My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 185KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home all Axis
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Displays measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offset
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X 0
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y 0
  213. #endif
  214. #ifndef DUAL_X_CARRIAGE
  215. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  216. #else
  217. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  218. #endif
  219. #define _EXY { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y }
  220. float extruder_offset[EXTRUDERS][NUM_EXTRUDER_OFFSETS] = ARRAY_BY_EXTRUDERS(_EXY, _EXY, _EXY, _EXY);
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #ifdef ULTIPANEL
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1=0; //index into ring buffer
  284. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist=0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  450. #if defined(PS_DEFAULT_OFF)
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[1][X_AXIS] > 0) ? extruder_offset[1][X_AXIS] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[1][X_AXIS], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  845. min_pos[X_AXIS] = base_min_pos(X_AXIS) + home_offset[X_AXIS];
  846. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + home_offset[X_AXIS],
  847. max(extruder_offset[1][X_AXIS], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Shorthand to tell the planner our current position (in mm).
  890. */
  891. inline void sync_plan_position() {
  892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  893. }
  894. #ifdef ENABLE_AUTO_BED_LEVELING
  895. #ifdef AUTO_BED_LEVELING_GRID
  896. #ifndef DELTA
  897. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  898. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  899. planeNormal.debug("planeNormal");
  900. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  901. //bedLevel.debug("bedLevel");
  902. //plan_bed_level_matrix.debug("bed level before");
  903. //vector_3 uncorrected_position = plan_get_position_mm();
  904. //uncorrected_position.debug("position before");
  905. vector_3 corrected_position = plan_get_position();
  906. //corrected_position.debug("position after");
  907. current_position[X_AXIS] = corrected_position.x;
  908. current_position[Y_AXIS] = corrected_position.y;
  909. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  910. sync_plan_position();
  911. }
  912. #endif
  913. #else // not AUTO_BED_LEVELING_GRID
  914. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  915. plan_bed_level_matrix.set_to_identity();
  916. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  917. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  918. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  919. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  920. if (planeNormal.z < 0) {
  921. planeNormal.x = -planeNormal.x;
  922. planeNormal.y = -planeNormal.y;
  923. planeNormal.z = -planeNormal.z;
  924. }
  925. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  926. vector_3 corrected_position = plan_get_position();
  927. current_position[X_AXIS] = corrected_position.x;
  928. current_position[Y_AXIS] = corrected_position.y;
  929. current_position[Z_AXIS] = zprobe_zoffset; // was: corrected_position.z
  930. sync_plan_position();
  931. }
  932. #endif // AUTO_BED_LEVELING_GRID
  933. static void run_z_probe() {
  934. #ifdef DELTA
  935. float start_z = current_position[Z_AXIS];
  936. long start_steps = st_get_position(Z_AXIS);
  937. // move down slowly until you find the bed
  938. feedrate = homing_feedrate[Z_AXIS] / 4;
  939. destination[Z_AXIS] = -10;
  940. prepare_move_raw();
  941. st_synchronize();
  942. endstops_hit_on_purpose();
  943. // we have to let the planner know where we are right now as it is not where we said to go.
  944. long stop_steps = st_get_position(Z_AXIS);
  945. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  946. current_position[Z_AXIS] = mm;
  947. calculate_delta(current_position);
  948. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  949. #else
  950. plan_bed_level_matrix.set_to_identity();
  951. feedrate = homing_feedrate[Z_AXIS];
  952. // move down until you find the bed
  953. float zPosition = -10;
  954. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  955. st_synchronize();
  956. // we have to let the planner know where we are right now as it is not where we said to go.
  957. zPosition = st_get_position_mm(Z_AXIS);
  958. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  959. // move up the retract distance
  960. zPosition += home_retract_mm(Z_AXIS);
  961. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  962. st_synchronize();
  963. endstops_hit_on_purpose();
  964. // move back down slowly to find bed
  965. if (homing_bump_divisor[Z_AXIS] >= 1) {
  966. feedrate = homing_feedrate[Z_AXIS]/homing_bump_divisor[Z_AXIS];
  967. }
  968. else {
  969. feedrate = homing_feedrate[Z_AXIS]/10;
  970. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  971. }
  972. zPosition -= home_retract_mm(Z_AXIS) * 2;
  973. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. endstops_hit_on_purpose();
  976. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  977. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  978. sync_plan_position();
  979. #endif
  980. }
  981. static void do_blocking_move_to(float x, float y, float z) {
  982. float oldFeedRate = feedrate;
  983. #ifdef DELTA
  984. feedrate = XY_TRAVEL_SPEED;
  985. destination[X_AXIS] = x;
  986. destination[Y_AXIS] = y;
  987. destination[Z_AXIS] = z;
  988. prepare_move_raw();
  989. st_synchronize();
  990. #else
  991. feedrate = homing_feedrate[Z_AXIS];
  992. current_position[Z_AXIS] = z;
  993. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  994. st_synchronize();
  995. feedrate = xy_travel_speed;
  996. current_position[X_AXIS] = x;
  997. current_position[Y_AXIS] = y;
  998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  999. st_synchronize();
  1000. #endif
  1001. feedrate = oldFeedRate;
  1002. }
  1003. static void setup_for_endstop_move() {
  1004. saved_feedrate = feedrate;
  1005. saved_feedmultiply = feedmultiply;
  1006. feedmultiply = 100;
  1007. previous_millis_cmd = millis();
  1008. enable_endstops(true);
  1009. }
  1010. static void clean_up_after_endstop_move() {
  1011. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1012. enable_endstops(false);
  1013. #endif
  1014. feedrate = saved_feedrate;
  1015. feedmultiply = saved_feedmultiply;
  1016. previous_millis_cmd = millis();
  1017. }
  1018. static void engage_z_probe() {
  1019. // Engage Z Servo endstop if enabled
  1020. #ifdef SERVO_ENDSTOPS
  1021. if (servo_endstops[Z_AXIS] > -1) {
  1022. #if SERVO_LEVELING
  1023. servos[servo_endstops[Z_AXIS]].attach(0);
  1024. #endif
  1025. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1026. #if SERVO_LEVELING
  1027. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1028. servos[servo_endstops[Z_AXIS]].detach();
  1029. #endif
  1030. }
  1031. #elif defined(Z_PROBE_ALLEN_KEY)
  1032. feedrate = homing_feedrate[X_AXIS];
  1033. // Move to the start position to initiate deployment
  1034. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1035. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1036. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1037. prepare_move_raw();
  1038. // Home X to touch the belt
  1039. feedrate = homing_feedrate[X_AXIS]/10;
  1040. destination[X_AXIS] = 0;
  1041. prepare_move_raw();
  1042. // Home Y for safety
  1043. feedrate = homing_feedrate[X_AXIS]/2;
  1044. destination[Y_AXIS] = 0;
  1045. prepare_move_raw();
  1046. st_synchronize();
  1047. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1048. if (z_min_endstop)
  1049. {
  1050. if (!Stopped)
  1051. {
  1052. SERIAL_ERROR_START;
  1053. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1054. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1055. }
  1056. Stop();
  1057. }
  1058. #endif
  1059. }
  1060. static void retract_z_probe() {
  1061. // Retract Z Servo endstop if enabled
  1062. #ifdef SERVO_ENDSTOPS
  1063. if (servo_endstops[Z_AXIS] > -1)
  1064. {
  1065. #if Z_RAISE_AFTER_PROBING > 0
  1066. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_AFTER_PROBING);
  1067. st_synchronize();
  1068. #endif
  1069. #if SERVO_LEVELING
  1070. servos[servo_endstops[Z_AXIS]].attach(0);
  1071. #endif
  1072. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1073. #if SERVO_LEVELING
  1074. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1075. servos[servo_endstops[Z_AXIS]].detach();
  1076. #endif
  1077. }
  1078. #elif defined(Z_PROBE_ALLEN_KEY)
  1079. // Move up for safety
  1080. feedrate = homing_feedrate[X_AXIS];
  1081. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1082. prepare_move_raw();
  1083. // Move to the start position to initiate retraction
  1084. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1085. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1086. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1087. prepare_move_raw();
  1088. // Move the nozzle down to push the probe into retracted position
  1089. feedrate = homing_feedrate[Z_AXIS]/10;
  1090. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1091. prepare_move_raw();
  1092. // Move up for safety
  1093. feedrate = homing_feedrate[Z_AXIS]/2;
  1094. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1095. prepare_move_raw();
  1096. // Home XY for safety
  1097. feedrate = homing_feedrate[X_AXIS]/2;
  1098. destination[X_AXIS] = 0;
  1099. destination[Y_AXIS] = 0;
  1100. prepare_move_raw();
  1101. st_synchronize();
  1102. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1103. if (!z_min_endstop)
  1104. {
  1105. if (!Stopped)
  1106. {
  1107. SERIAL_ERROR_START;
  1108. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1109. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1110. }
  1111. Stop();
  1112. }
  1113. #endif
  1114. }
  1115. enum ProbeAction {
  1116. ProbeStay = 0,
  1117. ProbeEngage = BIT(0),
  1118. ProbeRetract = BIT(1),
  1119. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1120. };
  1121. /// Probe bed height at position (x,y), returns the measured z value
  1122. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1123. // move to right place
  1124. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1125. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1126. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1127. if (retract_action & ProbeEngage) engage_z_probe();
  1128. #endif
  1129. run_z_probe();
  1130. float measured_z = current_position[Z_AXIS];
  1131. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1132. if (retract_action & ProbeRetract) retract_z_probe();
  1133. #endif
  1134. if (verbose_level > 2) {
  1135. SERIAL_PROTOCOLPGM(MSG_BED);
  1136. SERIAL_PROTOCOLPGM(" X: ");
  1137. SERIAL_PROTOCOL_F(x, 3);
  1138. SERIAL_PROTOCOLPGM(" Y: ");
  1139. SERIAL_PROTOCOL_F(y, 3);
  1140. SERIAL_PROTOCOLPGM(" Z: ");
  1141. SERIAL_PROTOCOL_F(measured_z, 3);
  1142. SERIAL_EOL;
  1143. }
  1144. return measured_z;
  1145. }
  1146. #ifdef DELTA
  1147. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1148. if (bed_level[x][y] != 0.0) {
  1149. return; // Don't overwrite good values.
  1150. }
  1151. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1152. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1153. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1154. float median = c; // Median is robust (ignores outliers).
  1155. if (a < b) {
  1156. if (b < c) median = b;
  1157. if (c < a) median = a;
  1158. } else { // b <= a
  1159. if (c < b) median = b;
  1160. if (a < c) median = a;
  1161. }
  1162. bed_level[x][y] = median;
  1163. }
  1164. // Fill in the unprobed points (corners of circular print surface)
  1165. // using linear extrapolation, away from the center.
  1166. static void extrapolate_unprobed_bed_level() {
  1167. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1168. for (int y = 0; y <= half; y++) {
  1169. for (int x = 0; x <= half; x++) {
  1170. if (x + y < 3) continue;
  1171. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1172. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1173. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1174. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1175. }
  1176. }
  1177. }
  1178. // Print calibration results for plotting or manual frame adjustment.
  1179. static void print_bed_level() {
  1180. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1181. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1182. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1183. SERIAL_PROTOCOLPGM(" ");
  1184. }
  1185. SERIAL_ECHOLN("");
  1186. }
  1187. }
  1188. // Reset calibration results to zero.
  1189. void reset_bed_level() {
  1190. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1191. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1192. bed_level[x][y] = 0.0;
  1193. }
  1194. }
  1195. }
  1196. #endif // DELTA
  1197. #endif // ENABLE_AUTO_BED_LEVELING
  1198. static void homeaxis(int axis) {
  1199. #define HOMEAXIS_DO(LETTER) \
  1200. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1201. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  1202. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  1203. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  1204. 0) {
  1205. int axis_home_dir = home_dir(axis);
  1206. #ifdef DUAL_X_CARRIAGE
  1207. if (axis == X_AXIS)
  1208. axis_home_dir = x_home_dir(active_extruder);
  1209. #endif
  1210. current_position[axis] = 0;
  1211. sync_plan_position();
  1212. #ifndef Z_PROBE_SLED
  1213. // Engage Servo endstop if enabled
  1214. #ifdef SERVO_ENDSTOPS
  1215. #if SERVO_LEVELING
  1216. if (axis==Z_AXIS) {
  1217. engage_z_probe();
  1218. }
  1219. else
  1220. #endif
  1221. if (servo_endstops[axis] > -1) {
  1222. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1223. }
  1224. #endif
  1225. #endif // Z_PROBE_SLED
  1226. #ifdef Z_DUAL_ENDSTOPS
  1227. if (axis==Z_AXIS) In_Homing_Process(true);
  1228. #endif
  1229. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1230. feedrate = homing_feedrate[axis];
  1231. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1232. st_synchronize();
  1233. current_position[axis] = 0;
  1234. sync_plan_position();
  1235. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1236. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1237. st_synchronize();
  1238. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  1239. if (homing_bump_divisor[axis] >= 1)
  1240. {
  1241. feedrate = homing_feedrate[axis]/homing_bump_divisor[axis];
  1242. }
  1243. else
  1244. {
  1245. feedrate = homing_feedrate[axis]/10;
  1246. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less then 1");
  1247. }
  1248. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1249. st_synchronize();
  1250. #ifdef Z_DUAL_ENDSTOPS
  1251. if (axis==Z_AXIS)
  1252. {
  1253. feedrate = homing_feedrate[axis];
  1254. sync_plan_position();
  1255. if (axis_home_dir > 0)
  1256. {
  1257. destination[axis] = (-1) * fabs(z_endstop_adj);
  1258. if (z_endstop_adj > 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1259. } else {
  1260. destination[axis] = fabs(z_endstop_adj);
  1261. if (z_endstop_adj < 0) Lock_z_motor(true); else Lock_z2_motor(true);
  1262. }
  1263. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1264. st_synchronize();
  1265. Lock_z_motor(false);
  1266. Lock_z2_motor(false);
  1267. In_Homing_Process(false);
  1268. }
  1269. #endif
  1270. #ifdef DELTA
  1271. // retrace by the amount specified in endstop_adj
  1272. if (endstop_adj[axis] * axis_home_dir < 0) {
  1273. sync_plan_position();
  1274. destination[axis] = endstop_adj[axis];
  1275. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1276. st_synchronize();
  1277. }
  1278. #endif
  1279. axis_is_at_home(axis);
  1280. destination[axis] = current_position[axis];
  1281. feedrate = 0.0;
  1282. endstops_hit_on_purpose();
  1283. axis_known_position[axis] = true;
  1284. // Retract Servo endstop if enabled
  1285. #ifdef SERVO_ENDSTOPS
  1286. if (servo_endstops[axis] > -1) {
  1287. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1288. }
  1289. #endif
  1290. #if SERVO_LEVELING
  1291. #ifndef Z_PROBE_SLED
  1292. if (axis==Z_AXIS) retract_z_probe();
  1293. #endif
  1294. #endif
  1295. }
  1296. }
  1297. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1298. void refresh_cmd_timeout(void)
  1299. {
  1300. previous_millis_cmd = millis();
  1301. }
  1302. #ifdef FWRETRACT
  1303. void retract(bool retracting, bool swapretract = false) {
  1304. if(retracting && !retracted[active_extruder]) {
  1305. destination[X_AXIS]=current_position[X_AXIS];
  1306. destination[Y_AXIS]=current_position[Y_AXIS];
  1307. destination[Z_AXIS]=current_position[Z_AXIS];
  1308. destination[E_AXIS]=current_position[E_AXIS];
  1309. if (swapretract) {
  1310. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1311. } else {
  1312. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1313. }
  1314. plan_set_e_position(current_position[E_AXIS]);
  1315. float oldFeedrate = feedrate;
  1316. feedrate=retract_feedrate*60;
  1317. retracted[active_extruder]=true;
  1318. prepare_move();
  1319. if(retract_zlift > 0.01) {
  1320. current_position[Z_AXIS]-=retract_zlift;
  1321. #ifdef DELTA
  1322. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1323. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1324. #else
  1325. sync_plan_position();
  1326. #endif
  1327. prepare_move();
  1328. }
  1329. feedrate = oldFeedrate;
  1330. } else if(!retracting && retracted[active_extruder]) {
  1331. destination[X_AXIS]=current_position[X_AXIS];
  1332. destination[Y_AXIS]=current_position[Y_AXIS];
  1333. destination[Z_AXIS]=current_position[Z_AXIS];
  1334. destination[E_AXIS]=current_position[E_AXIS];
  1335. if(retract_zlift > 0.01) {
  1336. current_position[Z_AXIS]+=retract_zlift;
  1337. #ifdef DELTA
  1338. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  1339. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1340. #else
  1341. sync_plan_position();
  1342. #endif
  1343. //prepare_move();
  1344. }
  1345. if (swapretract) {
  1346. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1347. } else {
  1348. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1349. }
  1350. plan_set_e_position(current_position[E_AXIS]);
  1351. float oldFeedrate = feedrate;
  1352. feedrate=retract_recover_feedrate*60;
  1353. retracted[active_extruder]=false;
  1354. prepare_move();
  1355. feedrate = oldFeedrate;
  1356. }
  1357. } //retract
  1358. #endif //FWRETRACT
  1359. #ifdef Z_PROBE_SLED
  1360. #ifndef SLED_DOCKING_OFFSET
  1361. #define SLED_DOCKING_OFFSET 0
  1362. #endif
  1363. //
  1364. // Method to dock/undock a sled designed by Charles Bell.
