My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

planner.cpp 34KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //=============================public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[4]; // set the max speeds
  47. float axis_steps_per_unit[4];
  48. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  53. float max_z_jerk;
  54. float max_e_jerk;
  55. float mintravelfeedrate;
  56. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  57. // The current position of the tool in absolute steps
  58. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  59. static float previous_speed[4]; // Speed of previous path line segment
  60. static float previous_nominal_speed; // Nominal speed of previous path line segment
  61. extern volatile int extrudemultiply; // Sets extrude multiply factor (in percent)
  62. #ifdef AUTOTEMP
  63. float autotemp_max=250;
  64. float autotemp_min=210;
  65. float autotemp_factor=0.1;
  66. bool autotemp_enabled=false;
  67. #endif
  68. //===========================================================================
  69. //=================semi-private variables, used in inline functions =====
  70. //===========================================================================
  71. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  72. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  73. volatile unsigned char block_buffer_tail; // Index of the block to process now
  74. //===========================================================================
  75. //=============================private variables ============================
  76. //===========================================================================
  77. #ifdef PREVENT_DANGEROUS_EXTRUDE
  78. bool allow_cold_extrude=false;
  79. #endif
  80. #ifdef XY_FREQUENCY_LIMIT
  81. // Used for the frequency limit
  82. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  83. static long x_segment_time[3]={
  84. 0,0,0}; // Segment times (in us). Used for speed calculations
  85. static long y_segment_time[3]={
  86. 0,0,0};
  87. #endif
  88. // Returns the index of the next block in the ring buffer
  89. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  90. static int8_t next_block_index(int8_t block_index) {
  91. block_index++;
  92. if (block_index == BLOCK_BUFFER_SIZE) {
  93. block_index = 0;
  94. }
  95. return(block_index);
  96. }
  97. // Returns the index of the previous block in the ring buffer
  98. static int8_t prev_block_index(int8_t block_index) {
  99. if (block_index == 0) {
  100. block_index = BLOCK_BUFFER_SIZE;
  101. }
  102. block_index--;
  103. return(block_index);
  104. }
  105. //===========================================================================
  106. //=============================functions ============================
  107. //===========================================================================
  108. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  109. // given acceleration:
  110. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  111. {
  112. if (acceleration!=0) {
  113. return((target_rate*target_rate-initial_rate*initial_rate)/
  114. (2.0*acceleration));
  115. }
  116. else {
  117. return 0.0; // acceleration was 0, set acceleration distance to 0
  118. }
  119. }
  120. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  121. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  122. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  123. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  124. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  125. {
  126. if (acceleration!=0) {
  127. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  128. (4.0*acceleration) );
  129. }
  130. else {
  131. return 0.0; // acceleration was 0, set intersection distance to 0
  132. }
  133. }
  134. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  135. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  136. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  137. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  138. // Limit minimal step rate (Otherwise the timer will overflow.)
  139. if(initial_rate <120) {
  140. initial_rate=120;
  141. }
  142. if(final_rate < 120) {
  143. final_rate=120;
  144. }
  145. long acceleration = block->acceleration_st;
  146. int32_t accelerate_steps =
  147. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  148. int32_t decelerate_steps =
  149. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  150. // Calculate the size of Plateau of Nominal Rate.
  151. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  152. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  153. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  154. // in order to reach the final_rate exactly at the end of this block.
  155. if (plateau_steps < 0) {
  156. accelerate_steps = ceil(
  157. intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  158. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  159. accelerate_steps = min(accelerate_steps,block->step_event_count);
  160. plateau_steps = 0;
  161. }
  162. #ifdef ADVANCE
  163. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  164. volatile long final_advance = block->advance*exit_factor*exit_factor;
  165. #endif // ADVANCE
  166. // block->accelerate_until = accelerate_steps;
  167. // block->decelerate_after = accelerate_steps+plateau_steps;
  168. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  169. if(block->busy == false) { // Don't update variables if block is busy.
  170. block->accelerate_until = accelerate_steps;
  171. block->decelerate_after = accelerate_steps+plateau_steps;
  172. block->initial_rate = initial_rate;
  173. block->final_rate = final_rate;
  174. #ifdef ADVANCE
  175. block->initial_advance = initial_advance;
  176. block->final_advance = final_advance;
  177. #endif //ADVANCE
  178. }
  179. CRITICAL_SECTION_END;
  180. }
  181. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  182. // acceleration within the allotted distance.
