My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Vous ne pouvez pas sélectionner plus de 25 sujets Les noms de sujets doivent commencer par une lettre ou un nombre, peuvent contenir des tirets ('-') et peuvent comporter jusqu'à 35 caractères.

temperature.cpp 49KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627
  1. /*
  2. temperature.cpp - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. #include "Marlin.h"
  17. #include "ultralcd.h"
  18. #include "temperature.h"
  19. #include "watchdog.h"
  20. #include "language.h"
  21. #include "Sd2PinMap.h"
  22. //===========================================================================
  23. //================================== macros =================================
  24. //===========================================================================
  25. #ifdef K1 // Defined in Configuration.h in the PID settings
  26. #define K2 (1.0-K1)
  27. #endif
  28. #if defined(PIDTEMPBED) || defined(PIDTEMP)
  29. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  30. #endif
  31. //===========================================================================
  32. //============================= public variables ============================
  33. //===========================================================================
  34. int target_temperature[4] = { 0 };
  35. int target_temperature_bed = 0;
  36. int current_temperature_raw[4] = { 0 };
  37. float current_temperature[4] = { 0.0 };
  38. int current_temperature_bed_raw = 0;
  39. float current_temperature_bed = 0.0;
  40. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  41. int redundant_temperature_raw = 0;
  42. float redundant_temperature = 0.0;
  43. #endif
  44. #ifdef PIDTEMPBED
  45. float bedKp=DEFAULT_bedKp;
  46. float bedKi=(DEFAULT_bedKi*PID_dT);
  47. float bedKd=(DEFAULT_bedKd/PID_dT);
  48. #endif //PIDTEMPBED
  49. #ifdef FAN_SOFT_PWM
  50. unsigned char fanSpeedSoftPwm;
  51. #endif
  52. unsigned char soft_pwm_bed;
  53. #ifdef BABYSTEPPING
  54. volatile int babystepsTodo[3] = { 0 };
  55. #endif
  56. #ifdef FILAMENT_SENSOR
  57. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  58. #endif
  59. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  60. enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
  61. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  62. #ifdef THERMAL_PROTECTION_HOTENDS
  63. static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
  64. static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
  65. #endif
  66. #ifdef THERMAL_PROTECTION_BED
  67. static TRState thermal_runaway_bed_state_machine = TRReset;
  68. static millis_t thermal_runaway_bed_timer;
  69. #endif
  70. #endif
  71. //===========================================================================
  72. //============================ private variables ============================
  73. //===========================================================================
  74. static volatile bool temp_meas_ready = false;
  75. #ifdef PIDTEMP
  76. //static cannot be external:
  77. static float temp_iState[EXTRUDERS] = { 0 };
  78. static float temp_dState[EXTRUDERS] = { 0 };
  79. static float pTerm[EXTRUDERS];
  80. static float iTerm[EXTRUDERS];
  81. static float dTerm[EXTRUDERS];
  82. //int output;
  83. static float pid_error[EXTRUDERS];
  84. static float temp_iState_min[EXTRUDERS];
  85. static float temp_iState_max[EXTRUDERS];
  86. static bool pid_reset[EXTRUDERS];
  87. #endif //PIDTEMP
  88. #ifdef PIDTEMPBED
  89. //static cannot be external:
  90. static float temp_iState_bed = { 0 };
  91. static float temp_dState_bed = { 0 };
  92. static float pTerm_bed;
  93. static float iTerm_bed;
  94. static float dTerm_bed;
  95. //int output;
  96. static float pid_error_bed;
  97. static float temp_iState_min_bed;
  98. static float temp_iState_max_bed;
  99. #else //PIDTEMPBED
  100. static millis_t next_bed_check_ms;
  101. #endif //PIDTEMPBED
  102. static unsigned char soft_pwm[EXTRUDERS];
  103. #ifdef FAN_SOFT_PWM
  104. static unsigned char soft_pwm_fan;
  105. #endif
  106. #if HAS_AUTO_FAN
  107. static millis_t next_auto_fan_check_ms;
  108. #endif
  109. #ifdef PIDTEMP
  110. #ifdef PID_PARAMS_PER_EXTRUDER
  111. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  112. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  113. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  114. #ifdef PID_ADD_EXTRUSION_RATE
  115. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  116. #endif // PID_ADD_EXTRUSION_RATE
  117. #else //PID_PARAMS_PER_EXTRUDER
  118. float Kp = DEFAULT_Kp;
  119. float Ki = DEFAULT_Ki * PID_dT;
  120. float Kd = DEFAULT_Kd / PID_dT;
  121. #ifdef PID_ADD_EXTRUSION_RATE
  122. float Kc = DEFAULT_Kc;
  123. #endif // PID_ADD_EXTRUSION_RATE
  124. #endif // PID_PARAMS_PER_EXTRUDER
  125. #endif //PIDTEMP
  126. // Init min and max temp with extreme values to prevent false errors during startup
  127. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  128. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  129. static int minttemp[EXTRUDERS] = { 0 };
  130. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  131. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  132. #ifdef BED_MAXTEMP
  133. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  134. #endif
  135. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  136. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  137. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  138. #else
  139. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  140. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  141. #endif
  142. static float analog2temp(int raw, uint8_t e);
  143. static float analog2tempBed(int raw);
  144. static void updateTemperaturesFromRawValues();
  145. #ifdef THERMAL_PROTECTION_HOTENDS
  146. int watch_target_temp[EXTRUDERS] = { 0 };
  147. millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
  148. #endif
  149. #ifndef SOFT_PWM_SCALE
  150. #define SOFT_PWM_SCALE 0
  151. #endif
  152. #ifdef FILAMENT_SENSOR
  153. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  154. #endif
  155. #ifdef HEATER_0_USES_MAX6675
  156. static int read_max6675();
  157. #endif
  158. //===========================================================================
  159. //================================ Functions ================================
  160. //===========================================================================
  161. void PID_autotune(float temp, int extruder, int ncycles)
  162. {
  163. float input = 0.0;
  164. int cycles = 0;
  165. bool heating = true;
  166. millis_t temp_ms = millis(), t1 = temp_ms, t2 = temp_ms;
  167. long t_high = 0, t_low = 0;
  168. long bias, d;
  169. float Ku, Tu;
  170. float Kp, Ki, Kd;
  171. float max = 0, min = 10000;
  172. #if HAS_AUTO_FAN
  173. millis_t next_auto_fan_check_ms = temp_ms + 2500;
  174. #endif
  175. if (extruder >= EXTRUDERS
  176. #if !HAS_TEMP_BED
  177. || extruder < 0
  178. #endif
  179. ) {
  180. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  181. return;
  182. }
  183. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  184. disable_all_heaters(); // switch off all heaters.
