)ront"));
  2640. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2641. }
  2642. if (back_out) {
  2643. out_of_range_error(PSTR("(B)ack"));
  2644. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2645. }
  2646. return;
  2647. }
  2648. #endif // AUTO_BED_LEVELING_GRID
  2649. if (!dryrun) {
  2650. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2651. plan_bed_level_matrix.set_to_identity();
  2652. #if ENABLED(DELTA)
  2653. reset_bed_level();
  2654. #else //!DELTA
  2655. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2656. if (DEBUGGING(LEVELING)) {
  2657. vector_3 corrected_position = plan_get_position();
  2658. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2659. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2660. }
  2661. #endif
  2662. //vector_3 corrected_position = plan_get_position();
  2663. //corrected_position.debug("position before G29");
  2664. vector_3 uncorrected_position = plan_get_position();
  2665. //uncorrected_position.debug("position during G29");
  2666. current_position[X_AXIS] = uncorrected_position.x;
  2667. current_position[Y_AXIS] = uncorrected_position.y;
  2668. current_position[Z_AXIS] = uncorrected_position.z;
  2669. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2670. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2671. #endif
  2672. sync_plan_position();
  2673. #endif // !DELTA
  2674. }
  2675. #if ENABLED(Z_PROBE_SLED)
  2676. dock_sled(false); // engage (un-dock) the Z probe
  2677. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2678. deploy_z_probe();
  2679. #endif
  2680. st_synchronize();
  2681. setup_for_endstop_move();
  2682. feedrate = homing_feedrate[Z_AXIS];
  2683. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2684. // probe at the points of a lattice grid
  2685. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2686. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2687. #if ENABLED(DELTA)
  2688. delta_grid_spacing[0] = xGridSpacing;
  2689. delta_grid_spacing[1] = yGridSpacing;
  2690. float zoffset = zprobe_zoffset;
  2691. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2692. #else // !DELTA
  2693. /**
  2694. * solve the plane equation ax + by + d = z
  2695. * A is the matrix with rows [x y 1] for all the probed points
  2696. * B is the vector of the Z positions
  2697. * the normal vector to the plane is formed by the coefficients of the
  2698. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2699. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2700. */
  2701. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2702. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2703. eqnBVector[abl2], // "B" vector of Z points
  2704. mean = 0.0;
  2705. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2706. #endif // !DELTA
  2707. int probePointCounter = 0;
  2708. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2709. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2710. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2711. int xStart, xStop, xInc;
  2712. if (zig) {
  2713. xStart = 0;
  2714. xStop = auto_bed_leveling_grid_points;
  2715. xInc = 1;
  2716. }
  2717. else {
  2718. xStart = auto_bed_leveling_grid_points - 1;
  2719. xStop = -1;
  2720. xInc = -1;
  2721. }
  2722. zig = !zig;
  2723. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2724. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2725. // raise extruder
  2726. float measured_z,
  2727. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2728. if (probePointCounter) {
  2729. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2730. if (DEBUGGING(LEVELING)) {
  2731. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2732. SERIAL_EOL;
  2733. }
  2734. #endif
  2735. }
  2736. else {
  2737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2738. if (DEBUGGING(LEVELING)) {
  2739. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2740. SERIAL_EOL;
  2741. }
  2742. #endif
  2743. }
  2744. #if ENABLED(DELTA)
  2745. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2746. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2747. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2748. #endif //DELTA
  2749. ProbeAction act;
  2750. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2751. act = ProbeDeployAndStow;
  2752. else if (yCount == 0 && xCount == xStart)
  2753. act = ProbeDeploy;
  2754. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2755. act = ProbeStow;
  2756. else
  2757. act = ProbeStay;
  2758. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2759. #if DISABLED(DELTA)
  2760. mean += measured_z;
  2761. eqnBVector[probePointCounter] = measured_z;
  2762. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2763. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2764. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2765. indexIntoAB[xCount][yCount] = probePointCounter;
  2766. #else
  2767. bed_level[xCount][yCount] = measured_z + zoffset;
  2768. #endif
  2769. probePointCounter++;
  2770. idle();
  2771. } //xProbe
  2772. } //yProbe
  2773. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2774. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2775. #endif
  2776. clean_up_after_endstop_move();
  2777. #if ENABLED(DELTA)
  2778. if (!dryrun) extrapolate_unprobed_bed_level();
  2779. print_bed_level();
  2780. #else // !DELTA
  2781. // solve lsq problem
  2782. double plane_equation_coefficients[3];
  2783. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2784. mean /= abl2;
  2785. if (verbose_level) {
  2786. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2787. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2788. SERIAL_PROTOCOLPGM(" b: ");
  2789. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2790. SERIAL_PROTOCOLPGM(" d: ");
  2791. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2792. SERIAL_EOL;
  2793. if (verbose_level > 2) {
  2794. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2795. SERIAL_PROTOCOL_F(mean, 8);
  2796. SERIAL_EOL;
  2797. }
  2798. }
  2799. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2800. // Show the Topography map if enabled
  2801. if (do_topography_map) {
  2802. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2803. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2804. SERIAL_PROTOCOLPGM(" | |\n");
  2805. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2806. SERIAL_PROTOCOLPGM(" E | | I\n");
  2807. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2808. SERIAL_PROTOCOLPGM(" T | | H\n");
  2809. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2810. SERIAL_PROTOCOLPGM(" | |\n");
  2811. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2812. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2813. float min_diff = 999;
  2814. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2815. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2816. int ind = indexIntoAB[xx][yy];
  2817. float diff = eqnBVector[ind] - mean;
  2818. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2819. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2820. z_tmp = 0;
  2821. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2822. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2823. if (diff >= 0.0)
  2824. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2825. else
  2826. SERIAL_PROTOCOLCHAR(' ');
  2827. SERIAL_PROTOCOL_F(diff, 5);
  2828. } // xx
  2829. SERIAL_EOL;
  2830. } // yy
  2831. SERIAL_EOL;
  2832. if (verbose_level > 3) {
  2833. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2834. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2835. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2836. int ind = indexIntoAB[xx][yy];
  2837. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2838. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2839. z_tmp = 0;
  2840. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2841. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2842. if (diff >= 0.0)
  2843. SERIAL_PROTOCOLPGM(" +");
  2844. // Include + for column alignment
  2845. else
  2846. SERIAL_PROTOCOLCHAR(' ');
  2847. SERIAL_PROTOCOL_F(diff, 5);
  2848. } // xx
  2849. SERIAL_EOL;
  2850. } // yy
  2851. SERIAL_EOL;
  2852. }
  2853. } //do_topography_map
  2854. #endif //!DELTA
  2855. #else // !AUTO_BED_LEVELING_GRID
  2856. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2857. if (DEBUGGING(LEVELING)) {
  2858. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2859. }
  2860. #endif
  2861. // Actions for each probe
  2862. ProbeAction p1, p2, p3;
  2863. if (deploy_probe_for_each_reading)
  2864. p1 = p2 = p3 = ProbeDeployAndStow;
  2865. else
  2866. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2867. // Probe at 3 arbitrary points
  2868. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2869. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2870. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2871. p1, verbose_level),
  2872. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2873. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2874. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2875. p2, verbose_level),
  2876. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2877. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2878. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2879. p3, verbose_level);
  2880. clean_up_after_endstop_move();
  2881. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2882. #endif // !AUTO_BED_LEVELING_GRID
  2883. #if ENABLED(DELTA)
  2884. // Allen Key Probe for Delta
  2885. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2886. stow_z_probe();
  2887. #elif Z_RAISE_AFTER_PROBING > 0
  2888. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2889. #endif
  2890. #else // !DELTA
  2891. if (verbose_level > 0)
  2892. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2893. if (!dryrun) {
  2894. /**
  2895. * Correct the Z height difference from Z probe position and nozzle tip position.
  2896. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2897. * from the nozzle. When the bed is uneven, this height must be corrected.
  2898. */
  2899. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2900. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2901. z_tmp = current_position[Z_AXIS],
  2902. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2904. if (DEBUGGING(LEVELING)) {
  2905. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2906. SERIAL_EOL;
  2907. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2908. SERIAL_EOL;
  2909. }
  2910. #endif
  2911. // Apply the correction sending the Z probe offset
  2912. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2913. /*
  2914. * Get the current Z position and send it to the planner.
  2915. *
  2916. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2917. * (most recent plan_set_position/sync_plan_position)
  2918. *
  2919. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2920. * (set by default, M851, EEPROM, or Menu)
  2921. *
  2922. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2923. * after the last probe
  2924. *
  2925. * >> Should home_offset[Z_AXIS] be included?
  2926. *
  2927. *
  2928. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2929. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2930. * not actually "homing" Z... then perhaps it should not be included
  2931. * here. The purpose of home_offset[] is to adjust for inaccurate
  2932. * endstops, not for reasonably accurate probes. If it were added
  2933. * here, it could be seen as a compensating factor for the Z probe.
  2934. */
  2935. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2936. if (DEBUGGING(LEVELING)) {
  2937. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2938. SERIAL_EOL;
  2939. }
  2940. #endif
  2941. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2942. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2943. + Z_RAISE_AFTER_PROBING
  2944. #endif
  2945. ;
  2946. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2947. sync_plan_position();
  2948. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2949. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2950. #endif
  2951. }
  2952. // Sled assembly for Cartesian bots
  2953. #if ENABLED(Z_PROBE_SLED)
  2954. dock_sled(true); // dock the sled
  2955. #elif Z_RAISE_AFTER_PROBING > 0
  2956. // Raise Z axis for non-delta and non servo based probes
  2957. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2958. raise_z_after_probing();
  2959. #endif
  2960. #endif
  2961. #endif // !DELTA
  2962. #ifdef Z_PROBE_END_SCRIPT
  2963. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2964. if (DEBUGGING(LEVELING)) {
  2965. SERIAL_ECHO("Z Probe End Script: ");
  2966. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2967. }
  2968. #endif
  2969. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2970. #if ENABLED(HAS_Z_MIN_PROBE)
  2971. z_probe_is_active = false;
  2972. #endif
  2973. st_synchronize();
  2974. #endif
  2975. KEEPALIVE_STATE(IN_HANDLER);
  2976. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2977. if (DEBUGGING(LEVELING)) {
  2978. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2979. }
  2980. #endif
  2981. gcode_M114(); // Send end position to RepetierHost
  2982. }
  2983. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2984. /**
  2985. * G30: Do a single Z probe at the current XY
  2986. */
  2987. inline void gcode_G30() {
  2988. #if HAS_SERVO_ENDSTOPS
  2989. raise_z_for_servo();
  2990. #endif
  2991. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2992. st_synchronize();
  2993. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2994. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2995. feedrate = homing_feedrate[Z_AXIS];
  2996. run_z_probe();
  2997. SERIAL_PROTOCOLPGM("Bed X: ");
  2998. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2999. SERIAL_PROTOCOLPGM(" Y: ");
  3000. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3001. SERIAL_PROTOCOLPGM(" Z: ");
  3002. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  3003. SERIAL_EOL;
  3004. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  3005. #if HAS_SERVO_ENDSTOPS
  3006. raise_z_for_servo();
  3007. #endif
  3008. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  3009. gcode_M114(); // Send end position to RepetierHost
  3010. }
  3011. #endif //!Z_PROBE_SLED
  3012. #endif //AUTO_BED_LEVELING_FEATURE
  3013. /**
  3014. * G92: Set current position to given X Y Z E
  3015. */
  3016. inline void gcode_G92() {
  3017. if (!code_seen(axis_codes[E_AXIS]))
  3018. st_synchronize();
  3019. bool didXYZ = false;
  3020. for (int i = 0; i < NUM_AXIS; i++) {
  3021. if (code_seen(axis_codes[i])) {
  3022. float p = current_position[i],
  3023. v = code_value();
  3024. current_position[i] = v;
  3025. if (i == E_AXIS)
  3026. plan_set_e_position(v);
  3027. else {
  3028. position_shift[i] += v - p; // Offset the coordinate space
  3029. update_software_endstops((AxisEnum)i);
  3030. didXYZ = true;
  3031. }
  3032. }
  3033. }
  3034. if (didXYZ) {
  3035. #if ENABLED(DELTA) || ENABLED(SCARA)
  3036. sync_plan_position_delta();
  3037. #else
  3038. sync_plan_position();
  3039. #endif
  3040. }
  3041. }
  3042. #if ENABLED(ULTIPANEL)
  3043. /**
  3044. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3045. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3046. */
  3047. inline void gcode_M0_M1() {
  3048. char* args = current_command_args;
  3049. uint8_t test_value = 12;
  3050. SERIAL_ECHOPAIR("TEST", test_value);
  3051. millis_t codenum = 0;
  3052. bool hasP = false, hasS = false;
  3053. if (code_seen('P')) {
  3054. codenum = code_value_short(); // milliseconds to wait
  3055. hasP = codenum > 0;
  3056. }
  3057. if (code_seen('S')) {
  3058. codenum = code_value() * 1000UL; // seconds to wait
  3059. hasS = codenum > 0;
  3060. }
  3061. if (!hasP && !hasS && *args != '\0')
  3062. lcd_setstatus(args, true);
  3063. else {
  3064. LCD_MESSAGEPGM(MSG_USERWAIT);
  3065. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3066. dontExpireStatus();
  3067. #endif
  3068. }
  3069. lcd_ignore_click();
  3070. st_synchronize();
  3071. refresh_cmd_timeout();
  3072. if (codenum > 0) {
  3073. codenum += previous_cmd_ms; // wait until this time for a click
  3074. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3075. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3076. KEEPALIVE_STATE(IN_HANDLER);
  3077. lcd_ignore_click(false);
  3078. }
  3079. else {
  3080. if (!lcd_detected()) return;
  3081. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3082. while (!lcd_clicked()) idle();
  3083. KEEPALIVE_STATE(IN_HANDLER);
  3084. }
  3085. if (IS_SD_PRINTING)
  3086. LCD_MESSAGEPGM(MSG_RESUMING);
  3087. else
  3088. LCD_MESSAGEPGM(WELCOME_MSG);
  3089. }
  3090. #endif // ULTIPANEL
  3091. /**
  3092. * M17: Enable power on all stepper motors
  3093. */
  3094. inline void gcode_M17() {
  3095. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3096. enable_all_steppers();
  3097. }
  3098. #if ENABLED(SDSUPPORT)
  3099. /**
  3100. * M20: List SD card to serial output
  3101. */
  3102. inline void gcode_M20() {
  3103. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3104. card.ls();
  3105. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3106. }
  3107. /**
  3108. * M21: Init SD Card
  3109. */
  3110. inline void gcode_M21() {
  3111. card.initsd();
  3112. }
  3113. /**
  3114. * M22: Release SD Card
  3115. */
  3116. inline void gcode_M22() {
  3117. card.release();
  3118. }
  3119. /**
  3120. * M23: Open a file
  3121. */
  3122. inline void gcode_M23() {
  3123. card.openFile(current_command_args, true);
  3124. }
  3125. /**
  3126. * M24: Start SD Print
  3127. */
  3128. inline void gcode_M24() {
  3129. card.startFileprint();
  3130. print_job_timer.start();
  3131. }
  3132. /**
  3133. * M25: Pause SD Print
  3134. */
  3135. inline void gcode_M25() {
  3136. card.pauseSDPrint();
  3137. }
  3138. /**
  3139. * M26: Set SD Card file index
  3140. */
  3141. inline void gcode_M26() {
  3142. if (card.cardOK && code_seen('S'))
  3143. card.setIndex(code_value_short());
  3144. }
  3145. /**
  3146. * M27: Get SD Card status
  3147. */
  3148. inline void gcode_M27() {
  3149. card.getStatus();
  3150. }
  3151. /**
  3152. * M28: Start SD Write
  3153. */
  3154. inline void gcode_M28() {
  3155. card.openFile(current_command_args, false);
  3156. }
  3157. /**
  3158. * M29: Stop SD Write
  3159. * Processed in write to file routine above
  3160. */
  3161. inline void gcode_M29() {
  3162. // card.saving = false;
  3163. }
  3164. /**
  3165. * M30 <filename>: Delete SD Card file
  3166. */
  3167. inline void gcode_M30() {
  3168. if (card.cardOK) {
  3169. card.closefile();
  3170. card.removeFile(current_command_args);
  3171. }
  3172. }
  3173. #endif //SDSUPPORT
  3174. /**
  3175. * M31: Get the time since the start of SD Print (or last M109)
  3176. */
  3177. inline void gcode_M31() {
  3178. millis_t t = print_job_timer.duration();
  3179. int min = t / 60, sec = t % 60;
  3180. char time[30];
  3181. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3182. SERIAL_ECHO_START;
  3183. SERIAL_ECHOLN(time);
  3184. lcd_setstatus(time);
  3185. autotempShutdown();
  3186. }
  3187. #if ENABLED(SDSUPPORT)
  3188. /**
  3189. * M32: Select file and start SD Print
  3190. */
  3191. inline void gcode_M32() {
  3192. if (card.sdprinting)
  3193. st_synchronize();
  3194. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3195. if (!namestartpos)
  3196. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3197. else
  3198. namestartpos++; //to skip the '!'
