123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
- #include "MarlinConfig.h"
-
- #if ENABLED(AUTO_BED_LEVELING_UBL)
-
- #include "Marlin.h"
- #include "ubl.h"
- #include "planner.h"
- #include "stepper.h"
- #include <avr/io.h>
- #include <math.h>
-
- extern float destination[XYZE];
-
- #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
- inline void set_current_to_destination() { COPY(current_position, destination); }
- #else
- extern void set_current_to_destination();
- #endif
-
- #if ENABLED(DELTA)
-
- extern float delta[ABC],
- endstop_adj[ABC];
-
- extern float delta_radius,
- delta_tower_angle_trim[ABC],
- delta_tower[ABC][2],
- delta_diagonal_rod,
- delta_calibration_radius,
- delta_diagonal_rod_2_tower[ABC],
- delta_segments_per_second,
- delta_clip_start_height;
-
- extern float delta_safe_distance_from_top();
-
- #endif
-
-
- static void debug_echo_axis(const AxisEnum axis) {
- if (current_position[axis] == destination[axis])
- SERIAL_ECHOPGM("-------------");
- else
- SERIAL_ECHO_F(destination[X_AXIS], 6);
- }
-
- void debug_current_and_destination(const char *title) {
-
- // if the title message starts with a '!' it is so important, we are going to
- // ignore the status of the g26_debug_flag
- if (*title != '!' && !ubl.g26_debug_flag) return;
-
- const float de = destination[E_AXIS] - current_position[E_AXIS];
-
- if (de == 0.0) return; // Printing moves only
-
- const float dx = destination[X_AXIS] - current_position[X_AXIS],
- dy = destination[Y_AXIS] - current_position[Y_AXIS],
- xy_dist = HYPOT(dx, dy);
-
- if (xy_dist == 0.0) return;
-
- SERIAL_ECHOPGM(" fpmm=");
- const float fpmm = de / xy_dist;
- SERIAL_ECHO_F(fpmm, 6);
-
- SERIAL_ECHOPGM(" current=( ");
- SERIAL_ECHO_F(current_position[X_AXIS], 6);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO_F(current_position[Y_AXIS], 6);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO_F(current_position[Z_AXIS], 6);
- SERIAL_ECHOPGM(", ");
- SERIAL_ECHO_F(current_position[E_AXIS], 6);
- SERIAL_ECHOPGM(" ) destination=( ");
- debug_echo_axis(X_AXIS);
- SERIAL_ECHOPGM(", ");
- debug_echo_axis(Y_AXIS);
- SERIAL_ECHOPGM(", ");
- debug_echo_axis(Z_AXIS);
- SERIAL_ECHOPGM(", ");
- debug_echo_axis(E_AXIS);
- SERIAL_ECHOPGM(" ) ");
- SERIAL_ECHO(title);
- SERIAL_EOL();
-
- }
-
- void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
- /**
- * Much of the nozzle movement will be within the same cell. So we will do as little computation
- * as possible to determine if this is the case. If this move is within the same cell, we will
- * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
- */
- const float start[XYZE] = {
- current_position[X_AXIS],
- current_position[Y_AXIS],
- current_position[Z_AXIS],
- current_position[E_AXIS]
- },
- end[XYZE] = {
- destination[X_AXIS],
- destination[Y_AXIS],
- destination[Z_AXIS],
- destination[E_AXIS]
- };
-
- const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
- cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
- cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
- cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
-
- if (g26_debug_flag) {
- SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
- SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
- SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
- SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
- SERIAL_CHAR(')');
- SERIAL_EOL();
- debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
- }
-
- if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
- /**
- * we don't need to break up the move
- *
- * If we are moving off the print bed, we are going to allow the move at this level.
- * But we detect it and isolate it. For now, we just pass along the request.
- */
-
- if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
-
- // Note: There is no Z Correction in this case. We are off the grid and don't know what
- // a reasonable correction would be.
