My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592359335943595359635973598359936003601360236033604360536063607360836093610361136123613361436153616361736183619362036213622362336243625362636273628362936303631363236333634363536363637363836393640364136423643364436453646364736483649365036513652365336543655365636573658365936603661366236633664366536663667366836693670367136723673367436753676367736783679368036813682368336843685368636873688368936903691369236933694369536963697369836993700370137023703370437053706370737083709371037113712371337143715371637173718371937203721372237233724372537263727372837293730373137323733373437353736373737383739374037413742374337443745374637473748374937503751375237533754375537563757375837593760376137623763376437653766376737683769377037713772377337743775377637773778377937803781378237833784378537863787378837893790379137923793379437953796379737983799380038013802380338043805380638073808380938103811381238133814381538163817381838193820382138223823382438253826382738283829383038313832383338343835383638373838383938403841384238433844384538463847384838493850385138523853385438553856385738583859386038613862386338643865386638673868386938703871387238733874387538763877387838793880388138823883388438853886388738883889389038913892389338943895389638973898389939003901390239033904390539063907390839093910391139123913391439153916391739183919392039213922392339243925392639273928392939303931393239333934393539363937393839393940394139423943394439453946394739483949395039513952395339543955395639573958395939603961396239633964396539663967396839693970397139723973397439753976397739783979398039813982398339843985398639873988398939903991399239933994399539963997399839994000400140024003400440054006400740084009401040114012401340144015401640174018401940204021402240234024402540264027402840294030403140324033403440354036403740384039404040414042404340444045404640474048404940504051405240534054405540564057405840594060406140624063406440654066406740684069407040714072407340744075407640774078407940804081408240834084408540864087408840894090409140924093409440954096409740984099410041014102410341044105410641074108410941104111411241134114411541164117411841194120412141224123412441254126412741284129413041314132413341344135413641374138413941404141414241434144414541464147414841494150415141524153415441554156415741584159416041614162416341644165416641674168416941704171417241734174417541764177417841794180418141824183418441854186418741884189419041914192419341944195419641974198419942004201420242034204420542064207420842094210421142124213421442154216421742184219422042214222422342244225422642274228422942304231423242334234423542364237423842394240424142424243424442454246424742484249425042514252425342544255425642574258425942604261426242634264426542664267426842694270427142724273427442754276427742784279428042814282428342844285428642874288428942904291429242934294429542964297429842994300430143024303430443054306430743084309431043114312431343144315431643174318431943204321432243234324432543264327432843294330433143324333433443354336433743384339434043414342434343444345434643474348434943504351435243534354435543564357435843594360436143624363436443654366436743684369437043714372437343744375437643774378437943804381438243834384438543864387438843894390439143924393439443954396439743984399440044014402440344044405440644074408440944104411441244134414441544164417441844194420442144224423442444254426442744284429443044314432443344344435443644374438443944404441444244434444444544464447444844494450445144524453445444554456445744584459446044614462446344644465446644674468446944704471447244734474447544764477447844794480448144824483448444854486448744884489449044914492449344944495449644974498449945004501450245034504450545064507450845094510451145124513451445154516451745184519452045214522452345244525452645274528452945304531453245334534453545364537453845394540454145424543454445454546454745484549455045514552455345544555455645574558455945604561456245634564456545664567456845694570457145724573457445754576457745784579458045814582458345844585458645874588458945904591459245934594459545964597459845994600460146024603460446054606460746084609461046114612461346144615461646174618461946204621462246234624462546264627462846294630463146324633463446354636463746384639464046414642464346444645464646474648464946504651465246534654465546564657465846594660466146624663466446654666466746684669467046714672467346744675467646774678467946804681468246834684468546864687468846894690469146924693469446954696469746984699470047014702470347044705470647074708470947104711471247134714471547164717471847194720472147224723472447254726472747284729473047314732473347344735473647374738473947404741474247434744474547464747474847494750475147524753475447554756475747584759476047614762476347644765476647674768476947704771477247734774477547764777477847794780478147824783478447854786478747884789479047914792479347944795479647974798479948004801480248034804480548064807480848094810481148124813481448154816481748184819482048214822482348244825482648274828482948304831483248334834483548364837483848394840484148424843484448454846484748484849485048514852485348544855485648574858485948604861486248634864486548664867486848694870487148724873487448754876487748784879488048814882488348844885488648874888488948904891489248934894489548964897489848994900490149024903490449054906490749084909491049114912491349144915491649174918491949204921492249234924492549264927492849294930493149324933493449354936493749384939494049414942494349444945494649474948494949504951495249534954495549564957495849594960496149624963496449654966496749684969497049714972497349744975497649774978497949804981498249834984498549864987498849894990499149924993499449954996499749984999500050015002500350045005500650075008500950105011501250135014501550165017501850195020502150225023502450255026502750285029503050315032503350345035503650375038503950405041504250435044504550465047504850495050505150525053505450555056505750585059506050615062506350645065506650675068506950705071507250735074507550765077507850795080508150825083508450855086508750885089509050915092509350945095509650975098509951005101510251035104510551065107510851095110511151125113511451155116511751185119512051215122512351245125512651275128512951305131513251335134513551365137513851395140514151425143514451455146514751485149515051515152515351545155515651575158515951605161516251635164516551665167516851695170517151725173517451755176517751785179518051815182518351845185518651875188518951905191519251935194519551965197519851995200520152025203520452055206520752085209521052115212521352145215521652175218521952205221522252235224522552265227522852295230523152325233523452355236523752385239524052415242524352445245524652475248524952505251525252535254525552565257525852595260526152625263526452655266526752685269527052715272527352745275527652775278527952805281528252835284528552865287528852895290529152925293529452955296529752985299530053015302530353045305530653075308530953105311531253135314531553165317531853195320532153225323532453255326532753285329533053315332533353345335533653375338533953405341534253435344534553465347534853495350535153525353535453555356535753585359536053615362536353645365536653675368536953705371537253735374537553765377537853795380538153825383538453855386538753885389539053915392539353945395539653975398539954005401540254035404540554065407540854095410541154125413541454155416541754185419542054215422542354245425542654275428542954305431543254335434543554365437543854395440544154425443544454455446544754485449545054515452545354545455545654575458545954605461546254635464546554665467546854695470547154725473547454755476547754785479548054815482548354845485548654875488548954905491549254935494549554965497549854995500550155025503550455055506550755085509551055115512551355145515551655175518551955205521552255235524552555265527552855295530553155325533553455355536553755385539554055415542554355445545554655475548554955505551555255535554555555565557555855595560556155625563556455655566556755685569557055715572557355745575557655775578557955805581558255835584558555865587558855895590559155925593559455955596559755985599560056015602560356045605560656075608560956105611561256135614561556165617561856195620562156225623562456255626562756285629563056315632563356345635563656375638563956405641564256435644564556465647564856495650565156525653565456555656565756585659566056615662566356645665566656675668566956705671567256735674567556765677567856795680568156825683568456855686568756885689569056915692569356945695569656975698569957005701570257035704570557065707570857095710571157125713571457155716571757185719572057215722572357245725572657275728572957305731573257335734573557365737573857395740574157425743574457455746574757485749575057515752575357545755575657575758575957605761576257635764576557665767576857695770577157725773577457755776577757785779578057815782578357845785578657875788578957905791579257935794579557965797579857995800580158025803580458055806580758085809581058115812581358145815581658175818581958205821582258235824582558265827582858295830583158325833583458355836583758385839584058415842584358445845584658475848584958505851585258535854585558565857585858595860586158625863586458655866586758685869587058715872587358745875587658775878587958805881588258835884588558865887588858895890589158925893589458955896589758985899590059015902590359045905590659075908590959105911591259135914591559165917591859195920592159225923592459255926592759285929593059315932593359345935593659375938593959405941594259435944594559465947594859495950595159525953595459555956595759585959596059615962596359645965596659675968596959705971597259735974597559765977597859795980598159825983598459855986598759885989599059915992599359945995599659975998599960006001600260036004600560066007600860096010601160126013601460156016601760186019602060216022602360246025602660276028602960306031603260336034603560366037603860396040604160426043604460456046604760486049605060516052605360546055605660576058605960606061606260636064606560666067606860696070607160726073607460756076607760786079608060816082608360846085608660876088608960906091609260936094609560966097609860996100610161026103610461056106610761086109611061116112611361146115611661176118611961206121612261236124612561266127612861296130613161326133613461356136613761386139614061416142614361446145614661476148614961506151615261536154615561566157615861596160616161626163616461656166616761686169617061716172617361746175617661776178617961806181618261836184618561866187618861896190619161926193619461956196619761986199620062016202620362046205620662076208620962106211621262136214621562166217621862196220622162226223622462256226622762286229623062316232623362346235623662376238623962406241624262436244624562466247624862496250625162526253625462556256625762586259626062616262626362646265626662676268626962706271627262736274627562766277627862796280628162826283628462856286628762886289629062916292629362946295629662976298629963006301630263036304630563066307630863096310631163126313631463156316631763186319632063216322632363246325632663276328632963306331633263336334633563366337633863396340634163426343634463456346634763486349635063516352635363546355635663576358635963606361636263636364636563666367636863696370637163726373637463756376637763786379638063816382638363846385638663876388638963906391639263936394639563966397639863996400640164026403640464056406640764086409641064116412641364146415641664176418641964206421642264236424642564266427642864296430643164326433643464356436643764386439644064416442644364446445644664476448644964506451645264536454645564566457645864596460646164626463646464656466646764686469647064716472647364746475647664776478647964806481648264836484648564866487648864896490649164926493649464956496649764986499650065016502650365046505650665076508650965106511651265136514651565166517651865196520652165226523652465256526652765286529653065316532653365346535653665376538653965406541654265436544654565466547654865496550655165526553655465556556655765586559656065616562656365646565656665676568656965706571657265736574657565766577657865796580658165826583658465856586658765886589659065916592659365946595659665976598659966006601660266036604660566066607660866096610661166126613661466156616661766186619662066216622662366246625662666276628662966306631663266336634663566366637663866396640664166426643664466456646664766486649665066516652665366546655665666576658665966606661666266636664666566666667666866696670667166726673667466756676667766786679668066816682668366846685668666876688668966906691669266936694669566966697669866996700670167026703670467056706670767086709671067116712671367146715671667176718671967206721672267236724672567266727672867296730673167326733673467356736673767386739674067416742674367446745674667476748674967506751675267536754675567566757675867596760676167626763676467656766676767686769677067716772677367746775677667776778677967806781678267836784678567866787678867896790679167926793679467956796679767986799680068016802680368046805680668076808680968106811681268136814681568166817681868196820682168226823682468256826682768286829683068316832683368346835683668376838683968406841684268436844684568466847684868496850685168526853685468556856685768586859686068616862686368646865686668676868686968706871687268736874687568766877687868796880688168826883688468856886688768886889689068916892689368946895689668976898689969006901690269036904690569066907690869096910691169126913691469156916691769186919692069216922692369246925692669276928692969306931693269336934693569366937693869396940694169426943694469456946694769486949695069516952695369546955695669576958695969606961696269636964696569666967696869696970697169726973697469756976697769786979698069816982698369846985698669876988698969906991699269936994699569966997699869997000700170027003700470057006700770087009701070117012701370147015701670177018701970207021702270237024702570267027702870297030703170327033703470357036703770387039704070417042704370447045704670477048704970507051705270537054705570567057705870597060706170627063706470657066706770687069707070717072707370747075707670777078707970807081708270837084708570867087708870897090709170927093709470957096709770987099710071017102710371047105710671077108710971107111711271137114711571167117711871197120712171227123712471257126712771287129713071317132713371347135713671377138713971407141714271437144714571467147714871497150715171527153715471557156715771587159716071617162716371647165716671677168716971707171717271737174717571767177717871797180718171827183718471857186718771887189719071917192719371947195719671977198719972007201720272037204720572067207720872097210721172127213721472157216721772187219722072217222722372247225722672277228722972307231723272337234723572367237723872397240724172427243724472457246724772487249725072517252725372547255725672577258725972607261726272637264726572667267726872697270727172727273727472757276727772787279728072817282728372847285728672877288728972907291729272937294729572967297729872997300730173027303730473057306730773087309731073117312731373147315731673177318731973207321732273237324732573267327732873297330733173327333733473357336733773387339734073417342734373447345734673477348734973507351735273537354735573567357735873597360736173627363736473657366736773687369737073717372737373747375737673777378737973807381738273837384738573867387738873897390739173927393739473957396739773987399740074017402740374047405740674077408740974107411741274137414741574167417741874197420742174227423742474257426742774287429743074317432743374347435743674377438743974407441744274437444744574467447744874497450745174527453745474557456745774587459746074617462746374647465746674677468746974707471747274737474747574767477747874797480748174827483748474857486748774887489749074917492749374947495749674977498749975007501750275037504750575067507750875097510751175127513751475157516751775187519752075217522752375247525752675277528752975307531753275337534753575367537753875397540754175427543754475457546754775487549755075517552755375547555755675577558755975607561756275637564756575667567756875697570757175727573757475757576757775787579758075817582758375847585758675877588758975907591759275937594759575967597759875997600760176027603760476057606760776087609761076117612761376147615761676177618761976207621762276237624762576267627762876297630763176327633763476357636763776387639764076417642764376447645764676477648764976507651765276537654765576567657765876597660766176627663766476657666766776687669767076717672767376747675767676777678767976807681768276837684768576867687768876897690769176927693769476957696769776987699770077017702770377047705770677077708770977107711771277137714771577167717771877197720772177227723772477257726772777287729773077317732773377347735773677377738773977407741774277437744774577467747774877497750775177527753775477557756775777587759776077617762776377647765776677677768776977707771777277737774777577767777777877797780778177827783778477857786778777887789779077917792779377947795779677977798779978007801780278037804780578067807780878097810781178127813781478157816781778187819782078217822782378247825782678277828782978307831783278337834783578367837783878397840784178427843784478457846784778487849785078517852785378547855785678577858785978607861786278637864786578667867786878697870787178727873787478757876787778787879788078817882788378847885788678877888788978907891789278937894789578967897789878997900790179027903790479057906790779087909791079117912791379147915791679177918791979207921792279237924792579267927792879297930793179327933793479357936793779387939794079417942794379447945794679477948794979507951795279537954795579567957795879597960796179627963796479657966796779687969797079717972797379747975797679777978797979807981798279837984798579867987798879897990799179927993799479957996799779987999800080018002800380048005800680078008800980108011801280138014801580168017801880198020802180228023802480258026802780288029803080318032803380348035803680378038803980408041804280438044804580468047804880498050805180528053805480558056805780588059806080618062806380648065806680678068806980708071807280738074807580768077807880798080808180828083808480858086808780888089809080918092809380948095809680978098809981008101810281038104810581068107810881098110811181128113811481158116811781188119812081218122812381248125812681278128812981308131813281338134813581368137813881398140814181428143814481458146814781488149815081518152815381548155815681578158815981608161816281638164816581668167816881698170817181728173817481758176817781788179818081818182818381848185818681878188818981908191819281938194819581968197819881998200820182028203820482058206820782088209821082118212821382148215821682178218821982208221822282238224822582268227822882298230823182328233823482358236823782388239824082418242824382448245824682478248824982508251825282538254825582568257825882598260826182628263826482658266826782688269827082718272827382748275827682778278827982808281828282838284828582868287828882898290829182928293829482958296829782988299830083018302830383048305830683078308830983108311831283138314831583168317831883198320832183228323832483258326832783288329833083318332833383348335833683378338833983408341834283438344834583468347834883498350835183528353835483558356835783588359836083618362836383648365836683678368836983708371837283738374837583768377837883798380838183828383838483858386838783888389839083918392839383948395839683978398
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  151. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  152. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  153. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  154. * M110 - Set the current line number
  155. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  156. * M112 - Emergency stop
  157. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  158. * M114 - Output current position to serial port
  159. * M115 - Capabilities string
  160. * M117 - Display a message on the controller screen
  161. * M119 - Output Endstop status to serial port
  162. * M120 - Enable endstop detection
  163. * M121 - Disable endstop detection
  164. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  165. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  166. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M140 - Set bed target temp
  169. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  170. * M149 - Set temperature units
  171. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  172. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  173. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  174. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  175. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  176. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  177. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  178. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  179. * M205 - Set advanced settings. Current units apply:
  180. S<print> T<travel> minimum speeds
  181. B<minimum segment time>
  182. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  183. * M206 - Set additional homing offset
  184. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  185. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  186. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  187. Every normal extrude-only move will be classified as retract depending on the direction.
