My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. // Counter variables for the bresenham line tracer
  41. static long counter_x, counter_y, counter_z, counter_e;
  42. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  43. #ifdef ADVANCE
  44. static long advance_rate, advance, final_advance = 0;
  45. static long old_advance = 0;
  46. static long e_steps[4];
  47. #endif
  48. static long acceleration_time, deceleration_time;
  49. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  50. static unsigned short acc_step_rate; // needed for deccelaration start point
  51. static char step_loops;
  52. static unsigned short OCR1A_nominal;
  53. static unsigned short step_loops_nominal;
  54. volatile long endstops_trigsteps[3] = { 0 };
  55. volatile long endstops_stepsTotal, endstops_stepsDone;
  56. static volatile bool endstop_x_hit = false;
  57. static volatile bool endstop_y_hit = false;
  58. static volatile bool endstop_z_hit = false;
  59. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  60. bool abort_on_endstop_hit = false;
  61. #endif
  62. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  63. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  64. #endif
  65. static bool old_x_min_endstop = false,
  66. old_x_max_endstop = false,
  67. old_y_min_endstop = false,
  68. old_y_max_endstop = false,
  69. old_z_min_endstop = false,
  70. old_z_max_endstop = false;
  71. static bool check_endstops = true;
  72. volatile long count_position[NUM_AXIS] = { 0 };
  73. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  74. //===========================================================================
  75. //================================ functions ================================
  76. //===========================================================================
  77. #ifdef DUAL_X_CARRIAGE
  78. #define X_APPLY_DIR(v,ALWAYS) \
  79. if (extruder_duplication_enabled || ALWAYS) { \
  80. X_DIR_WRITE(v); \
  81. X2_DIR_WRITE(v); \
  82. } \
  83. else{ \
  84. if (current_block->active_extruder) \
  85. X2_DIR_WRITE(v); \
  86. else \
  87. X_DIR_WRITE(v); \
  88. }
  89. #define X_APPLY_STEP(v,ALWAYS) \
  90. if (extruder_duplication_enabled || ALWAYS) { \
  91. X_STEP_WRITE(v); \
  92. X2_STEP_WRITE(v); \
  93. } \
  94. else { \
  95. if (current_block->active_extruder != 0) \
  96. X2_STEP_WRITE(v); \
  97. else \
  98. X_STEP_WRITE(v); \
  99. }
  100. #else
  101. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  102. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  103. #endif
  104. #ifdef Y_DUAL_STEPPER_DRIVERS
  105. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v), Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR)
  106. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v), Y2_STEP_WRITE(v)
  107. #else
  108. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  109. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  110. #endif
  111. #ifdef Z_DUAL_STEPPER_DRIVERS
  112. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v), Z2_DIR_WRITE(v)
  113. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v), Z2_STEP_WRITE(v)
  114. #else
  115. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  116. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  117. #endif
  118. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  119. // intRes = intIn1 * intIn2 >> 16
  120. // uses:
  121. // r26 to store 0
  122. // r27 to store the byte 1 of the 24 bit result
  123. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  124. asm volatile ( \
  125. "clr r26 \n\t" \
  126. "mul %A1, %B2 \n\t" \
  127. "movw %A0, r0 \n\t" \
  128. "mul %A1, %A2 \n\t" \
  129. "add %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "lsr r0 \n\t" \
  132. "adc %A0, r26 \n\t" \
  133. "adc %B0, r26 \n\t" \
  134. "clr r1 \n\t" \
  135. : \
  136. "=&r" (intRes) \
  137. : \
  138. "d" (charIn1), \
  139. "d" (intIn2) \
  140. : \
  141. "r26" \
  142. )
  143. // intRes = longIn1 * longIn2 >> 24
  144. // uses:
  145. // r26 to store 0
  146. // r27 to store the byte 1 of the 48bit result
  147. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  148. asm volatile ( \
  149. "clr r26 \n\t" \
  150. "mul %A1, %B2 \n\t" \
  151. "mov r27, r1 \n\t" \
  152. "mul %B1, %C2 \n\t" \
  153. "movw %A0, r0 \n\t" \
