My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

ubl_motion.cpp 31KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_UBL)
  24. #include "Marlin.h"
  25. #include "ubl.h"
  26. #include "planner.h"
  27. #include "stepper.h"
  28. #include <avr/io.h>
  29. #include <math.h>
  30. extern float destination[XYZE];
  31. #if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this
  32. inline void set_current_to_destination() { COPY(current_position, destination); }
  33. #else
  34. extern void set_current_to_destination();
  35. #endif
  36. #if ENABLED(DELTA)
  37. extern float delta[ABC],
  38. endstop_adj[ABC];
  39. extern float delta_radius,
  40. delta_tower_angle_trim[ABC],
  41. delta_tower[ABC][2],
  42. delta_diagonal_rod,
  43. delta_calibration_radius,
  44. delta_diagonal_rod_2_tower[ABC],
  45. delta_segments_per_second,
  46. delta_clip_start_height;
  47. extern float delta_safe_distance_from_top();
  48. #endif
  49. static void debug_echo_axis(const AxisEnum axis) {
  50. if (current_position[axis] == destination[axis])
  51. SERIAL_ECHOPGM("-------------");
  52. else
  53. SERIAL_ECHO_F(destination[X_AXIS], 6);
  54. }
  55. void debug_current_and_destination(const char *title) {
  56. // if the title message starts with a '!' it is so important, we are going to
  57. // ignore the status of the g26_debug_flag
  58. if (*title != '!' && !ubl.g26_debug_flag) return;
  59. const float de = destination[E_AXIS] - current_position[E_AXIS];
  60. if (de == 0.0) return; // Printing moves only
  61. const float dx = destination[X_AXIS] - current_position[X_AXIS],
  62. dy = destination[Y_AXIS] - current_position[Y_AXIS],
  63. xy_dist = HYPOT(dx, dy);
  64. if (xy_dist == 0.0) return;
  65. SERIAL_ECHOPGM(" fpmm=");
  66. const float fpmm = de / xy_dist;
  67. SERIAL_ECHO_F(fpmm, 6);
  68. SERIAL_ECHOPGM(" current=( ");
  69. SERIAL_ECHO_F(current_position[X_AXIS], 6);
  70. SERIAL_ECHOPGM(", ");
  71. SERIAL_ECHO_F(current_position[Y_AXIS], 6);
  72. SERIAL_ECHOPGM(", ");
  73. SERIAL_ECHO_F(current_position[Z_AXIS], 6);
  74. SERIAL_ECHOPGM(", ");
  75. SERIAL_ECHO_F(current_position[E_AXIS], 6);
  76. SERIAL_ECHOPGM(" ) destination=( ");
  77. debug_echo_axis(X_AXIS);
  78. SERIAL_ECHOPGM(", ");
  79. debug_echo_axis(Y_AXIS);
  80. SERIAL_ECHOPGM(", ");
  81. debug_echo_axis(Z_AXIS);
  82. SERIAL_ECHOPGM(", ");
  83. debug_echo_axis(E_AXIS);
  84. SERIAL_ECHOPGM(" ) ");
  85. SERIAL_ECHO(title);
  86. SERIAL_EOL();
  87. }
  88. void unified_bed_leveling::line_to_destination_cartesian(const float &feed_rate, uint8_t extruder) {
  89. /**
  90. * Much of the nozzle movement will be within the same cell. So we will do as little computation
  91. * as possible to determine if this is the case. If this move is within the same cell, we will
  92. * just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
  93. */
  94. const float start[XYZE] = {
  95. current_position[X_AXIS],
  96. current_position[Y_AXIS],
  97. current_position[Z_AXIS],
  98. current_position[E_AXIS]
  99. },
  100. end[XYZE] = {
  101. destination[X_AXIS],
  102. destination[Y_AXIS],
  103. destination[Z_AXIS],
  104. destination[E_AXIS]
  105. };
  106. const int cell_start_xi = get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
  107. cell_start_yi = get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
  108. cell_dest_xi = get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
  109. cell_dest_yi = get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
  110. if (g26_debug_flag) {
  111. SERIAL_ECHOPAIR(" ubl.line_to_destination(xe=", end[X_AXIS]);
  112. SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
  113. SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
  114. SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
  115. SERIAL_CHAR(')');
  116. SERIAL_EOL();
  117. debug_current_and_destination(PSTR("Start of ubl.line_to_destination()"));
  118. }
  119. if (cell_start_xi == cell_dest_xi && cell_start_yi == cell_dest_yi) { // if the whole move is within the same cell,
  120. /**
  121. * we don't need to break up the move
  122. *
  123. * If we are moving off the print bed, we are going to allow the move at this level.