  3199. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3200. if (card.cardOK) {
  3201. card.openFile(namestartpos, true, call_procedure);
  3202. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3203. card.setIndex(code_value_short());
  3204. card.startFileprint();
  3205. // Procedure calls count as normal print time.
  3206. if (!call_procedure) print_job_timer.start();
  3207. }
  3208. }
  3209. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3210. /**
  3211. * M33: Get the long full path of a file or folder
  3212. *
  3213. * Parameters:
  3214. * <dospath> Case-insensitive DOS-style path to a file or folder
  3215. *
  3216. * Example:
  3217. * M33 miscel~1/armchair/armcha~1.gco
  3218. *
  3219. * Output:
  3220. * /Miscellaneous/Armchair/Armchair.gcode
  3221. */
  3222. inline void gcode_M33() {
  3223. card.printLongPath(current_command_args);
  3224. }
  3225. #endif
  3226. /**
  3227. * M928: Start SD Write
  3228. */
  3229. inline void gcode_M928() {
  3230. card.openLogFile(current_command_args);
  3231. }
  3232. #endif // SDSUPPORT
  3233. /**
  3234. * M42: Change pin status via GCode
  3235. *
  3236. * P<pin> Pin number (LED if omitted)
  3237. * S<byte> Pin status from 0 - 255
  3238. */
  3239. inline void gcode_M42() {
  3240. if (code_seen('S')) {
  3241. int pin_status = code_value_short();
  3242. if (pin_status < 0 || pin_status > 255) return;
  3243. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3244. if (pin_number < 0) return;
  3245. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3246. if (pin_number == sensitive_pins[i]) return;
  3247. pinMode(pin_number, OUTPUT);
  3248. digitalWrite(pin_number, pin_status);
  3249. analogWrite(pin_number, pin_status);
  3250. #if FAN_COUNT > 0
  3251. switch (pin_number) {
  3252. #if HAS_FAN0
  3253. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3254. #endif
  3255. #if HAS_FAN1
  3256. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3257. #endif
  3258. #if HAS_FAN2
  3259. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3260. #endif
  3261. }
  3262. #endif
  3263. } // code_seen('S')
  3264. }
  3265. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3266. /**
  3267. * This is redundant since the SanityCheck.h already checks for a valid
  3268. * Z_MIN_PROBE_PIN, but here for clarity.
  3269. */
  3270. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3271. #if !HAS_Z_PROBE
  3272. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3273. #endif
  3274. #elif !HAS_Z_MIN
  3275. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3276. #endif
  3277. /**
  3278. * M48: Z probe repeatability measurement function.
  3279. *
  3280. * Usage:
  3281. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3282. * P = Number of sampled points (4-50, default 10)
  3283. * X = Sample X position
  3284. * Y = Sample Y position
  3285. * V = Verbose level (0-4, default=1)
  3286. * E = Engage Z probe for each reading
  3287. * L = Number of legs of movement before probe
  3288. * S = Schizoid (Or Star if you prefer)
  3289. *
  3290. * This function assumes the bed has been homed. Specifically, that a G28 command
  3291. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3292. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3293. * regenerated.
  3294. */
  3295. inline void gcode_M48() {
  3296. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3297. axis_unhomed_error();
  3298. return;
  3299. }
  3300. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3301. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3302. if (code_seen('V')) {
  3303. verbose_level = code_value_short();
  3304. if (verbose_level < 0 || verbose_level > 4) {
  3305. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3306. return;
  3307. }
  3308. }
  3309. if (verbose_level > 0)
  3310. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3311. if (code_seen('P')) {
  3312. n_samples = code_value_short();
  3313. if (n_samples < 4 || n_samples > 50) {
  3314. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3315. return;
  3316. }
  3317. }
  3318. float X_current = current_position[X_AXIS],
  3319. Y_current = current_position[Y_AXIS],
  3320. Z_current = current_position[Z_AXIS],
  3321. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3322. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3323. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3324. bool deploy_probe_for_each_reading = code_seen('E');
  3325. if (code_seen('X')) {
  3326. X_probe_location = code_value();
  3327. #if DISABLED(DELTA)
  3328. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3329. out_of_range_error(PSTR("X"));
  3330. return;
  3331. }
  3332. #endif
  3333. }
  3334. if (code_seen('Y')) {
  3335. Y_probe_location = code_value();
  3336. #if DISABLED(DELTA)
  3337. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3338. out_of_range_error(PSTR("Y"));
  3339. return;
  3340. }
  3341. #endif
  3342. }
  3343. #if ENABLED(DELTA)
  3344. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3345. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3346. return;
  3347. }
  3348. #endif
  3349. bool seen_L = code_seen('L');
  3350. if (seen_L) {
  3351. n_legs = code_value_short();
  3352. if (n_legs < 0 || n_legs > 15) {
  3353. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3354. return;
  3355. }
  3356. if (n_legs == 1) n_legs = 2;
  3357. }
  3358. if (code_seen('S')) {
  3359. schizoid_flag++;
  3360. if (!seen_L) n_legs = 7;
  3361. }
  3362. /**
  3363. * Now get everything to the specified probe point So we can safely do a
  3364. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3365. * we don't want to use that as a starting point for each probe.
  3366. */
  3367. if (verbose_level > 2)
  3368. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3369. #if ENABLED(DELTA)
  3370. // we don't do bed level correction in M48 because we want the raw data when we probe
  3371. reset_bed_level();
  3372. #else
  3373. // we don't do bed level correction in M48 because we want the raw data when we probe
  3374. plan_bed_level_matrix.set_to_identity();
  3375. #endif
  3376. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3377. do_blocking_move_to_z(Z_start_location);
  3378. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3379. /**
  3380. * OK, do the initial probe to get us close to the bed.
  3381. * Then retrace the right amount and use that in subsequent probes
  3382. */
  3383. setup_for_endstop_move();
  3384. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3385. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3386. verbose_level);
  3387. raise_z_after_probing();
  3388. for (uint8_t n = 0; n < n_samples; n++) {
  3389. randomSeed(millis());
  3390. delay(500);
  3391. if (n_legs) {
  3392. float radius, angle = random(0.0, 360.0);
  3393. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3394. radius = random(
  3395. #if ENABLED(DELTA)
  3396. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3397. #else
  3398. 5, X_MAX_LENGTH / 8
  3399. #endif
  3400. );
  3401. if (verbose_level > 3) {
  3402. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3403. SERIAL_ECHOPAIR(" angle: ", angle);
  3404. delay(100);
  3405. if (dir > 0)
  3406. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3407. else
  3408. SERIAL_ECHO(" Direction: Clockwise \n");
  3409. delay(100);
  3410. }
  3411. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3412. double delta_angle;
  3413. if (schizoid_flag)
  3414. // The points of a 5 point star are 72 degrees apart. We need to
  3415. // skip a point and go to the next one on the star.
  3416. delta_angle = dir * 2.0 * 72.0;
  3417. else
  3418. // If we do this line, we are just trying to move further
  3419. // around the circle.
  3420. delta_angle = dir * (float) random(25, 45);
  3421. angle += delta_angle;
  3422. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3423. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3424. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3425. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3426. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3427. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3428. #if DISABLED(DELTA)
  3429. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3430. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3431. #else
  3432. // If we have gone out too far, we can do a simple fix and scale the numbers
  3433. // back in closer to the origin.
  3434. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3435. X_current /= 1.25;
  3436. Y_current /= 1.25;
  3437. if (verbose_level > 3) {
  3438. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3439. SERIAL_ECHOPAIR(", ", Y_current);
  3440. SERIAL_EOL;
  3441. delay(50);
  3442. }
  3443. }
  3444. #endif
  3445. if (verbose_level > 3) {
  3446. SERIAL_PROTOCOL("Going to:");
  3447. SERIAL_ECHOPAIR("x: ", X_current);
  3448. SERIAL_ECHOPAIR("y: ", Y_current);
  3449. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3450. SERIAL_EOL;
  3451. delay(55);
  3452. }
  3453. do_blocking_move_to_xy(X_current, Y_current);
  3454. } // n_legs loop
  3455. } // n_legs
  3456. /**
  3457. * We don't really have to do this move, but if we don't we can see a
  3458. * funny shift in the Z Height because the user might not have the
  3459. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3460. * height. This gets us back to the probe location at the same height that
  3461. * we have been running around the circle at.
  3462. */
  3463. do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  3464. if (deploy_probe_for_each_reading)
  3465. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3466. else {
  3467. if (n == n_samples - 1)
  3468. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3469. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3470. }
  3471. /**
  3472. * Get the current mean for the data points we have so far
  3473. */
  3474. sum = 0.0;
  3475. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3476. mean = sum / (n + 1);
  3477. /**
  3478. * Now, use that mean to calculate the standard deviation for the
  3479. * data points we have so far
  3480. */
  3481. sum = 0.0;
  3482. for (uint8_t j = 0; j <= n; j++) {
  3483. float ss = sample_set[j] - mean;
  3484. sum += ss * ss;
  3485. }
  3486. sigma = sqrt(sum / (n + 1));
  3487. if (verbose_level > 1) {
  3488. SERIAL_PROTOCOL(n + 1);
  3489. SERIAL_PROTOCOLPGM(" of ");
  3490. SERIAL_PROTOCOL((int)n_samples);
  3491. SERIAL_PROTOCOLPGM(" z: ");
  3492. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3493. delay(50);
  3494. if (verbose_level > 2) {
  3495. SERIAL_PROTOCOLPGM(" mean: ");
  3496. SERIAL_PROTOCOL_F(mean, 6);
  3497. SERIAL_PROTOCOLPGM(" sigma: ");
  3498. SERIAL_PROTOCOL_F(sigma, 6);
  3499. }
  3500. }
  3501. if (verbose_level > 0) SERIAL_EOL;
  3502. delay(50);
  3503. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3504. } // End of probe loop code
  3505. // raise_z_after_probing();
  3506. if (verbose_level > 0) {
  3507. SERIAL_PROTOCOLPGM("Mean: ");
  3508. SERIAL_PROTOCOL_F(mean, 6);
  3509. SERIAL_EOL;
  3510. delay(25);
  3511. }
  3512. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3513. SERIAL_PROTOCOL_F(sigma, 6);
  3514. SERIAL_EOL; SERIAL_EOL;
  3515. delay(25);
  3516. clean_up_after_endstop_move();
  3517. gcode_M114(); // Send end position to RepetierHost
  3518. }
  3519. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3520. /**
  3521. * M75: Start print timer
  3522. */
  3523. inline void gcode_M75() {
  3524. print_job_timer.start();
  3525. }
  3526. /**
  3527. * M76: Pause print timer
  3528. */
  3529. inline void gcode_M76() {
  3530. print_job_timer.pause();
  3531. }
  3532. /**
  3533. * M77: Stop print timer
  3534. */
  3535. inline void gcode_M77() {
  3536. print_job_timer.stop();
  3537. }
  3538. /**
  3539. * M104: Set hot end temperature
  3540. */
  3541. inline void gcode_M104() {
  3542. if (setTargetedHotend(104)) return;
  3543. if (DEBUGGING(DRYRUN)) return;
  3544. if (code_seen('S')) {
  3545. float temp = code_value();
  3546. setTargetHotend(temp, target_extruder);
  3547. #if ENABLED(DUAL_X_CARRIAGE)
  3548. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3549. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3550. #endif
  3551. /**
  3552. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3553. * stand by mode, for instance in a dual extruder setup, without affecting
  3554. * the running print timer.
  3555. */
  3556. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3557. print_job_timer.stop();
  3558. LCD_MESSAGEPGM(WELCOME_MSG);
  3559. }
  3560. /**
  3561. * We do not check if the timer is already running because this check will
  3562. * be done for us inside the Stopwatch::start() method thus a running timer
  3563. * will not restart.
  3564. */
  3565. else print_job_timer.start();
  3566. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3567. }
  3568. }
  3569. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3570. void print_heaterstates() {
  3571. #if HAS_TEMP_HOTEND
  3572. SERIAL_PROTOCOLPGM(" T:");
  3573. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3574. SERIAL_PROTOCOLPGM(" /");
  3575. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3576. #endif
  3577. #if HAS_TEMP_BED
  3578. SERIAL_PROTOCOLPGM(" B:");
  3579. SERIAL_PROTOCOL_F(degBed(), 1);
  3580. SERIAL_PROTOCOLPGM(" /");
  3581. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3582. #endif
  3583. #if EXTRUDERS > 1
  3584. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3585. SERIAL_PROTOCOLPGM(" T");
  3586. SERIAL_PROTOCOL(e);
  3587. SERIAL_PROTOCOLCHAR(':');
  3588. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3589. SERIAL_PROTOCOLPGM(" /");
  3590. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3591. }
  3592. #endif
  3593. #if HAS_TEMP_BED
  3594. SERIAL_PROTOCOLPGM(" B@:");
  3595. #ifdef BED_WATTS
  3596. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3597. SERIAL_PROTOCOLCHAR('W');
  3598. #else
  3599. SERIAL_PROTOCOL(getHeaterPower(-1));
  3600. #endif
  3601. #endif
  3602. SERIAL_PROTOCOLPGM(" @:");
  3603. #ifdef EXTRUDER_WATTS
  3604. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3605. SERIAL_PROTOCOLCHAR('W');
  3606. #else
  3607. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3608. #endif
  3609. #if EXTRUDERS > 1
  3610. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3611. SERIAL_PROTOCOLPGM(" @");
  3612. SERIAL_PROTOCOL(e);
  3613. SERIAL_PROTOCOLCHAR(':');
  3614. #ifdef EXTRUDER_WATTS
  3615. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3616. SERIAL_PROTOCOLCHAR('W');
  3617. #else
  3618. SERIAL_PROTOCOL(getHeaterPower(e));
  3619. #endif
  3620. }
  3621. #endif
  3622. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3623. #if HAS_TEMP_BED
  3624. SERIAL_PROTOCOLPGM(" ADC B:");
  3625. SERIAL_PROTOCOL_F(degBed(), 1);
  3626. SERIAL_PROTOCOLPGM("C->");
  3627. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3628. #endif
  3629. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3630. SERIAL_PROTOCOLPGM(" T");
  3631. SERIAL_PROTOCOL(cur_extruder);
  3632. SERIAL_PROTOCOLCHAR(':');
  3633. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3634. SERIAL_PROTOCOLPGM("C->");
  3635. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3636. }
  3637. #endif
  3638. }
  3639. #endif
  3640. /**
  3641. * M105: Read hot end and bed temperature
  3642. */
  3643. inline void gcode_M105() {
  3644. if (setTargetedHotend(105)) return;
  3645. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3646. SERIAL_PROTOCOLPGM(MSG_OK);
  3647. print_heaterstates();
  3648. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3649. SERIAL_ERROR_START;
  3650. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3651. #endif
  3652. SERIAL_EOL;
  3653. }
  3654. #if FAN_COUNT > 0
  3655. /**
  3656. * M106: Set Fan Speed
  3657. *
  3658. * S<int> Speed between 0-255
  3659. * P<index> Fan index, if more than one fan
  3660. */
  3661. inline void gcode_M106() {
  3662. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3663. p = code_seen('P') ? code_value_short() : 0;
  3664. NOMORE(s, 255);
  3665. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3666. }
  3667. /**
  3668. * M107: Fan Off
  3669. */
  3670. inline void gcode_M107() {
  3671. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3672. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3673. }
  3674. #endif // FAN_COUNT > 0
  3675. /**
  3676. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3677. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3678. */
  3679. inline void gcode_M109() {
  3680. if (setTargetedHotend(109)) return;
  3681. if (DEBUGGING(DRYRUN)) return;
  3682. bool no_wait_for_cooling = code_seen('S');
  3683. if (no_wait_for_cooling || code_seen('R')) {
  3684. float temp = code_value();
  3685. setTargetHotend(temp, target_extruder);
  3686. #if ENABLED(DUAL_X_CARRIAGE)
  3687. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3688. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3689. #endif
  3690. /**
  3691. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3692. * stand by mode, for instance in a dual extruder setup, without affecting
  3693. * the running print timer.