-
- planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder);
- set_current_to_destination();
-
- if (g26_debug_flag)
- debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
-
- return;
- }
-
- FINAL_MOVE:
-
- /**
- * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
- * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
- * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
- * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
- * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
- * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
- */
-
- const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
-
- float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
- (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
- z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
- (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
-
- if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
-
- // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
- // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
-
- const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
- float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder);
-
- if (g26_debug_flag)
- debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
-
- set_current_to_destination();
- return;
- }
-
- /**
- * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
- * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
- * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
- * computation and in fact most lines are of this nature. We will check for that in the following
- * blocks of code:
- */
-
- const float dx = end[X_AXIS] - start[X_AXIS],
- dy = end[Y_AXIS] - start[Y_AXIS];
-
- const int left_flag = dx < 0.0 ? 1 : 0,
- down_flag = dy < 0.0 ? 1 : 0;
-
- const float adx = left_flag ? -dx : dx,
- ady = down_flag ? -dy : dy;
-
- const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
- dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
-
- /**
- * Compute the scaling factor for the extruder for each partial move.
- * We need to watch out for zero length moves because it will cause us to
- * have an infinate scaling factor. We are stuck doing a floating point
- * divide to get our scaling factor, but after that, we just multiply by this
- * number. We also pick our scaling factor based on whether the X or Y
- * component is larger. We use the biggest of the two to preserve precision.
- */
-
- const bool use_x_dist = adx > ady;
-
- float on_axis_distance = use_x_dist ? dx : dy,
- e_position = end[E_AXIS] - start[E_AXIS],
- z_position = end[Z_AXIS] - start[Z_AXIS];
-
- const float e_normalized_dist = e_position / on_axis_distance,
- z_normalized_dist = z_position / on_axis_distance;
-
- int current_xi = cell_start_xi,
- current_yi = cell_start_yi;
-
- const float m = dy / dx,
- c = start[Y_AXIS] - m * start[X_AXIS];
-
- const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
- inf_m_flag = (isinf(m) != 0);
- /**
- * This block handles vertical lines. These are lines that stay within the same
- * X Cell column. They do not need to be perfectly vertical. They just can
- * not cross into another X Cell column.
- */
- if (dxi == 0) { // Check for a vertical line
- current_yi += down_flag; // Line is heading down, we just want to go to the bottom
- while (current_yi != cell_dest_yi + down_flag) {
- current_yi += dyi;
- const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
-
- /**
- * if the slope of the line is infinite, we won't do the calculations
- * else, we know the next X is the same so we can recover and continue!
- * Calculate X at the next Y mesh line
- */
- const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
-
- float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
-
- z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
-
- /**
- * Without this check, it is possible for the algorithm to generate a zero length move in the case
- * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
- * happens, it might be best to remove the check and always 'schedule' the move because
- * the planner._buffer_line() routine will filter it if that happens.
- */
- if (y != start[Y_AXIS]) {
- if (!inf_normalized_flag) {
- on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
-
- planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
- } //else printf("FIRST MOVE PRUNED ");
- }
-
- if (g26_debug_flag)
- debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
-
- //
- // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
- //
- if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
- goto FINAL_MOVE;
-
- set_current_to_destination();
- return;
- }
-
- /**
- *
- * This block handles horizontal lines. These are lines that stay within the same
- * Y Cell row. They do not need to be perfectly horizontal. They just can
- * not cross into another Y Cell row.
- *
- */
-
- if (dyi == 0) { // Check for a horizontal line
- current_xi += left_flag; // Line is heading left, we just want to go to the left
- // edge of this cell for the first move.
- while (current_xi != cell_dest_xi + left_flag) {
- current_xi += dxi;
- const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
- y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
-
- float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
-
- z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi));
-
- /**
- * Without this check, it is possible for the algorithm to generate a zero length move in the case
- * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
- * that happens, it might be best to remove the check and always 'schedule' the move because
- * the planner._buffer_line() routine will filter it if that happens.
- */
- if (x != start[X_AXIS]) {
- if (!inf_normalized_flag) {
- on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
-
- planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
- } //else printf("FIRST MOVE PRUNED ");
- }
-
- if (g26_debug_flag)
- debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
-
- if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
- goto FINAL_MOVE;
-
- set_current_to_destination();
- return;
- }
-
- /**
- *
- * This block handles the generic case of a line crossing both X and Y Mesh lines.