  183. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  184. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  185. }
  186. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  187. // This method will calculate the junction jerk as the euclidean distance between the nominal
  188. // velocities of the respective blocks.
  189. //inline float junction_jerk(block_t *before, block_t *after) {
  190. // return sqrt(
  191. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  192. //}
  193. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  194. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  195. if(!current) {
  196. return;
  197. }
  198. if (next) {
  199. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  200. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  201. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  202. if (current->entry_speed != current->max_entry_speed) {
  203. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  204. // for max allowable speed if block is decelerating and nominal length is false.
  205. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  206. current->entry_speed = min( current->max_entry_speed,
  207. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  208. }
  209. else {
  210. current->entry_speed = current->max_entry_speed;
  211. }
  212. current->recalculate_flag = true;
  213. }
  214. } // Skip last block. Already initialized and set for recalculation.
  215. }
  216. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  217. // implements the reverse pass.
  218. void planner_reverse_pass() {
  219. uint8_t block_index = block_buffer_head;
  220. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  221. CRITICAL_SECTION_START;
  222. unsigned char tail = block_buffer_tail;
  223. CRITICAL_SECTION_END
  224. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  225. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  226. block_t *block[3] = {
  227. NULL, NULL, NULL };
  228. while(block_index != tail) {
  229. block_index = prev_block_index(block_index);
  230. block[2]= block[1];
  231. block[1]= block[0];
  232. block[0] = &block_buffer[block_index];
  233. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  234. }
  235. }
  236. }
  237. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  238. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  239. if(!previous) {
  240. return;
  241. }
  242. // If the previous block is an acceleration block, but it is not long enough to complete the
  243. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  244. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  245. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  246. if (!previous->nominal_length_flag) {
  247. if (previous->entry_speed < current->entry_speed) {
  248. double entry_speed = min( current->entry_speed,
  249. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  250. // Check for junction speed change
  251. if (current->entry_speed != entry_speed) {
  252. current->entry_speed = entry_speed;
  253. current->recalculate_flag = true;
  254. }
  255. }
  256. }
  257. }
  258. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  259. // implements the forward pass.
  260. void planner_forward_pass() {
  261. uint8_t block_index = block_buffer_tail;
  262. block_t *block[3] = {
  263. NULL, NULL, NULL };
  264. while(block_index != block_buffer_head) {
  265. block[0] = block[1];
  266. block[1] = block[2];
  267. block[2] = &block_buffer[block_index];
  268. planner_forward_pass_kernel(block[0],block[1],block[2]);
  269. block_index = next_block_index(block_index);
  270. }
  271. planner_forward_pass_kernel(block[1], block[2], NULL);
  272. }
  273. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  274. // entry_factor for each junction. Must be called by planner_recalculate() after
  275. // updating the blocks.
  276. void planner_recalculate_trapezoids() {
  277. int8_t block_index = block_buffer_tail;
  278. block_t *current;
  279. block_t *next = NULL;
  280. while(block_index != block_buffer_head) {
  281. current = next;
  282. next = &block_buffer[block_index];
  283. if (current) {
  284. // Recalculate if current block entry or exit junction speed has changed.
  285. if (current->recalculate_flag || next->recalculate_flag) {
  286. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  287. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  288. next->entry_speed/current->nominal_speed);
  289. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  290. }
  291. }
  292. block_index = next_block_index( block_index );
  293. }
  294. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  295. if(next != NULL) {
  296. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  297. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  298. next->recalculate_flag = false;
  299. }
  300. }
  301. // Recalculates the motion plan according to the following algorithm:
  302. //
  303. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  304. // so that:
  305. // a. The junction jerk is within the set limit
  306. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  307. // acceleration.
  308. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  309. // a. The speed increase within one block would require faster accelleration than the one, true
  310. // constant acceleration.
  311. //
  312. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  313. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  314. // the set limit. Finally it will:
  315. //
  316. // 3. Recalculate trapezoids for all blocks.