  3694. */
  3695. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3696. print_job_timer.stop();
  3697. LCD_MESSAGEPGM(WELCOME_MSG);
  3698. }
  3699. /**
  3700. * We do not check if the timer is already running because this check will
  3701. * be done for us inside the Stopwatch::start() method thus a running timer
  3702. * will not restart.
  3703. */
  3704. else print_job_timer.start();
  3705. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3706. }
  3707. #if ENABLED(AUTOTEMP)
  3708. autotemp_enabled = code_seen('F');
  3709. if (autotemp_enabled) autotemp_factor = code_value();
  3710. if (code_seen('S')) autotemp_min = code_value();
  3711. if (code_seen('B')) autotemp_max = code_value();
  3712. #endif
  3713. bool wants_to_cool = isCoolingHotend(target_extruder);
  3714. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3715. if (no_wait_for_cooling && wants_to_cool) return;
  3716. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3717. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3718. if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3719. #if TEMP_RESIDENCY_TIME > 0
  3720. millis_t residency_start_ms = 0;
  3721. // Loop until the temperature has stabilized
  3722. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3723. #else
  3724. // Loop until the temperature is very close target
  3725. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3726. #endif //TEMP_RESIDENCY_TIME > 0
  3727. cancel_heatup = false;
  3728. millis_t now, next_temp_ms = 0;
  3729. do {
  3730. now = millis();
  3731. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3732. next_temp_ms = now + 1000UL;
  3733. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3734. print_heaterstates();
  3735. #endif
  3736. #if TEMP_RESIDENCY_TIME > 0
  3737. SERIAL_PROTOCOLPGM(" W:");
  3738. if (residency_start_ms) {
  3739. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3740. SERIAL_PROTOCOLLN(rem);
  3741. }
  3742. else {
  3743. SERIAL_PROTOCOLLNPGM("?");
  3744. }
  3745. #else
  3746. SERIAL_EOL;
  3747. #endif
  3748. }
  3749. idle();
  3750. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3751. #if TEMP_RESIDENCY_TIME > 0
  3752. float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder));
  3753. if (!residency_start_ms) {
  3754. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3755. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3756. }
  3757. else if (temp_diff > TEMP_HYSTERESIS) {
  3758. // Restart the timer whenever the temperature falls outside the hysteresis.
  3759. residency_start_ms = millis();
  3760. }
  3761. #endif //TEMP_RESIDENCY_TIME > 0
  3762. } while (!cancel_heatup && TEMP_CONDITIONS);
  3763. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3764. }
  3765. #if HAS_TEMP_BED
  3766. /**
  3767. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3768. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3769. */
  3770. inline void gcode_M190() {
  3771. if (DEBUGGING(DRYRUN)) return;
  3772. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3773. bool no_wait_for_cooling = code_seen('S');
  3774. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3775. bool wants_to_cool = isCoolingBed();
  3776. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3777. if (no_wait_for_cooling && wants_to_cool) return;
  3778. #if TEMP_BED_RESIDENCY_TIME > 0
  3779. millis_t residency_start_ms = 0;
  3780. // Loop until the temperature has stabilized
  3781. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3782. #else
  3783. // Loop until the temperature is very close target
  3784. #define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
  3785. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3786. cancel_heatup = false;
  3787. millis_t now, next_temp_ms = 0;
  3788. // Wait for temperature to come close enough
  3789. do {
  3790. now = millis();
  3791. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3792. next_temp_ms = now + 1000UL;
  3793. print_heaterstates();
  3794. #if TEMP_BED_RESIDENCY_TIME > 0
  3795. SERIAL_PROTOCOLPGM(" W:");
  3796. if (residency_start_ms) {
  3797. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3798. SERIAL_PROTOCOLLN(rem);
  3799. }
  3800. else {
  3801. SERIAL_PROTOCOLLNPGM("?");
  3802. }
  3803. #else
  3804. SERIAL_EOL;
  3805. #endif
  3806. }
  3807. idle();
  3808. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3809. #if TEMP_BED_RESIDENCY_TIME > 0
  3810. float temp_diff = fabs(degBed() - degTargetBed());
  3811. if (!residency_start_ms) {
  3812. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3813. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
  3814. }
  3815. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3816. // Restart the timer whenever the temperature falls outside the hysteresis.
  3817. residency_start_ms = millis();
  3818. }
  3819. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3820. } while (!cancel_heatup && TEMP_BED_CONDITIONS);
  3821. LCD_MESSAGEPGM(MSG_BED_DONE);
  3822. }
  3823. #endif // HAS_TEMP_BED
  3824. /**
  3825. * M110: Set Current Line Number
  3826. */
  3827. inline void gcode_M110() {
  3828. if (code_seen('N')) gcode_N = code_value_long();
  3829. }
  3830. /**
  3831. * M111: Set the debug level
  3832. */
  3833. inline void gcode_M111() {
  3834. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3835. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3836. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3837. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3838. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3839. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3841. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3842. #endif
  3843. const static char* const debug_strings[] PROGMEM = {
  3844. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3845. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3846. str_debug_32
  3847. #endif
  3848. };
  3849. SERIAL_ECHO_START;
  3850. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3851. if (marlin_debug_flags) {
  3852. uint8_t comma = 0;
  3853. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3854. if (TEST(marlin_debug_flags, i)) {
  3855. if (comma++) SERIAL_CHAR(',');
  3856. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3857. }
  3858. }
  3859. }
  3860. else {
  3861. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3862. }
  3863. SERIAL_EOL;
  3864. }
  3865. /**
  3866. * M112: Emergency Stop
  3867. */
  3868. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3869. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3870. /**
  3871. * M113: Get or set Host Keepalive interval (0 to disable)
  3872. *
  3873. * S<seconds> Optional. Set the keepalive interval.
  3874. */
  3875. inline void gcode_M113() {
  3876. if (code_seen('S')) {
  3877. host_keepalive_interval = (uint8_t)code_value_short();
  3878. NOMORE(host_keepalive_interval, 60);
  3879. }
  3880. else {
  3881. SERIAL_ECHO_START;
  3882. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3883. SERIAL_EOL;
  3884. }
  3885. }
  3886. #endif
  3887. #if ENABLED(BARICUDA)
  3888. #if HAS_HEATER_1
  3889. /**
  3890. * M126: Heater 1 valve open
  3891. */
  3892. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3893. /**
  3894. * M127: Heater 1 valve close
  3895. */
  3896. inline void gcode_M127() { ValvePressure = 0; }
  3897. #endif
  3898. #if HAS_HEATER_2
  3899. /**
  3900. * M128: Heater 2 valve open
  3901. */
  3902. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3903. /**
  3904. * M129: Heater 2 valve close
  3905. */
  3906. inline void gcode_M129() { EtoPPressure = 0; }
  3907. #endif
  3908. #endif //BARICUDA
  3909. /**
  3910. * M140: Set bed temperature
  3911. */
  3912. inline void gcode_M140() {
  3913. if (DEBUGGING(DRYRUN)) return;
  3914. if (code_seen('S')) setTargetBed(code_value());
  3915. }
  3916. #if ENABLED(ULTIPANEL)
  3917. /**
  3918. * M145: Set the heatup state for a material in the LCD menu
  3919. * S<material> (0=PLA, 1=ABS)
  3920. * H<hotend temp>
  3921. * B<bed temp>
  3922. * F<fan speed>
  3923. */
  3924. inline void gcode_M145() {
  3925. int8_t material = code_seen('S') ? code_value_short() : 0;
  3926. if (material < 0 || material > 1) {
  3927. SERIAL_ERROR_START;
  3928. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3929. }
  3930. else {
  3931. int v;
  3932. switch (material) {
  3933. case 0:
  3934. if (code_seen('H')) {
  3935. v = code_value_short();
  3936. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3937. }
  3938. if (code_seen('F')) {
  3939. v = code_value_short();
  3940. plaPreheatFanSpeed = constrain(v, 0, 255);
  3941. }
  3942. #if TEMP_SENSOR_BED != 0
  3943. if (code_seen('B')) {
  3944. v = code_value_short();
  3945. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3946. }
  3947. #endif
  3948. break;
  3949. case 1:
  3950. if (code_seen('H')) {
  3951. v = code_value_short();
  3952. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3953. }
  3954. if (code_seen('F')) {
  3955. v = code_value_short();
  3956. absPreheatFanSpeed = constrain(v, 0, 255);
  3957. }
  3958. #if TEMP_SENSOR_BED != 0
  3959. if (code_seen('B')) {
  3960. v = code_value_short();
  3961. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3962. }
  3963. #endif
  3964. break;
  3965. }
  3966. }
  3967. }
  3968. #endif
  3969. #if HAS_POWER_SWITCH
  3970. /**
  3971. * M80: Turn on Power Supply
  3972. */
  3973. inline void gcode_M80() {
  3974. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3975. /**
  3976. * If you have a switch on suicide pin, this is useful
  3977. * if you want to start another print with suicide feature after
  3978. * a print without suicide...
  3979. */
  3980. #if HAS_SUICIDE
  3981. OUT_WRITE(SUICIDE_PIN, HIGH);
  3982. #endif
  3983. #if ENABLED(ULTIPANEL)
  3984. powersupply = true;
  3985. LCD_MESSAGEPGM(WELCOME_MSG);
  3986. lcd_update();
  3987. #endif
  3988. }
  3989. #endif // HAS_POWER_SWITCH
  3990. /**
  3991. * M81: Turn off Power, including Power Supply, if there is one.
  3992. *
  3993. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3994. */
  3995. inline void gcode_M81() {
  3996. disable_all_heaters();
  3997. finishAndDisableSteppers();
  3998. #if FAN_COUNT > 0
  3999. #if FAN_COUNT > 1
  4000. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4001. #else
  4002. fanSpeeds[0] = 0;
  4003. #endif
  4004. #endif
  4005. delay(1000); // Wait 1 second before switching off
  4006. #if HAS_SUICIDE
  4007. st_synchronize();
  4008. suicide();
  4009. #elif HAS_POWER_SWITCH
  4010. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4011. #endif
  4012. #if ENABLED(ULTIPANEL)
  4013. #if HAS_POWER_SWITCH
  4014. powersupply = false;
  4015. #endif
  4016. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4017. lcd_update();
  4018. #endif
  4019. }
  4020. /**
  4021. * M82: Set E codes absolute (default)
  4022. */
  4023. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4024. /**
  4025. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4026. */
  4027. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4028. /**
  4029. * M18, M84: Disable all stepper motors
  4030. */
  4031. inline void gcode_M18_M84() {
  4032. if (code_seen('S')) {
  4033. stepper_inactive_time = code_value() * 1000UL;
  4034. }
  4035. else {
  4036. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  4037. if (all_axis) {
  4038. finishAndDisableSteppers();
  4039. }
  4040. else {
  4041. st_synchronize();
  4042. if (code_seen('X')) disable_x();
  4043. if (code_seen('Y')) disable_y();
  4044. if (code_seen('Z')) disable_z();
  4045. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4046. if (code_seen('E')) {
  4047. disable_e0();
  4048. disable_e1();
  4049. disable_e2();
  4050. disable_e3();
  4051. }
  4052. #endif
  4053. }
  4054. }
  4055. }
  4056. /**
  4057. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4058. */
  4059. inline void gcode_M85() {
  4060. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  4061. }
  4062. /**
  4063. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4064. * (Follows the same syntax as G92)
  4065. */
  4066. inline void gcode_M92() {
  4067. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4068. if (code_seen(axis_codes[i])) {
  4069. if (i == E_AXIS) {
  4070. float value = code_value();
  4071. if (value < 20.0) {
  4072. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  4073. max_e_jerk *= factor;
  4074. max_feedrate[i] *= factor;
  4075. axis_steps_per_sqr_second[i] *= factor;
  4076. }
  4077. axis_steps_per_unit[i] = value;
  4078. }
  4079. else {
  4080. axis_steps_per_unit[i] = code_value();
  4081. }
  4082. }
  4083. }
  4084. }
  4085. /**
  4086. * M114: Output current position to serial port
  4087. */
  4088. inline void gcode_M114() {
  4089. SERIAL_PROTOCOLPGM("X:");
  4090. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4091. SERIAL_PROTOCOLPGM(" Y:");
  4092. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4093. SERIAL_PROTOCOLPGM(" Z:");
  4094. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4095. SERIAL_PROTOCOLPGM(" E:");
  4096. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4097. CRITICAL_SECTION_START;
  4098. extern volatile long count_position[NUM_AXIS];
  4099. long xpos = count_position[X_AXIS],
  4100. ypos = count_position[Y_AXIS],
  4101. zpos = count_position[Z_AXIS];
  4102. CRITICAL_SECTION_END;
  4103. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4104. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4105. #else
  4106. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4107. #endif
  4108. SERIAL_PROTOCOL(xpos);
  4109. #if ENABLED(COREXY)
  4110. SERIAL_PROTOCOLPGM(" B:");
  4111. #else
  4112. SERIAL_PROTOCOLPGM(" Y:");
  4113. #endif
  4114. SERIAL_PROTOCOL(ypos);
  4115. #if ENABLED(COREXZ)
  4116. SERIAL_PROTOCOLPGM(" C:");
  4117. #else
  4118. SERIAL_PROTOCOLPGM(" Z:");
  4119. #endif
  4120. SERIAL_PROTOCOL(zpos);
  4121. SERIAL_EOL;
  4122. #if ENABLED(SCARA)
  4123. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4124. SERIAL_PROTOCOL(delta[X_AXIS]);
  4125. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4126. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4127. SERIAL_EOL;
  4128. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4129. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4130. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4131. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4132. SERIAL_EOL;
  4133. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4134. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4135. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4136. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4137. SERIAL_EOL; SERIAL_EOL;
  4138. #endif
  4139. }
  4140. /**
  4141. * M115: Capabilities string
  4142. */
  4143. inline void gcode_M115() {
  4144. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4145. }
  4146. /**
  4147. * M117: Set LCD Status Message
  4148. */
  4149. inline void gcode_M117() {
  4150. lcd_setstatus(current_command_args);
  4151. }
  4152. /**
  4153. * M119: Output endstop states to serial output
  4154. */
  4155. inline void gcode_M119() {
  4156. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4157. #if HAS_X_MIN
  4158. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4159. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4160. #endif
  4161. #if HAS_X_MAX
  4162. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4163. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4164. #endif
  4165. #if HAS_Y_MIN
  4166. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4167. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4168. #endif
  4169. #if HAS_Y_MAX
  4170. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4171. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4172. #endif
  4173. #if HAS_Z_MIN
  4174. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4175. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4176. #endif
  4177. #if HAS_Z_MAX
  4178. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4179. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4180. #endif
  4181. #if HAS_Z2_MAX
  4182. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4183. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4184. #endif
  4185. #if HAS_Z_PROBE
  4186. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4187. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4188. #endif
  4189. }
  4190. /**
  4191. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4192. */
  4193. inline void gcode_M120() { enable_endstops_globally(true); }
  4194. /**
  4195. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4196. */
  4197. inline void gcode_M121() { enable_endstops_globally(false); }
  4198. #if ENABLED(BLINKM)
  4199. /**
  4200. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4201. */
  4202. inline void gcode_M150() {
  4203. SendColors(
  4204. code_seen('R') ? (byte)code_value_short() : 0,
  4205. code_seen('U') ? (byte)code_value_short() : 0,
  4206. code_seen('B') ? (byte)code_value_short() : 0
  4207. );
  4208. }
  4209. #endif // BLINKM
  4210. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4211. /**
  4212. * M155: Send data to a I2C slave device
  4213. *
  4214. * This is a PoC, the formating and arguments for the GCODE will
  4215. * change to be more compatible, the current proposal is:
  4216. *
  4217. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4218. *
  4219. * M155 B<byte-1 value in base 10>
  4220. * M155 B<byte-2 value in base 10>
  4221. * M155 B<byte-3 value in base 10>
  4222. *
  4223. * M155 S1 ; Send the buffered data and reset the buffer
  4224. * M155 R1 ; Reset the buffer without sending data
  4225. *
  4226. */