  1365. //
  1366. // dock[in] If true, move to MAX_X and engage the electromagnet
  1367. // offset[in] The additional distance to move to adjust docking location
  1368. //
  1369. static void dock_sled(bool dock, int offset=0) {
  1370. int z_loc;
  1371. if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1372. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1373. SERIAL_ECHO_START;
  1374. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1375. return;
  1376. }
  1377. if (dock) {
  1378. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1379. current_position[Y_AXIS],
  1380. current_position[Z_AXIS]);
  1381. // turn off magnet
  1382. digitalWrite(SERVO0_PIN, LOW);
  1383. } else {
  1384. if (current_position[Z_AXIS] < (Z_RAISE_BEFORE_PROBING + 5))
  1385. z_loc = Z_RAISE_BEFORE_PROBING;
  1386. else
  1387. z_loc = current_position[Z_AXIS];
  1388. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset,
  1389. Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1390. // turn on magnet
  1391. digitalWrite(SERVO0_PIN, HIGH);
  1392. }
  1393. }
  1394. #endif
  1395. /**
  1396. *
  1397. * G-Code Handler functions
  1398. *
  1399. */
  1400. /**
  1401. * G0, G1: Coordinated movement of X Y Z E axes
  1402. */
  1403. inline void gcode_G0_G1() {
  1404. if (!Stopped) {
  1405. get_coordinates(); // For X Y Z E F
  1406. #ifdef FWRETRACT
  1407. if (autoretract_enabled)
  1408. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1409. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1410. // Is this move an attempt to retract or recover?
  1411. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1412. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1413. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1414. retract(!retracted[active_extruder]);
  1415. return;
  1416. }
  1417. }
  1418. #endif //FWRETRACT
  1419. prepare_move();
  1420. //ClearToSend();
  1421. }
  1422. }
  1423. /**
  1424. * G2: Clockwise Arc
  1425. * G3: Counterclockwise Arc
  1426. */
  1427. inline void gcode_G2_G3(bool clockwise) {
  1428. if (!Stopped) {
  1429. get_arc_coordinates();
  1430. prepare_arc_move(clockwise);
  1431. }
  1432. }
  1433. /**
  1434. * G4: Dwell S<seconds> or P<milliseconds>
  1435. */
  1436. inline void gcode_G4() {
  1437. unsigned long codenum=0;
  1438. LCD_MESSAGEPGM(MSG_DWELL);
  1439. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1440. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1441. st_synchronize();
  1442. previous_millis_cmd = millis();
  1443. codenum += previous_millis_cmd; // keep track of when we started waiting
  1444. while(millis() < codenum) {
  1445. manage_heater();
  1446. manage_inactivity();
  1447. lcd_update();
  1448. }
  1449. }
  1450. #ifdef FWRETRACT
  1451. /**
  1452. * G10 - Retract filament according to settings of M207
  1453. * G11 - Recover filament according to settings of M208
  1454. */
  1455. inline void gcode_G10_G11(bool doRetract=false) {
  1456. #if EXTRUDERS > 1
  1457. if (doRetract) {
  1458. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1459. }
  1460. #endif
  1461. retract(doRetract
  1462. #if EXTRUDERS > 1
  1463. , retracted_swap[active_extruder]
  1464. #endif
  1465. );
  1466. }
  1467. #endif //FWRETRACT
  1468. /**
  1469. * G28: Home all axes according to settings
  1470. *
  1471. * Parameters
  1472. *
  1473. * None Home to all axes with no parameters.
  1474. * With QUICK_HOME enabled XY will home together, then Z.
  1475. *
  1476. * Cartesian parameters
  1477. *
  1478. * X Home to the X endstop
  1479. * Y Home to the Y endstop
  1480. * Z Home to the Z endstop
  1481. *
  1482. * If numbers are included with XYZ set the position as with G92
  1483. * Currently adds the home_offset, which may be wrong and removed soon.
  1484. *
  1485. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1486. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1487. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1488. */
  1489. inline void gcode_G28() {
  1490. #ifdef ENABLE_AUTO_BED_LEVELING
  1491. #ifdef DELTA
  1492. reset_bed_level();
  1493. #else
  1494. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1495. #endif
  1496. #endif
  1497. #if defined(MESH_BED_LEVELING)
  1498. uint8_t mbl_was_active = mbl.active;
  1499. mbl.active = 0;
  1500. #endif // MESH_BED_LEVELING
  1501. saved_feedrate = feedrate;
  1502. saved_feedmultiply = feedmultiply;
  1503. feedmultiply = 100;
  1504. previous_millis_cmd = millis();
  1505. enable_endstops(true);
  1506. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1507. feedrate = 0.0;
  1508. #ifdef DELTA
  1509. // A delta can only safely home all axis at the same time
  1510. // all axis have to home at the same time
  1511. // Move all carriages up together until the first endstop is hit.
  1512. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1513. sync_plan_position();
  1514. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1515. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1516. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1517. st_synchronize();
  1518. endstops_hit_on_purpose();
  1519. // Destination reached
  1520. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1521. // take care of back off and rehome now we are all at the top
  1522. HOMEAXIS(X);
  1523. HOMEAXIS(Y);
  1524. HOMEAXIS(Z);
  1525. calculate_delta(current_position);
  1526. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1527. #else // NOT DELTA
  1528. bool homeX = code_seen(axis_codes[X_AXIS]),
  1529. homeY = code_seen(axis_codes[Y_AXIS]),
  1530. homeZ = code_seen(axis_codes[Z_AXIS]);
  1531. home_all_axis = !homeX && !homeY && !homeZ; // No parameters means home all axes
  1532. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1533. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1534. #endif
  1535. #ifdef QUICK_HOME
  1536. if (home_all_axis || (homeX && homeY)) { //first diagonal move
  1537. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1538. #ifdef DUAL_X_CARRIAGE
  1539. int x_axis_home_dir = x_home_dir(active_extruder);
  1540. extruder_duplication_enabled = false;
  1541. #else
  1542. int x_axis_home_dir = home_dir(X_AXIS);
  1543. #endif
  1544. sync_plan_position();
  1545. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;
  1546. destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1547. feedrate = homing_feedrate[X_AXIS];
  1548. if (homing_feedrate[Y_AXIS] < feedrate) feedrate = homing_feedrate[Y_AXIS];
  1549. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1550. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1551. } else {
  1552. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1553. }
  1554. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1555. st_synchronize();
  1556. axis_is_at_home(X_AXIS);
  1557. axis_is_at_home(Y_AXIS);
  1558. sync_plan_position();
  1559. destination[X_AXIS] = current_position[X_AXIS];
  1560. destination[Y_AXIS] = current_position[Y_AXIS];
  1561. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1562. feedrate = 0.0;
  1563. st_synchronize();
  1564. endstops_hit_on_purpose();
  1565. current_position[X_AXIS] = destination[X_AXIS];
  1566. current_position[Y_AXIS] = destination[Y_AXIS];
  1567. #ifndef SCARA
  1568. current_position[Z_AXIS] = destination[Z_AXIS];
  1569. #endif
  1570. }
  1571. #endif //QUICK_HOME
  1572. // Home X
  1573. if (home_all_axis || homeX) {
  1574. #ifdef DUAL_X_CARRIAGE
  1575. int tmp_extruder = active_extruder;
  1576. extruder_duplication_enabled = false;
  1577. active_extruder = !active_extruder;
  1578. HOMEAXIS(X);
  1579. inactive_extruder_x_pos = current_position[X_AXIS];
  1580. active_extruder = tmp_extruder;
  1581. HOMEAXIS(X);
  1582. // reset state used by the different modes
  1583. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1584. delayed_move_time = 0;
  1585. active_extruder_parked = true;
  1586. #else
  1587. HOMEAXIS(X);
  1588. #endif
  1589. }
  1590. // Home Y
  1591. if (home_all_axis || homeY) HOMEAXIS(Y);
  1592. // Set the X position, if included
  1593. // Adds the home_offset as well, which may be wrong
  1594. if (code_seen(axis_codes[X_AXIS])) {
  1595. float v = code_value();
  1596. if (v) current_position[X_AXIS] = v
  1597. #ifndef SCARA
  1598. + home_offset[X_AXIS]
  1599. #endif
  1600. ;
  1601. }
  1602. // Set the Y position, if included
  1603. // Adds the home_offset as well, which may be wrong
  1604. if (code_seen(axis_codes[Y_AXIS])) {
  1605. float v = code_value();
  1606. if (v) current_position[Y_AXIS] = v
  1607. #ifndef SCARA
  1608. + home_offset[Y_AXIS]
  1609. #endif
  1610. ;
  1611. }
  1612. // Home Z last if homing towards the bed
  1613. #if Z_HOME_DIR < 0
  1614. #ifndef Z_SAFE_HOMING
  1615. if (home_all_axis || homeZ) {
  1616. // Raise Z before homing Z? Shouldn't this happen before homing X or Y?
  1617. #if defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1618. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1619. feedrate = max_feedrate[Z_AXIS];
  1620. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1621. st_synchronize();
  1622. #endif
  1623. HOMEAXIS(Z);
  1624. }
  1625. #else // Z_SAFE_HOMING
  1626. if (home_all_axis) {
  1627. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1628. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1629. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1630. feedrate = XY_TRAVEL_SPEED / 60;
  1631. current_position[Z_AXIS] = 0;
  1632. sync_plan_position();
  1633. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1634. st_synchronize();
  1635. current_position[X_AXIS] = destination[X_AXIS];
  1636. current_position[Y_AXIS] = destination[Y_AXIS];
  1637. HOMEAXIS(Z);
  1638. }
  1639. // Let's see if X and Y are homed and probe is inside bed area.
  1640. if (homeZ) {
  1641. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1642. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1643. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1644. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1645. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1646. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1647. current_position[Z_AXIS] = 0;
  1648. plan_set_position(cpx, cpy, current_position[Z_AXIS], current_position[E_AXIS]);
  1649. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1650. feedrate = max_feedrate[Z_AXIS];
  1651. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1652. st_synchronize();
  1653. HOMEAXIS(Z);
  1654. }
  1655. else {
  1656. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1657. SERIAL_ECHO_START;
  1658. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1659. }
  1660. }
  1661. else {
  1662. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1663. SERIAL_ECHO_START;
  1664. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1665. }
  1666. }
  1667. #endif // Z_SAFE_HOMING
  1668. #endif // Z_HOME_DIR < 0
  1669. // Set the Z position, if included
  1670. // Adds the home_offset as well, which may be wrong
  1671. if (code_seen(axis_codes[Z_AXIS])) {
  1672. float v = code_value();
  1673. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1674. }
  1675. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1676. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1677. #endif
  1678. sync_plan_position();
  1679. #endif // else DELTA
  1680. #ifdef SCARA
  1681. calculate_delta(current_position);
  1682. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1683. #endif
  1684. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1685. enable_endstops(false);
  1686. #endif
  1687. #if defined(MESH_BED_LEVELING)
  1688. if (mbl_was_active) {
  1689. current_position[X_AXIS] = mbl.get_x(0);
  1690. current_position[Y_AXIS] = mbl.get_y(0);
  1691. destination[X_AXIS] = current_position[X_AXIS];
  1692. destination[Y_AXIS] = current_position[Y_AXIS];
  1693. destination[Z_AXIS] = current_position[Z_AXIS];
  1694. destination[E_AXIS] = current_position[E_AXIS];
  1695. feedrate = homing_feedrate[X_AXIS];
  1696. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1697. st_synchronize();
  1698. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1699. sync_plan_position();
  1700. mbl.active = 1;
  1701. }
  1702. #endif
  1703. feedrate = saved_feedrate;
  1704. feedmultiply = saved_feedmultiply;
  1705. previous_millis_cmd = millis();
  1706. endstops_hit_on_purpose();
  1707. }
  1708. #ifdef MESH_BED_LEVELING
  1709. /**
  1710. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1711. * mesh to compensate for variable bed height
  1712. *
  1713. * Parameters With MESH_BED_LEVELING:
  1714. *
  1715. * S0 Produce a mesh report
  1716. * S1 Start probing mesh points
  1717. * S2 Probe the next mesh point
  1718. *
  1719. */
  1720. inline void gcode_G29() {
  1721. static int probe_point = -1;
  1722. int state = 0;
  1723. if (code_seen('S') || code_seen('s')) {
  1724. state = code_value_long();
  1725. if (state < 0 || state > 2) {
  1726. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1727. return;
  1728. }
  1729. }
  1730. if (state == 0) { // Dump mesh_bed_leveling
  1731. if (mbl.active) {
  1732. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1733. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1734. SERIAL_PROTOCOLPGM(",");
  1735. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1736. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1737. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1738. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1739. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1740. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1741. SERIAL_PROTOCOLPGM(" ");
  1742. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1743. }
  1744. SERIAL_EOL;
  1745. }
  1746. } else {
  1747. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1748. }
  1749. } else if (state == 1) { // Begin probing mesh points
  1750. mbl.reset();
  1751. probe_point = 0;
  1752. enquecommands_P(PSTR("G28"));
  1753. enquecommands_P(PSTR("G29 S2"));
  1754. } else if (state == 2) { // Goto next point
  1755. if (probe_point < 0) {
  1756. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1757. return;
  1758. }
  1759. int ix, iy;
  1760. if (probe_point == 0) {
  1761. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1762. sync_plan_position();
  1763. } else {
  1764. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1765. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1766. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1767. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1768. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1769. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1770. st_synchronize();
  1771. }
  1772. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1773. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1774. probe_point = -1;
  1775. mbl.active = 1;
  1776. enquecommands_P(PSTR("G28"));
  1777. return;
  1778. }
  1779. ix = probe_point % MESH_NUM_X_POINTS;
  1780. iy = probe_point / MESH_NUM_X_POINTS;
  1781. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1782. current_position[X_AXIS] = mbl.get_x(ix);
  1783. current_position[Y_AXIS] = mbl.get_y(iy);
  1784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1785. st_synchronize();
  1786. probe_point++;
  1787. }
  1788. }
  1789. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1790. /**
  1791. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1792. * Will fail if the printer has not been homed with G28.
  1793. *
  1794. * Enhanced G29 Auto Bed Leveling Probe Routine
  1795. *
  1796. * Parameters With AUTO_BED_LEVELING_GRID:
  1797. *
  1798. * P Set the size of the grid that will be probed (P x P points).
  1799. * Not supported by non-linear delta printer bed leveling.
  1800. * Example: "G29 P4"
  1801. *
  1802. * S Set the XY travel speed between probe points (in mm/min)
  1803. *
  1804. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1805. * or clean the rotation Matrix. Useful to check the topology
  1806. * after a first run of G29.
  1807. *
  1808. * V Set the verbose level (0-4). Example: "G29 V3"
  1809. *
  1810. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1811. * This is useful for manual bed leveling and finding flaws in the bed (to
  1812. * assist with part placement).
  1813. * Not supported by non-linear delta printer bed leveling.
  1814. *
  1815. * F Set the Front limit of the probing grid
  1816. * B Set the Back limit of the probing grid
  1817. * L Set the Left limit of the probing grid
  1818. * R Set the Right limit of the probing grid
  1819. *
  1820. * Global Parameters:
  1821. *
  1822. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1823. * Include "E" to engage/disengage the probe for each sample.
  1824. * There's no extra effect if you have a fixed probe.