  185. if (extruder < 0)
  186. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  187. else
  188. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  189. // PID Tuning loop
  190. for (;;) {
  191. millis_t ms = millis();
  192. if (temp_meas_ready) { // temp sample ready
  193. updateTemperaturesFromRawValues();
  194. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  195. max = max(max, input);
  196. min = min(min, input);
  197. #if HAS_AUTO_FAN
  198. if (ms > next_auto_fan_check_ms) {
  199. checkExtruderAutoFans();
  200. next_auto_fan_check_ms = ms + 2500;
  201. }
  202. #endif
  203. if (heating && input > temp) {
  204. if (ms > t2 + 5000) {
  205. heating = false;
  206. if (extruder < 0)
  207. soft_pwm_bed = (bias - d) >> 1;
  208. else
  209. soft_pwm[extruder] = (bias - d) >> 1;
  210. t1 = ms;
  211. t_high = t1 - t2;
  212. max = temp;
  213. }
  214. }
  215. if (!heating && input < temp) {
  216. if (ms > t1 + 5000) {
  217. heating = true;
  218. t2 = ms;
  219. t_low = t2 - t1;
  220. if (cycles > 0) {
  221. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  222. bias += (d*(t_high - t_low))/(t_low + t_high);
  223. bias = constrain(bias, 20, max_pow - 20);
  224. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  225. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  226. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  227. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  228. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  229. if (cycles > 2) {
  230. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  231. Tu = ((float)(t_low + t_high) / 1000.0);
  232. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  233. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  234. Kp = 0.6 * Ku;
  235. Ki = 2 * Kp / Tu;
  236. Kd = Kp * Tu / 8;
  237. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  238. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  239. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  240. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  241. /*
  242. Kp = 0.33*Ku;
  243. Ki = Kp/Tu;
  244. Kd = Kp*Tu/3;
  245. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  246. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  247. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  248. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  249. Kp = 0.2*Ku;
  250. Ki = 2*Kp/Tu;
  251. Kd = Kp*Tu/3;
  252. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  253. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  254. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  255. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  256. */
  257. }
  258. }
  259. if (extruder < 0)
  260. soft_pwm_bed = (bias + d) >> 1;
  261. else
  262. soft_pwm[extruder] = (bias + d) >> 1;
  263. cycles++;
  264. min = temp;
  265. }
  266. }
  267. }
  268. #define MAX_OVERSHOOT_PID_AUTOTUNE 20
  269. if (input > temp + MAX_OVERSHOOT_PID_AUTOTUNE) {
  270. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  271. return;
  272. }
  273. // Every 2 seconds...
  274. if (ms > temp_ms + 2000) {
  275. int p;
  276. if (extruder < 0) {
  277. p = soft_pwm_bed;
  278. SERIAL_PROTOCOLPGM(MSG_OK_B);
  279. }
  280. else {
  281. p = soft_pwm[extruder];
  282. SERIAL_PROTOCOLPGM(MSG_OK_T);
  283. }
  284. SERIAL_PROTOCOL(input);
  285. SERIAL_PROTOCOLPGM(MSG_AT);
  286. SERIAL_PROTOCOLLN(p);
  287. temp_ms = ms;
  288. } // every 2 seconds
  289. // Over 2 minutes?
  290. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  291. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  292. return;
  293. }
  294. if (cycles > ncycles) {
  295. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  296. const char *estring = extruder < 0 ? "bed" : "";
  297. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kp "); SERIAL_PROTOCOLLN(Kp);
  298. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Ki "); SERIAL_PROTOCOLLN(Ki);
  299. SERIAL_PROTOCOLPGM("#define DEFAULT_"); SERIAL_PROTOCOL(estring); SERIAL_PROTOCOLPGM("Kd "); SERIAL_PROTOCOLLN(Kd);
  300. return;
  301. }
  302. lcd_update();
  303. }
  304. }
  305. void updatePID() {
  306. #ifdef PIDTEMP
  307. for (int e = 0; e < EXTRUDERS; e++) {
  308. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  309. }
  310. #endif
  311. #ifdef PIDTEMPBED
  312. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  313. #endif
  314. }
  315. int getHeaterPower(int heater) {
  316. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  317. }
  318. #if HAS_AUTO_FAN
  319. void setExtruderAutoFanState(int pin, bool state)
  320. {
  321. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  322. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  323. pinMode(pin, OUTPUT);
  324. digitalWrite(pin, newFanSpeed);
  325. analogWrite(pin, newFanSpeed);
  326. }
  327. void checkExtruderAutoFans()
  328. {
  329. uint8_t fanState = 0;
  330. // which fan pins need to be turned on?