  188. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  189. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  190. * M221 - Set Flow Percentage: S<percent>
  191. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  192. * M240 - Trigger a camera to take a photograph
  193. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  194. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  195. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  196. * M301 - Set PID parameters P I and D
  197. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  198. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  199. * M304 - Set bed PID parameters P I and D
  200. * M380 - Activate solenoid on active extruder
  201. * M381 - Disable all solenoids
  202. * M400 - Finish all moves
  203. * M401 - Lower Z probe if present
  204. * M402 - Raise Z probe if present
  205. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  206. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  207. * M406 - Disable Filament Sensor extrusion control
  208. * M407 - Display measured filament diameter in millimeters
  209. * M410 - Quickstop. Abort all the planned moves
  210. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  211. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  212. * M428 - Set the home_offset logically based on the current_position
  213. * M500 - Store parameters in EEPROM
  214. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  215. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  216. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  217. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  218. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  219. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  220. * M666 - Set delta endstop adjustment
  221. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  222. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  223. * M907 - Set digital trimpot motor current using axis codes.
  224. * M908 - Control digital trimpot directly.
  225. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  226. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  227. * M350 - Set microstepping mode.
  228. * M351 - Toggle MS1 MS2 pins directly.
  229. *
  230. * ************ SCARA Specific - This can change to suit future G-code regulations
  231. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  232. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  233. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  234. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  235. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  236. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  237. * ************* SCARA End ***************
  238. *
  239. * ************ Custom codes - This can change to suit future G-code regulations
  240. * M100 - Watch Free Memory (For Debugging Only)
  241. * M928 - Start SD logging (M928 filename.g) - ended by M29
  242. * M999 - Restart after being stopped by error
  243. *
  244. * "T" Codes
  245. *
  246. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  247. *
  248. */
  249. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  250. void gcode_M100();
  251. #endif
  252. #if ENABLED(SDSUPPORT)
  253. CardReader card;
  254. #endif
  255. #if ENABLED(EXPERIMENTAL_I2CBUS)
  256. TWIBus i2c;
  257. #endif
  258. bool Running = true;
  259. uint8_t marlin_debug_flags = DEBUG_NONE;
  260. static float feedrate = 1500.0, saved_feedrate;
  261. float current_position[NUM_AXIS] = { 0.0 };
  262. static float destination[NUM_AXIS] = { 0.0 };
  263. bool axis_known_position[3] = { false };
  264. bool axis_homed[3] = { false };
  265. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  266. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  267. static char* current_command, *current_command_args;
  268. static uint8_t cmd_queue_index_r = 0,
  269. cmd_queue_index_w = 0,
  270. commands_in_queue = 0;
  271. #if ENABLED(INCH_MODE_SUPPORT)
  272. float linear_unit_factor = 1.0;
  273. float volumetric_unit_factor = 1.0;
  274. #endif
  275. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  276. TempUnit input_temp_units = TEMPUNIT_C;
  277. #endif
  278. const float homing_feedrate[] = HOMING_FEEDRATE;
  279. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  280. int feedrate_multiplier = 100; //100->1 200->2
  281. int saved_feedrate_multiplier;
  282. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  283. bool volumetric_enabled = false;
  284. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  285. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  286. // The distance that XYZ has been offset by G92. Reset by G28.
  287. float position_shift[3] = { 0 };
  288. // This offset is added to the configured home position.
  289. // Set by M206, M428, or menu item. Saved to EEPROM.
  290. float home_offset[3] = { 0 };
  291. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  292. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  293. // Software Endstops. Default to configured limits.
  294. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  295. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  296. #if FAN_COUNT > 0
  297. int fanSpeeds[FAN_COUNT] = { 0 };
  298. #endif
  299. // The active extruder (tool). Set with T<extruder> command.
  300. uint8_t active_extruder = 0;
  301. // Relative Mode. Enable with G91, disable with G90.
  302. static bool relative_mode = false;
  303. bool wait_for_heatup = true;
  304. const char errormagic[] PROGMEM = "Error:";
  305. const char echomagic[] PROGMEM = "echo:";
  306. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  307. static int serial_count = 0;
  308. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  309. static char* seen_pointer;
  310. // Next Immediate GCode Command pointer. NULL if none.
  311. const char* queued_commands_P = NULL;
  312. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  313. // Inactivity shutdown
  314. millis_t previous_cmd_ms = 0;
  315. static millis_t max_inactive_time = 0;
  316. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  317. // Print Job Timer
  318. #if ENABLED(PRINTCOUNTER)
  319. PrintCounter print_job_timer = PrintCounter();
  320. #else
  321. Stopwatch print_job_timer = Stopwatch();
  322. #endif
  323. // Buzzer
  324. #if HAS_BUZZER
  325. #if ENABLED(SPEAKER)
  326. Speaker buzzer;
  327. #else
  328. Buzzer buzzer;
  329. #endif
  330. #endif
  331. static uint8_t target_extruder;
  332. #if HAS_BED_PROBE
  333. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  334. #endif
  335. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  336. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  337. int xy_probe_speed = XY_PROBE_SPEED;
  338. bool bed_leveling_in_progress = false;
  339. #define XY_PROBE_FEEDRATE xy_probe_speed
  340. #elif defined(XY_PROBE_SPEED)
  341. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  342. #else
  343. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  344. #endif
  345. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  346. float z_endstop_adj = 0;
  347. #endif
  348. // Extruder offsets
  349. #if HOTENDS > 1
  350. #ifndef HOTEND_OFFSET_X
  351. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  352. #endif
  353. #ifndef HOTEND_OFFSET_Y
  354. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  355. #endif
  356. float hotend_offset[][HOTENDS] = {
  357. HOTEND_OFFSET_X,
  358. HOTEND_OFFSET_Y
  359. #if ENABLED(DUAL_X_CARRIAGE)
  360. , { 0 } // Z offsets for each extruder
  361. #endif
  362. };
  363. #endif
  364. #if HAS_Z_SERVO_ENDSTOP
  365. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  366. #endif
  367. #if ENABLED(BARICUDA)
  368. int baricuda_valve_pressure = 0;
  369. int baricuda_e_to_p_pressure = 0;
  370. #endif
  371. #if ENABLED(FWRETRACT)
  372. bool autoretract_enabled = false;
  373. bool retracted[EXTRUDERS] = { false };
  374. bool retracted_swap[EXTRUDERS] = { false };
  375. float retract_length = RETRACT_LENGTH;
  376. float retract_length_swap = RETRACT_LENGTH_SWAP;
  377. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  378. float retract_zlift = RETRACT_ZLIFT;
  379. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  380. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  381. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  382. #endif // FWRETRACT
  383. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  384. bool powersupply =
  385. #if ENABLED(PS_DEFAULT_OFF)
  386. false
  387. #else
  388. true
  389. #endif
  390. ;
  391. #endif
  392. #if ENABLED(DELTA)
  393. #define TOWER_1 X_AXIS
  394. #define TOWER_2 Y_AXIS
  395. #define TOWER_3 Z_AXIS
  396. float delta[3] = { 0 };
  397. #define SIN_60 0.8660254037844386
  398. #define COS_60 0.5
  399. float endstop_adj[3] = { 0 };
  400. // these are the default values, can be overriden with M665
  401. float delta_radius = DELTA_RADIUS;
  402. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  403. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  404. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  405. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  406. float delta_tower3_x = 0; // back middle tower
  407. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  408. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  409. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  410. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  411. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  412. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  413. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  414. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  415. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  416. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  417. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  418. int delta_grid_spacing[2] = { 0, 0 };
  419. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  420. #endif
  421. #else
  422. static bool home_all_axis = true;
  423. #endif
  424. #if ENABLED(SCARA)
  425. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  426. static float delta[3] = { 0 };
  427. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  428. #endif
  429. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  430. //Variables for Filament Sensor input
  431. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  432. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  433. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  434. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  435. int filwidth_delay_index1 = 0; //index into ring buffer
  436. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  437. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  438. #endif
  439. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  440. static bool filament_ran_out = false;
  441. #endif
  442. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  443. FilamentChangeMenuResponse filament_change_menu_response;
  444. #endif
  445. static bool send_ok[BUFSIZE];
  446. #if HAS_SERVOS
  447. Servo servo[NUM_SERVOS];
  448. #define MOVE_SERVO(I, P) servo[I].move(P)
  449. #if HAS_Z_SERVO_ENDSTOP
  450. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  451. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  452. #endif
  453. #endif
  454. #ifdef CHDK
  455. millis_t chdkHigh = 0;
  456. boolean chdkActive = false;
  457. #endif
  458. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  459. int lpq_len = 20;
  460. #endif
  461. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  462. // States for managing Marlin and host communication
  463. // Marlin sends messages if blocked or busy
  464. enum MarlinBusyState {
  465. NOT_BUSY, // Not in a handler
  466. IN_HANDLER, // Processing a GCode
  467. IN_PROCESS, // Known to be blocking command input (as in G29)
  468. PAUSED_FOR_USER, // Blocking pending any input
  469. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  470. };
  471. static MarlinBusyState busy_state = NOT_BUSY;
  472. static millis_t next_busy_signal_ms = 0;
  473. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  474. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  475. #else
  476. #define host_keepalive() ;
  477. #define KEEPALIVE_STATE(n) ;
  478. #endif // HOST_KEEPALIVE_FEATURE
  479. /**
  480. * ***************************************************************************
  481. * ******************************** FUNCTIONS ********************************
  482. * ***************************************************************************
  483. */
  484. void stop();
  485. void get_available_commands();
  486. void process_next_command();
  487. void prepare_move_to_destination();
  488. #if ENABLED(ARC_SUPPORT)
  489. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  490. #endif
  491. #if ENABLED(BEZIER_CURVE_SUPPORT)
  492. void plan_cubic_move(const float offset[4]);
  493. #endif
  494. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  495. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  496. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  497. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. static void report_current_position();
  500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  501. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  502. SERIAL_ECHO(prefix);
  503. SERIAL_ECHOPAIR(": (", x);
  504. SERIAL_ECHOPAIR(", ", y);
  505. SERIAL_ECHOPAIR(", ", z);
  506. SERIAL_ECHOLNPGM(")");
  507. }
  508. void print_xyz(const char* prefix, const float xyz[]) {
  509. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  510. }
  511. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  512. void print_xyz(const char* prefix, const vector_3 &xyz) {
  513. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  514. }
  515. #endif
  516. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  517. #endif
  518. #if ENABLED(DELTA) || ENABLED(SCARA)
  519. inline void sync_plan_position_delta() {
  520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  521. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  522. #endif
  523. calculate_delta(current_position);
  524. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  525. }
  526. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  527. #else
  528. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  529. #endif
  530. #if ENABLED(SDSUPPORT)
  531. #include "SdFatUtil.h"
  532. int freeMemory() { return SdFatUtil::FreeRam(); }
  533. #else
  534. extern "C" {
  535. extern unsigned int __bss_end;
  536. extern unsigned int __heap_start;
  537. extern void* __brkval;
  538. int freeMemory() {
  539. int free_memory;
  540. if ((int)__brkval == 0)
  541. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  542. else
  543. free_memory = ((int)&free_memory) - ((int)__brkval);
  544. return free_memory;
  545. }
  546. }
  547. #endif //!SDSUPPORT
  548. #if ENABLED(DIGIPOT_I2C)
  549. extern void digipot_i2c_set_current(int channel, float current);
  550. extern void digipot_i2c_init();
  551. #endif
  552. /**
  553. * Inject the next "immediate" command, when possible.
  554. * Return true if any immediate commands remain to inject.
  555. */
  556. static bool drain_queued_commands_P() {
  557. if (queued_commands_P != NULL) {
  558. size_t i = 0;
  559. char c, cmd[30];
  560. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  561. cmd[sizeof(cmd) - 1] = '\0';
  562. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  563. cmd[i] = '\0';
  564. if (enqueue_and_echo_command(cmd)) { // success?
  565. if (c) // newline char?
  566. queued_commands_P += i + 1; // advance to the next command
  567. else
  568. queued_commands_P = NULL; // nul char? no more commands
  569. }
  570. }
  571. return (queued_commands_P != NULL); // return whether any more remain
  572. }
  573. /**
  574. * Record one or many commands to run from program memory.
  575. * Aborts the current queue, if any.
  576. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  577. */
  578. void enqueue_and_echo_commands_P(const char* pgcode) {
  579. queued_commands_P = pgcode;
  580. drain_queued_commands_P(); // first command executed asap (when possible)
  581. }
  582. void clear_command_queue() {
  583. cmd_queue_index_r = cmd_queue_index_w;
  584. commands_in_queue = 0;
  585. }
  586. /**
  587. * Once a new command is in the ring buffer, call this to commit it
  588. */
  589. inline void _commit_command(bool say_ok) {
  590. send_ok[cmd_queue_index_w] = say_ok;
  591. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  592. commands_in_queue++;
  593. }
  594. /**
  595. * Copy a command directly into the main command buffer, from RAM.
  596. * Returns true if successfully adds the command
  597. */
  598. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  599. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  600. strcpy(command_queue[cmd_queue_index_w], cmd);
  601. _commit_command(say_ok);
  602. return true;
  603. }
  604. void enqueue_and_echo_command_now(const char* cmd) {
  605. while (!enqueue_and_echo_command(cmd)) idle();
  606. }
  607. /**
  608. * Enqueue with Serial Echo
  609. */
  610. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  611. if (_enqueuecommand(cmd, say_ok)) {
  612. SERIAL_ECHO_START;
  613. SERIAL_ECHOPGM(MSG_Enqueueing);
  614. SERIAL_ECHO(cmd);
  615. SERIAL_ECHOLNPGM("\"");
  616. return true;
  617. }
  618. return false;
  619. }
  620. void setup_killpin() {
  621. #if HAS_KILL
  622. SET_INPUT(KILL_PIN);
  623. WRITE(KILL_PIN, HIGH);
  624. #endif
  625. }
  626. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  627. void setup_filrunoutpin() {
  628. pinMode(FIL_RUNOUT_PIN, INPUT);
  629. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  630. WRITE(FIL_RUNOUT_PIN, HIGH);
  631. #endif
  632. }
  633. #endif
  634. // Set home pin
  635. void setup_homepin(void) {
  636. #if HAS_HOME
  637. SET_INPUT(HOME_PIN);
  638. WRITE(HOME_PIN, HIGH);
  639. #endif
  640. }
  641. void setup_photpin() {
  642. #if HAS_PHOTOGRAPH
  643. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  644. #endif
  645. }
  646. void setup_powerhold() {
  647. #if HAS_SUICIDE
  648. OUT_WRITE(SUICIDE_PIN, HIGH);
  649. #endif
  650. #if HAS_POWER_SWITCH
  651. #if ENABLED(PS_DEFAULT_OFF)
  652. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  653. #else
  654. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  655. #endif
  656. #endif
  657. }
  658. void suicide() {
  659. #if HAS_SUICIDE
  660. OUT_WRITE(SUICIDE_PIN, LOW);
  661. #endif
  662. }
  663. void servo_init() {
  664. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  665. servo[0].attach(SERVO0_PIN);
  666. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  667. #endif
  668. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  669. servo[1].attach(SERVO1_PIN);
  670. servo[1].detach();
  671. #endif
  672. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  673. servo[2].attach(SERVO2_PIN);
  674. servo[2].detach();
  675. #endif
  676. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  677. servo[3].attach(SERVO3_PIN);
  678. servo[3].detach();
  679. #endif
  680. #if HAS_Z_SERVO_ENDSTOP
  681. /**
  682. * Set position of Z Servo Endstop
  683. *
  684. * The servo might be deployed and positioned too low to stow
  685. * when starting up the machine or rebooting the board.
  686. * There's no way to know where the nozzle is positioned until
  687. * homing has been done - no homing with z-probe without init!