  124. * But we detect it and isolate it. For now, we just pass along the request.
  125. */
  126. if (!WITHIN(cell_dest_xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cell_dest_yi, 0, GRID_MAX_POINTS_Y - 1)) {
  127. // Note: There is no Z Correction in this case. We are off the grid and don't know what
  128. // a reasonable correction would be.
  129. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + state.z_offset, end[E_AXIS], feed_rate, extruder);
  130. set_current_to_destination();
  131. if (g26_debug_flag)
  132. debug_current_and_destination(PSTR("out of bounds in ubl.line_to_destination()"));
  133. return;
  134. }
  135. FINAL_MOVE:
  136. /**
  137. * Optimize some floating point operations here. We could call float get_z_correction(float x0, float y0) to
  138. * generate the correction for us. But we can lighten the load on the CPU by doing a modified version of the function.
  139. * We are going to only calculate the amount we are from the first mesh line towards the second mesh line once.
  140. * We will use this fraction in both of the original two Z Height calculations for the bi-linear interpolation. And,
  141. * instead of doing a generic divide of the distance, we know the distance is MESH_X_DIST so we can use the preprocessor
  142. * to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
  143. */
  144. const float xratio = (RAW_X_POSITION(end[X_AXIS]) - mesh_index_to_xpos(cell_dest_xi)) * (1.0 / (MESH_X_DIST));
  145. float z1 = z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
  146. (z_values[cell_dest_xi + 1][cell_dest_yi ] - z_values[cell_dest_xi][cell_dest_yi ]),
  147. z2 = z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
  148. (z_values[cell_dest_xi + 1][cell_dest_yi + 1] - z_values[cell_dest_xi][cell_dest_yi + 1]);
  149. if (cell_dest_xi >= GRID_MAX_POINTS_X - 1) z1 = z2 = 0.0;
  150. // we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
  151. // are going to apply the Y-Distance into the cell to interpolate the final Z correction.
  152. const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - mesh_index_to_ypos(cell_dest_yi)) * (1.0 / (MESH_Y_DIST));
  153. float z0 = cell_dest_yi < GRID_MAX_POINTS_Y - 1 ? (z1 + (z2 - z1) * yratio) * fade_scaling_factor_for_z(end[Z_AXIS]) : 0.0;
  154. /**
  155. * If part of the Mesh is undefined, it will show up as NAN
  156. * in z_values[][] and propagate through the
  157. * calculations. If our correction is NAN, we throw it out
  158. * because part of the Mesh is undefined and we don't have the
  159. * information we need to complete the height correction.
  160. */
  161. if (isnan(z0)) z0 = 0.0;
  162. planner._buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + state.z_offset, end[E_AXIS], feed_rate, extruder);
  163. if (g26_debug_flag)
  164. debug_current_and_destination(PSTR("FINAL_MOVE in ubl.line_to_destination()"));
  165. set_current_to_destination();
  166. return;
  167. }
  168. /**
  169. * If we get here, we are processing a move that crosses at least one Mesh Line. We will check
  170. * for the simple case of just crossing X or just crossing Y Mesh Lines after we get all the details
  171. * of the move figured out. We can process the easy case of just crossing an X or Y Mesh Line with less
  172. * computation and in fact most lines are of this nature. We will check for that in the following
  173. * blocks of code:
  174. */
  175. const float dx = end[X_AXIS] - start[X_AXIS],
  176. dy = end[Y_AXIS] - start[Y_AXIS];
  177. const int left_flag = dx < 0.0 ? 1 : 0,
  178. down_flag = dy < 0.0 ? 1 : 0;
  179. const float adx = left_flag ? -dx : dx,
  180. ady = down_flag ? -dy : dy;
  181. const int dxi = cell_start_xi == cell_dest_xi ? 0 : left_flag ? -1 : 1,
  182. dyi = cell_start_yi == cell_dest_yi ? 0 : down_flag ? -1 : 1;
  183. /**
  184. * Compute the scaling factor for the extruder for each partial move.