  331. #if HAS_AUTO_FAN_0
  332. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  333. fanState |= 1;
  334. #endif
  335. #if HAS_AUTO_FAN_1
  336. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  337. {
  338. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  339. fanState |= 1;
  340. else
  341. fanState |= 2;
  342. }
  343. #endif
  344. #if HAS_AUTO_FAN_2
  345. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  346. {
  347. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  348. fanState |= 1;
  349. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  350. fanState |= 2;
  351. else
  352. fanState |= 4;
  353. }
  354. #endif
  355. #if HAS_AUTO_FAN_3
  356. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  357. {
  358. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  359. fanState |= 1;
  360. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  361. fanState |= 2;
  362. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  363. fanState |= 4;
  364. else
  365. fanState |= 8;
  366. }
  367. #endif
  368. // update extruder auto fan states
  369. #if HAS_AUTO_FAN_0
  370. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  371. #endif
  372. #if HAS_AUTO_FAN_1
  373. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  374. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  375. #endif
  376. #if HAS_AUTO_FAN_2
  377. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  378. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  379. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  380. #endif
  381. #if HAS_AUTO_FAN_3
  382. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  383. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  384. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  385. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  386. #endif
  387. }
  388. #endif // any extruder auto fan pins set
  389. //
  390. // Temperature Error Handlers
  391. //
  392. inline void _temp_error(int e, const char *serial_msg, const char *lcd_msg) {
  393. if (IsRunning()) {
  394. SERIAL_ERROR_START;
  395. if (e >= 0) SERIAL_ERRORLN((int)e);
  396. serialprintPGM(serial_msg);
  397. MYSERIAL.write('\n');
  398. #ifdef ULTRA_LCD
  399. lcd_setalertstatuspgm(lcd_msg);
  400. #endif
  401. }
  402. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  403. Stop();
  404. #endif
  405. }
  406. void max_temp_error(uint8_t e) {
  407. disable_all_heaters();
  408. _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
  409. }
  410. void min_temp_error(uint8_t e) {
  411. disable_all_heaters();
  412. _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
  413. }
  414. void bed_max_temp_error(void) {
  415. #if HAS_HEATER_BED
  416. WRITE_HEATER_BED(0);
  417. #endif
  418. _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
  419. }
  420. float get_pid_output(int e) {
  421. float pid_output;
  422. #ifdef PIDTEMP
  423. #ifndef PID_OPENLOOP
  424. pid_error[e] = target_temperature[e] - current_temperature[e];
  425. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  426. pid_output = BANG_MAX;
  427. pid_reset[e] = true;
  428. }
  429. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  430. pid_output = 0;
  431. pid_reset[e] = true;
  432. }
  433. else {
  434. if (pid_reset[e]) {
  435. temp_iState[e] = 0.0;
  436. pid_reset[e] = false;
  437. }
  438. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  439. temp_iState[e] += pid_error[e];
  440. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  441. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  442. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  443. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  444. if (pid_output > PID_MAX) {
  445. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  446. pid_output = PID_MAX;
  447. }
  448. else if (pid_output < 0) {
  449. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  450. pid_output = 0;
  451. }
  452. }
  453. temp_dState[e] = current_temperature[e];
  454. #else
  455. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  456. #endif //PID_OPENLOOP
  457. #ifdef PID_DEBUG
  458. SERIAL_ECHO_START;
  459. SERIAL_ECHO(MSG_PID_DEBUG);
  460. SERIAL_ECHO(e);
  461. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  462. SERIAL_ECHO(current_temperature[e]);
  463. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  464. SERIAL_ECHO(pid_output);
  465. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  466. SERIAL_ECHO(pTerm[e]);
  467. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  468. SERIAL_ECHO(iTerm[e]);
  469. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  470. SERIAL_ECHOLN(dTerm[e]);
  471. #endif //PID_DEBUG
  472. #else /* PID off */
  473. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  474. #endif
  475. return pid_output;
  476. }
  477. #ifdef PIDTEMPBED
  478. float get_pid_output_bed() {
  479. float pid_output;
  480. #ifndef PID_OPENLOOP
  481. pid_error_bed = target_temperature_bed - current_temperature_bed;
  482. pTerm_bed = bedKp * pid_error_bed;
  483. temp_iState_bed += pid_error_bed;
  484. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  485. iTerm_bed = bedKi * temp_iState_bed;
  486. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  487. temp_dState_bed = current_temperature_bed;
  488. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  489. if (pid_output > MAX_BED_POWER) {
  490. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  491. pid_output = MAX_BED_POWER;
  492. }
  493. else if (pid_output < 0) {
  494. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  495. pid_output = 0;
  496. }
  497. #else
  498. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  499. #endif // PID_OPENLOOP
  500. #ifdef PID_BED_DEBUG
  501. SERIAL_ECHO_START;
  502. SERIAL_ECHO(" PID_BED_DEBUG ");
  503. SERIAL_ECHO(": Input ");
  504. SERIAL_ECHO(current_temperature_bed);
  505. SERIAL_ECHO(" Output ");
  506. SERIAL_ECHO(pid_output);
  507. SERIAL_ECHO(" pTerm ");
  508. SERIAL_ECHO(pTerm_bed);
  509. SERIAL_ECHO(" iTerm ");
  510. SERIAL_ECHO(iTerm_bed);
  511. SERIAL_ECHO(" dTerm ");
  512. SERIAL_ECHOLN(dTerm_bed);
  513. #endif //PID_BED_DEBUG
  514. return pid_output;
  515. }
  516. #endif
  517. /**
  518. * Manage heating activities for extruder hot-ends and a heated bed
  519. * - Acquire updated temperature readings
  520. * - Invoke thermal runaway protection
  521. * - Manage extruder auto-fan
  522. * - Apply filament width to the extrusion rate (may move)
  523. * - Update the heated bed PID output value
  524. */
  525. void manage_heater() {
  526. if (!temp_meas_ready) return;
  527. updateTemperaturesFromRawValues();
  528. #ifdef HEATER_0_USES_MAX6675
  529. float ct = current_temperature[0];
  530. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  531. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  532. #endif
  533. #if defined(THERMAL_PROTECTION_HOTENDS) || !defined(PIDTEMPBED) || HAS_AUTO_FAN
  534. millis_t ms = millis();
  535. #endif
  536. // Loop through all extruders
  537. for (int e = 0; e < EXTRUDERS; e++) {
  538. #ifdef THERMAL_PROTECTION_HOTENDS
  539. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
  540. #endif
  541. float pid_output = get_pid_output(e);
  542. // Check if temperature is within the correct range
  543. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  544. // Check if the temperature is failing to increase
  545. #ifdef THERMAL_PROTECTION_HOTENDS
  546. // Is it time to check this extruder's heater?
  547. if (watch_heater_next_ms[e] && ms > watch_heater_next_ms[e]) {
  548. // Has it failed to increase enough?
  549. if (degHotend(e) < watch_target_temp[e]) {
  550. // Stop!