  688. *
  689. */
  690. STOW_Z_SERVO();
  691. #endif
  692. #if HAS_BED_PROBE
  693. endstops.enable_z_probe(false);
  694. #endif
  695. }
  696. /**
  697. * Stepper Reset (RigidBoard, et.al.)
  698. */
  699. #if HAS_STEPPER_RESET
  700. void disableStepperDrivers() {
  701. pinMode(STEPPER_RESET_PIN, OUTPUT);
  702. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  703. }
  704. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  705. #endif
  706. /**
  707. * Marlin entry-point: Set up before the program loop
  708. * - Set up the kill pin, filament runout, power hold
  709. * - Start the serial port
  710. * - Print startup messages and diagnostics
  711. * - Get EEPROM or default settings
  712. * - Initialize managers for:
  713. * • temperature
  714. * • planner
  715. * • watchdog
  716. * • stepper
  717. * • photo pin
  718. * • servos
  719. * • LCD controller
  720. * • Digipot I2C
  721. * • Z probe sled
  722. * • status LEDs
  723. */
  724. void setup() {
  725. #ifdef DISABLE_JTAG
  726. // Disable JTAG on AT90USB chips to free up pins for IO
  727. MCUCR = 0x80;
  728. MCUCR = 0x80;
  729. #endif
  730. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  731. setup_filrunoutpin();
  732. #endif
  733. setup_killpin();
  734. setup_powerhold();
  735. #if HAS_STEPPER_RESET
  736. disableStepperDrivers();
  737. #endif
  738. MYSERIAL.begin(BAUDRATE);
  739. SERIAL_PROTOCOLLNPGM("start");
  740. SERIAL_ECHO_START;
  741. // Check startup - does nothing if bootloader sets MCUSR to 0
  742. byte mcu = MCUSR;
  743. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  744. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  745. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  746. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  747. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  748. MCUSR = 0;
  749. SERIAL_ECHOPGM(MSG_MARLIN);
  750. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  751. #ifdef STRING_DISTRIBUTION_DATE
  752. #ifdef STRING_CONFIG_H_AUTHOR
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  755. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  756. SERIAL_ECHOPGM(MSG_AUTHOR);
  757. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  758. SERIAL_ECHOPGM("Compiled: ");
  759. SERIAL_ECHOLNPGM(__DATE__);
  760. #endif // STRING_CONFIG_H_AUTHOR
  761. #endif // STRING_DISTRIBUTION_DATE
  762. SERIAL_ECHO_START;
  763. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  764. SERIAL_ECHO(freeMemory());
  765. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  766. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  767. // Send "ok" after commands by default
  768. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  769. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  770. Config_RetrieveSettings();
  771. // Initialize current position based on home_offset
  772. memcpy(current_position, home_offset, sizeof(home_offset));
  773. #if ENABLED(DELTA) || ENABLED(SCARA)
  774. // Vital to init kinematic equivalent for X0 Y0 Z0
  775. SYNC_PLAN_POSITION_KINEMATIC();
  776. #endif
  777. thermalManager.init(); // Initialize temperature loop
  778. #if ENABLED(USE_WATCHDOG)
  779. watchdog_init();
  780. #endif
  781. stepper.init(); // Initialize stepper, this enables interrupts!
  782. setup_photpin();
  783. servo_init();
  784. #if HAS_CONTROLLERFAN
  785. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  786. #endif
  787. #if HAS_STEPPER_RESET
  788. enableStepperDrivers();
  789. #endif
  790. #if ENABLED(DIGIPOT_I2C)
  791. digipot_i2c_init();
  792. #endif
  793. #if ENABLED(DAC_STEPPER_CURRENT)
  794. dac_init();
  795. #endif
  796. #if ENABLED(Z_PROBE_SLED)
  797. pinMode(SLED_PIN, OUTPUT);
  798. digitalWrite(SLED_PIN, LOW); // turn it off
  799. #endif // Z_PROBE_SLED
  800. setup_homepin();
  801. #ifdef STAT_LED_RED
  802. pinMode(STAT_LED_RED, OUTPUT);
  803. digitalWrite(STAT_LED_RED, LOW); // turn it off
  804. #endif
  805. #ifdef STAT_LED_BLUE
  806. pinMode(STAT_LED_BLUE, OUTPUT);
  807. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  808. #endif
  809. lcd_init();
  810. #if ENABLED(SHOW_BOOTSCREEN)
  811. #if ENABLED(DOGLCD)
  812. delay(1000);
  813. #elif ENABLED(ULTRA_LCD)
  814. bootscreen();
  815. lcd_init();
  816. #endif
  817. #endif
  818. }
  819. /**
  820. * The main Marlin program loop
  821. *
  822. * - Save or log commands to SD
  823. * - Process available commands (if not saving)
  824. * - Call heater manager
  825. * - Call inactivity manager
  826. * - Call endstop manager
  827. * - Call LCD update
  828. */
  829. void loop() {
  830. if (commands_in_queue < BUFSIZE) get_available_commands();
  831. #if ENABLED(SDSUPPORT)
  832. card.checkautostart(false);
  833. #endif
  834. if (commands_in_queue) {
  835. #if ENABLED(SDSUPPORT)
  836. if (card.saving) {
  837. char* command = command_queue[cmd_queue_index_r];
  838. if (strstr_P(command, PSTR("M29"))) {
  839. // M29 closes the file
  840. card.closefile();
  841. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  842. ok_to_send();
  843. }
  844. else {
  845. // Write the string from the read buffer to SD
  846. card.write_command(command);
  847. if (card.logging)
  848. process_next_command(); // The card is saving because it's logging
  849. else
  850. ok_to_send();
  851. }
  852. }
  853. else
  854. process_next_command();
  855. #else
  856. process_next_command();
  857. #endif // SDSUPPORT
  858. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  859. if (commands_in_queue) {
  860. --commands_in_queue;
  861. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  862. }
  863. }
  864. endstops.report_state();
  865. idle();
  866. }
  867. void gcode_line_error(const char* err, bool doFlush = true) {
  868. SERIAL_ERROR_START;
  869. serialprintPGM(err);
  870. SERIAL_ERRORLN(gcode_LastN);
  871. //Serial.println(gcode_N);
  872. if (doFlush) FlushSerialRequestResend();
  873. serial_count = 0;
  874. }
  875. inline void get_serial_commands() {
  876. static char serial_line_buffer[MAX_CMD_SIZE];
  877. static boolean serial_comment_mode = false;
  878. // If the command buffer is empty for too long,
  879. // send "wait" to indicate Marlin is still waiting.
  880. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  881. static millis_t last_command_time = 0;
  882. millis_t ms = millis();
  883. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  884. SERIAL_ECHOLNPGM(MSG_WAIT);
  885. last_command_time = ms;
  886. }
  887. #endif
  888. /**
  889. * Loop while serial characters are incoming and the queue is not full
  890. */
  891. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  892. char serial_char = MYSERIAL.read();
  893. /**
  894. * If the character ends the line
  895. */
  896. if (serial_char == '\n' || serial_char == '\r') {
  897. serial_comment_mode = false; // end of line == end of comment
  898. if (!serial_count) continue; // skip empty lines
  899. serial_line_buffer[serial_count] = 0; // terminate string
  900. serial_count = 0; //reset buffer
  901. char* command = serial_line_buffer;
  902. while (*command == ' ') command++; // skip any leading spaces
  903. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  904. char* apos = strchr(command, '*');
  905. if (npos) {
  906. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  907. if (M110) {
  908. char* n2pos = strchr(command + 4, 'N');
  909. if (n2pos) npos = n2pos;
  910. }
  911. gcode_N = strtol(npos + 1, NULL, 10);
  912. if (gcode_N != gcode_LastN + 1 && !M110) {
  913. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  914. return;
  915. }
  916. if (apos) {
  917. byte checksum = 0, count = 0;
  918. while (command[count] != '*') checksum ^= command[count++];
  919. if (strtol(apos + 1, NULL, 10) != checksum) {
  920. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  921. return;
  922. }
  923. // if no errors, continue parsing
  924. }
  925. else {
  926. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  927. return;
  928. }
  929. gcode_LastN = gcode_N;
  930. // if no errors, continue parsing
  931. }
  932. else if (apos) { // No '*' without 'N'
  933. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  934. return;
  935. }
  936. // Movement commands alert when stopped
  937. if (IsStopped()) {
  938. char* gpos = strchr(command, 'G');
  939. if (gpos) {
  940. int codenum = strtol(gpos + 1, NULL, 10);
  941. switch (codenum) {
  942. case 0:
  943. case 1:
  944. case 2:
  945. case 3:
  946. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  947. LCD_MESSAGEPGM(MSG_STOPPED);
  948. break;
  949. }
  950. }
  951. }
  952. #if DISABLED(EMERGENCY_PARSER)
  953. // If command was e-stop process now
  954. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  955. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  956. if (strcmp(command, "M410") == 0) stepper.quick_stop();
  957. #endif
  958. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  959. last_command_time = ms;
  960. #endif
  961. // Add the command to the queue
  962. _enqueuecommand(serial_line_buffer, true);
  963. }
  964. else if (serial_count >= MAX_CMD_SIZE - 1) {
  965. // Keep fetching, but ignore normal characters beyond the max length
  966. // The command will be injected when EOL is reached
  967. }
  968. else if (serial_char == '\\') { // Handle escapes
  969. if (MYSERIAL.available() > 0) {
  970. // if we have one more character, copy it over
  971. serial_char = MYSERIAL.read();
  972. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  973. }
  974. // otherwise do nothing
  975. }
  976. else { // it's not a newline, carriage return or escape char
  977. if (serial_char == ';') serial_comment_mode = true;
  978. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  979. }
  980. } // queue has space, serial has data
  981. }
  982. #if ENABLED(SDSUPPORT)
  983. inline void get_sdcard_commands() {
  984. static bool stop_buffering = false,
  985. sd_comment_mode = false;
  986. if (!card.sdprinting) return;
  987. /**
  988. * '#' stops reading from SD to the buffer prematurely, so procedural
  989. * macro calls are possible. If it occurs, stop_buffering is triggered
  990. * and the buffer is run dry; this character _can_ occur in serial com
  991. * due to checksums, however, no checksums are used in SD printing.
  992. */
  993. if (commands_in_queue == 0) stop_buffering = false;
  994. uint16_t sd_count = 0;
  995. bool card_eof = card.eof();
  996. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  997. int16_t n = card.get();
  998. char sd_char = (char)n;
  999. card_eof = card.eof();
  1000. if (card_eof || n == -1
  1001. || sd_char == '\n' || sd_char == '\r'
  1002. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1003. ) {
  1004. if (card_eof) {
  1005. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1006. print_job_timer.stop();
  1007. char time[30];
  1008. millis_t t = print_job_timer.duration();
  1009. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  1010. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  1011. SERIAL_ECHO_START;
  1012. SERIAL_ECHOLN(time);
  1013. lcd_setstatus(time, true);
  1014. card.printingHasFinished();
  1015. card.checkautostart(true);
  1016. }
  1017. else if (n == -1) {
  1018. SERIAL_ERROR_START;
  1019. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1020. }
  1021. if (sd_char == '#') stop_buffering = true;
  1022. sd_comment_mode = false; //for new command
  1023. if (!sd_count) continue; //skip empty lines
  1024. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1025. sd_count = 0; //clear buffer
  1026. _commit_command(false);
  1027. }
  1028. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1029. /**
  1030. * Keep fetching, but ignore normal characters beyond the max length
  1031. * The command will be injected when EOL is reached
  1032. */
  1033. }
  1034. else {
  1035. if (sd_char == ';') sd_comment_mode = true;
  1036. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1037. }
  1038. }
  1039. }
  1040. #endif // SDSUPPORT
  1041. /**
  1042. * Add to the circular command queue the next command from:
  1043. * - The command-injection queue (queued_commands_P)
  1044. * - The active serial input (usually USB)
  1045. * - The SD card file being actively printed
  1046. */
  1047. void get_available_commands() {
  1048. // if any immediate commands remain, don't get other commands yet
  1049. if (drain_queued_commands_P()) return;
  1050. get_serial_commands();
  1051. #if ENABLED(SDSUPPORT)
  1052. get_sdcard_commands();
  1053. #endif
  1054. }
  1055. inline bool code_has_value() {
  1056. int i = 1;
  1057. char c = seen_pointer[i];
  1058. while (c == ' ') c = seen_pointer[++i];
  1059. if (c == '-' || c == '+') c = seen_pointer[++i];
  1060. if (c == '.') c = seen_pointer[++i];
  1061. return NUMERIC(c);
  1062. }
  1063. inline float code_value_float() {
  1064. float ret;
  1065. char* e = strchr(seen_pointer, 'E');
  1066. if (e) {
  1067. *e = 0;
  1068. ret = strtod(seen_pointer + 1, NULL);
  1069. *e = 'E';
  1070. }
  1071. else
  1072. ret = strtod(seen_pointer + 1, NULL);
  1073. return ret;
  1074. }
  1075. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1076. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1077. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1078. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1079. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1080. inline bool code_value_bool() { return code_value_byte() > 0; }
  1081. #if ENABLED(INCH_MODE_SUPPORT)
  1082. inline void set_input_linear_units(LinearUnit units) {
  1083. switch (units) {
  1084. case LINEARUNIT_INCH:
  1085. linear_unit_factor = 25.4;
  1086. break;
  1087. case LINEARUNIT_MM:
  1088. default:
  1089. linear_unit_factor = 1.0;
  1090. break;
  1091. }
  1092. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1093. }
  1094. inline float axis_unit_factor(int axis) {
  1095. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1096. }
  1097. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1098. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1099. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1100. #else
  1101. inline float code_value_linear_units() { return code_value_float(); }
  1102. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1103. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1104. #endif
  1105. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1106. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1107. float code_value_temp_abs() {
  1108. switch (input_temp_units) {
  1109. case TEMPUNIT_C:
  1110. return code_value_float();
  1111. case TEMPUNIT_F:
  1112. return (code_value_float() - 32) / 1.8;
  1113. case TEMPUNIT_K:
  1114. return code_value_float() - 272.15;
  1115. default:
  1116. return code_value_float();
  1117. }
  1118. }
  1119. float code_value_temp_diff() {
  1120. switch (input_temp_units) {
  1121. case TEMPUNIT_C:
  1122. case TEMPUNIT_K:
  1123. return code_value_float();
  1124. case TEMPUNIT_F:
  1125. return code_value_float() / 1.8;
  1126. default:
  1127. return code_value_float();
  1128. }
  1129. }
  1130. #else
  1131. float code_value_temp_abs() { return code_value_float(); }
  1132. float code_value_temp_diff() { return code_value_float(); }
  1133. #endif
  1134. inline millis_t code_value_millis() { return code_value_ulong(); }
  1135. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1136. bool code_seen(char code) {
  1137. seen_pointer = strchr(current_command_args, code);
  1138. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1139. }
  1140. /**
  1141. * Set target_extruder from the T parameter or the active_extruder
  1142. *
  1143. * Returns TRUE if the target is invalid
  1144. */
  1145. bool get_target_extruder_from_command(int code) {
  1146. if (code_seen('T')) {
  1147. uint8_t t = code_value_byte();
  1148. if (t >= EXTRUDERS) {
  1149. SERIAL_ECHO_START;
  1150. SERIAL_CHAR('M');
  1151. SERIAL_ECHO(code);
  1152. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
  1153. SERIAL_EOL;
  1154. return true;
  1155. }
  1156. target_extruder = t;
  1157. }
  1158. else
  1159. target_extruder = active_extruder;
  1160. return false;
  1161. }
  1162. #define DEFINE_PGM_READ_ANY(type, reader) \
  1163. static inline type pgm_read_any(const type *p) \
  1164. { return pgm_read_##reader##_near(p); }
  1165. DEFINE_PGM_READ_ANY(float, float);
  1166. DEFINE_PGM_READ_ANY(signed char, byte);
  1167. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1168. static const PROGMEM type array##_P[3] = \
  1169. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1170. static inline type array(int axis) \
  1171. { return pgm_read_any(&array##_P[axis]); }
  1172. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1173. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1174. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1175. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1176. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1177. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1178. #if ENABLED(DUAL_X_CARRIAGE)
  1179. #define DXC_FULL_CONTROL_MODE 0
  1180. #define DXC_AUTO_PARK_MODE 1
  1181. #define DXC_DUPLICATION_MODE 2
  1182. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1183. static float x_home_pos(int extruder) {
  1184. if (extruder == 0)
  1185. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1186. else
  1187. /**
  1188. * In dual carriage mode the extruder offset provides an override of the
  1189. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1190. * This allow soft recalibration of the second extruder offset position
  1191. * without firmware reflash (through the M218 command).