  185. * We need to watch out for zero length moves because it will cause us to
  186. * have an infinate scaling factor. We are stuck doing a floating point
  187. * divide to get our scaling factor, but after that, we just multiply by this
  188. * number. We also pick our scaling factor based on whether the X or Y
  189. * component is larger. We use the biggest of the two to preserve precision.
  190. */
  191. const bool use_x_dist = adx > ady;
  192. float on_axis_distance = use_x_dist ? dx : dy,
  193. e_position = end[E_AXIS] - start[E_AXIS],
  194. z_position = end[Z_AXIS] - start[Z_AXIS];
  195. const float e_normalized_dist = e_position / on_axis_distance,
  196. z_normalized_dist = z_position / on_axis_distance;
  197. int current_xi = cell_start_xi,
  198. current_yi = cell_start_yi;
  199. const float m = dy / dx,
  200. c = start[Y_AXIS] - m * start[X_AXIS];
  201. const bool inf_normalized_flag = (isinf(e_normalized_dist) != 0),
  202. inf_m_flag = (isinf(m) != 0);
  203. /**
  204. * This block handles vertical lines. These are lines that stay within the same
  205. * X Cell column. They do not need to be perfectly vertical. They just can
  206. * not cross into another X Cell column.
  207. */
  208. if (dxi == 0) { // Check for a vertical line
  209. current_yi += down_flag; // Line is heading down, we just want to go to the bottom
  210. while (current_yi != cell_dest_yi + down_flag) {
  211. current_yi += dyi;
  212. const float next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
  213. /**
  214. * if the slope of the line is infinite, we won't do the calculations
  215. * else, we know the next X is the same so we can recover and continue!
  216. * Calculate X at the next Y mesh line
  217. */
  218. const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
  219. float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
  220. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  221. /**
  222. * If part of the Mesh is undefined, it will show up as NAN
  223. * in z_values[][] and propagate through the
  224. * calculations. If our correction is NAN, we throw it out
  225. * because part of the Mesh is undefined and we don't have the
  226. * information we need to complete the height correction.
  227. */
  228. if (isnan(z0)) z0 = 0.0;
  229. const float y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi));
  230. /**
  231. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  232. * where the line is heading down and it is starting right on a Mesh Line boundary. For how often that
  233. * happens, it might be best to remove the check and always 'schedule' the move because
  234. * the planner._buffer_line() routine will filter it if that happens.
  235. */
  236. if (y != start[Y_AXIS]) {
  237. if (!inf_normalized_flag) {
  238. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  239. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  240. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  241. }
  242. else {
  243. e_position = end[E_AXIS];
  244. z_position = end[Z_AXIS];
  245. }
  246. planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  247. } //else printf("FIRST MOVE PRUNED ");
  248. }
  249. if (g26_debug_flag)
  250. debug_current_and_destination(PSTR("vertical move done in ubl.line_to_destination()"));
  251. //
  252. // Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
  253. //
  254. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  255. goto FINAL_MOVE;
  256. set_current_to_destination();
  257. return;
  258. }
  259. /**
  260. *
  261. * This block handles horizontal lines. These are lines that stay within the same
  262. * Y Cell row. They do not need to be perfectly horizontal. They just can
  263. * not cross into another Y Cell row.
  264. *
  265. */
  266. if (dyi == 0) { // Check for a horizontal line
  267. current_xi += left_flag; // Line is heading left, we just want to go to the left
  268. // edge of this cell for the first move.
  269. while (current_xi != cell_dest_xi + left_flag) {
  270. current_xi += dxi;
  271. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi)),
  272. y = m * next_mesh_line_x + c; // Calculate Y at the next X mesh line
  273. float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
  274. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  275. /**
  276. * If part of the Mesh is undefined, it will show up as NAN
  277. * in z_values[][] and propagate through the
  278. * calculations. If our correction is NAN, we throw it out
  279. * because part of the Mesh is undefined and we don't have the
  280. * information we need to complete the height correction.
