My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 126KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to coordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  106. // M112 - Emergency stop
  107. // M114 - Output current position to serial port
  108. // M115 - Capabilities string
  109. // M117 - display message
  110. // M119 - Output Endstop status to serial port
  111. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  112. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  113. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  114. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  115. // M140 - Set bed target temp
  116. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  117. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  118. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  119. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  120. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  121. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  122. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  123. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) in mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  124. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  125. // M206 - set additional homing offset
  126. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  127. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  128. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  129. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  130. // M220 S<factor in percent>- set speed factor override percentage
  131. // M221 S<factor in percent>- set extrude factor override percentage
  132. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  133. // M240 - Trigger a camera to take a photograph
  134. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  135. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  136. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  137. // M301 - Set PID parameters P I and D
  138. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  139. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  140. // M304 - Set bed PID parameters P I and D
  141. // M400 - Finish all moves
  142. // M401 - Lower z-probe if present
  143. // M402 - Raise z-probe if present
  144. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  145. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  146. // M406 - Turn off Filament Sensor extrusion control
  147. // M407 - Displays measured filament diameter
  148. // M500 - stores parameters in EEPROM
  149. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  150. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  151. // M503 - print the current settings (from memory not from EEPROM)
  152. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  153. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  154. // M665 - set delta configurations
  155. // M666 - set delta endstop adjustment
  156. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  157. // M907 - Set digital trimpot motor current using axis codes.
  158. // M908 - Control digital trimpot directly.
  159. // M350 - Set microstepping mode.
  160. // M351 - Toggle MS1 MS2 pins directly.
  161. // M928 - Start SD logging (M928 filename.g) - ended by M29
  162. // M999 - Restart after being stopped by error
  163. //Stepper Movement Variables
  164. //===========================================================================
  165. //=============================imported variables============================
  166. //===========================================================================
  167. //===========================================================================
  168. //=============================public variables=============================
  169. //===========================================================================
  170. #ifdef SDSUPPORT
  171. CardReader card;
  172. #endif
  173. float homing_feedrate[] = HOMING_FEEDRATE;
  174. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  175. int feedmultiply=100; //100->1 200->2
  176. int saved_feedmultiply;
  177. int extrudemultiply=100; //100->1 200->2
  178. int extruder_multiply[EXTRUDERS] = {100
  179. #if EXTRUDERS > 1
  180. , 100
  181. #if EXTRUDERS > 2
  182. , 100
  183. #endif
  184. #endif
  185. };
  186. float volumetric_multiplier[EXTRUDERS] = {1.0
  187. #if EXTRUDERS > 1
  188. , 1.0
  189. #if EXTRUDERS > 2
  190. , 1.0
  191. #endif
  192. #endif
  193. };
  194. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  195. float add_homeing[3]={0,0,0};
  196. #ifdef DELTA
  197. float endstop_adj[3]={0,0,0};
  198. #endif
  199. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  200. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  201. bool axis_known_position[3] = {false, false, false};
  202. float zprobe_zoffset;
  203. // Extruder offset
  204. #if EXTRUDERS > 1
  205. #ifndef DUAL_X_CARRIAGE
  206. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  207. #else
  208. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  209. #endif
  210. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  211. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  212. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  213. #endif
  214. };
  215. #endif
  216. uint8_t active_extruder = 0;
  217. int fanSpeed=0;
  218. #ifdef SERVO_ENDSTOPS
  219. int servo_endstops[] = SERVO_ENDSTOPS;
  220. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  221. #endif
  222. #ifdef BARICUDA
  223. int ValvePressure=0;
  224. int EtoPPressure=0;
  225. #endif
  226. #ifdef FWRETRACT
  227. bool autoretract_enabled=false;
  228. bool retracted[EXTRUDERS]={false
  229. #if EXTRUDERS > 1
  230. , false
  231. #if EXTRUDERS > 2
  232. , false
  233. #endif
  234. #endif
  235. };
  236. bool retracted_swap[EXTRUDERS]={false
  237. #if EXTRUDERS > 1
  238. , false
  239. #if EXTRUDERS > 2
  240. , false
  241. #endif
  242. #endif
  243. };
  244. float retract_length = RETRACT_LENGTH;
  245. float retract_length_swap = RETRACT_LENGTH_SWAP;
  246. float retract_feedrate = RETRACT_FEEDRATE;
  247. float retract_zlift = RETRACT_ZLIFT;
  248. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  249. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  250. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  251. #endif
  252. #ifdef ULTIPANEL
  253. #ifdef PS_DEFAULT_OFF
  254. bool powersupply = false;
  255. #else
  256. bool powersupply = true;
  257. #endif
  258. #endif
  259. #ifdef DELTA
  260. float delta[3] = {0.0, 0.0, 0.0};
  261. #define SIN_60 0.8660254037844386
  262. #define COS_60 0.5
  263. // these are the default values, can be overriden with M665
  264. float delta_radius= DELTA_RADIUS;
  265. float delta_tower1_x= -SIN_60*delta_radius; // front left tower
  266. float delta_tower1_y= -COS_60*delta_radius;
  267. float delta_tower2_x= SIN_60*delta_radius; // front right tower
  268. float delta_tower2_y= -COS_60*delta_radius;
  269. float delta_tower3_x= 0.0; // back middle tower
  270. float delta_tower3_y= delta_radius;
  271. float delta_diagonal_rod= DELTA_DIAGONAL_ROD;
  272. float delta_diagonal_rod_2= sq(delta_diagonal_rod);
  273. float delta_segments_per_second= DELTA_SEGMENTS_PER_SECOND;
  274. #endif
  275. bool cancel_heatup = false ;
  276. #ifdef FILAMENT_SENSOR
  277. //Variables for Filament Sensor input
  278. float filament_width_nominal=DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  279. bool filament_sensor=false; //M405 turns on filament_sensor control, M406 turns it off
  280. float filament_width_meas=DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  281. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  282. int delay_index1=0; //index into ring buffer
  283. int delay_index2=-1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  284. float delay_dist=0; //delay distance counter
  285. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  286. #endif
  287. //===========================================================================
  288. //=============================Private Variables=============================
  289. //===========================================================================
  290. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  291. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  292. static float offset[3] = {0.0, 0.0, 0.0};
  293. static bool home_all_axis = true;
  294. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  295. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  296. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  297. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  298. static bool fromsd[BUFSIZE];
  299. static int bufindr = 0;
  300. static int bufindw = 0;
  301. static int buflen = 0;
  302. //static int i = 0;
  303. static char serial_char;
  304. static int serial_count = 0;
  305. static boolean comment_mode = false;
  306. static char *strchr_pointer; // just a pointer to find chars in the command string like X, Y, Z, E, etc
  307. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  308. //static float tt = 0;
  309. //static float bt = 0;
  310. //Inactivity shutdown variables
  311. static unsigned long previous_millis_cmd = 0;
  312. static unsigned long max_inactive_time = 0;
  313. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  314. unsigned long starttime=0;
  315. unsigned long stoptime=0;
  316. static uint8_t tmp_extruder;
  317. bool Stopped=false;
  318. #if NUM_SERVOS > 0
  319. Servo servos[NUM_SERVOS];
  320. #endif
  321. bool CooldownNoWait = true;
  322. bool target_direction;
  323. //Insert variables if CHDK is defined
  324. #ifdef CHDK
  325. unsigned long chdkHigh = 0;
  326. boolean chdkActive = false;
  327. #endif
  328. //===========================================================================
  329. //=============================Routines======================================
  330. //===========================================================================
  331. void get_arc_coordinates();
  332. bool setTargetedHotend(int code);
  333. void serial_echopair_P(const char *s_P, float v)
  334. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  335. void serial_echopair_P(const char *s_P, double v)
  336. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  337. void serial_echopair_P(const char *s_P, unsigned long v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. extern "C"{
  340. extern unsigned int __bss_end;
  341. extern unsigned int __heap_start;
  342. extern void *__brkval;
  343. int freeMemory() {
  344. int free_memory;
  345. if((int)__brkval == 0)
  346. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  347. else
  348. free_memory = ((int)&free_memory) - ((int)__brkval);
  349. return free_memory;
  350. }
  351. }
  352. //adds an command to the main command buffer
  353. //thats really done in a non-safe way.
  354. //needs overworking someday
  355. void enquecommand(const char *cmd)
  356. {
  357. if(buflen < BUFSIZE)
  358. {
  359. //this is dangerous if a mixing of serial and this happens
  360. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  361. SERIAL_ECHO_START;
  362. SERIAL_ECHOPGM("enqueing \"");
  363. SERIAL_ECHO(cmdbuffer[bufindw]);
  364. SERIAL_ECHOLNPGM("\"");
  365. bufindw= (bufindw + 1)%BUFSIZE;
  366. buflen += 1;
  367. }
  368. }
  369. void enquecommand_P(const char *cmd)
  370. {
  371. if(buflen < BUFSIZE)
  372. {
  373. //this is dangerous if a mixing of serial and this happens
  374. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  375. SERIAL_ECHO_START;
  376. SERIAL_ECHOPGM("enqueing \"");
  377. SERIAL_ECHO(cmdbuffer[bufindw]);
  378. SERIAL_ECHOLNPGM("\"");
  379. bufindw= (bufindw + 1)%BUFSIZE;
  380. buflen += 1;
  381. }
  382. }
  383. void setup_killpin()
  384. {
  385. #if defined(KILL_PIN) && KILL_PIN > -1
  386. pinMode(KILL_PIN,INPUT);
  387. WRITE(KILL_PIN,HIGH);
  388. #endif
  389. }
  390. void setup_photpin()
  391. {
  392. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  393. SET_OUTPUT(PHOTOGRAPH_PIN);
  394. WRITE(PHOTOGRAPH_PIN, LOW);
  395. #endif
  396. }
  397. void setup_powerhold()
  398. {
  399. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  400. SET_OUTPUT(SUICIDE_PIN);
  401. WRITE(SUICIDE_PIN, HIGH);
  402. #endif
  403. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  404. SET_OUTPUT(PS_ON_PIN);
  405. #if defined(PS_DEFAULT_OFF)
  406. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  407. #else
  408. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  409. #endif
  410. #endif
  411. }
  412. void suicide()
  413. {
  414. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  415. SET_OUTPUT(SUICIDE_PIN);
  416. WRITE(SUICIDE_PIN, LOW);
  417. #endif
  418. }
  419. void servo_init()
  420. {
  421. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  422. servos[0].attach(SERVO0_PIN);
  423. #endif
  424. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  425. servos[1].attach(SERVO1_PIN);
  426. #endif
  427. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  428. servos[2].attach(SERVO2_PIN);
  429. #endif
  430. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  431. servos[3].attach(SERVO3_PIN);
  432. #endif
  433. #if (NUM_SERVOS >= 5)
  434. #error "TODO: enter initalisation code for more servos"
  435. #endif
  436. // Set position of Servo Endstops that are defined
  437. #ifdef SERVO_ENDSTOPS
  438. for(int8_t i = 0; i < 3; i++)
  439. {
  440. if(servo_endstops[i] > -1) {
  441. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  442. }
  443. }
  444. #endif
  445. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  446. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  447. servos[servo_endstops[Z_AXIS]].detach();
  448. #endif
  449. }
  450. void setup()
  451. {
  452. setup_killpin();
  453. setup_powerhold();
  454. MYSERIAL.begin(BAUDRATE);
  455. SERIAL_PROTOCOLLNPGM("start");
  456. SERIAL_ECHO_START;
  457. // Check startup - does nothing if bootloader sets MCUSR to 0
  458. byte mcu = MCUSR;
  459. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  460. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  461. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  462. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  463. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  464. MCUSR=0;
  465. SERIAL_ECHOPGM(MSG_MARLIN);
  466. SERIAL_ECHOLNPGM(VERSION_STRING);
  467. #ifdef STRING_VERSION_CONFIG_H
  468. #ifdef STRING_CONFIG_H_AUTHOR
  469. SERIAL_ECHO_START;
  470. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  471. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  472. SERIAL_ECHOPGM(MSG_AUTHOR);
  473. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  474. SERIAL_ECHOPGM("Compiled: ");
  475. SERIAL_ECHOLNPGM(__DATE__);
  476. #endif
  477. #endif
  478. SERIAL_ECHO_START;
  479. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  480. SERIAL_ECHO(freeMemory());
  481. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  482. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  483. for(int8_t i = 0; i < BUFSIZE; i++)
  484. {
  485. fromsd[i] = false;
  486. }
  487. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  488. Config_RetrieveSettings();
  489. tp_init(); // Initialize temperature loop
  490. plan_init(); // Initialize planner;
  491. watchdog_init();
  492. st_init(); // Initialize stepper, this enables interrupts!