  154. "mul %C1, %C2 \n\t" \
  155. "add %B0, r0 \n\t" \
  156. "mul %C1, %B2 \n\t" \
  157. "add %A0, r0 \n\t" \
  158. "adc %B0, r1 \n\t" \
  159. "mul %A1, %C2 \n\t" \
  160. "add r27, r0 \n\t" \
  161. "adc %A0, r1 \n\t" \
  162. "adc %B0, r26 \n\t" \
  163. "mul %B1, %B2 \n\t" \
  164. "add r27, r0 \n\t" \
  165. "adc %A0, r1 \n\t" \
  166. "adc %B0, r26 \n\t" \
  167. "mul %C1, %A2 \n\t" \
  168. "add r27, r0 \n\t" \
  169. "adc %A0, r1 \n\t" \
  170. "adc %B0, r26 \n\t" \
  171. "mul %B1, %A2 \n\t" \
  172. "add r27, r1 \n\t" \
  173. "adc %A0, r26 \n\t" \
  174. "adc %B0, r26 \n\t" \
  175. "lsr r27 \n\t" \
  176. "adc %A0, r26 \n\t" \
  177. "adc %B0, r26 \n\t" \
  178. "clr r1 \n\t" \
  179. : \
  180. "=&r" (intRes) \
  181. : \
  182. "d" (longIn1), \
  183. "d" (longIn2) \
  184. : \
  185. "r26" , "r27" \
  186. )
  187. // Some useful constants
  188. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  189. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  190. void endstops_hit_on_purpose() {
  191. endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
  192. }
  193. void checkHitEndstops() {
  194. if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  195. SERIAL_ECHO_START;
  196. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  197. if (endstop_x_hit) {
  198. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  199. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  200. }
  201. if (endstop_y_hit) {
  202. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  203. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  204. }
  205. if (endstop_z_hit) {
  206. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  207. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  208. }
  209. SERIAL_EOL;
  210. endstops_hit_on_purpose();
  211. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  212. if (abort_on_endstop_hit) {
  213. card.sdprinting = false;
  214. card.closefile();
  215. quickStop();
  216. setTargetHotend0(0);
  217. setTargetHotend1(0);
  218. setTargetHotend2(0);
  219. setTargetHotend3(0);
  220. setTargetBed(0);
  221. }
  222. #endif
  223. }
  224. }
  225. void enable_endstops(bool check) { check_endstops = check; }
  226. // __________________________
  227. // /| |\ _________________ ^
  228. // / | | \ /| |\ |
  229. // / | | \ / | | \ s
  230. // / | | | | | \ p
  231. // / | | | | | \ e
  232. // +-----+------------------------+---+--+---------------+----+ e
  233. // | BLOCK 1 | BLOCK 2 | d
  234. //
  235. // time ----->
  236. //
  237. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  238. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  239. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  240. // The slope of acceleration is calculated with the leib ramp alghorithm.
  241. void st_wake_up() {
  242. // TCNT1 = 0;
  243. ENABLE_STEPPER_DRIVER_INTERRUPT();
  244. }
  245. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  246. unsigned short timer;
  247. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  248. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  249. step_rate = (step_rate >> 2) & 0x3fff;
  250. step_loops = 4;
  251. }
  252. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  253. step_rate = (step_rate >> 1) & 0x7fff;
  254. step_loops = 2;
  255. }
  256. else {
  257. step_loops = 1;
  258. }
  259. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  260. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  261. if (step_rate >= (8 * 256)) { // higher step rate
  262. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  263. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  264. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  265. MultiU16X8toH16(timer, tmp_step_rate, gain);
  266. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  267. }
  268. else { // lower step rates
  269. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  270. table_address += ((step_rate)>>1) & 0xfffc;
  271. timer = (unsigned short)pgm_read_word_near(table_address);
  272. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  273. }
  274. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  275. return timer;
  276. }
  277. // Initializes the trapezoid generator from the current block. Called whenever a new
  278. // block begins.
