123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305 |
- /*
- stepper.c - stepper motor driver: executes motion plans using stepper motors
- Part of Grbl
-
- Copyright (c) 2009-2011 Simen Svale Skogsrud
-
- Grbl is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- Grbl is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- #include "Marlin.h"
- #include "stepper.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
-
- //===========================================================================
- //============================= public variables ============================
- //===========================================================================
- block_t *current_block; // A pointer to the block currently being traced
-
-
- //===========================================================================
- //============================= private variables ===========================
- //===========================================================================
- //static makes it impossible to be called from outside of this file by extern.!
-
- // Variables used by The Stepper Driver Interrupt
- static unsigned char out_bits; // The next stepping-bits to be output
- static unsigned int cleaning_buffer_counter;
-
- #ifdef Z_DUAL_ENDSTOPS
- static bool performing_homing = false,
- locked_z_motor = false,
- locked_z2_motor = false;
- #endif
-
- // Counter variables for the bresenham line tracer
- static long counter_x, counter_y, counter_z, counter_e;
- volatile static unsigned long step_events_completed; // The number of step events executed in the current block
-
- #ifdef ADVANCE
- static long advance_rate, advance, final_advance = 0;
- static long old_advance = 0;
- static long e_steps[4];
- #endif
-
- static long acceleration_time, deceleration_time;
- //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
- static unsigned short acc_step_rate; // needed for deccelaration start point
- static char step_loops;
- static unsigned short OCR1A_nominal;
- static unsigned short step_loops_nominal;
-
- volatile long endstops_trigsteps[3] = { 0 };
- volatile long endstops_stepsTotal, endstops_stepsDone;
- static volatile bool endstop_x_hit = false;
- static volatile bool endstop_y_hit = false;
- static volatile bool endstop_z_hit = false;
-
- #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
- bool abort_on_endstop_hit = false;
- #endif
-
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
- #endif
-
- static bool old_x_min_endstop = false,
- old_x_max_endstop = false,
- old_y_min_endstop = false,
- old_y_max_endstop = false,
- old_z_min_endstop = false,
- #ifndef Z_DUAL_ENDSTOPS
- old_z_max_endstop = false;
- #else
- old_z_max_endstop = false,
- old_z2_min_endstop = false,
- old_z2_max_endstop = false;
- #endif
- #if defined Z_PROBE_AND_ENDSTOP
- old_z_probe_endstop = false;
- #endif
-
- static bool check_endstops = true;
-
- volatile long count_position[NUM_AXIS] = { 0 };
- volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
-
-
- //===========================================================================
- //================================ functions ================================
- //===========================================================================
-
- #ifdef DUAL_X_CARRIAGE
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
-
- #ifdef Y_DUAL_STEPPER_DRIVERS
- #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
- #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
-
- #ifdef Z_DUAL_STEPPER_DRIVERS
- #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
- #ifdef Z_DUAL_ENDSTOPS
- #define Z_APPLY_STEP(v,Q) \
- if (performing_homing) { \
- if (Z_HOME_DIR > 0) {\
- if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } else {\
- if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
- if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
- } \
- } else { \
- Z_STEP_WRITE(v); \
- Z2_STEP_WRITE(v); \
- }
- #else
- #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
-
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
-
- // intRes = intIn1 * intIn2 >> 16
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 24 bit result
- #define MultiU16X8toH16(intRes, charIn1, intIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %A1, %A2 \n\t" \
- "add %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r0 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (charIn1), \
- "d" (intIn2) \
- : \
- "r26" \
- )
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store the byte 1 of the 48bit result
- #define MultiU24X24toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
-
- void endstops_hit_on_purpose() {
- endstop_x_hit = endstop_y_hit = endstop_z_hit = false;
- }
-
- void checkHitEndstops() {
- if (endstop_x_hit || endstop_y_hit || endstop_z_hit) {
- SERIAL_ECHO_START;
- SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
- if (endstop_x_hit) {
- SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
- }
- if (endstop_y_hit) {
- SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
- }
- if (endstop_z_hit) {
- SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
- LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
- }
- SERIAL_EOL;
-
- endstops_hit_on_purpose();
-
- #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
- if (abort_on_endstop_hit) {
- card.sdprinting = false;
- card.closefile();
- quickStop();
- setTargetHotend0(0);
- setTargetHotend1(0);
- setTargetHotend2(0);
- setTargetHotend3(0);
- setTargetBed(0);
- }
- #endif
- }
- }
-
- void enable_endstops(bool check) { check_endstops = check; }
-
- // __________________________
- // /| |\ _________________ ^
- // / | | \ /| |\ |
- // / | | \ / | | \ s
- // / | | | | | \ p
- // / | | | | | \ e
- // +-----+------------------------+---+--+---------------+----+ e
- // | BLOCK 1 | BLOCK 2 | d
- //
- // time ----->
- //
- // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- // first block->accelerate_until step_events_completed, then keeps going at constant speed until
- // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- // The slope of acceleration is calculated with the leib ramp alghorithm.
