123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625 |
- /*
- temperature.c - temperature control
- Part of Marlin
-
- Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
-
- This program is free software: you can redistribute it and/or modify
- it under the terms of the GNU General Public License as published by
- the Free Software Foundation, either version 3 of the License, or
- (at your option) any later version.
-
- This program is distributed in the hope that it will be useful,
- but WITHOUT ANY WARRANTY; without even the implied warranty of
- MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- GNU General Public License for more details.
-
- You should have received a copy of the GNU General Public License
- along with this program. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /*
- This firmware is a mashup between Sprinter and grbl.
- (https://github.com/kliment/Sprinter)
- (https://github.com/simen/grbl/tree)
-
- It has preliminary support for Matthew Roberts advance algorithm
- http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
-
- This firmware is optimized for gen6 electronics.
- */
- #include <avr/pgmspace.h>
-
- #include "fastio.h"
- #include "Configuration.h"
- #include "pins.h"
- #include "Marlin.h"
- #include "ultralcd.h"
- #include "temperature.h"
- #include "watchdog.h"
-
- //===========================================================================
- //=============================public variables============================
- //===========================================================================
- int target_raw[3] = {0, 0, 0};
- int current_raw[3] = {0, 0, 0};
-
- #ifdef PIDTEMP
-
- // probably used external
- float HeaterPower;
- float pid_setpoint = 0.0;
-
-
- float Kp=DEFAULT_Kp;
- float Ki=DEFAULT_Ki;
- float Kd=DEFAULT_Kd;
- #ifdef PID_ADD_EXTRUSION_RATE
- float Kc=DEFAULT_Kc;
- #endif
- #endif //PIDTEMP
-
-
- //===========================================================================
- //=============================private variables============================
- //===========================================================================
- static bool temp_meas_ready = false;
-
- static unsigned long previous_millis_heater, previous_millis_bed_heater;
-
- #ifdef PIDTEMP
- //static cannot be external:
- static float temp_iState = 0;
- static float temp_dState = 0;
- static float pTerm;
- static float iTerm;
- static float dTerm;
- //int output;
- static float pid_error;
- static float temp_iState_min;
- static float temp_iState_max;
- static float pid_input;
- static float pid_output;
- static bool pid_reset;
-
- #endif //PIDTEMP
-
- #ifdef WATCHPERIOD
- static int watch_raw[3] = {-1000,-1000,-1000};
- static unsigned long watchmillis = 0;
- #endif //WATCHPERIOD
-
- // Init min and max temp with extreme values to prevent false errors during startup
- static int minttemp_0 = 0;
- static int maxttemp_0 = 16383;
- static int minttemp_1 = 0;
- static int maxttemp_1 = 16383;
- static int bed_minttemp = 0;
- static int bed_maxttemp = 16383;
-
- //===========================================================================
- //=============================functions ============================
- //===========================================================================
-
- void updatePID()
- {
- #ifdef PIDTEMP
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
- #endif
- }
-
- void manage_heater()
- {
- #ifdef USE_WATCHDOG
- wd_reset();
- #endif
-
- float pid_input;
- float pid_output;
- if(temp_meas_ready != true) //better readability
- return;
-
- CRITICAL_SECTION_START;