  1825. * Usage: "G29 E" or "G29 e"
  1826. *
  1827. */
  1828. inline void gcode_G29() {
  1829. // Prevent user from running a G29 without first homing in X and Y
  1830. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1831. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1832. SERIAL_ECHO_START;
  1833. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1834. return;
  1835. }
  1836. int verbose_level = 1;
  1837. if (code_seen('V') || code_seen('v')) {
  1838. verbose_level = code_value_long();
  1839. if (verbose_level < 0 || verbose_level > 4) {
  1840. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1841. return;
  1842. }
  1843. }
  1844. bool dryrun = code_seen('D') || code_seen('d');
  1845. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1846. #ifdef AUTO_BED_LEVELING_GRID
  1847. #ifndef DELTA
  1848. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1849. #endif
  1850. if (verbose_level > 0)
  1851. {
  1852. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1853. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1854. }
  1855. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1856. #ifndef DELTA
  1857. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1858. if (auto_bed_leveling_grid_points < 2) {
  1859. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1860. return;
  1861. }
  1862. #endif
  1863. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1864. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1865. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1866. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1867. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1868. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1869. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1870. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1871. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1872. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1873. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1874. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1875. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1876. if (left_out || right_out || front_out || back_out) {
  1877. if (left_out) {
  1878. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1879. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1880. }
  1881. if (right_out) {
  1882. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1883. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1884. }
  1885. if (front_out) {
  1886. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1887. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1888. }
  1889. if (back_out) {
  1890. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1891. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1892. }
  1893. return;
  1894. }
  1895. #endif // AUTO_BED_LEVELING_GRID
  1896. #ifdef Z_PROBE_SLED
  1897. dock_sled(false); // engage (un-dock) the probe
  1898. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1899. engage_z_probe();
  1900. #endif
  1901. st_synchronize();
  1902. if (!dryrun)
  1903. {
  1904. #ifdef DELTA
  1905. reset_bed_level();
  1906. #else //!DELTA
  1907. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1908. //vector_3 corrected_position = plan_get_position_mm();
  1909. //corrected_position.debug("position before G29");
  1910. plan_bed_level_matrix.set_to_identity();
  1911. vector_3 uncorrected_position = plan_get_position();
  1912. //uncorrected_position.debug("position during G29");
  1913. current_position[X_AXIS] = uncorrected_position.x;
  1914. current_position[Y_AXIS] = uncorrected_position.y;
  1915. current_position[Z_AXIS] = uncorrected_position.z;
  1916. sync_plan_position();
  1917. #endif
  1918. }
  1919. setup_for_endstop_move();
  1920. feedrate = homing_feedrate[Z_AXIS];
  1921. #ifdef AUTO_BED_LEVELING_GRID
  1922. // probe at the points of a lattice grid
  1923. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1924. const int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
  1925. #ifdef DELTA
  1926. delta_grid_spacing[0] = xGridSpacing;
  1927. delta_grid_spacing[1] = yGridSpacing;
  1928. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1929. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1930. #else // !DELTA
  1931. // solve the plane equation ax + by + d = z
  1932. // A is the matrix with rows [x y 1] for all the probed points
  1933. // B is the vector of the Z positions
  1934. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1935. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1936. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1937. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1938. eqnBVector[abl2], // "B" vector of Z points
  1939. mean = 0.0;
  1940. #endif // !DELTA
  1941. int probePointCounter = 0;
  1942. bool zig = true;
  1943. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1944. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1945. int xStart, xStop, xInc;
  1946. if (zig) {
  1947. xStart = 0;
  1948. xStop = auto_bed_leveling_grid_points;
  1949. xInc = 1;
  1950. }
  1951. else {
  1952. xStart = auto_bed_leveling_grid_points - 1;
  1953. xStop = -1;
  1954. xInc = -1;
  1955. }
  1956. #ifndef DELTA
  1957. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1958. // This gets the probe points in more readable order.
  1959. if (!do_topography_map) zig = !zig;
  1960. #endif
  1961. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1962. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1963. // raise extruder
  1964. float measured_z,
  1965. z_before = probePointCounter == 0 ? Z_RAISE_BEFORE_PROBING : current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1966. #ifdef DELTA
  1967. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1968. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1969. if (distance_from_center > DELTA_PROBABLE_RADIUS)
  1970. continue;
  1971. #endif //DELTA
  1972. // Enhanced G29 - Do not retract servo between probes
  1973. ProbeAction act;
  1974. if (engage_probe_for_each_reading)
  1975. act = ProbeEngageAndRetract;
  1976. else if (yProbe == front_probe_bed_position && xCount == 0)
  1977. act = ProbeEngage;
  1978. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1979. act = ProbeRetract;
  1980. else
  1981. act = ProbeStay;
  1982. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1983. #ifndef DELTA
  1984. mean += measured_z;
  1985. eqnBVector[probePointCounter] = measured_z;
  1986. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1987. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1988. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1989. #else
  1990. bed_level[xCount][yCount] = measured_z + z_offset;
  1991. #endif
  1992. probePointCounter++;
  1993. } //xProbe
  1994. } //yProbe
  1995. clean_up_after_endstop_move();
  1996. #ifdef DELTA
  1997. if (!dryrun) extrapolate_unprobed_bed_level();
  1998. print_bed_level();
  1999. #else // !DELTA
  2000. // solve lsq problem
  2001. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2002. mean /= abl2;
  2003. if (verbose_level) {
  2004. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2005. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2006. SERIAL_PROTOCOLPGM(" b: ");
  2007. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2008. SERIAL_PROTOCOLPGM(" d: ");
  2009. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2010. SERIAL_EOL;
  2011. if (verbose_level > 2) {
  2012. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2013. SERIAL_PROTOCOL_F(mean, 8);
  2014. SERIAL_EOL;
  2015. }
  2016. }
  2017. // Show the Topography map if enabled
  2018. if (do_topography_map) {
  2019. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2020. SERIAL_PROTOCOLPGM("+-----------+\n");
  2021. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2022. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2023. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2024. SERIAL_PROTOCOLPGM("+-----------+\n");
  2025. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2026. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2027. int ind = yy * auto_bed_leveling_grid_points + xx;
  2028. float diff = eqnBVector[ind] - mean;
  2029. if (diff >= 0.0)
  2030. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2031. else
  2032. SERIAL_PROTOCOLPGM(" ");
  2033. SERIAL_PROTOCOL_F(diff, 5);
  2034. } // xx
  2035. SERIAL_EOL;
  2036. } // yy
  2037. SERIAL_EOL;
  2038. } //do_topography_map
  2039. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2040. free(plane_equation_coefficients);
  2041. #endif //!DELTA
  2042. #else // !AUTO_BED_LEVELING_GRID
  2043. // Actions for each probe
  2044. ProbeAction p1, p2, p3;
  2045. if (engage_probe_for_each_reading)
  2046. p1 = p2 = p3 = ProbeEngageAndRetract;
  2047. else
  2048. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2049. // Probe at 3 arbitrary points
  2050. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2051. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2052. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2053. clean_up_after_endstop_move();
  2054. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2055. #endif // !AUTO_BED_LEVELING_GRID
  2056. #ifndef DELTA
  2057. if (verbose_level > 0)
  2058. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2059. // Correct the Z height difference from z-probe position and hotend tip position.
  2060. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2061. // When the bed is uneven, this height must be corrected.
  2062. if (!dryrun)
  2063. {
  2064. float x_tmp, y_tmp, z_tmp, real_z;
  2065. real_z = float(st_get_position(Z_AXIS)) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2066. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  2067. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  2068. z_tmp = current_position[Z_AXIS];
  2069. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2070. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2071. sync_plan_position();
  2072. }
  2073. #endif // !DELTA
  2074. #ifdef Z_PROBE_SLED
  2075. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2076. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2077. retract_z_probe();
  2078. #endif
  2079. #ifdef Z_PROBE_END_SCRIPT
  2080. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2081. st_synchronize();
  2082. #endif
  2083. }
  2084. #ifndef Z_PROBE_SLED
  2085. inline void gcode_G30() {
  2086. engage_z_probe(); // Engage Z Servo endstop if available
  2087. st_synchronize();
  2088. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2089. setup_for_endstop_move();
  2090. feedrate = homing_feedrate[Z_AXIS];
  2091. run_z_probe();
  2092. SERIAL_PROTOCOLPGM(MSG_BED);
  2093. SERIAL_PROTOCOLPGM(" X: ");
  2094. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2095. SERIAL_PROTOCOLPGM(" Y: ");
  2096. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2097. SERIAL_PROTOCOLPGM(" Z: ");
  2098. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2099. SERIAL_EOL;
  2100. clean_up_after_endstop_move();
  2101. retract_z_probe(); // Retract Z Servo endstop if available
  2102. }
  2103. #endif //!Z_PROBE_SLED
  2104. #endif //ENABLE_AUTO_BED_LEVELING
  2105. /**
  2106. * G92: Set current position to given X Y Z E
  2107. */
  2108. inline void gcode_G92() {
  2109. if (!code_seen(axis_codes[E_AXIS]))
  2110. st_synchronize();
  2111. bool didXYZ = false;
  2112. for (int i = 0; i < NUM_AXIS; i++) {
  2113. if (code_seen(axis_codes[i])) {
  2114. float v = current_position[i] = code_value();
  2115. if (i == E_AXIS)
  2116. plan_set_e_position(v);
  2117. else
  2118. didXYZ = true;
  2119. }
  2120. }
  2121. if (didXYZ) sync_plan_position();
  2122. }
  2123. #ifdef ULTIPANEL
  2124. /**
  2125. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2126. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2127. */
  2128. inline void gcode_M0_M1() {
  2129. char *src = strchr_pointer + 2;
  2130. unsigned long codenum = 0;
  2131. bool hasP = false, hasS = false;
  2132. if (code_seen('P')) {
  2133. codenum = code_value(); // milliseconds to wait
  2134. hasP = codenum > 0;
  2135. }
  2136. if (code_seen('S')) {
  2137. codenum = code_value() * 1000; // seconds to wait
  2138. hasS = codenum > 0;
  2139. }
  2140. char* starpos = strchr(src, '*');
  2141. if (starpos != NULL) *(starpos) = '\0';
  2142. while (*src == ' ') ++src;
  2143. if (!hasP && !hasS && *src != '\0')
  2144. lcd_setstatus(src);
  2145. else
  2146. LCD_MESSAGEPGM(MSG_USERWAIT);
  2147. lcd_ignore_click();
  2148. st_synchronize();
  2149. previous_millis_cmd = millis();
  2150. if (codenum > 0) {
  2151. codenum += previous_millis_cmd; // keep track of when we started waiting
  2152. while(millis() < codenum && !lcd_clicked()) {
  2153. manage_heater();
  2154. manage_inactivity();
  2155. lcd_update();
  2156. }
  2157. lcd_ignore_click(false);
  2158. }
  2159. else {
  2160. if (!lcd_detected()) return;
  2161. while (!lcd_clicked()) {
  2162. manage_heater();
  2163. manage_inactivity();
  2164. lcd_update();
  2165. }
  2166. }
  2167. if (IS_SD_PRINTING)
  2168. LCD_MESSAGEPGM(MSG_RESUMING);
  2169. else
  2170. LCD_MESSAGEPGM(WELCOME_MSG);
  2171. }
  2172. #endif // ULTIPANEL
  2173. /**
  2174. * M17: Enable power on all stepper motors
  2175. */
  2176. inline void gcode_M17() {
  2177. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2178. enable_x();
  2179. enable_y();
  2180. enable_z();
  2181. enable_e0();
  2182. enable_e1();
  2183. enable_e2();
  2184. enable_e3();
  2185. }
  2186. #ifdef SDSUPPORT
  2187. /**
  2188. * M20: List SD card to serial output
  2189. */
  2190. inline void gcode_M20() {
  2191. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2192. card.ls();
  2193. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2194. }
  2195. /**
  2196. * M21: Init SD Card
  2197. */
  2198. inline void gcode_M21() {
  2199. card.initsd();
  2200. }
  2201. /**
  2202. * M22: Release SD Card
  2203. */
  2204. inline void gcode_M22() {
  2205. card.release();
  2206. }
  2207. /**
  2208. * M23: Select a file
  2209. */
  2210. inline void gcode_M23() {
  2211. char* codepos = strchr_pointer + 4;
  2212. char* starpos = strchr(codepos, '*');
  2213. if (starpos) *starpos = '\0';
  2214. card.openFile(codepos, true);
  2215. }
  2216. /**
  2217. * M24: Start SD Print
  2218. */
  2219. inline void gcode_M24() {
  2220. card.startFileprint();
  2221. starttime = millis();
  2222. }
  2223. /**
  2224. * M25: Pause SD Print
  2225. */
  2226. inline void gcode_M25() {
  2227. card.pauseSDPrint();
  2228. }
  2229. /**
  2230. * M26: Set SD Card file index
  2231. */
  2232. inline void gcode_M26() {
  2233. if (card.cardOK && code_seen('S'))
  2234. card.setIndex(code_value_long());
  2235. }
  2236. /**
  2237. * M27: Get SD Card status
  2238. */
  2239. inline void gcode_M27() {
  2240. card.getStatus();
  2241. }
  2242. /**
  2243. * M28: Start SD Write
  2244. */
  2245. inline void gcode_M28() {
  2246. char* codepos = strchr_pointer + 4;
  2247. char* starpos = strchr(codepos, '*');
  2248. if (starpos) {
  2249. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2250. strchr_pointer = strchr(npos, ' ') + 1;
  2251. *(starpos) = '\0';
  2252. }
  2253. card.openFile(codepos, false);
  2254. }
  2255. /**
  2256. * M29: Stop SD Write
  2257. * Processed in write to file routine above
  2258. */
  2259. inline void gcode_M29() {
  2260. // card.saving = false;
  2261. }
  2262. /**
  2263. * M30 <filename>: Delete SD Card file
  2264. */
  2265. inline void gcode_M30() {
  2266. if (card.cardOK) {
  2267. card.closefile();
  2268. char* starpos = strchr(strchr_pointer + 4, '*');
  2269. if (starpos) {
  2270. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2271. strchr_pointer = strchr(npos, ' ') + 1;
  2272. *(starpos) = '\0';
  2273. }
  2274. card.removeFile(strchr_pointer + 4);
  2275. }
  2276. }
  2277. #endif
  2278. /**
  2279. * M31: Get the time since the start of SD Print (or last M109)
  2280. */
  2281. inline void gcode_M31() {
  2282. stoptime = millis();
  2283. unsigned long t = (stoptime - starttime) / 1000;
  2284. int min = t / 60, sec = t % 60;
  2285. char time[30];
  2286. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2287. SERIAL_ECHO_START;
  2288. SERIAL_ECHOLN(time);
  2289. lcd_setstatus(time);
  2290. autotempShutdown();
  2291. }
  2292. #ifdef SDSUPPORT
  2293. /**
  2294. * M32: Select file and start SD Print
  2295. */
  2296. inline void gcode_M32() {
  2297. if (card.sdprinting)
  2298. st_synchronize();
  2299. char* codepos = strchr_pointer + 4;
  2300. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2301. if (! namestartpos)
  2302. namestartpos = codepos; //default name position, 4 letters after the M
  2303. else
  2304. namestartpos++; //to skip the '!'
  2305. char* starpos = strchr(codepos, '*');
  2306. if (starpos) *(starpos) = '\0';
  2307. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2308. if (card.cardOK) {
  2309. card.openFile(namestartpos, true, !call_procedure);
  2310. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2311. card.setIndex(code_value_long());
  2312. card.startFileprint();
  2313. if (!call_procedure)
  2314. starttime = millis(); //procedure calls count as normal print time.
  2315. }
  2316. }
  2317. /**
  2318. * M928: Start SD Write
  2319. */
  2320. inline void gcode_M928() {
  2321. char* starpos = strchr(strchr_pointer + 5, '*');
  2322. if (starpos) {
  2323. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2324. strchr_pointer = strchr(npos, ' ') + 1;
  2325. *(starpos) = '\0';
  2326. }
  2327. card.openLogFile(strchr_pointer + 5);
  2328. }
  2329. #endif // SDSUPPORT
  2330. /**
  2331. * M42: Change pin status via GCode
  2332. */
  2333. inline void gcode_M42() {
  2334. if (code_seen('S')) {
  2335. int pin_status = code_value(),
  2336. pin_number = LED_PIN;
  2337. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2338. pin_number = code_value();
  2339. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2340. if (sensitive_pins[i] == pin_number) {
  2341. pin_number = -1;
  2342. break;
  2343. }
  2344. }
  2345. #if defined(FAN_PIN) && FAN_PIN > -1
  2346. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2347. #endif
  2348. if (pin_number > -1) {
  2349. pinMode(pin_number, OUTPUT);
  2350. digitalWrite(pin_number, pin_status);
  2351. analogWrite(pin_number, pin_status);
  2352. }
  2353. } // code_seen('S')
  2354. }
  2355. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2356. #if Z_MIN_PIN == -1
  2357. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2358. #endif
  2359. /**
  2360. * M48: Z-Probe repeatability measurement function.
  2361. *
  2362. * Usage:
  2363. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2364. * P = Number of sampled points (4-50, default 10)
  2365. * X = Sample X position
  2366. * Y = Sample Y position
  2367. * V = Verbose level (0-4, default=1)
  2368. * E = Engage probe for each reading
  2369. * L = Number of legs of movement before probe
  2370. *
  2371. * This function assumes the bed has been homed. Specifically, that a G28 command
  2372. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2373. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2374. * regenerated.
  2375. *
  2376. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2377. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2378. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2379. */
  2380. inline void gcode_M48() {
  2381. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2382. int verbose_level = 1, n = 0, j, n_samples = 10, n_legs = 0, engage_probe_for_each_reading = 0;
  2383. double X_current, Y_current, Z_current;
  2384. double X_probe_location, Y_probe_location, Z_start_location, ext_position;
  2385. if (code_seen('V') || code_seen('v')) {
  2386. verbose_level = code_value();
  2387. if (verbose_level < 0 || verbose_level > 4 ) {
  2388. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2389. return;
  2390. }
  2391. }
  2392. if (verbose_level > 0)
  2393. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2394. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2395. n_samples = code_value();
  2396. if (n_samples < 4 || n_samples > 50) {
  2397. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2398. return;
  2399. }
  2400. }
  2401. X_current = X_probe_location = st_get_position_mm(X_AXIS);
  2402. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS);
  2403. Z_current = st_get_position_mm(Z_AXIS);
  2404. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2405. ext_position = st_get_position_mm(E_AXIS);
  2406. if (code_seen('E') || code_seen('e'))
  2407. engage_probe_for_each_reading++;
  2408. if (code_seen('X') || code_seen('x')) {
  2409. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2410. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2411. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2412. return;
  2413. }
  2414. }
  2415. if (code_seen('Y') || code_seen('y')) {
  2416. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2417. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2418. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2419. return;
  2420. }
  2421. }
  2422. if (code_seen('L') || code_seen('l')) {
  2423. n_legs = code_value();
  2424. if (n_legs == 1) n_legs = 2;
  2425. if (n_legs < 0 || n_legs > 15) {
  2426. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2427. return;
  2428. }
  2429. }
  2430. //
  2431. // Do all the preliminary setup work. First raise the probe.