  279. FORCE_INLINE void trapezoid_generator_reset() {
  280. #ifdef ADVANCE
  281. advance = current_block->initial_advance;
  282. final_advance = current_block->final_advance;
  283. // Do E steps + advance steps
  284. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  285. old_advance = advance >>8;
  286. #endif
  287. deceleration_time = 0;
  288. // step_rate to timer interval
  289. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  290. // make a note of the number of step loops required at nominal speed
  291. step_loops_nominal = step_loops;
  292. acc_step_rate = current_block->initial_rate;
  293. acceleration_time = calc_timer(acc_step_rate);
  294. OCR1A = acceleration_time;
  295. // SERIAL_ECHO_START;
  296. // SERIAL_ECHOPGM("advance :");
  297. // SERIAL_ECHO(current_block->advance/256.0);
  298. // SERIAL_ECHOPGM("advance rate :");
  299. // SERIAL_ECHO(current_block->advance_rate/256.0);
  300. // SERIAL_ECHOPGM("initial advance :");
  301. // SERIAL_ECHO(current_block->initial_advance/256.0);
  302. // SERIAL_ECHOPGM("final advance :");
  303. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  304. }
  305. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  306. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  307. ISR(TIMER1_COMPA_vect) {
  308. if(cleaning_buffer_counter)
  309. {
  310. current_block = NULL;
  311. plan_discard_current_block();
  312. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  313. cleaning_buffer_counter--;
  314. OCR1A = 200;
  315. return;
  316. }
  317. // If there is no current block, attempt to pop one from the buffer
  318. if (!current_block) {
  319. // Anything in the buffer?
  320. current_block = plan_get_current_block();
  321. if (current_block) {
  322. current_block->busy = true;
  323. trapezoid_generator_reset();
  324. counter_x = -(current_block->step_event_count >> 1);
  325. counter_y = counter_z = counter_e = counter_x;
  326. step_events_completed = 0;
  327. #ifdef Z_LATE_ENABLE
  328. if (current_block->steps_z > 0) {
  329. enable_z();
  330. OCR1A = 2000; //1ms wait
  331. return;
  332. }
  333. #endif
  334. // #ifdef ADVANCE
  335. // e_steps[current_block->active_extruder] = 0;
  336. // #endif
  337. }
  338. else {
  339. OCR1A = 2000; // 1kHz.
  340. }
  341. }
  342. if (current_block != NULL) {
  343. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  344. out_bits = current_block->direction_bits;
  345. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  346. if (TEST(out_bits, X_AXIS)) {
  347. X_APPLY_DIR(INVERT_X_DIR,0);
  348. count_direction[X_AXIS] = -1;
  349. }
  350. else {
  351. X_APPLY_DIR(!INVERT_X_DIR,0);
  352. count_direction[X_AXIS] = 1;
  353. }
  354. if (TEST(out_bits, Y_AXIS)) {
  355. Y_APPLY_DIR(INVERT_Y_DIR,0);
  356. count_direction[Y_AXIS] = -1;
  357. }
  358. else {
  359. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  360. count_direction[Y_AXIS] = 1;
  361. }
  362. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  363. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  364. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps_## axis > 0)) { \
  365. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  366. endstop_## axis ##_hit = true; \
  367. step_events_completed = current_block->step_event_count; \
  368. } \
  369. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  370. // Check X and Y endstops
  371. if (check_endstops) {
  372. #ifndef COREXY
  373. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  374. #else
  375. // Head direction in -X axis for CoreXY bots.
  376. // If DeltaX == -DeltaY, the movement is only in Y axis
  377. if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) == TEST(out_bits, Y_AXIS)))
  378. if (TEST(out_bits, X_HEAD))
  379. #endif
  380. { // -direction
  381. #ifdef DUAL_X_CARRIAGE
  382. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  383. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  384. #endif
  385. {
  386. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  387. UPDATE_ENDSTOP(x, X, min, MIN);
  388. #endif
  389. }
  390. }
  391. else { // +direction
  392. #ifdef DUAL_X_CARRIAGE
  393. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  394. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  395. #endif
  396. {
  397. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  398. UPDATE_ENDSTOP(x, X, max, MAX);
  399. #endif
  400. }
  401. }
  402. #ifndef COREXY
  403. if (TEST(out_bits, Y_AXIS)) // -direction
  404. #else
  405. // Head direction in -Y axis for CoreXY bots.