  493. setup_photpin();
  494. servo_init();
  495. lcd_init();
  496. _delay_ms(1000); // wait 1sec to display the splash screen
  497. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  498. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  499. #endif
  500. #ifdef DIGIPOT_I2C
  501. digipot_i2c_init();
  502. #endif
  503. }
  504. void loop()
  505. {
  506. if(buflen < (BUFSIZE-1))
  507. get_command();
  508. #ifdef SDSUPPORT
  509. card.checkautostart(false);
  510. #endif
  511. if(buflen)
  512. {
  513. #ifdef SDSUPPORT
  514. if(card.saving)
  515. {
  516. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  517. {
  518. card.write_command(cmdbuffer[bufindr]);
  519. if(card.logging)
  520. {
  521. process_commands();
  522. }
  523. else
  524. {
  525. SERIAL_PROTOCOLLNPGM(MSG_OK);
  526. }
  527. }
  528. else
  529. {
  530. card.closefile();
  531. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  532. }
  533. }
  534. else
  535. {
  536. process_commands();
  537. }
  538. #else
  539. process_commands();
  540. #endif //SDSUPPORT
  541. buflen = (buflen-1);
  542. bufindr = (bufindr + 1)%BUFSIZE;
  543. }
  544. //check heater every n milliseconds
  545. manage_heater();
  546. manage_inactivity();
  547. checkHitEndstops();
  548. lcd_update();
  549. }
  550. void get_command()
  551. {
  552. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  553. serial_char = MYSERIAL.read();
  554. if(serial_char == '\n' ||
  555. serial_char == '\r' ||
  556. (serial_char == ':' && comment_mode == false) ||
  557. serial_count >= (MAX_CMD_SIZE - 1) )
  558. {
  559. if(!serial_count) { //if empty line
  560. comment_mode = false; //for new command
  561. return;
  562. }
  563. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  564. if(!comment_mode){
  565. comment_mode = false; //for new command
  566. fromsd[bufindw] = false;
  567. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  568. {
  569. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  570. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  571. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  572. SERIAL_ERROR_START;
  573. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  574. SERIAL_ERRORLN(gcode_LastN);
  575. //Serial.println(gcode_N);
  576. FlushSerialRequestResend();
  577. serial_count = 0;
  578. return;
  579. }
  580. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  581. {
  582. byte checksum = 0;
  583. byte count = 0;
  584. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  585. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  586. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  587. SERIAL_ERROR_START;
  588. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  589. SERIAL_ERRORLN(gcode_LastN);
  590. FlushSerialRequestResend();
  591. serial_count = 0;
  592. return;
  593. }
  594. //if no errors, continue parsing
  595. }
  596. else
  597. {
  598. SERIAL_ERROR_START;
  599. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  600. SERIAL_ERRORLN(gcode_LastN);
  601. FlushSerialRequestResend();
  602. serial_count = 0;
  603. return;
  604. }
  605. gcode_LastN = gcode_N;
  606. //if no errors, continue parsing
  607. }
  608. else // if we don't receive 'N' but still see '*'
  609. {
  610. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  611. {
  612. SERIAL_ERROR_START;
  613. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  614. SERIAL_ERRORLN(gcode_LastN);
  615. serial_count = 0;
  616. return;
  617. }
  618. }
  619. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  620. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  621. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  622. case 0:
  623. case 1:
  624. case 2:
  625. case 3:
  626. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  627. #ifdef SDSUPPORT
  628. if(card.saving)
  629. break;
  630. #endif //SDSUPPORT
  631. SERIAL_PROTOCOLLNPGM(MSG_OK);
  632. }
  633. else {
  634. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  635. LCD_MESSAGEPGM(MSG_STOPPED);
  636. }
  637. break;
  638. default:
  639. break;
  640. }
  641. }
  642. //If command was e-stop process now
  643. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  644. kill();
  645. bufindw = (bufindw + 1)%BUFSIZE;
  646. buflen += 1;
  647. }
  648. serial_count = 0; //clear buffer
  649. }
  650. else
  651. {
  652. if(serial_char == ';') comment_mode = true;
  653. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  654. }
  655. }
  656. #ifdef SDSUPPORT
  657. if(!card.sdprinting || serial_count!=0){
  658. return;
  659. }
  660. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  661. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  662. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  663. static bool stop_buffering=false;
  664. if(buflen==0) stop_buffering=false;
  665. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  666. int16_t n=card.get();
  667. serial_char = (char)n;
  668. if(serial_char == '\n' ||
  669. serial_char == '\r' ||
  670. (serial_char == '#' && comment_mode == false) ||
  671. (serial_char == ':' && comment_mode == false) ||
  672. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  673. {
  674. if(card.eof()){
  675. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  676. stoptime=millis();
  677. char time[30];
  678. unsigned long t=(stoptime-starttime)/1000;
  679. int hours, minutes;
  680. minutes=(t/60)%60;
  681. hours=t/60/60;
  682. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  683. SERIAL_ECHO_START;
  684. SERIAL_ECHOLN(time);
  685. lcd_setstatus(time);
  686. card.printingHasFinished();
  687. card.checkautostart(true);
  688. }
  689. if(serial_char=='#')
  690. stop_buffering=true;
  691. if(!serial_count)
  692. {
  693. comment_mode = false; //for new command
  694. return; //if empty line
  695. }
  696. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  697. // if(!comment_mode){
  698. fromsd[bufindw] = true;
  699. buflen += 1;
  700. bufindw = (bufindw + 1)%BUFSIZE;
  701. // }
  702. comment_mode = false; //for new command
  703. serial_count = 0; //clear buffer
  704. }
  705. else
  706. {
  707. if(serial_char == ';') comment_mode = true;
  708. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  709. }
  710. }
  711. #endif //SDSUPPORT
  712. }
  713. float code_value()
  714. {
  715. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  716. }
  717. long code_value_long()
  718. {
  719. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  720. }
  721. bool code_seen(char code)
  722. {
  723. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  724. return (strchr_pointer != NULL); //Return True if a character was found
  725. }
  726. #define DEFINE_PGM_READ_ANY(type, reader) \
  727. static inline type pgm_read_any(const type *p) \
  728. { return pgm_read_##reader##_near(p); }
  729. DEFINE_PGM_READ_ANY(float, float);
  730. DEFINE_PGM_READ_ANY(signed char, byte);
  731. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  732. static const PROGMEM type array##_P[3] = \
  733. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  734. static inline type array(int axis) \
  735. { return pgm_read_any(&array##_P[axis]); }
  736. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  737. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  738. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  739. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  740. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  741. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  742. #ifdef DUAL_X_CARRIAGE
  743. #if EXTRUDERS == 1 || defined(COREXY) \
  744. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  745. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  746. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  747. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  748. #endif
  749. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  750. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  751. #endif
  752. #define DXC_FULL_CONTROL_MODE 0
  753. #define DXC_AUTO_PARK_MODE 1
  754. #define DXC_DUPLICATION_MODE 2
  755. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  756. static float x_home_pos(int extruder) {
  757. if (extruder == 0)
  758. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  759. else
  760. // In dual carriage mode the extruder offset provides an override of the
  761. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  762. // This allow soft recalibration of the second extruder offset position without firmware reflash
  763. // (through the M218 command).
  764. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  765. }
  766. static int x_home_dir(int extruder) {
  767. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  768. }
  769. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  770. static bool active_extruder_parked = false; // used in mode 1 & 2
  771. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  772. static unsigned long delayed_move_time = 0; // used in mode 1
  773. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  774. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  775. bool extruder_duplication_enabled = false; // used in mode 2
  776. #endif //DUAL_X_CARRIAGE
  777. static void axis_is_at_home(int axis) {
  778. #ifdef DUAL_X_CARRIAGE
  779. if (axis == X_AXIS) {
  780. if (active_extruder != 0) {
  781. current_position[X_AXIS] = x_home_pos(active_extruder);
  782. min_pos[X_AXIS] = X2_MIN_POS;
  783. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  784. return;
  785. }
  786. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  787. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  788. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  789. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  790. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  791. return;
  792. }
  793. }
  794. #endif
  795. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  796. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  797. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  798. }
  799. #ifdef ENABLE_AUTO_BED_LEVELING
  800. #ifdef AUTO_BED_LEVELING_GRID
  801. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  802. {
  803. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  804. planeNormal.debug("planeNormal");
  805. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  806. //bedLevel.debug("bedLevel");
  807. //plan_bed_level_matrix.debug("bed level before");
  808. //vector_3 uncorrected_position = plan_get_position_mm();
  809. //uncorrected_position.debug("position before");
  810. vector_3 corrected_position = plan_get_position();
  811. // corrected_position.debug("position after");
  812. current_position[X_AXIS] = corrected_position.x;
  813. current_position[Y_AXIS] = corrected_position.y;
  814. current_position[Z_AXIS] = corrected_position.z;
  815. // but the bed at 0 so we don't go below it.
  816. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  818. }
  819. #else // not AUTO_BED_LEVELING_GRID
  820. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  821. plan_bed_level_matrix.set_to_identity();
  822. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  823. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  824. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  825. vector_3 from_2_to_1 = (pt1 - pt2).get_normal();
  826. vector_3 from_2_to_3 = (pt3 - pt2).get_normal();
  827. vector_3 planeNormal = vector_3::cross(from_2_to_1, from_2_to_3).get_normal();
  828. planeNormal = vector_3(planeNormal.x, planeNormal.y, abs(planeNormal.z));
  829. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  830. vector_3 corrected_position = plan_get_position();
  831. current_position[X_AXIS] = corrected_position.x;
  832. current_position[Y_AXIS] = corrected_position.y;
  833. current_position[Z_AXIS] = corrected_position.z;
  834. // put the bed at 0 so we don't go below it.
  835. current_position[Z_AXIS] = zprobe_zoffset;
  836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  837. }
  838. #endif // AUTO_BED_LEVELING_GRID
  839. static void run_z_probe() {
  840. plan_bed_level_matrix.set_to_identity();
  841. feedrate = homing_feedrate[Z_AXIS];
  842. // move down until you find the bed
  843. float zPosition = -10;
  844. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  845. st_synchronize();
  846. // we have to let the planner know where we are right now as it is not where we said to go.