  281. */
  282. if (isnan(z0)) z0 = 0.0;
  283. const float x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi));
  284. /**
  285. * Without this check, it is possible for the algorithm to generate a zero length move in the case
  286. * where the line is heading left and it is starting right on a Mesh Line boundary. For how often
  287. * that happens, it might be best to remove the check and always 'schedule' the move because
  288. * the planner._buffer_line() routine will filter it if that happens.
  289. */
  290. if (x != start[X_AXIS]) {
  291. if (!inf_normalized_flag) {
  292. on_axis_distance = use_x_dist ? x - start[X_AXIS] : y - start[Y_AXIS];
  293. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
  294. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  295. }
  296. else {
  297. e_position = end[E_AXIS];
  298. z_position = end[Z_AXIS];
  299. }
  300. planner._buffer_line(x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  301. } //else printf("FIRST MOVE PRUNED ");
  302. }
  303. if (g26_debug_flag)
  304. debug_current_and_destination(PSTR("horizontal move done in ubl.line_to_destination()"));
  305. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  306. goto FINAL_MOVE;
  307. set_current_to_destination();
  308. return;
  309. }
  310. /**
  311. *
  312. * This block handles the generic case of a line crossing both X and Y Mesh lines.
  313. *
  314. */
  315. int xi_cnt = cell_start_xi - cell_dest_xi,
  316. yi_cnt = cell_start_yi - cell_dest_yi;
  317. if (xi_cnt < 0) xi_cnt = -xi_cnt;
  318. if (yi_cnt < 0) yi_cnt = -yi_cnt;
  319. current_xi += left_flag;
  320. current_yi += down_flag;
  321. while (xi_cnt > 0 || yi_cnt > 0) {
  322. const float next_mesh_line_x = LOGICAL_X_POSITION(mesh_index_to_xpos(current_xi + dxi)),
  323. next_mesh_line_y = LOGICAL_Y_POSITION(mesh_index_to_ypos(current_yi + dyi)),
  324. y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
  325. x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
  326. // (No need to worry about m being zero.
  327. // If that was the case, it was already detected
  328. // as a vertical line move above.)
  329. if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
  330. // Yes! Crossing a Y Mesh Line next
  331. float z0 = z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
  332. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  333. /**
  334. * If part of the Mesh is undefined, it will show up as NAN
  335. * in z_values[][] and propagate through the
  336. * calculations. If our correction is NAN, we throw it out
  337. * because part of the Mesh is undefined and we don't have the
  338. * information we need to complete the height correction.
  339. */
  340. if (isnan(z0)) z0 = 0.0;
  341. if (!inf_normalized_flag) {
  342. on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
  343. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  344. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  345. }
  346. else {
  347. e_position = end[E_AXIS];
  348. z_position = end[Z_AXIS];
  349. }
  350. planner._buffer_line(x, next_mesh_line_y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  351. current_yi += dyi;
  352. yi_cnt--;
  353. }
  354. else {
  355. // Yes! Crossing a X Mesh Line next
  356. float z0 = z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
  357. z0 *= fade_scaling_factor_for_z(end[Z_AXIS]);
  358. /**
  359. * If part of the Mesh is undefined, it will show up as NAN
  360. * in z_values[][] and propagate through the
  361. * calculations. If our correction is NAN, we throw it out
  362. * because part of the Mesh is undefined and we don't have the
  363. * information we need to complete the height correction.