  551. disable_all_heaters();
  552. _temp_error(e, PSTR(MSG_HEATING_FAILED), PSTR(MSG_HEATING_FAILED_LCD));
  553. }
  554. else {
  555. // Start again if the target is still far off
  556. start_watching_heater(e);
  557. }
  558. }
  559. #endif // THERMAL_PROTECTION_HOTENDS
  560. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  561. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  562. disable_all_heaters();
  563. _temp_error(0, PSTR(MSG_EXTRUDER_SWITCHED_OFF), PSTR(MSG_ERR_REDUNDANT_TEMP));
  564. }
  565. #endif
  566. } // Extruders Loop
  567. #if HAS_AUTO_FAN
  568. if (ms > next_auto_fan_check_ms) { // only need to check fan state very infrequently
  569. checkExtruderAutoFans();
  570. next_auto_fan_check_ms = ms + 2500;
  571. }
  572. #endif
  573. // Control the extruder rate based on the width sensor
  574. #ifdef FILAMENT_SENSOR
  575. if (filament_sensor) {
  576. meas_shift_index = delay_index1 - meas_delay_cm;
  577. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  578. // Get the delayed info and add 100 to reconstitute to a percent of
  579. // the nominal filament diameter then square it to get an area
  580. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  581. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  582. if (vm < 0.01) vm = 0.01;
  583. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  584. }
  585. #endif //FILAMENT_SENSOR
  586. #ifndef PIDTEMPBED
  587. if (ms < next_bed_check_ms) return;
  588. next_bed_check_ms = ms + BED_CHECK_INTERVAL;
  589. #endif
  590. #if TEMP_SENSOR_BED != 0
  591. #ifdef THERMAL_PROTECTION_BED
  592. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
  593. #endif
  594. #ifdef PIDTEMPBED
  595. float pid_output = get_pid_output_bed();
  596. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  597. #elif defined(BED_LIMIT_SWITCHING)
  598. // Check if temperature is within the correct band
  599. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  600. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  601. soft_pwm_bed = 0;
  602. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  603. soft_pwm_bed = MAX_BED_POWER >> 1;
  604. }
  605. else {
  606. soft_pwm_bed = 0;
  607. WRITE_HEATER_BED(LOW);
  608. }
  609. #else // BED_LIMIT_SWITCHING
  610. // Check if temperature is within the correct range
  611. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  612. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  613. }
  614. else {
  615. soft_pwm_bed = 0;
  616. WRITE_HEATER_BED(LOW);
  617. }
  618. #endif
  619. #endif //TEMP_SENSOR_BED != 0
  620. }
  621. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  622. // Derived from RepRap FiveD extruder::getTemperature()
  623. // For hot end temperature measurement.
  624. static float analog2temp(int raw, uint8_t e) {
  625. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  626. if (e > EXTRUDERS)
  627. #else
  628. if (e >= EXTRUDERS)
  629. #endif
  630. {
  631. SERIAL_ERROR_START;
  632. SERIAL_ERROR((int)e);
  633. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  634. kill();
  635. return 0.0;
  636. }
  637. #ifdef HEATER_0_USES_MAX6675
  638. if (e == 0) return 0.25 * raw;
  639. #endif
  640. if (heater_ttbl_map[e] != NULL) {
  641. float celsius = 0;
  642. uint8_t i;
  643. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  644. for (i = 1; i < heater_ttbllen_map[e]; i++) {
  645. if (PGM_RD_W((*tt)[i][0]) > raw) {
  646. celsius = PGM_RD_W((*tt)[i-1][1]) +
  647. (raw - PGM_RD_W((*tt)[i-1][0])) *
  648. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  649. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  650. break;
  651. }
  652. }
  653. // Overflow: Set to last value in the table
  654. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  655. return celsius;
  656. }
  657. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  658. }
  659. // Derived from RepRap FiveD extruder::getTemperature()
  660. // For bed temperature measurement.
  661. static float analog2tempBed(int raw) {
  662. #ifdef BED_USES_THERMISTOR
  663. float celsius = 0;
  664. byte i;
  665. for (i = 1; i < BEDTEMPTABLE_LEN; i++) {
  666. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw) {
  667. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  668. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  669. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  670. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  671. break;
  672. }
  673. }
  674. // Overflow: Set to last value in the table
  675. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  676. return celsius;
  677. #elif defined BED_USES_AD595
  678. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  679. #else
  680. return 0;
  681. #endif
  682. }
  683. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  684. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  685. static void updateTemperaturesFromRawValues() {
  686. #ifdef HEATER_0_USES_MAX6675
  687. current_temperature_raw[0] = read_max6675();
  688. #endif
  689. for (uint8_t e = 0; e < EXTRUDERS; e++) {
  690. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  691. }
  692. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  693. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  694. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  695. #endif
  696. #if HAS_FILAMENT_SENSOR
  697. filament_width_meas = analog2widthFil();
  698. #endif
  699. //Reset the watchdog after we know we have a temperature measurement.
  700. watchdog_reset();