  847. zPosition = st_get_position_mm(Z_AXIS);
  848. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  849. // move up the retract distance
  850. zPosition += home_retract_mm(Z_AXIS);
  851. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  852. st_synchronize();
  853. // move back down slowly to find bed
  854. feedrate = homing_feedrate[Z_AXIS]/4;
  855. zPosition -= home_retract_mm(Z_AXIS) * 2;
  856. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  857. st_synchronize();
  858. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  859. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  860. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  861. }
  862. static void do_blocking_move_to(float x, float y, float z) {
  863. float oldFeedRate = feedrate;
  864. feedrate = XY_TRAVEL_SPEED;
  865. current_position[X_AXIS] = x;
  866. current_position[Y_AXIS] = y;
  867. current_position[Z_AXIS] = z;
  868. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  869. st_synchronize();
  870. feedrate = oldFeedRate;
  871. }
  872. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  873. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  874. }
  875. static void setup_for_endstop_move() {
  876. saved_feedrate = feedrate;
  877. saved_feedmultiply = feedmultiply;
  878. feedmultiply = 100;
  879. previous_millis_cmd = millis();
  880. enable_endstops(true);
  881. }
  882. static void clean_up_after_endstop_move() {
  883. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  884. enable_endstops(false);
  885. #endif
  886. feedrate = saved_feedrate;
  887. feedmultiply = saved_feedmultiply;
  888. previous_millis_cmd = millis();
  889. }
  890. static void engage_z_probe() {
  891. // Engage Z Servo endstop if enabled
  892. #ifdef SERVO_ENDSTOPS
  893. if (servo_endstops[Z_AXIS] > -1) {
  894. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  895. servos[servo_endstops[Z_AXIS]].attach(0);
  896. #endif
  897. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  898. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  899. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  900. servos[servo_endstops[Z_AXIS]].detach();
  901. #endif
  902. }
  903. #endif
  904. }
  905. static void retract_z_probe() {
  906. // Retract Z Servo endstop if enabled
  907. #ifdef SERVO_ENDSTOPS
  908. if (servo_endstops[Z_AXIS] > -1) {
  909. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  910. servos[servo_endstops[Z_AXIS]].attach(0);
  911. #endif
  912. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  913. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  914. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  915. servos[servo_endstops[Z_AXIS]].detach();
  916. #endif
  917. }
  918. #endif
  919. }
  920. /// Probe bed height at position (x,y), returns the measured z value
  921. static float probe_pt(float x, float y, float z_before) {
  922. // move to right place
  923. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  924. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  925. engage_z_probe(); // Engage Z Servo endstop if available
  926. run_z_probe();
  927. float measured_z = current_position[Z_AXIS];
  928. retract_z_probe();
  929. SERIAL_PROTOCOLPGM(MSG_BED);
  930. SERIAL_PROTOCOLPGM(" x: ");
  931. SERIAL_PROTOCOL(x);
  932. SERIAL_PROTOCOLPGM(" y: ");
  933. SERIAL_PROTOCOL(y);
  934. SERIAL_PROTOCOLPGM(" z: ");
  935. SERIAL_PROTOCOL(measured_z);
  936. SERIAL_PROTOCOLPGM("\n");
  937. return measured_z;
  938. }
  939. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  940. static void homeaxis(int axis) {
  941. #define HOMEAXIS_DO(LETTER) \
  942. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  943. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  944. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  945. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  946. 0) {
  947. int axis_home_dir = home_dir(axis);
  948. #ifdef DUAL_X_CARRIAGE
  949. if (axis == X_AXIS)
  950. axis_home_dir = x_home_dir(active_extruder);
  951. #endif
  952. current_position[axis] = 0;
  953. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  954. // Engage Servo endstop if enabled
  955. #ifdef SERVO_ENDSTOPS
  956. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  957. if (axis==Z_AXIS) {
  958. engage_z_probe();
  959. }
  960. else
  961. #endif
  962. if (servo_endstops[axis] > -1) {
  963. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  964. }
  965. #endif
  966. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  967. feedrate = homing_feedrate[axis];
  968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  969. st_synchronize();
  970. current_position[axis] = 0;
  971. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  972. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  973. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  974. st_synchronize();
  975. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  976. #ifdef DELTA
  977. feedrate = homing_feedrate[axis]/10;
  978. #else
  979. feedrate = homing_feedrate[axis]/2 ;
  980. #endif
  981. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  982. st_synchronize();
  983. #ifdef DELTA
  984. // retrace by the amount specified in endstop_adj
  985. if (endstop_adj[axis] * axis_home_dir < 0) {
  986. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  987. destination[axis] = endstop_adj[axis];
  988. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  989. st_synchronize();
  990. }
  991. #endif
  992. axis_is_at_home(axis);
  993. destination[axis] = current_position[axis];
  994. feedrate = 0.0;
  995. endstops_hit_on_purpose();
  996. axis_known_position[axis] = true;
  997. // Retract Servo endstop if enabled
  998. #ifdef SERVO_ENDSTOPS
  999. if (servo_endstops[axis] > -1) {
  1000. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1001. }
  1002. #endif
  1003. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1004. if (axis==Z_AXIS) retract_z_probe();
  1005. #endif
  1006. }
  1007. }
  1008. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1009. void refresh_cmd_timeout(void)
  1010. {
  1011. previous_millis_cmd = millis();
  1012. }
  1013. #ifdef FWRETRACT
  1014. void retract(bool retracting, bool swapretract = false) {
  1015. if(retracting && !retracted[active_extruder]) {
  1016. destination[X_AXIS]=current_position[X_AXIS];
  1017. destination[Y_AXIS]=current_position[Y_AXIS];
  1018. destination[Z_AXIS]=current_position[Z_AXIS];
  1019. destination[E_AXIS]=current_position[E_AXIS];
  1020. if (swapretract) {
  1021. current_position[E_AXIS]+=retract_length_swap/volumetric_multiplier[active_extruder];
  1022. } else {
  1023. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1024. }
  1025. plan_set_e_position(current_position[E_AXIS]);
  1026. float oldFeedrate = feedrate;
  1027. feedrate=retract_feedrate*60;
  1028. retracted[active_extruder]=true;
  1029. prepare_move();
  1030. current_position[Z_AXIS]-=retract_zlift;
  1031. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1032. prepare_move();
  1033. feedrate = oldFeedrate;
  1034. } else if(!retracting && retracted[active_extruder]) {
  1035. destination[X_AXIS]=current_position[X_AXIS];
  1036. destination[Y_AXIS]=current_position[Y_AXIS];
  1037. destination[Z_AXIS]=current_position[Z_AXIS];
  1038. destination[E_AXIS]=current_position[E_AXIS];
  1039. current_position[Z_AXIS]+=retract_zlift;
  1040. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1041. //prepare_move();
  1042. if (swapretract) {
  1043. current_position[E_AXIS]-=(retract_length_swap+retract_recover_length_swap)/volumetric_multiplier[active_extruder];
  1044. } else {
  1045. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1046. }
  1047. plan_set_e_position(current_position[E_AXIS]);
  1048. float oldFeedrate = feedrate;
  1049. feedrate=retract_recover_feedrate*60;
  1050. retracted[active_extruder]=false;
  1051. prepare_move();
  1052. feedrate = oldFeedrate;
  1053. }
  1054. } //retract
  1055. #endif //FWRETRACT
  1056. void process_commands()
  1057. {
  1058. unsigned long codenum; //throw away variable
  1059. char *starpos = NULL;
  1060. #ifdef ENABLE_AUTO_BED_LEVELING
  1061. float x_tmp, y_tmp, z_tmp, real_z;
  1062. #endif
  1063. if(code_seen('G'))
  1064. {
  1065. switch((int)code_value())
  1066. {
  1067. case 0: // G0 -> G1
  1068. case 1: // G1
  1069. if(Stopped == false) {
  1070. get_coordinates(); // For X Y Z E F
  1071. #ifdef FWRETRACT
  1072. if(autoretract_enabled)
  1073. if( !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1074. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1075. if((echange<-MIN_RETRACT && !retracted) || (echange>MIN_RETRACT && retracted)) { //move appears to be an attempt to retract or recover
  1076. current_position[E_AXIS] = destination[E_AXIS]; //hide the slicer-generated retract/recover from calculations
  1077. plan_set_e_position(current_position[E_AXIS]); //AND from the planner
  1078. retract(!retracted);
  1079. return;
  1080. }
  1081. }
  1082. #endif //FWRETRACT
  1083. prepare_move();
  1084. //ClearToSend();
  1085. return;
  1086. }
  1087. break;
  1088. case 2: // G2 - CW ARC
  1089. if(Stopped == false) {
  1090. get_arc_coordinates();
  1091. prepare_arc_move(true);
  1092. return;
  1093. }
  1094. break;
  1095. case 3: // G3 - CCW ARC
  1096. if(Stopped == false) {
  1097. get_arc_coordinates();
  1098. prepare_arc_move(false);
  1099. return;
  1100. }
  1101. break;
  1102. case 4: // G4 dwell
  1103. LCD_MESSAGEPGM(MSG_DWELL);
  1104. codenum = 0;
  1105. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1106. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1107. st_synchronize();
  1108. codenum += millis(); // keep track of when we started waiting
  1109. previous_millis_cmd = millis();
  1110. while(millis() < codenum ){
  1111. manage_heater();
  1112. manage_inactivity();
  1113. lcd_update();
  1114. }
  1115. break;
  1116. #ifdef FWRETRACT
  1117. case 10: // G10 retract
  1118. #if EXTRUDERS > 1
  1119. retracted_swap[active_extruder]=(code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1120. retract(true,retracted_swap[active_extruder]);
  1121. #else
  1122. retract(true);
  1123. #endif
  1124. break;
  1125. case 11: // G11 retract_recover
  1126. #if EXTRUDERS > 1
  1127. retract(false,retracted_swap[active_extruder]);
  1128. #else
  1129. retract(false);
  1130. #endif
  1131. break;
  1132. #endif //FWRETRACT
  1133. case 28: //G28 Home all Axis one at a time
  1134. #ifdef ENABLE_AUTO_BED_LEVELING
  1135. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1136. #endif //ENABLE_AUTO_BED_LEVELING
  1137. saved_feedrate = feedrate;
  1138. saved_feedmultiply = feedmultiply;
  1139. feedmultiply = 100;
  1140. previous_millis_cmd = millis();
  1141. enable_endstops(true);
  1142. for(int8_t i=0; i < NUM_AXIS; i++) {
  1143. destination[i] = current_position[i];
  1144. }
  1145. feedrate = 0.0;
  1146. #ifdef DELTA
  1147. // A delta can only safely home all axis at the same time
  1148. // all axis have to home at the same time
  1149. // Move all carriages up together until the first endstop is hit.
  1150. current_position[X_AXIS] = 0;
  1151. current_position[Y_AXIS] = 0;
  1152. current_position[Z_AXIS] = 0;
  1153. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1154. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1155. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1156. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1157. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1158. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1159. st_synchronize();
  1160. endstops_hit_on_purpose();
  1161. current_position[X_AXIS] = destination[X_AXIS];
  1162. current_position[Y_AXIS] = destination[Y_AXIS];
  1163. current_position[Z_AXIS] = destination[Z_AXIS];
  1164. // take care of back off and rehome now we are all at the top
  1165. HOMEAXIS(X);
  1166. HOMEAXIS(Y);
  1167. HOMEAXIS(Z);
  1168. calculate_delta(current_position);
  1169. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1170. #else // NOT DELTA
  1171. home_all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])));
  1172. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1173. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1174. HOMEAXIS(Z);
  1175. }
  1176. #endif
  1177. #ifdef QUICK_HOME
  1178. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1179. {
  1180. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1181. #ifndef DUAL_X_CARRIAGE
  1182. int x_axis_home_dir = home_dir(X_AXIS);
  1183. #else
  1184. int x_axis_home_dir = x_home_dir(active_extruder);
  1185. extruder_duplication_enabled = false;
  1186. #endif
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1189. feedrate = homing_feedrate[X_AXIS];
  1190. if(homing_feedrate[Y_AXIS]<feedrate)
  1191. feedrate = homing_feedrate[Y_AXIS];
  1192. if (max_length(X_AXIS) > max_length(Y_AXIS)) {
  1193. feedrate *= sqrt(pow(max_length(Y_AXIS) / max_length(X_AXIS), 2) + 1);
  1194. } else {
  1195. feedrate *= sqrt(pow(max_length(X_AXIS) / max_length(Y_AXIS), 2) + 1);
  1196. }
  1197. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1198. st_synchronize();
  1199. axis_is_at_home(X_AXIS);
  1200. axis_is_at_home(Y_AXIS);
  1201. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1202. destination[X_AXIS] = current_position[X_AXIS];
  1203. destination[Y_AXIS] = current_position[Y_AXIS];
  1204. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1205. feedrate = 0.0;
  1206. st_synchronize();
  1207. endstops_hit_on_purpose();
  1208. current_position[X_AXIS] = destination[X_AXIS];
  1209. current_position[Y_AXIS] = destination[Y_AXIS];
  1210. current_position[Z_AXIS] = destination[Z_AXIS];
  1211. }
  1212. #endif
  1213. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1214. {
  1215. #ifdef DUAL_X_CARRIAGE
  1216. int tmp_extruder = active_extruder;
  1217. extruder_duplication_enabled = false;
  1218. active_extruder = !active_extruder;
  1219. HOMEAXIS(X);
  1220. inactive_extruder_x_pos = current_position[X_AXIS];
  1221. active_extruder = tmp_extruder;
  1222. HOMEAXIS(X);
  1223. // reset state used by the different modes
  1224. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1225. delayed_move_time = 0;
  1226. active_extruder_parked = true;
  1227. #else
  1228. HOMEAXIS(X);
  1229. #endif
  1230. }
  1231. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1232. HOMEAXIS(Y);
  1233. }
  1234. if(code_seen(axis_codes[X_AXIS]))
  1235. {
  1236. if(code_value_long() != 0) {
  1237. current_position[X_AXIS]=code_value()+add_homeing[0];
  1238. }
  1239. }
  1240. if(code_seen(axis_codes[Y_AXIS])) {
  1241. if(code_value_long() != 0) {
  1242. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1243. }
  1244. }
  1245. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1246. #ifndef Z_SAFE_HOMING
  1247. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1248. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1249. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1250. feedrate = max_feedrate[Z_AXIS];
  1251. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1252. st_synchronize();
  1253. #endif
  1254. HOMEAXIS(Z);
  1255. }
  1256. #else // Z Safe mode activated.
  1257. if(home_all_axis) {
  1258. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1259. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1260. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1261. feedrate = XY_TRAVEL_SPEED;
  1262. current_position[Z_AXIS] = 0;
  1263. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1264. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1265. st_synchronize();
  1266. current_position[X_AXIS] = destination[X_AXIS];
  1267. current_position[Y_AXIS] = destination[Y_AXIS];
  1268. HOMEAXIS(Z);
  1269. }
  1270. // Let's see if X and Y are homed and probe is inside bed area.