-
- void st_wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
- unsigned short timer;
- if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
-
- if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
- step_rate = (step_rate >> 2) & 0x3fff;
- step_loops = 4;
- }
- else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
- step_rate = (step_rate >> 1) & 0x7fff;
- step_loops = 2;
- }
- else {
- step_loops = 1;
- }
-
- if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
- step_rate -= (F_CPU / 500000); // Correct for minimal speed
- if (step_rate >= (8 * 256)) { // higher step rate
- unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
- unsigned char tmp_step_rate = (step_rate & 0x00ff);
- unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
- MultiU16X8toH16(timer, tmp_step_rate, gain);
- timer = (unsigned short)pgm_read_word_near(table_address) - timer;
- }
- else { // lower step rates
- unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
- table_address += ((step_rate)>>1) & 0xfffc;
- timer = (unsigned short)pgm_read_word_near(table_address);
- timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
- }
- if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
- return timer;
- }
-
- // Initializes the trapezoid generator from the current block. Called whenever a new
- // block begins.
- FORCE_INLINE void trapezoid_generator_reset() {
- #ifdef ADVANCE
- advance = current_block->initial_advance;
- final_advance = current_block->final_advance;
- // Do E steps + advance steps
- e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
- old_advance = advance >>8;
- #endif
- deceleration_time = 0;
- // step_rate to timer interval
- OCR1A_nominal = calc_timer(current_block->nominal_rate);
- // make a note of the number of step loops required at nominal speed
- step_loops_nominal = step_loops;
- acc_step_rate = current_block->initial_rate;
- acceleration_time = calc_timer(acc_step_rate);
- OCR1A = acceleration_time;
-
- // SERIAL_ECHO_START;
- // SERIAL_ECHOPGM("advance :");
- // SERIAL_ECHO(current_block->advance/256.0);
- // SERIAL_ECHOPGM("advance rate :");
- // SERIAL_ECHO(current_block->advance_rate/256.0);
- // SERIAL_ECHOPGM("initial advance :");
- // SERIAL_ECHO(current_block->initial_advance/256.0);
- // SERIAL_ECHOPGM("final advance :");
- // SERIAL_ECHOLN(current_block->final_advance/256.0);
- }
-
- // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
- // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
- ISR(TIMER1_COMPA_vect) {
-
- if(cleaning_buffer_counter)
- {
- current_block = NULL;
- plan_discard_current_block();
- if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- cleaning_buffer_counter--;
- OCR1A = 200;
- return;
- }
-
- // If there is no current block, attempt to pop one from the buffer
- if (!current_block) {
- // Anything in the buffer?
- current_block = plan_get_current_block();
- if (current_block) {
- current_block->busy = true;
- trapezoid_generator_reset();
- counter_x = -(current_block->step_event_count >> 1);
- counter_y = counter_z = counter_e = counter_x;
- step_events_completed = 0;
-
- #ifdef Z_LATE_ENABLE
- if (current_block->steps[Z_AXIS] > 0) {
- enable_z();
- OCR1A = 2000; //1ms wait
- return;
- }
- #endif
-
- // #ifdef ADVANCE
- // e_steps[current_block->active_extruder] = 0;
- // #endif
- }
- else {
- OCR1A = 2000; // 1kHz.