  364. */
  365. if (isnan(z0)) z0 = 0.0;
  366. if (!inf_normalized_flag) {
  367. on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
  368. e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
  369. z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
  370. }
  371. else {
  372. e_position = end[E_AXIS];
  373. z_position = end[Z_AXIS];
  374. }
  375. planner._buffer_line(next_mesh_line_x, y, z_position + z0 + state.z_offset, e_position, feed_rate, extruder);
  376. current_xi += dxi;
  377. xi_cnt--;
  378. }
  379. if (xi_cnt < 0 || yi_cnt < 0) break; // we've gone too far, so exit the loop and move on to FINAL_MOVE
  380. }
  381. if (g26_debug_flag)
  382. debug_current_and_destination(PSTR("generic move done in ubl.line_to_destination()"));
  383. if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
  384. goto FINAL_MOVE;
  385. set_current_to_destination();
  386. }
  387. #if UBL_DELTA
  388. // macro to inline copy exactly 4 floats, don't rely on sizeof operator
  389. #define COPY_XYZE( target, source ) { \
  390. target[X_AXIS] = source[X_AXIS]; \
  391. target[Y_AXIS] = source[Y_AXIS]; \
  392. target[Z_AXIS] = source[Z_AXIS]; \
  393. target[E_AXIS] = source[E_AXIS]; \
  394. }
  395. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  396. static float scara_feed_factor, scara_oldA, scara_oldB;
  397. #endif
  398. // We don't want additional apply_leveling() performed by regular buffer_line or buffer_line_kinematic,
  399. // so we call _buffer_line directly here. Per-segmented leveling and kinematics performed first.
  400. inline void _O2 ubl_buffer_segment_raw( float rx, float ry, float rz, float le, float fr ) {
  401. #if ENABLED(DELTA) // apply delta inverse_kinematics
  402. const float delta_A = rz + SQRT( delta_diagonal_rod_2_tower[A_AXIS]
  403. - HYPOT2( delta_tower[A_AXIS][X_AXIS] - rx,
  404. delta_tower[A_AXIS][Y_AXIS] - ry ));
  405. const float delta_B = rz + SQRT( delta_diagonal_rod_2_tower[B_AXIS]
  406. - HYPOT2( delta_tower[B_AXIS][X_AXIS] - rx,
  407. delta_tower[B_AXIS][Y_AXIS] - ry ));
  408. const float delta_C = rz + SQRT( delta_diagonal_rod_2_tower[C_AXIS]
  409. - HYPOT2( delta_tower[C_AXIS][X_AXIS] - rx,
  410. delta_tower[C_AXIS][Y_AXIS] - ry ));
  411. planner._buffer_line(delta_A, delta_B, delta_C, le, fr, active_extruder);
  412. #elif IS_SCARA // apply scara inverse_kinematics (should be changed to save raw->logical->raw)
  413. const float lseg[XYZ] = { LOGICAL_X_POSITION(rx),
  414. LOGICAL_Y_POSITION(ry),
  415. LOGICAL_Z_POSITION(rz)
  416. };
  417. inverse_kinematics(lseg); // this writes delta[ABC] from lseg[XYZ]
  418. // should move the feedrate scaling to scara inverse_kinematics
  419. const float adiff = FABS(delta[A_AXIS] - scara_oldA),
  420. bdiff = FABS(delta[B_AXIS] - scara_oldB);
  421. scara_oldA = delta[A_AXIS];
  422. scara_oldB = delta[B_AXIS];
  423. float s_feedrate = max(adiff, bdiff) * scara_feed_factor;
  424. planner._buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], le, s_feedrate, active_extruder);
  425. #else // CARTESIAN
  426. // Cartesian _buffer_line seems to take LOGICAL, not RAW coordinates
  427. const float lx = LOGICAL_X_POSITION(rx),
  428. ly = LOGICAL_Y_POSITION(ry),
  429. lz = LOGICAL_Z_POSITION(rz);
  430. planner._buffer_line(lx, ly, lz, le, fr, active_extruder);
  431. #endif
  432. }
  433. /**
  434. * Prepare a segmented linear move for DELTA/SCARA/CARTESIAN with UBL and FADE semantics.
  435. * This calls planner._buffer_line multiple times for small incremental moves.
  436. * Returns true if did NOT move, false if moved (requires current_position update).
