My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin.pde 55KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "planner.h"
  26. #include "stepper.h"
  27. #include "temperature.h"
  28. #include "motion_control.h"
  29. #include "cardreader.h"
  30. #include "watchdog.h"
  31. #include "EEPROMwrite.h"
  32. #include "language.h"
  33. #include "pins_arduino.h"
  34. #define VERSION_STRING "1.0.0"
  35. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  36. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. //Implemented Codes
  38. //-------------------
  39. // G0 -> G1
  40. // G1 - Coordinated Movement X Y Z E
  41. // G2 - CW ARC
  42. // G3 - CCW ARC
  43. // G4 - Dwell S<seconds> or P<milliseconds>
  44. // G10 - retract filament according to settings of M207
  45. // G11 - retract recover filament according to settings of M208
  46. // G28 - Home all Axis
  47. // G90 - Use Absolute Coordinates
  48. // G91 - Use Relative Coordinates
  49. // G92 - Set current position to cordinates given
  50. //RepRap M Codes
  51. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  52. // M1 - Same as M0
  53. // M104 - Set extruder target temp
  54. // M105 - Read current temp
  55. // M106 - Fan on
  56. // M107 - Fan off
  57. // M109 - Wait for extruder current temp to reach target temp.
  58. // M114 - Display current position
  59. //Custom M Codes
  60. // M17 - Enable/Power all stepper motors
  61. // M18 - Disable all stepper motors; same as M84
  62. // M20 - List SD card
  63. // M21 - Init SD card
  64. // M22 - Release SD card
  65. // M23 - Select SD file (M23 filename.g)
  66. // M24 - Start/resume SD print
  67. // M25 - Pause SD print
  68. // M26 - Set SD position in bytes (M26 S12345)
  69. // M27 - Report SD print status
  70. // M28 - Start SD write (M28 filename.g)
  71. // M29 - Stop SD write
  72. // M30 - Delete file from SD (M30 filename.g)
  73. // M31 - Output time since last M109 or SD card start to serial
  74. // M42 - Change pin status via gcode
  75. // M80 - Turn on Power Supply
  76. // M81 - Turn off Power Supply
  77. // M82 - Set E codes absolute (default)
  78. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  79. // M84 - Disable steppers until next move,
  80. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  81. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  82. // M92 - Set axis_steps_per_unit - same syntax as G92
  83. // M114 - Output current position to serial port
  84. // M115 - Capabilities string
  85. // M117 - display message
  86. // M119 - Output Endstop status to serial port
  87. // M140 - Set bed target temp
  88. // M190 - Wait for bed current temp to reach target temp.
  89. // M200 - Set filament diameter
  90. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  91. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  92. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  93. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  94. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  95. // M206 - set additional homeing offset
  96. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  97. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  98. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  99. // M220 S<factor in percent>- set speed factor override percentage
  100. // M221 S<factor in percent>- set extrude factor override percentage
  101. // M240 - Trigger a camera to take a photograph
  102. // M301 - Set PID parameters P I and D
  103. // M302 - Allow cold extrudes
  104. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  105. // M400 - Finish all moves
  106. // M500 - stores paramters in EEPROM
  107. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  108. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  109. // M503 - print the current settings (from memory not from eeprom)
  110. // M999 - Restart after being stopped by error
  111. //Stepper Movement Variables
  112. //===========================================================================
  113. //=============================imported variables============================
  114. //===========================================================================
  115. //===========================================================================
  116. //=============================public variables=============================
  117. //===========================================================================
  118. #ifdef SDSUPPORT
  119. CardReader card;
  120. #endif
  121. float homing_feedrate[] = HOMING_FEEDRATE;
  122. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  123. volatile int feedmultiply=100; //100->1 200->2
  124. int saved_feedmultiply;
  125. volatile bool feedmultiplychanged=false;
  126. volatile int extrudemultiply=100; //100->1 200->2
  127. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  128. float add_homeing[3]={0,0,0};
  129. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  130. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  131. uint8_t active_extruder = 0;
  132. unsigned char FanSpeed=0;
  133. #ifdef FWRETRACT
  134. bool autoretract_enabled=true;
  135. bool retracted=false;
  136. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  137. float retract_recover_length=0, retract_recover_feedrate=8*60;
  138. #endif
  139. //===========================================================================
  140. //=============================private variables=============================
  141. //===========================================================================
  142. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  143. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  144. static float offset[3] = {0.0, 0.0, 0.0};
  145. static bool home_all_axis = true;
  146. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  147. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  148. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  149. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  150. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  151. static bool fromsd[BUFSIZE];
  152. static int bufindr = 0;
  153. static int bufindw = 0;
  154. static int buflen = 0;
  155. //static int i = 0;
  156. static char serial_char;
  157. static int serial_count = 0;
  158. static boolean comment_mode = false;
  159. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  160. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  161. //static float tt = 0;
  162. //static float bt = 0;
  163. //Inactivity shutdown variables
  164. static unsigned long previous_millis_cmd = 0;
  165. static unsigned long max_inactive_time = 0;
  166. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  167. static unsigned long starttime=0;
  168. static unsigned long stoptime=0;
  169. static uint8_t tmp_extruder;
  170. bool Stopped=false;
  171. //===========================================================================
  172. //=============================ROUTINES=============================
  173. //===========================================================================
  174. void get_arc_coordinates();
  175. void serial_echopair_P(const char *s_P, float v)
  176. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  177. void serial_echopair_P(const char *s_P, double v)
  178. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  179. void serial_echopair_P(const char *s_P, unsigned long v)
  180. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  181. extern "C"{
  182. extern unsigned int __bss_end;
  183. extern unsigned int __heap_start;
  184. extern void *__brkval;
  185. int freeMemory() {
  186. int free_memory;
  187. if((int)__brkval == 0)
  188. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  189. else
  190. free_memory = ((int)&free_memory) - ((int)__brkval);
  191. return free_memory;
  192. }
  193. }
  194. //adds an command to the main command buffer
  195. //thats really done in a non-safe way.