  317. void planner_recalculate() {
  318. planner_reverse_pass();
  319. planner_forward_pass();
  320. planner_recalculate_trapezoids();
  321. }
  322. void plan_init() {
  323. block_buffer_head = 0;
  324. block_buffer_tail = 0;
  325. memset(position, 0, sizeof(position)); // clear position
  326. previous_speed[0] = 0.0;
  327. previous_speed[1] = 0.0;
  328. previous_speed[2] = 0.0;
  329. previous_speed[3] = 0.0;
  330. previous_nominal_speed = 0.0;
  331. }
  332. #ifdef AUTOTEMP
  333. void getHighESpeed()
  334. {
  335. static float oldt=0;
  336. if(!autotemp_enabled){
  337. return;
  338. }
  339. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  340. return; //do nothing
  341. }
  342. float high=0.0;
  343. uint8_t block_index = block_buffer_tail;
  344. while(block_index != block_buffer_head) {
  345. if((block_buffer[block_index].steps_x != 0) ||
  346. (block_buffer[block_index].steps_y != 0) ||
  347. (block_buffer[block_index].steps_z != 0)) {
  348. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  349. //se; mm/sec;
  350. if(se>high)
  351. {
  352. high=se;
  353. }
  354. }
  355. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  356. }
  357. float g=autotemp_min+high*autotemp_factor;
  358. float t=g;
  359. if(t<autotemp_min)
  360. t=autotemp_min;
  361. if(t>autotemp_max)
  362. t=autotemp_max;
  363. if(oldt>t)
  364. {
  365. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  366. }
  367. oldt=t;
  368. setTargetHotend0(t);
  369. }
  370. #endif
  371. void check_axes_activity() {
  372. unsigned char x_active = 0;
  373. unsigned char y_active = 0;
  374. unsigned char z_active = 0;
  375. unsigned char e_active = 0;
  376. unsigned char fan_speed = 0;
  377. unsigned char tail_fan_speed = 0;
  378. block_t *block;
  379. if(block_buffer_tail != block_buffer_head) {
  380. uint8_t block_index = block_buffer_tail;
  381. tail_fan_speed = block_buffer[block_index].fan_speed;
  382. while(block_index != block_buffer_head) {
  383. block = &block_buffer[block_index];
  384. if(block->steps_x != 0) x_active++;
  385. if(block->steps_y != 0) y_active++;
  386. if(block->steps_z != 0) z_active++;
  387. if(block->steps_e != 0) e_active++;
  388. if(block->fan_speed != 0) fan_speed++;
  389. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  390. }
  391. }
  392. else {
  393. #if FAN_PIN > -1
  394. if (FanSpeed != 0){
  395. analogWrite(FAN_PIN,FanSpeed); // If buffer is empty use current fan speed
  396. }
  397. #endif
  398. }
  399. if((DISABLE_X) && (x_active == 0)) disable_x();
  400. if((DISABLE_Y) && (y_active == 0)) disable_y();
  401. if((DISABLE_Z) && (z_active == 0)) disable_z();
  402. if((DISABLE_E) && (e_active == 0)) {
  403. disable_e0();
  404. disable_e1();
  405. disable_e2();
  406. }
  407. #if FAN_PIN > -1
  408. if((FanSpeed == 0) && (fan_speed ==0)) {
  409. analogWrite(FAN_PIN, 0);
  410. }
  411. if (FanSpeed != 0 && tail_fan_speed !=0) {
  412. analogWrite(FAN_PIN,tail_fan_speed);
  413. }
  414. #endif
  415. #ifdef AUTOTEMP
  416. getHighESpeed();
  417. #endif
  418. }
  419. float junction_deviation = 0.1;
  420. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  421. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  422. // calculation the caller must also provide the physical length of the line in millimeters.
  423. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  424. {
  425. // Calculate the buffer head after we push this byte
  426. int next_buffer_head = next_block_index(block_buffer_head);
  427. // If the buffer is full: good! That means we are well ahead of the robot.
  428. // Rest here until there is room in the buffer.