  406. // If DeltaX == DeltaY, the movement is only in X axis
  407. if (current_block->steps_x != current_block->steps_y || (TEST(out_bits, X_AXIS) != TEST(out_bits, Y_AXIS)))
  408. if (TEST(out_bits, Y_HEAD))
  409. #endif
  410. { // -direction
  411. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  412. UPDATE_ENDSTOP(y, Y, min, MIN);
  413. #endif
  414. }
  415. else { // +direction
  416. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  417. UPDATE_ENDSTOP(y, Y, max, MAX);
  418. #endif
  419. }
  420. }
  421. if (TEST(out_bits, Z_AXIS)) { // -direction
  422. Z_DIR_WRITE(INVERT_Z_DIR);
  423. #ifdef Z_DUAL_STEPPER_DRIVERS
  424. Z2_DIR_WRITE(INVERT_Z_DIR);
  425. #endif
  426. count_direction[Z_AXIS] = -1;
  427. if (check_endstops) {
  428. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  429. UPDATE_ENDSTOP(z, Z, min, MIN);
  430. #endif
  431. }
  432. }
  433. else { // +direction
  434. Z_DIR_WRITE(!INVERT_Z_DIR);
  435. #ifdef Z_DUAL_STEPPER_DRIVERS
  436. Z2_DIR_WRITE(!INVERT_Z_DIR);
  437. #endif
  438. count_direction[Z_AXIS] = 1;
  439. if (check_endstops) {
  440. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  441. UPDATE_ENDSTOP(z, Z, max, MAX);
  442. #endif
  443. }
  444. }
  445. #ifndef ADVANCE
  446. if (TEST(out_bits, E_AXIS)) { // -direction
  447. REV_E_DIR();
  448. count_direction[E_AXIS]=-1;
  449. }
  450. else { // +direction
  451. NORM_E_DIR();
  452. count_direction[E_AXIS]=1;
  453. }
  454. #endif //!ADVANCE
  455. // Take multiple steps per interrupt (For high speed moves)
  456. for (int8_t i=0; i < step_loops; i++) {
  457. #ifndef AT90USB
  458. MSerial.checkRx(); // Check for serial chars.
  459. #endif
  460. #ifdef ADVANCE
  461. counter_e += current_block->steps_e;
  462. if (counter_e > 0) {
  463. counter_e -= current_block->step_event_count;
  464. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  465. }
  466. #endif //ADVANCE
  467. #ifdef CONFIG_STEPPERS_TOSHIBA
  468. /**
  469. * The Toshiba stepper controller require much longer pulses.
  470. * So we 'stage' decompose the pulses between high and low
  471. * instead of doing each in turn. The extra tests add enough
  472. * lag to allow it work with without needing NOPs
  473. */
  474. counter_x += current_block->steps_x;
  475. if (counter_x > 0) X_STEP_WRITE(HIGH);
  476. counter_y += current_block->steps_y;
  477. if (counter_y > 0) Y_STEP_WRITE(HIGH);
  478. counter_z += current_block->steps_z;
  479. if (counter_z > 0) Z_STEP_WRITE(HIGH);
  480. #ifndef ADVANCE
  481. counter_e += current_block->steps_e;
  482. if (counter_e > 0) E_STEP_WRITE(HIGH);
  483. #endif
  484. #define STEP_IF_COUNTER(axis, AXIS) \
  485. if (counter_## axis > 0) { \
  486. counter_## axis -= current_block->step_event_count; \
  487. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  488. AXIS ##_STEP_WRITE(LOW); \
  489. }
  490. STEP_IF_COUNTER(x, X);
  491. STEP_IF_COUNTER(y, Y);
  492. STEP_IF_COUNTER(z, Z);
  493. #ifndef ADVANCE
  494. STEP_IF_COUNTER(e, E);
  495. #endif
  496. #else // !CONFIG_STEPPERS_TOSHIBA
  497. #define APPLY_MOVEMENT(axis, AXIS) \
  498. counter_## axis += current_block->steps_## axis; \
  499. if (counter_## axis > 0) { \
  500. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  501. counter_## axis -= current_block->step_event_count; \
  502. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  503. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  504. }
  505. APPLY_MOVEMENT(x, X);
  506. APPLY_MOVEMENT(y, Y);
  507. APPLY_MOVEMENT(z, Z);
  508. #ifndef ADVANCE
  509. APPLY_MOVEMENT(e, E);
  510. #endif
  511. #endif // CONFIG_STEPPERS_TOSHIBA
  512. step_events_completed++;
  513. if (step_events_completed >= current_block->step_event_count) break;
  514. }
  515. // Calculare new timer value
  516. unsigned short timer;
  517. unsigned short step_rate;
  518. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  519. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  520. acc_step_rate += current_block->initial_rate;
  521. // upper limit
  522. if (acc_step_rate > current_block->nominal_rate)
  523. acc_step_rate = current_block->nominal_rate;
  524. // step_rate to timer interval
  525. timer = calc_timer(acc_step_rate);
  526. OCR1A = timer;
  527. acceleration_time += timer;
  528. #ifdef ADVANCE
  529. for(int8_t i=0; i < step_loops; i++) {
  530. advance += advance_rate;
  531. }
  532. //if (advance > current_block->advance) advance = current_block->advance;
  533. // Do E steps + advance steps
  534. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  535. old_advance = advance >>8;
  536. #endif
  537. }