  4227. inline void gcode_M155() {
  4228. // Set the target address
  4229. if (code_seen('A'))
  4230. i2c.address((uint8_t) code_value_short());
  4231. // Add a new byte to the buffer
  4232. else if (code_seen('B'))
  4233. i2c.addbyte((int) code_value_short());
  4234. // Flush the buffer to the bus
  4235. else if (code_seen('S')) i2c.send();
  4236. // Reset and rewind the buffer
  4237. else if (code_seen('R')) i2c.reset();
  4238. }
  4239. /**
  4240. * M156: Request X bytes from I2C slave device
  4241. *
  4242. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4243. */
  4244. inline void gcode_M156() {
  4245. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4246. int bytes = code_seen('B') ? code_value_short() : 0;
  4247. if (addr && bytes) {
  4248. i2c.address(addr);
  4249. i2c.reqbytes(bytes);
  4250. }
  4251. }
  4252. #endif //EXPERIMENTAL_I2CBUS
  4253. /**
  4254. * M200: Set filament diameter and set E axis units to cubic millimeters
  4255. *
  4256. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4257. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4258. */
  4259. inline void gcode_M200() {
  4260. if (setTargetedHotend(200)) return;
  4261. if (code_seen('D')) {
  4262. float diameter = code_value();
  4263. // setting any extruder filament size disables volumetric on the assumption that
  4264. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4265. // for all extruders
  4266. volumetric_enabled = (diameter != 0.0);
  4267. if (volumetric_enabled) {
  4268. filament_size[target_extruder] = diameter;
  4269. // make sure all extruders have some sane value for the filament size
  4270. for (int i = 0; i < EXTRUDERS; i++)
  4271. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4272. }
  4273. }
  4274. else {
  4275. //reserved for setting filament diameter via UFID or filament measuring device
  4276. return;
  4277. }
  4278. calculate_volumetric_multipliers();
  4279. }
  4280. /**
  4281. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4282. */
  4283. inline void gcode_M201() {
  4284. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4285. if (code_seen(axis_codes[i])) {
  4286. max_acceleration_units_per_sq_second[i] = code_value();
  4287. }
  4288. }
  4289. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4290. reset_acceleration_rates();
  4291. }
  4292. #if 0 // Not used for Sprinter/grbl gen6
  4293. inline void gcode_M202() {
  4294. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4295. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4296. }
  4297. }
  4298. #endif
  4299. /**
  4300. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4301. */
  4302. inline void gcode_M203() {
  4303. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4304. if (code_seen(axis_codes[i])) {
  4305. max_feedrate[i] = code_value();
  4306. }
  4307. }
  4308. }
  4309. /**
  4310. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4311. *
  4312. * P = Printing moves
  4313. * R = Retract only (no X, Y, Z) moves
  4314. * T = Travel (non printing) moves
  4315. *
  4316. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4317. */
  4318. inline void gcode_M204() {
  4319. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4320. travel_acceleration = acceleration = code_value();
  4321. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4322. SERIAL_EOL;
  4323. }
  4324. if (code_seen('P')) {
  4325. acceleration = code_value();
  4326. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4327. SERIAL_EOL;
  4328. }
  4329. if (code_seen('R')) {
  4330. retract_acceleration = code_value();
  4331. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4332. SERIAL_EOL;
  4333. }
  4334. if (code_seen('T')) {
  4335. travel_acceleration = code_value();
  4336. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4337. SERIAL_EOL;
  4338. }
  4339. }
  4340. /**
  4341. * M205: Set Advanced Settings
  4342. *
  4343. * S = Min Feed Rate (mm/s)
  4344. * T = Min Travel Feed Rate (mm/s)
  4345. * B = Min Segment Time (µs)
  4346. * X = Max XY Jerk (mm/s/s)
  4347. * Z = Max Z Jerk (mm/s/s)
  4348. * E = Max E Jerk (mm/s/s)
  4349. */
  4350. inline void gcode_M205() {
  4351. if (code_seen('S')) minimumfeedrate = code_value();
  4352. if (code_seen('T')) mintravelfeedrate = code_value();
  4353. if (code_seen('B')) minsegmenttime = code_value();
  4354. if (code_seen('X')) max_xy_jerk = code_value();
  4355. if (code_seen('Z')) max_z_jerk = code_value();
  4356. if (code_seen('E')) max_e_jerk = code_value();
  4357. }
  4358. /**
  4359. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4360. */
  4361. inline void gcode_M206() {
  4362. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4363. if (code_seen(axis_codes[i]))
  4364. set_home_offset((AxisEnum)i, code_value());
  4365. #if ENABLED(SCARA)
  4366. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4367. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4368. #endif
  4369. sync_plan_position();
  4370. }
  4371. #if ENABLED(DELTA)
  4372. /**
  4373. * M665: Set delta configurations
  4374. *
  4375. * L = diagonal rod
  4376. * R = delta radius
  4377. * S = segments per second
  4378. * A = Alpha (Tower 1) diagonal rod trim
  4379. * B = Beta (Tower 2) diagonal rod trim
  4380. * C = Gamma (Tower 3) diagonal rod trim
  4381. */
  4382. inline void gcode_M665() {
  4383. if (code_seen('L')) delta_diagonal_rod = code_value();
  4384. if (code_seen('R')) delta_radius = code_value();
  4385. if (code_seen('S')) delta_segments_per_second = code_value();
  4386. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4387. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4388. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4389. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4390. }
  4391. /**
  4392. * M666: Set delta endstop adjustment
  4393. */
  4394. inline void gcode_M666() {
  4395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4396. if (DEBUGGING(LEVELING)) {
  4397. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4398. }
  4399. #endif
  4400. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4401. if (code_seen(axis_codes[i])) {
  4402. endstop_adj[i] = code_value();
  4403. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4404. if (DEBUGGING(LEVELING)) {
  4405. SERIAL_ECHOPGM("endstop_adj[");
  4406. SERIAL_ECHO(axis_codes[i]);
  4407. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4408. SERIAL_EOL;
  4409. }
  4410. #endif
  4411. }
  4412. }
  4413. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4414. if (DEBUGGING(LEVELING)) {
  4415. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4416. }
  4417. #endif
  4418. }
  4419. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4420. /**
  4421. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4422. */
  4423. inline void gcode_M666() {
  4424. if (code_seen('Z')) z_endstop_adj = code_value();
  4425. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4426. SERIAL_EOL;
  4427. }
  4428. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4429. #if ENABLED(FWRETRACT)
  4430. /**
  4431. * M207: Set firmware retraction values
  4432. *
  4433. * S[+mm] retract_length
  4434. * W[+mm] retract_length_swap (multi-extruder)
  4435. * F[mm/min] retract_feedrate
  4436. * Z[mm] retract_zlift
  4437. */
  4438. inline void gcode_M207() {
  4439. if (code_seen('S')) retract_length = code_value();
  4440. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4441. if (code_seen('Z')) retract_zlift = code_value();
  4442. #if EXTRUDERS > 1
  4443. if (code_seen('W')) retract_length_swap = code_value();
  4444. #endif
  4445. }
  4446. /**
  4447. * M208: Set firmware un-retraction values
  4448. *
  4449. * S[+mm] retract_recover_length (in addition to M207 S*)
  4450. * W[+mm] retract_recover_length_swap (multi-extruder)
  4451. * F[mm/min] retract_recover_feedrate
  4452. */
  4453. inline void gcode_M208() {
  4454. if (code_seen('S')) retract_recover_length = code_value();
  4455. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4456. #if EXTRUDERS > 1
  4457. if (code_seen('W')) retract_recover_length_swap = code_value();
  4458. #endif
  4459. }
  4460. /**
  4461. * M209: Enable automatic retract (M209 S1)
  4462. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4463. */
  4464. inline void gcode_M209() {
  4465. if (code_seen('S')) {
  4466. int t = code_value_short();
  4467. switch (t) {
  4468. case 0:
  4469. autoretract_enabled = false;
  4470. break;
  4471. case 1:
  4472. autoretract_enabled = true;
  4473. break;
  4474. default:
  4475. unknown_command_error();
  4476. return;
  4477. }
  4478. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4479. }
  4480. }
  4481. #endif // FWRETRACT
  4482. #if EXTRUDERS > 1
  4483. /**
  4484. * M218 - set hotend offset (in mm)
  4485. *
  4486. * T<tool>
  4487. * X<xoffset>
  4488. * Y<yoffset>
  4489. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4490. */
  4491. inline void gcode_M218() {
  4492. if (setTargetedHotend(218)) return;
  4493. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4494. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4495. #if ENABLED(DUAL_X_CARRIAGE)
  4496. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4497. #endif
  4498. SERIAL_ECHO_START;
  4499. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4500. for (int e = 0; e < EXTRUDERS; e++) {
  4501. SERIAL_CHAR(' ');
  4502. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4503. SERIAL_CHAR(',');
  4504. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4505. #if ENABLED(DUAL_X_CARRIAGE)
  4506. SERIAL_CHAR(',');
  4507. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4508. #endif
  4509. }
  4510. SERIAL_EOL;
  4511. }
  4512. #endif // EXTRUDERS > 1
  4513. /**
  4514. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4515. */
  4516. inline void gcode_M220() {
  4517. if (code_seen('S')) feedrate_multiplier = code_value();
  4518. }
  4519. /**
  4520. * M221: Set extrusion percentage (M221 T0 S95)
  4521. */
  4522. inline void gcode_M221() {
  4523. if (code_seen('S')) {
  4524. int sval = code_value();
  4525. if (setTargetedHotend(221)) return;
  4526. extruder_multiplier[target_extruder] = sval;
  4527. }
  4528. }
  4529. /**
  4530. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4531. */
  4532. inline void gcode_M226() {
  4533. if (code_seen('P')) {
  4534. int pin_number = code_value();
  4535. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4536. if (pin_state >= -1 && pin_state <= 1) {
  4537. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4538. if (sensitive_pins[i] == pin_number) {
  4539. pin_number = -1;
  4540. break;
  4541. }
  4542. }
  4543. if (pin_number > -1) {
  4544. int target = LOW;
  4545. st_synchronize();
  4546. pinMode(pin_number, INPUT);
  4547. switch (pin_state) {
  4548. case 1:
  4549. target = HIGH;
  4550. break;
  4551. case 0:
  4552. target = LOW;
  4553. break;
  4554. case -1:
  4555. target = !digitalRead(pin_number);
  4556. break;
  4557. }
  4558. while (digitalRead(pin_number) != target) idle();
  4559. } // pin_number > -1
  4560. } // pin_state -1 0 1
  4561. } // code_seen('P')
  4562. }
  4563. #if HAS_SERVOS
  4564. /**
  4565. * M280: Get or set servo position. P<index> S<angle>
  4566. */
  4567. inline void gcode_M280() {
  4568. int servo_index = code_seen('P') ? code_value_short() : -1;
  4569. int servo_position = 0;
  4570. if (code_seen('S')) {
  4571. servo_position = code_value_short();
  4572. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4573. servo[servo_index].move(servo_position);
  4574. else {
  4575. SERIAL_ERROR_START;
  4576. SERIAL_ERROR("Servo ");
  4577. SERIAL_ERROR(servo_index);
  4578. SERIAL_ERRORLN(" out of range");
  4579. }
  4580. }
  4581. else if (servo_index >= 0) {
  4582. SERIAL_ECHO_START;
  4583. SERIAL_ECHO(" Servo ");
  4584. SERIAL_ECHO(servo_index);
  4585. SERIAL_ECHO(": ");
  4586. SERIAL_ECHOLN(servo[servo_index].read());
  4587. }
  4588. }
  4589. #endif // HAS_SERVOS
  4590. #if HAS_BUZZER
  4591. /**
  4592. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4593. */
  4594. inline void gcode_M300() {
  4595. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4596. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4597. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4598. buzz(beepP, beepS);
  4599. }
  4600. #endif // HAS_BUZZER
  4601. #if ENABLED(PIDTEMP)
  4602. /**
  4603. * M301: Set PID parameters P I D (and optionally C, L)
  4604. *
  4605. * P[float] Kp term
  4606. * I[float] Ki term (unscaled)
  4607. * D[float] Kd term (unscaled)
  4608. *
  4609. * With PID_ADD_EXTRUSION_RATE:
  4610. *
  4611. * C[float] Kc term
  4612. * L[float] LPQ length
  4613. */
  4614. inline void gcode_M301() {
  4615. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4616. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4617. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4618. if (e < EXTRUDERS) { // catch bad input value
  4619. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4620. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4621. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4622. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4623. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4624. if (code_seen('L')) lpq_len = code_value();
  4625. NOMORE(lpq_len, LPQ_MAX_LEN);
  4626. #endif
  4627. updatePID();
  4628. SERIAL_ECHO_START;
  4629. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4630. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4631. SERIAL_ECHO(e);
  4632. #endif // PID_PARAMS_PER_EXTRUDER
  4633. SERIAL_ECHO(" p:");
  4634. SERIAL_ECHO(PID_PARAM(Kp, e));
  4635. SERIAL_ECHO(" i:");
  4636. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4637. SERIAL_ECHO(" d:");
  4638. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4639. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4640. SERIAL_ECHO(" c:");
  4641. //Kc does not have scaling applied above, or in resetting defaults
  4642. SERIAL_ECHO(PID_PARAM(Kc, e));
  4643. #endif
  4644. SERIAL_EOL;
  4645. }
  4646. else {
  4647. SERIAL_ERROR_START;
  4648. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4649. }
  4650. }
  4651. #endif // PIDTEMP
  4652. #if ENABLED(PIDTEMPBED)
  4653. inline void gcode_M304() {
  4654. if (code_seen('P')) bedKp = code_value();
  4655. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4656. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4657. updatePID();
  4658. SERIAL_ECHO_START;
  4659. SERIAL_ECHO(" p:");
  4660. SERIAL_ECHO(bedKp);
  4661. SERIAL_ECHO(" i:");
  4662. SERIAL_ECHO(unscalePID_i(bedKi));
  4663. SERIAL_ECHO(" d:");
  4664. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4665. }
  4666. #endif // PIDTEMPBED
  4667. #if defined(CHDK) || HAS_PHOTOGRAPH
  4668. /**
  4669. * M240: Trigger a camera by emulating a Canon RC-1
  4670. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4671. */
  4672. inline void gcode_M240() {
  4673. #ifdef CHDK
  4674. OUT_WRITE(CHDK, HIGH);
  4675. chdkHigh = millis();
  4676. chdkActive = true;
  4677. #elif HAS_PHOTOGRAPH
  4678. const uint8_t NUM_PULSES = 16;
  4679. const float PULSE_LENGTH = 0.01524;
  4680. for (int i = 0; i < NUM_PULSES; i++) {
  4681. WRITE(PHOTOGRAPH_PIN, HIGH);
  4682. _delay_ms(PULSE_LENGTH);
  4683. WRITE(PHOTOGRAPH_PIN, LOW);
  4684. _delay_ms(PULSE_LENGTH);
  4685. }
  4686. delay(7.33);
  4687. for (int i = 0; i < NUM_PULSES; i++) {
  4688. WRITE(PHOTOGRAPH_PIN, HIGH);
  4689. _delay_ms(PULSE_LENGTH);
  4690. WRITE(PHOTOGRAPH_PIN, LOW);
  4691. _delay_ms(PULSE_LENGTH);
  4692. }
  4693. #endif // !CHDK && HAS_PHOTOGRAPH
  4694. }
  4695. #endif // CHDK || PHOTOGRAPH_PIN
  4696. #if ENABLED(HAS_LCD_CONTRAST)
  4697. /**
  4698. * M250: Read and optionally set the LCD contrast
  4699. */
  4700. inline void gcode_M250() {
  4701. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4702. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4703. SERIAL_PROTOCOL(lcd_contrast);
  4704. SERIAL_EOL;
  4705. }
  4706. #endif // HAS_LCD_CONTRAST
  4707. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4708. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4709. /**
  4710. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4711. */
  4712. inline void gcode_M302() {
  4713. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4714. }
  4715. #endif // PREVENT_DANGEROUS_EXTRUDE
  4716. /**
  4717. * M303: PID relay autotune
  4718. *
  4719. * S<temperature> sets the target temperature. (default 150C)
  4720. * E<extruder> (-1 for the bed) (default 0)
  4721. * C<cycles>
  4722. * U<bool> with a non-zero value will apply the result to current settings
  4723. */
  4724. inline void gcode_M303() {
  4725. int e = code_seen('E') ? code_value_short() : 0;
  4726. int c = code_seen('C') ? code_value_short() : 5;
  4727. bool u = code_seen('U') && code_value_short() != 0;
  4728. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4729. if (e >= 0 && e < EXTRUDERS)
  4730. target_extruder = e;
  4731. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4732. PID_autotune(temp, e, c, u);
  4733. KEEPALIVE_STATE(IN_HANDLER);
  4734. }
  4735. #if ENABLED(SCARA)
  4736. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4737. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4738. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4739. if (IsRunning()) {
  4740. //gcode_get_destination(); // For X Y Z E F
  4741. delta[X_AXIS] = delta_x;
  4742. delta[Y_AXIS] = delta_y;
  4743. calculate_SCARA_forward_Transform(delta);
  4744. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4745. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4746. prepare_move();
  4747. //ok_to_send();
  4748. return true;
  4749. }