  1192. */
  1193. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1194. }
  1195. static int x_home_dir(int extruder) {
  1196. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1197. }
  1198. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1199. static bool active_extruder_parked = false; // used in mode 1 & 2
  1200. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1201. static millis_t delayed_move_time = 0; // used in mode 1
  1202. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1203. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1204. bool extruder_duplication_enabled = false; // used in mode 2
  1205. #endif //DUAL_X_CARRIAGE
  1206. /**
  1207. * Software endstops can be used to monitor the open end of
  1208. * an axis that has a hardware endstop on the other end. Or
  1209. * they can prevent axes from moving past endstops and grinding.
  1210. *
  1211. * To keep doing their job as the coordinate system changes,
  1212. * the software endstop positions must be refreshed to remain
  1213. * at the same positions relative to the machine.
  1214. */
  1215. static void update_software_endstops(AxisEnum axis) {
  1216. float offs = home_offset[axis] + position_shift[axis];
  1217. #if ENABLED(DUAL_X_CARRIAGE)
  1218. if (axis == X_AXIS) {
  1219. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1220. if (active_extruder != 0) {
  1221. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1222. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1223. return;
  1224. }
  1225. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1226. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1227. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1228. return;
  1229. }
  1230. }
  1231. else
  1232. #endif
  1233. {
  1234. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1235. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1236. }
  1237. }
  1238. /**
  1239. * Change the home offset for an axis, update the current
  1240. * position and the software endstops to retain the same
  1241. * relative distance to the new home.
  1242. *
  1243. * Since this changes the current_position, code should
  1244. * call sync_plan_position soon after this.
  1245. */
  1246. static void set_home_offset(AxisEnum axis, float v) {
  1247. current_position[axis] += v - home_offset[axis];
  1248. home_offset[axis] = v;
  1249. update_software_endstops(axis);
  1250. }
  1251. static void set_axis_is_at_home(AxisEnum axis) {
  1252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1253. if (DEBUGGING(LEVELING)) {
  1254. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1255. SERIAL_ECHOLNPGM(")");
  1256. }
  1257. #endif
  1258. position_shift[axis] = 0;
  1259. #if ENABLED(DUAL_X_CARRIAGE)
  1260. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1261. if (active_extruder != 0)
  1262. current_position[X_AXIS] = x_home_pos(active_extruder);
  1263. else
  1264. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1265. update_software_endstops(X_AXIS);
  1266. return;
  1267. }
  1268. #endif
  1269. #if ENABLED(SCARA)
  1270. if (axis == X_AXIS || axis == Y_AXIS) {
  1271. float homeposition[3];
  1272. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1273. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1274. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1275. /**
  1276. * Works out real Homeposition angles using inverse kinematics,
  1277. * and calculates homing offset using forward kinematics
  1278. */
  1279. calculate_delta(homeposition);
  1280. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1281. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1282. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1283. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1284. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1285. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1286. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1287. calculate_SCARA_forward_Transform(delta);
  1288. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1289. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1290. current_position[axis] = delta[axis];
  1291. /**
  1292. * SCARA home positions are based on configuration since the actual
  1293. * limits are determined by the inverse kinematic transform.
  1294. */
  1295. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1296. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1297. }
  1298. else
  1299. #endif
  1300. {
  1301. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1302. update_software_endstops(axis);
  1303. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1304. if (axis == Z_AXIS) {
  1305. current_position[Z_AXIS] -= zprobe_zoffset;
  1306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1307. if (DEBUGGING(LEVELING)) {
  1308. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1309. SERIAL_EOL;
  1310. }
  1311. #endif
  1312. }
  1313. #endif
  1314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1315. if (DEBUGGING(LEVELING)) {
  1316. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1317. DEBUG_POS("", current_position);
  1318. }
  1319. #endif
  1320. }
  1321. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1322. if (DEBUGGING(LEVELING)) {
  1323. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1324. SERIAL_ECHOLNPGM(")");
  1325. }
  1326. #endif
  1327. }
  1328. /**
  1329. * Some planner shorthand inline functions
  1330. */
  1331. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1332. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1333. int hbd = homing_bump_divisor[axis];
  1334. if (hbd < 1) {
  1335. hbd = 10;
  1336. SERIAL_ECHO_START;
  1337. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1338. }
  1339. feedrate = homing_feedrate[axis] / hbd;
  1340. }
  1341. //
  1342. // line_to_current_position
  1343. // Move the planner to the current position from wherever it last moved
  1344. // (or from wherever it has been told it is located).
  1345. //
  1346. inline void line_to_current_position() {
  1347. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1348. }
  1349. inline void line_to_z(float zPosition) {
  1350. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1351. }
  1352. //
  1353. // line_to_destination
  1354. // Move the planner, not necessarily synced with current_position
  1355. //
  1356. inline void line_to_destination(float mm_m) {
  1357. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1358. }
  1359. inline void line_to_destination() { line_to_destination(feedrate); }
  1360. /**
  1361. * sync_plan_position
  1362. * Set planner / stepper positions to the cartesian current_position.
  1363. * The stepper code translates these coordinates into step units.
  1364. * Allows translation between steps and millimeters for cartesian & core robots
  1365. */
  1366. inline void sync_plan_position() {
  1367. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1368. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1369. #endif
  1370. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1371. }
  1372. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1373. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1374. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1375. //
  1376. // Prepare to do endstop or probe moves
  1377. // with custom feedrates.
  1378. //
  1379. // - Save current feedrates
  1380. // - Reset the rate multiplier
  1381. // - Reset the command timeout
  1382. // - Enable the endstops (for endstop moves)
  1383. //
  1384. static void setup_for_endstop_or_probe_move() {
  1385. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1386. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1387. #endif
  1388. saved_feedrate = feedrate;
  1389. saved_feedrate_multiplier = feedrate_multiplier;
  1390. feedrate_multiplier = 100;
  1391. refresh_cmd_timeout();
  1392. }
  1393. static void setup_for_endstop_move() {
  1394. setup_for_endstop_or_probe_move();
  1395. endstops.enable();
  1396. }
  1397. static void clean_up_after_endstop_or_probe_move() {
  1398. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1399. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1400. #endif
  1401. feedrate = saved_feedrate;
  1402. feedrate_multiplier = saved_feedrate_multiplier;
  1403. refresh_cmd_timeout();
  1404. }
  1405. #if HAS_BED_PROBE
  1406. #if ENABLED(DELTA)
  1407. /**
  1408. * Calculate delta, start a line, and set current_position to destination
  1409. */
  1410. void prepare_move_to_destination_raw() {
  1411. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1412. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1413. #endif
  1414. refresh_cmd_timeout();
  1415. calculate_delta(destination);
  1416. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1417. set_current_to_destination();
  1418. }
  1419. #endif
  1420. /**
  1421. * Plan a move to (X, Y, Z) and set the current_position
  1422. * The final current_position may not be the one that was requested
  1423. */
  1424. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1425. float old_feedrate = feedrate;
  1426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1427. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1428. #endif
  1429. #if ENABLED(DELTA)
  1430. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1431. destination[X_AXIS] = x;
  1432. destination[Y_AXIS] = y;
  1433. destination[Z_AXIS] = z;
  1434. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1435. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1436. else
  1437. prepare_move_to_destination(); // this will also set_current_to_destination
  1438. #else
  1439. // If Z needs to raise, do it before moving XY
  1440. if (current_position[Z_AXIS] < z) {
  1441. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1442. current_position[Z_AXIS] = z;
  1443. line_to_current_position();
  1444. }
  1445. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1446. current_position[X_AXIS] = x;
  1447. current_position[Y_AXIS] = y;
  1448. line_to_current_position();
  1449. // If Z needs to lower, do it after moving XY
  1450. if (current_position[Z_AXIS] > z) {
  1451. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1452. current_position[Z_AXIS] = z;
  1453. line_to_current_position();
  1454. }
  1455. #endif
  1456. stepper.synchronize();
  1457. feedrate = old_feedrate;
  1458. }
  1459. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1460. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1461. }
  1462. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1463. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1464. }
  1465. /**
  1466. * Raise Z to a minimum height to make room for a probe to move
  1467. *
  1468. * zprobe_zoffset: Negative of the Z height where the probe engages
  1469. * z_raise: The probing raise distance
  1470. *
  1471. * The zprobe_zoffset is negative for a switch below the nozzle, so
  1472. * multiply by Z_HOME_DIR (-1) to move enough away from the bed.
  1473. */
  1474. inline void do_probe_raise(float z_raise) {
  1475. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1476. if (DEBUGGING(LEVELING)) {
  1477. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1478. SERIAL_ECHOLNPGM(")");
  1479. }
  1480. #endif
  1481. float z_dest = home_offset[Z_AXIS] + z_raise;
  1482. if ((Z_HOME_DIR) < 0 && zprobe_zoffset < 0)
  1483. z_dest -= zprobe_zoffset;
  1484. if (z_dest > current_position[Z_AXIS])
  1485. do_blocking_move_to_z(z_dest);
  1486. }
  1487. #endif //HAS_BED_PROBE
  1488. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1489. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1490. const bool xx = x && !axis_homed[X_AXIS],
  1491. yy = y && !axis_homed[Y_AXIS],
  1492. zz = z && !axis_homed[Z_AXIS];
  1493. if (xx || yy || zz) {
  1494. SERIAL_ECHO_START;
  1495. SERIAL_ECHOPGM(MSG_HOME " ");
  1496. if (xx) SERIAL_ECHOPGM(MSG_X);
  1497. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1498. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1499. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1500. #if ENABLED(ULTRA_LCD)
  1501. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1502. strcat_P(message, PSTR(MSG_HOME " "));
  1503. if (xx) strcat_P(message, PSTR(MSG_X));
  1504. if (yy) strcat_P(message, PSTR(MSG_Y));
  1505. if (zz) strcat_P(message, PSTR(MSG_Z));
  1506. strcat_P(message, PSTR(" " MSG_FIRST));
  1507. lcd_setstatus(message);
  1508. #endif
  1509. return true;
  1510. }
  1511. return false;
  1512. }
  1513. #endif
  1514. #if ENABLED(Z_PROBE_SLED)
  1515. #ifndef SLED_DOCKING_OFFSET
  1516. #define SLED_DOCKING_OFFSET 0
  1517. #endif
  1518. /**
  1519. * Method to dock/undock a sled designed by Charles Bell.
  1520. *
  1521. * stow[in] If false, move to MAX_X and engage the solenoid
  1522. * If true, move to MAX_X and release the solenoid
  1523. */
  1524. static void dock_sled(bool stow) {
  1525. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1526. if (DEBUGGING(LEVELING)) {
  1527. SERIAL_ECHOPAIR("dock_sled(", stow);
  1528. SERIAL_ECHOLNPGM(")");
  1529. }
  1530. #endif
  1531. // Dock sled a bit closer to ensure proper capturing
  1532. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1533. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1534. }
  1535. #endif // Z_PROBE_SLED
  1536. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1537. void run_deploy_moves_script() {
  1538. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1541. #endif
  1542. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1543. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1544. #endif
  1545. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1546. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1547. #endif
  1548. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1549. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1550. #endif
  1551. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1552. #endif
  1553. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1565. #endif
  1566. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1567. #endif
  1568. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1580. #endif
  1581. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1582. #endif
  1583. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1595. #endif
  1596. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1597. #endif
  1598. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1610. #endif
  1611. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1612. #endif
  1613. }
  1614. void run_stow_moves_script() {
  1615. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1617. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1618. #endif
  1619. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1620. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1621. #endif
  1622. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1623. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1626. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1627. #endif
  1628. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1629. #endif
  1630. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1632. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1635. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1638. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1647. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1650. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1653. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1662. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1665. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1668. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1677. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1680. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1683. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1689. #endif
  1690. }
  1691. #endif
  1692. #if HAS_BED_PROBE
  1693. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1694. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1695. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1696. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1697. #else
  1698. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1699. #endif
  1700. #endif
  1701. #define DEPLOY_PROBE() set_probe_deployed( true )
  1702. #define STOW_PROBE() set_probe_deployed( false )
  1703. // returns false for ok and true for failure
  1704. static bool set_probe_deployed(bool deploy) {
  1705. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1706. if (DEBUGGING(LEVELING)) {
  1707. DEBUG_POS("set_probe_deployed", current_position);
  1708. SERIAL_ECHOPAIR("deploy: ", deploy);
  1709. }
  1710. #endif
  1711. if (endstops.z_probe_enabled == deploy) return false;
  1712. // Make room for probe
  1713. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1714. #if ENABLED(Z_PROBE_SLED)
  1715. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1716. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1717. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1718. #endif
  1719. float oldXpos = current_position[X_AXIS]; // save x position
  1720. float oldYpos = current_position[Y_AXIS]; // save y position
  1721. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1722. // If endstop is already false, the Z probe is deployed
  1723. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1724. // Would a goto be less ugly?
  1725. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1726. // for a triggered when stowed manual probe.
  1727. #endif
  1728. #if ENABLED(Z_PROBE_SLED)
  1729. dock_sled(!deploy);
  1730. #elif HAS_Z_SERVO_ENDSTOP
  1731. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1732. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1733. if (!deploy) run_stow_moves_script();
  1734. else run_deploy_moves_script();
  1735. #else
  1736. // Nothing to be done. Just enable_z_probe below...
  1737. #endif
  1738. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1739. }; // opened before the probe specific actions
  1740. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1741. if (IsRunning()) {
  1742. SERIAL_ERROR_START;
  1743. SERIAL_ERRORLNPGM("Z-Probe failed");
  1744. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1745. }
  1746. stop();
  1747. return true;
  1748. }
  1749. #endif
  1750. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1751. endstops.enable_z_probe( deploy );
  1752. return false;
  1753. }
  1754. // Do a single Z probe and return with current_position[Z_AXIS]
  1755. // at the height where the probe triggered.
  1756. static float run_z_probe() {
  1757. float old_feedrate = feedrate;
  1758. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1759. refresh_cmd_timeout();
  1760. #if ENABLED(DELTA)
  1761. float start_z = current_position[Z_AXIS];
  1762. long start_steps = stepper.position(Z_AXIS);
  1763. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1764. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1765. #endif
  1766. // move down slowly until you find the bed
  1767. feedrate = homing_feedrate[Z_AXIS] / 4;
  1768. destination[Z_AXIS] = -10;
  1769. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1770. stepper.synchronize();
  1771. endstops.hit_on_purpose(); // clear endstop hit flags
  1772. /**
  1773. * We have to let the planner know where we are right now as it
  1774. * is not where we said to go.