- temp_meas_ready = false;
- CRITICAL_SECTION_END;
-
- #ifdef PIDTEMP
- pid_input = analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
-
- #ifndef PID_OPENLOOP
- pid_error = pid_setpoint - pid_input;
- if(pid_error > 10){
- pid_output = PID_MAX;
- pid_reset = true;
- }
- else if(pid_error < -10) {
- pid_output = 0;
- pid_reset = true;
- }
- else {
- if(pid_reset == true) {
- temp_iState = 0.0;
- pid_reset = false;
- }
- pTerm = Kp * pid_error;
- temp_iState += pid_error;
- temp_iState = constrain(temp_iState, temp_iState_min, temp_iState_max);
- iTerm = Ki * temp_iState;
- //K1 defined in Configuration.h in the PID settings
- #define K2 (1.0-K1)
- dTerm = (Kd * (pid_input - temp_dState))*K2 + (K1 * dTerm);
- temp_dState = pid_input;
- // #ifdef PID_ADD_EXTRUSION_RATE
- // pTerm+=Kc*current_block->speed_e; //additional heating if extrusion speed is high
- // #endif
- pid_output = constrain(pTerm + iTerm - dTerm, 0, PID_MAX);
-
- }
- #endif //PID_OPENLOOP
- #ifdef PID_DEBUG
- //SERIAL_ECHOLN(" PIDDEBUG Input "<<pid_input<<" Output "<<pid_output" pTerm "<<pTerm<<" iTerm "<<iTerm<<" dTerm "<<dTerm);
- #endif //PID_DEBUG
- HeaterPower=pid_output;
- // Check if temperature is within the correct range
- if((current_raw[TEMPSENSOR_HOTEND_0] > minttemp_0) && (current_raw[TEMPSENSOR_HOTEND_0] < maxttemp_0)) {
- analogWrite(HEATER_0_PIN, pid_output);
- }
- else {
- analogWrite(HEATER_0_PIN, 0);
- }
- #endif //PIDTEMP
-
- #ifndef PIDTEMP
- // Check if temperature is within the correct range
- if((current_raw[TEMPSENSOR_HOTEND_0] > minttemp_0) && (current_raw[TEMPSENSOR_HOTEND_0] < maxttemp_0)) {
- if(current_raw[TEMPSENSOR_HOTEND_0] >= target_raw[TEMPSENSOR_HOTEND_0]) {
- WRITE(HEATER_0_PIN,LOW);
- }
- else {
- WRITE(HEATER_0_PIN,HIGH);
- }
- }
- else {
- WRITE(HEATER_0_PIN,LOW);
- }
- #endif
-
- if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
- return;
- previous_millis_bed_heater = millis();
-
- #if TEMP_1_PIN > -1
- // Check if temperature is within the correct range
- if((current_raw[TEMPSENSOR_BED] > bed_minttemp) && (current_raw[TEMPSENSOR_BED] < bed_maxttemp)) {
- if(current_raw[TEMPSENSOR_BED] >= target_raw[TEMPSENSOR_BED])
- {
- WRITE(HEATER_1_PIN,LOW);
- }
- else
- {
- WRITE(HEATER_1_PIN,HIGH);
- }
- }
- else {
- WRITE(HEATER_1_PIN,LOW);
- }
- #endif
- }
-
- #define PGM_RD_W(x) (short)pgm_read_word(&x)
- // Takes hot end temperature value as input and returns corresponding raw value.
- // For a thermistor, it uses the RepRap thermistor temp table.
- // This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
- // This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
- int temp2analog(int celsius) {
- #ifdef HEATER_0_USES_THERMISTOR
- int raw = 0;
- byte i;
-
- for (i=1; i<NUMTEMPS_HEATER_0; i++)
- {
- if (PGM_RD_W(heater_0_temptable[i][1]) < celsius)
- {
- raw = PGM_RD_W(heater_0_temptable[i-1][0]) +
- (celsius - PGM_RD_W(heater_0_temptable[i-1][1])) *
- (PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0])) /
- (PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS_HEATER_0) raw = PGM_RD_W(heater_0_temptable[i-1][0]);
-
- return (1023 * OVERSAMPLENR) - raw;
- #elif defined HEATER_0_USES_AD595
- return celsius * (1024.0 / (5.0 * 100.0) ) * OVERSAMPLENR;
- #endif
- }
-
- // Takes bed temperature value as input and returns corresponding raw value.
- // For a thermistor, it uses the RepRap thermistor temp table.
- // This is needed because PID in hydra firmware hovers around a given analog value, not a temp value.
- // This function is derived from inversing the logic from a portion of getTemperature() in FiveD RepRap firmware.