  2432. //
  2433. st_synchronize();
  2434. plan_bed_level_matrix.set_to_identity();
  2435. plan_buffer_line(X_current, Y_current, Z_start_location,
  2436. ext_position,
  2437. homing_feedrate[Z_AXIS] / 60,
  2438. active_extruder);
  2439. st_synchronize();
  2440. //
  2441. // Now get everything to the specified probe point So we can safely do a probe to
  2442. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2443. // use that as a starting point for each probe.
  2444. //
  2445. if (verbose_level > 2)
  2446. SERIAL_PROTOCOL("Positioning the probe...\n");
  2447. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2448. ext_position,
  2449. homing_feedrate[X_AXIS]/60,
  2450. active_extruder);
  2451. st_synchronize();
  2452. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2453. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2454. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2455. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2456. //
  2457. // OK, do the inital probe to get us close to the bed.
  2458. // Then retrace the right amount and use that in subsequent probes
  2459. //
  2460. engage_z_probe();
  2461. setup_for_endstop_move();
  2462. run_z_probe();
  2463. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2464. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2465. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2466. ext_position,
  2467. homing_feedrate[X_AXIS]/60,
  2468. active_extruder);
  2469. st_synchronize();
  2470. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2471. if (engage_probe_for_each_reading) retract_z_probe();
  2472. for (n=0; n < n_samples; n++) {
  2473. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2474. if (n_legs) {
  2475. double radius=0.0, theta=0.0;
  2476. int l;
  2477. int rotational_direction = (unsigned long) millis() & 0x0001; // clockwise or counter clockwise
  2478. radius = (unsigned long)millis() % (long)(X_MAX_LENGTH / 4); // limit how far out to go
  2479. theta = (float)((unsigned long)millis() % 360L) / (360. / (2 * 3.1415926)); // turn into radians
  2480. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2481. //SERIAL_ECHOPAIR(" theta: ",theta);
  2482. //SERIAL_ECHOPAIR(" direction: ",rotational_direction);
  2483. //SERIAL_EOL;
  2484. float dir = rotational_direction ? 1 : -1;
  2485. for (l = 0; l < n_legs - 1; l++) {
  2486. theta += dir * (float)((unsigned long)millis() % 20L) / (360.0/(2*3.1415926)); // turn into radians
  2487. radius += (float)(((long)((unsigned long) millis() % 10L)) - 5L);
  2488. if (radius < 0.0) radius = -radius;
  2489. X_current = X_probe_location + cos(theta) * radius;
  2490. Y_current = Y_probe_location + sin(theta) * radius;
  2491. // Make sure our X & Y are sane
  2492. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2493. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2494. if (verbose_level > 3) {
  2495. SERIAL_ECHOPAIR("x: ", X_current);
  2496. SERIAL_ECHOPAIR("y: ", Y_current);
  2497. SERIAL_EOL;
  2498. }
  2499. do_blocking_move_to( X_current, Y_current, Z_current );
  2500. }
  2501. do_blocking_move_to( X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2502. }
  2503. if (engage_probe_for_each_reading) {
  2504. engage_z_probe();
  2505. delay(1000);
  2506. }
  2507. setup_for_endstop_move();
  2508. run_z_probe();
  2509. sample_set[n] = current_position[Z_AXIS];
  2510. //
  2511. // Get the current mean for the data points we have so far
  2512. //
  2513. sum = 0.0;
  2514. for (j=0; j<=n; j++) sum += sample_set[j];
  2515. mean = sum / (double (n+1));
  2516. //
  2517. // Now, use that mean to calculate the standard deviation for the
  2518. // data points we have so far
  2519. //
  2520. sum = 0.0;
  2521. for (j=0; j<=n; j++) sum += (sample_set[j]-mean) * (sample_set[j]-mean);
  2522. sigma = sqrt( sum / (double (n+1)) );
  2523. if (verbose_level > 1) {
  2524. SERIAL_PROTOCOL(n+1);
  2525. SERIAL_PROTOCOL(" of ");
  2526. SERIAL_PROTOCOL(n_samples);
  2527. SERIAL_PROTOCOLPGM(" z: ");
  2528. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2529. }
  2530. if (verbose_level > 2) {
  2531. SERIAL_PROTOCOL(" mean: ");
  2532. SERIAL_PROTOCOL_F(mean,6);
  2533. SERIAL_PROTOCOL(" sigma: ");
  2534. SERIAL_PROTOCOL_F(sigma,6);
  2535. }
  2536. if (verbose_level > 0) SERIAL_EOL;
  2537. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location,
  2538. current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2539. st_synchronize();
  2540. if (engage_probe_for_each_reading) {
  2541. retract_z_probe();
  2542. delay(1000);
  2543. }
  2544. }
  2545. retract_z_probe();
  2546. delay(1000);
  2547. clean_up_after_endstop_move();
  2548. // enable_endstops(true);
  2549. if (verbose_level > 0) {
  2550. SERIAL_PROTOCOLPGM("Mean: ");
  2551. SERIAL_PROTOCOL_F(mean, 6);
  2552. SERIAL_EOL;
  2553. }
  2554. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2555. SERIAL_PROTOCOL_F(sigma, 6);
  2556. SERIAL_EOL; SERIAL_EOL;
  2557. }
  2558. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2559. /**
  2560. * M104: Set hot end temperature
  2561. */
  2562. inline void gcode_M104() {
  2563. if (setTargetedHotend(104)) return;
  2564. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2565. #ifdef DUAL_X_CARRIAGE
  2566. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2567. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2568. #endif
  2569. setWatch();
  2570. }
  2571. /**
  2572. * M105: Read hot end and bed temperature
  2573. */
  2574. inline void gcode_M105() {
  2575. if (setTargetedHotend(105)) return;
  2576. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2577. SERIAL_PROTOCOLPGM("ok T:");
  2578. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2579. SERIAL_PROTOCOLPGM(" /");
  2580. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2581. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2582. SERIAL_PROTOCOLPGM(" B:");
  2583. SERIAL_PROTOCOL_F(degBed(),1);
  2584. SERIAL_PROTOCOLPGM(" /");
  2585. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2586. #endif //TEMP_BED_PIN
  2587. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2588. SERIAL_PROTOCOLPGM(" T");
  2589. SERIAL_PROTOCOL(cur_extruder);
  2590. SERIAL_PROTOCOLPGM(":");
  2591. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2592. SERIAL_PROTOCOLPGM(" /");
  2593. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2594. }
  2595. #else
  2596. SERIAL_ERROR_START;
  2597. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2598. #endif
  2599. SERIAL_PROTOCOLPGM(" @:");
  2600. #ifdef EXTRUDER_WATTS
  2601. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2602. SERIAL_PROTOCOLPGM("W");
  2603. #else
  2604. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2605. #endif
  2606. SERIAL_PROTOCOLPGM(" B@:");
  2607. #ifdef BED_WATTS
  2608. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2609. SERIAL_PROTOCOLPGM("W");
  2610. #else
  2611. SERIAL_PROTOCOL(getHeaterPower(-1));
  2612. #endif
  2613. #ifdef SHOW_TEMP_ADC_VALUES
  2614. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2615. SERIAL_PROTOCOLPGM(" ADC B:");
  2616. SERIAL_PROTOCOL_F(degBed(),1);
  2617. SERIAL_PROTOCOLPGM("C->");
  2618. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2619. #endif
  2620. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2621. SERIAL_PROTOCOLPGM(" T");
  2622. SERIAL_PROTOCOL(cur_extruder);
  2623. SERIAL_PROTOCOLPGM(":");
  2624. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2625. SERIAL_PROTOCOLPGM("C->");
  2626. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2627. }
  2628. #endif
  2629. SERIAL_PROTOCOLLN("");
  2630. }
  2631. #if defined(FAN_PIN) && FAN_PIN > -1
  2632. /**
  2633. * M106: Set Fan Speed
  2634. */
  2635. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2636. /**
  2637. * M107: Fan Off
  2638. */
  2639. inline void gcode_M107() { fanSpeed = 0; }
  2640. #endif //FAN_PIN
  2641. /**
  2642. * M109: Wait for extruder(s) to reach temperature
  2643. */
  2644. inline void gcode_M109() {
  2645. if (setTargetedHotend(109)) return;
  2646. LCD_MESSAGEPGM(MSG_HEATING);
  2647. CooldownNoWait = code_seen('S');
  2648. if (CooldownNoWait || code_seen('R')) {
  2649. setTargetHotend(code_value(), tmp_extruder);
  2650. #ifdef DUAL_X_CARRIAGE
  2651. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2652. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2653. #endif
  2654. }
  2655. #ifdef AUTOTEMP
  2656. autotemp_enabled = code_seen('F');
  2657. if (autotemp_enabled) autotemp_factor = code_value();
  2658. if (code_seen('S')) autotemp_min = code_value();
  2659. if (code_seen('B')) autotemp_max = code_value();
  2660. #endif
  2661. setWatch();
  2662. unsigned long timetemp = millis();
  2663. /* See if we are heating up or cooling down */
  2664. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2665. cancel_heatup = false;
  2666. #ifdef TEMP_RESIDENCY_TIME
  2667. long residencyStart = -1;
  2668. /* continue to loop until we have reached the target temp
  2669. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2670. while((!cancel_heatup)&&((residencyStart == -1) ||
  2671. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2672. #else
  2673. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2674. #endif //TEMP_RESIDENCY_TIME
  2675. { // while loop
  2676. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2677. SERIAL_PROTOCOLPGM("T:");
  2678. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2679. SERIAL_PROTOCOLPGM(" E:");
  2680. SERIAL_PROTOCOL((int)tmp_extruder);
  2681. #ifdef TEMP_RESIDENCY_TIME
  2682. SERIAL_PROTOCOLPGM(" W:");
  2683. if (residencyStart > -1) {
  2684. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2685. SERIAL_PROTOCOLLN( timetemp );
  2686. }
  2687. else {
  2688. SERIAL_PROTOCOLLN( "?" );
  2689. }
  2690. #else
  2691. SERIAL_PROTOCOLLN("");
  2692. #endif
  2693. timetemp = millis();
  2694. }
  2695. manage_heater();
  2696. manage_inactivity();
  2697. lcd_update();
  2698. #ifdef TEMP_RESIDENCY_TIME
  2699. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2700. // or when current temp falls outside the hysteresis after target temp was reached
  2701. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2702. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2703. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2704. {
  2705. residencyStart = millis();
  2706. }
  2707. #endif //TEMP_RESIDENCY_TIME
  2708. }
  2709. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2710. starttime = previous_millis_cmd = millis();
  2711. }
  2712. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2713. /**
  2714. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2715. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2716. */
  2717. inline void gcode_M190() {
  2718. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2719. CooldownNoWait = code_seen('S');
  2720. if (CooldownNoWait || code_seen('R'))
  2721. setTargetBed(code_value());
  2722. unsigned long timetemp = millis();
  2723. cancel_heatup = false;
  2724. target_direction = isHeatingBed(); // true if heating, false if cooling
  2725. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2726. unsigned long ms = millis();
  2727. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2728. timetemp = ms;
  2729. float tt = degHotend(active_extruder);
  2730. SERIAL_PROTOCOLPGM("T:");
  2731. SERIAL_PROTOCOL(tt);
  2732. SERIAL_PROTOCOLPGM(" E:");
  2733. SERIAL_PROTOCOL((int)active_extruder);
  2734. SERIAL_PROTOCOLPGM(" B:");
  2735. SERIAL_PROTOCOL_F(degBed(), 1);
  2736. SERIAL_PROTOCOLLN("");
  2737. }
  2738. manage_heater();
  2739. manage_inactivity();
  2740. lcd_update();
  2741. }
  2742. LCD_MESSAGEPGM(MSG_BED_DONE);
  2743. previous_millis_cmd = millis();
  2744. }
  2745. #endif // TEMP_BED_PIN > -1
  2746. /**
  2747. * M112: Emergency Stop
  2748. */
  2749. inline void gcode_M112() {
  2750. kill();
  2751. }
  2752. #ifdef BARICUDA
  2753. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2754. /**
  2755. * M126: Heater 1 valve open
  2756. */
  2757. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2758. /**
  2759. * M127: Heater 1 valve close
  2760. */
  2761. inline void gcode_M127() { ValvePressure = 0; }
  2762. #endif
  2763. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2764. /**
  2765. * M128: Heater 2 valve open
  2766. */
  2767. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2768. /**
  2769. * M129: Heater 2 valve close
  2770. */
  2771. inline void gcode_M129() { EtoPPressure = 0; }
  2772. #endif
  2773. #endif //BARICUDA
  2774. /**
  2775. * M140: Set bed temperature
  2776. */
  2777. inline void gcode_M140() {
  2778. if (code_seen('S')) setTargetBed(code_value());
  2779. }
  2780. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2781. /**
  2782. * M80: Turn on Power Supply
  2783. */
  2784. inline void gcode_M80() {
  2785. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2786. // If you have a switch on suicide pin, this is useful
  2787. // if you want to start another print with suicide feature after
  2788. // a print without suicide...