- *
- */
-
- int xi_cnt = cell_start_xi - cell_dest_xi,
- yi_cnt = cell_start_yi - cell_dest_yi;
-
- if (xi_cnt < 0) xi_cnt = -xi_cnt;
- if (yi_cnt < 0) yi_cnt = -yi_cnt;
-
- current_xi += left_flag;
- current_yi += down_flag;
-
- while (xi_cnt > 0 || yi_cnt > 0) {
-
- const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)),
- next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)),
- y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
- x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
- // (No need to worry about m being zero.
- // If that was the case, it was already detected
- // as a vertical line move above.)
-
- if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
- // Yes! Crossing a Y Mesh Line next
- float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
-
- z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- if (!inf_normalized_flag) {
- on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
- planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
- current_yi += dyi;
- yi_cnt--;
- }
- else {
- // Yes! Crossing a X Mesh Line next
- float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
-
- z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
-
- /**
- * If part of the Mesh is undefined, it will show up as NAN
- * in z_values[][] and propagate through the
- * calculations. If our correction is NAN, we throw it out
- * because part of the Mesh is undefined and we don't have the
- * information we need to complete the height correction.
- */
- if (isnan(z0)) z0 = 0.0;
-
- if (!inf_normalized_flag) {
- on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
- e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
- z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
- }
- else {
- e_position = end[E_AXIS];
- z_position = end[Z_AXIS];
- }
-
- planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
- current_xi += dxi;
- xi_cnt--;
- }
-
- if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
- }
-
- if (g26_debug_flag)
- debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
-
- if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
- goto FINAL_MOVE;
-
- set_current_to_destination();
- }
-
- #if UBL_DELTA
-
- // macro to inline copy exactly 4 floats, don't rely on sizeof operator
- #define COPY_XYZE( target, source ) { \
- target[X_AXIS] = source[X_AXIS]; \
- target[Y_AXIS] = source[Y_AXIS]; \
- target[Z_AXIS] = source[Z_AXIS]; \
- target[E_AXIS] = source[E_AXIS]; \
- }
-
- #if IS_SCARA // scale the feed rate from mm/s to degrees/s
- static float scara_feed_factor, scara_oldA, scara_oldB;
- #endif
-
- // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
- // so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
-
- inline void _O2 ubl_buffer_segment_raw( float rx, float ry, float rz, float le, float fr ) {
-
- #if ENABLED(DELTA) // apply delta inverse_kinematics
-
- const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
- - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
- delta_tower[A_AXIS][Y_AXIS] - ry ));
-
- const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
- - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
- delta_tower[B_AXIS][Y_AXIS] - ry ));
-
- const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
- - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
- delta_tower[C_AXIS][Y_AXIS] - ry ));
-
- planner._buffer_line(delta_A, delta_B, delta_C, le, fr, active_extruder);
-
- #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
-
- const float lseg[XYZ] = { LOGICAL_X_POSITION(rx),
- LOGICAL_Y_POSITION(ry),
- LOGICAL_Z_POSITION(rz)
- };
-
- inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
- // should move the feedrate scaling to scara inverse_kinematics
-
- const float adiff = FABS(delta[A_AXIS] - scara_oldA),
- bdiff = FABS(delta[B_AXIS] - scara_oldB);
- scara_oldA = delta[A_AXIS];
- scara_oldB = delta[B_AXIS];
- float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
-
- planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], le, s_feedrate, active_extruder);
-
- #else // CARTESIAN
-
- // Cartesian _buffer_line seems to take LOGICAL, not RAW coordinates
-
- const float lx = LOGICAL_X_POSITION(rx),
- ly = LOGICAL_Y_POSITION(ry),
- lz = LOGICAL_Z_POSITION(rz);
-
- planner._buffer_line(lx, ly, lz, le, fr, active_extruder);
-
- #endif
-
- }
-
-
- /**
- * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
- * This calls planner._buffer_line multiple times for small incremental moves.
- * Returns true if did NOT move, false if moved (requires current_position update).