  437. */
  438. bool _O2 unified_bed_leveling::prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate) {
  439. if (!position_is_reachable_xy(ltarget[X_AXIS], ltarget[Y_AXIS])) // fail if moving outside reachable boundary
  440. return true; // did not move, so current_position still accurate
  441. const float tot_dx = ltarget[X_AXIS] - current_position[X_AXIS],
  442. tot_dy = ltarget[Y_AXIS] - current_position[Y_AXIS],
  443. tot_dz = ltarget[Z_AXIS] - current_position[Z_AXIS],
  444. tot_de = ltarget[E_AXIS] - current_position[E_AXIS];
  445. const float cartesian_xy_mm = HYPOT(tot_dx, tot_dy); // total horizontal xy distance
  446. #if IS_KINEMATIC
  447. const float seconds = cartesian_xy_mm / feedrate; // seconds to move xy distance at requested rate
  448. uint16_t segments = lroundf(delta_segments_per_second * seconds), // preferred number of segments for distance @ feedrate
  449. seglimit = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // number of segments at minimum segment length
  450. NOMORE(segments, seglimit); // limit to minimum segment length (fewer segments)
  451. #else
  452. uint16_t segments = lroundf(cartesian_xy_mm * (1.0 / (DELTA_SEGMENT_MIN_LENGTH))); // cartesian fixed segment length
  453. #endif
  454. NOLESS(segments, 1); // must have at least one segment
  455. const float inv_segments = 1.0 / segments; // divide once, multiply thereafter
  456. #if IS_SCARA // scale the feed rate from mm/s to degrees/s
  457. scara_feed_factor = cartesian_xy_mm * inv_segments * feedrate;
  458. scara_oldA = stepper.get_axis_position_degrees(A_AXIS);
  459. scara_oldB = stepper.get_axis_position_degrees(B_AXIS);
  460. #endif
  461. const float seg_dx = tot_dx * inv_segments,
  462. seg_dy = tot_dy * inv_segments,
  463. seg_dz = tot_dz * inv_segments,
  464. seg_de = tot_de * inv_segments;
  465. // Note that E segment distance could vary slightly as z mesh height
  466. // changes for each segment, but small enough to ignore.
  467. float seg_rx = RAW_X_POSITION(current_position[X_AXIS]),
  468. seg_ry = RAW_Y_POSITION(current_position[Y_AXIS]),
  469. seg_rz = RAW_Z_POSITION(current_position[Z_AXIS]),
  470. seg_le = current_position[E_AXIS];
  471. const bool above_fade_height = (
  472. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  473. planner.z_fade_height != 0 && planner.z_fade_height < RAW_Z_POSITION(ltarget[Z_AXIS])
  474. #else
  475. false
  476. #endif
  477. );
  478. // Only compute leveling per segment if ubl active and target below z_fade_height.
  479. if (!state.active || above_fade_height) { // no mesh leveling
  480. const float z_offset = state.active ? state.z_offset : 0.0;
  481. do {
  482. if (--segments) { // not the last segment
  483. seg_rx += seg_dx;
  484. seg_ry += seg_dy;
  485. seg_rz += seg_dz;
  486. seg_le += seg_de;
  487. } else { // last segment, use exact destination
  488. seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
  489. seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
  490. seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
  491. seg_le = ltarget[E_AXIS];
  492. }
  493. ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_offset, seg_le, feedrate );
  494. } while (segments);
  495. return false; // moved but did not set_current_to_destination();
  496. }
  497. // Otherwise perform per-segment leveling
  498. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  499. const float fade_scaling_factor = fade_scaling_factor_for_z(ltarget[Z_AXIS]);
  500. #endif
  501. // increment to first segment destination
  502. seg_rx += seg_dx;
  503. seg_ry += seg_dy;
  504. seg_rz += seg_dz;
  505. seg_le += seg_de;
  506. for(;;) { // for each mesh cell encountered during the move
  507. // Compute mesh cell invariants that remain constant for all segments within cell.
  508. // Note for cell index, if point is outside the mesh grid (in MESH_INSET perimeter)
  509. // the bilinear interpolation from the adjacent cell within the mesh will still work.
  510. // Inner loop will exit each time (because out of cell bounds) but will come back
  511. // in top of loop and again re-find same adjacent cell and use it, just less efficient
  512. // for mesh inset area.