  196. //needs overworking someday
  197. void enquecommand(const char *cmd)
  198. {
  199. if(buflen < BUFSIZE)
  200. {
  201. //this is dangerous if a mixing of serial and this happsens
  202. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  203. SERIAL_ECHO_START;
  204. SERIAL_ECHOPGM("enqueing \"");
  205. SERIAL_ECHO(cmdbuffer[bufindw]);
  206. SERIAL_ECHOLNPGM("\"");
  207. bufindw= (bufindw + 1)%BUFSIZE;
  208. buflen += 1;
  209. }
  210. }
  211. void setup_photpin()
  212. {
  213. #ifdef PHOTOGRAPH_PIN
  214. #if (PHOTOGRAPH_PIN > -1)
  215. SET_OUTPUT(PHOTOGRAPH_PIN);
  216. WRITE(PHOTOGRAPH_PIN, LOW);
  217. #endif
  218. #endif
  219. }
  220. void setup_powerhold()
  221. {
  222. #ifdef SUICIDE_PIN
  223. #if (SUICIDE_PIN> -1)
  224. SET_OUTPUT(SUICIDE_PIN);
  225. WRITE(SUICIDE_PIN, HIGH);
  226. #endif
  227. #endif
  228. }
  229. void suicide()
  230. {
  231. #ifdef SUICIDE_PIN
  232. #if (SUICIDE_PIN> -1)
  233. SET_OUTPUT(SUICIDE_PIN);
  234. WRITE(SUICIDE_PIN, LOW);
  235. #endif
  236. #endif
  237. }
  238. void setup()
  239. {
  240. setup_powerhold();
  241. MYSERIAL.begin(BAUDRATE);
  242. SERIAL_PROTOCOLLNPGM("start");
  243. SERIAL_ECHO_START;
  244. // Check startup - does nothing if bootloader sets MCUSR to 0
  245. byte mcu = MCUSR;
  246. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  247. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  248. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  249. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  250. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  251. MCUSR=0;
  252. SERIAL_ECHOPGM(MSG_MARLIN);
  253. SERIAL_ECHOLNPGM(VERSION_STRING);
  254. #ifdef STRING_VERSION_CONFIG_H
  255. #ifdef STRING_CONFIG_H_AUTHOR
  256. SERIAL_ECHO_START;
  257. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  258. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  259. SERIAL_ECHOPGM(MSG_AUTHOR);
  260. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  261. #endif
  262. #endif
  263. SERIAL_ECHO_START;
  264. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  265. SERIAL_ECHO(freeMemory());
  266. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  267. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  268. for(int8_t i = 0; i < BUFSIZE; i++)
  269. {
  270. fromsd[i] = false;
  271. }
  272. EEPROM_RetrieveSettings(); // loads data from EEPROM if available
  273. for(int8_t i=0; i < NUM_AXIS; i++)
  274. {
  275. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  276. }
  277. tp_init(); // Initialize temperature loop
  278. plan_init(); // Initialize planner;
  279. st_init(); // Initialize stepper;
  280. wd_init();
  281. setup_photpin();
  282. LCD_INIT;
  283. }
  284. void loop()
  285. {
  286. if(buflen < (BUFSIZE-1))
  287. get_command();
  288. #ifdef SDSUPPORT
  289. card.checkautostart(false);
  290. #endif
  291. if(buflen)
  292. {
  293. #ifdef SDSUPPORT
  294. if(card.saving)
  295. {
  296. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  297. {
  298. card.write_command(cmdbuffer[bufindr]);
  299. SERIAL_PROTOCOLLNPGM(MSG_OK);
  300. }
  301. else
  302. {
  303. card.closefile();
  304. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  305. }
  306. }
  307. else
  308. {
  309. process_commands();
  310. }
  311. #else
  312. process_commands();
  313. #endif //SDSUPPORT
  314. buflen = (buflen-1);
  315. bufindr = (bufindr + 1)%BUFSIZE;
  316. }
  317. //check heater every n milliseconds
  318. manage_heater();
  319. manage_inactivity(1);
  320. checkHitEndstops();
  321. LCD_STATUS;
  322. }
  323. void get_command()
  324. {
  325. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  326. serial_char = MYSERIAL.read();
  327. if(serial_char == '\n' ||
  328. serial_char == '\r' ||
  329. (serial_char == ':' && comment_mode == false) ||
  330. serial_count >= (MAX_CMD_SIZE - 1) )
  331. {
  332. if(!serial_count) { //if empty line
  333. comment_mode = false; //for new command
  334. return;
  335. }
  336. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  337. if(!comment_mode){
  338. comment_mode = false; //for new command
  339. fromsd[bufindw] = false;
  340. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  341. {
  342. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  343. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  344. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  345. SERIAL_ERROR_START;
  346. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  347. SERIAL_ERRORLN(gcode_LastN);
  348. //Serial.println(gcode_N);
  349. FlushSerialRequestResend();
  350. serial_count = 0;
  351. return;
  352. }
  353. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  354. {
  355. byte checksum = 0;
  356. byte count = 0;
  357. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  358. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  359. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  360. SERIAL_ERROR_START;
  361. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  362. SERIAL_ERRORLN(gcode_LastN);
  363. FlushSerialRequestResend();
  364. serial_count = 0;
  365. return;
  366. }
  367. //if no errors, continue parsing
  368. }
  369. else
  370. {
  371. SERIAL_ERROR_START;
  372. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  373. SERIAL_ERRORLN(gcode_LastN);
  374. FlushSerialRequestResend();
  375. serial_count = 0;
  376. return;
  377. }
  378. gcode_LastN = gcode_N;
  379. //if no errors, continue parsing
  380. }
  381. else // if we don't receive 'N' but still see '*'
  382. {
  383. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  384. {
  385. SERIAL_ERROR_START;
  386. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  387. SERIAL_ERRORLN(gcode_LastN);
  388. serial_count = 0;
  389. return;
  390. }
  391. }
  392. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  393. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  394. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  395. case 0:
  396. case 1:
  397. case 2:
  398. case 3:
  399. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  400. #ifdef SDSUPPORT
  401. if(card.saving)
  402. break;
  403. #endif //SDSUPPORT
  404. SERIAL_PROTOCOLLNPGM(MSG_OK);
  405. }
  406. else {
  407. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  408. LCD_MESSAGEPGM(MSG_STOPPED);
  409. }
  410. break;
  411. default:
  412. break;
  413. }
  414. }
  415. bufindw = (bufindw + 1)%BUFSIZE;
  416. buflen += 1;
  417. }
  418. serial_count = 0; //clear buffer
  419. }
  420. else
  421. {
  422. if(serial_char == ';') comment_mode = true;
  423. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  424. }
  425. }
  426. #ifdef SDSUPPORT
  427. if(!card.sdprinting || serial_count!=0){
  428. return;
  429. }
  430. while( !card.eof() && buflen < BUFSIZE) {
  431. int16_t n=card.get();
  432. serial_char = (char)n;
  433. if(serial_char == '\n' ||
  434. serial_char == '\r' ||
  435. (serial_char == ':' && comment_mode == false) ||
  436. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  437. {
  438. if(card.eof()){
  439. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  440. stoptime=millis();
  441. char time[30];
  442. unsigned long t=(stoptime-starttime)/1000;
  443. int sec,min;