  4750. return false;
  4751. }
  4752. /**
  4753. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4754. */
  4755. inline bool gcode_M360() {
  4756. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4757. return SCARA_move_to_cal(0, 120);
  4758. }
  4759. /**
  4760. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4761. */
  4762. inline bool gcode_M361() {
  4763. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4764. return SCARA_move_to_cal(90, 130);
  4765. }
  4766. /**
  4767. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4768. */
  4769. inline bool gcode_M362() {
  4770. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4771. return SCARA_move_to_cal(60, 180);
  4772. }
  4773. /**
  4774. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4775. */
  4776. inline bool gcode_M363() {
  4777. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4778. return SCARA_move_to_cal(50, 90);
  4779. }
  4780. /**
  4781. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4782. */
  4783. inline bool gcode_M364() {
  4784. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4785. return SCARA_move_to_cal(45, 135);
  4786. }
  4787. /**
  4788. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4789. */
  4790. inline void gcode_M365() {
  4791. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4792. if (code_seen(axis_codes[i])) {
  4793. axis_scaling[i] = code_value();
  4794. }
  4795. }
  4796. }
  4797. #endif // SCARA
  4798. #if ENABLED(EXT_SOLENOID)
  4799. void enable_solenoid(uint8_t num) {
  4800. switch (num) {
  4801. case 0:
  4802. OUT_WRITE(SOL0_PIN, HIGH);
  4803. break;
  4804. #if HAS_SOLENOID_1
  4805. case 1:
  4806. OUT_WRITE(SOL1_PIN, HIGH);
  4807. break;
  4808. #endif
  4809. #if HAS_SOLENOID_2
  4810. case 2:
  4811. OUT_WRITE(SOL2_PIN, HIGH);
  4812. break;
  4813. #endif
  4814. #if HAS_SOLENOID_3
  4815. case 3:
  4816. OUT_WRITE(SOL3_PIN, HIGH);
  4817. break;
  4818. #endif
  4819. default:
  4820. SERIAL_ECHO_START;
  4821. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4822. break;
  4823. }
  4824. }
  4825. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4826. void disable_all_solenoids() {
  4827. OUT_WRITE(SOL0_PIN, LOW);
  4828. OUT_WRITE(SOL1_PIN, LOW);
  4829. OUT_WRITE(SOL2_PIN, LOW);
  4830. OUT_WRITE(SOL3_PIN, LOW);
  4831. }
  4832. /**
  4833. * M380: Enable solenoid on the active extruder
  4834. */
  4835. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4836. /**
  4837. * M381: Disable all solenoids
  4838. */
  4839. inline void gcode_M381() { disable_all_solenoids(); }
  4840. #endif // EXT_SOLENOID
  4841. /**
  4842. * M400: Finish all moves
  4843. */
  4844. inline void gcode_M400() { st_synchronize(); }
  4845. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4846. /**
  4847. * M401: Engage Z Servo endstop if available
  4848. */
  4849. inline void gcode_M401() {
  4850. #if HAS_SERVO_ENDSTOPS
  4851. raise_z_for_servo();
  4852. #endif
  4853. deploy_z_probe();
  4854. }
  4855. /**
  4856. * M402: Retract Z Servo endstop if enabled
  4857. */
  4858. inline void gcode_M402() {
  4859. #if HAS_SERVO_ENDSTOPS
  4860. raise_z_for_servo();
  4861. #endif
  4862. stow_z_probe(false);
  4863. }
  4864. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4865. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4866. /**
  4867. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4868. */
  4869. inline void gcode_M404() {
  4870. if (code_seen('W')) {
  4871. filament_width_nominal = code_value();
  4872. }
  4873. else {
  4874. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4875. SERIAL_PROTOCOLLN(filament_width_nominal);
  4876. }
  4877. }
  4878. /**
  4879. * M405: Turn on filament sensor for control
  4880. */
  4881. inline void gcode_M405() {
  4882. if (code_seen('D')) meas_delay_cm = code_value();
  4883. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4884. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4885. int temp_ratio = widthFil_to_size_ratio();
  4886. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4887. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4888. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4889. }
  4890. filament_sensor = true;
  4891. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4892. //SERIAL_PROTOCOL(filament_width_meas);
  4893. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4894. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4895. }
  4896. /**
  4897. * M406: Turn off filament sensor for control
  4898. */
  4899. inline void gcode_M406() { filament_sensor = false; }
  4900. /**
  4901. * M407: Get measured filament diameter on serial output
  4902. */
  4903. inline void gcode_M407() {
  4904. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4905. SERIAL_PROTOCOLLN(filament_width_meas);
  4906. }
  4907. #endif // FILAMENT_WIDTH_SENSOR
  4908. /**
  4909. * M410: Quickstop - Abort all planned moves
  4910. *
  4911. * This will stop the carriages mid-move, so most likely they
  4912. * will be out of sync with the stepper position after this.
  4913. */
  4914. inline void gcode_M410() { quickStop(); }
  4915. #if ENABLED(MESH_BED_LEVELING)
  4916. /**
  4917. * M420: Enable/Disable Mesh Bed Leveling
  4918. */
  4919. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4920. /**
  4921. * M421: Set a single Mesh Bed Leveling Z coordinate
  4922. */
  4923. inline void gcode_M421() {
  4924. float x = 0, y = 0, z = 0;
  4925. bool err = false, hasX, hasY, hasZ;
  4926. if ((hasX = code_seen('X'))) x = code_value();
  4927. if ((hasY = code_seen('Y'))) y = code_value();
  4928. if ((hasZ = code_seen('Z'))) z = code_value();
  4929. if (!hasX || !hasY || !hasZ) {
  4930. SERIAL_ERROR_START;
  4931. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4932. err = true;
  4933. }
  4934. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4935. SERIAL_ERROR_START;
  4936. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4937. err = true;
  4938. }
  4939. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4940. }
  4941. #endif
  4942. /**
  4943. * M428: Set home_offset based on the distance between the
  4944. * current_position and the nearest "reference point."
  4945. * If an axis is past center its endstop position
  4946. * is the reference-point. Otherwise it uses 0. This allows
  4947. * the Z offset to be set near the bed when using a max endstop.
  4948. *
  4949. * M428 can't be used more than 2cm away from 0 or an endstop.
  4950. *
  4951. * Use M206 to set these values directly.
  4952. */
  4953. inline void gcode_M428() {
  4954. bool err = false;
  4955. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4956. if (axis_homed[i]) {
  4957. float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4958. diff = current_position[i] - base;
  4959. if (diff > -20 && diff < 20) {
  4960. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4961. }
  4962. else {
  4963. SERIAL_ERROR_START;
  4964. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4965. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4966. #if HAS_BUZZER
  4967. buzz(200, 40);
  4968. #endif
  4969. err = true;
  4970. break;
  4971. }
  4972. }
  4973. }
  4974. if (!err) {
  4975. sync_plan_position();
  4976. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4977. #if HAS_BUZZER
  4978. buzz(200, 659);
  4979. buzz(200, 698);
  4980. #endif
  4981. }
  4982. }
  4983. /**
  4984. * M500: Store settings in EEPROM
  4985. */
  4986. inline void gcode_M500() {
  4987. Config_StoreSettings();
  4988. }
  4989. /**
  4990. * M501: Read settings from EEPROM
  4991. */
  4992. inline void gcode_M501() {
  4993. Config_RetrieveSettings();
  4994. }
  4995. /**
  4996. * M502: Revert to default settings
  4997. */
  4998. inline void gcode_M502() {
  4999. Config_ResetDefault();
  5000. }
  5001. /**
  5002. * M503: print settings currently in memory
  5003. */
  5004. inline void gcode_M503() {
  5005. Config_PrintSettings(code_seen('S') && code_value() == 0);
  5006. }
  5007. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5008. /**
  5009. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5010. */
  5011. inline void gcode_M540() {
  5012. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  5013. }
  5014. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5015. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5016. inline void gcode_SET_Z_PROBE_OFFSET() {
  5017. SERIAL_ECHO_START;
  5018. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5019. SERIAL_CHAR(' ');
  5020. if (code_seen('Z')) {
  5021. float value = code_value();
  5022. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5023. zprobe_zoffset = value;
  5024. SERIAL_ECHO(zprobe_zoffset);
  5025. }
  5026. else {
  5027. SERIAL_ECHOPGM(MSG_Z_MIN);
  5028. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5029. SERIAL_ECHOPGM(MSG_Z_MAX);
  5030. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5031. }
  5032. }
  5033. else {
  5034. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5035. }
  5036. SERIAL_EOL;
  5037. }
  5038. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5039. #if ENABLED(FILAMENTCHANGEENABLE)
  5040. /**
  5041. * M600: Pause for filament change
  5042. *
  5043. * E[distance] - Retract the filament this far (negative value)
  5044. * Z[distance] - Move the Z axis by this distance
  5045. * X[position] - Move to this X position, with Y
  5046. * Y[position] - Move to this Y position, with X
  5047. * L[distance] - Retract distance for removal (manual reload)
  5048. *
  5049. * Default values are used for omitted arguments.
  5050. *
  5051. */
  5052. inline void gcode_M600() {
  5053. if (degHotend(active_extruder) < extrude_min_temp) {
  5054. SERIAL_ERROR_START;
  5055. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5056. return;
  5057. }
  5058. float lastpos[NUM_AXIS];
  5059. #if ENABLED(DELTA)
  5060. float fr60 = feedrate / 60;
  5061. #endif
  5062. for (int i = 0; i < NUM_AXIS; i++)
  5063. lastpos[i] = destination[i] = current_position[i];
  5064. #if ENABLED(DELTA)
  5065. #define RUNPLAN calculate_delta(destination); \
  5066. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5067. #else
  5068. #define RUNPLAN line_to_destination();
  5069. #endif
  5070. //retract by E
  5071. if (code_seen('E')) destination[E_AXIS] += code_value();
  5072. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  5073. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  5074. #endif
  5075. RUNPLAN;
  5076. //lift Z
  5077. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5078. #ifdef FILAMENTCHANGE_ZADD
  5079. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5080. #endif
  5081. RUNPLAN;
  5082. //move xy
  5083. if (code_seen('X')) destination[X_AXIS] = code_value();
  5084. #ifdef FILAMENTCHANGE_XPOS
  5085. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5086. #endif
  5087. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5088. #ifdef FILAMENTCHANGE_YPOS
  5089. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5090. #endif
  5091. RUNPLAN;
  5092. if (code_seen('L')) destination[E_AXIS] += code_value();
  5093. #ifdef FILAMENTCHANGE_FINALRETRACT
  5094. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5095. #endif
  5096. RUNPLAN;
  5097. //finish moves
  5098. st_synchronize();
  5099. //disable extruder steppers so filament can be removed
  5100. disable_e0();
  5101. disable_e1();
  5102. disable_e2();
  5103. disable_e3();
  5104. delay(100);
  5105. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5106. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5107. millis_t next_tick = 0;
  5108. #endif
  5109. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5110. while (!lcd_clicked()) {
  5111. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5112. millis_t ms = millis();
  5113. if (ELAPSED(ms, next_tick)) {
  5114. lcd_quick_feedback();
  5115. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5116. }
  5117. idle(true);
  5118. #else
  5119. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5120. destination[E_AXIS] = current_position[E_AXIS];
  5121. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5122. st_synchronize();
  5123. #endif
  5124. } // while(!lcd_clicked)
  5125. KEEPALIVE_STATE(IN_HANDLER);
  5126. lcd_quick_feedback(); // click sound feedback
  5127. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5128. current_position[E_AXIS] = 0;
  5129. st_synchronize();
  5130. #endif
  5131. //return to normal
  5132. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5133. #ifdef FILAMENTCHANGE_FINALRETRACT
  5134. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5135. #endif
  5136. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5137. plan_set_e_position(current_position[E_AXIS]);
  5138. RUNPLAN; //should do nothing
  5139. lcd_reset_alert_level();
  5140. #if ENABLED(DELTA)
  5141. // Move XYZ to starting position, then E
  5142. calculate_delta(lastpos);
  5143. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5144. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5145. #else
  5146. // Move XY to starting position, then Z, then E
  5147. destination[X_AXIS] = lastpos[X_AXIS];
  5148. destination[Y_AXIS] = lastpos[Y_AXIS];
  5149. line_to_destination();
  5150. destination[Z_AXIS] = lastpos[Z_AXIS];
  5151. line_to_destination();
  5152. destination[E_AXIS] = lastpos[E_AXIS];
  5153. line_to_destination();
  5154. #endif
  5155. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5156. filrunoutEnqueued = false;
  5157. #endif
  5158. }
  5159. #endif // FILAMENTCHANGEENABLE
  5160. #if ENABLED(DUAL_X_CARRIAGE)
  5161. /**
  5162. * M605: Set dual x-carriage movement mode
  5163. *
  5164. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5165. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5166. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5167. * millimeters x-offset and an optional differential hotend temperature of
  5168. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5169. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5170. *
  5171. * Note: the X axis should be homed after changing dual x-carriage mode.
  5172. */
  5173. inline void gcode_M605() {
  5174. st_synchronize();
  5175. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5176. switch (dual_x_carriage_mode) {
  5177. case DXC_DUPLICATION_MODE:
  5178. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5179. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5180. SERIAL_ECHO_START;
  5181. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5182. SERIAL_CHAR(' ');
  5183. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5184. SERIAL_CHAR(',');
  5185. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5186. SERIAL_CHAR(' ');
  5187. SERIAL_ECHO(duplicate_extruder_x_offset);
  5188. SERIAL_CHAR(',');
  5189. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5190. break;
  5191. case DXC_FULL_CONTROL_MODE:
  5192. case DXC_AUTO_PARK_MODE:
  5193. break;
  5194. default:
  5195. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5196. break;
  5197. }
  5198. active_extruder_parked = false;
  5199. extruder_duplication_enabled = false;
  5200. delayed_move_time = 0;
  5201. }
  5202. #endif // DUAL_X_CARRIAGE
  5203. /**
  5204. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5205. */
  5206. inline void gcode_M907() {
  5207. #if HAS_DIGIPOTSS
  5208. for (int i = 0; i < NUM_AXIS; i++)
  5209. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5210. if (code_seen('B')) digipot_current(4, code_value());
  5211. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5212. #endif
  5213. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5214. if (code_seen('X')) digipot_current(0, code_value());
  5215. #endif
  5216. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5217. if (code_seen('Z')) digipot_current(1, code_value());
  5218. #endif
  5219. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5220. if (code_seen('E')) digipot_current(2, code_value());
  5221. #endif
  5222. #if ENABLED(DIGIPOT_I2C)
  5223. // this one uses actual amps in floating point
  5224. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5225. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5226. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5227. #endif
  5228. #if ENABLED(DAC_STEPPER_CURRENT)
  5229. if (code_seen('S')) {
  5230. float dac_percent = code_value();
  5231. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5232. }
  5233. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5234. #endif
  5235. }
  5236. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5237. /**
  5238. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5239. */
  5240. inline void gcode_M908() {
  5241. #if HAS_DIGIPOTSS
  5242. digitalPotWrite(
  5243. code_seen('P') ? code_value() : 0,
  5244. code_seen('S') ? code_value() : 0
  5245. );
  5246. #endif
  5247. #ifdef DAC_STEPPER_CURRENT
  5248. dac_current_raw(
  5249. code_seen('P') ? code_value_long() : -1,
  5250. code_seen('S') ? code_value_short() : 0
  5251. );
  5252. #endif
  5253. }
  5254. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5255. inline void gcode_M909() { dac_print_values(); }
  5256. inline void gcode_M910() { dac_commit_eeprom(); }
  5257. #endif
  5258. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5259. #if HAS_MICROSTEPS
  5260. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5261. inline void gcode_M350() {
  5262. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5263. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5264. if (code_seen('B')) microstep_mode(4, code_value());
  5265. microstep_readings();
  5266. }
  5267. /**
  5268. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5269. * S# determines MS1 or MS2, X# sets the pin high/low.