- int temp2analogBed(int celsius) {
- #ifdef BED_USES_THERMISTOR
-
- int raw = 0;
- byte i;
-
- for (i=1; i<BNUMTEMPS; i++)
- {
- if (PGM_RD_W(bedtemptable[i][1]) < celsius)
- {
- raw = PGM_RD_W(bedtemptable[i-1][0]) +
- (celsius - PGM_RD_W(bedtemptable[i-1][1])) *
- (PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0])) /
- (PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1]));
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BNUMTEMPS) raw = PGM_RD_W(bedtemptable[i-1][0]);
-
- return (1023 * OVERSAMPLENR) - raw;
- #elif defined BED_USES_AD595
- return lround(celsius * (1024.0 * OVERSAMPLENR/ (5.0 * 100.0) ) );
- #endif
- }
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For hot end temperature measurement.
- float analog2temp(int raw) {
- #ifdef HEATER_0_USES_THERMISTOR
- float celsius = 0;
- byte i;
- raw = (1023 * OVERSAMPLENR) - raw;
- for (i=1; i<NUMTEMPS_HEATER_0; i++)
- {
- if (PGM_RD_W(heater_0_temptable[i][0]) > raw)
- {
- celsius = PGM_RD_W(heater_0_temptable[i-1][1]) +
- (raw - PGM_RD_W(heater_0_temptable[i-1][0])) *
- (float)(PGM_RD_W(heater_0_temptable[i][1]) - PGM_RD_W(heater_0_temptable[i-1][1])) /
- (float)(PGM_RD_W(heater_0_temptable[i][0]) - PGM_RD_W(heater_0_temptable[i-1][0]));
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == NUMTEMPS_HEATER_0) celsius = PGM_RD_W(heater_0_temptable[i-1][1]);
-
- return celsius;
- #elif defined HEATER_0_USES_AD595
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
- #endif
- }
-
- // Derived from RepRap FiveD extruder::getTemperature()
- // For bed temperature measurement.
- float analog2tempBed(int raw) {
- #ifdef BED_USES_THERMISTOR
- int celsius = 0;
- byte i;
-
- raw = (1023 * OVERSAMPLENR) - raw;
-
- for (i=1; i<BNUMTEMPS; i++)
- {
- if (PGM_RD_W(bedtemptable[i][0]) > raw)
- {
- celsius = PGM_RD_W(bedtemptable[i-1][1]) +
- (raw - PGM_RD_W(bedtemptable[i-1][0])) *
- (PGM_RD_W(bedtemptable[i][1]) - PGM_RD_W(bedtemptable[i-1][1])) /
- (PGM_RD_W(bedtemptable[i][0]) - PGM_RD_W(bedtemptable[i-1][0]));
-
- break;
- }
- }
-
- // Overflow: Set to last value in the table
- if (i == BNUMTEMPS) celsius = PGM_RD_W(bedtemptable[i-1][1]);
-
- return celsius;
-
- #elif defined BED_USES_AD595
- return raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR;
- #endif
- }
-
- void tp_init()
- {
- #if (HEATER_0_PIN > -1)
- SET_OUTPUT(HEATER_0_PIN);
- #endif
- #if (HEATER_1_PIN > -1)
- SET_OUTPUT(HEATER_1_PIN);
- #endif
- #if (HEATER_2_PIN > -1)
- SET_OUTPUT(HEATER_2_PIN);
- #endif
-
- #ifdef PIDTEMP
- temp_iState_min = 0.0;
- temp_iState_max = PID_INTEGRAL_DRIVE_MAX / Ki;
- #endif //PIDTEMP
-
- // Set analog inputs
- ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
- DIDR0 = 0;
- #ifdef DIDR2
- DIDR2 = 0;
- #endif
- #if (TEMP_0_PIN > -1)
- #if TEMP_0_PIN < 8
- DIDR0 |= 1 << TEMP_0_PIN;
- #else
- DIDR2 |= 1<<(TEMP_0_PIN - 8);
- ADCSRB = 1<<MUX5;
- #endif
- #endif
- #if (TEMP_1_PIN > -1)
- #if TEMP_1_PIN < 8
- DIDR0 |= 1<<TEMP_1_PIN;
- #else
- DIDR2 |= 1<<(TEMP_1_PIN - 8);
- ADCSRB = 1<<MUX5;
- #endif
- #endif
- #if (TEMP_2_PIN > -1)
- #if TEMP_2_PIN < 8
- DIDR0 |= 1 << TEMP_2_PIN;
- #else
- DIDR2 = 1<<(TEMP_2_PIN - 8);
- ADCSRB = 1<<MUX5;