  444. min=t/60;
  445. sec=t%60;
  446. sprintf(time,"%i min, %i sec",min,sec);
  447. SERIAL_ECHO_START;
  448. SERIAL_ECHOLN(time);
  449. LCD_MESSAGE(time);
  450. card.printingHasFinished();
  451. card.checkautostart(true);
  452. }
  453. if(!serial_count)
  454. {
  455. comment_mode = false; //for new command
  456. return; //if empty line
  457. }
  458. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  459. // if(!comment_mode){
  460. fromsd[bufindw] = true;
  461. buflen += 1;
  462. bufindw = (bufindw + 1)%BUFSIZE;
  463. // }
  464. comment_mode = false; //for new command
  465. serial_count = 0; //clear buffer
  466. }
  467. else
  468. {
  469. if(serial_char == ';') comment_mode = true;
  470. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  471. }
  472. }
  473. #endif //SDSUPPORT
  474. }
  475. float code_value()
  476. {
  477. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  478. }
  479. long code_value_long()
  480. {
  481. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  482. }
  483. bool code_seen(char code_string[]) //Return True if the string was found
  484. {
  485. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  486. }
  487. bool code_seen(char code)
  488. {
  489. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  490. return (strchr_pointer != NULL); //Return True if a character was found
  491. }
  492. #define DEFINE_PGM_READ_ANY(type, reader) \
  493. static inline type pgm_read_any(const type *p) \
  494. { return pgm_read_##reader##_near(p); }
  495. DEFINE_PGM_READ_ANY(float, float);
  496. DEFINE_PGM_READ_ANY(signed char, byte);
  497. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  498. static const PROGMEM type array##_P[3] = \
  499. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  500. static inline type array(int axis) \
  501. { return pgm_read_any(&array##_P[axis]); }
  502. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  503. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  504. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  505. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  506. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  507. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  508. static void axis_is_at_home(int axis) {
  509. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  510. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  511. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  512. }
  513. static void homeaxis(int axis) {
  514. #define HOMEAXIS_DO(LETTER) \
  515. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  516. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  517. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  518. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  519. 0) {
  520. current_position[axis] = 0;
  521. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  522. destination[axis] = 1.5 * max_length(axis) * home_dir(axis);
  523. feedrate = homing_feedrate[axis];
  524. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  525. st_synchronize();
  526. current_position[axis] = 0;
  527. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  528. destination[axis] = -home_retract_mm(axis) * home_dir(axis);
  529. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  530. st_synchronize();
  531. destination[axis] = 2*home_retract_mm(axis) * home_dir(axis);
  532. feedrate = homing_feedrate[axis]/2 ;
  533. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  534. st_synchronize();
  535. axis_is_at_home(axis);
  536. destination[axis] = current_position[axis];
  537. feedrate = 0.0;
  538. endstops_hit_on_purpose();
  539. }
  540. }
  541. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  542. void process_commands()
  543. {
  544. unsigned long codenum; //throw away variable
  545. char *starpos = NULL;
  546. if(code_seen('G'))
  547. {
  548. switch((int)code_value())
  549. {
  550. case 0: // G0 -> G1
  551. case 1: // G1
  552. if(Stopped == false) {
  553. get_coordinates(); // For X Y Z E F
  554. prepare_move();
  555. //ClearToSend();
  556. return;
  557. }
  558. //break;
  559. case 2: // G2 - CW ARC
  560. if(Stopped == false) {
  561. get_arc_coordinates();
  562. prepare_arc_move(true);
  563. return;
  564. }
  565. case 3: // G3 - CCW ARC
  566. if(Stopped == false) {
  567. get_arc_coordinates();
  568. prepare_arc_move(false);
  569. return;
  570. }
  571. case 4: // G4 dwell
  572. LCD_MESSAGEPGM(MSG_DWELL);
  573. codenum = 0;
  574. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  575. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  576. st_synchronize();
  577. codenum += millis(); // keep track of when we started waiting
  578. previous_millis_cmd = millis();
  579. while(millis() < codenum ){
  580. manage_heater();
  581. manage_inactivity(1);
  582. LCD_STATUS;
  583. }
  584. break;
  585. #ifdef FWRETRACT
  586. case 10: // G10 retract
  587. if(!retracted)
  588. {
  589. destination[X_AXIS]=current_position[X_AXIS];
  590. destination[Y_AXIS]=current_position[Y_AXIS];
  591. destination[Z_AXIS]=current_position[Z_AXIS];
  592. current_position[Z_AXIS]+=-retract_zlift;
  593. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  594. feedrate=retract_feedrate;
  595. retracted=true;
  596. prepare_move();
  597. }
  598. break;
  599. case 11: // G10 retract_recover
  600. if(!retracted)
  601. {
  602. destination[X_AXIS]=current_position[X_AXIS];
  603. destination[Y_AXIS]=current_position[Y_AXIS];
  604. destination[Z_AXIS]=current_position[Z_AXIS];
  605. current_position[Z_AXIS]+=retract_zlift;
  606. current_position[E_AXIS]+=-retract_recover_length;
  607. feedrate=retract_recover_feedrate;
  608. retracted=false;
  609. prepare_move();
  610. }
  611. break;
  612. #endif //FWRETRACT
  613. case 28: //G28 Home all Axis one at a time
  614. saved_feedrate = feedrate;
  615. saved_feedmultiply = feedmultiply;
  616. feedmultiply = 100;
  617. previous_millis_cmd = millis();
  618. enable_endstops(true);
  619. for(int8_t i=0; i < NUM_AXIS; i++) {
  620. destination[i] = current_position[i];
  621. }
  622. feedrate = 0.0;
  623. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  624. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  625. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  626. HOMEAXIS(Z);
  627. }
  628. #endif
  629. #ifdef QUICK_HOME
  630. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  631. {
  632. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  633. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  634. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  635. feedrate = homing_feedrate[X_AXIS];
  636. if(homing_feedrate[Y_AXIS]<feedrate)
  637. feedrate =homing_feedrate[Y_AXIS];
  638. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  639. st_synchronize();
  640. axis_is_at_home(X_AXIS);
  641. axis_is_at_home(Y_AXIS);
  642. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  643. destination[X_AXIS] = current_position[X_AXIS];
  644. destination[Y_AXIS] = current_position[Y_AXIS];
  645. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  646. feedrate = 0.0;
  647. st_synchronize();
  648. endstops_hit_on_purpose();
  649. }
  650. #endif