  5270. */
  5271. inline void gcode_M351() {
  5272. if (code_seen('S')) switch (code_value_short()) {
  5273. case 1:
  5274. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5275. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5276. break;
  5277. case 2:
  5278. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5279. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5280. break;
  5281. }
  5282. microstep_readings();
  5283. }
  5284. #endif // HAS_MICROSTEPS
  5285. /**
  5286. * M999: Restart after being stopped
  5287. */
  5288. inline void gcode_M999() {
  5289. Running = true;
  5290. lcd_reset_alert_level();
  5291. // gcode_LastN = Stopped_gcode_LastN;
  5292. FlushSerialRequestResend();
  5293. }
  5294. /**
  5295. * T0-T3: Switch tool, usually switching extruders
  5296. *
  5297. * F[mm/min] Set the movement feedrate
  5298. */
  5299. inline void gcode_T(uint8_t tmp_extruder) {
  5300. if (tmp_extruder >= EXTRUDERS) {
  5301. SERIAL_ECHO_START;
  5302. SERIAL_CHAR('T');
  5303. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5304. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5305. }
  5306. else {
  5307. target_extruder = tmp_extruder;
  5308. #if EXTRUDERS > 1
  5309. bool make_move = false;
  5310. #endif
  5311. if (code_seen('F')) {
  5312. #if EXTRUDERS > 1
  5313. make_move = true;
  5314. #endif
  5315. float next_feedrate = code_value();
  5316. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5317. }
  5318. #if EXTRUDERS > 1
  5319. if (tmp_extruder != active_extruder) {
  5320. // Save current position to return to after applying extruder offset
  5321. set_destination_to_current();
  5322. #if ENABLED(DUAL_X_CARRIAGE)
  5323. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5324. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5325. // Park old head: 1) raise 2) move to park position 3) lower
  5326. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5327. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5328. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5329. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5330. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5331. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5332. st_synchronize();
  5333. }
  5334. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5335. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5336. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5337. active_extruder = tmp_extruder;
  5338. // This function resets the max/min values - the current position may be overwritten below.
  5339. set_axis_is_at_home(X_AXIS);
  5340. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5341. current_position[X_AXIS] = inactive_extruder_x_pos;
  5342. inactive_extruder_x_pos = destination[X_AXIS];
  5343. }
  5344. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5345. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5346. if (active_extruder == 0 || active_extruder_parked)
  5347. current_position[X_AXIS] = inactive_extruder_x_pos;
  5348. else
  5349. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5350. inactive_extruder_x_pos = destination[X_AXIS];
  5351. extruder_duplication_enabled = false;
  5352. }
  5353. else {
  5354. // record raised toolhead position for use by unpark
  5355. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5356. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5357. active_extruder_parked = true;
  5358. delayed_move_time = 0;
  5359. }
  5360. #else // !DUAL_X_CARRIAGE
  5361. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5362. // Offset extruder, make sure to apply the bed level rotation matrix
  5363. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5364. extruder_offset[Y_AXIS][tmp_extruder],
  5365. 0),
  5366. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5367. extruder_offset[Y_AXIS][active_extruder],
  5368. 0),
  5369. offset_vec = tmp_offset_vec - act_offset_vec;
  5370. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5371. if (DEBUGGING(LEVELING)) {
  5372. SERIAL_ECHOLNPGM(">>> gcode_T");
  5373. tmp_offset_vec.debug("tmp_offset_vec");
  5374. act_offset_vec.debug("act_offset_vec");
  5375. offset_vec.debug("offset_vec (BEFORE)");
  5376. DEBUG_POS("BEFORE rotation", current_position);
  5377. }
  5378. #endif
  5379. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5380. current_position[X_AXIS] += offset_vec.x;
  5381. current_position[Y_AXIS] += offset_vec.y;
  5382. current_position[Z_AXIS] += offset_vec.z;
  5383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5384. if (DEBUGGING(LEVELING)) {
  5385. offset_vec.debug("offset_vec (AFTER)");
  5386. DEBUG_POS("AFTER rotation", current_position);
  5387. SERIAL_ECHOLNPGM("<<< gcode_T");
  5388. }
  5389. #endif
  5390. #else // !AUTO_BED_LEVELING_FEATURE
  5391. // Offset extruder (only by XY)
  5392. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5393. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5394. #endif // !AUTO_BED_LEVELING_FEATURE
  5395. // Set the new active extruder and position
  5396. active_extruder = tmp_extruder;
  5397. #endif // !DUAL_X_CARRIAGE
  5398. #if ENABLED(DELTA)
  5399. sync_plan_position_delta();
  5400. #else
  5401. sync_plan_position();
  5402. #endif
  5403. // Move to the old position if 'F' was in the parameters
  5404. if (make_move && IsRunning()) prepare_move();
  5405. }
  5406. #if ENABLED(EXT_SOLENOID)
  5407. st_synchronize();
  5408. disable_all_solenoids();
  5409. enable_solenoid_on_active_extruder();
  5410. #endif // EXT_SOLENOID
  5411. #endif // EXTRUDERS > 1
  5412. SERIAL_ECHO_START;
  5413. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5414. SERIAL_PROTOCOLLN((int)active_extruder);
  5415. }
  5416. }
  5417. /**
  5418. * Process a single command and dispatch it to its handler
  5419. * This is called from the main loop()
  5420. */
  5421. void process_next_command() {
  5422. current_command = command_queue[cmd_queue_index_r];
  5423. if (DEBUGGING(ECHO)) {
  5424. SERIAL_ECHO_START;
  5425. SERIAL_ECHOLN(current_command);
  5426. }
  5427. // Sanitize the current command:
  5428. // - Skip leading spaces
  5429. // - Bypass N[-0-9][0-9]*[ ]*
  5430. // - Overwrite * with nul to mark the end
  5431. while (*current_command == ' ') ++current_command;
  5432. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5433. current_command += 2; // skip N[-0-9]
  5434. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5435. while (*current_command == ' ') ++current_command; // skip [ ]*
  5436. }
  5437. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5438. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5439. char *cmd_ptr = current_command;
  5440. // Get the command code, which must be G, M, or T
  5441. char command_code = *cmd_ptr++;
  5442. // Skip spaces to get the numeric part
  5443. while (*cmd_ptr == ' ') cmd_ptr++;
  5444. uint16_t codenum = 0; // define ahead of goto
  5445. // Bail early if there's no code
  5446. bool code_is_good = NUMERIC(*cmd_ptr);
  5447. if (!code_is_good) goto ExitUnknownCommand;
  5448. // Get and skip the code number
  5449. do {
  5450. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5451. cmd_ptr++;
  5452. } while (NUMERIC(*cmd_ptr));
  5453. // Skip all spaces to get to the first argument, or nul
  5454. while (*cmd_ptr == ' ') cmd_ptr++;
  5455. // The command's arguments (if any) start here, for sure!
  5456. current_command_args = cmd_ptr;
  5457. KEEPALIVE_STATE(IN_HANDLER);
  5458. // Handle a known G, M, or T
  5459. switch (command_code) {
  5460. case 'G': switch (codenum) {
  5461. // G0, G1
  5462. case 0:
  5463. case 1:
  5464. gcode_G0_G1();
  5465. break;
  5466. // G2, G3
  5467. #if DISABLED(SCARA)
  5468. case 2: // G2 - CW ARC
  5469. case 3: // G3 - CCW ARC
  5470. gcode_G2_G3(codenum == 2);
  5471. break;
  5472. #endif
  5473. // G4 Dwell
  5474. case 4:
  5475. gcode_G4();
  5476. break;
  5477. #if ENABLED(FWRETRACT)
  5478. case 10: // G10: retract
  5479. case 11: // G11: retract_recover
  5480. gcode_G10_G11(codenum == 10);
  5481. break;
  5482. #endif //FWRETRACT
  5483. case 28: // G28: Home all axes, one at a time
  5484. gcode_G28();
  5485. break;
  5486. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5487. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5488. gcode_G29();
  5489. break;
  5490. #endif
  5491. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5492. #if DISABLED(Z_PROBE_SLED)
  5493. case 30: // G30 Single Z probe
  5494. gcode_G30();
  5495. break;
  5496. #else // Z_PROBE_SLED
  5497. case 31: // G31: dock the sled
  5498. case 32: // G32: undock the sled
  5499. dock_sled(codenum == 31);
  5500. break;
  5501. #endif // Z_PROBE_SLED
  5502. #endif // AUTO_BED_LEVELING_FEATURE
  5503. case 90: // G90
  5504. relative_mode = false;
  5505. break;
  5506. case 91: // G91
  5507. relative_mode = true;
  5508. break;
  5509. case 92: // G92
  5510. gcode_G92();
  5511. break;
  5512. }
  5513. break;
  5514. case 'M': switch (codenum) {
  5515. #if ENABLED(ULTIPANEL)
  5516. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5517. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5518. gcode_M0_M1();
  5519. break;
  5520. #endif // ULTIPANEL
  5521. case 17:
  5522. gcode_M17();
  5523. break;
  5524. #if ENABLED(SDSUPPORT)
  5525. case 20: // M20 - list SD card
  5526. gcode_M20(); break;
  5527. case 21: // M21 - init SD card
  5528. gcode_M21(); break;
  5529. case 22: //M22 - release SD card
  5530. gcode_M22(); break;
  5531. case 23: //M23 - Select file
  5532. gcode_M23(); break;
  5533. case 24: //M24 - Start SD print
  5534. gcode_M24(); break;
  5535. case 25: //M25 - Pause SD print
  5536. gcode_M25(); break;
  5537. case 26: //M26 - Set SD index
  5538. gcode_M26(); break;
  5539. case 27: //M27 - Get SD status
  5540. gcode_M27(); break;
  5541. case 28: //M28 - Start SD write
  5542. gcode_M28(); break;
  5543. case 29: //M29 - Stop SD write
  5544. gcode_M29(); break;
  5545. case 30: //M30 <filename> Delete File
  5546. gcode_M30(); break;
  5547. case 32: //M32 - Select file and start SD print
  5548. gcode_M32(); break;
  5549. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5550. case 33: //M33 - Get the long full path to a file or folder
  5551. gcode_M33(); break;
  5552. #endif // LONG_FILENAME_HOST_SUPPORT
  5553. case 928: //M928 - Start SD write
  5554. gcode_M928(); break;
  5555. #endif //SDSUPPORT
  5556. case 31: //M31 take time since the start of the SD print or an M109 command
  5557. gcode_M31();
  5558. break;
  5559. case 42: //M42 -Change pin status via gcode
  5560. gcode_M42();
  5561. break;
  5562. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5563. case 48: // M48 Z probe repeatability
  5564. gcode_M48();
  5565. break;
  5566. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5567. case 75: // Start print timer
  5568. gcode_M75();
  5569. break;
  5570. case 76: // Pause print timer
  5571. gcode_M76();
  5572. break;
  5573. case 77: // Stop print timer
  5574. gcode_M77();
  5575. break;
  5576. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5577. case 100:
  5578. gcode_M100();
  5579. break;
  5580. #endif
  5581. case 104: // M104
  5582. gcode_M104();
  5583. break;
  5584. case 110: // M110: Set Current Line Number
  5585. gcode_M110();
  5586. break;
  5587. case 111: // M111: Set debug level
  5588. gcode_M111();
  5589. break;
  5590. case 112: // M112: Emergency Stop
  5591. gcode_M112();
  5592. break;
  5593. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5594. case 113: // M113: Set Host Keepalive interval
  5595. gcode_M113();
  5596. break;
  5597. #endif
  5598. case 140: // M140: Set bed temp
  5599. gcode_M140();
  5600. break;
  5601. case 105: // M105: Read current temperature
  5602. gcode_M105();
  5603. KEEPALIVE_STATE(NOT_BUSY);
  5604. return; // "ok" already printed
  5605. case 109: // M109: Wait for temperature
  5606. gcode_M109();
  5607. break;
  5608. #if HAS_TEMP_BED
  5609. case 190: // M190: Wait for bed heater to reach target
  5610. gcode_M190();
  5611. break;
  5612. #endif // HAS_TEMP_BED
  5613. #if FAN_COUNT > 0
  5614. case 106: // M106: Fan On
  5615. gcode_M106();
  5616. break;
  5617. case 107: // M107: Fan Off
  5618. gcode_M107();
  5619. break;
  5620. #endif // FAN_COUNT > 0
  5621. #if ENABLED(BARICUDA)
  5622. // PWM for HEATER_1_PIN
  5623. #if HAS_HEATER_1
  5624. case 126: // M126: valve open
  5625. gcode_M126();
  5626. break;
  5627. case 127: // M127: valve closed
  5628. gcode_M127();
  5629. break;
  5630. #endif // HAS_HEATER_1
  5631. // PWM for HEATER_2_PIN
  5632. #if HAS_HEATER_2
  5633. case 128: // M128: valve open
  5634. gcode_M128();
  5635. break;
  5636. case 129: // M129: valve closed
  5637. gcode_M129();
  5638. break;
  5639. #endif // HAS_HEATER_2
  5640. #endif // BARICUDA
  5641. #if HAS_POWER_SWITCH
  5642. case 80: // M80: Turn on Power Supply
  5643. gcode_M80();
  5644. break;
  5645. #endif // HAS_POWER_SWITCH
  5646. case 81: // M81: Turn off Power, including Power Supply, if possible
  5647. gcode_M81();
  5648. break;
  5649. case 82:
  5650. gcode_M82();
  5651. break;
  5652. case 83:
  5653. gcode_M83();
  5654. break;
  5655. case 18: // (for compatibility)
  5656. case 84: // M84
  5657. gcode_M18_M84();
  5658. break;
  5659. case 85: // M85
  5660. gcode_M85();
  5661. break;
  5662. case 92: // M92: Set the steps-per-unit for one or more axes
  5663. gcode_M92();
  5664. break;
  5665. case 115: // M115: Report capabilities
  5666. gcode_M115();
  5667. break;
  5668. case 117: // M117: Set LCD message text, if possible
  5669. gcode_M117();
  5670. break;
  5671. case 114: // M114: Report current position
  5672. gcode_M114();
  5673. break;
  5674. case 120: // M120: Enable endstops
  5675. gcode_M120();
  5676. break;
  5677. case 121: // M121: Disable endstops
  5678. gcode_M121();
  5679. break;
  5680. case 119: // M119: Report endstop states
  5681. gcode_M119();
  5682. break;
  5683. #if ENABLED(ULTIPANEL)
  5684. case 145: // M145: Set material heatup parameters
  5685. gcode_M145();
  5686. break;
  5687. #endif
  5688. #if ENABLED(BLINKM)
  5689. case 150: // M150
  5690. gcode_M150();
  5691. break;
  5692. #endif //BLINKM
  5693. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5694. case 155:
  5695. gcode_M155();
  5696. break;
  5697. case 156:
  5698. gcode_M156();
  5699. break;
  5700. #endif //EXPERIMENTAL_I2CBUS
  5701. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5702. gcode_M200();
  5703. break;
  5704. case 201: // M201
  5705. gcode_M201();
  5706. break;
  5707. #if 0 // Not used for Sprinter/grbl gen6
  5708. case 202: // M202
  5709. gcode_M202();
  5710. break;
  5711. #endif
  5712. case 203: // M203 max feedrate mm/sec
  5713. gcode_M203();
  5714. break;
  5715. case 204: // M204 acclereration S normal moves T filmanent only moves
  5716. gcode_M204();
  5717. break;
  5718. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5719. gcode_M205();
  5720. break;
  5721. case 206: // M206 additional homing offset
  5722. gcode_M206();
  5723. break;
  5724. #if ENABLED(DELTA)
  5725. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5726. gcode_M665();
  5727. break;
  5728. #endif
  5729. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5730. case 666: // M666 set delta / dual endstop adjustment
  5731. gcode_M666();
  5732. break;
  5733. #endif
  5734. #if ENABLED(FWRETRACT)
  5735. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5736. gcode_M207();
  5737. break;
  5738. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5739. gcode_M208();
  5740. break;
  5741. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5742. gcode_M209();
  5743. break;
  5744. #endif // FWRETRACT
  5745. #if EXTRUDERS > 1
  5746. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5747. gcode_M218();
  5748. break;
  5749. #endif
  5750. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5751. gcode_M220();
  5752. break;
  5753. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5754. gcode_M221();
  5755. break;
  5756. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5757. gcode_M226();
  5758. break;
  5759. #if HAS_SERVOS
  5760. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5761. gcode_M280();
  5762. break;
  5763. #endif // HAS_SERVOS
  5764. #if HAS_BUZZER
  5765. case 300: // M300 - Play beep tone
  5766. gcode_M300();
  5767. break;
  5768. #endif // HAS_BUZZER
  5769. #if ENABLED(PIDTEMP)
  5770. case 301: // M301
  5771. gcode_M301();
  5772. break;
  5773. #endif // PIDTEMP
  5774. #if ENABLED(PIDTEMPBED)
  5775. case 304: // M304
  5776. gcode_M304();
  5777. break;
  5778. #endif // PIDTEMPBED
  5779. #if defined(CHDK) || HAS_PHOTOGRAPH
  5780. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5781. gcode_M240();
  5782. break;
  5783. #endif // CHDK || PHOTOGRAPH_PIN
  5784. #if ENABLED(HAS_LCD_CONTRAST)
  5785. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5786. gcode_M250();
  5787. break;
  5788. #endif // HAS_LCD_CONTRAST
  5789. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5790. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5791. gcode_M302();
  5792. break;
  5793. #endif // PREVENT_DANGEROUS_EXTRUDE
  5794. case 303: // M303 PID autotune
  5795. gcode_M303();
  5796. break;
  5797. #if ENABLED(SCARA)
  5798. case 360: // M360 SCARA Theta pos1
  5799. if (gcode_M360()) return;
  5800. break;
  5801. case 361: // M361 SCARA Theta pos2
  5802. if (gcode_M361()) return;
  5803. break;
  5804. case 362: // M362 SCARA Psi pos1
  5805. if (gcode_M362()) return;
  5806. break;
  5807. case 363: // M363 SCARA Psi pos2
  5808. if (gcode_M363()) return;
  5809. break;
  5810. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5811. if (gcode_M364()) return;
  5812. break;
  5813. case 365: // M365 Set SCARA scaling for X Y Z
  5814. gcode_M365();
  5815. break;
  5816. #endif // SCARA
  5817. case 400: // M400 finish all moves
  5818. gcode_M400();
  5819. break;
  5820. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5821. case 401:
  5822. gcode_M401();
  5823. break;
  5824. case 402:
  5825. gcode_M402();
  5826. break;
  5827. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5828. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5829. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5830. gcode_M404();
  5831. break;
  5832. case 405: //M405 Turn on filament sensor for control
  5833. gcode_M405();
  5834. break;
  5835. case 406: //M406 Turn off filament sensor for control
  5836. gcode_M406();
  5837. break;
  5838. case 407: //M407 Display measured filament diameter
  5839. gcode_M407();
  5840. break;
  5841. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5842. case 410: // M410 quickstop - Abort all the planned moves.