  701. CRITICAL_SECTION_START;
  702. temp_meas_ready = false;
  703. CRITICAL_SECTION_END;
  704. }
  705. #ifdef FILAMENT_SENSOR
  706. // Convert raw Filament Width to millimeters
  707. float analog2widthFil() {
  708. return current_raw_filwidth / 16383.0 * 5.0;
  709. //return current_raw_filwidth;
  710. }
  711. // Convert raw Filament Width to a ratio
  712. int widthFil_to_size_ratio() {
  713. float temp = filament_width_meas;
  714. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  715. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  716. return filament_width_nominal / temp * 100;
  717. }
  718. #endif
  719. /**
  720. * Initialize the temperature manager
  721. * The manager is implemented by periodic calls to manage_heater()
  722. */
  723. void tp_init() {
  724. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  725. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  726. MCUCR=BIT(JTD);
  727. MCUCR=BIT(JTD);
  728. #endif
  729. // Finish init of mult extruder arrays
  730. for (int e = 0; e < EXTRUDERS; e++) {
  731. // populate with the first value
  732. maxttemp[e] = maxttemp[0];
  733. #ifdef PIDTEMP
  734. temp_iState_min[e] = 0.0;
  735. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  736. #endif //PIDTEMP
  737. #ifdef PIDTEMPBED
  738. temp_iState_min_bed = 0.0;
  739. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  740. #endif //PIDTEMPBED
  741. }
  742. #if HAS_HEATER_0
  743. SET_OUTPUT(HEATER_0_PIN);
  744. #endif
  745. #if HAS_HEATER_1
  746. SET_OUTPUT(HEATER_1_PIN);
  747. #endif
  748. #if HAS_HEATER_2
  749. SET_OUTPUT(HEATER_2_PIN);
  750. #endif
  751. #if HAS_HEATER_3
  752. SET_OUTPUT(HEATER_3_PIN);
  753. #endif
  754. #if HAS_HEATER_BED
  755. SET_OUTPUT(HEATER_BED_PIN);
  756. #endif
  757. #if HAS_FAN
  758. SET_OUTPUT(FAN_PIN);
  759. #ifdef FAST_PWM_FAN
  760. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  761. #endif
  762. #ifdef FAN_SOFT_PWM
  763. soft_pwm_fan = fanSpeedSoftPwm / 2;
  764. #endif
  765. #endif
  766. #ifdef HEATER_0_USES_MAX6675
  767. #ifndef SDSUPPORT
  768. OUT_WRITE(SCK_PIN, LOW);
  769. OUT_WRITE(MOSI_PIN, HIGH);
  770. OUT_WRITE(MISO_PIN, HIGH);
  771. #else
  772. pinMode(SS_PIN, OUTPUT);
  773. digitalWrite(SS_PIN, HIGH);
  774. #endif
  775. OUT_WRITE(MAX6675_SS,HIGH);
  776. #endif //HEATER_0_USES_MAX6675
  777. #ifdef DIDR2
  778. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  779. #else
  780. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  781. #endif
  782. // Set analog inputs
  783. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  784. DIDR0 = 0;
  785. #ifdef DIDR2
  786. DIDR2 = 0;
  787. #endif
  788. #if HAS_TEMP_0
  789. ANALOG_SELECT(TEMP_0_PIN);
  790. #endif
  791. #if HAS_TEMP_1
  792. ANALOG_SELECT(TEMP_1_PIN);
  793. #endif
  794. #if HAS_TEMP_2
  795. ANALOG_SELECT(TEMP_2_PIN);
  796. #endif
  797. #if HAS_TEMP_3
  798. ANALOG_SELECT(TEMP_3_PIN);
  799. #endif
  800. #if HAS_TEMP_BED
  801. ANALOG_SELECT(TEMP_BED_PIN);
  802. #endif
  803. #if HAS_FILAMENT_SENSOR
  804. ANALOG_SELECT(FILWIDTH_PIN);
  805. #endif
  806. // Use timer0 for temperature measurement
  807. // Interleave temperature interrupt with millies interrupt
  808. OCR0B = 128;
  809. TIMSK0 |= BIT(OCIE0B);
  810. // Wait for temperature measurement to settle
  811. delay(250);
  812. #define TEMP_MIN_ROUTINE(NR) \
  813. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  814. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  815. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  816. minttemp_raw[NR] += OVERSAMPLENR; \
  817. else \
  818. minttemp_raw[NR] -= OVERSAMPLENR; \
  819. }
  820. #define TEMP_MAX_ROUTINE(NR) \
  821. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  822. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  823. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  824. maxttemp_raw[NR] -= OVERSAMPLENR; \
  825. else \
  826. maxttemp_raw[NR] += OVERSAMPLENR; \
  827. }
  828. #ifdef HEATER_0_MINTEMP
  829. TEMP_MIN_ROUTINE(0);
  830. #endif
  831. #ifdef HEATER_0_MAXTEMP
  832. TEMP_MAX_ROUTINE(0);
  833. #endif
  834. #if EXTRUDERS > 1
  835. #ifdef HEATER_1_MINTEMP
  836. TEMP_MIN_ROUTINE(1);
  837. #endif
  838. #ifdef HEATER_1_MAXTEMP
  839. TEMP_MAX_ROUTINE(1);
  840. #endif
  841. #if EXTRUDERS > 2
  842. #ifdef HEATER_2_MINTEMP
  843. TEMP_MIN_ROUTINE(2);
  844. #endif
  845. #ifdef HEATER_2_MAXTEMP
  846. TEMP_MAX_ROUTINE(2);
  847. #endif
  848. #if EXTRUDERS > 3
  849. #ifdef HEATER_3_MINTEMP
  850. TEMP_MIN_ROUTINE(3);
  851. #endif
  852. #ifdef HEATER_3_MAXTEMP
  853. TEMP_MAX_ROUTINE(3);
  854. #endif
  855. #endif // EXTRUDERS > 3
  856. #endif // EXTRUDERS > 2
  857. #endif // EXTRUDERS > 1
  858. #ifdef BED_MINTEMP
  859. /* No bed MINTEMP error implemented?!? */ /*
  860. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  861. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  862. bed_minttemp_raw += OVERSAMPLENR;
  863. #else
  864. bed_minttemp_raw -= OVERSAMPLENR;
  865. #endif
  866. }
  867. */
  868. #endif //BED_MINTEMP
  869. #ifdef BED_MAXTEMP
  870. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  871. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  872. bed_maxttemp_raw -= OVERSAMPLENR;
  873. #else
  874. bed_maxttemp_raw += OVERSAMPLENR;
  875. #endif
  876. }
  877. #endif //BED_MAXTEMP
  878. }
  879. #ifdef THERMAL_PROTECTION_HOTENDS
  880. /**
  881. * Start Heating Sanity Check for hotends that are below
  882. * their target temperature by a configurable margin.