  651. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  652. {
  653. HOMEAXIS(X);
  654. }
  655. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  656. HOMEAXIS(Y);
  657. }
  658. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  659. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  660. HOMEAXIS(Z);
  661. }
  662. #endif
  663. if(code_seen(axis_codes[X_AXIS]))
  664. {
  665. if(code_value_long() != 0) {
  666. current_position[X_AXIS]=code_value()+add_homeing[0];
  667. }
  668. }
  669. if(code_seen(axis_codes[Y_AXIS])) {
  670. if(code_value_long() != 0) {
  671. current_position[Y_AXIS]=code_value()+add_homeing[1];
  672. }
  673. }
  674. if(code_seen(axis_codes[Z_AXIS])) {
  675. if(code_value_long() != 0) {
  676. current_position[Z_AXIS]=code_value()+add_homeing[2];
  677. }
  678. }
  679. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  680. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  681. enable_endstops(false);
  682. #endif
  683. feedrate = saved_feedrate;
  684. feedmultiply = saved_feedmultiply;
  685. previous_millis_cmd = millis();
  686. endstops_hit_on_purpose();
  687. break;
  688. case 90: // G90
  689. relative_mode = false;
  690. break;
  691. case 91: // G91
  692. relative_mode = true;
  693. break;
  694. case 92: // G92
  695. if(!code_seen(axis_codes[E_AXIS]))
  696. st_synchronize();
  697. for(int8_t i=0; i < NUM_AXIS; i++) {
  698. if(code_seen(axis_codes[i])) {
  699. if(i == E_AXIS) {
  700. current_position[i] = code_value();
  701. plan_set_e_position(current_position[E_AXIS]);
  702. }
  703. else {
  704. current_position[i] = code_value()+add_homeing[i];
  705. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  706. }
  707. }
  708. }
  709. break;
  710. }
  711. }
  712. else if(code_seen('M'))
  713. {
  714. switch( (int)code_value() )
  715. {
  716. #ifdef ULTRA_LCD
  717. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  718. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  719. {
  720. LCD_MESSAGEPGM(MSG_USERWAIT);
  721. codenum = 0;
  722. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  723. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  724. st_synchronize();
  725. previous_millis_cmd = millis();
  726. if (codenum > 0)
  727. {
  728. codenum += millis(); // keep track of when we started waiting
  729. while(millis() < codenum && !CLICKED){
  730. manage_heater();
  731. manage_inactivity(1);
  732. LCD_STATUS;
  733. }
  734. }else{
  735. while(!CLICKED) {
  736. manage_heater();
  737. manage_inactivity(1);
  738. LCD_STATUS;
  739. }
  740. }
  741. }
  742. break;
  743. #endif
  744. case 17:
  745. LCD_MESSAGEPGM(MSG_NO_MOVE);
  746. enable_x();
  747. enable_y();
  748. enable_z();
  749. enable_e0();
  750. enable_e1();
  751. enable_e2();
  752. break;
  753. #ifdef SDSUPPORT
  754. case 20: // M20 - list SD card
  755. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  756. card.ls();
  757. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  758. break;
  759. case 21: // M21 - init SD card
  760. card.initsd();
  761. break;
  762. case 22: //M22 - release SD card
  763. card.release();
  764. break;
  765. case 23: //M23 - Select file
  766. starpos = (strchr(strchr_pointer + 4,'*'));
  767. if(starpos!=NULL)
  768. *(starpos-1)='\0';
  769. card.openFile(strchr_pointer + 4,true);
  770. break;
  771. case 24: //M24 - Start SD print
  772. card.startFileprint();
  773. starttime=millis();
  774. break;
  775. case 25: //M25 - Pause SD print
  776. card.pauseSDPrint();
  777. break;
  778. case 26: //M26 - Set SD index
  779. if(card.cardOK && code_seen('S')) {
  780. card.setIndex(code_value_long());
  781. }
  782. break;
  783. case 27: //M27 - Get SD status
  784. card.getStatus();
  785. break;
  786. case 28: //M28 - Start SD write
  787. starpos = (strchr(strchr_pointer + 4,'*'));
  788. if(starpos != NULL){
  789. char* npos = strchr(cmdbuffer[bufindr], 'N');
  790. strchr_pointer = strchr(npos,' ') + 1;
  791. *(starpos-1) = '\0';
  792. }
  793. card.openFile(strchr_pointer+4,false);
  794. break;
  795. case 29: //M29 - Stop SD write
  796. //processed in write to file routine above
  797. //card,saving = false;
  798. break;
  799. case 30: //M30 <filename> Delete File
  800. if (card.cardOK){
  801. card.closefile();
  802. starpos = (strchr(strchr_pointer + 4,'*'));
  803. if(starpos != NULL){
  804. char* npos = strchr(cmdbuffer[bufindr], 'N');
  805. strchr_pointer = strchr(npos,' ') + 1;
  806. *(starpos-1) = '\0';
  807. }
  808. card.removeFile(strchr_pointer + 4);
  809. }
  810. break;
  811. #endif //SDSUPPORT
  812. case 31: //M31 take time since the start of the SD print or an M109 command
  813. {
  814. stoptime=millis();
  815. char time[30];
  816. unsigned long t=(stoptime-starttime)/1000;
  817. int sec,min;
  818. min=t/60;
  819. sec=t%60;
  820. sprintf(time,"%i min, %i sec",min,sec);
  821. SERIAL_ECHO_START;
  822. SERIAL_ECHOLN(time);
  823. LCD_MESSAGE(time);
  824. autotempShutdown();
  825. }
  826. break;
  827. case 42: //M42 -Change pin status via gcode
  828. if (code_seen('S'))
  829. {
  830. int pin_status = code_value();
  831. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  832. {
  833. int pin_number = code_value();
  834. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  835. {
  836. if (sensitive_pins[i] == pin_number)
  837. {
  838. pin_number = -1;
  839. break;
  840. }
  841. }
  842. if (pin_number > -1)
  843. {
  844. pinMode(pin_number, OUTPUT);
  845. digitalWrite(pin_number, pin_status);
  846. analogWrite(pin_number, pin_status);
  847. }
  848. }
  849. }
  850. break;
  851. case 104: // M104
  852. tmp_extruder = active_extruder;
  853. if(code_seen('T')) {
  854. tmp_extruder = code_value();
  855. if(tmp_extruder >= EXTRUDERS) {
  856. SERIAL_ECHO_START;
  857. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  858. SERIAL_ECHOLN(tmp_extruder);
  859. break;
  860. }
  861. }
  862. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  863. setWatch();
  864. break;
  865. case 140: // M140 set bed temp
  866. if (code_seen('S')) setTargetBed(code_value());
  867. break;
  868. case 105 : // M105
  869. tmp_extruder = active_extruder;
  870. if(code_seen('T')) {
  871. tmp_extruder = code_value();
  872. if(tmp_extruder >= EXTRUDERS) {
  873. SERIAL_ECHO_START;
  874. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  875. SERIAL_ECHOLN(tmp_extruder);
  876. break;
  877. }
  878. }
  879. #if (TEMP_0_PIN > -1)
  880. SERIAL_PROTOCOLPGM("ok T:");
  881. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  882. SERIAL_PROTOCOLPGM(" /");
  883. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  884. #if TEMP_BED_PIN > -1
  885. SERIAL_PROTOCOLPGM(" B:");
  886. SERIAL_PROTOCOL_F(degBed(),1);
  887. SERIAL_PROTOCOLPGM(" /");
  888. SERIAL_PROTOCOL_F(degTargetBed(),1);
  889. #endif //TEMP_BED_PIN
  890. #else
  891. SERIAL_ERROR_START;
  892. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  893. #endif
  894. #ifdef PIDTEMP
  895. SERIAL_PROTOCOLPGM(" @:");
  896. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  897. #endif
  898. SERIAL_PROTOCOLLN("");
  899. return;
  900. break;
  901. case 109:
  902. {// M109 - Wait for extruder heater to reach target.