  2789. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2790. OUT_WRITE(SUICIDE_PIN, HIGH);
  2791. #endif
  2792. #ifdef ULTIPANEL
  2793. powersupply = true;
  2794. LCD_MESSAGEPGM(WELCOME_MSG);
  2795. lcd_update();
  2796. #endif
  2797. }
  2798. #endif // PS_ON_PIN
  2799. /**
  2800. * M81: Turn off Power Supply
  2801. */
  2802. inline void gcode_M81() {
  2803. disable_heater();
  2804. st_synchronize();
  2805. disable_e0();
  2806. disable_e1();
  2807. disable_e2();
  2808. disable_e3();
  2809. finishAndDisableSteppers();
  2810. fanSpeed = 0;
  2811. delay(1000); // Wait 1 second before switching off
  2812. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2813. st_synchronize();
  2814. suicide();
  2815. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  2816. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2817. #endif
  2818. #ifdef ULTIPANEL
  2819. powersupply = false;
  2820. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2821. lcd_update();
  2822. #endif
  2823. }
  2824. /**
  2825. * M82: Set E codes absolute (default)
  2826. */
  2827. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2828. /**
  2829. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2830. */
  2831. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2832. /**
  2833. * M18, M84: Disable all stepper motors
  2834. */
  2835. inline void gcode_M18_M84() {
  2836. if (code_seen('S')) {
  2837. stepper_inactive_time = code_value() * 1000;
  2838. }
  2839. else {
  2840. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2841. if (all_axis) {
  2842. st_synchronize();
  2843. disable_e0();
  2844. disable_e1();
  2845. disable_e2();
  2846. disable_e3();
  2847. finishAndDisableSteppers();
  2848. }
  2849. else {
  2850. st_synchronize();
  2851. if (code_seen('X')) disable_x();
  2852. if (code_seen('Y')) disable_y();
  2853. if (code_seen('Z')) disable_z();
  2854. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2855. if (code_seen('E')) {
  2856. disable_e0();
  2857. disable_e1();
  2858. disable_e2();
  2859. disable_e3();
  2860. }
  2861. #endif
  2862. }
  2863. }
  2864. }
  2865. /**
  2866. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2867. */
  2868. inline void gcode_M85() {
  2869. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2870. }
  2871. /**
  2872. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2873. */
  2874. inline void gcode_M92() {
  2875. for(int8_t i=0; i < NUM_AXIS; i++) {
  2876. if (code_seen(axis_codes[i])) {
  2877. if (i == E_AXIS) {
  2878. float value = code_value();
  2879. if (value < 20.0) {
  2880. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2881. max_e_jerk *= factor;
  2882. max_feedrate[i] *= factor;
  2883. axis_steps_per_sqr_second[i] *= factor;
  2884. }
  2885. axis_steps_per_unit[i] = value;
  2886. }
  2887. else {
  2888. axis_steps_per_unit[i] = code_value();
  2889. }
  2890. }
  2891. }
  2892. }
  2893. /**
  2894. * M114: Output current position to serial port
  2895. */
  2896. inline void gcode_M114() {
  2897. SERIAL_PROTOCOLPGM("X:");
  2898. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2899. SERIAL_PROTOCOLPGM(" Y:");
  2900. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2901. SERIAL_PROTOCOLPGM(" Z:");
  2902. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2903. SERIAL_PROTOCOLPGM(" E:");
  2904. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2905. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2906. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2907. SERIAL_PROTOCOLPGM(" Y:");
  2908. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2909. SERIAL_PROTOCOLPGM(" Z:");
  2910. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2911. SERIAL_PROTOCOLLN("");
  2912. #ifdef SCARA
  2913. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2914. SERIAL_PROTOCOL(delta[X_AXIS]);
  2915. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2916. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2917. SERIAL_PROTOCOLLN("");
  2918. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2919. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2920. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2921. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2922. SERIAL_PROTOCOLLN("");
  2923. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2924. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2925. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2926. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2927. SERIAL_PROTOCOLLN("");
  2928. SERIAL_PROTOCOLLN("");
  2929. #endif
  2930. }
  2931. /**
  2932. * M115: Capabilities string
  2933. */
  2934. inline void gcode_M115() {
  2935. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2936. }
  2937. /**
  2938. * M117: Set LCD Status Message
  2939. */
  2940. inline void gcode_M117() {
  2941. char* codepos = strchr_pointer + 5;
  2942. char* starpos = strchr(codepos, '*');
  2943. if (starpos) *starpos = '\0';
  2944. lcd_setstatus(codepos);
  2945. }
  2946. /**
  2947. * M119: Output endstop states to serial output
  2948. */
  2949. inline void gcode_M119() {
  2950. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2951. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2952. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2953. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2954. #endif
  2955. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2956. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2957. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2958. #endif
  2959. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2960. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2961. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2962. #endif
  2963. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2964. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2965. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2966. #endif
  2967. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2968. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2969. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2970. #endif
  2971. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2972. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2973. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2974. #endif
  2975. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2976. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2977. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2978. #endif
  2979. }
  2980. /**
  2981. * M120: Enable endstops
  2982. */
  2983. inline void gcode_M120() { enable_endstops(false); }
  2984. /**
  2985. * M121: Disable endstops
  2986. */
  2987. inline void gcode_M121() { enable_endstops(true); }
  2988. #ifdef BLINKM
  2989. /**
  2990. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2991. */
  2992. inline void gcode_M150() {
  2993. SendColors(
  2994. code_seen('R') ? (byte)code_value() : 0,
  2995. code_seen('U') ? (byte)code_value() : 0,
  2996. code_seen('B') ? (byte)code_value() : 0
  2997. );
  2998. }
  2999. #endif // BLINKM
  3000. /**
  3001. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3002. * T<extruder>
  3003. * D<millimeters>
  3004. */
  3005. inline void gcode_M200() {
  3006. tmp_extruder = active_extruder;
  3007. if (code_seen('T')) {
  3008. tmp_extruder = code_value();
  3009. if (tmp_extruder >= EXTRUDERS) {
  3010. SERIAL_ECHO_START;
  3011. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3012. return;
  3013. }
  3014. }
  3015. if (code_seen('D')) {
  3016. float diameter = code_value();
  3017. // setting any extruder filament size disables volumetric on the assumption that
  3018. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3019. // for all extruders
  3020. volumetric_enabled = (diameter != 0.0);
  3021. if (volumetric_enabled) {
  3022. filament_size[tmp_extruder] = diameter;
  3023. // make sure all extruders have some sane value for the filament size
  3024. for (int i=0; i<EXTRUDERS; i++)
  3025. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3026. }
  3027. }
  3028. else {
  3029. //reserved for setting filament diameter via UFID or filament measuring device
  3030. return;
  3031. }
  3032. calculate_volumetric_multipliers();
  3033. }
  3034. /**
  3035. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3036. */
  3037. inline void gcode_M201() {
  3038. for (int8_t i=0; i < NUM_AXIS; i++) {
  3039. if (code_seen(axis_codes[i])) {
  3040. max_acceleration_units_per_sq_second[i] = code_value();
  3041. }
  3042. }
  3043. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3044. reset_acceleration_rates();
  3045. }
  3046. #if 0 // Not used for Sprinter/grbl gen6
  3047. inline void gcode_M202() {
  3048. for(int8_t i=0; i < NUM_AXIS; i++) {
  3049. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3050. }
  3051. }
  3052. #endif
  3053. /**
  3054. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3055. */
  3056. inline void gcode_M203() {
  3057. for (int8_t i=0; i < NUM_AXIS; i++) {
  3058. if (code_seen(axis_codes[i])) {
  3059. max_feedrate[i] = code_value();
  3060. }
  3061. }
  3062. }
  3063. /**
  3064. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3065. *
  3066. * P = Printing moves
  3067. * R = Retract only (no X, Y, Z) moves
  3068. * T = Travel (non printing) moves
  3069. *
  3070. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3071. */
  3072. inline void gcode_M204() {
  3073. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3074. {
  3075. acceleration = code_value();
  3076. travel_acceleration = acceleration;
  3077. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3078. SERIAL_EOL;
  3079. }
  3080. if (code_seen('P'))
  3081. {
  3082. acceleration = code_value();
  3083. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3084. SERIAL_EOL;
  3085. }
  3086. if (code_seen('R'))
  3087. {
  3088. retract_acceleration = code_value();
  3089. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3090. SERIAL_EOL;
  3091. }
  3092. if (code_seen('T'))
  3093. {
  3094. travel_acceleration = code_value();
  3095. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3096. SERIAL_EOL;
  3097. }
  3098. }
  3099. /**
  3100. * M205: Set Advanced Settings
  3101. *
  3102. * S = Min Feed Rate (mm/s)
  3103. * T = Min Travel Feed Rate (mm/s)
  3104. * B = Min Segment Time (µs)
  3105. * X = Max XY Jerk (mm/s/s)
  3106. * Z = Max Z Jerk (mm/s/s)
  3107. * E = Max E Jerk (mm/s/s)
  3108. */
  3109. inline void gcode_M205() {
  3110. if (code_seen('S')) minimumfeedrate = code_value();
  3111. if (code_seen('T')) mintravelfeedrate = code_value();
  3112. if (code_seen('B')) minsegmenttime = code_value();
  3113. if (code_seen('X')) max_xy_jerk = code_value();
  3114. if (code_seen('Z')) max_z_jerk = code_value();
  3115. if (code_seen('E')) max_e_jerk = code_value();
  3116. }
  3117. /**
  3118. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3119. */
  3120. inline void gcode_M206() {
  3121. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3122. if (code_seen(axis_codes[i])) {
  3123. home_offset[i] = code_value();
  3124. }
  3125. }
  3126. #ifdef SCARA
  3127. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3128. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3129. #endif
  3130. }
  3131. #ifdef DELTA
  3132. /**
  3133. * M665: Set delta configurations
  3134. *
  3135. * L = diagonal rod
  3136. * R = delta radius
  3137. * S = segments per second
  3138. */
  3139. inline void gcode_M665() {
  3140. if (code_seen('L')) delta_diagonal_rod = code_value();
  3141. if (code_seen('R')) delta_radius = code_value();
  3142. if (code_seen('S')) delta_segments_per_second = code_value();
  3143. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3144. }
  3145. /**
  3146. * M666: Set delta endstop adjustment
  3147. */
  3148. inline void gcode_M666() {
  3149. for (int8_t i = 0; i < 3; i++) {
  3150. if (code_seen(axis_codes[i])) {
  3151. endstop_adj[i] = code_value();
  3152. }
  3153. }
  3154. }
  3155. #elif defined(Z_DUAL_ENDSTOPS)
  3156. /**
  3157. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3158. */
  3159. inline void gcode_M666() {
  3160. if (code_seen('Z')) z_endstop_adj = code_value();
  3161. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3162. SERIAL_EOL;
  3163. }
  3164. #endif // DELTA
  3165. #ifdef FWRETRACT
  3166. /**
  3167. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3168. */
  3169. inline void gcode_M207() {
  3170. if (code_seen('S')) retract_length = code_value();
  3171. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3172. if (code_seen('Z')) retract_zlift = code_value();
  3173. }
  3174. /**
  3175. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3176. */
  3177. inline void gcode_M208() {
  3178. if (code_seen('S')) retract_recover_length = code_value();
  3179. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3180. }
  3181. /**
  3182. * M209: Enable automatic retract (M209 S1)
  3183. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3184. */
  3185. inline void gcode_M209() {
  3186. if (code_seen('S')) {
  3187. int t = code_value();
  3188. switch(t) {
  3189. case 0:
  3190. autoretract_enabled = false;
  3191. break;
  3192. case 1:
  3193. autoretract_enabled = true;
  3194. break;
  3195. default:
  3196. SERIAL_ECHO_START;
  3197. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3198. SERIAL_ECHO(cmdbuffer[bufindr]);
  3199. SERIAL_ECHOLNPGM("\"");
  3200. return;
  3201. }
  3202. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3203. }
  3204. }
  3205. #endif // FWRETRACT
  3206. #if EXTRUDERS > 1
  3207. /**
  3208. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3209. */
  3210. inline void gcode_M218() {
  3211. if (setTargetedHotend(218)) return;
  3212. if (code_seen('X')) extruder_offset[tmp_extruder][X_AXIS] = code_value();
  3213. if (code_seen('Y')) extruder_offset[tmp_extruder][Y_AXIS] = code_value();
  3214. #ifdef DUAL_X_CARRIAGE
  3215. if (code_seen('Z')) extruder_offset[tmp_extruder][Z_AXIS] = code_value();
  3216. #endif
  3217. SERIAL_ECHO_START;
  3218. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3219. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3220. SERIAL_ECHO(" ");
  3221. SERIAL_ECHO(extruder_offset[tmp_extruder][X_AXIS]);
  3222. SERIAL_ECHO(",");
  3223. SERIAL_ECHO(extruder_offset[tmp_extruder][Y_AXIS]);
  3224. #ifdef DUAL_X_CARRIAGE
  3225. SERIAL_ECHO(",");
  3226. SERIAL_ECHO(extruder_offset[tmp_extruder][Z_AXIS]);
  3227. #endif
  3228. }
  3229. SERIAL_EOL;
  3230. }
  3231. #endif // EXTRUDERS > 1
  3232. /**
  3233. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3234. */
  3235. inline void gcode_M220() {
  3236. if (code_seen('S')) feedmultiply = code_value();
  3237. }
  3238. /**
  3239. * M221: Set extrusion percentage (M221 T0 S95)
  3240. */
  3241. inline void gcode_M221() {
  3242. if (code_seen('S')) {
  3243. int sval = code_value();
  3244. if (code_seen('T')) {
  3245. if (setTargetedHotend(221)) return;
  3246. extruder_multiply[tmp_extruder] = sval;
  3247. }
  3248. else {
  3249. extruder_multiply[active_extruder] = sval;
  3250. }
  3251. }
  3252. }
  3253. /**
  3254. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3255. */
  3256. inline void gcode_M226() {
  3257. if (code_seen('P')) {
  3258. int pin_number = code_value();
  3259. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3260. if (pin_state >= -1 && pin_state <= 1) {
  3261. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3262. if (sensitive_pins[i] == pin_number) {
  3263. pin_number = -1;
  3264. break;
  3265. }
  3266. }
  3267. if (pin_number > -1) {
  3268. int target = LOW;
  3269. st_synchronize();
  3270. pinMode(pin_number, INPUT);
  3271. switch(pin_state){
  3272. case 1:
  3273. target = HIGH;
  3274. break;
  3275. case 0:
  3276. target = LOW;
  3277. break;
  3278. case -1:
  3279. target = !digitalRead(pin_number);
  3280. break;
  3281. }
  3282. while(digitalRead(pin_number) != target) {
  3283. manage_heater();
  3284. manage_inactivity();
  3285. lcd_update();
  3286. }
  3287. } // pin_number > -1
  3288. } // pin_state -1 0 1
  3289. } // code_seen('P')
  3290. }
  3291. #if NUM_SERVOS > 0
  3292. /**
  3293. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3294. */
  3295. inline void gcode_M280() {
  3296. int servo_index = code_seen('P') ? code_value() : -1;
  3297. int servo_position = 0;
  3298. if (code_seen('S')) {
  3299. servo_position = code_value();
  3300. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3301. #if SERVO_LEVELING
  3302. servos[servo_index].attach(0);
  3303. #endif
  3304. servos[servo_index].write(servo_position);
  3305. #if SERVO_LEVELING
  3306. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3307. servos[servo_index].detach();
  3308. #endif
  3309. }
  3310. else {
  3311. SERIAL_ECHO_START;
  3312. SERIAL_ECHO("Servo ");
  3313. SERIAL_ECHO(servo_index);
  3314. SERIAL_ECHOLN(" out of range");
  3315. }
  3316. }
  3317. else if (servo_index >= 0) {
  3318. SERIAL_PROTOCOL(MSG_OK);
  3319. SERIAL_PROTOCOL(" Servo ");
  3320. SERIAL_PROTOCOL(servo_index);
  3321. SERIAL_PROTOCOL(": ");
  3322. SERIAL_PROTOCOL(servos[servo_index].read());
  3323. SERIAL_PROTOCOLLN("");
  3324. }
  3325. }
  3326. #endif // NUM_SERVOS > 0
  3327. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3328. /**
  3329. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3330. */
  3331. inline void gcode_M300() {
  3332. int beepS = code_seen('S') ? code_value() : 110;
  3333. int beepP = code_seen('P') ? code_value() : 1000;
  3334. if (beepS > 0) {
  3335. #if BEEPER > 0
  3336. tone(BEEPER, beepS);
  3337. delay(beepP);
  3338. noTone(BEEPER);
  3339. #elif defined(ULTRALCD)
  3340. lcd_buzz(beepS, beepP);
  3341. #elif defined(LCD_USE_I2C_BUZZER)
  3342. lcd_buzz(beepP, beepS);
  3343. #endif
  3344. }
  3345. else {
  3346. delay(beepP);
  3347. }
  3348. }
  3349. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3350. #ifdef PIDTEMP
  3351. /**
  3352. * M301: Set PID parameters P I D (and optionally C)
  3353. */
  3354. inline void gcode_M301() {
  3355. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3356. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3357. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3358. if (e < EXTRUDERS) { // catch bad input value
  3359. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3360. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3361. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3362. #ifdef PID_ADD_EXTRUSION_RATE
  3363. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3364. #endif
  3365. updatePID();
  3366. SERIAL_PROTOCOL(MSG_OK);
  3367. #ifdef PID_PARAMS_PER_EXTRUDER
  3368. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3369. SERIAL_PROTOCOL(e);
  3370. #endif // PID_PARAMS_PER_EXTRUDER
  3371. SERIAL_PROTOCOL(" p:");
  3372. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3373. SERIAL_PROTOCOL(" i:");
  3374. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3375. SERIAL_PROTOCOL(" d:");
  3376. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3377. #ifdef PID_ADD_EXTRUSION_RATE
  3378. SERIAL_PROTOCOL(" c:");
  3379. //Kc does not have scaling applied above, or in resetting defaults
  3380. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3381. #endif