  5843. gcode_M410();
  5844. break;
  5845. #if ENABLED(MESH_BED_LEVELING)
  5846. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5847. gcode_M420();
  5848. break;
  5849. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5850. gcode_M421();
  5851. break;
  5852. #endif
  5853. case 428: // M428 Apply current_position to home_offset
  5854. gcode_M428();
  5855. break;
  5856. case 500: // M500 Store settings in EEPROM
  5857. gcode_M500();
  5858. break;
  5859. case 501: // M501 Read settings from EEPROM
  5860. gcode_M501();
  5861. break;
  5862. case 502: // M502 Revert to default settings
  5863. gcode_M502();
  5864. break;
  5865. case 503: // M503 print settings currently in memory
  5866. gcode_M503();
  5867. break;
  5868. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5869. case 540:
  5870. gcode_M540();
  5871. break;
  5872. #endif
  5873. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5874. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5875. gcode_SET_Z_PROBE_OFFSET();
  5876. break;
  5877. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5878. #if ENABLED(FILAMENTCHANGEENABLE)
  5879. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5880. gcode_M600();
  5881. break;
  5882. #endif // FILAMENTCHANGEENABLE
  5883. #if ENABLED(DUAL_X_CARRIAGE)
  5884. case 605:
  5885. gcode_M605();
  5886. break;
  5887. #endif // DUAL_X_CARRIAGE
  5888. case 907: // M907 Set digital trimpot motor current using axis codes.
  5889. gcode_M907();
  5890. break;
  5891. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5892. case 908: // M908 Control digital trimpot directly.
  5893. gcode_M908();
  5894. break;
  5895. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5896. case 909: // M909 Print digipot/DAC current value
  5897. gcode_M909();
  5898. break;
  5899. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5900. gcode_M910();
  5901. break;
  5902. #endif
  5903. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5904. #if HAS_MICROSTEPS
  5905. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5906. gcode_M350();
  5907. break;
  5908. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5909. gcode_M351();
  5910. break;
  5911. #endif // HAS_MICROSTEPS
  5912. case 999: // M999: Restart after being Stopped
  5913. gcode_M999();
  5914. break;
  5915. }
  5916. break;
  5917. case 'T':
  5918. gcode_T(codenum);
  5919. break;
  5920. default: code_is_good = false;
  5921. }
  5922. KEEPALIVE_STATE(NOT_BUSY);
  5923. ExitUnknownCommand:
  5924. // Still unknown command? Throw an error
  5925. if (!code_is_good) unknown_command_error();
  5926. ok_to_send();
  5927. }
  5928. void FlushSerialRequestResend() {
  5929. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5930. MYSERIAL.flush();
  5931. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5932. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5933. ok_to_send();
  5934. }
  5935. void ok_to_send() {
  5936. refresh_cmd_timeout();
  5937. if (!send_ok[cmd_queue_index_r]) return;
  5938. SERIAL_PROTOCOLPGM(MSG_OK);
  5939. #if ENABLED(ADVANCED_OK)
  5940. char* p = command_queue[cmd_queue_index_r];
  5941. if (*p == 'N') {
  5942. SERIAL_PROTOCOL(' ');
  5943. SERIAL_ECHO(*p++);
  5944. while (NUMERIC_SIGNED(*p))
  5945. SERIAL_ECHO(*p++);
  5946. }
  5947. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5948. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5949. #endif
  5950. SERIAL_EOL;
  5951. }
  5952. void clamp_to_software_endstops(float target[3]) {
  5953. if (min_software_endstops) {
  5954. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5955. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5956. float negative_z_offset = 0;
  5957. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5958. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5959. if (home_offset[Z_AXIS] < 0) {
  5960. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5961. if (DEBUGGING(LEVELING)) {
  5962. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5963. SERIAL_EOL;
  5964. }
  5965. #endif
  5966. negative_z_offset += home_offset[Z_AXIS];
  5967. }
  5968. #endif
  5969. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5970. }
  5971. if (max_software_endstops) {
  5972. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5973. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5974. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5975. }
  5976. }
  5977. #if ENABLED(DELTA)
  5978. void recalc_delta_settings(float radius, float diagonal_rod) {
  5979. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5980. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5981. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5982. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5983. delta_tower3_x = 0.0; // back middle tower
  5984. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5985. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5986. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5987. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5988. }
  5989. void calculate_delta(float cartesian[3]) {
  5990. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5991. - sq(delta_tower1_x - cartesian[X_AXIS])
  5992. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5993. ) + cartesian[Z_AXIS];
  5994. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5995. - sq(delta_tower2_x - cartesian[X_AXIS])
  5996. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5997. ) + cartesian[Z_AXIS];
  5998. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5999. - sq(delta_tower3_x - cartesian[X_AXIS])
  6000. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6001. ) + cartesian[Z_AXIS];
  6002. /**
  6003. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6004. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6005. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6006. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6007. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6008. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6009. */
  6010. }
  6011. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6012. // Adjust print surface height by linear interpolation over the bed_level array.
  6013. void adjust_delta(float cartesian[3]) {
  6014. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6015. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6016. float h1 = 0.001 - half, h2 = half - 0.001,
  6017. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6018. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6019. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6020. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6021. z1 = bed_level[floor_x + half][floor_y + half],
  6022. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6023. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6024. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6025. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6026. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6027. offset = (1 - ratio_x) * left + ratio_x * right;
  6028. delta[X_AXIS] += offset;
  6029. delta[Y_AXIS] += offset;
  6030. delta[Z_AXIS] += offset;
  6031. /**
  6032. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6033. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6034. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6035. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6036. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6037. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6038. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6039. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6040. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6041. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6042. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6043. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6044. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6045. */
  6046. }
  6047. #endif // AUTO_BED_LEVELING_FEATURE
  6048. #endif // DELTA
  6049. #if ENABLED(MESH_BED_LEVELING)
  6050. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6051. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6052. if (!mbl.active) {
  6053. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6054. set_current_to_destination();
  6055. return;
  6056. }
  6057. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  6058. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  6059. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  6060. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  6061. pix = min(pix, MESH_NUM_X_POINTS - 2);
  6062. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  6063. ix = min(ix, MESH_NUM_X_POINTS - 2);
  6064. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  6065. if (pix == ix && piy == iy) {
  6066. // Start and end on same mesh square
  6067. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6068. set_current_to_destination();
  6069. return;
  6070. }
  6071. float nx, ny, nz, ne, normalized_dist;
  6072. if (ix > pix && TEST(x_splits, ix)) {
  6073. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  6074. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6075. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6076. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6077. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6078. CBI(x_splits, ix);
  6079. }
  6080. else if (ix < pix && TEST(x_splits, pix)) {
  6081. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6082. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6083. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6084. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6085. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6086. CBI(x_splits, pix);
  6087. }
  6088. else if (iy > piy && TEST(y_splits, iy)) {
  6089. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6090. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6091. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6092. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6093. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6094. CBI(y_splits, iy);
  6095. }
  6096. else if (iy < piy && TEST(y_splits, piy)) {
  6097. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6098. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6099. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6100. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6101. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6102. CBI(y_splits, piy);
  6103. }
  6104. else {
  6105. // Already split on a border
  6106. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6107. set_current_to_destination();
  6108. return;
  6109. }
  6110. // Do the split and look for more borders
  6111. destination[X_AXIS] = nx;
  6112. destination[Y_AXIS] = ny;
  6113. destination[Z_AXIS] = nz;
  6114. destination[E_AXIS] = ne;
  6115. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6116. destination[X_AXIS] = x;
  6117. destination[Y_AXIS] = y;
  6118. destination[Z_AXIS] = z;
  6119. destination[E_AXIS] = e;
  6120. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6121. }
  6122. #endif // MESH_BED_LEVELING
  6123. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6124. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6125. if (DEBUGGING(DRYRUN)) return;
  6126. float de = dest_e - curr_e;
  6127. if (de) {
  6128. if (degHotend(active_extruder) < extrude_min_temp) {
  6129. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6130. SERIAL_ECHO_START;
  6131. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6132. }
  6133. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6134. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6135. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6136. SERIAL_ECHO_START;
  6137. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6138. }
  6139. #endif
  6140. }
  6141. }
  6142. #endif // PREVENT_DANGEROUS_EXTRUDE
  6143. #if ENABLED(DELTA) || ENABLED(SCARA)
  6144. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6145. float difference[NUM_AXIS];
  6146. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6147. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6148. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6149. if (cartesian_mm < 0.000001) return false;
  6150. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6151. int steps = max(1, int(delta_segments_per_second * seconds));
  6152. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6153. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6154. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6155. for (int s = 1; s <= steps; s++) {
  6156. float fraction = float(s) / float(steps);
  6157. for (int8_t i = 0; i < NUM_AXIS; i++)
  6158. target[i] = current_position[i] + difference[i] * fraction;
  6159. calculate_delta(target);
  6160. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6161. adjust_delta(target);
  6162. #endif
  6163. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6164. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6165. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6166. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6167. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6168. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6169. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6170. }
  6171. return true;
  6172. }
  6173. #endif // DELTA || SCARA
  6174. #if ENABLED(SCARA)
  6175. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6176. #endif
  6177. #if ENABLED(DUAL_X_CARRIAGE)
  6178. inline bool prepare_move_dual_x_carriage() {
  6179. if (active_extruder_parked) {
  6180. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6181. // move duplicate extruder into correct duplication position.
  6182. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6183. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6184. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6185. sync_plan_position();
  6186. st_synchronize();
  6187. extruder_duplication_enabled = true;
  6188. active_extruder_parked = false;
  6189. }
  6190. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6191. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6192. // This is a travel move (with no extrusion)
  6193. // Skip it, but keep track of the current position
  6194. // (so it can be used as the start of the next non-travel move)
  6195. if (delayed_move_time != 0xFFFFFFFFUL) {
  6196. set_current_to_destination();
  6197. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6198. delayed_move_time = millis();
  6199. return false;
  6200. }
  6201. }
  6202. delayed_move_time = 0;
  6203. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6204. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6205. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6206. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6207. active_extruder_parked = false;
  6208. }
  6209. }
  6210. return true;
  6211. }
  6212. #endif // DUAL_X_CARRIAGE
  6213. #if DISABLED(DELTA) && DISABLED(SCARA)
  6214. inline bool prepare_move_cartesian() {
  6215. // Do not use feedrate_multiplier for E or Z only moves
  6216. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6217. line_to_destination();
  6218. }
  6219. else {
  6220. #if ENABLED(MESH_BED_LEVELING)
  6221. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6222. return false;
  6223. #else
  6224. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6225. #endif
  6226. }
  6227. return true;
  6228. }
  6229. #endif // !DELTA && !SCARA
  6230. /**
  6231. * Prepare a single move and get ready for the next one
  6232. *
  6233. * (This may call plan_buffer_line several times to put
  6234. * smaller moves into the planner for DELTA or SCARA.)
  6235. */
  6236. void prepare_move() {
  6237. clamp_to_software_endstops(destination);
  6238. refresh_cmd_timeout();
  6239. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6240. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6241. #endif
  6242. #if ENABLED(SCARA)
  6243. if (!prepare_move_scara(destination)) return;
  6244. #elif ENABLED(DELTA)
  6245. if (!prepare_move_delta(destination)) return;
  6246. #endif
  6247. #if ENABLED(DUAL_X_CARRIAGE)
  6248. if (!prepare_move_dual_x_carriage()) return;
  6249. #endif
  6250. #if DISABLED(DELTA) && DISABLED(SCARA)
  6251. if (!prepare_move_cartesian()) return;
  6252. #endif
  6253. set_current_to_destination();
  6254. }
  6255. /**
  6256. * Plan an arc in 2 dimensions
  6257. *
  6258. * The arc is approximated by generating many small linear segments.
  6259. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6260. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6261. * larger segments will tend to be more efficient. Your slicer should have
  6262. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6263. */
  6264. void plan_arc(
  6265. float target[NUM_AXIS], // Destination position
  6266. float* offset, // Center of rotation relative to current_position
  6267. uint8_t clockwise // Clockwise?