- }
- }
-
- if (current_block != NULL) {
- // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
- out_bits = current_block->direction_bits;
-
- // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
- if (TEST(out_bits, X_AXIS)) {
- X_APPLY_DIR(INVERT_X_DIR,0);
- count_direction[X_AXIS] = -1;
- }
- else {
- X_APPLY_DIR(!INVERT_X_DIR,0);
- count_direction[X_AXIS] = 1;
- }
-
- if (TEST(out_bits, Y_AXIS)) {
- Y_APPLY_DIR(INVERT_Y_DIR,0);
- count_direction[Y_AXIS] = -1;
- }
- else {
- Y_APPLY_DIR(!INVERT_Y_DIR,0);
- count_direction[Y_AXIS] = 1;
- }
-
- #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
- bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
- if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
- endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
- endstop_## axis ##_hit = true; \
- step_events_completed = current_block->step_event_count; \
- } \
- old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
-
- // Check X and Y endstops
- if (check_endstops) {
- #ifdef COREXY
- // Head direction in -X axis for CoreXY bots.
- // If DeltaX == -DeltaY, the movement is only in Y axis
- if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS)))
- if (TEST(out_bits, X_HEAD))
- #else
- if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
- #endif
- { // -direction
- #ifdef DUAL_X_CARRIAGE
- // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
- if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
- #endif
- {
- #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
- UPDATE_ENDSTOP(x, X, min, MIN);
- #endif
- }
- }
- else { // +direction
- #ifdef DUAL_X_CARRIAGE
- // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
- if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
- #endif
- {
- #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
- UPDATE_ENDSTOP(x, X, max, MAX);
- #endif
- }
- }
- #ifdef COREXY
- // Head direction in -Y axis for CoreXY bots.
- // If DeltaX == DeltaY, the movement is only in X axis
- if (current_block->steps[A_AXIS] != current_block->steps[B_AXIS] || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS)))
- if (TEST(out_bits, Y_HEAD))
- #else
- if (TEST(out_bits, Y_AXIS)) // -direction
- #endif
- { // -direction
- #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
- UPDATE_ENDSTOP(y, Y, min, MIN);
- #endif
- }
- else { // +direction
- #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
- UPDATE_ENDSTOP(y, Y, max, MAX);
- #endif
- }
- }
-
- if (TEST(out_bits, Z_AXIS)) { // -direction
- Z_APPLY_DIR(INVERT_Z_DIR,0);
- count_direction[Z_AXIS] = -1;
- if (check_endstops)
- {
- #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
- #ifndef Z_DUAL_ENDSTOPS
- UPDATE_ENDSTOP(z, Z, min, MIN);
- #else
- bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
- #if defined(Z2_MIN_PIN) && Z2_MIN_PIN > -1
- bool z2_min_endstop=(READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING);
- #else
- bool z2_min_endstop=z_min_endstop;
- #endif
- if(((z_min_endstop && old_z_min_endstop) || (z2_min_endstop && old_z2_min_endstop)) && (current_block->steps[Z_AXIS] > 0))
- {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
- if (!(performing_homing) || ((performing_homing)&&(z_min_endstop && old_z_min_endstop)&&(z2_min_endstop && old_z2_min_endstop))) //if not performing home or if both endstops were trigged during homing...