  903. tmp_extruder = active_extruder;
  904. if(code_seen('T')) {
  905. tmp_extruder = code_value();
  906. if(tmp_extruder >= EXTRUDERS) {
  907. SERIAL_ECHO_START;
  908. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  909. SERIAL_ECHOLN(tmp_extruder);
  910. break;
  911. }
  912. }
  913. LCD_MESSAGEPGM(MSG_HEATING);
  914. #ifdef AUTOTEMP
  915. autotemp_enabled=false;
  916. #endif
  917. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  918. #ifdef AUTOTEMP
  919. if (code_seen('S')) autotemp_min=code_value();
  920. if (code_seen('B')) autotemp_max=code_value();
  921. if (code_seen('F'))
  922. {
  923. autotemp_factor=code_value();
  924. autotemp_enabled=true;
  925. }
  926. #endif
  927. setWatch();
  928. codenum = millis();
  929. /* See if we are heating up or cooling down */
  930. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  931. #ifdef TEMP_RESIDENCY_TIME
  932. long residencyStart;
  933. residencyStart = -1;
  934. /* continue to loop until we have reached the target temp
  935. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  936. while((residencyStart == -1) ||
  937. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  938. #else
  939. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  940. #endif //TEMP_RESIDENCY_TIME
  941. if( (millis() - codenum) > 1000UL )
  942. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  943. SERIAL_PROTOCOLPGM("T:");
  944. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  945. SERIAL_PROTOCOLPGM(" E:");
  946. SERIAL_PROTOCOL((int)tmp_extruder);
  947. #ifdef TEMP_RESIDENCY_TIME
  948. SERIAL_PROTOCOLPGM(" W:");
  949. if(residencyStart > -1)
  950. {
  951. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  952. SERIAL_PROTOCOLLN( codenum );
  953. }
  954. else
  955. {
  956. SERIAL_PROTOCOLLN( "?" );
  957. }
  958. #else
  959. SERIAL_PROTOCOLLN("");
  960. #endif
  961. codenum = millis();
  962. }
  963. manage_heater();
  964. manage_inactivity(1);
  965. LCD_STATUS;
  966. #ifdef TEMP_RESIDENCY_TIME
  967. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  968. or when current temp falls outside the hysteresis after target temp was reached */
  969. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  970. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  971. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  972. {
  973. residencyStart = millis();
  974. }
  975. #endif //TEMP_RESIDENCY_TIME
  976. }
  977. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  978. starttime=millis();
  979. previous_millis_cmd = millis();
  980. }
  981. break;
  982. case 190: // M190 - Wait for bed heater to reach target.
  983. #if TEMP_BED_PIN > -1
  984. LCD_MESSAGEPGM(MSG_BED_HEATING);
  985. if (code_seen('S')) setTargetBed(code_value());
  986. codenum = millis();
  987. while(isHeatingBed())
  988. {
  989. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  990. {
  991. float tt=degHotend(active_extruder);
  992. SERIAL_PROTOCOLPGM("T:");
  993. SERIAL_PROTOCOL(tt);
  994. SERIAL_PROTOCOLPGM(" E:");
  995. SERIAL_PROTOCOL((int)active_extruder);
  996. SERIAL_PROTOCOLPGM(" B:");
  997. SERIAL_PROTOCOL_F(degBed(),1);
  998. SERIAL_PROTOCOLLN("");
  999. codenum = millis();
  1000. }
  1001. manage_heater();
  1002. manage_inactivity(1);
  1003. LCD_STATUS;
  1004. }
  1005. LCD_MESSAGEPGM(MSG_BED_DONE);
  1006. previous_millis_cmd = millis();
  1007. #endif
  1008. break;
  1009. #if FAN_PIN > -1
  1010. case 106: //M106 Fan On
  1011. if (code_seen('S')){
  1012. FanSpeed=constrain(code_value(),0,255);
  1013. }
  1014. else {
  1015. FanSpeed=255;
  1016. }
  1017. break;
  1018. case 107: //M107 Fan Off
  1019. FanSpeed = 0;
  1020. break;
  1021. #endif //FAN_PIN
  1022. #if (PS_ON_PIN > -1)
  1023. case 80: // M80 - ATX Power On
  1024. SET_OUTPUT(PS_ON_PIN); //GND
  1025. WRITE(PS_ON_PIN, LOW);
  1026. break;
  1027. #endif
  1028. case 81: // M81 - ATX Power Off
  1029. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1030. st_synchronize();
  1031. suicide();
  1032. #elif (PS_ON_PIN > -1)
  1033. SET_INPUT(PS_ON_PIN); //Floating
  1034. #endif
  1035. break;
  1036. case 82:
  1037. axis_relative_modes[3] = false;
  1038. break;
  1039. case 83:
  1040. axis_relative_modes[3] = true;
  1041. break;
  1042. case 18: //compatibility
  1043. case 84: // M84
  1044. if(code_seen('S')){
  1045. stepper_inactive_time = code_value() * 1000;
  1046. }
  1047. else
  1048. {
  1049. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1050. if(all_axis)
  1051. {
  1052. st_synchronize();
  1053. disable_e0();
  1054. disable_e1();
  1055. disable_e2();
  1056. finishAndDisableSteppers();
  1057. }
  1058. else
  1059. {
  1060. st_synchronize();
  1061. if(code_seen('X')) disable_x();
  1062. if(code_seen('Y')) disable_y();
  1063. if(code_seen('Z')) disable_z();
  1064. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1065. if(code_seen('E')) {
  1066. disable_e0();
  1067. disable_e1();
  1068. disable_e2();
  1069. }
  1070. #endif
  1071. LCD_MESSAGEPGM(MSG_PART_RELEASE);
  1072. }
  1073. }
  1074. break;
  1075. case 85: // M85
  1076. code_seen('S');
  1077. max_inactive_time = code_value() * 1000;
  1078. break;
  1079. case 92: // M92
  1080. for(int8_t i=0; i < NUM_AXIS; i++)
  1081. {
  1082. if(code_seen(axis_codes[i]))
  1083. if(i == 3) { // E
  1084. float value = code_value();
  1085. if(value < 20.0) {
  1086. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1087. max_e_jerk *= factor;
  1088. max_feedrate[i] *= factor;
  1089. axis_steps_per_sqr_second[i] *= factor;
  1090. }
  1091. axis_steps_per_unit[i] = value;
  1092. }
  1093. else {
  1094. axis_steps_per_unit[i] = code_value();
  1095. }
  1096. }
  1097. break;
  1098. case 115: // M115
  1099. SerialprintPGM(MSG_M115_REPORT);
  1100. break;
  1101. case 117: // M117 display message
  1102. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  1103. break;
  1104. case 114: // M114
  1105. SERIAL_PROTOCOLPGM("X:");