  6268. ) {
  6269. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6270. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6271. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6272. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6273. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6274. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6275. r_Y = -offset[Y_AXIS],
  6276. rt_X = target[X_AXIS] - center_X,
  6277. rt_Y = target[Y_AXIS] - center_Y;
  6278. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6279. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6280. if (angular_travel < 0) angular_travel += RADIANS(360);
  6281. if (clockwise) angular_travel -= RADIANS(360);
  6282. // Make a circle if the angular rotation is 0
  6283. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6284. angular_travel += RADIANS(360);
  6285. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6286. if (mm_of_travel < 0.001) return;
  6287. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6288. if (segments == 0) segments = 1;
  6289. float theta_per_segment = angular_travel / segments;
  6290. float linear_per_segment = linear_travel / segments;
  6291. float extruder_per_segment = extruder_travel / segments;
  6292. /**
  6293. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6294. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6295. * r_T = [cos(phi) -sin(phi);
  6296. * sin(phi) cos(phi] * r ;
  6297. *
  6298. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6299. * defined from the circle center to the initial position. Each line segment is formed by successive
  6300. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6301. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6302. * all double numbers are single precision on the Arduino. (True double precision will not have
  6303. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6304. * tool precision in some cases. Therefore, arc path correction is implemented.
  6305. *
  6306. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6307. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6308. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6309. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6310. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6311. * issue for CNC machines with the single precision Arduino calculations.
  6312. *
  6313. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6314. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6315. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6316. * This is important when there are successive arc motions.
  6317. */
  6318. // Vector rotation matrix values
  6319. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6320. float sin_T = theta_per_segment;
  6321. float arc_target[NUM_AXIS];
  6322. float sin_Ti, cos_Ti, r_new_Y;
  6323. uint16_t i;
  6324. int8_t count = 0;
  6325. // Initialize the linear axis
  6326. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6327. // Initialize the extruder axis
  6328. arc_target[E_AXIS] = current_position[E_AXIS];
  6329. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6330. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6331. if (++count < N_ARC_CORRECTION) {
  6332. // Apply vector rotation matrix to previous r_X / 1
  6333. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6334. r_X = r_X * cos_T - r_Y * sin_T;
  6335. r_Y = r_new_Y;
  6336. }
  6337. else {
  6338. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6339. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6340. // To reduce stuttering, the sin and cos could be computed at different times.
  6341. // For now, compute both at the same time.
  6342. cos_Ti = cos(i * theta_per_segment);
  6343. sin_Ti = sin(i * theta_per_segment);
  6344. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6345. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6346. count = 0;
  6347. }
  6348. // Update arc_target location
  6349. arc_target[X_AXIS] = center_X + r_X;
  6350. arc_target[Y_AXIS] = center_Y + r_Y;
  6351. arc_target[Z_AXIS] += linear_per_segment;
  6352. arc_target[E_AXIS] += extruder_per_segment;
  6353. clamp_to_software_endstops(arc_target);
  6354. #if ENABLED(DELTA) || ENABLED(SCARA)
  6355. calculate_delta(arc_target);
  6356. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6357. adjust_delta(arc_target);
  6358. #endif
  6359. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6360. #else
  6361. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6362. #endif
  6363. }
  6364. // Ensure last segment arrives at target location.
  6365. #if ENABLED(DELTA) || ENABLED(SCARA)
  6366. calculate_delta(target);
  6367. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6368. adjust_delta(target);
  6369. #endif
  6370. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6371. #else
  6372. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6373. #endif
  6374. // As far as the parser is concerned, the position is now == target. In reality the
  6375. // motion control system might still be processing the action and the real tool position
  6376. // in any intermediate location.
  6377. set_current_to_destination();
  6378. }
  6379. #if HAS_CONTROLLERFAN
  6380. void controllerFan() {
  6381. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6382. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6383. millis_t ms = millis();
  6384. if (ELAPSED(ms, nextMotorCheck)) {
  6385. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6386. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6387. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6388. #if EXTRUDERS > 1
  6389. || E1_ENABLE_READ == E_ENABLE_ON
  6390. #if HAS_X2_ENABLE
  6391. || X2_ENABLE_READ == X_ENABLE_ON
  6392. #endif
  6393. #if EXTRUDERS > 2
  6394. || E2_ENABLE_READ == E_ENABLE_ON
  6395. #if EXTRUDERS > 3
  6396. || E3_ENABLE_READ == E_ENABLE_ON
  6397. #endif
  6398. #endif
  6399. #endif
  6400. ) {
  6401. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6402. }
  6403. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6404. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6405. // allows digital or PWM fan output to be used (see M42 handling)
  6406. digitalWrite(CONTROLLERFAN_PIN, speed);
  6407. analogWrite(CONTROLLERFAN_PIN, speed);
  6408. }
  6409. }
  6410. #endif // HAS_CONTROLLERFAN
  6411. #if ENABLED(SCARA)
  6412. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6413. // Perform forward kinematics, and place results in delta[3]
  6414. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6415. float x_sin, x_cos, y_sin, y_cos;
  6416. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6417. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6418. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6419. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6420. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6421. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6422. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6423. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6424. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6425. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6426. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6427. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6428. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6429. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6430. }
  6431. void calculate_delta(float cartesian[3]) {
  6432. //reverse kinematics.
  6433. // Perform reversed kinematics, and place results in delta[3]
  6434. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6435. float SCARA_pos[2];
  6436. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6437. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6438. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6439. #if (Linkage_1 == Linkage_2)
  6440. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6441. #else
  6442. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6443. #endif
  6444. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6445. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6446. SCARA_K2 = Linkage_2 * SCARA_S2;
  6447. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6448. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6449. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6450. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6451. delta[Z_AXIS] = cartesian[Z_AXIS];
  6452. /**
  6453. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6454. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6455. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6456. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6457. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6458. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6459. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6460. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6461. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6462. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6463. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6464. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6465. SERIAL_EOL;
  6466. */
  6467. }
  6468. #endif // SCARA
  6469. #if ENABLED(TEMP_STAT_LEDS)
  6470. static bool red_led = false;
  6471. static millis_t next_status_led_update_ms = 0;
  6472. void handle_status_leds(void) {
  6473. float max_temp = 0.0;
  6474. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6475. next_status_led_update_ms += 500; // Update every 0.5s
  6476. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6477. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6478. #if HAS_TEMP_BED
  6479. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6480. #endif
  6481. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6482. if (new_led != red_led) {
  6483. red_led = new_led;
  6484. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6485. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6486. }
  6487. }
  6488. }
  6489. #endif
  6490. void enable_all_steppers() {
  6491. enable_x();
  6492. enable_y();
  6493. enable_z();
  6494. enable_e0();
  6495. enable_e1();
  6496. enable_e2();
  6497. enable_e3();
  6498. }
  6499. void disable_all_steppers() {
  6500. disable_x();
  6501. disable_y();
  6502. disable_z();
  6503. disable_e0();
  6504. disable_e1();
  6505. disable_e2();
  6506. disable_e3();
  6507. }
  6508. /**
  6509. * Standard idle routine keeps the machine alive
  6510. */
  6511. void idle(
  6512. #if ENABLED(FILAMENTCHANGEENABLE)
  6513. bool no_stepper_sleep/*=false*/
  6514. #endif
  6515. ) {
  6516. manage_heater();
  6517. manage_inactivity(
  6518. #if ENABLED(FILAMENTCHANGEENABLE)
  6519. no_stepper_sleep
  6520. #endif
  6521. );
  6522. host_keepalive();
  6523. lcd_update();
  6524. }
  6525. /**
  6526. * Manage several activities:
  6527. * - Check for Filament Runout
  6528. * - Keep the command buffer full
  6529. * - Check for maximum inactive time between commands
  6530. * - Check for maximum inactive time between stepper commands
  6531. * - Check if pin CHDK needs to go LOW
  6532. * - Check for KILL button held down
  6533. * - Check for HOME button held down
  6534. * - Check if cooling fan needs to be switched on
  6535. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6536. */
  6537. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6538. #if HAS_FILRUNOUT
  6539. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6540. filrunout();
  6541. #endif
  6542. if (commands_in_queue < BUFSIZE) get_available_commands();
  6543. millis_t ms = millis();
  6544. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6545. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6546. && !ignore_stepper_queue && !blocks_queued()) {
  6547. #if ENABLED(DISABLE_INACTIVE_X)
  6548. disable_x();
  6549. #endif
  6550. #if ENABLED(DISABLE_INACTIVE_Y)
  6551. disable_y();
  6552. #endif
  6553. #if ENABLED(DISABLE_INACTIVE_Z)
  6554. disable_z();
  6555. #endif
  6556. #if ENABLED(DISABLE_INACTIVE_E)
  6557. disable_e0();
  6558. disable_e1();
  6559. disable_e2();
  6560. disable_e3();
  6561. #endif
  6562. }
  6563. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6564. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6565. chdkActive = false;
  6566. WRITE(CHDK, LOW);
  6567. }
  6568. #endif
  6569. #if HAS_KILL
  6570. // Check if the kill button was pressed and wait just in case it was an accidental
  6571. // key kill key press
  6572. // -------------------------------------------------------------------------------
  6573. static int killCount = 0; // make the inactivity button a bit less responsive
  6574. const int KILL_DELAY = 750;
  6575. if (!READ(KILL_PIN))
  6576. killCount++;
  6577. else if (killCount > 0)
  6578. killCount--;
  6579. // Exceeded threshold and we can confirm that it was not accidental
  6580. // KILL the machine
  6581. // ----------------------------------------------------------------
  6582. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6583. #endif
  6584. #if HAS_HOME
  6585. // Check to see if we have to home, use poor man's debouncer
  6586. // ---------------------------------------------------------
  6587. static int homeDebounceCount = 0; // poor man's debouncing count
  6588. const int HOME_DEBOUNCE_DELAY = 2500;
  6589. if (!READ(HOME_PIN)) {
  6590. if (!homeDebounceCount) {
  6591. enqueue_and_echo_commands_P(PSTR("G28"));
  6592. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6593. }
  6594. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6595. homeDebounceCount++;
  6596. else
  6597. homeDebounceCount = 0;
  6598. }
  6599. #endif
  6600. #if HAS_CONTROLLERFAN
  6601. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6602. #endif
  6603. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6604. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6605. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6606. bool oldstatus;
  6607. switch (active_extruder) {
  6608. case 0:
  6609. oldstatus = E0_ENABLE_READ;
  6610. enable_e0();
  6611. break;
  6612. #if EXTRUDERS > 1
  6613. case 1:
  6614. oldstatus = E1_ENABLE_READ;
  6615. enable_e1();
  6616. break;
  6617. #if EXTRUDERS > 2
  6618. case 2:
  6619. oldstatus = E2_ENABLE_READ;
  6620. enable_e2();
  6621. break;
  6622. #if EXTRUDERS > 3
  6623. case 3:
  6624. oldstatus = E3_ENABLE_READ;
  6625. enable_e3();
  6626. break;
  6627. #endif
  6628. #endif
  6629. #endif
  6630. }
  6631. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6632. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6633. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6634. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6635. current_position[E_AXIS] = oldepos;
  6636. destination[E_AXIS] = oldedes;
  6637. plan_set_e_position(oldepos);
  6638. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6639. st_synchronize();
  6640. switch (active_extruder) {
  6641. case 0:
  6642. E0_ENABLE_WRITE(oldstatus);
  6643. break;
  6644. #if EXTRUDERS > 1
  6645. case 1:
  6646. E1_ENABLE_WRITE(oldstatus);
  6647. break;
  6648. #if EXTRUDERS > 2
  6649. case 2:
  6650. E2_ENABLE_WRITE(oldstatus);
  6651. break;
  6652. #if EXTRUDERS > 3
  6653. case 3:
  6654. E3_ENABLE_WRITE(oldstatus);
  6655. break;
  6656. #endif
  6657. #endif
  6658. #endif
  6659. }
  6660. }
  6661. #endif
  6662. #if ENABLED(DUAL_X_CARRIAGE)
  6663. // handle delayed move timeout
  6664. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6665. // travel moves have been received so enact them
  6666. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6667. set_destination_to_current();
  6668. prepare_move();
  6669. }
  6670. #endif
  6671. #if ENABLED(TEMP_STAT_LEDS)
  6672. handle_status_leds();
  6673. #endif
  6674. check_axes_activity();
  6675. }
  6676. void kill(const char* lcd_msg) {
  6677. #if ENABLED(ULTRA_LCD)
  6678. lcd_setalertstatuspgm(lcd_msg);
  6679. #else
  6680. UNUSED(lcd_msg);
  6681. #endif
  6682. cli(); // Stop interrupts
  6683. disable_all_heaters();
  6684. disable_all_steppers();
  6685. #if HAS_POWER_SWITCH
  6686. pinMode(PS_ON_PIN, INPUT);
  6687. #endif
  6688. SERIAL_ERROR_START;
  6689. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6690. // FMC small patch to update the LCD before ending
  6691. sei(); // enable interrupts
  6692. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6693. cli(); // disable interrupts
  6694. suicide();
  6695. while (1) {
  6696. #if ENABLED(USE_WATCHDOG)
  6697. watchdog_reset();
  6698. #endif
  6699. } // Wait for reset
  6700. }
  6701. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6702. void filrunout() {
  6703. if (!filrunoutEnqueued) {
  6704. filrunoutEnqueued = true;
  6705. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6706. st_synchronize();
  6707. }
  6708. }
  6709. #endif // FILAMENT_RUNOUT_SENSOR
  6710. #if ENABLED(FAST_PWM_FAN)
  6711. void setPwmFrequency(uint8_t pin, int val) {
  6712. val &= 0x07;
  6713. switch (digitalPinToTimer(pin)) {
  6714. #if defined(TCCR0A)
  6715. case TIMER0A:
  6716. case TIMER0B:
  6717. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6718. // TCCR0B |= val;
  6719. break;
  6720. #endif
  6721. #if defined(TCCR1A)
  6722. case TIMER1A:
  6723. case TIMER1B:
  6724. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6725. // TCCR1B |= val;
  6726. break;
  6727. #endif
  6728. #if defined(TCCR2)
  6729. case TIMER2:
  6730. case TIMER2:
  6731. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6732. TCCR2 |= val;
  6733. break;
  6734. #endif
  6735. #if defined(TCCR2A)
  6736. case TIMER2A:
  6737. case TIMER2B:
  6738. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6739. TCCR2B |= val;
  6740. break;
  6741. #endif
  6742. #if defined(TCCR3A)
  6743. case TIMER3A:
  6744. case TIMER3B:
  6745. case TIMER3C:
  6746. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6747. TCCR3B |= val;
  6748. break;
  6749. #endif
  6750. #if defined(TCCR4A)
  6751. case TIMER4A:
  6752. case TIMER4B:
  6753. case TIMER4C:
  6754. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6755. TCCR4B |= val;
  6756. break;
  6757. #endif
  6758. #if defined(TCCR5A)
  6759. case TIMER5A:
  6760. case TIMER5B:
  6761. case TIMER5C:
  6762. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6763. TCCR5B |= val;
  6764. break;
  6765. #endif
  6766. }
  6767. }
  6768. #endif // FAST_PWM_FAN
  6769. void Stop() {
  6770. disable_all_heaters();
  6771. if (IsRunning()) {
  6772. Running = false;
  6773. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6774. SERIAL_ERROR_START;
  6775. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6776. LCD_MESSAGEPGM(MSG_STOPPED);
  6777. }
  6778. }
  6779. /**
  6780. * Set target_extruder from the T parameter or the active_extruder
  6781. *
  6782. * Returns TRUE if the target is invalid
  6783. */
  6784. bool setTargetedHotend(int code) {
  6785. target_extruder = active_extruder;
  6786. if (code_seen('T')) {
  6787. target_extruder = code_value_short();
  6788. if (target_extruder >= EXTRUDERS) {
  6789. SERIAL_ECHO_START;
  6790. SERIAL_CHAR('M');
  6791. SERIAL_ECHO(code);
  6792. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6793. SERIAL_ECHOLN((int)target_extruder);
  6794. return true;
  6795. }
  6796. }
  6797. return false;
  6798. }
  6799. float calculate_volumetric_multiplier(float diameter) {
  6800. if (!volumetric_enabled || diameter == 0) return 1.0;
  6801. float d2 = diameter * 0.5;
  6802. return 1.0 / (M_PI * d2 * d2);
  6803. }
  6804. void calculate_volumetric_multipliers() {
  6805. for (int i = 0; i < EXTRUDERS; i++)
  6806. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6807. }