  3382. SERIAL_PROTOCOLLN("");
  3383. }
  3384. else {
  3385. SERIAL_ECHO_START;
  3386. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3387. }
  3388. }
  3389. #endif // PIDTEMP
  3390. #ifdef PIDTEMPBED
  3391. inline void gcode_M304() {
  3392. if (code_seen('P')) bedKp = code_value();
  3393. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3394. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3395. updatePID();
  3396. SERIAL_PROTOCOL(MSG_OK);
  3397. SERIAL_PROTOCOL(" p:");
  3398. SERIAL_PROTOCOL(bedKp);
  3399. SERIAL_PROTOCOL(" i:");
  3400. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3401. SERIAL_PROTOCOL(" d:");
  3402. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3403. SERIAL_PROTOCOLLN("");
  3404. }
  3405. #endif // PIDTEMPBED
  3406. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3407. /**
  3408. * M240: Trigger a camera by emulating a Canon RC-1
  3409. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3410. */
  3411. inline void gcode_M240() {
  3412. #ifdef CHDK
  3413. OUT_WRITE(CHDK, HIGH);
  3414. chdkHigh = millis();
  3415. chdkActive = true;
  3416. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3417. const uint8_t NUM_PULSES = 16;
  3418. const float PULSE_LENGTH = 0.01524;
  3419. for (int i = 0; i < NUM_PULSES; i++) {
  3420. WRITE(PHOTOGRAPH_PIN, HIGH);
  3421. _delay_ms(PULSE_LENGTH);
  3422. WRITE(PHOTOGRAPH_PIN, LOW);
  3423. _delay_ms(PULSE_LENGTH);
  3424. }
  3425. delay(7.33);
  3426. for (int i = 0; i < NUM_PULSES; i++) {
  3427. WRITE(PHOTOGRAPH_PIN, HIGH);
  3428. _delay_ms(PULSE_LENGTH);
  3429. WRITE(PHOTOGRAPH_PIN, LOW);
  3430. _delay_ms(PULSE_LENGTH);
  3431. }
  3432. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3433. }
  3434. #endif // CHDK || PHOTOGRAPH_PIN
  3435. #ifdef DOGLCD
  3436. /**
  3437. * M250: Read and optionally set the LCD contrast
  3438. */
  3439. inline void gcode_M250() {
  3440. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3441. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3442. SERIAL_PROTOCOL(lcd_contrast);
  3443. SERIAL_PROTOCOLLN("");
  3444. }
  3445. #endif // DOGLCD
  3446. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3447. /**
  3448. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3449. */
  3450. inline void gcode_M302() {
  3451. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3452. }
  3453. #endif // PREVENT_DANGEROUS_EXTRUDE
  3454. /**
  3455. * M303: PID relay autotune
  3456. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3457. * E<extruder> (-1 for the bed)
  3458. * C<cycles>
  3459. */
  3460. inline void gcode_M303() {
  3461. int e = code_seen('E') ? code_value_long() : 0;
  3462. int c = code_seen('C') ? code_value_long() : 5;
  3463. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3464. PID_autotune(temp, e, c);
  3465. }
  3466. #ifdef SCARA
  3467. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3468. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3469. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3470. if (! Stopped) {
  3471. //get_coordinates(); // For X Y Z E F
  3472. delta[X_AXIS] = delta_x;
  3473. delta[Y_AXIS] = delta_y;
  3474. calculate_SCARA_forward_Transform(delta);
  3475. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3476. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3477. prepare_move();
  3478. //ClearToSend();
  3479. return true;
  3480. }
  3481. return false;
  3482. }
  3483. /**
  3484. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3485. */
  3486. inline bool gcode_M360() {
  3487. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3488. return SCARA_move_to_cal(0, 120);
  3489. }
  3490. /**
  3491. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3492. */
  3493. inline bool gcode_M361() {
  3494. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3495. return SCARA_move_to_cal(90, 130);
  3496. }
  3497. /**
  3498. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3499. */
  3500. inline bool gcode_M362() {
  3501. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3502. return SCARA_move_to_cal(60, 180);
  3503. }
  3504. /**
  3505. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3506. */
  3507. inline bool gcode_M363() {
  3508. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3509. return SCARA_move_to_cal(50, 90);
  3510. }
  3511. /**
  3512. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3513. */
  3514. inline bool gcode_M364() {
  3515. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3516. return SCARA_move_to_cal(45, 135);
  3517. }
  3518. /**
  3519. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3520. */
  3521. inline void gcode_M365() {
  3522. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3523. if (code_seen(axis_codes[i])) {
  3524. axis_scaling[i] = code_value();
  3525. }
  3526. }
  3527. }
  3528. #endif // SCARA
  3529. #ifdef EXT_SOLENOID
  3530. void enable_solenoid(uint8_t num) {
  3531. switch(num) {
  3532. case 0:
  3533. OUT_WRITE(SOL0_PIN, HIGH);
  3534. break;
  3535. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3536. case 1:
  3537. OUT_WRITE(SOL1_PIN, HIGH);
  3538. break;
  3539. #endif
  3540. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3541. case 2:
  3542. OUT_WRITE(SOL2_PIN, HIGH);
  3543. break;
  3544. #endif
  3545. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3546. case 3:
  3547. OUT_WRITE(SOL3_PIN, HIGH);
  3548. break;
  3549. #endif
  3550. default:
  3551. SERIAL_ECHO_START;
  3552. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3553. break;
  3554. }
  3555. }
  3556. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3557. void disable_all_solenoids() {
  3558. OUT_WRITE(SOL0_PIN, LOW);
  3559. OUT_WRITE(SOL1_PIN, LOW);
  3560. OUT_WRITE(SOL2_PIN, LOW);
  3561. OUT_WRITE(SOL3_PIN, LOW);
  3562. }
  3563. /**
  3564. * M380: Enable solenoid on the active extruder
  3565. */
  3566. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3567. /**
  3568. * M381: Disable all solenoids
  3569. */
  3570. inline void gcode_M381() { disable_all_solenoids(); }
  3571. #endif // EXT_SOLENOID
  3572. /**
  3573. * M400: Finish all moves
  3574. */
  3575. inline void gcode_M400() { st_synchronize(); }
  3576. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3577. /**
  3578. * M401: Engage Z Servo endstop if available
  3579. */
  3580. inline void gcode_M401() { engage_z_probe(); }
  3581. /**
  3582. * M402: Retract Z Servo endstop if enabled
  3583. */
  3584. inline void gcode_M402() { retract_z_probe(); }
  3585. #endif
  3586. #ifdef FILAMENT_SENSOR
  3587. /**
  3588. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3589. */
  3590. inline void gcode_M404() {
  3591. #if FILWIDTH_PIN > -1
  3592. if (code_seen('W')) {
  3593. filament_width_nominal = code_value();
  3594. }
  3595. else {
  3596. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3597. SERIAL_PROTOCOLLN(filament_width_nominal);
  3598. }
  3599. #endif
  3600. }
  3601. /**
  3602. * M405: Turn on filament sensor for control
  3603. */
  3604. inline void gcode_M405() {
  3605. if (code_seen('D')) meas_delay_cm = code_value();
  3606. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3607. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3608. int temp_ratio = widthFil_to_size_ratio();
  3609. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3610. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3611. delay_index1 = delay_index2 = 0;
  3612. }
  3613. filament_sensor = true;
  3614. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3615. //SERIAL_PROTOCOL(filament_width_meas);
  3616. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3617. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3618. }
  3619. /**
  3620. * M406: Turn off filament sensor for control
  3621. */
  3622. inline void gcode_M406() { filament_sensor = false; }
  3623. /**
  3624. * M407: Get measured filament diameter on serial output
  3625. */
  3626. inline void gcode_M407() {
  3627. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3628. SERIAL_PROTOCOLLN(filament_width_meas);
  3629. }
  3630. #endif // FILAMENT_SENSOR
  3631. /**
  3632. * M500: Store settings in EEPROM
  3633. */
  3634. inline void gcode_M500() {
  3635. Config_StoreSettings();
  3636. }
  3637. /**
  3638. * M501: Read settings from EEPROM
  3639. */
  3640. inline void gcode_M501() {
  3641. Config_RetrieveSettings();
  3642. }
  3643. /**
  3644. * M502: Revert to default settings
  3645. */
  3646. inline void gcode_M502() {
  3647. Config_ResetDefault();
  3648. }
  3649. /**
  3650. * M503: print settings currently in memory
  3651. */
  3652. inline void gcode_M503() {
  3653. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3654. }
  3655. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3656. /**
  3657. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3658. */
  3659. inline void gcode_M540() {
  3660. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3661. }
  3662. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3663. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3664. inline void gcode_SET_Z_PROBE_OFFSET() {
  3665. float value;
  3666. if (code_seen('Z')) {
  3667. value = code_value();
  3668. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3669. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3670. SERIAL_ECHO_START;
  3671. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3672. SERIAL_PROTOCOLLN("");
  3673. }
  3674. else {
  3675. SERIAL_ECHO_START;
  3676. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3677. SERIAL_ECHOPGM(MSG_Z_MIN);
  3678. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3679. SERIAL_ECHOPGM(MSG_Z_MAX);
  3680. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3681. SERIAL_PROTOCOLLN("");
  3682. }
  3683. }
  3684. else {
  3685. SERIAL_ECHO_START;
  3686. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3687. SERIAL_ECHO(-zprobe_zoffset);
  3688. SERIAL_PROTOCOLLN("");
  3689. }
  3690. }
  3691. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3692. #ifdef FILAMENTCHANGEENABLE
  3693. /**
  3694. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3695. */
  3696. inline void gcode_M600() {
  3697. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3698. for (int i=0; i<NUM_AXIS; i++)
  3699. target[i] = lastpos[i] = current_position[i];
  3700. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3701. #ifdef DELTA
  3702. #define RUNPLAN calculate_delta(target); BASICPLAN
  3703. #else
  3704. #define RUNPLAN BASICPLAN
  3705. #endif
  3706. //retract by E
  3707. if (code_seen('E')) target[E_AXIS] += code_value();
  3708. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3709. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3710. #endif
  3711. RUNPLAN;
  3712. //lift Z
  3713. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3714. #ifdef FILAMENTCHANGE_ZADD
  3715. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3716. #endif
  3717. RUNPLAN;
  3718. //move xy
  3719. if (code_seen('X')) target[X_AXIS] = code_value();
  3720. #ifdef FILAMENTCHANGE_XPOS
  3721. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3722. #endif
  3723. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3724. #ifdef FILAMENTCHANGE_YPOS
  3725. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3726. #endif
  3727. RUNPLAN;
  3728. if (code_seen('L')) target[E_AXIS] += code_value();
  3729. #ifdef FILAMENTCHANGE_FINALRETRACT
  3730. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3731. #endif
  3732. RUNPLAN;
  3733. //finish moves
  3734. st_synchronize();
  3735. //disable extruder steppers so filament can be removed
  3736. disable_e0();
  3737. disable_e1();
  3738. disable_e2();
  3739. disable_e3();
  3740. delay(100);
  3741. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3742. uint8_t cnt = 0;
  3743. while (!lcd_clicked()) {
  3744. cnt++;
  3745. manage_heater();
  3746. manage_inactivity(true);
  3747. lcd_update();
  3748. if (cnt == 0) {
  3749. #if BEEPER > 0
  3750. OUT_WRITE(BEEPER,HIGH);
  3751. delay(3);
  3752. WRITE(BEEPER,LOW);
  3753. delay(3);
  3754. #else
  3755. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3756. lcd_buzz(1000/6, 100);
  3757. #else
  3758. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3759. #endif
  3760. #endif
  3761. }
  3762. } // while(!lcd_clicked)
  3763. //return to normal
  3764. if (code_seen('L')) target[E_AXIS] -= code_value();
  3765. #ifdef FILAMENTCHANGE_FINALRETRACT
  3766. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3767. #endif
  3768. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3769. plan_set_e_position(current_position[E_AXIS]);
  3770. RUNPLAN; //should do nothing
  3771. lcd_reset_alert_level();
  3772. #ifdef DELTA
  3773. calculate_delta(lastpos);
  3774. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3775. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3776. #else
  3777. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3778. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3779. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3780. #endif
  3781. #ifdef FILAMENT_RUNOUT_SENSOR
  3782. filrunoutEnqued = false;
  3783. #endif
  3784. }
  3785. #endif // FILAMENTCHANGEENABLE
  3786. #ifdef DUAL_X_CARRIAGE
  3787. /**
  3788. * M605: Set dual x-carriage movement mode
  3789. *
  3790. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3791. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3792. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3793. * millimeters x-offset and an optional differential hotend temperature of
  3794. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3795. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3796. *
  3797. * Note: the X axis should be homed after changing dual x-carriage mode.
  3798. */
  3799. inline void gcode_M605() {
  3800. st_synchronize();
  3801. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3802. switch(dual_x_carriage_mode) {
  3803. case DXC_DUPLICATION_MODE:
  3804. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3805. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3806. SERIAL_ECHO_START;
  3807. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3808. SERIAL_ECHO(" ");
  3809. SERIAL_ECHO(extruder_offset[0][X_AXIS]);
  3810. SERIAL_ECHO(",");
  3811. SERIAL_ECHO(extruder_offset[0][Y_AXIS]);
  3812. SERIAL_ECHO(" ");
  3813. SERIAL_ECHO(duplicate_extruder_x_offset);
  3814. SERIAL_ECHO(",");
  3815. SERIAL_ECHOLN(extruder_offset[1][Y_AXIS]);
  3816. break;
  3817. case DXC_FULL_CONTROL_MODE:
  3818. case DXC_AUTO_PARK_MODE:
  3819. break;
  3820. default:
  3821. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3822. break;
  3823. }
  3824. active_extruder_parked = false;
  3825. extruder_duplication_enabled = false;
  3826. delayed_move_time = 0;
  3827. }
  3828. #endif // DUAL_X_CARRIAGE
  3829. /**
  3830. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3831. */
  3832. inline void gcode_M907() {
  3833. #if HAS_DIGIPOTSS
  3834. for (int i=0;i<NUM_AXIS;i++)
  3835. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3836. if (code_seen('B')) digipot_current(4, code_value());
  3837. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3838. #endif
  3839. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3840. if (code_seen('X')) digipot_current(0, code_value());
  3841. #endif
  3842. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3843. if (code_seen('Z')) digipot_current(1, code_value());
  3844. #endif
  3845. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3846. if (code_seen('E')) digipot_current(2, code_value());
  3847. #endif
  3848. #ifdef DIGIPOT_I2C
  3849. // this one uses actual amps in floating point
  3850. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3851. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3852. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3853. #endif
  3854. }
  3855. #if HAS_DIGIPOTSS
  3856. /**
  3857. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3858. */
  3859. inline void gcode_M908() {
  3860. digitalPotWrite(
  3861. code_seen('P') ? code_value() : 0,
  3862. code_seen('S') ? code_value() : 0
  3863. );
  3864. }
  3865. #endif // HAS_DIGIPOTSS
  3866. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3867. inline void gcode_M350() {
  3868. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3869. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3870. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3871. if(code_seen('B')) microstep_mode(4,code_value());
  3872. microstep_readings();
  3873. #endif
  3874. }
  3875. /**
  3876. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3877. * S# determines MS1 or MS2, X# sets the pin high/low.
  3878. */
  3879. inline void gcode_M351() {
  3880. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3881. if (code_seen('S')) switch(code_value_long()) {
  3882. case 1:
  3883. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3884. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3885. break;
  3886. case 2:
  3887. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3888. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3889. break;
  3890. }
  3891. microstep_readings();
  3892. #endif
  3893. }
  3894. /**
  3895. * M999: Restart after being stopped
  3896. */
  3897. inline void gcode_M999() {
  3898. Stopped = false;
  3899. lcd_reset_alert_level();
  3900. gcode_LastN = Stopped_gcode_LastN;
  3901. FlushSerialRequestResend();
  3902. }
  3903. inline void gcode_T() {
  3904. tmp_extruder = code_value();
  3905. if (tmp_extruder >= EXTRUDERS) {
  3906. SERIAL_ECHO_START;
  3907. SERIAL_ECHO("T");
  3908. SERIAL_ECHO(tmp_extruder);
  3909. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3910. }
  3911. else {
  3912. #if EXTRUDERS > 1
  3913. bool make_move = false;
  3914. #endif
  3915. if (code_seen('F')) {
  3916. #if EXTRUDERS > 1
  3917. make_move = true;
  3918. #endif
  3919. next_feedrate = code_value();
  3920. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3921. }
  3922. #if EXTRUDERS > 1
  3923. if (tmp_extruder != active_extruder) {
  3924. // Save current position to return to after applying extruder offset
  3925. memcpy(destination, current_position, sizeof(destination));
  3926. #ifdef DUAL_X_CARRIAGE
  3927. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3928. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3929. // Park old head: 1) raise 2) move to park position 3) lower
  3930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3931. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3932. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3933. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3934. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3935. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3936. st_synchronize();
  3937. }
  3938. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3939. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3940. extruder_offset[active_extruder][Y_AXIS] +
  3941. extruder_offset[tmp_extruder][Y_AXIS];
  3942. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3943. extruder_offset[active_extruder][Z_AXIS] +
  3944. extruder_offset[tmp_extruder][Z_AXIS];
  3945. active_extruder = tmp_extruder;
  3946. // This function resets the max/min values - the current position may be overwritten below.