- {
- step_events_completed = current_block->step_event_count;
- }
- }
- old_z_min_endstop = z_min_endstop;
- old_z2_min_endstop = z2_min_endstop;
- #endif
- #endif
-
- #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
- UPDATE_ENDSTOP(z, Z, probe, PROBE);
- bool z_probe_endstop(READ(Z_PROBE_PIN) != Z_MIN_ENDSTOP_INVERTING);
- if(z_probe_endstop && old_z_probe_endstop)
- {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
-
- // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
-
-
- if (!(performing_homing)) //if not performing home
- {
- step_events_completed = current_block->step_event_count;
- }
- }
- old_z_probe_endstop = z_probe_endstop;
- old_z2_probe_endstop = z2_probe_endstop;
- #endif
- }
- }
- else { // +direction
- Z_APPLY_DIR(!INVERT_Z_DIR,0);
- count_direction[Z_AXIS] = 1;
- if (check_endstops) {
- #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
- #ifndef Z_DUAL_ENDSTOPS
- UPDATE_ENDSTOP(z, Z, max, MAX);
- #else
- bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
- #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
- bool z2_max_endstop=(READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING);
- #else
- bool z2_max_endstop=z_max_endstop;
- #endif
- if(((z_max_endstop && old_z_max_endstop) || (z2_max_endstop && old_z2_max_endstop)) && (current_block->steps[Z_AXIS] > 0))
- {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
-
- // if (z_max_endstop && old_z_max_endstop) SERIAL_ECHOLN("z_max_endstop = true");
- // if (z2_max_endstop && old_z2_max_endstop) SERIAL_ECHOLN("z2_max_endstop = true");
-
-
- if (!(performing_homing) || ((performing_homing)&&(z_max_endstop && old_z_max_endstop)&&(z2_max_endstop && old_z2_max_endstop))) //if not performing home or if both endstops were trigged during homing...
- {
- step_events_completed = current_block->step_event_count;
- }
- }
- old_z_max_endstop = z_max_endstop;
- old_z2_max_endstop = z2_max_endstop;
- #endif
- #endif
-
- #if defined(Z_PROBE_PIN) && Z_PROBE_PIN > -1
- UPDATE_ENDSTOP(z, Z, probe, PROBE);
- bool z_probe_endstop(READ(Z_PROBE_PIN) != Z_MAX_ENDSTOP_INVERTING);
- if(z_probe_endstop && old_z_probe_endstop)
- {
- endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
- endstop_z_hit=true;
-
- // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
-
-
- if (!(performing_homing)) //if not performing home
- {
- step_events_completed = current_block->step_event_count;
- }
- }
- old_z_probe_endstop = z_probe_endstop;
- old_z2_probe_endstop = z2_probe_endstop;
- #endif
- }
- }
-
- #ifndef ADVANCE
- if (TEST(out_bits, E_AXIS)) { // -direction
- REV_E_DIR();
- count_direction[E_AXIS]=-1;
- }
- else { // +direction
- NORM_E_DIR();
- count_direction[E_AXIS]=1;
- }
- #endif //!ADVANCE
-
- // Take multiple steps per interrupt (For high speed moves)
- for (int8_t i=0; i < step_loops; i++) {
- #ifndef AT90USB
- MSerial.checkRx(); // Check for serial chars.
- #endif
-
- #ifdef ADVANCE
- counter_e += current_block->steps[E_AXIS];
- if (counter_e > 0) {
- counter_e -= current_block->step_event_count;
- e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
- }
- #endif //ADVANCE
-
- #ifdef CONFIG_STEPPERS_TOSHIBA
- /**
- * The Toshiba stepper controller require much longer pulses.
- * So we 'stage' decompose the pulses between high and low
- * instead of doing each in turn. The extra tests add enough
- * lag to allow it work with without needing NOPs
- */
- #define STEP_ADD(axis, AXIS) \
- counter_## axis += current_block->steps[AXIS ##_AXIS]; \
- if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
- STEP_ADD(x,X);
- STEP_ADD(y,Y);
- STEP_ADD(z,Z);
- #ifndef ADVANCE
- STEP_ADD(e,E);
- #endif
-
- #define STEP_IF_COUNTER(axis, AXIS) \
- if (counter_## axis > 0) { \
- counter_## axis -= current_block->step_event_count; \
- count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
- AXIS ##_STEP_WRITE(LOW); \
- }
-
- STEP_IF_COUNTER(x, X);
- STEP_IF_COUNTER(y, Y);
- STEP_IF_COUNTER(z, Z);
- #ifndef ADVANCE