  1271. if(code_seen(axis_codes[Z_AXIS])) {
  1272. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1273. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1274. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1275. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1276. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1277. current_position[Z_AXIS] = 0;
  1278. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1279. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1280. feedrate = max_feedrate[Z_AXIS];
  1281. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1282. st_synchronize();
  1283. HOMEAXIS(Z);
  1284. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1285. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1286. SERIAL_ECHO_START;
  1287. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1288. } else {
  1289. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1290. SERIAL_ECHO_START;
  1291. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1292. }
  1293. }
  1294. #endif
  1295. #endif
  1296. if(code_seen(axis_codes[Z_AXIS])) {
  1297. if(code_value_long() != 0) {
  1298. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1299. }
  1300. }
  1301. #ifdef ENABLE_AUTO_BED_LEVELING
  1302. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1303. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1304. }
  1305. #endif
  1306. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1307. #endif // else DELTA
  1308. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1309. enable_endstops(false);
  1310. #endif
  1311. feedrate = saved_feedrate;
  1312. feedmultiply = saved_feedmultiply;
  1313. previous_millis_cmd = millis();
  1314. endstops_hit_on_purpose();
  1315. break;
  1316. #ifdef ENABLE_AUTO_BED_LEVELING
  1317. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  1318. {
  1319. #if Z_MIN_PIN == -1
  1320. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1321. #endif
  1322. // Prevent user from running a G29 without first homing in X and Y
  1323. if (! (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) )
  1324. {
  1325. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1326. SERIAL_ECHO_START;
  1327. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1328. break; // abort G29, since we don't know where we are
  1329. }
  1330. st_synchronize();
  1331. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1332. //vector_3 corrected_position = plan_get_position_mm();
  1333. //corrected_position.debug("position before G29");
  1334. plan_bed_level_matrix.set_to_identity();
  1335. vector_3 uncorrected_position = plan_get_position();
  1336. //uncorrected_position.debug("position durring G29");
  1337. current_position[X_AXIS] = uncorrected_position.x;
  1338. current_position[Y_AXIS] = uncorrected_position.y;
  1339. current_position[Z_AXIS] = uncorrected_position.z;
  1340. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1341. setup_for_endstop_move();
  1342. feedrate = homing_feedrate[Z_AXIS];
  1343. #ifdef AUTO_BED_LEVELING_GRID
  1344. // probe at the points of a lattice grid
  1345. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1346. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1);
  1347. // solve the plane equation ax + by + d = z
  1348. // A is the matrix with rows [x y 1] for all the probed points
  1349. // B is the vector of the Z positions
  1350. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1351. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1352. // "A" matrix of the linear system of equations
  1353. double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3];
  1354. // "B" vector of Z points
  1355. double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS];
  1356. int probePointCounter = 0;
  1357. bool zig = true;
  1358. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1359. {
  1360. int xProbe, xInc;
  1361. if (zig)
  1362. {
  1363. xProbe = LEFT_PROBE_BED_POSITION;
  1364. //xEnd = RIGHT_PROBE_BED_POSITION;
  1365. xInc = xGridSpacing;
  1366. zig = false;
  1367. } else // zag
  1368. {
  1369. xProbe = RIGHT_PROBE_BED_POSITION;
  1370. //xEnd = LEFT_PROBE_BED_POSITION;
  1371. xInc = -xGridSpacing;
  1372. zig = true;
  1373. }
  1374. for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++)
  1375. {
  1376. float z_before;
  1377. if (probePointCounter == 0)
  1378. {
  1379. // raise before probing
  1380. z_before = Z_RAISE_BEFORE_PROBING;
  1381. } else
  1382. {
  1383. // raise extruder
  1384. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1385. }
  1386. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1387. eqnBVector[probePointCounter] = measured_z;
  1388. eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe;
  1389. eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe;
  1390. eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1;
  1391. probePointCounter++;
  1392. xProbe += xInc;
  1393. }
  1394. }
  1395. clean_up_after_endstop_move();
  1396. // solve lsq problem
  1397. double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector);
  1398. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1399. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1400. SERIAL_PROTOCOLPGM(" b: ");
  1401. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1402. SERIAL_PROTOCOLPGM(" d: ");
  1403. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1404. set_bed_level_equation_lsq(plane_equation_coefficients);
  1405. free(plane_equation_coefficients);
  1406. #else // AUTO_BED_LEVELING_GRID not defined
  1407. // Probe at 3 arbitrary points
  1408. // probe 1
  1409. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING);
  1410. // probe 2
  1411. float z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1412. // probe 3
  1413. float z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1414. clean_up_after_endstop_move();
  1415. set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  1416. #endif // AUTO_BED_LEVELING_GRID
  1417. st_synchronize();
  1418. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1419. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1420. // When the bed is uneven, this height must be corrected.
  1421. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1422. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1423. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1424. z_tmp = current_position[Z_AXIS];
  1425. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1426. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1427. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1428. }
  1429. break;
  1430. case 30: // G30 Single Z Probe
  1431. {
  1432. engage_z_probe(); // Engage Z Servo endstop if available
  1433. st_synchronize();
  1434. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1435. setup_for_endstop_move();
  1436. feedrate = homing_feedrate[Z_AXIS];
  1437. run_z_probe();
  1438. SERIAL_PROTOCOLPGM(MSG_BED);
  1439. SERIAL_PROTOCOLPGM(" X: ");
  1440. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1441. SERIAL_PROTOCOLPGM(" Y: ");
  1442. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1443. SERIAL_PROTOCOLPGM(" Z: ");
  1444. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1445. SERIAL_PROTOCOLPGM("\n");
  1446. clean_up_after_endstop_move();
  1447. retract_z_probe(); // Retract Z Servo endstop if available
  1448. }
  1449. break;
  1450. #endif // ENABLE_AUTO_BED_LEVELING
  1451. case 90: // G90
  1452. relative_mode = false;
  1453. break;
  1454. case 91: // G91
  1455. relative_mode = true;
  1456. break;
  1457. case 92: // G92
  1458. if(!code_seen(axis_codes[E_AXIS]))
  1459. st_synchronize();
  1460. for(int8_t i=0; i < NUM_AXIS; i++) {
  1461. if(code_seen(axis_codes[i])) {
  1462. if(i == E_AXIS) {
  1463. current_position[i] = code_value();
  1464. plan_set_e_position(current_position[E_AXIS]);
  1465. }
  1466. else {
  1467. current_position[i] = code_value()+add_homeing[i];
  1468. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1469. }
  1470. }
  1471. }
  1472. break;
  1473. }
  1474. }
  1475. else if(code_seen('M'))
  1476. {
  1477. switch( (int)code_value() )
  1478. {
  1479. #ifdef ULTIPANEL
  1480. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1481. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1482. {
  1483. LCD_MESSAGEPGM(MSG_USERWAIT);
  1484. codenum = 0;
  1485. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1486. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1487. st_synchronize();
  1488. previous_millis_cmd = millis();
  1489. if (codenum > 0){
  1490. codenum += millis(); // keep track of when we started waiting
  1491. while(millis() < codenum && !lcd_clicked()){
  1492. manage_heater();
  1493. manage_inactivity();
  1494. lcd_update();
  1495. }
  1496. }else{
  1497. while(!lcd_clicked()){
  1498. manage_heater();
  1499. manage_inactivity();
  1500. lcd_update();
  1501. }
  1502. }
  1503. LCD_MESSAGEPGM(MSG_RESUMING);
  1504. }
  1505. break;
  1506. #endif
  1507. case 17:
  1508. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1509. enable_x();
  1510. enable_y();
  1511. enable_z();
  1512. enable_e0();
  1513. enable_e1();
  1514. enable_e2();
  1515. break;
  1516. #ifdef SDSUPPORT
  1517. case 20: // M20 - list SD card
  1518. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1519. card.ls();
  1520. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1521. break;
  1522. case 21: // M21 - init SD card
  1523. card.initsd();
  1524. break;
  1525. case 22: //M22 - release SD card
  1526. card.release();
  1527. break;
  1528. case 23: //M23 - Select file
  1529. starpos = (strchr(strchr_pointer + 4,'*'));
  1530. if(starpos!=NULL)
  1531. *(starpos)='\0';
  1532. card.openFile(strchr_pointer + 4,true);
  1533. break;
  1534. case 24: //M24 - Start SD print
  1535. card.startFileprint();
  1536. starttime=millis();
  1537. break;
  1538. case 25: //M25 - Pause SD print
  1539. card.pauseSDPrint();
  1540. break;
  1541. case 26: //M26 - Set SD index
  1542. if(card.cardOK && code_seen('S')) {
  1543. card.setIndex(code_value_long());
  1544. }
  1545. break;
  1546. case 27: //M27 - Get SD status
  1547. card.getStatus();
  1548. break;
  1549. case 28: //M28 - Start SD write
  1550. starpos = (strchr(strchr_pointer + 4,'*'));
  1551. if(starpos != NULL){
  1552. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1553. strchr_pointer = strchr(npos,' ') + 1;
  1554. *(starpos) = '\0';
  1555. }
  1556. card.openFile(strchr_pointer+4,false);
  1557. break;
  1558. case 29: //M29 - Stop SD write
  1559. //processed in write to file routine above
  1560. //card,saving = false;
  1561. break;
  1562. case 30: //M30 <filename> Delete File
  1563. if (card.cardOK){
  1564. card.closefile();
  1565. starpos = (strchr(strchr_pointer + 4,'*'));
  1566. if(starpos != NULL){
  1567. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1568. strchr_pointer = strchr(npos,' ') + 1;
  1569. *(starpos) = '\0';
  1570. }
  1571. card.removeFile(strchr_pointer + 4);
  1572. }
  1573. break;
  1574. case 32: //M32 - Select file and start SD print
  1575. {
  1576. if(card.sdprinting) {
  1577. st_synchronize();
  1578. }
  1579. starpos = (strchr(strchr_pointer + 4,'*'));
  1580. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1581. if(namestartpos==NULL)
  1582. {
  1583. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1584. }
  1585. else
  1586. namestartpos++; //to skip the '!'
  1587. if(starpos!=NULL)
  1588. *(starpos)='\0';
  1589. bool call_procedure=(code_seen('P'));
  1590. if(strchr_pointer>namestartpos)
  1591. call_procedure=false; //false alert, 'P' found within filename
  1592. if( card.cardOK )
  1593. {
  1594. card.openFile(namestartpos,true,!call_procedure);
  1595. if(code_seen('S'))
  1596. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1597. card.setIndex(code_value_long());
  1598. card.startFileprint();
  1599. if(!call_procedure)
  1600. starttime=millis(); //procedure calls count as normal print time.
  1601. }
  1602. } break;
  1603. case 928: //M928 - Start SD write
  1604. starpos = (strchr(strchr_pointer + 5,'*'));
  1605. if(starpos != NULL){
  1606. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1607. strchr_pointer = strchr(npos,' ') + 1;
  1608. *(starpos) = '\0';
  1609. }
  1610. card.openLogFile(strchr_pointer+5);
  1611. break;
  1612. #endif //SDSUPPORT
  1613. case 31: //M31 take time since the start of the SD print or an M109 command
  1614. {
  1615. stoptime=millis();
  1616. char time[30];
  1617. unsigned long t=(stoptime-starttime)/1000;
  1618. int sec,min;
  1619. min=t/60;
  1620. sec=t%60;
  1621. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1622. SERIAL_ECHO_START;
  1623. SERIAL_ECHOLN(time);
  1624. lcd_setstatus(time);
  1625. autotempShutdown();
  1626. }
  1627. break;
  1628. case 42: //M42 -Change pin status via gcode
  1629. if (code_seen('S'))
  1630. {
  1631. int pin_status = code_value();
  1632. int pin_number = LED_PIN;
  1633. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1634. pin_number = code_value();
  1635. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  1636. {
  1637. if (sensitive_pins[i] == pin_number)
  1638. {
  1639. pin_number = -1;
  1640. break;
  1641. }
  1642. }
  1643. #if defined(FAN_PIN) && FAN_PIN > -1
  1644. if (pin_number == FAN_PIN)
  1645. fanSpeed = pin_status;
  1646. #endif
  1647. if (pin_number > -1)
  1648. {
  1649. pinMode(pin_number, OUTPUT);
  1650. digitalWrite(pin_number, pin_status);
  1651. analogWrite(pin_number, pin_status);
  1652. }
  1653. }
  1654. break;
  1655. case 104: // M104
  1656. if(setTargetedHotend(104)){
  1657. break;
  1658. }
  1659. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1660. #ifdef DUAL_X_CARRIAGE
  1661. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1662. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1663. #endif
  1664. setWatch();
  1665. break;
  1666. case 112: // M112 -Emergency Stop
  1667. kill();
  1668. break;
  1669. case 140: // M140 set bed temp
  1670. if (code_seen('S')) setTargetBed(code_value());
  1671. break;
  1672. case 105 : // M105
  1673. if(setTargetedHotend(105)){
  1674. break;
  1675. }
  1676. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1677. SERIAL_PROTOCOLPGM("ok T:");
  1678. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1679. SERIAL_PROTOCOLPGM(" /");
  1680. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1681. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1682. SERIAL_PROTOCOLPGM(" B:");
  1683. SERIAL_PROTOCOL_F(degBed(),1);
  1684. SERIAL_PROTOCOLPGM(" /");
  1685. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1686. #endif //TEMP_BED_PIN
  1687. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1688. SERIAL_PROTOCOLPGM(" T");
  1689. SERIAL_PROTOCOL(cur_extruder);
  1690. SERIAL_PROTOCOLPGM(":");
  1691. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1692. SERIAL_PROTOCOLPGM(" /");
  1693. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1694. }
  1695. #else
  1696. SERIAL_ERROR_START;
  1697. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1698. #endif
  1699. SERIAL_PROTOCOLPGM(" @:");
  1700. #ifdef EXTRUDER_WATTS
  1701. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1702. SERIAL_PROTOCOLPGM("W");
  1703. #else
  1704. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1705. #endif
  1706. SERIAL_PROTOCOLPGM(" B@:");
  1707. #ifdef BED_WATTS
  1708. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1709. SERIAL_PROTOCOLPGM("W");
  1710. #else
  1711. SERIAL_PROTOCOL(getHeaterPower(-1));
  1712. #endif
  1713. #ifdef SHOW_TEMP_ADC_VALUES
  1714. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1715. SERIAL_PROTOCOLPGM(" ADC B:");
  1716. SERIAL_PROTOCOL_F(degBed(),1);
  1717. SERIAL_PROTOCOLPGM("C->");
  1718. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1719. #endif
  1720. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1721. SERIAL_PROTOCOLPGM(" T");
  1722. SERIAL_PROTOCOL(cur_extruder);
  1723. SERIAL_PROTOCOLPGM(":");
  1724. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1725. SERIAL_PROTOCOLPGM("C->");
  1726. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1727. }
  1728. #endif
  1729. SERIAL_PROTOCOLLN("");
  1730. return;
  1731. break;
  1732. case 109:
  1733. {// M109 - Wait for extruder heater to reach target.