  1775. */
  1776. long stop_steps = stepper.position(Z_AXIS);
  1777. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1778. current_position[Z_AXIS] = mm;
  1779. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1780. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1781. #endif
  1782. #else // !DELTA
  1783. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1784. planner.bed_level_matrix.set_to_identity();
  1785. #endif
  1786. feedrate = homing_feedrate[Z_AXIS];
  1787. // Move down until the Z probe (or endstop?) is triggered
  1788. float zPosition = -(Z_MAX_LENGTH + 10);
  1789. line_to_z(zPosition);
  1790. stepper.synchronize();
  1791. // Tell the planner where we ended up - Get this from the stepper handler
  1792. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1793. planner.set_position_mm(
  1794. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1795. current_position[E_AXIS]
  1796. );
  1797. // move up the retract distance
  1798. zPosition += home_bump_mm(Z_AXIS);
  1799. line_to_z(zPosition);
  1800. stepper.synchronize();
  1801. endstops.hit_on_purpose(); // clear endstop hit flags
  1802. // move back down slowly to find bed
  1803. set_homing_bump_feedrate(Z_AXIS);
  1804. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1805. line_to_z(zPosition);
  1806. stepper.synchronize();
  1807. endstops.hit_on_purpose(); // clear endstop hit flags
  1808. // Get the current stepper position after bumping an endstop
  1809. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1810. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1811. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1812. #endif
  1813. #endif // !DELTA
  1814. SYNC_PLAN_POSITION_KINEMATIC();
  1815. feedrate = old_feedrate;
  1816. return current_position[Z_AXIS];
  1817. }
  1818. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1819. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1820. }
  1821. //
  1822. // - Move to the given XY
  1823. // - Deploy the probe, if not already deployed
  1824. // - Probe the bed, get the Z position
  1825. // - Depending on the 'stow' flag
  1826. // - Stow the probe, or
  1827. // - Raise to the BETWEEN height
  1828. // - Return the probed Z position
  1829. //
  1830. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1832. if (DEBUGGING(LEVELING)) {
  1833. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1834. SERIAL_ECHOPAIR(", ", y);
  1835. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1836. SERIAL_ECHOLNPGM(")");
  1837. DEBUG_POS("", current_position);
  1838. }
  1839. #endif
  1840. float old_feedrate = feedrate;
  1841. // Ensure a minimum height before moving the probe
  1842. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1843. // Move to the XY where we shall probe
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) {
  1846. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1847. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1848. SERIAL_ECHOLNPGM(")");
  1849. }
  1850. #endif
  1851. feedrate = XY_PROBE_FEEDRATE;
  1852. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1853. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1854. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1855. #endif
  1856. if (DEPLOY_PROBE()) return NAN;
  1857. float measured_z = run_z_probe();
  1858. if (stow) {
  1859. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1860. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1861. #endif
  1862. if (STOW_PROBE()) return NAN;
  1863. }
  1864. else {
  1865. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1866. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1867. #endif
  1868. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1869. }
  1870. if (verbose_level > 2) {
  1871. SERIAL_PROTOCOLPGM("Bed X: ");
  1872. SERIAL_PROTOCOL_F(x, 3);
  1873. SERIAL_PROTOCOLPGM(" Y: ");
  1874. SERIAL_PROTOCOL_F(y, 3);
  1875. SERIAL_PROTOCOLPGM(" Z: ");
  1876. SERIAL_PROTOCOL_F(measured_z, 3);
  1877. SERIAL_EOL;
  1878. }
  1879. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1880. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1881. #endif
  1882. feedrate = old_feedrate;
  1883. return measured_z;
  1884. }
  1885. #endif // HAS_BED_PROBE
  1886. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1887. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1888. #if DISABLED(DELTA)
  1889. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1890. //planner.bed_level_matrix.debug("bed level before");
  1891. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1892. planner.bed_level_matrix.set_to_identity();
  1893. if (DEBUGGING(LEVELING)) {
  1894. vector_3 uncorrected_position = planner.adjusted_position();
  1895. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1896. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1897. }
  1898. #endif
  1899. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1900. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1901. vector_3 corrected_position = planner.adjusted_position();
  1902. current_position[X_AXIS] = corrected_position.x;
  1903. current_position[Y_AXIS] = corrected_position.y;
  1904. current_position[Z_AXIS] = corrected_position.z;
  1905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1906. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1907. #endif
  1908. SYNC_PLAN_POSITION_KINEMATIC();
  1909. }
  1910. #endif // !DELTA
  1911. #else // !AUTO_BED_LEVELING_GRID
  1912. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1913. planner.bed_level_matrix.set_to_identity();
  1914. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1915. if (DEBUGGING(LEVELING)) {
  1916. vector_3 uncorrected_position = planner.adjusted_position();
  1917. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1918. }
  1919. #endif
  1920. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1921. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1922. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1923. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1924. if (planeNormal.z < 0) {
  1925. planeNormal.x = -planeNormal.x;
  1926. planeNormal.y = -planeNormal.y;
  1927. planeNormal.z = -planeNormal.z;
  1928. }
  1929. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1930. vector_3 corrected_position = planner.adjusted_position();
  1931. current_position[X_AXIS] = corrected_position.x;
  1932. current_position[Y_AXIS] = corrected_position.y;
  1933. current_position[Z_AXIS] = corrected_position.z;
  1934. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1935. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1936. #endif
  1937. SYNC_PLAN_POSITION_KINEMATIC();
  1938. }
  1939. #endif // !AUTO_BED_LEVELING_GRID
  1940. #if ENABLED(DELTA)
  1941. /**
  1942. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1943. */
  1944. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1945. if (bed_level[x][y] != 0.0) {
  1946. return; // Don't overwrite good values.
  1947. }
  1948. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1949. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1950. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1951. float median = c; // Median is robust (ignores outliers).
  1952. if (a < b) {
  1953. if (b < c) median = b;
  1954. if (c < a) median = a;
  1955. }
  1956. else { // b <= a
  1957. if (c < b) median = b;
  1958. if (a < c) median = a;
  1959. }
  1960. bed_level[x][y] = median;
  1961. }
  1962. /**
  1963. * Fill in the unprobed points (corners of circular print surface)
  1964. * using linear extrapolation, away from the center.
  1965. */
  1966. static void extrapolate_unprobed_bed_level() {
  1967. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1968. for (int y = 0; y <= half; y++) {
  1969. for (int x = 0; x <= half; x++) {
  1970. if (x + y < 3) continue;
  1971. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1972. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1973. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1974. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1975. }
  1976. }
  1977. }
  1978. /**
  1979. * Print calibration results for plotting or manual frame adjustment.
  1980. */
  1981. static void print_bed_level() {
  1982. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1983. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1984. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1985. SERIAL_PROTOCOLCHAR(' ');
  1986. }
  1987. SERIAL_EOL;
  1988. }
  1989. }
  1990. /**
  1991. * Reset calibration results to zero.
  1992. */
  1993. void reset_bed_level() {
  1994. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1995. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1996. #endif
  1997. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1998. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1999. bed_level[x][y] = 0.0;
  2000. }
  2001. }
  2002. }
  2003. #endif // DELTA
  2004. #endif // AUTO_BED_LEVELING_FEATURE
  2005. /**
  2006. * Home an individual axis
  2007. */
  2008. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2009. static void homeaxis(AxisEnum axis) {
  2010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2011. if (DEBUGGING(LEVELING)) {
  2012. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2013. SERIAL_ECHOLNPGM(")");
  2014. }
  2015. #endif
  2016. #define HOMEAXIS_DO(LETTER) \
  2017. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2018. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  2019. int axis_home_dir =
  2020. #if ENABLED(DUAL_X_CARRIAGE)
  2021. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2022. #endif
  2023. home_dir(axis);
  2024. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2025. #if HAS_BED_PROBE
  2026. if (axis == Z_AXIS && axis_home_dir < 0) {
  2027. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2028. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2029. #endif
  2030. if (DEPLOY_PROBE()) return;
  2031. }
  2032. #endif
  2033. // Set the axis position as setup for the move
  2034. current_position[axis] = 0;
  2035. sync_plan_position();
  2036. // Set a flag for Z motor locking
  2037. #if ENABLED(Z_DUAL_ENDSTOPS)
  2038. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2039. #endif
  2040. // Move towards the endstop until an endstop is triggered
  2041. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2042. feedrate = homing_feedrate[axis];
  2043. line_to_destination();
  2044. stepper.synchronize();
  2045. // Set the axis position as setup for the move
  2046. current_position[axis] = 0;
  2047. sync_plan_position();
  2048. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2049. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2050. #endif
  2051. endstops.enable(false); // Disable endstops while moving away
  2052. // Move away from the endstop by the axis HOME_BUMP_MM
  2053. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2054. line_to_destination();
  2055. stepper.synchronize();
  2056. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2057. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2058. #endif
  2059. endstops.enable(true); // Enable endstops for next homing move
  2060. // Slow down the feedrate for the next move
  2061. set_homing_bump_feedrate(axis);
  2062. // Move slowly towards the endstop until triggered
  2063. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2064. line_to_destination();
  2065. stepper.synchronize();
  2066. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2067. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2068. #endif
  2069. #if ENABLED(Z_DUAL_ENDSTOPS)
  2070. if (axis == Z_AXIS) {
  2071. float adj = fabs(z_endstop_adj);
  2072. bool lockZ1;
  2073. if (axis_home_dir > 0) {
  2074. adj = -adj;
  2075. lockZ1 = (z_endstop_adj > 0);
  2076. }
  2077. else
  2078. lockZ1 = (z_endstop_adj < 0);
  2079. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2080. sync_plan_position();
  2081. // Move to the adjusted endstop height
  2082. feedrate = homing_feedrate[axis];
  2083. destination[Z_AXIS] = adj;
  2084. line_to_destination();
  2085. stepper.synchronize();
  2086. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2087. stepper.set_homing_flag(false);
  2088. } // Z_AXIS
  2089. #endif
  2090. #if ENABLED(DELTA)
  2091. // retrace by the amount specified in endstop_adj
  2092. if (endstop_adj[axis] * axis_home_dir < 0) {
  2093. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2094. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
  2095. #endif
  2096. endstops.enable(false); // Disable endstops while moving away
  2097. sync_plan_position();
  2098. destination[axis] = endstop_adj[axis];
  2099. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2100. if (DEBUGGING(LEVELING)) {
  2101. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2102. DEBUG_POS("", destination);
  2103. }
  2104. #endif
  2105. line_to_destination();
  2106. stepper.synchronize();
  2107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2108. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2109. #endif
  2110. endstops.enable(true); // Enable endstops for next homing move
  2111. }
  2112. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2113. else {
  2114. if (DEBUGGING(LEVELING)) {
  2115. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  2116. SERIAL_EOL;
  2117. }
  2118. }
  2119. #endif
  2120. #endif
  2121. // Set the axis position to its home position (plus home offsets)
  2122. set_axis_is_at_home(axis);
  2123. SYNC_PLAN_POSITION_KINEMATIC();
  2124. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2125. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2126. #endif
  2127. destination[axis] = current_position[axis];
  2128. endstops.hit_on_purpose(); // clear endstop hit flags
  2129. axis_known_position[axis] = true;
  2130. axis_homed[axis] = true;
  2131. // Put away the Z probe
  2132. #if HAS_BED_PROBE
  2133. if (axis == Z_AXIS && axis_home_dir < 0) {
  2134. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2135. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2136. #endif
  2137. if (STOW_PROBE()) return;
  2138. }
  2139. #endif
  2140. }
  2141. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2142. if (DEBUGGING(LEVELING)) {
  2143. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2144. SERIAL_ECHOLNPGM(")");
  2145. }
  2146. #endif
  2147. }
  2148. #if ENABLED(FWRETRACT)
  2149. void retract(bool retracting, bool swapping = false) {
  2150. if (retracting == retracted[active_extruder]) return;
  2151. float old_feedrate = feedrate;
  2152. set_destination_to_current();
  2153. if (retracting) {
  2154. feedrate = retract_feedrate_mm_s * 60;
  2155. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2156. sync_plan_position_e();
  2157. prepare_move_to_destination();
  2158. if (retract_zlift > 0.01) {
  2159. current_position[Z_AXIS] -= retract_zlift;
  2160. SYNC_PLAN_POSITION_KINEMATIC();
  2161. prepare_move_to_destination();
  2162. }
  2163. }
  2164. else {
  2165. if (retract_zlift > 0.01) {
  2166. current_position[Z_AXIS] += retract_zlift;
  2167. SYNC_PLAN_POSITION_KINEMATIC();
  2168. }
  2169. feedrate = retract_recover_feedrate * 60;
  2170. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2171. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2172. sync_plan_position_e();
  2173. prepare_move_to_destination();
  2174. }
  2175. feedrate = old_feedrate;
  2176. retracted[active_extruder] = retracting;
  2177. } // retract()
  2178. #endif // FWRETRACT
  2179. /**
  2180. * ***************************************************************************
  2181. * ***************************** G-CODE HANDLING *****************************
  2182. * ***************************************************************************
  2183. */
  2184. /**
  2185. * Set XYZE destination and feedrate from the current GCode command
  2186. *
  2187. * - Set destination from included axis codes
  2188. * - Set to current for missing axis codes
  2189. * - Set the feedrate, if included
  2190. */
  2191. void gcode_get_destination() {
  2192. for (int i = 0; i < NUM_AXIS; i++) {
  2193. if (code_seen(axis_codes[i]))
  2194. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2195. else
  2196. destination[i] = current_position[i];
  2197. }
  2198. if (code_seen('F')) {
  2199. float next_feedrate = code_value_linear_units();
  2200. if (next_feedrate > 0.0) feedrate = next_feedrate;
  2201. }
  2202. }
  2203. void unknown_command_error() {
  2204. SERIAL_ECHO_START;
  2205. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2206. SERIAL_ECHO(current_command);
  2207. SERIAL_ECHOLNPGM("\"");
  2208. }
  2209. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2210. /**
  2211. * Output a "busy" message at regular intervals
  2212. * while the machine is not accepting commands.
  2213. */
  2214. void host_keepalive() {
  2215. millis_t ms = millis();
  2216. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2217. if (PENDING(ms, next_busy_signal_ms)) return;
  2218. switch (busy_state) {
  2219. case IN_HANDLER:
  2220. case IN_PROCESS:
  2221. SERIAL_ECHO_START;
  2222. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2223. break;
  2224. case PAUSED_FOR_USER:
  2225. SERIAL_ECHO_START;
  2226. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2227. break;
  2228. case PAUSED_FOR_INPUT:
  2229. SERIAL_ECHO_START;
  2230. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2231. break;
  2232. default:
  2233. break;
  2234. }
  2235. }
  2236. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2237. }
  2238. #endif //HOST_KEEPALIVE_FEATURE
  2239. /**
  2240. * G0, G1: Coordinated movement of X Y Z E axes
  2241. */
  2242. inline void gcode_G0_G1() {
  2243. if (IsRunning()) {
  2244. gcode_get_destination(); // For X Y Z E F
  2245. #if ENABLED(FWRETRACT)
  2246. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2247. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2248. // Is this move an attempt to retract or recover?
  2249. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2250. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2251. sync_plan_position_e(); // AND from the planner
  2252. retract(!retracted[active_extruder]);
  2253. return;
  2254. }
  2255. }
  2256. #endif //FWRETRACT
  2257. prepare_move_to_destination();
  2258. }
  2259. }
  2260. /**
  2261. * G2: Clockwise Arc
  2262. * G3: Counterclockwise Arc
  2263. */
  2264. #if ENABLED(ARC_SUPPORT)
  2265. inline void gcode_G2_G3(bool clockwise) {
  2266. if (IsRunning()) {
  2267. #if ENABLED(SF_ARC_FIX)
  2268. bool relative_mode_backup = relative_mode;
  2269. relative_mode = true;
  2270. #endif
  2271. gcode_get_destination();
  2272. #if ENABLED(SF_ARC_FIX)
  2273. relative_mode = relative_mode_backup;
  2274. #endif
  2275. // Center of arc as offset from current_position
  2276. float arc_offset[2] = {
  2277. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2278. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2279. };
  2280. // Send an arc to the planner
  2281. plan_arc(destination, arc_offset, clockwise);
  2282. refresh_cmd_timeout();
  2283. }
  2284. }
  2285. #endif
  2286. /**
  2287. * G4: Dwell S<seconds> or P<milliseconds>
  2288. */
  2289. inline void gcode_G4() {
  2290. millis_t codenum = 0;
  2291. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2292. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2293. stepper.synchronize();
  2294. refresh_cmd_timeout();
  2295. codenum += previous_cmd_ms; // keep track of when we started waiting
  2296. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2297. while (PENDING(millis(), codenum)) idle();
  2298. }
  2299. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2300. /**
  2301. * Parameters interpreted according to:
  2302. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2303. * However I, J omission is not supported at this point; all
  2304. * parameters can be omitted and default to zero.