- STEP_IF_COUNTER(e, E);
- #endif
-
- #else // !CONFIG_STEPPERS_TOSHIBA
-
- #define APPLY_MOVEMENT(axis, AXIS) \
- counter_## axis += current_block->steps[AXIS ##_AXIS]; \
- if (counter_## axis > 0) { \
- AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
- counter_## axis -= current_block->step_event_count; \
- count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
- AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
- }
-
- APPLY_MOVEMENT(x, X);
- APPLY_MOVEMENT(y, Y);
- APPLY_MOVEMENT(z, Z);
- #ifndef ADVANCE
- APPLY_MOVEMENT(e, E);
- #endif
-
- #endif // CONFIG_STEPPERS_TOSHIBA
- step_events_completed++;
- if (step_events_completed >= current_block->step_event_count) break;
- }
- // Calculate new timer value
- unsigned short timer;
- unsigned short step_rate;
- if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
-
- MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- if (acc_step_rate > current_block->nominal_rate)
- acc_step_rate = current_block->nominal_rate;
-
- // step_rate to timer interval
- timer = calc_timer(acc_step_rate);
- OCR1A = timer;
- acceleration_time += timer;
- #ifdef ADVANCE
- for(int8_t i=0; i < step_loops; i++) {
- advance += advance_rate;
- }
- //if (advance > current_block->advance) advance = current_block->advance;
- // Do E steps + advance steps
- e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
- old_advance = advance >>8;
-
- #endif
- }
- else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
- MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if (step_rate > acc_step_rate) { // Check step_rate stays positive
- step_rate = current_block->final_rate;
- }
- else {
- step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
- }
-
- // lower limit
- if (step_rate < current_block->final_rate)
- step_rate = current_block->final_rate;
-
- // step_rate to timer interval
- timer = calc_timer(step_rate);
- OCR1A = timer;
- deceleration_time += timer;
- #ifdef ADVANCE
- for(int8_t i=0; i < step_loops; i++) {
- advance -= advance_rate;
- }
- if (advance < final_advance) advance = final_advance;
- // Do E steps + advance steps
- e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
- old_advance = advance >>8;
- #endif //ADVANCE
- }
- else {
- OCR1A = OCR1A_nominal;
- // ensure we're running at the correct step rate, even if we just came off an acceleration
- step_loops = step_loops_nominal;
- }
-
- // If current block is finished, reset pointer
- if (step_events_completed >= current_block->step_event_count) {
- current_block = NULL;
- plan_discard_current_block();
- }
- }
- }
-
- #ifdef ADVANCE
- unsigned char old_OCR0A;
- // Timer interrupt for E. e_steps is set in the main routine;
- // Timer 0 is shared with millies
- ISR(TIMER0_COMPA_vect)
- {
- old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
- OCR0A = old_OCR0A;
- // Set E direction (Depends on E direction + advance)
- for(unsigned char i=0; i<4;i++) {
- if (e_steps[0] != 0) {
- E0_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[0] < 0) {
- E0_DIR_WRITE(INVERT_E0_DIR);
- e_steps[0]++;
- E0_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[0] > 0) {
- E0_DIR_WRITE(!INVERT_E0_DIR);
- e_steps[0]--;
- E0_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #if EXTRUDERS > 1
- if (e_steps[1] != 0) {
- E1_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[1] < 0) {
- E1_DIR_WRITE(INVERT_E1_DIR);
- e_steps[1]++;
- E1_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[1] > 0) {
- E1_DIR_WRITE(!INVERT_E1_DIR);
- e_steps[1]--;
- E1_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #endif
- #if EXTRUDERS > 2
- if (e_steps[2] != 0) {
- E2_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[2] < 0) {
- E2_DIR_WRITE(INVERT_E2_DIR);
- e_steps[2]++;
- E2_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[2] > 0) {
- E2_DIR_WRITE(!INVERT_E2_DIR);
- e_steps[2]--;
- E2_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #endif
- #if EXTRUDERS > 3
- if (e_steps[3] != 0) {