  3947. axis_is_at_home(X_AXIS);
  3948. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3949. current_position[X_AXIS] = inactive_extruder_x_pos;
  3950. inactive_extruder_x_pos = destination[X_AXIS];
  3951. }
  3952. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3953. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3954. if (active_extruder == 0 || active_extruder_parked)
  3955. current_position[X_AXIS] = inactive_extruder_x_pos;
  3956. else
  3957. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3958. inactive_extruder_x_pos = destination[X_AXIS];
  3959. extruder_duplication_enabled = false;
  3960. }
  3961. else {
  3962. // record raised toolhead position for use by unpark
  3963. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3964. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3965. active_extruder_parked = true;
  3966. delayed_move_time = 0;
  3967. }
  3968. #else // !DUAL_X_CARRIAGE
  3969. // Offset extruder (only by XY)
  3970. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3971. current_position[i] += extruder_offset[tmp_extruder][i] - extruder_offset[active_extruder][i];
  3972. // Set the new active extruder and position
  3973. active_extruder = tmp_extruder;
  3974. #endif // !DUAL_X_CARRIAGE
  3975. #ifdef DELTA
  3976. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  3977. //sent position to plan_set_position();
  3978. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  3979. #else
  3980. sync_plan_position();
  3981. #endif
  3982. // Move to the old position if 'F' was in the parameters
  3983. if (make_move && !Stopped) prepare_move();
  3984. }
  3985. #ifdef EXT_SOLENOID
  3986. st_synchronize();
  3987. disable_all_solenoids();
  3988. enable_solenoid_on_active_extruder();
  3989. #endif // EXT_SOLENOID
  3990. #endif // EXTRUDERS > 1
  3991. SERIAL_ECHO_START;
  3992. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3993. SERIAL_PROTOCOLLN((int)active_extruder);
  3994. }
  3995. }
  3996. /**
  3997. * Process Commands and dispatch them to handlers
  3998. */
  3999. void process_commands() {
  4000. if (code_seen('G')) {
  4001. int gCode = code_value_long();
  4002. switch(gCode) {
  4003. // G0, G1
  4004. case 0:
  4005. case 1:
  4006. gcode_G0_G1();
  4007. break;
  4008. // G2, G3
  4009. #ifndef SCARA
  4010. case 2: // G2 - CW ARC
  4011. case 3: // G3 - CCW ARC
  4012. gcode_G2_G3(gCode == 2);
  4013. break;
  4014. #endif
  4015. // G4 Dwell
  4016. case 4:
  4017. gcode_G4();
  4018. break;
  4019. #ifdef FWRETRACT
  4020. case 10: // G10: retract
  4021. case 11: // G11: retract_recover
  4022. gcode_G10_G11(gCode == 10);
  4023. break;
  4024. #endif //FWRETRACT
  4025. case 28: // G28: Home all axes, one at a time
  4026. gcode_G28();
  4027. break;
  4028. #if defined(MESH_BED_LEVELING)
  4029. case 29: // G29 Handle mesh based leveling
  4030. gcode_G29();
  4031. break;
  4032. #endif
  4033. #ifdef ENABLE_AUTO_BED_LEVELING
  4034. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4035. gcode_G29();
  4036. break;
  4037. #ifndef Z_PROBE_SLED
  4038. case 30: // G30 Single Z Probe
  4039. gcode_G30();
  4040. break;
  4041. #else // Z_PROBE_SLED
  4042. case 31: // G31: dock the sled
  4043. case 32: // G32: undock the sled
  4044. dock_sled(gCode == 31);
  4045. break;
  4046. #endif // Z_PROBE_SLED
  4047. #endif // ENABLE_AUTO_BED_LEVELING
  4048. case 90: // G90
  4049. relative_mode = false;
  4050. break;
  4051. case 91: // G91
  4052. relative_mode = true;
  4053. break;
  4054. case 92: // G92
  4055. gcode_G92();
  4056. break;
  4057. }
  4058. }
  4059. else if (code_seen('M')) {
  4060. switch( code_value_long() ) {
  4061. #ifdef ULTIPANEL
  4062. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4063. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4064. gcode_M0_M1();
  4065. break;
  4066. #endif // ULTIPANEL
  4067. case 17:
  4068. gcode_M17();
  4069. break;
  4070. #ifdef SDSUPPORT
  4071. case 20: // M20 - list SD card
  4072. gcode_M20(); break;
  4073. case 21: // M21 - init SD card
  4074. gcode_M21(); break;
  4075. case 22: //M22 - release SD card
  4076. gcode_M22(); break;
  4077. case 23: //M23 - Select file
  4078. gcode_M23(); break;
  4079. case 24: //M24 - Start SD print
  4080. gcode_M24(); break;
  4081. case 25: //M25 - Pause SD print
  4082. gcode_M25(); break;
  4083. case 26: //M26 - Set SD index
  4084. gcode_M26(); break;
  4085. case 27: //M27 - Get SD status
  4086. gcode_M27(); break;
  4087. case 28: //M28 - Start SD write
  4088. gcode_M28(); break;
  4089. case 29: //M29 - Stop SD write
  4090. gcode_M29(); break;
  4091. case 30: //M30 <filename> Delete File
  4092. gcode_M30(); break;
  4093. case 32: //M32 - Select file and start SD print
  4094. gcode_M32(); break;
  4095. case 928: //M928 - Start SD write
  4096. gcode_M928(); break;
  4097. #endif //SDSUPPORT
  4098. case 31: //M31 take time since the start of the SD print or an M109 command
  4099. gcode_M31();
  4100. break;
  4101. case 42: //M42 -Change pin status via gcode
  4102. gcode_M42();
  4103. break;
  4104. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4105. case 48: // M48 Z-Probe repeatability
  4106. gcode_M48();
  4107. break;
  4108. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4109. case 104: // M104
  4110. gcode_M104();
  4111. break;
  4112. case 112: // M112 Emergency Stop
  4113. gcode_M112();
  4114. break;
  4115. case 140: // M140 Set bed temp
  4116. gcode_M140();
  4117. break;
  4118. case 105: // M105 Read current temperature
  4119. gcode_M105();
  4120. return;
  4121. break;
  4122. case 109: // M109 Wait for temperature
  4123. gcode_M109();
  4124. break;
  4125. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4126. case 190: // M190 - Wait for bed heater to reach target.
  4127. gcode_M190();
  4128. break;
  4129. #endif //TEMP_BED_PIN
  4130. #if defined(FAN_PIN) && FAN_PIN > -1
  4131. case 106: //M106 Fan On
  4132. gcode_M106();
  4133. break;
  4134. case 107: //M107 Fan Off
  4135. gcode_M107();
  4136. break;
  4137. #endif //FAN_PIN
  4138. #ifdef BARICUDA
  4139. // PWM for HEATER_1_PIN
  4140. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4141. case 126: // M126 valve open
  4142. gcode_M126();
  4143. break;
  4144. case 127: // M127 valve closed
  4145. gcode_M127();
  4146. break;
  4147. #endif //HEATER_1_PIN
  4148. // PWM for HEATER_2_PIN
  4149. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4150. case 128: // M128 valve open
  4151. gcode_M128();
  4152. break;
  4153. case 129: // M129 valve closed
  4154. gcode_M129();
  4155. break;
  4156. #endif //HEATER_2_PIN
  4157. #endif //BARICUDA
  4158. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  4159. case 80: // M80 - Turn on Power Supply
  4160. gcode_M80();
  4161. break;
  4162. #endif // PS_ON_PIN
  4163. case 81: // M81 - Turn off Power Supply
  4164. gcode_M81();
  4165. break;
  4166. case 82:
  4167. gcode_M82();
  4168. break;
  4169. case 83:
  4170. gcode_M83();
  4171. break;
  4172. case 18: //compatibility
  4173. case 84: // M84
  4174. gcode_M18_M84();
  4175. break;
  4176. case 85: // M85
  4177. gcode_M85();
  4178. break;
  4179. case 92: // M92
  4180. gcode_M92();
  4181. break;
  4182. case 115: // M115
  4183. gcode_M115();
  4184. break;
  4185. case 117: // M117 display message
  4186. gcode_M117();
  4187. break;
  4188. case 114: // M114
  4189. gcode_M114();
  4190. break;
  4191. case 120: // M120
  4192. gcode_M120();
  4193. break;
  4194. case 121: // M121
  4195. gcode_M121();
  4196. break;
  4197. case 119: // M119
  4198. gcode_M119();
  4199. break;
  4200. //TODO: update for all axis, use for loop
  4201. #ifdef BLINKM
  4202. case 150: // M150
  4203. gcode_M150();
  4204. break;
  4205. #endif //BLINKM
  4206. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4207. gcode_M200();
  4208. break;
  4209. case 201: // M201
  4210. gcode_M201();
  4211. break;
  4212. #if 0 // Not used for Sprinter/grbl gen6
  4213. case 202: // M202
  4214. gcode_M202();
  4215. break;
  4216. #endif
  4217. case 203: // M203 max feedrate mm/sec
  4218. gcode_M203();
  4219. break;
  4220. case 204: // M204 acclereration S normal moves T filmanent only moves
  4221. gcode_M204();
  4222. break;
  4223. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4224. gcode_M205();
  4225. break;
  4226. case 206: // M206 additional homing offset
  4227. gcode_M206();
  4228. break;
  4229. #ifdef DELTA
  4230. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4231. gcode_M665();
  4232. break;
  4233. #endif
  4234. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4235. case 666: // M666 set delta / dual endstop adjustment
  4236. gcode_M666();
  4237. break;
  4238. #endif
  4239. #ifdef FWRETRACT
  4240. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4241. gcode_M207();
  4242. break;
  4243. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4244. gcode_M208();
  4245. break;
  4246. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4247. gcode_M209();
  4248. break;
  4249. #endif // FWRETRACT
  4250. #if EXTRUDERS > 1
  4251. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4252. gcode_M218();
  4253. break;
  4254. #endif
  4255. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4256. gcode_M220();
  4257. break;
  4258. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4259. gcode_M221();
  4260. break;
  4261. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4262. gcode_M226();
  4263. break;
  4264. #if NUM_SERVOS > 0
  4265. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4266. gcode_M280();
  4267. break;
  4268. #endif // NUM_SERVOS > 0
  4269. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4270. case 300: // M300 - Play beep tone
  4271. gcode_M300();
  4272. break;
  4273. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4274. #ifdef PIDTEMP
  4275. case 301: // M301
  4276. gcode_M301();
  4277. break;
  4278. #endif // PIDTEMP
  4279. #ifdef PIDTEMPBED
  4280. case 304: // M304
  4281. gcode_M304();
  4282. break;
  4283. #endif // PIDTEMPBED
  4284. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4285. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4286. gcode_M240();
  4287. break;
  4288. #endif // CHDK || PHOTOGRAPH_PIN
  4289. #ifdef DOGLCD
  4290. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4291. gcode_M250();
  4292. break;
  4293. #endif // DOGLCD
  4294. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4295. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4296. gcode_M302();
  4297. break;
  4298. #endif // PREVENT_DANGEROUS_EXTRUDE
  4299. case 303: // M303 PID autotune
  4300. gcode_M303();
  4301. break;
  4302. #ifdef SCARA
  4303. case 360: // M360 SCARA Theta pos1
  4304. if (gcode_M360()) return;
  4305. break;
  4306. case 361: // M361 SCARA Theta pos2
  4307. if (gcode_M361()) return;
  4308. break;
  4309. case 362: // M362 SCARA Psi pos1
  4310. if (gcode_M362()) return;
  4311. break;
  4312. case 363: // M363 SCARA Psi pos2
  4313. if (gcode_M363()) return;
  4314. break;
  4315. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4316. if (gcode_M364()) return;
  4317. break;
  4318. case 365: // M365 Set SCARA scaling for X Y Z
  4319. gcode_M365();
  4320. break;
  4321. #endif // SCARA
  4322. case 400: // M400 finish all moves
  4323. gcode_M400();
  4324. break;
  4325. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4326. case 401:
  4327. gcode_M401();
  4328. break;
  4329. case 402:
  4330. gcode_M402();
  4331. break;
  4332. #endif
  4333. #ifdef FILAMENT_SENSOR
  4334. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4335. gcode_M404();
  4336. break;
  4337. case 405: //M405 Turn on filament sensor for control
  4338. gcode_M405();
  4339. break;
  4340. case 406: //M406 Turn off filament sensor for control
  4341. gcode_M406();
  4342. break;
  4343. case 407: //M407 Display measured filament diameter
  4344. gcode_M407();
  4345. break;
  4346. #endif // FILAMENT_SENSOR
  4347. case 500: // M500 Store settings in EEPROM
  4348. gcode_M500();
  4349. break;
  4350. case 501: // M501 Read settings from EEPROM
  4351. gcode_M501();
  4352. break;
  4353. case 502: // M502 Revert to default settings
  4354. gcode_M502();
  4355. break;
  4356. case 503: // M503 print settings currently in memory
  4357. gcode_M503();
  4358. break;
  4359. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4360. case 540:
  4361. gcode_M540();
  4362. break;
  4363. #endif
  4364. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4365. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4366. gcode_SET_Z_PROBE_OFFSET();
  4367. break;
  4368. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4369. #ifdef FILAMENTCHANGEENABLE
  4370. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4371. gcode_M600();
  4372. break;
  4373. #endif // FILAMENTCHANGEENABLE
  4374. #ifdef DUAL_X_CARRIAGE
  4375. case 605:
  4376. gcode_M605();
  4377. break;
  4378. #endif // DUAL_X_CARRIAGE
  4379. case 907: // M907 Set digital trimpot motor current using axis codes.
  4380. gcode_M907();
  4381. break;
  4382. #if HAS_DIGIPOTSS
  4383. case 908: // M908 Control digital trimpot directly.
  4384. gcode_M908();
  4385. break;
  4386. #endif // HAS_DIGIPOTSS
  4387. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4388. gcode_M350();
  4389. break;
  4390. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4391. gcode_M351();
  4392. break;
  4393. case 999: // M999: Restart after being Stopped
  4394. gcode_M999();
  4395. break;
  4396. }
  4397. }
  4398. else if (code_seen('T')) {
  4399. gcode_T();
  4400. }
  4401. else {
  4402. SERIAL_ECHO_START;
  4403. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4404. SERIAL_ECHO(cmdbuffer[bufindr]);
  4405. SERIAL_ECHOLNPGM("\"");
  4406. }
  4407. ClearToSend();
  4408. }
  4409. void FlushSerialRequestResend()
  4410. {
  4411. //char cmdbuffer[bufindr][100]="Resend:";
  4412. MYSERIAL.flush();
  4413. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4414. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4415. ClearToSend();
  4416. }
  4417. void ClearToSend()
  4418. {
  4419. previous_millis_cmd = millis();
  4420. #ifdef SDSUPPORT
  4421. if(fromsd[bufindr])
  4422. return;
  4423. #endif //SDSUPPORT
  4424. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4425. }
  4426. void get_coordinates() {
  4427. for (int i = 0; i < NUM_AXIS; i++) {
  4428. if (code_seen(axis_codes[i]))
  4429. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4430. else
  4431. destination[i] = current_position[i];
  4432. }
  4433. if (code_seen('F')) {
  4434. next_feedrate = code_value();
  4435. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4436. }
  4437. }
  4438. void get_arc_coordinates()
  4439. {
  4440. #ifdef SF_ARC_FIX
  4441. bool relative_mode_backup = relative_mode;
  4442. relative_mode = true;
  4443. #endif
  4444. get_coordinates();
  4445. #ifdef SF_ARC_FIX
  4446. relative_mode=relative_mode_backup;
  4447. #endif
  4448. if(code_seen('I')) {
  4449. offset[0] = code_value();
  4450. }
  4451. else {
  4452. offset[0] = 0.0;
  4453. }
  4454. if(code_seen('J')) {
  4455. offset[1] = code_value();
  4456. }
  4457. else {
  4458. offset[1] = 0.0;
  4459. }
  4460. }
  4461. void clamp_to_software_endstops(float target[3])
  4462. {
  4463. if (min_software_endstops) {
  4464. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4465. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4466. float negative_z_offset = 0;
  4467. #ifdef ENABLE_AUTO_BED_LEVELING
  4468. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4469. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4470. #endif
  4471. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4472. }
  4473. if (max_software_endstops) {
  4474. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4475. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4476. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4477. }
  4478. }
  4479. #ifdef DELTA
  4480. void recalc_delta_settings(float radius, float diagonal_rod)
  4481. {
  4482. delta_tower1_x= -SIN_60*radius; // front left tower
  4483. delta_tower1_y= -COS_60*radius;
  4484. delta_tower2_x= SIN_60*radius; // front right tower
  4485. delta_tower2_y= -COS_60*radius;
  4486. delta_tower3_x= 0.0; // back middle tower
  4487. delta_tower3_y= radius;
  4488. delta_diagonal_rod_2= sq(diagonal_rod);
  4489. }
  4490. void calculate_delta(float cartesian[3])
  4491. {
  4492. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4493. - sq(delta_tower1_x-cartesian[X_AXIS])
  4494. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4495. ) + cartesian[Z_AXIS];
  4496. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4497. - sq(delta_tower2_x-cartesian[X_AXIS])
  4498. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4499. ) + cartesian[Z_AXIS];
  4500. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4501. - sq(delta_tower3_x-cartesian[X_AXIS])
  4502. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4503. ) + cartesian[Z_AXIS];
  4504. /*
  4505. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4506. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4507. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4508. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4509. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4510. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4511. */
  4512. }
  4513. #ifdef ENABLE_AUTO_BED_LEVELING
  4514. // Adjust print surface height by linear interpolation over the bed_level array.