- */
-
- bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate) {
-
- if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
- return true; // did not move, so current_position still accurate
-
- const float tot_dx = ltarget[X_AXIS] - current_position[X_AXIS],
- tot_dy = ltarget[Y_AXIS] - current_position[Y_AXIS],
- tot_dz = ltarget[Z_AXIS] - current_position[Z_AXIS],
- tot_de = ltarget[E_AXIS] - current_position[E_AXIS];
-
- const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
-
- #if IS_KINEMATIC
- const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
- uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
- seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
- NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
- #else
- uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
- #endif
-
- NOLESS(segments, 1); // must have at least one segment
- const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
-
- #if IS_SCARA // scale the feed rate from mm/s to degrees/s
- scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
- scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
- scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
- #endif
-
- const float seg_dx = tot_dx * inv_segments,
- seg_dy = tot_dy * inv_segments,
- seg_dz = tot_dz * inv_segments,
- seg_de = tot_de * inv_segments;
-
- // Note that E segment distance could vary slightly as z mesh height
- // changes for each segment, but small enough to ignore.
-
- float seg_rx = RAW_X_POSITION(current_position[X_AXIS]),
- seg_ry = RAW_Y_POSITION(current_position[Y_AXIS]),
- seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]),
- seg_le = current_position[E_AXIS];
-
- const bool above_fade_height = (
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS])
- #else
- false
- #endif
- );
-
- // Only compute leveling per segment if ubl active and target below z_fade_height.
-
- if (!state.active || above_fade_height) { // no mesh leveling
-
- const float z_offset = state.active ? state.z_offset : 0.0;
-
- do {
-
- if (--segments) { // not the last segment
- seg_rx += seg_dx;
- seg_ry += seg_dy;
- seg_rz += seg_dz;
- seg_le += seg_de;
- } else { // last segment, use exact destination
- seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
- seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
- seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
- seg_le = ltarget[E_AXIS];
- }
-
- ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_offset, seg_le, feedrate );
-
- } while (segments);
-
- return false; // moved but did not set_current_to_destination();
- }
-
- // Otherwise perform per-segment leveling
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
- #endif
-
- // increment to first segment destination
- seg_rx += seg_dx;
- seg_ry += seg_dy;
- seg_rz += seg_dz;
- seg_le += seg_de;
-
- for(;;) { // for each mesh cell encountered during the move
-
- // Compute mesh cell invariants that remain constant for all segments within cell.
- // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
- // the bilinear interpolation from the adjacent cell within the mesh will still work.
- // Inner loop will exit each time (because out of cell bounds) but will come back
- // in top of loop and again re-find same adjacent cell and use it, just less efficient
- // for mesh inset area.
-
- int8_t cell_xi = (seg_rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
- cell_yi = (seg_ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
-
- cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
- cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
-
- const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
- y0 = mesh_index_to_ypos(cell_yi);
-
- float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
- z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
- z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
- z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
-
- if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A)
- if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
- if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
- if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
-
- float cx = seg_rx - x0, // cell-relative x and y
- cy = seg_ry - y0;
-
- const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
- z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
-
- float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
-
- const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
- z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
-
- float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
-
- // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
-
- // As subsequent segments step through this cell, the z_cxy0 intercept will change
- // and the z_cxym slope will change, both as a function of cx within the cell, and
- // each change by a constant for fixed segment lengths.
-
- const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
- z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
-
- for(;;) { // for all segments within this mesh cell
-
- float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
- #endif
-
- z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
-
- if (--segments == 0) { // if this is last segment, use ltarget for exact
- seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
- seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
- seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
- seg_le = ltarget[E_AXIS];
- }
-
- ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate );
-
- if (segments == 0 ) // done with last segment
- return false; // did not set_current_to_destination()
-
- seg_rx += seg_dx;
- seg_ry += seg_dy;
- seg_rz += seg_dz;
- seg_le += seg_de;
-
- cx += seg_dx;
- cy += seg_dy;
-
- if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
- break;
- }
-
- // Next segment still within same mesh cell, adjust the per-segment
- // slope and intercept to compute next z height.
-
- z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
- z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
-
- } // segment loop
- } // cell loop
- }
-
- #endif // UBL_DELTA
-
- #endif // AUTO_BED_LEVELING_UBL
|