- E3_STEP_WRITE(INVERT_E_STEP_PIN);
- if (e_steps[3] < 0) {
- E3_DIR_WRITE(INVERT_E3_DIR);
- e_steps[3]++;
- E3_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- else if (e_steps[3] > 0) {
- E3_DIR_WRITE(!INVERT_E3_DIR);
- e_steps[3]--;
- E3_STEP_WRITE(!INVERT_E_STEP_PIN);
- }
- }
- #endif
-
- }
- }
- #endif // ADVANCE
-
- void st_init() {
- digipot_init(); //Initialize Digipot Motor Current
- microstep_init(); //Initialize Microstepping Pins
-
- // initialise TMC Steppers
- #ifdef HAVE_TMCDRIVER
- tmc_init();
- #endif
- // initialise L6470 Steppers
- #ifdef HAVE_L6470DRIVER
- L6470_init();
- #endif
-
- // Initialize Dir Pins
- #if defined(X_DIR_PIN) && X_DIR_PIN >= 0
- X_DIR_INIT;
- #endif
- #if defined(X2_DIR_PIN) && X2_DIR_PIN >= 0
- X2_DIR_INIT;
- #endif
- #if defined(Y_DIR_PIN) && Y_DIR_PIN >= 0
- Y_DIR_INIT;
- #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && Y2_DIR_PIN >= 0
- Y2_DIR_INIT;
- #endif
- #endif
- #if defined(Z_DIR_PIN) && Z_DIR_PIN >= 0
- Z_DIR_INIT;
- #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && Z2_DIR_PIN >= 0
- Z2_DIR_INIT;
- #endif
- #endif
- #if defined(E0_DIR_PIN) && E0_DIR_PIN >= 0
- E0_DIR_INIT;
- #endif
- #if defined(E1_DIR_PIN) && E1_DIR_PIN >= 0
- E1_DIR_INIT;
- #endif
- #if defined(E2_DIR_PIN) && E2_DIR_PIN >= 0
- E2_DIR_INIT;
- #endif
- #if defined(E3_DIR_PIN) && E3_DIR_PIN >= 0
- E3_DIR_INIT;
- #endif
-
- //Initialize Enable Pins - steppers default to disabled.
-
- #if defined(X_ENABLE_PIN) && X_ENABLE_PIN >= 0
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #endif
- #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN >= 0
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN >= 0
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
-
- #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && Y2_ENABLE_PIN >= 0
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN >= 0
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
-
- #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && Z2_ENABLE_PIN >= 0
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if defined(E0_ENABLE_PIN) && E0_ENABLE_PIN >= 0
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if defined(E1_ENABLE_PIN) && E1_ENABLE_PIN >= 0
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if defined(E2_ENABLE_PIN) && E2_ENABLE_PIN >= 0
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if defined(E3_ENABLE_PIN) && E3_ENABLE_PIN >= 0
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
-
- //endstops and pullups
-
- #if defined(X_MIN_PIN) && X_MIN_PIN >= 0
- SET_INPUT(X_MIN_PIN);
- #ifdef ENDSTOPPULLUP_XMIN
- WRITE(X_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if defined(Y_MIN_PIN) && Y_MIN_PIN >= 0
- SET_INPUT(Y_MIN_PIN);
- #ifdef ENDSTOPPULLUP_YMIN
- WRITE(Y_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if defined(Z_MIN_PIN) && Z_MIN_PIN >= 0
- SET_INPUT(Z_MIN_PIN);
- #ifdef ENDSTOPPULLUP_ZMIN
- WRITE(Z_MIN_PIN,HIGH);
- #endif
- #endif
-
- #if defined(X_MAX_PIN) && X_MAX_PIN >= 0
- SET_INPUT(X_MAX_PIN);
- #ifdef ENDSTOPPULLUP_XMAX
- WRITE(X_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if defined(Y_MAX_PIN) && Y_MAX_PIN >= 0
- SET_INPUT(Y_MAX_PIN);
- #ifdef ENDSTOPPULLUP_YMAX
- WRITE(Y_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if defined(Z_MAX_PIN) && Z_MAX_PIN >= 0
- SET_INPUT(Z_MAX_PIN);
- #ifdef ENDSTOPPULLUP_ZMAX
- WRITE(Z_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if defined(Z2_MAX_PIN) && Z2_MAX_PIN >= 0
- SET_INPUT(Z2_MAX_PIN);
- #ifdef ENDSTOPPULLUP_ZMAX
- WRITE(Z2_MAX_PIN,HIGH);
- #endif
- #endif
-
- #if defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0
- SET_INPUT(Z_PROBE_PIN);
- #ifdef ENDSTOPPULLUP_ZPROBE
- WRITE(Z_PROBE_PIN,HIGH);
- #endif
- #endif
-
- #define AXIS_INIT(axis, AXIS, PIN) \
- AXIS ##_STEP_INIT; \
- AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
- disable_## axis()
-
- #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
-
- // Initialize Step Pins
- #if defined(X_STEP_PIN) && X_STEP_PIN >= 0