  538. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  539. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  540. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  541. step_rate = current_block->final_rate;
  542. }
  543. else {
  544. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  545. }
  546. // lower limit
  547. if (step_rate < current_block->final_rate)
  548. step_rate = current_block->final_rate;
  549. // step_rate to timer interval
  550. timer = calc_timer(step_rate);
  551. OCR1A = timer;
  552. deceleration_time += timer;
  553. #ifdef ADVANCE
  554. for(int8_t i=0; i < step_loops; i++) {
  555. advance -= advance_rate;
  556. }
  557. if (advance < final_advance) advance = final_advance;
  558. // Do E steps + advance steps
  559. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  560. old_advance = advance >>8;
  561. #endif //ADVANCE
  562. }
  563. else {
  564. OCR1A = OCR1A_nominal;
  565. // ensure we're running at the correct step rate, even if we just came off an acceleration
  566. step_loops = step_loops_nominal;
  567. }
  568. // If current block is finished, reset pointer
  569. if (step_events_completed >= current_block->step_event_count) {
  570. current_block = NULL;
  571. plan_discard_current_block();
  572. }
  573. }
  574. }
  575. #ifdef ADVANCE
  576. unsigned char old_OCR0A;
  577. // Timer interrupt for E. e_steps is set in the main routine;
  578. // Timer 0 is shared with millies
  579. ISR(TIMER0_COMPA_vect)
  580. {
  581. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  582. OCR0A = old_OCR0A;
  583. // Set E direction (Depends on E direction + advance)
  584. for(unsigned char i=0; i<4;i++) {
  585. if (e_steps[0] != 0) {
  586. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  587. if (e_steps[0] < 0) {
  588. E0_DIR_WRITE(INVERT_E0_DIR);
  589. e_steps[0]++;
  590. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  591. }
  592. else if (e_steps[0] > 0) {
  593. E0_DIR_WRITE(!INVERT_E0_DIR);
  594. e_steps[0]--;
  595. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  596. }
  597. }
  598. #if EXTRUDERS > 1
  599. if (e_steps[1] != 0) {
  600. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  601. if (e_steps[1] < 0) {
  602. E1_DIR_WRITE(INVERT_E1_DIR);
  603. e_steps[1]++;
  604. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  605. }
  606. else if (e_steps[1] > 0) {
  607. E1_DIR_WRITE(!INVERT_E1_DIR);
  608. e_steps[1]--;
  609. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  610. }
  611. }
  612. #endif
  613. #if EXTRUDERS > 2
  614. if (e_steps[2] != 0) {
  615. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  616. if (e_steps[2] < 0) {
  617. E2_DIR_WRITE(INVERT_E2_DIR);
  618. e_steps[2]++;
  619. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  620. }
  621. else if (e_steps[2] > 0) {
  622. E2_DIR_WRITE(!INVERT_E2_DIR);
  623. e_steps[2]--;
  624. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  625. }
  626. }
  627. #endif
  628. #if EXTRUDERS > 3
  629. if (e_steps[3] != 0) {
  630. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  631. if (e_steps[3] < 0) {
  632. E3_DIR_WRITE(INVERT_E3_DIR);
  633. e_steps[3]++;
  634. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  635. }
  636. else if (e_steps[3] > 0) {
  637. E3_DIR_WRITE(!INVERT_E3_DIR);
  638. e_steps[3]--;
  639. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  640. }
  641. }
  642. #endif
  643. }
  644. }
  645. #endif // ADVANCE
  646. void st_init() {
  647. digipot_init(); //Initialize Digipot Motor Current
  648. microstep_init(); //Initialize Microstepping Pins
  649. // initialise TMC Steppers
  650. #ifdef HAVE_TMCDRIVER
  651. tmc_init();
  652. #endif
  653. // initialise L6470 Steppers
  654. #ifdef HAVE_L6470DRIVER
  655. L6470_init();
  656. #endif
  657. // Initialize Dir Pins
  658. #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
  659. X_DIR_INIT;
  660. #endif
  661. #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
  662. X2_DIR_INIT;
  663. #endif
  664. #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
  665. Y_DIR_INIT;
  666. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
  667. Y2_DIR_INIT;
  668. #endif
  669. #endif
  670. #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
  671. Z_DIR_INIT;
  672. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
  673. Z2_DIR_INIT;
  674. #endif
  675. #endif
  676. #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
  677. E0_DIR_INIT;
  678. #endif
  679. #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
  680. E1_DIR_INIT;
  681. #endif
  682. #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
  683. E2_DIR_INIT;
  684. #endif
  685. #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
  686. E3_DIR_INIT;
  687. #endif
  688. //Initialize Enable Pins - steppers default to disabled.