  1734. if(setTargetedHotend(109)){
  1735. break;
  1736. }
  1737. LCD_MESSAGEPGM(MSG_HEATING);
  1738. #ifdef AUTOTEMP
  1739. autotemp_enabled=false;
  1740. #endif
  1741. if (code_seen('S')) {
  1742. setTargetHotend(code_value(), tmp_extruder);
  1743. #ifdef DUAL_X_CARRIAGE
  1744. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1745. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1746. #endif
  1747. CooldownNoWait = true;
  1748. } else if (code_seen('R')) {
  1749. setTargetHotend(code_value(), tmp_extruder);
  1750. #ifdef DUAL_X_CARRIAGE
  1751. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1752. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1753. #endif
  1754. CooldownNoWait = false;
  1755. }
  1756. #ifdef AUTOTEMP
  1757. if (code_seen('S')) autotemp_min=code_value();
  1758. if (code_seen('B')) autotemp_max=code_value();
  1759. if (code_seen('F'))
  1760. {
  1761. autotemp_factor=code_value();
  1762. autotemp_enabled=true;
  1763. }
  1764. #endif
  1765. setWatch();
  1766. codenum = millis();
  1767. /* See if we are heating up or cooling down */
  1768. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1769. cancel_heatup = false;
  1770. #ifdef TEMP_RESIDENCY_TIME
  1771. long residencyStart;
  1772. residencyStart = -1;
  1773. /* continue to loop until we have reached the target temp
  1774. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1775. while((!cancel_heatup)&&((residencyStart == -1) ||
  1776. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) ) {
  1777. #else
  1778. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1779. #endif //TEMP_RESIDENCY_TIME
  1780. if( (millis() - codenum) > 1000UL )
  1781. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1782. SERIAL_PROTOCOLPGM("T:");
  1783. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1784. SERIAL_PROTOCOLPGM(" E:");
  1785. SERIAL_PROTOCOL((int)tmp_extruder);
  1786. #ifdef TEMP_RESIDENCY_TIME
  1787. SERIAL_PROTOCOLPGM(" W:");
  1788. if(residencyStart > -1)
  1789. {
  1790. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1791. SERIAL_PROTOCOLLN( codenum );
  1792. }
  1793. else
  1794. {
  1795. SERIAL_PROTOCOLLN( "?" );
  1796. }
  1797. #else
  1798. SERIAL_PROTOCOLLN("");
  1799. #endif
  1800. codenum = millis();
  1801. }
  1802. manage_heater();
  1803. manage_inactivity();
  1804. lcd_update();
  1805. #ifdef TEMP_RESIDENCY_TIME
  1806. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1807. or when current temp falls outside the hysteresis after target temp was reached */
  1808. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1809. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1810. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1811. {
  1812. residencyStart = millis();
  1813. }
  1814. #endif //TEMP_RESIDENCY_TIME
  1815. }
  1816. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1817. starttime=millis();
  1818. previous_millis_cmd = millis();
  1819. }
  1820. break;
  1821. case 190: // M190 - Wait for bed heater to reach target.
  1822. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1823. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1824. if (code_seen('S')) {
  1825. setTargetBed(code_value());
  1826. CooldownNoWait = true;
  1827. } else if (code_seen('R')) {
  1828. setTargetBed(code_value());
  1829. CooldownNoWait = false;
  1830. }
  1831. codenum = millis();
  1832. cancel_heatup = false;
  1833. target_direction = isHeatingBed(); // true if heating, false if cooling
  1834. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1835. {
  1836. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1837. {
  1838. float tt=degHotend(active_extruder);
  1839. SERIAL_PROTOCOLPGM("T:");
  1840. SERIAL_PROTOCOL(tt);
  1841. SERIAL_PROTOCOLPGM(" E:");
  1842. SERIAL_PROTOCOL((int)active_extruder);
  1843. SERIAL_PROTOCOLPGM(" B:");
  1844. SERIAL_PROTOCOL_F(degBed(),1);
  1845. SERIAL_PROTOCOLLN("");
  1846. codenum = millis();
  1847. }
  1848. manage_heater();
  1849. manage_inactivity();
  1850. lcd_update();
  1851. }
  1852. LCD_MESSAGEPGM(MSG_BED_DONE);
  1853. previous_millis_cmd = millis();
  1854. #endif
  1855. break;
  1856. #if defined(FAN_PIN) && FAN_PIN > -1
  1857. case 106: //M106 Fan On
  1858. if (code_seen('S')){
  1859. fanSpeed=constrain(code_value(),0,255);
  1860. }
  1861. else {
  1862. fanSpeed=255;
  1863. }
  1864. break;
  1865. case 107: //M107 Fan Off
  1866. fanSpeed = 0;
  1867. break;
  1868. #endif //FAN_PIN
  1869. #ifdef BARICUDA
  1870. // PWM for HEATER_1_PIN
  1871. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1872. case 126: //M126 valve open
  1873. if (code_seen('S')){
  1874. ValvePressure=constrain(code_value(),0,255);
  1875. }
  1876. else {
  1877. ValvePressure=255;
  1878. }
  1879. break;
  1880. case 127: //M127 valve closed
  1881. ValvePressure = 0;
  1882. break;
  1883. #endif //HEATER_1_PIN
  1884. // PWM for HEATER_2_PIN
  1885. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1886. case 128: //M128 valve open
  1887. if (code_seen('S')){
  1888. EtoPPressure=constrain(code_value(),0,255);
  1889. }
  1890. else {
  1891. EtoPPressure=255;
  1892. }
  1893. break;
  1894. case 129: //M129 valve closed
  1895. EtoPPressure = 0;
  1896. break;
  1897. #endif //HEATER_2_PIN
  1898. #endif
  1899. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1900. case 80: // M80 - Turn on Power Supply
  1901. SET_OUTPUT(PS_ON_PIN); //GND
  1902. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1903. // If you have a switch on suicide pin, this is useful
  1904. // if you want to start another print with suicide feature after
  1905. // a print without suicide...
  1906. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1907. SET_OUTPUT(SUICIDE_PIN);
  1908. WRITE(SUICIDE_PIN, HIGH);
  1909. #endif
  1910. #ifdef ULTIPANEL
  1911. powersupply = true;
  1912. LCD_MESSAGEPGM(WELCOME_MSG);
  1913. lcd_update();
  1914. #endif
  1915. break;
  1916. #endif
  1917. case 81: // M81 - Turn off Power Supply
  1918. disable_heater();
  1919. st_synchronize();
  1920. disable_e0();
  1921. disable_e1();
  1922. disable_e2();
  1923. finishAndDisableSteppers();
  1924. fanSpeed = 0;
  1925. delay(1000); // Wait a little before to switch off
  1926. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1927. st_synchronize();
  1928. suicide();
  1929. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1930. SET_OUTPUT(PS_ON_PIN);
  1931. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1932. #endif
  1933. #ifdef ULTIPANEL
  1934. powersupply = false;
  1935. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1936. lcd_update();
  1937. #endif
  1938. break;
  1939. case 82:
  1940. axis_relative_modes[3] = false;
  1941. break;
  1942. case 83:
  1943. axis_relative_modes[3] = true;
  1944. break;
  1945. case 18: //compatibility
  1946. case 84: // M84
  1947. if(code_seen('S')){
  1948. stepper_inactive_time = code_value() * 1000;
  1949. }
  1950. else
  1951. {
  1952. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  1953. if(all_axis)
  1954. {
  1955. st_synchronize();
  1956. disable_e0();
  1957. disable_e1();
  1958. disable_e2();
  1959. finishAndDisableSteppers();
  1960. }
  1961. else
  1962. {
  1963. st_synchronize();
  1964. if(code_seen('X')) disable_x();
  1965. if(code_seen('Y')) disable_y();
  1966. if(code_seen('Z')) disable_z();
  1967. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1968. if(code_seen('E')) {
  1969. disable_e0();
  1970. disable_e1();
  1971. disable_e2();
  1972. }
  1973. #endif
  1974. }
  1975. }
  1976. break;
  1977. case 85: // M85
  1978. if(code_seen('S')) {
  1979. max_inactive_time = code_value() * 1000;
  1980. }
  1981. break;
  1982. case 92: // M92
  1983. for(int8_t i=0; i < NUM_AXIS; i++)
  1984. {
  1985. if(code_seen(axis_codes[i]))
  1986. {
  1987. if(i == 3) { // E
  1988. float value = code_value();
  1989. if(value < 20.0) {
  1990. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1991. max_e_jerk *= factor;
  1992. max_feedrate[i] *= factor;
  1993. axis_steps_per_sqr_second[i] *= factor;
  1994. }
  1995. axis_steps_per_unit[i] = value;
  1996. }
  1997. else {
  1998. axis_steps_per_unit[i] = code_value();
  1999. }
  2000. }
  2001. }
  2002. break;
  2003. case 115: // M115
  2004. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2005. break;
  2006. case 117: // M117 display message
  2007. starpos = (strchr(strchr_pointer + 5,'*'));
  2008. if(starpos!=NULL)
  2009. *(starpos)='\0';
  2010. lcd_setstatus(strchr_pointer + 5);
  2011. break;
  2012. case 114: // M114
  2013. SERIAL_PROTOCOLPGM("X:");
  2014. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2015. SERIAL_PROTOCOLPGM(" Y:");
  2016. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2017. SERIAL_PROTOCOLPGM(" Z:");
  2018. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2019. SERIAL_PROTOCOLPGM(" E:");
  2020. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2021. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2022. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2023. SERIAL_PROTOCOLPGM(" Y:");
  2024. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2025. SERIAL_PROTOCOLPGM(" Z:");
  2026. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2027. SERIAL_PROTOCOLLN("");
  2028. break;
  2029. case 120: // M120
  2030. enable_endstops(false) ;
  2031. break;
  2032. case 121: // M121
  2033. enable_endstops(true) ;
  2034. break;
  2035. case 119: // M119
  2036. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2037. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2038. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2039. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2040. #endif
  2041. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2042. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2043. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2044. #endif
  2045. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2046. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2047. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2048. #endif
  2049. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2050. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2051. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2052. #endif
  2053. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2054. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2055. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2056. #endif
  2057. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2058. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2059. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2060. #endif
  2061. break;
  2062. //TODO: update for all axis, use for loop
  2063. #ifdef BLINKM
  2064. case 150: // M150
  2065. {
  2066. byte red;
  2067. byte grn;
  2068. byte blu;
  2069. if(code_seen('R')) red = code_value();
  2070. if(code_seen('U')) grn = code_value();
  2071. if(code_seen('B')) blu = code_value();
  2072. SendColors(red,grn,blu);
  2073. }
  2074. break;
  2075. #endif //BLINKM
  2076. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2077. {
  2078. float area = .0;
  2079. float radius = .0;
  2080. if(code_seen('D')) {
  2081. radius = (float)code_value() * .5;
  2082. if(radius == 0) {
  2083. area = 1;
  2084. } else {
  2085. area = M_PI * pow(radius, 2);
  2086. }
  2087. } else {
  2088. //reserved for setting filament diameter via UFID or filament measuring device
  2089. break;
  2090. }
  2091. tmp_extruder = active_extruder;
  2092. if(code_seen('T')) {
  2093. tmp_extruder = code_value();
  2094. if(tmp_extruder >= EXTRUDERS) {
  2095. SERIAL_ECHO_START;
  2096. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  2097. break;
  2098. }
  2099. }
  2100. volumetric_multiplier[tmp_extruder] = 1 / area;
  2101. }
  2102. break;
  2103. case 201: // M201
  2104. for(int8_t i=0; i < NUM_AXIS; i++)
  2105. {
  2106. if(code_seen(axis_codes[i]))
  2107. {
  2108. max_acceleration_units_per_sq_second[i] = code_value();
  2109. }
  2110. }
  2111. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  2112. reset_acceleration_rates();
  2113. break;
  2114. #if 0 // Not used for Sprinter/grbl gen6
  2115. case 202: // M202
  2116. for(int8_t i=0; i < NUM_AXIS; i++) {
  2117. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  2118. }
  2119. break;
  2120. #endif
  2121. case 203: // M203 max feedrate mm/sec
  2122. for(int8_t i=0; i < NUM_AXIS; i++) {
  2123. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2124. }
  2125. break;
  2126. case 204: // M204 acclereration S normal moves T filmanent only moves
  2127. {
  2128. if(code_seen('S')) acceleration = code_value() ;
  2129. if(code_seen('T')) retract_acceleration = code_value() ;
  2130. }
  2131. break;
  2132. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2133. {
  2134. if(code_seen('S')) minimumfeedrate = code_value();
  2135. if(code_seen('T')) mintravelfeedrate = code_value();
  2136. if(code_seen('B')) minsegmenttime = code_value() ;
  2137. if(code_seen('X')) max_xy_jerk = code_value() ;
  2138. if(code_seen('Z')) max_z_jerk = code_value() ;
  2139. if(code_seen('E')) max_e_jerk = code_value() ;