  1106. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1107. SERIAL_PROTOCOLPGM("Y:");
  1108. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1109. SERIAL_PROTOCOLPGM("Z:");
  1110. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1111. SERIAL_PROTOCOLPGM("E:");
  1112. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1113. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1114. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1115. SERIAL_PROTOCOLPGM("Y:");
  1116. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1117. SERIAL_PROTOCOLPGM("Z:");
  1118. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1119. SERIAL_PROTOCOLLN("");
  1120. break;
  1121. case 120: // M120
  1122. enable_endstops(false) ;
  1123. break;
  1124. case 121: // M121
  1125. enable_endstops(true) ;
  1126. break;
  1127. case 119: // M119
  1128. #if (X_MIN_PIN > -1)
  1129. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1130. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  1131. #endif
  1132. #if (X_MAX_PIN > -1)
  1133. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1134. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  1135. #endif
  1136. #if (Y_MIN_PIN > -1)
  1137. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1138. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  1139. #endif
  1140. #if (Y_MAX_PIN > -1)
  1141. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1142. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  1143. #endif
  1144. #if (Z_MIN_PIN > -1)
  1145. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1146. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  1147. #endif
  1148. #if (Z_MAX_PIN > -1)
  1149. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1150. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  1151. #endif
  1152. SERIAL_PROTOCOLLN("");
  1153. break;
  1154. //TODO: update for all axis, use for loop
  1155. case 201: // M201
  1156. for(int8_t i=0; i < NUM_AXIS; i++)
  1157. {
  1158. if(code_seen(axis_codes[i]))
  1159. {
  1160. max_acceleration_units_per_sq_second[i] = code_value();
  1161. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1162. }
  1163. }
  1164. break;
  1165. #if 0 // Not used for Sprinter/grbl gen6
  1166. case 202: // M202
  1167. for(int8_t i=0; i < NUM_AXIS; i++) {
  1168. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1169. }
  1170. break;
  1171. #endif
  1172. case 203: // M203 max feedrate mm/sec
  1173. for(int8_t i=0; i < NUM_AXIS; i++) {
  1174. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1175. }
  1176. break;
  1177. case 204: // M204 acclereration S normal moves T filmanent only moves
  1178. {
  1179. if(code_seen('S')) acceleration = code_value() ;
  1180. if(code_seen('T')) retract_acceleration = code_value() ;
  1181. }
  1182. break;
  1183. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1184. {
  1185. if(code_seen('S')) minimumfeedrate = code_value();
  1186. if(code_seen('T')) mintravelfeedrate = code_value();
  1187. if(code_seen('B')) minsegmenttime = code_value() ;
  1188. if(code_seen('X')) max_xy_jerk = code_value() ;
  1189. if(code_seen('Z')) max_z_jerk = code_value() ;
  1190. if(code_seen('E')) max_e_jerk = code_value() ;
  1191. }
  1192. break;
  1193. case 206: // M206 additional homeing offset
  1194. for(int8_t i=0; i < 3; i++)
  1195. {
  1196. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1197. }
  1198. break;
  1199. #ifdef FWRETRACT
  1200. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1201. {
  1202. if(code_seen('S'))
  1203. {
  1204. retract_length = code_value() ;
  1205. }
  1206. if(code_seen('F'))
  1207. {
  1208. retract_feedrate = code_value() ;
  1209. }
  1210. if(code_seen('Z'))
  1211. {
  1212. retract_zlift = code_value() ;
  1213. }
  1214. }break;
  1215. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1216. {
  1217. if(code_seen('S'))
  1218. {
  1219. retract_recover_length = code_value() ;
  1220. }
  1221. if(code_seen('F'))
  1222. {
  1223. retract_recover_feedrate = code_value() ;
  1224. }
  1225. }break;
  1226. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1227. {
  1228. if(code_seen('S'))
  1229. {
  1230. int t= code_value() ;
  1231. switch(t)
  1232. {
  1233. case 0: autoretract_enabled=false;retracted=false;break;
  1234. case 1: autoretract_enabled=true;retracted=false;break;
  1235. default:
  1236. SERIAL_ECHO_START;
  1237. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1238. SERIAL_ECHO(cmdbuffer[bufindr]);
  1239. SERIAL_ECHOLNPGM("\"");
  1240. }
  1241. }
  1242. }break;
  1243. #endif
  1244. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1245. {
  1246. if(code_seen('S'))
  1247. {
  1248. feedmultiply = code_value() ;
  1249. feedmultiplychanged=true;
  1250. }
  1251. }
  1252. break;
  1253. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1254. {
  1255. if(code_seen('S'))
  1256. {
  1257. extrudemultiply = code_value() ;
  1258. }
  1259. }
  1260. break;
  1261. #ifdef PIDTEMP
  1262. case 301: // M301
  1263. {
  1264. if(code_seen('P')) Kp = code_value();
  1265. if(code_seen('I')) Ki = code_value()*PID_dT;
  1266. if(code_seen('D')) Kd = code_value()/PID_dT;
  1267. #ifdef PID_ADD_EXTRUSION_RATE
  1268. if(code_seen('C')) Kc = code_value();
  1269. #endif
  1270. updatePID();
  1271. SERIAL_PROTOCOL(MSG_OK);
  1272. SERIAL_PROTOCOL(" p:");
  1273. SERIAL_PROTOCOL(Kp);
  1274. SERIAL_PROTOCOL(" i:");
  1275. SERIAL_PROTOCOL(Ki/PID_dT);
  1276. SERIAL_PROTOCOL(" d:");
  1277. SERIAL_PROTOCOL(Kd*PID_dT);
  1278. #ifdef PID_ADD_EXTRUSION_RATE
  1279. SERIAL_PROTOCOL(" c:");
  1280. SERIAL_PROTOCOL(Kc*PID_dT);
  1281. #endif
  1282. SERIAL_PROTOCOLLN("");
  1283. }
  1284. break;
  1285. #endif //PIDTEMP
  1286. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1287. {
  1288. #ifdef PHOTOGRAPH_PIN
  1289. #if (PHOTOGRAPH_PIN > -1)
  1290. const uint8_t NUM_PULSES=16;
  1291. const float PULSE_LENGTH=0.01524;
  1292. for(int i=0; i < NUM_PULSES; i++) {
  1293. WRITE(PHOTOGRAPH_PIN, HIGH);
  1294. _delay_ms(PULSE_LENGTH);