- #endif
- #endif
-
- // Use timer0 for temperature measurement
- // Interleave temperature interrupt with millies interrupt
- OCR0B = 128;
- TIMSK0 |= (1<<OCIE0B);
-
- // Wait for temperature measurement to settle
- delay(200);
-
- #ifdef HEATER_0_MINTEMP
- minttemp_0 = temp2analog(HEATER_0_MINTEMP);
- #endif //MINTEMP
- #ifdef HEATER_0_MAXTEMP
- maxttemp_0 = temp2analog(HEATER_0_MAXTEMP);
- #endif //MAXTEMP
-
- #ifdef HEATER_1_MINTEMP
- minttemp_1 = temp2analog(HEATER_1_MINTEMP);
- #endif //MINTEMP
- #ifdef HEATER_1_MAXTEMP
- maxttemp_1 = temp2analog(HEATER_1_MAXTEMP);
- #endif //MAXTEMP
-
- #ifdef BED_MINTEMP
- bed_minttemp = temp2analog(BED_MINTEMP);
- #endif //BED_MINTEMP
- #ifdef BED_MAXTEMP
- bed_maxttemp = temp2analog(BED_MAXTEMP);
- #endif //BED_MAXTEMP
- }
-
-
-
- void setWatch()
- {
- #ifdef WATCHPERIOD
- if(isHeatingHotend0())
- {
- watchmillis = max(1,millis());
- watch_raw[TEMPSENSOR_HOTEND_0] = current_raw[TEMPSENSOR_HOTEND_0];
- }
- else
- {
- watchmillis = 0;
- }
- #endif
- }
-
-
- void disable_heater()
- {
- #if TEMP_0_PIN > -1
- target_raw[0]=0;
- #if HEATER_0_PIN > -1
- digitalWrite(HEATER_0_PIN,LOW);
- #endif
- #endif
-
- #if TEMP_1_PIN > -1
- target_raw[1]=0;
- #if HEATER_1_PIN > -1
- digitalWrite(HEATER_1_PIN,LOW);
- #endif
- #endif
-
- #if TEMP_2_PIN > -1
- target_raw[2]=0;
- #if HEATER_2_PIN > -1
- digitalWrite(HEATER_2_PIN,LOW);
- #endif
- #endif
- }
-
- // Timer 0 is shared with millies
- ISR(TIMER0_COMPB_vect)
- {
- //these variables are only accesible from the ISR, but static, so they don't loose their value
- static unsigned char temp_count = 0;
- static unsigned long raw_temp_0_value = 0;
- static unsigned long raw_temp_1_value = 0;
- static unsigned long raw_temp_2_value = 0;
- static unsigned char temp_state = 0;
-
- switch(temp_state) {
- case 0: // Prepare TEMP_0
- #if (TEMP_0_PIN > -1)
- #if TEMP_0_PIN > 7
- ADCSRB = 1<<MUX5;
- #endif
- ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
- ADCSRA |= 1<<ADSC; // Start conversion
- #endif
- #ifdef ULTIPANEL
- buttons_check();
- #endif
- temp_state = 1;
- break;
- case 1: // Measure TEMP_0
- #if (TEMP_0_PIN > -1)
- raw_temp_0_value += ADC;
- #endif
- temp_state = 2;
- break;
- case 2: // Prepare TEMP_1
- #if (TEMP_1_PIN > -1)
- #if TEMP_1_PIN > 7
- ADCSRB = 1<<MUX5;
- #endif
- ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
- ADCSRA |= 1<<ADSC; // Start conversion
- #endif
- #ifdef ULTIPANEL
- buttons_check();
- #endif
- temp_state = 3;
- break;
- case 3: // Measure TEMP_1
- #if (TEMP_1_PIN > -1)
- raw_temp_1_value += ADC;
- #endif
- temp_state = 4;
- break;
- case 4: // Prepare TEMP_2
- #if (TEMP_2_PIN > -1)
- #if TEMP_2_PIN > 7
- ADCSRB = 1<<MUX5;
- #endif
- ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
- ADCSRA |= 1<<ADSC; // Start conversion
- #endif
- #ifdef ULTIPANEL
- buttons_check();
- #endif
- temp_state = 5;
- break;
- case 5: // Measure TEMP_2
- #if (TEMP_2_PIN > -1)
- raw_temp_2_value += ADC;
- #endif
- temp_state = 0;
- temp_count++;
- break;
- default:
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temp measurement error!");
- break;
- }
-
- if(temp_count >= 16) // 6 ms * 16 = 96ms.