  2140. }
  2141. break;
  2142. case 206: // M206 additional homeing offset
  2143. for(int8_t i=0; i < 3; i++)
  2144. {
  2145. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2146. }
  2147. break;
  2148. #ifdef DELTA
  2149. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  2150. if(code_seen('L')) {
  2151. delta_diagonal_rod= code_value();
  2152. }
  2153. if(code_seen('R')) {
  2154. delta_radius= code_value();
  2155. }
  2156. if(code_seen('S')) {
  2157. delta_segments_per_second= code_value();
  2158. }
  2159. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  2160. break;
  2161. case 666: // M666 set delta endstop adjustemnt
  2162. for(int8_t i=0; i < 3; i++)
  2163. {
  2164. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2165. }
  2166. break;
  2167. #endif
  2168. #ifdef FWRETRACT
  2169. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  2170. {
  2171. if(code_seen('S'))
  2172. {
  2173. retract_length = code_value() ;
  2174. }
  2175. if(code_seen('F'))
  2176. {
  2177. retract_feedrate = code_value()/60 ;
  2178. }
  2179. if(code_seen('Z'))
  2180. {
  2181. retract_zlift = code_value() ;
  2182. }
  2183. }break;
  2184. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  2185. {
  2186. if(code_seen('S'))
  2187. {
  2188. retract_recover_length = code_value() ;
  2189. }
  2190. if(code_seen('F'))
  2191. {
  2192. retract_recover_feedrate = code_value()/60 ;
  2193. }
  2194. }break;
  2195. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2196. {
  2197. if(code_seen('S'))
  2198. {
  2199. int t= code_value() ;
  2200. switch(t)
  2201. {
  2202. case 0:
  2203. {
  2204. autoretract_enabled=false;
  2205. retracted[0]=false;
  2206. #if EXTRUDERS > 1
  2207. retracted[1]=false;
  2208. #endif
  2209. #if EXTRUDERS > 2
  2210. retracted[2]=false;
  2211. #endif
  2212. }break;
  2213. case 1:
  2214. {
  2215. autoretract_enabled=true;
  2216. retracted[0]=false;
  2217. #if EXTRUDERS > 1
  2218. retracted[1]=false;
  2219. #endif
  2220. #if EXTRUDERS > 2
  2221. retracted[2]=false;
  2222. #endif
  2223. }break;
  2224. default:
  2225. SERIAL_ECHO_START;
  2226. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2227. SERIAL_ECHO(cmdbuffer[bufindr]);
  2228. SERIAL_ECHOLNPGM("\"");
  2229. }
  2230. }
  2231. }break;
  2232. #endif // FWRETRACT
  2233. #if EXTRUDERS > 1
  2234. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2235. {
  2236. if(setTargetedHotend(218)){
  2237. break;
  2238. }
  2239. if(code_seen('X'))
  2240. {
  2241. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2242. }
  2243. if(code_seen('Y'))
  2244. {
  2245. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2246. }
  2247. #ifdef DUAL_X_CARRIAGE
  2248. if(code_seen('Z'))
  2249. {
  2250. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2251. }
  2252. #endif
  2253. SERIAL_ECHO_START;
  2254. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2255. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2256. {
  2257. SERIAL_ECHO(" ");
  2258. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2259. SERIAL_ECHO(",");
  2260. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2261. #ifdef DUAL_X_CARRIAGE
  2262. SERIAL_ECHO(",");
  2263. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2264. #endif
  2265. }
  2266. SERIAL_ECHOLN("");
  2267. }break;
  2268. #endif
  2269. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2270. {
  2271. if(code_seen('S'))
  2272. {
  2273. feedmultiply = code_value() ;
  2274. }
  2275. }
  2276. break;
  2277. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2278. {
  2279. if(code_seen('S'))
  2280. {
  2281. int tmp_code = code_value();
  2282. if (code_seen('T'))
  2283. {
  2284. if(setTargetedHotend(221)){
  2285. break;
  2286. }
  2287. extruder_multiply[tmp_extruder] = tmp_code;
  2288. }
  2289. else
  2290. {
  2291. extrudemultiply = tmp_code ;
  2292. }
  2293. }
  2294. }
  2295. break;
  2296. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2297. {
  2298. if(code_seen('P')){
  2299. int pin_number = code_value(); // pin number
  2300. int pin_state = -1; // required pin state - default is inverted
  2301. if(code_seen('S')) pin_state = code_value(); // required pin state
  2302. if(pin_state >= -1 && pin_state <= 1){
  2303. for(int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(int)); i++)
  2304. {
  2305. if (sensitive_pins[i] == pin_number)
  2306. {
  2307. pin_number = -1;
  2308. break;
  2309. }
  2310. }
  2311. if (pin_number > -1)
  2312. {
  2313. st_synchronize();
  2314. pinMode(pin_number, INPUT);
  2315. int target;
  2316. switch(pin_state){
  2317. case 1:
  2318. target = HIGH;
  2319. break;
  2320. case 0:
  2321. target = LOW;
  2322. break;
  2323. case -1:
  2324. target = !digitalRead(pin_number);
  2325. break;
  2326. }
  2327. while(digitalRead(pin_number) != target){
  2328. manage_heater();
  2329. manage_inactivity();
  2330. lcd_update();
  2331. }
  2332. }
  2333. }
  2334. }
  2335. }
  2336. break;
  2337. #if NUM_SERVOS > 0
  2338. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2339. {
  2340. int servo_index = -1;
  2341. int servo_position = 0;
  2342. if (code_seen('P'))
  2343. servo_index = code_value();
  2344. if (code_seen('S')) {
  2345. servo_position = code_value();
  2346. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2347. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2348. servos[servo_index].attach(0);
  2349. #endif
  2350. servos[servo_index].write(servo_position);
  2351. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2352. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2353. servos[servo_index].detach();
  2354. #endif
  2355. }
  2356. else {
  2357. SERIAL_ECHO_START;
  2358. SERIAL_ECHO("Servo ");
  2359. SERIAL_ECHO(servo_index);
  2360. SERIAL_ECHOLN(" out of range");
  2361. }
  2362. }
  2363. else if (servo_index >= 0) {
  2364. SERIAL_PROTOCOL(MSG_OK);
  2365. SERIAL_PROTOCOL(" Servo ");
  2366. SERIAL_PROTOCOL(servo_index);
  2367. SERIAL_PROTOCOL(": ");
  2368. SERIAL_PROTOCOL(servos[servo_index].read());
  2369. SERIAL_PROTOCOLLN("");
  2370. }
  2371. }
  2372. break;
  2373. #endif // NUM_SERVOS > 0
  2374. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2375. case 300: // M300
  2376. {
  2377. int beepS = code_seen('S') ? code_value() : 110;
  2378. int beepP = code_seen('P') ? code_value() : 1000;
  2379. if (beepS > 0)
  2380. {
  2381. #if BEEPER > 0
  2382. tone(BEEPER, beepS);
  2383. delay(beepP);
  2384. noTone(BEEPER);
  2385. #elif defined(ULTRALCD)
  2386. lcd_buzz(beepS, beepP);
  2387. #elif defined(LCD_USE_I2C_BUZZER)
  2388. lcd_buzz(beepP, beepS);
  2389. #endif
  2390. }
  2391. else
  2392. {
  2393. delay(beepP);
  2394. }
  2395. }
  2396. break;
  2397. #endif // M300
  2398. #ifdef PIDTEMP
  2399. case 301: // M301
  2400. {
  2401. if(code_seen('P')) Kp = code_value();
  2402. if(code_seen('I')) Ki = scalePID_i(code_value());
  2403. if(code_seen('D')) Kd = scalePID_d(code_value());
  2404. #ifdef PID_ADD_EXTRUSION_RATE
  2405. if(code_seen('C')) Kc = code_value();
  2406. #endif
  2407. updatePID();
  2408. SERIAL_PROTOCOL(MSG_OK);
  2409. SERIAL_PROTOCOL(" p:");
  2410. SERIAL_PROTOCOL(Kp);
  2411. SERIAL_PROTOCOL(" i:");
  2412. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2413. SERIAL_PROTOCOL(" d:");
  2414. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2415. #ifdef PID_ADD_EXTRUSION_RATE
  2416. SERIAL_PROTOCOL(" c:");
  2417. //Kc does not have scaling applied above, or in resetting defaults
  2418. SERIAL_PROTOCOL(Kc);
  2419. #endif
  2420. SERIAL_PROTOCOLLN("");
  2421. }
  2422. break;
  2423. #endif //PIDTEMP
  2424. #ifdef PIDTEMPBED
  2425. case 304: // M304
  2426. {
  2427. if(code_seen('P')) bedKp = code_value();
  2428. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2429. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2430. updatePID();
  2431. SERIAL_PROTOCOL(MSG_OK);
  2432. SERIAL_PROTOCOL(" p:");
  2433. SERIAL_PROTOCOL(bedKp);
  2434. SERIAL_PROTOCOL(" i:");
  2435. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2436. SERIAL_PROTOCOL(" d:");
  2437. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2438. SERIAL_PROTOCOLLN("");
  2439. }
  2440. break;
  2441. #endif //PIDTEMP
  2442. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2443. {
  2444. #ifdef CHDK
  2445. SET_OUTPUT(CHDK);
  2446. WRITE(CHDK, HIGH);
  2447. chdkHigh = millis();
  2448. chdkActive = true;
  2449. #else
  2450. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2451. const uint8_t NUM_PULSES=16;
  2452. const float PULSE_LENGTH=0.01524;
  2453. for(int i=0; i < NUM_PULSES; i++) {
  2454. WRITE(PHOTOGRAPH_PIN, HIGH);
  2455. _delay_ms(PULSE_LENGTH);
  2456. WRITE(PHOTOGRAPH_PIN, LOW);
  2457. _delay_ms(PULSE_LENGTH);
  2458. }
  2459. delay(7.33);
  2460. for(int i=0; i < NUM_PULSES; i++) {
  2461. WRITE(PHOTOGRAPH_PIN, HIGH);
  2462. _delay_ms(PULSE_LENGTH);
  2463. WRITE(PHOTOGRAPH_PIN, LOW);
  2464. _delay_ms(PULSE_LENGTH);
  2465. }
  2466. #endif
  2467. #endif //chdk end if
  2468. }
  2469. break;
  2470. #ifdef DOGLCD
  2471. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2472. {
  2473. if (code_seen('C')) {
  2474. lcd_setcontrast( ((int)code_value())&63 );
  2475. }
  2476. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2477. SERIAL_PROTOCOL(lcd_contrast);
  2478. SERIAL_PROTOCOLLN("");
  2479. }
  2480. break;
  2481. #endif
  2482. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2483. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2484. {
  2485. float temp = .0;
  2486. if (code_seen('S')) temp=code_value();
  2487. set_extrude_min_temp(temp);
  2488. }
  2489. break;
  2490. #endif
  2491. case 303: // M303 PID autotune
  2492. {
  2493. float temp = 150.0;
  2494. int e=0;
  2495. int c=5;
  2496. if (code_seen('E')) e=code_value();
  2497. if (e<0)
  2498. temp=70;
  2499. if (code_seen('S')) temp=code_value();
  2500. if (code_seen('C')) c=code_value();
  2501. PID_autotune(temp, e, c);
  2502. }
  2503. break;
  2504. case 400: // M400 finish all moves
  2505. {
  2506. st_synchronize();
  2507. }
  2508. break;
  2509. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2510. case 401:
  2511. {
  2512. engage_z_probe(); // Engage Z Servo endstop if available
  2513. }
  2514. break;
  2515. case 402:
  2516. {
  2517. retract_z_probe(); // Retract Z Servo endstop if enabled
  2518. }
  2519. break;
  2520. #endif
  2521. #ifdef FILAMENT_SENSOR
  2522. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  2523. {
  2524. #if (FILWIDTH_PIN > -1)
  2525. if(code_seen('N')) filament_width_nominal=code_value();
  2526. else{
  2527. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  2528. SERIAL_PROTOCOLLN(filament_width_nominal);
  2529. }
  2530. #endif
  2531. }
  2532. break;
  2533. case 405: //M405 Turn on filament sensor for control
  2534. {
  2535. if(code_seen('D')) meas_delay_cm=code_value();
  2536. if(meas_delay_cm> MAX_MEASUREMENT_DELAY)
  2537. meas_delay_cm = MAX_MEASUREMENT_DELAY;
  2538. if(delay_index2 == -1) //initialize the ring buffer if it has not been done since startup
  2539. {
  2540. int temp_ratio = widthFil_to_size_ratio();
  2541. for (delay_index1=0; delay_index1<(MAX_MEASUREMENT_DELAY+1); ++delay_index1 ){
  2542. measurement_delay[delay_index1]=temp_ratio-100; //subtract 100 to scale within a signed byte
  2543. }
  2544. delay_index1=0;
  2545. delay_index2=0;
  2546. }
  2547. filament_sensor = true ;
  2548. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  2549. //SERIAL_PROTOCOL(filament_width_meas);
  2550. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  2551. //SERIAL_PROTOCOL(extrudemultiply);
  2552. }
  2553. break;
  2554. case 406: //M406 Turn off filament sensor for control
  2555. {
  2556. filament_sensor = false ;
  2557. }
  2558. break;
  2559. case 407: //M407 Display measured filament diameter
  2560. {
  2561. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  2562. SERIAL_PROTOCOLLN(filament_width_meas);
  2563. }
  2564. break;
  2565. #endif
  2566. case 500: // M500 Store settings in EEPROM
  2567. {
  2568. Config_StoreSettings();
  2569. }
  2570. break;
  2571. case 501: // M501 Read settings from EEPROM
  2572. {
  2573. Config_RetrieveSettings();
  2574. }
  2575. break;
  2576. case 502: // M502 Revert to default settings
  2577. {
  2578. Config_ResetDefault();
  2579. }
  2580. break;
  2581. case 503: // M503 print settings currently in memory
  2582. {
  2583. Config_PrintSettings();
  2584. }
  2585. break;
  2586. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2587. case 540:
  2588. {
  2589. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2590. }
  2591. break;
  2592. #endif
  2593. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2594. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  2595. {
  2596. float value;
  2597. if (code_seen('Z'))
  2598. {
  2599. value = code_value();
  2600. if ((Z_PROBE_OFFSET_RANGE_MIN <= value) && (value <= Z_PROBE_OFFSET_RANGE_MAX))
  2601. {
  2602. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  2603. SERIAL_ECHO_START;