  1295. WRITE(PHOTOGRAPH_PIN, LOW);
  1296. _delay_ms(PULSE_LENGTH);
  1297. }
  1298. delay(7.33);
  1299. for(int i=0; i < NUM_PULSES; i++) {
  1300. WRITE(PHOTOGRAPH_PIN, HIGH);
  1301. _delay_ms(PULSE_LENGTH);
  1302. WRITE(PHOTOGRAPH_PIN, LOW);
  1303. _delay_ms(PULSE_LENGTH);
  1304. }
  1305. #endif
  1306. #endif
  1307. }
  1308. break;
  1309. case 302: // allow cold extrudes
  1310. {
  1311. allow_cold_extrudes(true);
  1312. }
  1313. break;
  1314. case 303: // M303 PID autotune
  1315. {
  1316. float temp = 150.0;
  1317. if (code_seen('S')) temp=code_value();
  1318. PID_autotune(temp);
  1319. }
  1320. break;
  1321. case 400: // M400 finish all moves
  1322. {
  1323. st_synchronize();
  1324. }
  1325. break;
  1326. case 500: // Store settings in EEPROM
  1327. {
  1328. EEPROM_StoreSettings();
  1329. }
  1330. break;
  1331. case 501: // Read settings from EEPROM
  1332. {
  1333. EEPROM_RetrieveSettings();
  1334. }
  1335. break;
  1336. case 502: // Revert to default settings
  1337. {
  1338. EEPROM_RetrieveSettings(true);
  1339. }
  1340. break;
  1341. case 503: // print settings currently in memory
  1342. {
  1343. EEPROM_printSettings();
  1344. }
  1345. break;
  1346. case 999: // Restart after being stopped
  1347. Stopped = false;
  1348. gcode_LastN = Stopped_gcode_LastN;
  1349. FlushSerialRequestResend();
  1350. break;
  1351. }
  1352. }
  1353. else if(code_seen('T'))
  1354. {
  1355. tmp_extruder = code_value();
  1356. if(tmp_extruder >= EXTRUDERS) {
  1357. SERIAL_ECHO_START;
  1358. SERIAL_ECHO("T");
  1359. SERIAL_ECHO(tmp_extruder);
  1360. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  1361. }
  1362. else {
  1363. active_extruder = tmp_extruder;
  1364. SERIAL_ECHO_START;
  1365. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  1366. SERIAL_PROTOCOLLN((int)active_extruder);
  1367. }
  1368. }
  1369. else
  1370. {
  1371. SERIAL_ECHO_START;
  1372. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1373. SERIAL_ECHO(cmdbuffer[bufindr]);
  1374. SERIAL_ECHOLNPGM("\"");
  1375. }
  1376. ClearToSend();
  1377. }
  1378. void FlushSerialRequestResend()
  1379. {
  1380. //char cmdbuffer[bufindr][100]="Resend:";
  1381. MYSERIAL.flush();
  1382. SERIAL_PROTOCOLPGM(MSG_RESEND);
  1383. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1384. ClearToSend();
  1385. }
  1386. void ClearToSend()
  1387. {
  1388. previous_millis_cmd = millis();
  1389. #ifdef SDSUPPORT
  1390. if(fromsd[bufindr])
  1391. return;
  1392. #endif //SDSUPPORT
  1393. SERIAL_PROTOCOLLNPGM(MSG_OK);
  1394. }
  1395. void get_coordinates()
  1396. {
  1397. bool seen[4]={false,false,false,false};
  1398. for(int8_t i=0; i < NUM_AXIS; i++) {
  1399. if(code_seen(axis_codes[i]))
  1400. {
  1401. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1402. seen[i]=true;
  1403. }
  1404. else destination[i] = current_position[i]; //Are these else lines really needed?
  1405. }
  1406. if(code_seen('F')) {
  1407. next_feedrate = code_value();
  1408. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1409. }
  1410. #ifdef FWRETRACT
  1411. if(autoretract_enabled)
  1412. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  1413. {
  1414. float echange=destination[E_AXIS]-current_position[E_AXIS];
  1415. if(echange<-MIN_RETRACT) //retract
  1416. {
  1417. if(!retracted)
  1418. {
  1419. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  1420. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  1421. float correctede=-echange-retract_length;
  1422. //to generate the additional steps, not the destination is changed, but inversely the current position
  1423. current_position[E_AXIS]+=-correctede;
  1424. feedrate=retract_feedrate;
  1425. retracted=true;
  1426. }
  1427. }
  1428. else
  1429. if(echange>MIN_RETRACT) //retract_recover
  1430. {
  1431. if(retracted)
  1432. {
  1433. //current_position[Z_AXIS]+=-retract_zlift;
  1434. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  1435. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  1436. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  1437. feedrate=retract_recover_feedrate;
  1438. retracted=false;
  1439. }
  1440. }
  1441. }
  1442. #endif //FWRETRACT
  1443. }
  1444. void get_arc_coordinates()
  1445. {
  1446. get_coordinates();
  1447. if(code_seen('I')) {
  1448. offset[0] = code_value();
  1449. }
  1450. else {
  1451. offset[0] = 0.0;
  1452. }
  1453. if(code_seen('J')) {
  1454. offset[1] = code_value();
  1455. }
  1456. else {
  1457. offset[1] = 0.0;
  1458. }
  1459. }
  1460. void clamp_to_software_endstops(float target[3])
  1461. {
  1462. if (min_software_endstops) {
  1463. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  1464. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  1465. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  1466. }
  1467. if (max_software_endstops) {
  1468. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  1469. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  1470. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  1471. }
  1472. }
  1473. void prepare_move()
  1474. {
  1475. clamp_to_software_endstops(destination);
  1476. previous_millis_cmd = millis();
  1477. // Do not use feedmultiply for E or Z only moves
  1478. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  1479. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1480. }
  1481. else {
  1482. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1483. }
  1484. for(int8_t i=0; i < NUM_AXIS; i++) {
  1485. current_position[i] = destination[i];
  1486. }
  1487. }
  1488. void prepare_arc_move(char isclockwise) {
  1489. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1490. // Trace the arc
  1491. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1492. // As far as the parser is concerned, the position is now == target. In reality the
  1493. // motion control system might still be processing the action and the real tool position
  1494. // in any intermediate location.