  429. while(block_buffer_tail == next_buffer_head) {
  430. manage_heater();
  431. manage_inactivity(1);
  432. LCD_STATUS;
  433. }
  434. // The target position of the tool in absolute steps
  435. // Calculate target position in absolute steps
  436. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  437. long target[4];
  438. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  439. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  440. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  441. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  442. #ifdef PREVENT_DANGEROUS_EXTRUDE
  443. if(target[E_AXIS]!=position[E_AXIS])
  444. if(degHotend(active_extruder)<EXTRUDE_MINTEMP && !allow_cold_extrude)
  445. {
  446. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  447. SERIAL_ECHO_START;
  448. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  449. }
  450. #ifdef PREVENT_LENGTHY_EXTRUDE
  451. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  452. {
  453. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  454. SERIAL_ECHO_START;
  455. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  456. }
  457. #endif
  458. #endif
  459. // Prepare to set up new block
  460. block_t *block = &block_buffer[block_buffer_head];
  461. // Mark block as not busy (Not executed by the stepper interrupt)
  462. block->busy = false;
  463. // Number of steps for each axis
  464. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  465. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  466. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  467. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  468. block->steps_e *= extrudemultiply;
  469. block->steps_e /= 100;
  470. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  471. // Bail if this is a zero-length block
  472. if (block->step_event_count <= dropsegments) {
  473. return;
  474. };
  475. block->fan_speed = FanSpeed;
  476. // Compute direction bits for this block
  477. block->direction_bits = 0;
  478. if (target[X_AXIS] < position[X_AXIS]) {
  479. block->direction_bits |= (1<<X_AXIS);
  480. }
  481. if (target[Y_AXIS] < position[Y_AXIS]) {
  482. block->direction_bits |= (1<<Y_AXIS);
  483. }
  484. if (target[Z_AXIS] < position[Z_AXIS]) {
  485. block->direction_bits |= (1<<Z_AXIS);
  486. }
  487. if (target[E_AXIS] < position[E_AXIS]) {
  488. block->direction_bits |= (1<<E_AXIS);
  489. }
  490. block->active_extruder = extruder;
  491. //enable active axes
  492. if(block->steps_x != 0) enable_x();
  493. if(block->steps_y != 0) enable_y();
  494. #ifndef Z_LATE_ENABLE
  495. if(block->steps_z != 0) enable_z();
  496. #endif
  497. // Enable all
  498. if(block->steps_e != 0) {
  499. enable_e0();
  500. enable_e1();
  501. enable_e2();
  502. }
  503. if (block->steps_e == 0) {
  504. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  505. }
  506. else {
  507. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  508. }
  509. float delta_mm[4];
  510. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  511. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  512. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  513. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
  514. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments ) {
  515. block->millimeters = fabs(delta_mm[E_AXIS]);
  516. }
  517. else {
  518. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  519. }
  520. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  521. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  522. float inverse_second = feed_rate * inverse_millimeters;
  523. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  524. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  525. #ifdef OLD_SLOWDOWN
  526. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1) feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  527. #endif
  528. #ifdef SLOWDOWN
  529. // segment time im micro seconds
  530. unsigned long segment_time = lround(1000000.0/inverse_second);
  531. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5))) {
  532. if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  533. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  534. }
  535. }
  536. #endif
  537. // END OF SLOW DOWN SECTION
  538. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  539. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  540. // Calculate and limit speed in mm/sec for each axis
  541. float current_speed[4];
  542. float speed_factor = 1.0; //factor <=1 do decrease speed
  543. for(int i=0; i < 4; i++) {
  544. current_speed[i] = delta_mm[i] * inverse_second;
  545. if(fabs(current_speed[i]) > max_feedrate[i])
  546. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  547. }
  548. // Max segement time in us.
  549. #ifdef XY_FREQUENCY_LIMIT
  550. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  551. // Check and limit the xy direction change frequency
  552. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  553. old_direction_bits = block->direction_bits;
  554. if((direction_change & (1<<X_AXIS)) == 0) {
  555. x_segment_time[0] += segment_time;
  556. }
  557. else {
  558. x_segment_time[2] = x_segment_time[1];
  559. x_segment_time[1] = x_segment_time[0];
  560. x_segment_time[0] = segment_time;
  561. }
  562. if((direction_change & (1<<Y_AXIS)) == 0) {
  563. y_segment_time[0] += segment_time;
  564. }
  565. else {
  566. y_segment_time[2] = y_segment_time[1];
  567. y_segment_time[1] = y_segment_time[0];
  568. y_segment_time[0] = segment_time;
  569. }
  570. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  571. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  572. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  573. if(min_xy_segment_time < MAX_FREQ_TIME) speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  574. #endif
  575. // Correct the speed
  576. if( speed_factor < 1.0) {
  577. for(unsigned char i=0; i < 4; i++) {
  578. current_speed[i] *= speed_factor;
  579. }
  580. block->nominal_speed *= speed_factor;
  581. block->nominal_rate *= speed_factor;
  582. }
  583. // Compute and limit the acceleration rate for the trapezoid generator.