- AXIS_INIT(x, X, X);
- #endif
- #if defined(X2_STEP_PIN) && X2_STEP_PIN >= 0
- AXIS_INIT(x, X2, X);
- #endif
- #if defined(Y_STEP_PIN) && Y_STEP_PIN >= 0
- #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && Y2_STEP_PIN >= 0
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(y, Y, Y);
- #endif
- #if defined(Z_STEP_PIN) && Z_STEP_PIN >= 0
- #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && Z2_STEP_PIN >= 0
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(z, Z, Z);
- #endif
- #if defined(E0_STEP_PIN) && E0_STEP_PIN >= 0
- E_AXIS_INIT(0);
- #endif
- #if defined(E1_STEP_PIN) && E1_STEP_PIN >= 0
- E_AXIS_INIT(1);
- #endif
- #if defined(E2_STEP_PIN) && E2_STEP_PIN >= 0
- E_AXIS_INIT(2);
- #endif
- #if defined(E3_STEP_PIN) && E3_STEP_PIN >= 0
- E_AXIS_INIT(3);
- #endif
-
- // waveform generation = 0100 = CTC
- TCCR1B &= ~BIT(WGM13);
- TCCR1B |= BIT(WGM12);
- TCCR1A &= ~BIT(WGM11);
- TCCR1A &= ~BIT(WGM10);
-
- // output mode = 00 (disconnected)
- TCCR1A &= ~(3<<COM1A0);
- TCCR1A &= ~(3<<COM1B0);
-
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
-
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-
- #ifdef ADVANCE
- #if defined(TCCR0A) && defined(WGM01)
- TCCR0A &= ~BIT(WGM01);
- TCCR0A &= ~BIT(WGM00);
- #endif
- e_steps[0] = 0;
- e_steps[1] = 0;
- e_steps[2] = 0;
- e_steps[3] = 0;
- TIMSK0 |= BIT(OCIE0A);
- #endif //ADVANCE
-
- enable_endstops(true); // Start with endstops active. After homing they can be disabled
- sei();
- }
-
-
- // Block until all buffered steps are executed
- void st_synchronize() {
- while (blocks_queued()) {
- manage_heater();
- manage_inactivity();
- lcd_update();
- }
- }
-
- void st_set_position(const long &x, const long &y, const long &z, const long &e) {
- CRITICAL_SECTION_START;
- count_position[X_AXIS] = x;
- count_position[Y_AXIS] = y;
- count_position[Z_AXIS] = z;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- void st_set_e_position(const long &e) {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- long st_get_position(uint8_t axis) {
- long count_pos;
- CRITICAL_SECTION_START;
- count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
-
- #ifdef ENABLE_AUTO_BED_LEVELING
-
- float st_get_position_mm(uint8_t axis) {
- float steper_position_in_steps = st_get_position(axis);
- return steper_position_in_steps / axis_steps_per_unit[axis];
- }
-
- #endif // ENABLE_AUTO_BED_LEVELING
-
- void finishAndDisableSteppers() {
- st_synchronize();
- disable_x();
- disable_y();
- disable_z();
- disable_e0();
- disable_e1();
- disable_e2();
- disable_e3();
- }
-
- void quickStop() {
- cleaning_buffer_counter = 5000;
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- while (blocks_queued()) plan_discard_current_block();
- current_block = NULL;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- #ifdef BABYSTEPPING
-
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void babystep(const uint8_t axis, const bool direction) {
-
- #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
- enable_## axis(); \
- uint8_t old_pin = AXIS ##_DIR_READ; \
- AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
- AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
- _delay_us(1U); \
- AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
- AXIS ##_APPLY_DIR(old_pin, true); \
- }
-
- switch(axis) {
-
- case X_AXIS:
- BABYSTEP_AXIS(x, X, false);
- break;
-
- case Y_AXIS:
- BABYSTEP_AXIS(y, Y, false);
- break;
-
- case Z_AXIS: {
-
- #ifndef DELTA
-
- BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
-
- #else // DELTA
-
- bool z_direction = direction ^ BABYSTEP_INVERT_Z;
-
- enable_x();
- enable_y();
- enable_z();
- uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
- //setup new step
- X_DIR_WRITE(INVERT_X_DIR^z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
- //perform step
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
- _delay_us(1U);
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
- //get old pin state back.