  2604. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  2605. SERIAL_PROTOCOLLN("");
  2606. }
  2607. else
  2608. {
  2609. SERIAL_ECHO_START;
  2610. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  2611. SERIAL_ECHOPGM(MSG_Z_MIN);
  2612. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  2613. SERIAL_ECHOPGM(MSG_Z_MAX);
  2614. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  2615. SERIAL_PROTOCOLLN("");
  2616. }
  2617. }
  2618. else
  2619. {
  2620. SERIAL_ECHO_START;
  2621. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  2622. SERIAL_ECHO(-zprobe_zoffset);
  2623. SERIAL_PROTOCOLLN("");
  2624. }
  2625. break;
  2626. }
  2627. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  2628. #ifdef FILAMENTCHANGEENABLE
  2629. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2630. {
  2631. float target[4];
  2632. float lastpos[4];
  2633. target[X_AXIS]=current_position[X_AXIS];
  2634. target[Y_AXIS]=current_position[Y_AXIS];
  2635. target[Z_AXIS]=current_position[Z_AXIS];
  2636. target[E_AXIS]=current_position[E_AXIS];
  2637. lastpos[X_AXIS]=current_position[X_AXIS];
  2638. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2639. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2640. lastpos[E_AXIS]=current_position[E_AXIS];
  2641. //retract by E
  2642. if(code_seen('E'))
  2643. {
  2644. target[E_AXIS]+= code_value();
  2645. }
  2646. else
  2647. {
  2648. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2649. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2650. #endif
  2651. }
  2652. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2653. //lift Z
  2654. if(code_seen('Z'))
  2655. {
  2656. target[Z_AXIS]+= code_value();
  2657. }
  2658. else
  2659. {
  2660. #ifdef FILAMENTCHANGE_ZADD
  2661. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2662. #endif
  2663. }
  2664. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2665. //move xy
  2666. if(code_seen('X'))
  2667. {
  2668. target[X_AXIS]+= code_value();
  2669. }
  2670. else
  2671. {
  2672. #ifdef FILAMENTCHANGE_XPOS
  2673. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2674. #endif
  2675. }
  2676. if(code_seen('Y'))
  2677. {
  2678. target[Y_AXIS]= code_value();
  2679. }
  2680. else
  2681. {
  2682. #ifdef FILAMENTCHANGE_YPOS
  2683. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2684. #endif
  2685. }
  2686. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2687. if(code_seen('L'))
  2688. {
  2689. target[E_AXIS]+= code_value();
  2690. }
  2691. else
  2692. {
  2693. #ifdef FILAMENTCHANGE_FINALRETRACT
  2694. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2695. #endif
  2696. }
  2697. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2698. //finish moves
  2699. st_synchronize();
  2700. //disable extruder steppers so filament can be removed
  2701. disable_e0();
  2702. disable_e1();
  2703. disable_e2();
  2704. delay(100);
  2705. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2706. uint8_t cnt=0;
  2707. while(!lcd_clicked()){
  2708. cnt++;
  2709. manage_heater();
  2710. manage_inactivity();
  2711. lcd_update();
  2712. if(cnt==0)
  2713. {
  2714. #if BEEPER > 0
  2715. SET_OUTPUT(BEEPER);
  2716. WRITE(BEEPER,HIGH);
  2717. delay(3);
  2718. WRITE(BEEPER,LOW);
  2719. delay(3);
  2720. #else
  2721. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2722. lcd_buzz(1000/6,100);
  2723. #else
  2724. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2725. #endif
  2726. #endif
  2727. }
  2728. }
  2729. //return to normal
  2730. if(code_seen('L'))
  2731. {
  2732. target[E_AXIS]+= -code_value();
  2733. }
  2734. else
  2735. {
  2736. #ifdef FILAMENTCHANGE_FINALRETRACT
  2737. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2738. #endif
  2739. }
  2740. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2741. plan_set_e_position(current_position[E_AXIS]);
  2742. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2743. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2744. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2745. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2746. }
  2747. break;
  2748. #endif //FILAMENTCHANGEENABLE
  2749. #ifdef DUAL_X_CARRIAGE
  2750. case 605: // Set dual x-carriage movement mode:
  2751. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2752. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2753. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2754. // millimeters x-offset and an optional differential hotend temperature of
  2755. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2756. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2757. //
  2758. // Note: the X axis should be homed after changing dual x-carriage mode.
  2759. {
  2760. st_synchronize();
  2761. if (code_seen('S'))
  2762. dual_x_carriage_mode = code_value();
  2763. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2764. {
  2765. if (code_seen('X'))
  2766. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2767. if (code_seen('R'))
  2768. duplicate_extruder_temp_offset = code_value();
  2769. SERIAL_ECHO_START;
  2770. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2771. SERIAL_ECHO(" ");
  2772. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2773. SERIAL_ECHO(",");
  2774. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2775. SERIAL_ECHO(" ");
  2776. SERIAL_ECHO(duplicate_extruder_x_offset);
  2777. SERIAL_ECHO(",");
  2778. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2779. }
  2780. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2781. {
  2782. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2783. }
  2784. active_extruder_parked = false;
  2785. extruder_duplication_enabled = false;
  2786. delayed_move_time = 0;
  2787. }
  2788. break;
  2789. #endif //DUAL_X_CARRIAGE
  2790. case 907: // M907 Set digital trimpot motor current using axis codes.
  2791. {
  2792. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2793. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2794. if(code_seen('B')) digipot_current(4,code_value());
  2795. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2796. #endif
  2797. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2798. if(code_seen('X')) digipot_current(0, code_value());
  2799. #endif
  2800. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2801. if(code_seen('Z')) digipot_current(1, code_value());
  2802. #endif
  2803. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2804. if(code_seen('E')) digipot_current(2, code_value());
  2805. #endif
  2806. #ifdef DIGIPOT_I2C
  2807. // this one uses actual amps in floating point
  2808. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2809. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2810. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2811. #endif
  2812. }
  2813. break;
  2814. case 908: // M908 Control digital trimpot directly.
  2815. {
  2816. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2817. uint8_t channel,current;
  2818. if(code_seen('P')) channel=code_value();
  2819. if(code_seen('S')) current=code_value();
  2820. digitalPotWrite(channel, current);
  2821. #endif
  2822. }
  2823. break;
  2824. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2825. {
  2826. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2827. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2828. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2829. if(code_seen('B')) microstep_mode(4,code_value());
  2830. microstep_readings();
  2831. #endif
  2832. }
  2833. break;
  2834. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2835. {
  2836. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2837. if(code_seen('S')) switch((int)code_value())
  2838. {
  2839. case 1:
  2840. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2841. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2842. break;
  2843. case 2:
  2844. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2845. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2846. break;
  2847. }
  2848. microstep_readings();
  2849. #endif
  2850. }
  2851. break;
  2852. case 999: // M999: Restart after being stopped
  2853. Stopped = false;
  2854. lcd_reset_alert_level();
  2855. gcode_LastN = Stopped_gcode_LastN;
  2856. FlushSerialRequestResend();
  2857. break;
  2858. }
  2859. }
  2860. else if(code_seen('T'))
  2861. {
  2862. tmp_extruder = code_value();
  2863. if(tmp_extruder >= EXTRUDERS) {
  2864. SERIAL_ECHO_START;
  2865. SERIAL_ECHO("T");
  2866. SERIAL_ECHO(tmp_extruder);
  2867. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2868. }
  2869. else {
  2870. boolean make_move = false;
  2871. if(code_seen('F')) {
  2872. make_move = true;
  2873. next_feedrate = code_value();
  2874. if(next_feedrate > 0.0) {
  2875. feedrate = next_feedrate;
  2876. }
  2877. }
  2878. #if EXTRUDERS > 1
  2879. if(tmp_extruder != active_extruder) {
  2880. // Save current position to return to after applying extruder offset
  2881. memcpy(destination, current_position, sizeof(destination));
  2882. #ifdef DUAL_X_CARRIAGE
  2883. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2884. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2885. {
  2886. // Park old head: 1) raise 2) move to park position 3) lower
  2887. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2888. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2889. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2890. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2891. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2892. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2893. st_synchronize();
  2894. }
  2895. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2896. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2897. extruder_offset[Y_AXIS][active_extruder] +
  2898. extruder_offset[Y_AXIS][tmp_extruder];
  2899. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2900. extruder_offset[Z_AXIS][active_extruder] +
  2901. extruder_offset[Z_AXIS][tmp_extruder];
  2902. active_extruder = tmp_extruder;
  2903. // This function resets the max/min values - the current position may be overwritten below.
  2904. axis_is_at_home(X_AXIS);
  2905. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2906. {
  2907. current_position[X_AXIS] = inactive_extruder_x_pos;
  2908. inactive_extruder_x_pos = destination[X_AXIS];
  2909. }
  2910. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2911. {
  2912. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2913. if (active_extruder == 0 || active_extruder_parked)
  2914. current_position[X_AXIS] = inactive_extruder_x_pos;
  2915. else
  2916. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2917. inactive_extruder_x_pos = destination[X_AXIS];
  2918. extruder_duplication_enabled = false;
  2919. }
  2920. else
  2921. {
  2922. // record raised toolhead position for use by unpark
  2923. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2924. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2925. active_extruder_parked = true;
  2926. delayed_move_time = 0;
  2927. }
  2928. #else
  2929. // Offset extruder (only by XY)
  2930. int i;
  2931. for(i = 0; i < 2; i++) {
  2932. current_position[i] = current_position[i] -
  2933. extruder_offset[i][active_extruder] +
  2934. extruder_offset[i][tmp_extruder];
  2935. }
  2936. // Set the new active extruder and position
  2937. active_extruder = tmp_extruder;
  2938. #endif //else DUAL_X_CARRIAGE
  2939. #ifdef DELTA
  2940. calculate_delta(current_position); // change cartesian kinematic to delta kinematic;
  2941. //sent position to plan_set_position();
  2942. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],current_position[E_AXIS]);
  2943. #else
  2944. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2945. #endif
  2946. // Move to the old position if 'F' was in the parameters
  2947. if(make_move && Stopped == false) {
  2948. prepare_move();
  2949. }
  2950. }
  2951. #endif
  2952. SERIAL_ECHO_START;
  2953. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2954. SERIAL_PROTOCOLLN((int)active_extruder);
  2955. }
  2956. }
  2957. else
  2958. {
  2959. SERIAL_ECHO_START;
  2960. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2961. SERIAL_ECHO(cmdbuffer[bufindr]);
  2962. SERIAL_ECHOLNPGM("\"");
  2963. }
  2964. ClearToSend();
  2965. }
  2966. void FlushSerialRequestResend()
  2967. {
  2968. //char cmdbuffer[bufindr][100]="Resend:";
  2969. MYSERIAL.flush();
  2970. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2971. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2972. ClearToSend();
  2973. }
  2974. void ClearToSend()
  2975. {
  2976. previous_millis_cmd = millis();
  2977. #ifdef SDSUPPORT
  2978. if(fromsd[bufindr])
  2979. return;
  2980. #endif //SDSUPPORT
  2981. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2982. }
  2983. void get_coordinates()
  2984. {
  2985. bool seen[4]={false,false,false,false};
  2986. for(int8_t i=0; i < NUM_AXIS; i++) {
  2987. if(code_seen(axis_codes[i]))
  2988. {
  2989. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2990. seen[i]=true;
  2991. }
  2992. else destination[i] = current_position[i]; //Are these else lines really needed?