  2305. */
  2306. /**
  2307. * G5: Cubic B-spline
  2308. */
  2309. inline void gcode_G5() {
  2310. if (IsRunning()) {
  2311. gcode_get_destination();
  2312. float offset[] = {
  2313. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2314. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2315. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2316. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2317. };
  2318. plan_cubic_move(offset);
  2319. }
  2320. }
  2321. #endif // BEZIER_CURVE_SUPPORT
  2322. #if ENABLED(FWRETRACT)
  2323. /**
  2324. * G10 - Retract filament according to settings of M207
  2325. * G11 - Recover filament according to settings of M208
  2326. */
  2327. inline void gcode_G10_G11(bool doRetract=false) {
  2328. #if EXTRUDERS > 1
  2329. if (doRetract) {
  2330. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2331. }
  2332. #endif
  2333. retract(doRetract
  2334. #if EXTRUDERS > 1
  2335. , retracted_swap[active_extruder]
  2336. #endif
  2337. );
  2338. }
  2339. #endif //FWRETRACT
  2340. #if ENABLED(INCH_MODE_SUPPORT)
  2341. /**
  2342. * G20: Set input mode to inches
  2343. */
  2344. inline void gcode_G20() {
  2345. set_input_linear_units(LINEARUNIT_INCH);
  2346. }
  2347. /**
  2348. * G21: Set input mode to millimeters
  2349. */
  2350. inline void gcode_G21() {
  2351. set_input_linear_units(LINEARUNIT_MM);
  2352. }
  2353. #endif
  2354. #if ENABLED(QUICK_HOME)
  2355. static void quick_home_xy() {
  2356. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2357. #if ENABLED(DUAL_X_CARRIAGE)
  2358. int x_axis_home_dir = x_home_dir(active_extruder);
  2359. extruder_duplication_enabled = false;
  2360. #else
  2361. int x_axis_home_dir = home_dir(X_AXIS);
  2362. #endif
  2363. SYNC_PLAN_POSITION_KINEMATIC();
  2364. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2365. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2366. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2367. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2368. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2369. line_to_destination();
  2370. stepper.synchronize();
  2371. set_axis_is_at_home(X_AXIS);
  2372. set_axis_is_at_home(Y_AXIS);
  2373. SYNC_PLAN_POSITION_KINEMATIC();
  2374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2375. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2376. #endif
  2377. destination[X_AXIS] = current_position[X_AXIS];
  2378. destination[Y_AXIS] = current_position[Y_AXIS];
  2379. line_to_destination();
  2380. stepper.synchronize();
  2381. endstops.hit_on_purpose(); // clear endstop hit flags
  2382. current_position[X_AXIS] = destination[X_AXIS];
  2383. current_position[Y_AXIS] = destination[Y_AXIS];
  2384. #if DISABLED(SCARA)
  2385. current_position[Z_AXIS] = destination[Z_AXIS];
  2386. #endif
  2387. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2388. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2389. #endif
  2390. }
  2391. #endif // QUICK_HOME
  2392. /**
  2393. * G28: Home all axes according to settings
  2394. *
  2395. * Parameters
  2396. *
  2397. * None Home to all axes with no parameters.
  2398. * With QUICK_HOME enabled XY will home together, then Z.
  2399. *
  2400. * Cartesian parameters
  2401. *
  2402. * X Home to the X endstop
  2403. * Y Home to the Y endstop
  2404. * Z Home to the Z endstop
  2405. *
  2406. */
  2407. inline void gcode_G28() {
  2408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2409. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2410. #endif
  2411. // Wait for planner moves to finish!
  2412. stepper.synchronize();
  2413. // For auto bed leveling, clear the level matrix
  2414. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2415. planner.bed_level_matrix.set_to_identity();
  2416. #if ENABLED(DELTA)
  2417. reset_bed_level();
  2418. #endif
  2419. #endif
  2420. /**
  2421. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2422. * on again when homing all axis
  2423. */
  2424. #if ENABLED(MESH_BED_LEVELING)
  2425. float pre_home_z = MESH_HOME_SEARCH_Z;
  2426. if (mbl.active()) {
  2427. // Save known Z position if already homed
  2428. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2429. pre_home_z = current_position[Z_AXIS];
  2430. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2431. }
  2432. mbl.set_active(false);
  2433. current_position[Z_AXIS] = pre_home_z;
  2434. }
  2435. #endif
  2436. setup_for_endstop_move();
  2437. #if ENABLED(DELTA)
  2438. /**
  2439. * A delta can only safely home all axes at the same time
  2440. */
  2441. // Pretend the current position is 0,0,0
  2442. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2443. sync_plan_position();
  2444. // Move all carriages up together until the first endstop is hit.
  2445. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2446. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2447. line_to_destination();
  2448. stepper.synchronize();
  2449. endstops.hit_on_purpose(); // clear endstop hit flags
  2450. // Destination reached
  2451. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2452. // take care of back off and rehome now we are all at the top
  2453. HOMEAXIS(X);
  2454. HOMEAXIS(Y);
  2455. HOMEAXIS(Z);
  2456. SYNC_PLAN_POSITION_KINEMATIC();
  2457. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2458. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2459. #endif
  2460. #else // NOT DELTA
  2461. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2462. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2463. set_destination_to_current();
  2464. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2465. if (home_all_axis || homeZ) {
  2466. HOMEAXIS(Z);
  2467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2468. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2469. #endif
  2470. }
  2471. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2472. // Raise Z before homing, if specified
  2473. destination[Z_AXIS] = (current_position[Z_AXIS] += MIN_Z_HEIGHT_FOR_HOMING);
  2474. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2475. if (DEBUGGING(LEVELING)) {
  2476. SERIAL_ECHOPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2477. SERIAL_EOL;
  2478. }
  2479. #endif
  2480. feedrate = homing_feedrate[Z_AXIS];
  2481. #if HAS_BED_PROBE
  2482. do_blocking_move_to_z(destination[Z_AXIS]);
  2483. #else
  2484. line_to_z(destination[Z_AXIS]);
  2485. stepper.synchronize();
  2486. #endif
  2487. #endif // MIN_Z_HEIGHT_FOR_HOMING
  2488. #if ENABLED(QUICK_HOME)
  2489. bool quick_homed = home_all_axis || (homeX && homeY);
  2490. if (quick_homed) quick_home_xy();
  2491. #else
  2492. const bool quick_homed = false;
  2493. #endif
  2494. #if ENABLED(HOME_Y_BEFORE_X)
  2495. // Home Y
  2496. if (!quick_homed && (home_all_axis || homeY)) {
  2497. HOMEAXIS(Y);
  2498. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2499. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2500. #endif
  2501. }
  2502. #endif
  2503. // Home X
  2504. if (!quick_homed && (home_all_axis || homeX)) {
  2505. #if ENABLED(DUAL_X_CARRIAGE)
  2506. int tmp_extruder = active_extruder;
  2507. extruder_duplication_enabled = false;
  2508. active_extruder = !active_extruder;
  2509. HOMEAXIS(X);
  2510. inactive_extruder_x_pos = current_position[X_AXIS];
  2511. active_extruder = tmp_extruder;
  2512. HOMEAXIS(X);
  2513. // reset state used by the different modes
  2514. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2515. delayed_move_time = 0;
  2516. active_extruder_parked = true;
  2517. #else
  2518. HOMEAXIS(X);
  2519. #endif
  2520. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2521. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2522. #endif
  2523. }
  2524. #if DISABLED(HOME_Y_BEFORE_X)
  2525. // Home Y
  2526. if (!quick_homed && (home_all_axis || homeY)) {
  2527. HOMEAXIS(Y);
  2528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2529. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2530. #endif
  2531. }
  2532. #endif
  2533. // Home Z last if homing towards the bed
  2534. #if Z_HOME_DIR < 0
  2535. if (home_all_axis || homeZ) {
  2536. #if ENABLED(Z_SAFE_HOMING)
  2537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2538. if (DEBUGGING(LEVELING)) {
  2539. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2540. }
  2541. #endif
  2542. if (home_all_axis) {
  2543. /**
  2544. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2545. * No need to move Z any more as this height should already be safe
  2546. * enough to reach Z_SAFE_HOMING XY positions.
  2547. * Just make sure the planner is in sync.
  2548. */
  2549. SYNC_PLAN_POSITION_KINEMATIC();
  2550. /**
  2551. * Set the Z probe (or just the nozzle) destination to the safe
  2552. * homing point
  2553. */
  2554. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2555. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2556. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2557. feedrate = XY_PROBE_FEEDRATE;
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) {
  2560. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2561. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2562. }
  2563. #endif
  2564. // Move in the XY plane
  2565. line_to_destination();
  2566. stepper.synchronize();
  2567. /**
  2568. * Update the current positions for XY, Z is still at least at
  2569. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2570. */
  2571. current_position[X_AXIS] = destination[X_AXIS];
  2572. current_position[Y_AXIS] = destination[Y_AXIS];
  2573. // Home the Z axis
  2574. HOMEAXIS(Z);
  2575. }
  2576. else if (homeZ) { // Don't need to Home Z twice
  2577. // Let's see if X and Y are homed
  2578. if (axis_unhomed_error(true, true, false)) return;
  2579. /**
  2580. * Make sure the Z probe is within the physical limits
  2581. * NOTE: This doesn't necessarily ensure the Z probe is also
  2582. * within the bed!
  2583. */
  2584. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2585. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2586. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2587. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2588. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2589. // Home the Z axis
  2590. HOMEAXIS(Z);
  2591. }
  2592. else {
  2593. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2594. SERIAL_ECHO_START;
  2595. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2596. }
  2597. } // !home_all_axes && homeZ
  2598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2599. if (DEBUGGING(LEVELING)) {
  2600. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2601. }
  2602. #endif
  2603. #else // !Z_SAFE_HOMING
  2604. HOMEAXIS(Z);
  2605. #endif // !Z_SAFE_HOMING
  2606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2607. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2608. #endif
  2609. } // home_all_axis || homeZ
  2610. #endif // Z_HOME_DIR < 0
  2611. SYNC_PLAN_POSITION_KINEMATIC();
  2612. #endif // !DELTA (gcode_G28)
  2613. endstops.not_homing();
  2614. // Enable mesh leveling again
  2615. #if ENABLED(MESH_BED_LEVELING)
  2616. if (mbl.has_mesh()) {
  2617. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2618. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2619. #if Z_HOME_DIR > 0
  2620. + Z_MAX_POS
  2621. #endif
  2622. ;
  2623. SYNC_PLAN_POSITION_KINEMATIC();
  2624. mbl.set_active(true);
  2625. #if ENABLED(MESH_G28_REST_ORIGIN)
  2626. current_position[Z_AXIS] = 0.0;
  2627. set_destination_to_current();
  2628. feedrate = homing_feedrate[Z_AXIS];
  2629. line_to_destination();
  2630. stepper.synchronize();
  2631. #else
  2632. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2633. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2634. #if Z_HOME_DIR > 0
  2635. + Z_MAX_POS
  2636. #endif
  2637. ;
  2638. #endif
  2639. }
  2640. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2641. current_position[Z_AXIS] = pre_home_z;
  2642. SYNC_PLAN_POSITION_KINEMATIC();
  2643. mbl.set_active(true);
  2644. current_position[Z_AXIS] = pre_home_z -
  2645. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2646. }
  2647. }
  2648. #endif
  2649. clean_up_after_endstop_or_probe_move();
  2650. endstops.hit_on_purpose(); // clear endstop hit flags
  2651. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2652. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2653. #endif
  2654. report_current_position();
  2655. }
  2656. #if HAS_PROBING_PROCEDURE
  2657. void out_of_range_error(const char* p_edge) {
  2658. SERIAL_PROTOCOLPGM("?Probe ");
  2659. serialprintPGM(p_edge);
  2660. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2661. }
  2662. #endif
  2663. #if ENABLED(MESH_BED_LEVELING)
  2664. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2665. inline void _mbl_goto_xy(float x, float y) {
  2666. float old_feedrate = feedrate;
  2667. feedrate = homing_feedrate[X_AXIS];
  2668. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2669. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2670. + Z_RAISE_BETWEEN_PROBINGS
  2671. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2672. + MIN_Z_HEIGHT_FOR_HOMING
  2673. #endif
  2674. ;
  2675. line_to_current_position();
  2676. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2677. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2678. line_to_current_position();
  2679. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2680. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2681. line_to_current_position();
  2682. #endif
  2683. feedrate = old_feedrate;
  2684. stepper.synchronize();
  2685. }
  2686. /**
  2687. * G29: Mesh-based Z probe, probes a grid and produces a
  2688. * mesh to compensate for variable bed height
  2689. *
  2690. * Parameters With MESH_BED_LEVELING:
  2691. *
  2692. * S0 Produce a mesh report
  2693. * S1 Start probing mesh points
  2694. * S2 Probe the next mesh point
  2695. * S3 Xn Yn Zn.nn Manually modify a single point
  2696. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2697. * S5 Reset and disable mesh
  2698. *
  2699. * The S0 report the points as below
  2700. *
  2701. * +----> X-axis 1-n
  2702. * |
  2703. * |
  2704. * v Y-axis 1-n
  2705. *
  2706. */
  2707. inline void gcode_G29() {
  2708. static int probe_point = -1;
  2709. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2710. if (state < 0 || state > 5) {
  2711. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2712. return;
  2713. }
  2714. int8_t px, py;
  2715. float z;
  2716. switch (state) {
  2717. case MeshReport:
  2718. if (mbl.has_mesh()) {
  2719. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2720. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2721. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2722. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2723. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2724. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2725. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2726. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2727. SERIAL_PROTOCOLPGM(" ");
  2728. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2729. }
  2730. SERIAL_EOL;
  2731. }
  2732. }
  2733. else
  2734. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2735. break;
  2736. case MeshStart:
  2737. mbl.reset();
  2738. probe_point = 0;
  2739. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2740. break;
  2741. case MeshNext:
  2742. if (probe_point < 0) {
  2743. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2744. return;
  2745. }
  2746. // For each G29 S2...
  2747. if (probe_point == 0) {
  2748. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2749. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2750. #if Z_HOME_DIR > 0
  2751. + Z_MAX_POS
  2752. #endif
  2753. ;
  2754. SYNC_PLAN_POSITION_KINEMATIC();
  2755. }
  2756. else {
  2757. // For G29 S2 after adjusting Z.
  2758. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2759. }
  2760. // If there's another point to sample, move there with optional lift.
  2761. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2762. mbl.zigzag(probe_point, px, py);
  2763. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2764. probe_point++;
  2765. }
  2766. else {
  2767. // One last "return to the bed" (as originally coded) at completion
  2768. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2769. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2770. + Z_RAISE_BETWEEN_PROBINGS
  2771. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2772. + MIN_Z_HEIGHT_FOR_HOMING
  2773. #endif
  2774. ;
  2775. line_to_current_position();
  2776. stepper.synchronize();
  2777. // After recording the last point, activate the mbl and home
  2778. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2779. probe_point = -1;
  2780. mbl.set_has_mesh(true);
  2781. enqueue_and_echo_commands_P(PSTR("G28"));
  2782. }
  2783. break;
  2784. case MeshSet:
  2785. if (code_seen('X')) {
  2786. px = code_value_int() - 1;
  2787. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2788. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2789. return;
  2790. }
  2791. }
  2792. else {
  2793. SERIAL_PROTOCOLLNPGM("X not entered.");
  2794. return;
  2795. }
  2796. if (code_seen('Y')) {
  2797. py = code_value_int() - 1;
  2798. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2799. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2800. return;
  2801. }
  2802. }
  2803. else {
  2804. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2805. return;
  2806. }
  2807. if (code_seen('Z')) {
  2808. z = code_value_axis_units(Z_AXIS);
  2809. }
  2810. else {
  2811. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2812. return;
  2813. }
  2814. mbl.z_values[py][px] = z;
  2815. break;
  2816. case MeshSetZOffset:
  2817. if (code_seen('Z')) {
  2818. z = code_value_axis_units(Z_AXIS);
  2819. }
  2820. else {
  2821. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2822. return;
  2823. }
  2824. mbl.z_offset = z;
  2825. break;
  2826. case MeshReset:
  2827. if (mbl.active()) {
  2828. current_position[Z_AXIS] +=
  2829. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2830. mbl.reset();
  2831. SYNC_PLAN_POSITION_KINEMATIC();
  2832. }
  2833. else
  2834. mbl.reset();
  2835. } // switch(state)
  2836. report_current_position();
  2837. }
  2838. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2839. /**
  2840. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2841. * Will fail if the printer has not been homed with G28.
  2842. *
  2843. * Enhanced G29 Auto Bed Leveling Probe Routine
  2844. *
  2845. * Parameters With AUTO_BED_LEVELING_GRID:
  2846. *
  2847. * P Set the size of the grid that will be probed (P x P points).