  689. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
  690. X_ENABLE_INIT;
  691. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  692. #endif
  693. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
  694. X2_ENABLE_INIT;
  695. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  696. #endif
  697. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
  698. Y_ENABLE_INIT;
  699. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  700. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
  701. Y2_ENABLE_INIT;
  702. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  703. #endif
  704. #endif
  705. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
  706. Z_ENABLE_INIT;
  707. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  708. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
  709. Z2_ENABLE_INIT;
  710. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  711. #endif
  712. #endif
  713. #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
  714. E0_ENABLE_INIT;
  715. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  716. #endif
  717. #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
  718. E1_ENABLE_INIT;
  719. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  720. #endif
  721. #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
  722. E2_ENABLE_INIT;
  723. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  724. #endif
  725. #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
  726. E3_ENABLE_INIT;
  727. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  728. #endif
  729. //endstops and pullups
  730. #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
  731. SET_INPUT(X_MIN_PIN);
  732. #ifdef ENDSTOPPULLUP_XMIN
  733. WRITE(X_MIN_PIN,HIGH);
  734. #endif
  735. #endif
  736. #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
  737. SET_INPUT(Y_MIN_PIN);
  738. #ifdef ENDSTOPPULLUP_YMIN
  739. WRITE(Y_MIN_PIN,HIGH);
  740. #endif
  741. #endif
  742. #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
  743. SET_INPUT(Z_MIN_PIN);
  744. #ifdef ENDSTOPPULLUP_ZMIN
  745. WRITE(Z_MIN_PIN,HIGH);
  746. #endif
  747. #endif
  748. #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
  749. SET_INPUT(X_MAX_PIN);
  750. #ifdef ENDSTOPPULLUP_XMAX
  751. WRITE(X_MAX_PIN,HIGH);
  752. #endif
  753. #endif
  754. #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
  755. SET_INPUT(Y_MAX_PIN);
  756. #ifdef ENDSTOPPULLUP_YMAX
  757. WRITE(Y_MAX_PIN,HIGH);
  758. #endif
  759. #endif
  760. #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
  761. SET_INPUT(Z_MAX_PIN);
  762. #ifdef ENDSTOPPULLUP_ZMAX
  763. WRITE(Z_MAX_PIN,HIGH);
  764. #endif
  765. #endif
  766. #define AXIS_INIT(axis, AXIS, PIN) \
  767. AXIS ##_STEP_INIT; \
  768. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  769. disable_## axis()
  770. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  771. // Initialize Step Pins
  772. #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
  773. AXIS_INIT(x, X, X);
  774. #endif
  775. #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
  776. AXIS_INIT(x, X2, X);
  777. #endif
  778. #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
  779. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
  780. Y2_STEP_INIT;
  781. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  782. #endif
  783. AXIS_INIT(y, Y, Y);
  784. #endif
  785. #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
  786. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
  787. Z2_STEP_INIT;
  788. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  789. #endif
  790. AXIS_INIT(z, Z, Z);
  791. #endif
  792. #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
  793. E_AXIS_INIT(0);
  794. #endif
  795. #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
  796. E_AXIS_INIT(1);
  797. #endif
  798. #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
  799. E_AXIS_INIT(2);
  800. #endif
  801. #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
  802. E_AXIS_INIT(3);
  803. #endif
  804. // waveform generation = 0100 = CTC
  805. TCCR1B &= ~BIT(WGM13);
  806. TCCR1B |= BIT(WGM12);
  807. TCCR1A &= ~BIT(WGM11);