  513. int8_t cell_xi = (seg_rx - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST)),
  514. cell_yi = (seg_ry - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_X_DIST));
  515. cell_xi = constrain(cell_xi, 0, (GRID_MAX_POINTS_X) - 1);
  516. cell_yi = constrain(cell_yi, 0, (GRID_MAX_POINTS_Y) - 1);
  517. const float x0 = mesh_index_to_xpos(cell_xi), // 64 byte table lookup avoids mul+add
  518. y0 = mesh_index_to_ypos(cell_yi);
  519. float z_x0y0 = z_values[cell_xi ][cell_yi ], // z at lower left corner
  520. z_x1y0 = z_values[cell_xi+1][cell_yi ], // z at upper left corner
  521. z_x0y1 = z_values[cell_xi ][cell_yi+1], // z at lower right corner
  522. z_x1y1 = z_values[cell_xi+1][cell_yi+1]; // z at upper right corner
  523. if (isnan(z_x0y0)) z_x0y0 = 0; // ideally activating state.active (G29 A)
  524. if (isnan(z_x1y0)) z_x1y0 = 0; // should refuse if any invalid mesh points
  525. if (isnan(z_x0y1)) z_x0y1 = 0; // in order to avoid isnan tests per cell,
  526. if (isnan(z_x1y1)) z_x1y1 = 0; // thus guessing zero for undefined points
  527. float cx = seg_rx - x0, // cell-relative x and y
  528. cy = seg_ry - y0;
  529. const float z_xmy0 = (z_x1y0 - z_x0y0) * (1.0 / (MESH_X_DIST)), // z slope per x along y0 (lower left to lower right)
  530. z_xmy1 = (z_x1y1 - z_x0y1) * (1.0 / (MESH_X_DIST)); // z slope per x along y1 (upper left to upper right)
  531. float z_cxy0 = z_x0y0 + z_xmy0 * cx; // z height along y0 at cx (changes for each cx in cell)
  532. const float z_cxy1 = z_x0y1 + z_xmy1 * cx, // z height along y1 at cx
  533. z_cxyd = z_cxy1 - z_cxy0; // z height difference along cx from y0 to y1
  534. float z_cxym = z_cxyd * (1.0 / (MESH_Y_DIST)); // z slope per y along cx from y0 to y1 (changes for each cx in cell)
  535. // float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy (do inside the segment loop)
  536. // As subsequent segments step through this cell, the z_cxy0 intercept will change
  537. // and the z_cxym slope will change, both as a function of cx within the cell, and
  538. // each change by a constant for fixed segment lengths.
  539. const float z_sxy0 = z_xmy0 * seg_dx, // per-segment adjustment to z_cxy0
  540. z_sxym = (z_xmy1 - z_xmy0) * (1.0 / (MESH_Y_DIST)) * seg_dx; // per-segment adjustment to z_cxym
  541. for(;;) { // for all segments within this mesh cell
  542. float z_cxcy = z_cxy0 + z_cxym * cy; // interpolated mesh z height along cx at cy
  543. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  544. z_cxcy *= fade_scaling_factor; // apply fade factor to interpolated mesh height
  545. #endif
  546. z_cxcy += state.z_offset; // add fixed mesh offset from G29 Z
  547. if (--segments == 0) { // if this is last segment, use ltarget for exact
  548. seg_rx = RAW_X_POSITION(ltarget[X_AXIS]);
  549. seg_ry = RAW_Y_POSITION(ltarget[Y_AXIS]);
  550. seg_rz = RAW_Z_POSITION(ltarget[Z_AXIS]);
  551. seg_le = ltarget[E_AXIS];
  552. }
  553. ubl_buffer_segment_raw( seg_rx, seg_ry, seg_rz + z_cxcy, seg_le, feedrate );
  554. if (segments == 0 ) // done with last segment
  555. return false; // did not set_current_to_destination()
  556. seg_rx += seg_dx;
  557. seg_ry += seg_dy;
  558. seg_rz += seg_dz;
  559. seg_le += seg_de;
  560. cx += seg_dx;
  561. cy += seg_dy;
  562. if (!WITHIN(cx, 0, MESH_X_DIST) || !WITHIN(cy, 0, MESH_Y_DIST)) { // done within this cell, break to next
  563. break;
  564. }
  565. // Next segment still within same mesh cell, adjust the per-segment
  566. // slope and intercept to compute next z height.
  567. z_cxy0 += z_sxy0; // adjust z_cxy0 by per-segment z_sxy0
  568. z_cxym += z_sxym; // adjust z_cxym by per-segment z_sxym
  569. } // segment loop
  570. } // cell loop
  571. }
  572. #endif // UBL_DELTA
  573. #endif // AUTO_BED_LEVELING_UBL