  2848. * Not supported by non-linear delta printer bed leveling.
  2849. * Example: "G29 P4"
  2850. *
  2851. * S Set the XY travel speed between probe points (in units/min)
  2852. *
  2853. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2854. * or clean the rotation Matrix. Useful to check the topology
  2855. * after a first run of G29.
  2856. *
  2857. * V Set the verbose level (0-4). Example: "G29 V3"
  2858. *
  2859. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2860. * This is useful for manual bed leveling and finding flaws in the bed (to
  2861. * assist with part placement).
  2862. * Not supported by non-linear delta printer bed leveling.
  2863. *
  2864. * F Set the Front limit of the probing grid
  2865. * B Set the Back limit of the probing grid
  2866. * L Set the Left limit of the probing grid
  2867. * R Set the Right limit of the probing grid
  2868. *
  2869. * Global Parameters:
  2870. *
  2871. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2872. * Include "E" to engage/disengage the Z probe for each sample.
  2873. * There's no extra effect if you have a fixed Z probe.
  2874. * Usage: "G29 E" or "G29 e"
  2875. *
  2876. */
  2877. inline void gcode_G29() {
  2878. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2879. if (DEBUGGING(LEVELING)) {
  2880. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2881. DEBUG_POS("", current_position);
  2882. }
  2883. #endif
  2884. // Don't allow auto-leveling without homing first
  2885. if (axis_unhomed_error(true, true, true)) return;
  2886. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2887. if (verbose_level < 0 || verbose_level > 4) {
  2888. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2889. return;
  2890. }
  2891. bool dryrun = code_seen('D');
  2892. bool stow_probe_after_each = code_seen('E');
  2893. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2894. #if DISABLED(DELTA)
  2895. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2896. #endif
  2897. if (verbose_level > 0) {
  2898. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2899. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2900. }
  2901. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2902. #if DISABLED(DELTA)
  2903. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2904. if (auto_bed_leveling_grid_points < 2) {
  2905. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2906. return;
  2907. }
  2908. #endif
  2909. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2910. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2911. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2912. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2913. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2914. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2915. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2916. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2917. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2918. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2919. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2920. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2921. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2922. if (left_out || right_out || front_out || back_out) {
  2923. if (left_out) {
  2924. out_of_range_error(PSTR("(L)eft"));
  2925. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2926. }
  2927. if (right_out) {
  2928. out_of_range_error(PSTR("(R)ight"));
  2929. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2930. }
  2931. if (front_out) {
  2932. out_of_range_error(PSTR("(F)ront"));
  2933. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2934. }
  2935. if (back_out) {
  2936. out_of_range_error(PSTR("(B)ack"));
  2937. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2938. }
  2939. return;
  2940. }
  2941. #endif // AUTO_BED_LEVELING_GRID
  2942. if (!dryrun) {
  2943. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2944. if (DEBUGGING(LEVELING)) {
  2945. vector_3 corrected_position = planner.adjusted_position();
  2946. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2947. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2948. }
  2949. #endif
  2950. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2951. planner.bed_level_matrix.set_to_identity();
  2952. #if ENABLED(DELTA)
  2953. reset_bed_level();
  2954. #else //!DELTA
  2955. //vector_3 corrected_position = planner.adjusted_position();
  2956. //corrected_position.debug("position before G29");
  2957. vector_3 uncorrected_position = planner.adjusted_position();
  2958. //uncorrected_position.debug("position during G29");
  2959. current_position[X_AXIS] = uncorrected_position.x;
  2960. current_position[Y_AXIS] = uncorrected_position.y;
  2961. current_position[Z_AXIS] = uncorrected_position.z;
  2962. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2963. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2964. #endif
  2965. SYNC_PLAN_POSITION_KINEMATIC();
  2966. #endif // !DELTA
  2967. }
  2968. stepper.synchronize();
  2969. setup_for_endstop_or_probe_move();
  2970. // Deploy the probe. Probe will raise if needed.
  2971. if (DEPLOY_PROBE()) return;
  2972. bed_leveling_in_progress = true;
  2973. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2974. // probe at the points of a lattice grid
  2975. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2976. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2977. #if ENABLED(DELTA)
  2978. delta_grid_spacing[0] = xGridSpacing;
  2979. delta_grid_spacing[1] = yGridSpacing;
  2980. float zoffset = zprobe_zoffset;
  2981. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2982. #else // !DELTA
  2983. /**
  2984. * solve the plane equation ax + by + d = z
  2985. * A is the matrix with rows [x y 1] for all the probed points
  2986. * B is the vector of the Z positions
  2987. * the normal vector to the plane is formed by the coefficients of the
  2988. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2989. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2990. */
  2991. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2992. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2993. eqnBVector[abl2], // "B" vector of Z points
  2994. mean = 0.0;
  2995. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2996. #endif // !DELTA
  2997. int probePointCounter = 0;
  2998. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2999. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  3000. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  3001. int xStart, xStop, xInc;
  3002. if (zig) {
  3003. xStart = 0;
  3004. xStop = auto_bed_leveling_grid_points;
  3005. xInc = 1;
  3006. }
  3007. else {
  3008. xStart = auto_bed_leveling_grid_points - 1;
  3009. xStop = -1;
  3010. xInc = -1;
  3011. }
  3012. zig = !zig;
  3013. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  3014. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  3015. #if ENABLED(DELTA)
  3016. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  3017. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  3018. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  3019. #endif //DELTA
  3020. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3021. #if DISABLED(DELTA)
  3022. mean += measured_z;
  3023. eqnBVector[probePointCounter] = measured_z;
  3024. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3025. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3026. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3027. indexIntoAB[xCount][yCount] = probePointCounter;
  3028. #else
  3029. bed_level[xCount][yCount] = measured_z + zoffset;
  3030. #endif
  3031. probePointCounter++;
  3032. idle();
  3033. } //xProbe
  3034. } //yProbe
  3035. #else // !AUTO_BED_LEVELING_GRID
  3036. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3037. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3038. #endif
  3039. // Probe at 3 arbitrary points
  3040. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  3041. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  3042. stow_probe_after_each, verbose_level),
  3043. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  3044. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  3045. stow_probe_after_each, verbose_level),
  3046. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  3047. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  3048. stow_probe_after_each, verbose_level);
  3049. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  3050. #endif // !AUTO_BED_LEVELING_GRID
  3051. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  3052. if (STOW_PROBE()) return;
  3053. // Restore state after probing
  3054. clean_up_after_endstop_or_probe_move();
  3055. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3056. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3057. #endif
  3058. // Calculate leveling, print reports, correct the position
  3059. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3060. #if ENABLED(DELTA)
  3061. if (!dryrun) extrapolate_unprobed_bed_level();
  3062. print_bed_level();
  3063. #else // !DELTA
  3064. // solve lsq problem
  3065. double plane_equation_coefficients[3];
  3066. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3067. mean /= abl2;
  3068. if (verbose_level) {
  3069. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3070. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3071. SERIAL_PROTOCOLPGM(" b: ");
  3072. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3073. SERIAL_PROTOCOLPGM(" d: ");
  3074. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3075. SERIAL_EOL;
  3076. if (verbose_level > 2) {
  3077. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3078. SERIAL_PROTOCOL_F(mean, 8);
  3079. SERIAL_EOL;
  3080. }
  3081. }
  3082. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3083. // Show the Topography map if enabled
  3084. if (do_topography_map) {
  3085. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3086. " +--- BACK --+\n"
  3087. " | |\n"
  3088. " L | (+) | R\n"
  3089. " E | | I\n"
  3090. " F | (-) N (+) | G\n"
  3091. " T | | H\n"
  3092. " | (-) | T\n"
  3093. " | |\n"
  3094. " O-- FRONT --+\n"
  3095. " (0,0)");
  3096. float min_diff = 999;
  3097. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3098. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3099. int ind = indexIntoAB[xx][yy];
  3100. float diff = eqnBVector[ind] - mean;
  3101. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3102. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3103. z_tmp = 0;
  3104. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3105. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3106. if (diff >= 0.0)
  3107. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3108. else
  3109. SERIAL_PROTOCOLCHAR(' ');
  3110. SERIAL_PROTOCOL_F(diff, 5);
  3111. } // xx
  3112. SERIAL_EOL;
  3113. } // yy
  3114. SERIAL_EOL;
  3115. if (verbose_level > 3) {
  3116. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3117. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3118. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3119. int ind = indexIntoAB[xx][yy];
  3120. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3121. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3122. z_tmp = 0;
  3123. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3124. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3125. if (diff >= 0.0)
  3126. SERIAL_PROTOCOLPGM(" +");
  3127. // Include + for column alignment
  3128. else
  3129. SERIAL_PROTOCOLCHAR(' ');
  3130. SERIAL_PROTOCOL_F(diff, 5);
  3131. } // xx
  3132. SERIAL_EOL;
  3133. } // yy
  3134. SERIAL_EOL;
  3135. }
  3136. } //do_topography_map
  3137. #endif //!DELTA
  3138. #endif // AUTO_BED_LEVELING_GRID
  3139. #if DISABLED(DELTA)
  3140. if (verbose_level > 0)
  3141. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3142. if (!dryrun) {
  3143. /**
  3144. * Correct the Z height difference from Z probe position and nozzle tip position.
  3145. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3146. * from the nozzle. When the bed is uneven, this height must be corrected.
  3147. */
  3148. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3149. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3150. z_tmp = current_position[Z_AXIS],
  3151. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3152. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3153. if (DEBUGGING(LEVELING)) {
  3154. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3155. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3156. SERIAL_EOL;
  3157. }
  3158. #endif
  3159. // Apply the correction sending the Z probe offset
  3160. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3162. if (DEBUGGING(LEVELING)) {
  3163. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3164. SERIAL_EOL;
  3165. }
  3166. #endif
  3167. // Adjust the current Z and send it to the planner.
  3168. current_position[Z_AXIS] += z_tmp - stepper_z;
  3169. SYNC_PLAN_POSITION_KINEMATIC();
  3170. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3171. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3172. #endif
  3173. }
  3174. #endif // !DELTA
  3175. #ifdef Z_PROBE_END_SCRIPT
  3176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3177. if (DEBUGGING(LEVELING)) {
  3178. SERIAL_ECHOPGM("Z Probe End Script: ");
  3179. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3180. }
  3181. #endif
  3182. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3183. stepper.synchronize();
  3184. #endif
  3185. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3186. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3187. #endif
  3188. bed_leveling_in_progress = false;
  3189. report_current_position();
  3190. KEEPALIVE_STATE(IN_HANDLER);
  3191. }
  3192. #endif //AUTO_BED_LEVELING_FEATURE
  3193. #if HAS_BED_PROBE
  3194. /**
  3195. * G30: Do a single Z probe at the current XY
  3196. */
  3197. inline void gcode_G30() {
  3198. setup_for_endstop_or_probe_move();
  3199. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3200. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3201. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3202. true, 1);
  3203. SERIAL_PROTOCOLPGM("Bed X: ");
  3204. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3205. SERIAL_PROTOCOLPGM(" Y: ");
  3206. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3207. SERIAL_PROTOCOLPGM(" Z: ");
  3208. SERIAL_PROTOCOL(measured_z + 0.0001);
  3209. SERIAL_EOL;
  3210. clean_up_after_endstop_or_probe_move();
  3211. report_current_position();
  3212. }
  3213. #if ENABLED(Z_PROBE_SLED)
  3214. /**
  3215. * G31: Deploy the Z probe
  3216. */
  3217. inline void gcode_G31() { DEPLOY_PROBE(); }
  3218. /**
  3219. * G32: Stow the Z probe
  3220. */
  3221. inline void gcode_G32() { STOW_PROBE(); }
  3222. #endif // Z_PROBE_SLED
  3223. #endif // HAS_BED_PROBE
  3224. /**
  3225. * G92: Set current position to given X Y Z E
  3226. */
  3227. inline void gcode_G92() {
  3228. bool didE = code_seen('E');
  3229. if (!didE) stepper.synchronize();
  3230. bool didXYZ = false;
  3231. for (int i = 0; i < NUM_AXIS; i++) {
  3232. if (code_seen(axis_codes[i])) {
  3233. float p = current_position[i],
  3234. v = code_value_axis_units(i);
  3235. current_position[i] = v;
  3236. if (i != E_AXIS) {
  3237. position_shift[i] += v - p; // Offset the coordinate space
  3238. update_software_endstops((AxisEnum)i);
  3239. didXYZ = true;
  3240. }
  3241. }
  3242. }
  3243. if (didXYZ)
  3244. SYNC_PLAN_POSITION_KINEMATIC();
  3245. else if (didE)
  3246. sync_plan_position_e();
  3247. }
  3248. #if ENABLED(ULTIPANEL)
  3249. /**
  3250. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  3251. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  3252. */
  3253. inline void gcode_M0_M1() {
  3254. char* args = current_command_args;
  3255. uint8_t test_value = 12;
  3256. SERIAL_ECHOPAIR("TEST", test_value);
  3257. millis_t codenum = 0;
  3258. bool hasP = false, hasS = false;
  3259. if (code_seen('P')) {
  3260. codenum = code_value_millis(); // milliseconds to wait
  3261. hasP = codenum > 0;
  3262. }
  3263. if (code_seen('S')) {
  3264. codenum = code_value_millis_from_seconds(); // seconds to wait
  3265. hasS = codenum > 0;
  3266. }
  3267. if (!hasP && !hasS && *args != '\0')
  3268. lcd_setstatus(args, true);
  3269. else {
  3270. LCD_MESSAGEPGM(MSG_USERWAIT);
  3271. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3272. dontExpireStatus();
  3273. #endif
  3274. }
  3275. lcd_ignore_click();
  3276. stepper.synchronize();
  3277. refresh_cmd_timeout();
  3278. if (codenum > 0) {
  3279. codenum += previous_cmd_ms; // wait until this time for a click
  3280. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3281. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3282. KEEPALIVE_STATE(IN_HANDLER);
  3283. lcd_ignore_click(false);
  3284. }
  3285. else {
  3286. if (!lcd_detected()) return;
  3287. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3288. while (!lcd_clicked()) idle();
  3289. KEEPALIVE_STATE(IN_HANDLER);
  3290. }
  3291. if (IS_SD_PRINTING)
  3292. LCD_MESSAGEPGM(MSG_RESUMING);
  3293. else
  3294. LCD_MESSAGEPGM(WELCOME_MSG);
  3295. }
  3296. #endif // ULTIPANEL
  3297. /**
  3298. * M17: Enable power on all stepper motors
  3299. */
  3300. inline void gcode_M17() {
  3301. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3302. enable_all_steppers();
  3303. }
  3304. #if ENABLED(SDSUPPORT)
  3305. /**
  3306. * M20: List SD card to serial output
  3307. */
  3308. inline void gcode_M20() {
  3309. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3310. card.ls();
  3311. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3312. }
  3313. /**
  3314. * M21: Init SD Card
  3315. */
  3316. inline void gcode_M21() {
  3317. card.initsd();
  3318. }
  3319. /**
  3320. * M22: Release SD Card
  3321. */
  3322. inline void gcode_M22() {
  3323. card.release();
  3324. }
  3325. /**
  3326. * M23: Open a file
  3327. */
  3328. inline void gcode_M23() {
  3329. card.openFile(current_command_args, true);
  3330. }
  3331. /**
  3332. * M24: Start SD Print
  3333. */
  3334. inline void gcode_M24() {
  3335. card.startFileprint();
  3336. print_job_timer.start();
  3337. }
  3338. /**
  3339. * M25: Pause SD Print
  3340. */
  3341. inline void gcode_M25() {
  3342. card.pauseSDPrint();
  3343. }
  3344. /**
  3345. * M26: Set SD Card file index
  3346. */
  3347. inline void gcode_M26() {
  3348. if (card.cardOK && code_seen('S'))
  3349. card.setIndex(code_value_long());
  3350. }
  3351. /**
  3352. * M27: Get SD Card status
  3353. */
  3354. inline void gcode_M27() {
  3355. card.getStatus();
  3356. }
  3357. /**
  3358. * M28: Start SD Write
  3359. */
  3360. inline void gcode_M28() {
  3361. card.openFile(current_command_args, false);
  3362. }
  3363. /**
  3364. * M29: Stop SD Write
  3365. * Processed in write to file routine above
  3366. */
  3367. inline void gcode_M29() {
  3368. // card.saving = false;
  3369. }
  3370. /**
  3371. * M30 <filename>: Delete SD Card file
  3372. */
  3373. inline void gcode_M30() {
  3374. if (card.cardOK) {
  3375. card.closefile();
  3376. card.removeFile(current_command_args);
  3377. }
  3378. }
  3379. #endif //SDSUPPORT
  3380. /**
  3381. * M31: Get the time since the start of SD Print (or last M109)
  3382. */
  3383. inline void gcode_M31() {
  3384. millis_t t = print_job_timer.duration();
  3385. int min = t / 60, sec = t % 60;
  3386. char time[30];
  3387. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3388. SERIAL_ECHO_START;
  3389. SERIAL_ECHOLN(time);
  3390. lcd_setstatus(time);
  3391. thermalManager.autotempShutdown();
  3392. }
  3393. #if ENABLED(SDSUPPORT)
  3394. /**
  3395. * M32: Select file and start SD Print
  3396. */
  3397. inline void gcode_M32() {
  3398. if (card.sdprinting)
  3399. stepper.synchronize();
  3400. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3401. if (!namestartpos)
  3402. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3403. else
  3404. namestartpos++; //to skip the '!'