  808. TCCR1A &= ~BIT(WGM10);
  809. // output mode = 00 (disconnected)
  810. TCCR1A &= ~(3<<COM1A0);
  811. TCCR1A &= ~(3<<COM1B0);
  812. // Set the timer pre-scaler
  813. // Generally we use a divider of 8, resulting in a 2MHz timer
  814. // frequency on a 16MHz MCU. If you are going to change this, be
  815. // sure to regenerate speed_lookuptable.h with
  816. // create_speed_lookuptable.py
  817. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  818. OCR1A = 0x4000;
  819. TCNT1 = 0;
  820. ENABLE_STEPPER_DRIVER_INTERRUPT();
  821. #ifdef ADVANCE
  822. #if defined(TCCR0A) && defined(WGM01)
  823. TCCR0A &= ~BIT(WGM01);
  824. TCCR0A &= ~BIT(WGM00);
  825. #endif
  826. e_steps[0] = 0;
  827. e_steps[1] = 0;
  828. e_steps[2] = 0;
  829. e_steps[3] = 0;
  830. TIMSK0 |= BIT(OCIE0A);
  831. #endif //ADVANCE
  832. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  833. sei();
  834. }
  835. // Block until all buffered steps are executed
  836. void st_synchronize() {
  837. while (blocks_queued()) {
  838. manage_heater();
  839. manage_inactivity();
  840. lcd_update();
  841. }
  842. }
  843. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  844. CRITICAL_SECTION_START;
  845. count_position[X_AXIS] = x;
  846. count_position[Y_AXIS] = y;
  847. count_position[Z_AXIS] = z;
  848. count_position[E_AXIS] = e;
  849. CRITICAL_SECTION_END;
  850. }
  851. void st_set_e_position(const long &e) {
  852. CRITICAL_SECTION_START;
  853. count_position[E_AXIS] = e;
  854. CRITICAL_SECTION_END;
  855. }
  856. long st_get_position(uint8_t axis) {
  857. long count_pos;
  858. CRITICAL_SECTION_START;
  859. count_pos = count_position[axis];
  860. CRITICAL_SECTION_END;
  861. return count_pos;
  862. }
  863. #ifdef ENABLE_AUTO_BED_LEVELING
  864. float st_get_position_mm(uint8_t axis) {
  865. float steper_position_in_steps = st_get_position(axis);
  866. return steper_position_in_steps / axis_steps_per_unit[axis];
  867. }
  868. #endif // ENABLE_AUTO_BED_LEVELING
  869. void finishAndDisableSteppers() {
  870. st_synchronize();
  871. disable_x();
  872. disable_y();
  873. disable_z();
  874. disable_e0();
  875. disable_e1();
  876. disable_e2();
  877. disable_e3();
  878. }
  879. void quickStop() {
  880. cleaning_buffer_counter = 5000;
  881. DISABLE_STEPPER_DRIVER_INTERRUPT();
  882. while (blocks_queued()) plan_discard_current_block();
  883. current_block = NULL;
  884. ENABLE_STEPPER_DRIVER_INTERRUPT();
  885. }
  886. #ifdef BABYSTEPPING
  887. // MUST ONLY BE CALLED BY AN ISR,
  888. // No other ISR should ever interrupt this!
  889. void babystep(const uint8_t axis, const bool direction) {
  890. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  891. enable_## axis(); \
  892. uint8_t old_pin = AXIS ##_DIR_READ; \
  893. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  894. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  895. _delay_us(1U); \
  896. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  897. AXIS ##_APPLY_DIR(old_pin, true); \
  898. }
  899. switch(axis) {
  900. case X_AXIS:
  901. BABYSTEP_AXIS(x, X, false);
  902. break;
  903. case Y_AXIS:
  904. BABYSTEP_AXIS(y, Y, false);
  905. break;
  906. case Z_AXIS: {
  907. #ifndef DELTA
  908. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  909. #else // DELTA
  910. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  911. enable_x();
  912. enable_y();
  913. enable_z();
  914. uint8_t old_x_dir_pin = X_DIR_READ,
  915. old_y_dir_pin = Y_DIR_READ,
  916. old_z_dir_pin = Z_DIR_READ;
  917. //setup new step
  918. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  919. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  920. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  921. //perform step
  922. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  923. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  924. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  925. _delay_us(1U);
  926. X_STEP_WRITE(INVERT_X_STEP_PIN);
  927. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  928. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  929. //get old pin state back.