  883. * This is called when the temperature is set. (M104, M109)
  884. */
  885. void start_watching_heater(int e) {
  886. millis_t ms = millis() + WATCH_TEMP_PERIOD * 1000;
  887. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
  888. watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
  889. watch_heater_next_ms[e] = ms;
  890. }
  891. else
  892. watch_heater_next_ms[e] = 0;
  893. }
  894. #endif
  895. #if defined(THERMAL_PROTECTION_HOTENDS) || defined(THERMAL_PROTECTION_BED)
  896. void thermal_runaway_protection(TRState *state, millis_t *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
  897. static float tr_target_temperature[EXTRUDERS+1] = { 0.0 };
  898. /*
  899. SERIAL_ECHO_START;
  900. SERIAL_ECHOPGM("Thermal Thermal Runaway Running. Heater ID: ");
  901. if (heater_id < 0) SERIAL_ECHOPGM("bed"); else SERIAL_ECHOPGM(heater_id);
  902. SERIAL_ECHOPGM(" ; State:");
  903. SERIAL_ECHOPGM(*state);
  904. SERIAL_ECHOPGM(" ; Timer:");
  905. SERIAL_ECHOPGM(*timer);
  906. SERIAL_ECHOPGM(" ; Temperature:");
  907. SERIAL_ECHOPGM(temperature);
  908. SERIAL_ECHOPGM(" ; Target Temp:");
  909. SERIAL_ECHOPGM(target_temperature);
  910. SERIAL_EOL;
  911. */
  912. int heater_index = heater_id >= 0 ? heater_id : EXTRUDERS;
  913. // If the target temperature changes, restart
  914. if (tr_target_temperature[heater_index] != target_temperature)
  915. *state = TRReset;
  916. switch (*state) {
  917. case TRReset:
  918. *timer = 0;
  919. *state = TRInactive;
  920. break;
  921. // Inactive state waits for a target temperature to be set
  922. case TRInactive:
  923. if (target_temperature > 0) {
  924. tr_target_temperature[heater_index] = target_temperature;
  925. *state = TRFirstHeating;
  926. }
  927. break;
  928. // When first heating, wait for the temperature to be reached then go to Stable state
  929. case TRFirstHeating:
  930. if (temperature >= tr_target_temperature[heater_index]) *state = TRStable;
  931. break;
  932. // While the temperature is stable watch for a bad temperature
  933. case TRStable:
  934. // If the temperature is over the target (-hysteresis) restart the timer
  935. if (temperature >= tr_target_temperature[heater_index] - hysteresis_degc)
  936. *timer = millis();
  937. // If the timer goes too long without a reset, trigger shutdown
  938. else if (millis() > *timer + period_seconds * 1000UL)
  939. *state = TRRunaway;
  940. break;
  941. case TRRunaway:
  942. SERIAL_ERROR_START;
  943. SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
  944. if (heater_id < 0) SERIAL_ERRORLNPGM("bed"); else SERIAL_ERRORLN(heater_id);
  945. LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY);
  946. disable_all_heaters();
  947. disable_all_steppers();
  948. for (;;) {
  949. manage_heater();
  950. lcd_update();
  951. }
  952. }
  953. }
  954. #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
  955. void disable_all_heaters() {
  956. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  957. setTargetBed(0);
  958. #define DISABLE_HEATER(NR) { \
  959. target_temperature[NR] = 0; \
  960. soft_pwm[NR] = 0; \
  961. WRITE_HEATER_ ## NR (LOW); \
  962. }
  963. #if HAS_TEMP_0
  964. target_temperature[0] = 0;
  965. soft_pwm[0] = 0;
  966. WRITE_HEATER_0P(LOW); // Should HEATERS_PARALLEL apply here? Then change to DISABLE_HEATER(0)
  967. #endif
  968. #if EXTRUDERS > 1 && HAS_TEMP_1
  969. DISABLE_HEATER(1);
  970. #endif
  971. #if EXTRUDERS > 2 && HAS_TEMP_2
  972. DISABLE_HEATER(2);
  973. #endif
  974. #if EXTRUDERS > 3 && HAS_TEMP_3
  975. DISABLE_HEATER(3);
  976. #endif
  977. #if HAS_TEMP_BED
  978. target_temperature_bed = 0;
  979. soft_pwm_bed = 0;
  980. #if HAS_HEATER_BED
  981. WRITE_HEATER_BED(LOW);
  982. #endif
  983. #endif
  984. }
  985. #ifdef HEATER_0_USES_MAX6675
  986. #define MAX6675_HEAT_INTERVAL 250u
  987. static millis_t next_max6675_ms = 0;
  988. int max6675_temp = 2000;
  989. static int read_max6675() {
  990. millis_t ms = millis();
  991. if (ms < next_max6675_ms)
  992. return max6675_temp;
  993. next_max6675_ms = ms + MAX6675_HEAT_INTERVAL;
  994. max6675_temp = 0;
  995. #ifdef PRR
  996. PRR &= ~BIT(PRSPI);
  997. #elif defined(PRR0)
  998. PRR0 &= ~BIT(PRSPI);
  999. #endif
  1000. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  1001. // enable TT_MAX6675
  1002. WRITE(MAX6675_SS, 0);
  1003. // ensure 100ns delay - a bit extra is fine
  1004. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1005. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1006. // read MSB
  1007. SPDR = 0;
  1008. for (;(SPSR & BIT(SPIF)) == 0;);
  1009. max6675_temp = SPDR;
  1010. max6675_temp <<= 8;
  1011. // read LSB
  1012. SPDR = 0;
  1013. for (;(SPSR & BIT(SPIF)) == 0;);
  1014. max6675_temp |= SPDR;
  1015. // disable TT_MAX6675
  1016. WRITE(MAX6675_SS, 1);
  1017. if (max6675_temp & 4) {
  1018. // thermocouple open
  1019. max6675_temp = 4000;
  1020. }
  1021. else {
  1022. max6675_temp = max6675_temp >> 3;
  1023. }
  1024. return max6675_temp;
  1025. }
  1026. #endif //HEATER_0_USES_MAX6675
  1027. /**
  1028. * Stages in the ISR loop
  1029. */
  1030. enum TempState {
  1031. PrepareTemp_0,
  1032. MeasureTemp_0,
  1033. PrepareTemp_BED,
  1034. MeasureTemp_BED,
  1035. PrepareTemp_1,
  1036. MeasureTemp_1,
  1037. PrepareTemp_2,
  1038. MeasureTemp_2,
  1039. PrepareTemp_3,
  1040. MeasureTemp_3,
  1041. Prepare_FILWIDTH,
  1042. Measure_FILWIDTH,
  1043. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1044. };
  1045. static unsigned long raw_temp_value[4] = { 0 };
  1046. static unsigned long raw_temp_bed_value = 0;
  1047. static void set_current_temp_raw() {
  1048. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1049. current_temperature_raw[0] = raw_temp_value[0];
  1050. #endif
  1051. #if HAS_TEMP_1
  1052. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1053. redundant_temperature_raw = raw_temp_value[1];
  1054. #else
  1055. current_temperature_raw[1] = raw_temp_value[1];
  1056. #endif
  1057. #if HAS_TEMP_2
  1058. current_temperature_raw[2] = raw_temp_value[2];
  1059. #if HAS_TEMP_3