  1495. for(int8_t i=0; i < NUM_AXIS; i++) {
  1496. current_position[i] = destination[i];
  1497. }
  1498. previous_millis_cmd = millis();
  1499. }
  1500. #ifdef CONTROLLERFAN_PIN
  1501. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  1502. unsigned long lastMotorCheck = 0;
  1503. void controllerFan()
  1504. {
  1505. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  1506. {
  1507. lastMotorCheck = millis();
  1508. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  1509. #if EXTRUDERS > 2
  1510. || !READ(E2_ENABLE_PIN)
  1511. #endif
  1512. #if EXTRUDER > 1
  1513. || !READ(E2_ENABLE_PIN)
  1514. #endif
  1515. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  1516. {
  1517. lastMotor = millis(); //... set time to NOW so the fan will turn on
  1518. }
  1519. if ((millis() - lastMotor) >= (CONTROLLERFAN_SEC*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  1520. {
  1521. WRITE(CONTROLLERFAN_PIN, LOW); //... turn the fan off
  1522. }
  1523. else
  1524. {
  1525. WRITE(CONTROLLERFAN_PIN, HIGH); //... turn the fan on
  1526. }
  1527. }
  1528. }
  1529. #endif
  1530. void manage_inactivity(byte debug)
  1531. {
  1532. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1533. if(max_inactive_time)
  1534. kill();
  1535. if(stepper_inactive_time) {
  1536. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  1537. {
  1538. if(blocks_queued() == false) {
  1539. disable_x();
  1540. disable_y();
  1541. disable_z();
  1542. disable_e0();
  1543. disable_e1();
  1544. disable_e2();
  1545. }
  1546. }
  1547. }
  1548. #ifdef CONTROLLERFAN_PIN
  1549. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  1550. #endif
  1551. #ifdef EXTRUDER_RUNOUT_PREVENT
  1552. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1553. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1554. {
  1555. bool oldstatus=READ(E0_ENABLE_PIN);
  1556. enable_e0();
  1557. float oldepos=current_position[E_AXIS];
  1558. float oldedes=destination[E_AXIS];
  1559. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1560. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1561. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1562. current_position[E_AXIS]=oldepos;
  1563. destination[E_AXIS]=oldedes;
  1564. plan_set_e_position(oldepos);
  1565. previous_millis_cmd=millis();
  1566. st_synchronize();
  1567. WRITE(E0_ENABLE_PIN,oldstatus);
  1568. }
  1569. #endif
  1570. check_axes_activity();
  1571. }
  1572. void kill()
  1573. {
  1574. cli(); // Stop interrupts
  1575. disable_heater();
  1576. disable_x();
  1577. disable_y();
  1578. disable_z();
  1579. disable_e0();
  1580. disable_e1();
  1581. disable_e2();
  1582. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1583. SERIAL_ERROR_START;
  1584. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  1585. LCD_MESSAGEPGM(MSG_KILLED);
  1586. suicide();
  1587. while(1); // Wait for reset
  1588. }
  1589. void Stop()
  1590. {
  1591. disable_heater();
  1592. if(Stopped == false) {
  1593. Stopped = true;
  1594. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  1595. SERIAL_ERROR_START;
  1596. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1597. LCD_MESSAGEPGM(MSG_STOPPED);
  1598. }
  1599. }
  1600. bool IsStopped() { return Stopped; };
  1601. #ifdef FAST_PWM_FAN
  1602. void setPwmFrequency(uint8_t pin, int val)
  1603. {
  1604. val &= 0x07;
  1605. switch(digitalPinToTimer(pin))
  1606. {
  1607. #if defined(TCCR0A)
  1608. case TIMER0A:
  1609. case TIMER0B:
  1610. // TCCR0B &= ~(CS00 | CS01 | CS02);
  1611. // TCCR0B |= val;
  1612. break;
  1613. #endif
  1614. #if defined(TCCR1A)
  1615. case TIMER1A:
  1616. case TIMER1B:
  1617. // TCCR1B &= ~(CS10 | CS11 | CS12);
  1618. // TCCR1B |= val;
  1619. break;
  1620. #endif
  1621. #if defined(TCCR2)
  1622. case TIMER2:
  1623. case TIMER2:
  1624. TCCR2 &= ~(CS10 | CS11 | CS12);
  1625. TCCR2 |= val;
  1626. break;
  1627. #endif
  1628. #if defined(TCCR2A)
  1629. case TIMER2A:
  1630. case TIMER2B:
  1631. TCCR2B &= ~(CS20 | CS21 | CS22);
  1632. TCCR2B |= val;
  1633. break;
  1634. #endif
  1635. #if defined(TCCR3A)
  1636. case TIMER3A:
  1637. case TIMER3B:
  1638. case TIMER3C:
  1639. TCCR3B &= ~(CS30 | CS31 | CS32);
  1640. TCCR3B |= val;
  1641. break;
  1642. #endif
  1643. #if defined(TCCR4A)
  1644. case TIMER4A:
  1645. case TIMER4B:
  1646. case TIMER4C:
  1647. TCCR4B &= ~(CS40 | CS41 | CS42);
  1648. TCCR4B |= val;
  1649. break;
  1650. #endif
  1651. #if defined(TCCR5A)
  1652. case TIMER5A:
  1653. case TIMER5B:
  1654. case TIMER5C:
  1655. TCCR5B &= ~(CS50 | CS51 | CS52);
  1656. TCCR5B |= val;
  1657. break;
  1658. #endif
  1659. }
  1660. }
  1661. #endif