  930. X_DIR_WRITE(old_x_dir_pin);
  931. Y_DIR_WRITE(old_y_dir_pin);
  932. Z_DIR_WRITE(old_z_dir_pin);
  933. #endif
  934. } break;
  935. default: break;
  936. }
  937. }
  938. #endif //BABYSTEPPING
  939. // From Arduino DigitalPotControl example
  940. void digitalPotWrite(int address, int value) {
  941. #if HAS_DIGIPOTSS
  942. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  943. SPI.transfer(address); // send in the address and value via SPI:
  944. SPI.transfer(value);
  945. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  946. //delay(10);
  947. #endif
  948. }
  949. // Initialize Digipot Motor Current
  950. void digipot_init() {
  951. #if HAS_DIGIPOTSS
  952. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  953. SPI.begin();
  954. pinMode(DIGIPOTSS_PIN, OUTPUT);
  955. for (int i = 0; i <= 4; i++) {
  956. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  957. digipot_current(i,digipot_motor_current[i]);
  958. }
  959. #endif
  960. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  961. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  962. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  963. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  964. digipot_current(0, motor_current_setting[0]);
  965. digipot_current(1, motor_current_setting[1]);
  966. digipot_current(2, motor_current_setting[2]);
  967. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  968. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  969. #endif
  970. }
  971. void digipot_current(uint8_t driver, int current) {
  972. #if HAS_DIGIPOTSS
  973. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  974. digitalPotWrite(digipot_ch[driver], current);
  975. #endif
  976. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  977. switch(driver) {
  978. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  979. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  980. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  981. }
  982. #endif
  983. }
  984. void microstep_init() {
  985. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  986. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  987. pinMode(E1_MS1_PIN,OUTPUT);
  988. pinMode(E1_MS2_PIN,OUTPUT);
  989. #endif
  990. #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
  991. pinMode(X_MS1_PIN,OUTPUT);
  992. pinMode(X_MS2_PIN,OUTPUT);
  993. pinMode(Y_MS1_PIN,OUTPUT);
  994. pinMode(Y_MS2_PIN,OUTPUT);
  995. pinMode(Z_MS1_PIN,OUTPUT);
  996. pinMode(Z_MS2_PIN,OUTPUT);
  997. pinMode(E0_MS1_PIN,OUTPUT);
  998. pinMode(E0_MS2_PIN,OUTPUT);
  999. for (int i = 0; i <= 4; i++) microstep_mode(i, microstep_modes[i]);
  1000. #endif
  1001. }
  1002. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1003. if (ms1 >= 0) switch(driver) {
  1004. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1005. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1006. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1007. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1008. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1009. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1010. #endif
  1011. }
  1012. if (ms2 >= 0) switch(driver) {
  1013. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1014. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1015. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1016. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1017. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1018. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1019. #endif
  1020. }
  1021. }
  1022. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1023. switch(stepping_mode) {
  1024. case 1: microstep_ms(driver,MICROSTEP1); break;
  1025. case 2: microstep_ms(driver,MICROSTEP2); break;
  1026. case 4: microstep_ms(driver,MICROSTEP4); break;
  1027. case 8: microstep_ms(driver,MICROSTEP8); break;
  1028. case 16: microstep_ms(driver,MICROSTEP16); break;
  1029. }
  1030. }
  1031. void microstep_readings() {
  1032. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1033. SERIAL_PROTOCOLPGM("X: ");
  1034. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1035. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1036. SERIAL_PROTOCOLPGM("Y: ");
  1037. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1038. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1039. SERIAL_PROTOCOLPGM("Z: ");
  1040. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1041. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1042. SERIAL_PROTOCOLPGM("E0: ");
  1043. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1044. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1045. #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
  1046. SERIAL_PROTOCOLPGM("E1: ");
  1047. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1048. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1049. #endif
  1050. }