- {
- #ifdef HEATER_0_USES_AD595
- current_raw[0] = raw_temp_0_value;
- #else
- current_raw[0] = 16383 - raw_temp_0_value;
- #endif
-
- #ifdef HEATER_1_USES_AD595
- current_raw[2] = raw_temp_2_value;
- #else
- current_raw[2] = 16383 - raw_temp_2_value;
- #endif
-
- #ifdef BED_USES_AD595
- current_raw[1] = raw_temp_1_value;
- #else
- current_raw[1] = 16383 - raw_temp_1_value;
- #endif
-
- temp_meas_ready = true;
- temp_count = 0;
- raw_temp_0_value = 0;
- raw_temp_1_value = 0;
- raw_temp_2_value = 0;
- #ifdef HEATER_0_MAXTEMP
- #if (HEATER_0_PIN > -1)
- if(current_raw[TEMPSENSOR_HOTEND_0] >= maxttemp_0) {
- target_raw[TEMPSENSOR_HOTEND_0] = 0;
- digitalWrite(HEATER_0_PIN, 0);
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MAXTEMP triggered !!");
- kill();
- }
- #endif
- #endif
- #ifdef HEATER_1_MAXTEMP
- #if (HEATER_1_PIN > -1)
- if(current_raw[TEMPSENSOR_HOTEND_1] >= maxttemp_1) {
- target_raw[TEMPSENSOR_HOTEND_1] = 0;
- digitalWrite(HEATER_2_PIN, 0);
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MAXTEMP triggered !!");
- kill();
- }
- #endif
- #endif //MAXTEMP
-
- #ifdef HEATER_0_MINTEMP
- #if (HEATER_0_PIN > -1)
- if(current_raw[TEMPSENSOR_HOTEND_0] <= minttemp_0) {
- target_raw[TEMPSENSOR_HOTEND_0] = 0;
- digitalWrite(HEATER_0_PIN, 0);
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temperature extruder 0 switched off. MINTEMP triggered !!");
- kill();
- }
- #endif
- #endif
-
- #ifdef HEATER_1_MINTEMP
- #if (HEATER_2_PIN > -1)
- if(current_raw[TEMPSENSOR_HOTEND_1] <= minttemp_1) {
- target_raw[TEMPSENSOR_HOTEND_1] = 0;
- digitalWrite(HEATER_2_PIN, 0);
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temperature extruder 1 switched off. MINTEMP triggered !!");
- kill();
- }
- #endif
- #endif //MAXTEMP
-
- #ifdef BED_MINTEMP
- #if (HEATER_1_PIN > -1)
- if(current_raw[1] <= bed_minttemp) {
- target_raw[1] = 0;
- digitalWrite(HEATER_1_PIN, 0);
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temperatur heated bed switched off. MINTEMP triggered !!");
- kill();
- }
- #endif
- #endif
-
- #ifdef BED_MAXTEMP
- #if (HEATER_1_PIN > -1)
- if(current_raw[1] >= bed_maxttemp) {
- target_raw[1] = 0;
- digitalWrite(HEATER_1_PIN, 0);
- SERIAL_ERROR_START;
- SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
- kill();
- }
- #endif
- #endif
- }
- }
-
|