  4515. int delta_grid_spacing[2] = { 0, 0 };
  4516. void adjust_delta(float cartesian[3])
  4517. {
  4518. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0)
  4519. return; // G29 not done
  4520. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4521. float grid_x = max(0.001-half, min(half-0.001, cartesian[X_AXIS] / delta_grid_spacing[0]));
  4522. float grid_y = max(0.001-half, min(half-0.001, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4523. int floor_x = floor(grid_x);
  4524. int floor_y = floor(grid_y);
  4525. float ratio_x = grid_x - floor_x;
  4526. float ratio_y = grid_y - floor_y;
  4527. float z1 = bed_level[floor_x+half][floor_y+half];
  4528. float z2 = bed_level[floor_x+half][floor_y+half+1];
  4529. float z3 = bed_level[floor_x+half+1][floor_y+half];
  4530. float z4 = bed_level[floor_x+half+1][floor_y+half+1];
  4531. float left = (1-ratio_y)*z1 + ratio_y*z2;
  4532. float right = (1-ratio_y)*z3 + ratio_y*z4;
  4533. float offset = (1-ratio_x)*left + ratio_x*right;
  4534. delta[X_AXIS] += offset;
  4535. delta[Y_AXIS] += offset;
  4536. delta[Z_AXIS] += offset;
  4537. /*
  4538. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4539. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4540. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4541. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4542. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4543. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4544. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4545. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4546. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4547. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4548. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4549. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4550. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4551. */
  4552. }
  4553. #endif //ENABLE_AUTO_BED_LEVELING
  4554. void prepare_move_raw()
  4555. {
  4556. previous_millis_cmd = millis();
  4557. calculate_delta(destination);
  4558. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4559. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4560. active_extruder);
  4561. for(int8_t i=0; i < NUM_AXIS; i++) {
  4562. current_position[i] = destination[i];
  4563. }
  4564. }
  4565. #endif //DELTA
  4566. #if defined(MESH_BED_LEVELING)
  4567. #if !defined(MIN)
  4568. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4569. #endif // ! MIN
  4570. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4571. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4572. {
  4573. if (!mbl.active) {
  4574. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4575. for(int8_t i=0; i < NUM_AXIS; i++) {
  4576. current_position[i] = destination[i];
  4577. }
  4578. return;
  4579. }
  4580. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4581. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4582. int ix = mbl.select_x_index(x);
  4583. int iy = mbl.select_y_index(y);
  4584. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4585. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4586. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4587. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4588. if (pix == ix && piy == iy) {
  4589. // Start and end on same mesh square
  4590. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4591. for(int8_t i=0; i < NUM_AXIS; i++) {
  4592. current_position[i] = destination[i];
  4593. }
  4594. return;
  4595. }
  4596. float nx, ny, ne, normalized_dist;
  4597. if (ix > pix && (x_splits) & BIT(ix)) {
  4598. nx = mbl.get_x(ix);
  4599. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4600. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4601. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4602. x_splits ^= BIT(ix);
  4603. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4604. nx = mbl.get_x(pix);
  4605. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4606. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4607. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4608. x_splits ^= BIT(pix);
  4609. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4610. ny = mbl.get_y(iy);
  4611. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4612. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4613. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4614. y_splits ^= BIT(iy);
  4615. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4616. ny = mbl.get_y(piy);
  4617. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4618. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4619. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4620. y_splits ^= BIT(piy);
  4621. } else {
  4622. // Already split on a border
  4623. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4624. for(int8_t i=0; i < NUM_AXIS; i++) {
  4625. current_position[i] = destination[i];
  4626. }
  4627. return;
  4628. }
  4629. // Do the split and look for more borders
  4630. destination[X_AXIS] = nx;
  4631. destination[Y_AXIS] = ny;
  4632. destination[E_AXIS] = ne;
  4633. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4634. destination[X_AXIS] = x;
  4635. destination[Y_AXIS] = y;
  4636. destination[E_AXIS] = e;
  4637. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4638. }
  4639. #endif // MESH_BED_LEVELING
  4640. void prepare_move()
  4641. {
  4642. clamp_to_software_endstops(destination);
  4643. previous_millis_cmd = millis();
  4644. #ifdef SCARA //for now same as delta-code
  4645. float difference[NUM_AXIS];
  4646. for (int8_t i=0; i < NUM_AXIS; i++) {
  4647. difference[i] = destination[i] - current_position[i];
  4648. }
  4649. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4650. sq(difference[Y_AXIS]) +
  4651. sq(difference[Z_AXIS]));
  4652. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4653. if (cartesian_mm < 0.000001) { return; }
  4654. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4655. int steps = max(1, int(scara_segments_per_second * seconds));
  4656. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4657. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4658. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4659. for (int s = 1; s <= steps; s++) {
  4660. float fraction = float(s) / float(steps);
  4661. for(int8_t i=0; i < NUM_AXIS; i++) {
  4662. destination[i] = current_position[i] + difference[i] * fraction;
  4663. }
  4664. calculate_delta(destination);
  4665. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4666. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4667. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4668. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4669. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4670. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4671. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4672. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4673. active_extruder);
  4674. }
  4675. #endif // SCARA
  4676. #ifdef DELTA
  4677. float difference[NUM_AXIS];
  4678. for (int8_t i=0; i < NUM_AXIS; i++) {
  4679. difference[i] = destination[i] - current_position[i];
  4680. }
  4681. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4682. sq(difference[Y_AXIS]) +
  4683. sq(difference[Z_AXIS]));
  4684. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4685. if (cartesian_mm < 0.000001) { return; }
  4686. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4687. int steps = max(1, int(delta_segments_per_second * seconds));
  4688. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4689. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4690. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4691. for (int s = 1; s <= steps; s++) {
  4692. float fraction = float(s) / float(steps);
  4693. for(int8_t i=0; i < NUM_AXIS; i++) {
  4694. destination[i] = current_position[i] + difference[i] * fraction;
  4695. }
  4696. calculate_delta(destination);
  4697. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4698. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4699. active_extruder);
  4700. }
  4701. #endif // DELTA
  4702. #ifdef DUAL_X_CARRIAGE
  4703. if (active_extruder_parked)
  4704. {
  4705. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4706. {
  4707. // move duplicate extruder into correct duplication position.
  4708. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4709. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4710. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4711. sync_plan_position();
  4712. st_synchronize();
  4713. extruder_duplication_enabled = true;
  4714. active_extruder_parked = false;
  4715. }
  4716. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4717. {
  4718. if (current_position[E_AXIS] == destination[E_AXIS])
  4719. {
  4720. // this is a travel move - skit it but keep track of current position (so that it can later
  4721. // be used as start of first non-travel move)
  4722. if (delayed_move_time != 0xFFFFFFFFUL)
  4723. {
  4724. memcpy(current_position, destination, sizeof(current_position));
  4725. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4726. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4727. delayed_move_time = millis();
  4728. return;
  4729. }
  4730. }
  4731. delayed_move_time = 0;
  4732. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4733. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4735. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4736. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4737. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4738. active_extruder_parked = false;
  4739. }
  4740. }
  4741. #endif //DUAL_X_CARRIAGE
  4742. #if ! (defined DELTA || defined SCARA)
  4743. // Do not use feedmultiply for E or Z only moves
  4744. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4745. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  4746. } else {
  4747. #if defined(MESH_BED_LEVELING)
  4748. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4749. return;
  4750. #else
  4751. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  4752. #endif // MESH_BED_LEVELING
  4753. }
  4754. #endif // !(DELTA || SCARA)
  4755. for(int8_t i=0; i < NUM_AXIS; i++) {
  4756. current_position[i] = destination[i];
  4757. }
  4758. }
  4759. void prepare_arc_move(char isclockwise) {
  4760. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4761. // Trace the arc
  4762. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4763. // As far as the parser is concerned, the position is now == target. In reality the
  4764. // motion control system might still be processing the action and the real tool position
  4765. // in any intermediate location.
  4766. for(int8_t i=0; i < NUM_AXIS; i++) {
  4767. current_position[i] = destination[i];
  4768. }
  4769. previous_millis_cmd = millis();
  4770. }
  4771. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4772. #if defined(FAN_PIN)
  4773. #if CONTROLLERFAN_PIN == FAN_PIN
  4774. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4775. #endif
  4776. #endif
  4777. unsigned long lastMotor = 0; // Last time a motor was turned on
  4778. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4779. void controllerFan() {
  4780. uint32_t ms = millis();
  4781. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4782. lastMotorCheck = ms;
  4783. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4784. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4785. #if EXTRUDERS > 1
  4786. || E1_ENABLE_READ == E_ENABLE_ON
  4787. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4788. || X2_ENABLE_READ == X_ENABLE_ON
  4789. #endif
  4790. #if EXTRUDERS > 2
  4791. || E2_ENABLE_READ == E_ENABLE_ON
  4792. #if EXTRUDERS > 3
  4793. || E3_ENABLE_READ == E_ENABLE_ON
  4794. #endif
  4795. #endif
  4796. #endif
  4797. ) {
  4798. lastMotor = ms; //... set time to NOW so the fan will turn on
  4799. }
  4800. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4801. // allows digital or PWM fan output to be used (see M42 handling)
  4802. digitalWrite(CONTROLLERFAN_PIN, speed);
  4803. analogWrite(CONTROLLERFAN_PIN, speed);
  4804. }
  4805. }
  4806. #endif
  4807. #ifdef SCARA
  4808. void calculate_SCARA_forward_Transform(float f_scara[3])
  4809. {
  4810. // Perform forward kinematics, and place results in delta[3]
  4811. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4812. float x_sin, x_cos, y_sin, y_cos;
  4813. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4814. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4815. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4816. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4817. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4818. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4819. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4820. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4821. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4822. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4823. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4824. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4825. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4826. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4827. }
  4828. void calculate_delta(float cartesian[3]){
  4829. //reverse kinematics.
  4830. // Perform reversed kinematics, and place results in delta[3]
  4831. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4832. float SCARA_pos[2];
  4833. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4834. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4835. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4836. #if (Linkage_1 == Linkage_2)
  4837. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4838. #else
  4839. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4840. #endif
  4841. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4842. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4843. SCARA_K2 = Linkage_2 * SCARA_S2;
  4844. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4845. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4846. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4847. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4848. delta[Z_AXIS] = cartesian[Z_AXIS];
  4849. /*
  4850. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4851. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4852. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4853. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4854. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4855. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4856. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4857. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4858. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4859. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4860. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4861. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4862. SERIAL_ECHOLN(" ");*/
  4863. }
  4864. #endif
  4865. #ifdef TEMP_STAT_LEDS
  4866. static bool blue_led = false;
  4867. static bool red_led = false;
  4868. static uint32_t stat_update = 0;
  4869. void handle_status_leds(void) {
  4870. float max_temp = 0.0;
  4871. if(millis() > stat_update) {
  4872. stat_update += 500; // Update every 0.5s
  4873. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4874. max_temp = max(max_temp, degHotend(cur_extruder));
  4875. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4876. }
  4877. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4878. max_temp = max(max_temp, degTargetBed());
  4879. max_temp = max(max_temp, degBed());
  4880. #endif
  4881. if((max_temp > 55.0) && (red_led == false)) {
  4882. digitalWrite(STAT_LED_RED, 1);
  4883. digitalWrite(STAT_LED_BLUE, 0);
  4884. red_led = true;
  4885. blue_led = false;
  4886. }
  4887. if((max_temp < 54.0) && (blue_led == false)) {
  4888. digitalWrite(STAT_LED_RED, 0);
  4889. digitalWrite(STAT_LED_BLUE, 1);
  4890. red_led = false;
  4891. blue_led = true;
  4892. }
  4893. }
  4894. }
  4895. #endif
  4896. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4897. {
  4898. #if defined(KILL_PIN) && KILL_PIN > -1
  4899. static int killCount = 0; // make the inactivity button a bit less responsive
  4900. const int KILL_DELAY = 750;
  4901. #endif
  4902. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4903. if(card.sdprinting) {
  4904. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4905. filrunout(); }
  4906. #endif
  4907. #if defined(HOME_PIN) && HOME_PIN > -1
  4908. static int homeDebounceCount = 0; // poor man's debouncing count
  4909. const int HOME_DEBOUNCE_DELAY = 750;
  4910. #endif
  4911. if(buflen < (BUFSIZE-1))
  4912. get_command();
  4913. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4914. if(max_inactive_time)
  4915. kill();
  4916. if(stepper_inactive_time) {
  4917. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4918. {
  4919. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4920. disable_x();
  4921. disable_y();
  4922. disable_z();
  4923. disable_e0();
  4924. disable_e1();
  4925. disable_e2();
  4926. disable_e3();
  4927. }
  4928. }
  4929. }
  4930. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4931. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4932. {
  4933. chdkActive = false;
  4934. WRITE(CHDK, LOW);
  4935. }
  4936. #endif
  4937. #if defined(KILL_PIN) && KILL_PIN > -1
  4938. // Check if the kill button was pressed and wait just in case it was an accidental
  4939. // key kill key press
  4940. // -------------------------------------------------------------------------------
  4941. if( 0 == READ(KILL_PIN) )
  4942. {
  4943. killCount++;
  4944. }
  4945. else if (killCount > 0)
  4946. {
  4947. killCount--;
  4948. }
  4949. // Exceeded threshold and we can confirm that it was not accidental
  4950. // KILL the machine
  4951. // ----------------------------------------------------------------
  4952. if ( killCount >= KILL_DELAY)
  4953. {
  4954. kill();
  4955. }
  4956. #endif
  4957. #if defined(HOME_PIN) && HOME_PIN > -1
  4958. // Check to see if we have to home, use poor man's debouncer
  4959. // ---------------------------------------------------------
  4960. if ( 0 == READ(HOME_PIN) )
  4961. {
  4962. if (homeDebounceCount == 0)
  4963. {
  4964. enquecommands_P((PSTR("G28")));
  4965. homeDebounceCount++;
  4966. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4967. }
  4968. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4969. {
  4970. homeDebounceCount++;
  4971. }
  4972. else
  4973. {
  4974. homeDebounceCount = 0;
  4975. }
  4976. }
  4977. #endif
  4978. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4979. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4980. #endif
  4981. #ifdef EXTRUDER_RUNOUT_PREVENT
  4982. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4983. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4984. {
  4985. bool oldstatus=E0_ENABLE_READ;
  4986. enable_e0();
  4987. float oldepos=current_position[E_AXIS];
  4988. float oldedes=destination[E_AXIS];
  4989. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4990. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4991. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4992. current_position[E_AXIS]=oldepos;
  4993. destination[E_AXIS]=oldedes;
  4994. plan_set_e_position(oldepos);
  4995. previous_millis_cmd=millis();
  4996. st_synchronize();
  4997. E0_ENABLE_WRITE(oldstatus);
  4998. }
  4999. #endif
  5000. #if defined(DUAL_X_CARRIAGE)
  5001. // handle delayed move timeout
  5002. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  5003. {
  5004. // travel moves have been received so enact them
  5005. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5006. memcpy(destination,current_position,sizeof(destination));
  5007. prepare_move();
  5008. }
  5009. #endif
  5010. #ifdef TEMP_STAT_LEDS
  5011. handle_status_leds();
  5012. #endif
  5013. check_axes_activity();
  5014. }
  5015. void kill()
  5016. {
  5017. cli(); // Stop interrupts
  5018. disable_heater();
  5019. disable_x();
  5020. disable_y();
  5021. disable_z();
  5022. disable_e0();
  5023. disable_e1();
  5024. disable_e2();
  5025. disable_e3();
  5026. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  5027. pinMode(PS_ON_PIN,INPUT);
  5028. #endif
  5029. SERIAL_ERROR_START;
  5030. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5031. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5032. // FMC small patch to update the LCD before ending
  5033. sei(); // enable interrupts
  5034. for ( int i=5; i--; lcd_update())
  5035. {
  5036. delay(200);
  5037. }
  5038. cli(); // disable interrupts
  5039. suicide();
  5040. while(1) { /* Intentionally left empty */ } // Wait for reset
  5041. }
  5042. #ifdef FILAMENT_RUNOUT_SENSOR
  5043. void filrunout()
  5044. {
  5045. if filrunoutEnqued == false {
  5046. filrunoutEnqued = true;
  5047. enquecommand("M600");
  5048. }
  5049. }
  5050. #endif
  5051. void Stop()
  5052. {
  5053. disable_heater();
  5054. if(Stopped == false) {
  5055. Stopped = true;
  5056. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5057. SERIAL_ERROR_START;
  5058. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5059. LCD_MESSAGEPGM(MSG_STOPPED);
  5060. }
  5061. }
  5062. bool IsStopped() { return Stopped; };
  5063. #ifdef FAST_PWM_FAN
  5064. void setPwmFrequency(uint8_t pin, int val)
  5065. {
  5066. val &= 0x07;
  5067. switch(digitalPinToTimer(pin))
  5068. {
  5069. #if defined(TCCR0A)
  5070. case TIMER0A:
  5071. case TIMER0B:
  5072. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5073. // TCCR0B |= val;
  5074. break;
  5075. #endif
  5076. #if defined(TCCR1A)
  5077. case TIMER1A:
  5078. case TIMER1B:
  5079. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5080. // TCCR1B |= val;
  5081. break;
  5082. #endif
  5083. #if defined(TCCR2)
  5084. case TIMER2:
  5085. case TIMER2:
  5086. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5087. TCCR2 |= val;
  5088. break;
  5089. #endif
  5090. #if defined(TCCR2A)
  5091. case TIMER2A:
  5092. case TIMER2B:
  5093. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5094. TCCR2B |= val;
  5095. break;
  5096. #endif
  5097. #if defined(TCCR3A)
  5098. case TIMER3A:
  5099. case TIMER3B:
  5100. case TIMER3C:
  5101. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5102. TCCR3B |= val;
  5103. break;
  5104. #endif
  5105. #if defined(TCCR4A)
  5106. case TIMER4A:
  5107. case TIMER4B:
  5108. case TIMER4C:
  5109. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5110. TCCR4B |= val;
  5111. break;
  5112. #endif
  5113. #if defined(TCCR5A)
  5114. case TIMER5A:
  5115. case TIMER5B:
  5116. case TIMER5C:
  5117. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5118. TCCR5B |= val;
  5119. break;
  5120. #endif
  5121. }
  5122. }
  5123. #endif //FAST_PWM_FAN
  5124. bool setTargetedHotend(int code){
  5125. tmp_extruder = active_extruder;
  5126. if(code_seen('T')) {
  5127. tmp_extruder = code_value();
  5128. if(tmp_extruder >= EXTRUDERS) {
  5129. SERIAL_ECHO_START;
  5130. switch(code){
  5131. case 104:
  5132. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5133. break;
  5134. case 105:
  5135. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5136. break;
  5137. case 109:
  5138. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5139. break;
  5140. case 218:
  5141. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5142. break;
  5143. case 221:
  5144. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5145. break;
  5146. }
  5147. SERIAL_ECHOLN(tmp_extruder);
  5148. return true;
  5149. }
  5150. }
  5151. return false;
  5152. }
  5153. float calculate_volumetric_multiplier(float diameter) {
  5154. if (!volumetric_enabled || diameter == 0) return 1.0;
  5155. float d2 = diameter * 0.5;
  5156. return 1.0 / (M_PI * d2 * d2);
  5157. }
  5158. void calculate_volumetric_multipliers() {
  5159. for (int i=0; i<EXTRUDERS; i++)
  5160. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5161. }