  584. float steps_per_mm = block->step_event_count/block->millimeters;
  585. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0) {
  586. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  587. }
  588. else {
  589. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  590. // Limit acceleration per axis
  591. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  592. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  593. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  594. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  595. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  596. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  597. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  598. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  599. }
  600. block->acceleration = block->acceleration_st / steps_per_mm;
  601. block->acceleration_rate = (long)((float)block->acceleration_st * 8.388608);
  602. #if 0 // Use old jerk for now
  603. // Compute path unit vector
  604. double unit_vec[3];
  605. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  606. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  607. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  608. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  609. // Let a circle be tangent to both previous and current path line segments, where the junction
  610. // deviation is defined as the distance from the junction to the closest edge of the circle,
  611. // colinear with the circle center. The circular segment joining the two paths represents the
  612. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  613. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  614. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  615. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  616. // nonlinearities of both the junction angle and junction velocity.
  617. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  618. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  619. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  620. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  621. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  622. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  623. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  624. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  625. // Skip and use default max junction speed for 0 degree acute junction.
  626. if (cos_theta < 0.95) {
  627. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  628. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  629. if (cos_theta > -0.95) {
  630. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  631. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  632. vmax_junction = min(vmax_junction,
  633. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  634. }
  635. }
  636. }
  637. #endif
  638. // Start with a safe speed
  639. float vmax_junction = max_xy_jerk/2;
  640. float vmax_junction_factor = 1.0;
  641. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  642. vmax_junction = min(vmax_junction, max_z_jerk/2);
  643. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  644. vmax_junction = min(vmax_junction, max_e_jerk/2);
  645. vmax_junction = min(vmax_junction, block->nominal_speed);
  646. float safe_speed = vmax_junction;
  647. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  648. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  649. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  650. vmax_junction = block->nominal_speed;
  651. // }
  652. if (jerk > max_xy_jerk) {
  653. vmax_junction_factor = (max_xy_jerk/jerk);
  654. }
  655. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  656. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  657. }
  658. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  659. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  660. }
  661. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  662. }
  663. block->max_entry_speed = vmax_junction;
  664. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  665. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  666. block->entry_speed = min(vmax_junction, v_allowable);
  667. // Initialize planner efficiency flags
  668. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  669. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  670. // the current block and next block junction speeds are guaranteed to always be at their maximum
  671. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  672. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  673. // the reverse and forward planners, the corresponding block junction speed will always be at the
  674. // the maximum junction speed and may always be ignored for any speed reduction checks.
  675. if (block->nominal_speed <= v_allowable) {
  676. block->nominal_length_flag = true;
  677. }
  678. else {
  679. block->nominal_length_flag = false;
  680. }
  681. block->recalculate_flag = true; // Always calculate trapezoid for new block
  682. // Update previous path unit_vector and nominal speed
  683. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  684. previous_nominal_speed = block->nominal_speed;
  685. #ifdef ADVANCE
  686. // Calculate advance rate
  687. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  688. block->advance_rate = 0;
  689. block->advance = 0;
  690. }
  691. else {
  692. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  693. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  694. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  695. block->advance = advance;
  696. if(acc_dist == 0) {
  697. block->advance_rate = 0;
  698. }
  699. else {
  700. block->advance_rate = advance / (float)acc_dist;
  701. }
  702. }
  703. /*
  704. SERIAL_ECHO_START;
  705. SERIAL_ECHOPGM("advance :");
  706. SERIAL_ECHO(block->advance/256.0);
  707. SERIAL_ECHOPGM("advance rate :");
  708. SERIAL_ECHOLN(block->advance_rate/256.0);
  709. */
  710. #endif // ADVANCE
  711. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  712. safe_speed/block->nominal_speed);
  713. // Move buffer head
  714. block_buffer_head = next_buffer_head;
  715. // Update position
  716. memcpy(position, target, sizeof(target)); // position[] = target[]
  717. planner_recalculate();
  718. st_wake_up();
  719. }
  720. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  721. {
  722. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  723. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  724. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  725. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  726. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  727. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  728. previous_speed[0] = 0.0;
  729. previous_speed[1] = 0.0;
  730. previous_speed[2] = 0.0;
  731. previous_speed[3] = 0.0;
  732. }
  733. void plan_set_e_position(const float &e)
  734. {
  735. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  736. st_set_e_position(position[E_AXIS]);
  737. }
  738. uint8_t movesplanned()
  739. {
  740. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  741. }
  742. void allow_cold_extrudes(bool allow)
  743. {
  744. #ifdef PREVENT_DANGEROUS_EXTRUDE
  745. allow_cold_extrude=allow;
  746. #endif
  747. }