  1060. current_temperature_raw[3] = raw_temp_value[3];
  1061. #endif
  1062. #endif
  1063. #endif
  1064. current_temperature_bed_raw = raw_temp_bed_value;
  1065. temp_meas_ready = true;
  1066. }
  1067. /**
  1068. * Timer 0 is shared with millies
  1069. * - Manage PWM to all the heaters and fan
  1070. * - Update the raw temperature values
  1071. * - Check new temperature values for MIN/MAX errors
  1072. * - Step the babysteps value for each axis towards 0
  1073. */
  1074. ISR(TIMER0_COMPB_vect) {
  1075. static unsigned char temp_count = 0;
  1076. static TempState temp_state = StartupDelay;
  1077. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1078. // Static members for each heater
  1079. #ifdef SLOW_PWM_HEATERS
  1080. static unsigned char slow_pwm_count = 0;
  1081. #define ISR_STATICS(n) \
  1082. static unsigned char soft_pwm_ ## n; \
  1083. static unsigned char state_heater_ ## n = 0; \
  1084. static unsigned char state_timer_heater_ ## n = 0
  1085. #else
  1086. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1087. #endif
  1088. // Statics per heater
  1089. ISR_STATICS(0);
  1090. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1091. ISR_STATICS(1);
  1092. #if EXTRUDERS > 2
  1093. ISR_STATICS(2);
  1094. #if EXTRUDERS > 3
  1095. ISR_STATICS(3);
  1096. #endif
  1097. #endif
  1098. #endif
  1099. #if HAS_HEATER_BED
  1100. ISR_STATICS(BED);
  1101. #endif
  1102. #if HAS_FILAMENT_SENSOR
  1103. static unsigned long raw_filwidth_value = 0;
  1104. #endif
  1105. #ifndef SLOW_PWM_HEATERS
  1106. /**
  1107. * standard PWM modulation
  1108. */
  1109. if (pwm_count == 0) {
  1110. soft_pwm_0 = soft_pwm[0];
  1111. if (soft_pwm_0 > 0) {
  1112. WRITE_HEATER_0(1);
  1113. }
  1114. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1115. #if EXTRUDERS > 1
  1116. soft_pwm_1 = soft_pwm[1];
  1117. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1118. #if EXTRUDERS > 2
  1119. soft_pwm_2 = soft_pwm[2];
  1120. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1121. #if EXTRUDERS > 3
  1122. soft_pwm_3 = soft_pwm[3];
  1123. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1124. #endif
  1125. #endif
  1126. #endif
  1127. #if HAS_HEATER_BED
  1128. soft_pwm_BED = soft_pwm_bed;
  1129. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1130. #endif
  1131. #ifdef FAN_SOFT_PWM
  1132. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1133. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1134. #endif
  1135. }
  1136. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1137. #if EXTRUDERS > 1
  1138. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1139. #if EXTRUDERS > 2
  1140. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1141. #if EXTRUDERS > 3
  1142. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1143. #endif
  1144. #endif
  1145. #endif
  1146. #if HAS_HEATER_BED
  1147. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1148. #endif
  1149. #ifdef FAN_SOFT_PWM
  1150. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1151. #endif
  1152. pwm_count += BIT(SOFT_PWM_SCALE);
  1153. pwm_count &= 0x7f;
  1154. #else // SLOW_PWM_HEATERS
  1155. /*
  1156. * SLOW PWM HEATERS
  1157. *
  1158. * for heaters drived by relay
  1159. */
  1160. #ifndef MIN_STATE_TIME
  1161. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1162. #endif
  1163. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1164. #define _SLOW_PWM_ROUTINE(NR, src) \
  1165. soft_pwm_ ## NR = src; \
  1166. if (soft_pwm_ ## NR > 0) { \
  1167. if (state_timer_heater_ ## NR == 0) { \
  1168. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1169. state_heater_ ## NR = 1; \
  1170. WRITE_HEATER_ ## NR(1); \
  1171. } \
  1172. } \
  1173. else { \
  1174. if (state_timer_heater_ ## NR == 0) { \
  1175. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1176. state_heater_ ## NR = 0; \
  1177. WRITE_HEATER_ ## NR(0); \
  1178. } \
  1179. }
  1180. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1181. #define PWM_OFF_ROUTINE(NR) \
  1182. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1183. if (state_timer_heater_ ## NR == 0) { \
  1184. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1185. state_heater_ ## NR = 0; \
  1186. WRITE_HEATER_ ## NR (0); \
  1187. } \
  1188. }
  1189. if (slow_pwm_count == 0) {
  1190. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1191. #if EXTRUDERS > 1
  1192. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1193. #if EXTRUDERS > 2
  1194. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1195. #if EXTRUDERS > 3
  1196. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1197. #endif
  1198. #endif
  1199. #endif
  1200. #if HAS_HEATER_BED
  1201. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1202. #endif
  1203. } // slow_pwm_count == 0
  1204. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1205. #if EXTRUDERS > 1
  1206. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1207. #if EXTRUDERS > 2
  1208. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1209. #if EXTRUDERS > 3
  1210. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1211. #endif
  1212. #endif
  1213. #endif
  1214. #if HAS_HEATER_BED
  1215. PWM_OFF_ROUTINE(BED); // BED
  1216. #endif
  1217. #ifdef FAN_SOFT_PWM
  1218. if (pwm_count == 0) {
  1219. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1220. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1221. }
  1222. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1223. #endif //FAN_SOFT_PWM
  1224. pwm_count += BIT(SOFT_PWM_SCALE);
  1225. pwm_count &= 0x7f;
  1226. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1227. if ((pwm_count % 64) == 0) {
  1228. slow_pwm_count++;
  1229. slow_pwm_count &= 0x7f;
  1230. // EXTRUDER 0
  1231. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1232. #if EXTRUDERS > 1 // EXTRUDER 1
  1233. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1234. #if EXTRUDERS > 2 // EXTRUDER 2
  1235. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1236. #if EXTRUDERS > 3 // EXTRUDER 3
  1237. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1238. #endif