  2993. }
  2994. if(code_seen('F')) {
  2995. next_feedrate = code_value();
  2996. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2997. }
  2998. }
  2999. void get_arc_coordinates()
  3000. {
  3001. #ifdef SF_ARC_FIX
  3002. bool relative_mode_backup = relative_mode;
  3003. relative_mode = true;
  3004. #endif
  3005. get_coordinates();
  3006. #ifdef SF_ARC_FIX
  3007. relative_mode=relative_mode_backup;
  3008. #endif
  3009. if(code_seen('I')) {
  3010. offset[0] = code_value();
  3011. }
  3012. else {
  3013. offset[0] = 0.0;
  3014. }
  3015. if(code_seen('J')) {
  3016. offset[1] = code_value();
  3017. }
  3018. else {
  3019. offset[1] = 0.0;
  3020. }
  3021. }
  3022. void clamp_to_software_endstops(float target[3])
  3023. {
  3024. if (min_software_endstops) {
  3025. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  3026. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  3027. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  3028. }
  3029. if (max_software_endstops) {
  3030. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  3031. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  3032. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  3033. }
  3034. }
  3035. #ifdef DELTA
  3036. void recalc_delta_settings(float radius, float diagonal_rod)
  3037. {
  3038. delta_tower1_x= -SIN_60*radius; // front left tower
  3039. delta_tower1_y= -COS_60*radius;
  3040. delta_tower2_x= SIN_60*radius; // front right tower
  3041. delta_tower2_y= -COS_60*radius;
  3042. delta_tower3_x= 0.0; // back middle tower
  3043. delta_tower3_y= radius;
  3044. delta_diagonal_rod_2= sq(diagonal_rod);
  3045. }
  3046. void calculate_delta(float cartesian[3])
  3047. {
  3048. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  3049. - sq(delta_tower1_x-cartesian[X_AXIS])
  3050. - sq(delta_tower1_y-cartesian[Y_AXIS])
  3051. ) + cartesian[Z_AXIS];
  3052. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  3053. - sq(delta_tower2_x-cartesian[X_AXIS])
  3054. - sq(delta_tower2_y-cartesian[Y_AXIS])
  3055. ) + cartesian[Z_AXIS];
  3056. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  3057. - sq(delta_tower3_x-cartesian[X_AXIS])
  3058. - sq(delta_tower3_y-cartesian[Y_AXIS])
  3059. ) + cartesian[Z_AXIS];
  3060. /*
  3061. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  3062. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  3063. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  3064. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  3065. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  3066. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  3067. */
  3068. }
  3069. #endif
  3070. void prepare_move()
  3071. {
  3072. clamp_to_software_endstops(destination);
  3073. previous_millis_cmd = millis();
  3074. #ifdef DELTA
  3075. float difference[NUM_AXIS];
  3076. for (int8_t i=0; i < NUM_AXIS; i++) {
  3077. difference[i] = destination[i] - current_position[i];
  3078. }
  3079. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  3080. sq(difference[Y_AXIS]) +
  3081. sq(difference[Z_AXIS]));
  3082. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  3083. if (cartesian_mm < 0.000001) { return; }
  3084. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  3085. int steps = max(1, int(delta_segments_per_second * seconds));
  3086. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  3087. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  3088. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  3089. for (int s = 1; s <= steps; s++) {
  3090. float fraction = float(s) / float(steps);
  3091. for(int8_t i=0; i < NUM_AXIS; i++) {
  3092. destination[i] = current_position[i] + difference[i] * fraction;
  3093. }
  3094. calculate_delta(destination);
  3095. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  3096. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  3097. active_extruder);
  3098. }
  3099. #else
  3100. #ifdef DUAL_X_CARRIAGE
  3101. if (active_extruder_parked)
  3102. {
  3103. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  3104. {
  3105. // move duplicate extruder into correct duplication position.
  3106. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3107. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  3108. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  3109. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  3110. st_synchronize();
  3111. extruder_duplication_enabled = true;
  3112. active_extruder_parked = false;
  3113. }
  3114. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  3115. {
  3116. if (current_position[E_AXIS] == destination[E_AXIS])
  3117. {
  3118. // this is a travel move - skit it but keep track of current position (so that it can later
  3119. // be used as start of first non-travel move)
  3120. if (delayed_move_time != 0xFFFFFFFFUL)
  3121. {
  3122. memcpy(current_position, destination, sizeof(current_position));
  3123. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  3124. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  3125. delayed_move_time = millis();
  3126. return;
  3127. }
  3128. }
  3129. delayed_move_time = 0;
  3130. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  3131. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3132. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  3133. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  3134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  3135. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3136. active_extruder_parked = false;
  3137. }
  3138. }
  3139. #endif //DUAL_X_CARRIAGE
  3140. // Do not use feedmultiply for E or Z only moves
  3141. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  3142. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  3143. }
  3144. else {
  3145. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  3146. }
  3147. #endif //else DELTA
  3148. for(int8_t i=0; i < NUM_AXIS; i++) {
  3149. current_position[i] = destination[i];
  3150. }
  3151. }
  3152. void prepare_arc_move(char isclockwise) {
  3153. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  3154. // Trace the arc
  3155. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  3156. // As far as the parser is concerned, the position is now == target. In reality the
  3157. // motion control system might still be processing the action and the real tool position
  3158. // in any intermediate location.
  3159. for(int8_t i=0; i < NUM_AXIS; i++) {
  3160. current_position[i] = destination[i];
  3161. }
  3162. previous_millis_cmd = millis();
  3163. }
  3164. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3165. #if defined(FAN_PIN)
  3166. #if CONTROLLERFAN_PIN == FAN_PIN
  3167. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  3168. #endif
  3169. #endif
  3170. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  3171. unsigned long lastMotorCheck = 0;
  3172. void controllerFan()
  3173. {
  3174. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  3175. {
  3176. lastMotorCheck = millis();
  3177. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  3178. #if EXTRUDERS > 2
  3179. || !READ(E2_ENABLE_PIN)
  3180. #endif
  3181. #if EXTRUDER > 1
  3182. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  3183. || !READ(X2_ENABLE_PIN)
  3184. #endif
  3185. || !READ(E1_ENABLE_PIN)
  3186. #endif
  3187. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  3188. {
  3189. lastMotor = millis(); //... set time to NOW so the fan will turn on
  3190. }
  3191. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  3192. {
  3193. digitalWrite(CONTROLLERFAN_PIN, 0);
  3194. analogWrite(CONTROLLERFAN_PIN, 0);
  3195. }
  3196. else
  3197. {
  3198. // allows digital or PWM fan output to be used (see M42 handling)
  3199. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3200. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  3201. }
  3202. }
  3203. }
  3204. #endif
  3205. #ifdef TEMP_STAT_LEDS
  3206. static bool blue_led = false;
  3207. static bool red_led = false;
  3208. static uint32_t stat_update = 0;
  3209. void handle_status_leds(void) {
  3210. float max_temp = 0.0;
  3211. if(millis() > stat_update) {
  3212. stat_update += 500; // Update every 0.5s
  3213. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3214. max_temp = max(max_temp, degHotend(cur_extruder));
  3215. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  3216. }
  3217. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  3218. max_temp = max(max_temp, degTargetBed());
  3219. max_temp = max(max_temp, degBed());
  3220. #endif
  3221. if((max_temp > 55.0) && (red_led == false)) {
  3222. digitalWrite(STAT_LED_RED, 1);
  3223. digitalWrite(STAT_LED_BLUE, 0);
  3224. red_led = true;
  3225. blue_led = false;
  3226. }
  3227. if((max_temp < 54.0) && (blue_led == false)) {
  3228. digitalWrite(STAT_LED_RED, 0);
  3229. digitalWrite(STAT_LED_BLUE, 1);
  3230. red_led = false;
  3231. blue_led = true;
  3232. }
  3233. }
  3234. }
  3235. #endif
  3236. void manage_inactivity()
  3237. {
  3238. if(buflen < (BUFSIZE-1))
  3239. get_command();
  3240. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3241. if(max_inactive_time)
  3242. kill();
  3243. if(stepper_inactive_time) {
  3244. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3245. {
  3246. if(blocks_queued() == false) {
  3247. disable_x();
  3248. disable_y();
  3249. disable_z();
  3250. disable_e0();
  3251. disable_e1();
  3252. disable_e2();
  3253. }
  3254. }
  3255. }
  3256. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  3257. if (chdkActive)
  3258. {
  3259. chdkActive = false;
  3260. if (millis()-chdkHigh < CHDK_DELAY) return;
  3261. WRITE(CHDK, LOW);
  3262. }
  3263. #endif
  3264. #if defined(KILL_PIN) && KILL_PIN > -1
  3265. if( 0 == READ(KILL_PIN) )
  3266. kill();
  3267. #endif
  3268. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3269. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3270. #endif
  3271. #ifdef EXTRUDER_RUNOUT_PREVENT
  3272. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3273. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3274. {
  3275. bool oldstatus=READ(E0_ENABLE_PIN);
  3276. enable_e0();
  3277. float oldepos=current_position[E_AXIS];
  3278. float oldedes=destination[E_AXIS];
  3279. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3280. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3281. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3282. current_position[E_AXIS]=oldepos;
  3283. destination[E_AXIS]=oldedes;
  3284. plan_set_e_position(oldepos);
  3285. previous_millis_cmd=millis();
  3286. st_synchronize();
  3287. WRITE(E0_ENABLE_PIN,oldstatus);
  3288. }
  3289. #endif
  3290. #if defined(DUAL_X_CARRIAGE)
  3291. // handle delayed move timeout
  3292. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3293. {
  3294. // travel moves have been received so enact them
  3295. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3296. memcpy(destination,current_position,sizeof(destination));
  3297. prepare_move();
  3298. }
  3299. #endif
  3300. #ifdef TEMP_STAT_LEDS
  3301. handle_status_leds();
  3302. #endif
  3303. check_axes_activity();
  3304. }
  3305. void kill()
  3306. {
  3307. cli(); // Stop interrupts
  3308. disable_heater();
  3309. disable_x();
  3310. disable_y();
  3311. disable_z();
  3312. disable_e0();
  3313. disable_e1();
  3314. disable_e2();
  3315. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3316. pinMode(PS_ON_PIN,INPUT);
  3317. #endif
  3318. SERIAL_ERROR_START;
  3319. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3320. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3321. suicide();
  3322. while(1) { /* Intentionally left empty */ } // Wait for reset
  3323. }
  3324. void Stop()
  3325. {
  3326. disable_heater();
  3327. if(Stopped == false) {
  3328. Stopped = true;
  3329. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3330. SERIAL_ERROR_START;
  3331. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3332. LCD_MESSAGEPGM(MSG_STOPPED);
  3333. }
  3334. }
  3335. bool IsStopped() { return Stopped; };
  3336. #ifdef FAST_PWM_FAN
  3337. void setPwmFrequency(uint8_t pin, int val)
  3338. {
  3339. val &= 0x07;
  3340. switch(digitalPinToTimer(pin))
  3341. {
  3342. #if defined(TCCR0A)
  3343. case TIMER0A:
  3344. case TIMER0B:
  3345. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3346. // TCCR0B |= val;
  3347. break;
  3348. #endif
  3349. #if defined(TCCR1A)
  3350. case TIMER1A:
  3351. case TIMER1B:
  3352. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3353. // TCCR1B |= val;
  3354. break;
  3355. #endif
  3356. #if defined(TCCR2)
  3357. case TIMER2:
  3358. case TIMER2:
  3359. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3360. TCCR2 |= val;
  3361. break;
  3362. #endif
  3363. #if defined(TCCR2A)
  3364. case TIMER2A:
  3365. case TIMER2B:
  3366. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3367. TCCR2B |= val;
  3368. break;
  3369. #endif
  3370. #if defined(TCCR3A)
  3371. case TIMER3A:
  3372. case TIMER3B:
  3373. case TIMER3C:
  3374. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3375. TCCR3B |= val;
  3376. break;
  3377. #endif
  3378. #if defined(TCCR4A)
  3379. case TIMER4A:
  3380. case TIMER4B:
  3381. case TIMER4C:
  3382. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3383. TCCR4B |= val;
  3384. break;
  3385. #endif
  3386. #if defined(TCCR5A)
  3387. case TIMER5A:
  3388. case TIMER5B:
  3389. case TIMER5C:
  3390. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3391. TCCR5B |= val;
  3392. break;
  3393. #endif
  3394. }
  3395. }
  3396. #endif //FAST_PWM_FAN
  3397. bool setTargetedHotend(int code){
  3398. tmp_extruder = active_extruder;
  3399. if(code_seen('T')) {
  3400. tmp_extruder = code_value();
  3401. if(tmp_extruder >= EXTRUDERS) {
  3402. SERIAL_ECHO_START;
  3403. switch(code){
  3404. case 104:
  3405. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3406. break;
  3407. case 105:
  3408. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3409. break;
  3410. case 109:
  3411. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3412. break;
  3413. case 218:
  3414. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3415. break;
  3416. case 221:
  3417. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  3418. break;
  3419. }
  3420. SERIAL_ECHOLN(tmp_extruder);
  3421. return true;
  3422. }
  3423. }
  3424. return false;
  3425. }