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
-
- #endif
-
- } break;
-
- default: break;
- }
- }
-
- #endif //BABYSTEPPING
-
- // From Arduino DigitalPotControl example
- void digitalPotWrite(int address, int value) {
- #if HAS_DIGIPOTSS
- digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
- SPI.transfer(address); // send in the address and value via SPI:
- SPI.transfer(value);
- digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
- //delay(10);
- #endif
- }
-
- // Initialize Digipot Motor Current
- void digipot_init() {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
-
- SPI.begin();
- pinMode(DIGIPOTSS_PIN, OUTPUT);
- for (int i = 0; i <= 4; i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i,digipot_motor_current[i]);
- }
- #endif
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
- pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
- pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
- digipot_current(0, motor_current_setting[0]);
- digipot_current(1, motor_current_setting[1]);
- digipot_current(2, motor_current_setting[2]);
- //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
- #endif
- }
-
- void digipot_current(uint8_t driver, int current) {
- #if HAS_DIGIPOTSS
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
- #endif
- #ifdef MOTOR_CURRENT_PWM_XY_PIN
- switch(driver) {
- case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
- case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
- case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
- }
- #endif
- }
-
- void microstep_init() {
- #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
- pinMode(E1_MS1_PIN,OUTPUT);
- pinMode(E1_MS2_PIN,OUTPUT);
- #endif
-
- #if defined(X_MS1_PIN) && X_MS1_PIN >= 0
- pinMode(X_MS1_PIN,OUTPUT);
- pinMode(X_MS2_PIN,OUTPUT);
- pinMode(Y_MS1_PIN,OUTPUT);
- pinMode(Y_MS2_PIN,OUTPUT);
- pinMode(Z_MS1_PIN,OUTPUT);
- pinMode(Z_MS2_PIN,OUTPUT);
- pinMode(E0_MS1_PIN,OUTPUT);
- pinMode(E0_MS2_PIN,OUTPUT);
- const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (int i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
- microstep_mode(i, microstep_modes[i]);
- #endif
- }
-
- void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
- if (ms1 >= 0) switch(driver) {
- case 0: digitalWrite(X_MS1_PIN, ms1); break;
- case 1: digitalWrite(Y_MS1_PIN, ms1); break;
- case 2: digitalWrite(Z_MS1_PIN, ms1); break;
- case 3: digitalWrite(E0_MS1_PIN, ms1); break;
- #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
- case 4: digitalWrite(E1_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch(driver) {
- case 0: digitalWrite(X_MS2_PIN, ms2); break;
- case 1: digitalWrite(Y_MS2_PIN, ms2); break;
- case 2: digitalWrite(Z_MS2_PIN, ms2); break;
- case 3: digitalWrite(E0_MS2_PIN, ms2); break;
- #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
- case 4: digitalWrite(E1_MS2_PIN, ms2); break;
- #endif
- }
- }
-
- void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
- switch(stepping_mode) {
- case 1: microstep_ms(driver,MICROSTEP1); break;
- case 2: microstep_ms(driver,MICROSTEP2); break;
- case 4: microstep_ms(driver,MICROSTEP4); break;
- case 8: microstep_ms(driver,MICROSTEP8); break;
- case 16: microstep_ms(driver,MICROSTEP16); break;
- }
- }
-
- void microstep_readings() {
- SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
- #if defined(E1_MS1_PIN) && E1_MS1_PIN >= 0
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
- #endif
- }
-
- #ifdef Z_DUAL_ENDSTOPS
- void In_Homing_Process(bool state) { performing_homing = state; }
- void Lock_z_motor(bool state) { locked_z_motor = state; }
- void Lock_z2_motor(bool state) { locked_z2_motor = state; }
- #endif
|