  1239. #endif
  1240. #endif
  1241. #if HAS_HEATER_BED
  1242. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1243. #endif
  1244. } // (pwm_count % 64) == 0
  1245. #endif // SLOW_PWM_HEATERS
  1246. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1247. #ifdef MUX5
  1248. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1249. #else
  1250. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1251. #endif
  1252. // Prepare or measure a sensor, each one every 12th frame
  1253. switch(temp_state) {
  1254. case PrepareTemp_0:
  1255. #if HAS_TEMP_0
  1256. START_ADC(TEMP_0_PIN);
  1257. #endif
  1258. lcd_buttons_update();
  1259. temp_state = MeasureTemp_0;
  1260. break;
  1261. case MeasureTemp_0:
  1262. #if HAS_TEMP_0
  1263. raw_temp_value[0] += ADC;
  1264. #endif
  1265. temp_state = PrepareTemp_BED;
  1266. break;
  1267. case PrepareTemp_BED:
  1268. #if HAS_TEMP_BED
  1269. START_ADC(TEMP_BED_PIN);
  1270. #endif
  1271. lcd_buttons_update();
  1272. temp_state = MeasureTemp_BED;
  1273. break;
  1274. case MeasureTemp_BED:
  1275. #if HAS_TEMP_BED
  1276. raw_temp_bed_value += ADC;
  1277. #endif
  1278. temp_state = PrepareTemp_1;
  1279. break;
  1280. case PrepareTemp_1:
  1281. #if HAS_TEMP_1
  1282. START_ADC(TEMP_1_PIN);
  1283. #endif
  1284. lcd_buttons_update();
  1285. temp_state = MeasureTemp_1;
  1286. break;
  1287. case MeasureTemp_1:
  1288. #if HAS_TEMP_1
  1289. raw_temp_value[1] += ADC;
  1290. #endif
  1291. temp_state = PrepareTemp_2;
  1292. break;
  1293. case PrepareTemp_2:
  1294. #if HAS_TEMP_2
  1295. START_ADC(TEMP_2_PIN);
  1296. #endif
  1297. lcd_buttons_update();
  1298. temp_state = MeasureTemp_2;
  1299. break;
  1300. case MeasureTemp_2:
  1301. #if HAS_TEMP_2
  1302. raw_temp_value[2] += ADC;
  1303. #endif
  1304. temp_state = PrepareTemp_3;
  1305. break;
  1306. case PrepareTemp_3:
  1307. #if HAS_TEMP_3
  1308. START_ADC(TEMP_3_PIN);
  1309. #endif
  1310. lcd_buttons_update();
  1311. temp_state = MeasureTemp_3;
  1312. break;
  1313. case MeasureTemp_3:
  1314. #if HAS_TEMP_3
  1315. raw_temp_value[3] += ADC;
  1316. #endif
  1317. temp_state = Prepare_FILWIDTH;
  1318. break;
  1319. case Prepare_FILWIDTH:
  1320. #if HAS_FILAMENT_SENSOR
  1321. START_ADC(FILWIDTH_PIN);
  1322. #endif
  1323. lcd_buttons_update();
  1324. temp_state = Measure_FILWIDTH;
  1325. break;
  1326. case Measure_FILWIDTH:
  1327. #if HAS_FILAMENT_SENSOR
  1328. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1329. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1330. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1331. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1332. }
  1333. #endif
  1334. temp_state = PrepareTemp_0;
  1335. temp_count++;
  1336. break;
  1337. case StartupDelay:
  1338. temp_state = PrepareTemp_0;
  1339. break;
  1340. // default:
  1341. // SERIAL_ERROR_START;
  1342. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1343. // break;
  1344. } // switch(temp_state)
  1345. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1346. // Update the raw values if they've been read. Else we could be updating them during reading.
  1347. if (!temp_meas_ready) set_current_temp_raw();
  1348. // Filament Sensor - can be read any time since IIR filtering is used
  1349. #if HAS_FILAMENT_SENSOR
  1350. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1351. #endif
  1352. temp_count = 0;
  1353. for (int i = 0; i < 4; i++) raw_temp_value[i] = 0;
  1354. raw_temp_bed_value = 0;
  1355. #if HAS_TEMP_0 && !defined(HEATER_0_USES_MAX6675)
  1356. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1357. #define GE0 <=
  1358. #else
  1359. #define GE0 >=
  1360. #endif
  1361. if (current_temperature_raw[0] GE0 maxttemp_raw[0]) max_temp_error(0);
  1362. if (minttemp_raw[0] GE0 current_temperature_raw[0]) min_temp_error(0);
  1363. #endif
  1364. #if HAS_TEMP_1
  1365. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1366. #define GE1 <=
  1367. #else
  1368. #define GE1 >=
  1369. #endif
  1370. if (current_temperature_raw[1] GE1 maxttemp_raw[1]) max_temp_error(1);
  1371. if (minttemp_raw[1] GE1 current_temperature_raw[1]) min_temp_error(1);
  1372. #endif // TEMP_SENSOR_1
  1373. #if HAS_TEMP_2
  1374. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1375. #define GE2 <=
  1376. #else
  1377. #define GE2 >=
  1378. #endif
  1379. if (current_temperature_raw[2] GE2 maxttemp_raw[2]) max_temp_error(2);
  1380. if (minttemp_raw[2] GE2 current_temperature_raw[2]) min_temp_error(2);
  1381. #endif // TEMP_SENSOR_2
  1382. #if HAS_TEMP_3
  1383. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1384. #define GE3 <=
  1385. #else
  1386. #define GE3 >=
  1387. #endif
  1388. if (current_temperature_raw[3] GE3 maxttemp_raw[3]) max_temp_error(3);
  1389. if (minttemp_raw[3] GE3 current_temperature_raw[3]) min_temp_error(3);
  1390. #endif // TEMP_SENSOR_3
  1391. #if HAS_TEMP_BED
  1392. #if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1393. #define GEBED <=
  1394. #else
  1395. #define GEBED >=
  1396. #endif
  1397. if (current_temperature_bed_raw GEBED bed_maxttemp_raw) {
  1398. target_temperature_bed = 0;
  1399. bed_max_temp_error();
  1400. }
  1401. #endif
  1402. } // temp_count >= OVERSAMPLENR
  1403. #ifdef BABYSTEPPING
  1404. for (uint8_t axis = X_AXIS; axis <= Z_AXIS; axis++) {
  1405. int curTodo = babystepsTodo[axis]; //get rid of volatile for performance
  1406. if (curTodo > 0) {
  1407. babystep(axis,/*fwd*/true);
  1408. babystepsTodo[axis]--; //fewer to do next time
  1409. }
  1410. else if (curTodo < 0) {
  1411. babystep(axis,/*fwd*/false);
  1412. babystepsTodo[axis]++; //fewer to do next time
  1413. }
  1414. }
  1415. #endif //BABYSTEPPING
  1416. }
  1417. #ifdef PIDTEMP
  1418. // Apply the scale factors to the PID values
  1419. float scalePID_i(float i) { return i * PID_dT; }
  1420. float unscalePID_i(float i) { return i / PID_dT; }
  1421. float scalePID_d(float d) { return d / PID_dT; }
  1422. float unscalePID_d(float d) { return d * PID_dT; }
  1423. #endif //PIDTEMP