  3405. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3406. if (card.cardOK) {
  3407. card.openFile(namestartpos, true, call_procedure);
  3408. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3409. card.setIndex(code_value_long());
  3410. card.startFileprint();
  3411. // Procedure calls count as normal print time.
  3412. if (!call_procedure) print_job_timer.start();
  3413. }
  3414. }
  3415. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3416. /**
  3417. * M33: Get the long full path of a file or folder
  3418. *
  3419. * Parameters:
  3420. * <dospath> Case-insensitive DOS-style path to a file or folder
  3421. *
  3422. * Example:
  3423. * M33 miscel~1/armchair/armcha~1.gco
  3424. *
  3425. * Output:
  3426. * /Miscellaneous/Armchair/Armchair.gcode
  3427. */
  3428. inline void gcode_M33() {
  3429. card.printLongPath(current_command_args);
  3430. }
  3431. #endif
  3432. /**
  3433. * M928: Start SD Write
  3434. */
  3435. inline void gcode_M928() {
  3436. card.openLogFile(current_command_args);
  3437. }
  3438. #endif // SDSUPPORT
  3439. /**
  3440. * M42: Change pin status via GCode
  3441. *
  3442. * P<pin> Pin number (LED if omitted)
  3443. * S<byte> Pin status from 0 - 255
  3444. */
  3445. inline void gcode_M42() {
  3446. if (code_seen('S')) {
  3447. int pin_status = code_value_int();
  3448. if (pin_status < 0 || pin_status > 255) return;
  3449. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3450. if (pin_number < 0) return;
  3451. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3452. if (pin_number == sensitive_pins[i]) return;
  3453. pinMode(pin_number, OUTPUT);
  3454. digitalWrite(pin_number, pin_status);
  3455. analogWrite(pin_number, pin_status);
  3456. #if FAN_COUNT > 0
  3457. switch (pin_number) {
  3458. #if HAS_FAN0
  3459. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3460. #endif
  3461. #if HAS_FAN1
  3462. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3463. #endif
  3464. #if HAS_FAN2
  3465. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3466. #endif
  3467. }
  3468. #endif
  3469. } // code_seen('S')
  3470. }
  3471. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3472. /**
  3473. * M48: Z probe repeatability measurement function.
  3474. *
  3475. * Usage:
  3476. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3477. * P = Number of sampled points (4-50, default 10)
  3478. * X = Sample X position
  3479. * Y = Sample Y position
  3480. * V = Verbose level (0-4, default=1)
  3481. * E = Engage Z probe for each reading
  3482. * L = Number of legs of movement before probe
  3483. * S = Schizoid (Or Star if you prefer)
  3484. *
  3485. * This function assumes the bed has been homed. Specifically, that a G28 command
  3486. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3487. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3488. * regenerated.
  3489. */
  3490. inline void gcode_M48() {
  3491. if (axis_unhomed_error(true, true, true)) return;
  3492. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3493. if (verbose_level < 0 || verbose_level > 4) {
  3494. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3495. return;
  3496. }
  3497. if (verbose_level > 0)
  3498. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3499. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3500. if (n_samples < 4 || n_samples > 50) {
  3501. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3502. return;
  3503. }
  3504. float X_current = current_position[X_AXIS],
  3505. Y_current = current_position[Y_AXIS];
  3506. bool stow_probe_after_each = code_seen('E');
  3507. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3508. #if DISABLED(DELTA)
  3509. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3510. out_of_range_error(PSTR("X"));
  3511. return;
  3512. }
  3513. #endif
  3514. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3515. #if DISABLED(DELTA)
  3516. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3517. out_of_range_error(PSTR("Y"));
  3518. return;
  3519. }
  3520. #else
  3521. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3522. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3523. return;
  3524. }
  3525. #endif
  3526. bool seen_L = code_seen('L');
  3527. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3528. if (n_legs > 15) {
  3529. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3530. return;
  3531. }
  3532. if (n_legs == 1) n_legs = 2;
  3533. bool schizoid_flag = code_seen('S');
  3534. if (schizoid_flag && !seen_L) n_legs = 7;
  3535. /**
  3536. * Now get everything to the specified probe point So we can safely do a
  3537. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3538. * we don't want to use that as a starting point for each probe.
  3539. */
  3540. if (verbose_level > 2)
  3541. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3542. #if ENABLED(DELTA)
  3543. // we don't do bed level correction in M48 because we want the raw data when we probe
  3544. reset_bed_level();
  3545. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3546. // we don't do bed level correction in M48 because we want the raw data when we probe
  3547. planner.bed_level_matrix.set_to_identity();
  3548. #endif
  3549. setup_for_endstop_or_probe_move();
  3550. // Move to the first point, deploy, and probe
  3551. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3552. randomSeed(millis());
  3553. double mean = 0, sigma = 0, sample_set[n_samples];
  3554. for (uint8_t n = 0; n < n_samples; n++) {
  3555. if (n_legs) {
  3556. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3557. float angle = random(0.0, 360.0),
  3558. radius = random(
  3559. #if ENABLED(DELTA)
  3560. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3561. #else
  3562. 5, X_MAX_LENGTH / 8
  3563. #endif
  3564. );
  3565. if (verbose_level > 3) {
  3566. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3567. SERIAL_ECHOPAIR(" angle: ", angle);
  3568. SERIAL_ECHOPGM(" Direction: ");
  3569. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3570. SERIAL_ECHOLNPGM("Clockwise");
  3571. }
  3572. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3573. double delta_angle;
  3574. if (schizoid_flag)
  3575. // The points of a 5 point star are 72 degrees apart. We need to
  3576. // skip a point and go to the next one on the star.
  3577. delta_angle = dir * 2.0 * 72.0;
  3578. else
  3579. // If we do this line, we are just trying to move further
  3580. // around the circle.
  3581. delta_angle = dir * (float) random(25, 45);
  3582. angle += delta_angle;
  3583. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3584. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3585. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3586. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3587. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3588. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3589. #if DISABLED(DELTA)
  3590. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3591. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3592. #else
  3593. // If we have gone out too far, we can do a simple fix and scale the numbers
  3594. // back in closer to the origin.
  3595. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3596. X_current /= 1.25;
  3597. Y_current /= 1.25;
  3598. if (verbose_level > 3) {
  3599. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3600. SERIAL_ECHOPAIR(", ", Y_current);
  3601. SERIAL_EOL;
  3602. }
  3603. }
  3604. #endif
  3605. if (verbose_level > 3) {
  3606. SERIAL_PROTOCOLPGM("Going to:");
  3607. SERIAL_ECHOPAIR(" X", X_current);
  3608. SERIAL_ECHOPAIR(" Y", Y_current);
  3609. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3610. SERIAL_EOL;
  3611. }
  3612. do_blocking_move_to_xy(X_current, Y_current);
  3613. } // n_legs loop
  3614. } // n_legs
  3615. // Probe a single point
  3616. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3617. /**
  3618. * Get the current mean for the data points we have so far
  3619. */
  3620. double sum = 0.0;
  3621. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3622. mean = sum / (n + 1);
  3623. /**
  3624. * Now, use that mean to calculate the standard deviation for the
  3625. * data points we have so far
  3626. */
  3627. sum = 0.0;
  3628. for (uint8_t j = 0; j <= n; j++) {
  3629. float ss = sample_set[j] - mean;
  3630. sum += ss * ss;
  3631. }
  3632. sigma = sqrt(sum / (n + 1));
  3633. if (verbose_level > 0) {
  3634. if (verbose_level > 1) {
  3635. SERIAL_PROTOCOL(n + 1);
  3636. SERIAL_PROTOCOLPGM(" of ");
  3637. SERIAL_PROTOCOL((int)n_samples);
  3638. SERIAL_PROTOCOLPGM(" z: ");
  3639. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3640. if (verbose_level > 2) {
  3641. SERIAL_PROTOCOLPGM(" mean: ");
  3642. SERIAL_PROTOCOL_F(mean, 6);
  3643. SERIAL_PROTOCOLPGM(" sigma: ");
  3644. SERIAL_PROTOCOL_F(sigma, 6);
  3645. }
  3646. }
  3647. SERIAL_EOL;
  3648. }
  3649. } // End of probe loop
  3650. if (STOW_PROBE()) return;
  3651. if (verbose_level > 0) {
  3652. SERIAL_PROTOCOLPGM("Mean: ");
  3653. SERIAL_PROTOCOL_F(mean, 6);
  3654. SERIAL_EOL;
  3655. }
  3656. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3657. SERIAL_PROTOCOL_F(sigma, 6);
  3658. SERIAL_EOL; SERIAL_EOL;
  3659. clean_up_after_endstop_or_probe_move();
  3660. report_current_position();
  3661. }
  3662. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3663. /**
  3664. * M75: Start print timer
  3665. */
  3666. inline void gcode_M75() { print_job_timer.start(); }
  3667. /**
  3668. * M76: Pause print timer
  3669. */
  3670. inline void gcode_M76() { print_job_timer.pause(); }
  3671. /**
  3672. * M77: Stop print timer
  3673. */
  3674. inline void gcode_M77() { print_job_timer.stop(); }
  3675. #if ENABLED(PRINTCOUNTER)
  3676. /*+
  3677. * M78: Show print statistics
  3678. */
  3679. inline void gcode_M78() {
  3680. // "M78 S78" will reset the statistics
  3681. if (code_seen('S') && code_value_int() == 78)
  3682. print_job_timer.initStats();
  3683. else print_job_timer.showStats();
  3684. }
  3685. #endif
  3686. /**
  3687. * M104: Set hot end temperature
  3688. */
  3689. inline void gcode_M104() {
  3690. if (get_target_extruder_from_command(104)) return;
  3691. if (DEBUGGING(DRYRUN)) return;
  3692. #if ENABLED(SINGLENOZZLE)
  3693. if (target_extruder != active_extruder) return;
  3694. #endif
  3695. if (code_seen('S')) {
  3696. float temp = code_value_temp_abs();
  3697. thermalManager.setTargetHotend(temp, target_extruder);
  3698. #if ENABLED(DUAL_X_CARRIAGE)
  3699. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3700. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3701. #endif
  3702. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3703. /**
  3704. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3705. * stand by mode, for instance in a dual extruder setup, without affecting
  3706. * the running print timer.
  3707. */
  3708. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3709. print_job_timer.stop();
  3710. LCD_MESSAGEPGM(WELCOME_MSG);
  3711. }
  3712. /**
  3713. * We do not check if the timer is already running because this check will
  3714. * be done for us inside the Stopwatch::start() method thus a running timer
  3715. * will not restart.
  3716. */
  3717. else print_job_timer.start();
  3718. #endif
  3719. if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3720. }
  3721. }
  3722. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3723. void print_heaterstates() {
  3724. #if HAS_TEMP_HOTEND
  3725. SERIAL_PROTOCOLPGM(" T:");
  3726. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3727. SERIAL_PROTOCOLPGM(" /");
  3728. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3729. #endif
  3730. #if HAS_TEMP_BED
  3731. SERIAL_PROTOCOLPGM(" B:");
  3732. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3733. SERIAL_PROTOCOLPGM(" /");
  3734. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3735. #endif
  3736. #if HOTENDS > 1
  3737. for (int8_t e = 0; e < HOTENDS; ++e) {
  3738. SERIAL_PROTOCOLPGM(" T");
  3739. SERIAL_PROTOCOL(e);
  3740. SERIAL_PROTOCOLCHAR(':');
  3741. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3742. SERIAL_PROTOCOLPGM(" /");
  3743. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3744. }
  3745. #endif
  3746. #if HAS_TEMP_BED
  3747. SERIAL_PROTOCOLPGM(" B@:");
  3748. #ifdef BED_WATTS
  3749. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3750. SERIAL_PROTOCOLCHAR('W');
  3751. #else
  3752. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3753. #endif
  3754. #endif
  3755. SERIAL_PROTOCOLPGM(" @:");
  3756. #ifdef EXTRUDER_WATTS
  3757. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3758. SERIAL_PROTOCOLCHAR('W');
  3759. #else
  3760. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3761. #endif
  3762. #if HOTENDS > 1
  3763. for (int8_t e = 0; e < HOTENDS; ++e) {
  3764. SERIAL_PROTOCOLPGM(" @");
  3765. SERIAL_PROTOCOL(e);
  3766. SERIAL_PROTOCOLCHAR(':');
  3767. #ifdef EXTRUDER_WATTS
  3768. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3769. SERIAL_PROTOCOLCHAR('W');
  3770. #else
  3771. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3772. #endif
  3773. }
  3774. #endif
  3775. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3776. #if HAS_TEMP_BED
  3777. SERIAL_PROTOCOLPGM(" ADC B:");
  3778. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3779. SERIAL_PROTOCOLPGM("C->");
  3780. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3781. #endif
  3782. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend) {
  3783. SERIAL_PROTOCOLPGM(" T");
  3784. SERIAL_PROTOCOL(cur_hotend);
  3785. SERIAL_PROTOCOLCHAR(':');
  3786. SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_hotend), 1);
  3787. SERIAL_PROTOCOLPGM("C->");
  3788. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_hotend) / OVERSAMPLENR, 0);
  3789. }
  3790. #endif
  3791. }
  3792. #endif
  3793. /**
  3794. * M105: Read hot end and bed temperature
  3795. */
  3796. inline void gcode_M105() {
  3797. if (get_target_extruder_from_command(105)) return;
  3798. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3799. SERIAL_PROTOCOLPGM(MSG_OK);
  3800. print_heaterstates();
  3801. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3802. SERIAL_ERROR_START;
  3803. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3804. #endif
  3805. SERIAL_EOL;
  3806. }
  3807. #if FAN_COUNT > 0
  3808. /**
  3809. * M106: Set Fan Speed
  3810. *
  3811. * S<int> Speed between 0-255
  3812. * P<index> Fan index, if more than one fan
  3813. */
  3814. inline void gcode_M106() {
  3815. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3816. p = code_seen('P') ? code_value_ushort() : 0;
  3817. NOMORE(s, 255);
  3818. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3819. }
  3820. /**
  3821. * M107: Fan Off
  3822. */
  3823. inline void gcode_M107() {
  3824. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3825. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3826. }
  3827. #endif // FAN_COUNT > 0
  3828. #if DISABLED(EMERGENCY_PARSER)
  3829. /**
  3830. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3831. */
  3832. inline void gcode_M108() { wait_for_heatup = false; }
  3833. #endif
  3834. /**
  3835. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3836. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3837. */
  3838. inline void gcode_M109() {
  3839. if (get_target_extruder_from_command(109)) return;
  3840. if (DEBUGGING(DRYRUN)) return;
  3841. #if ENABLED(SINGLENOZZLE)
  3842. if (target_extruder != active_extruder) return;
  3843. #endif
  3844. bool no_wait_for_cooling = code_seen('S');
  3845. if (no_wait_for_cooling || code_seen('R')) {
  3846. float temp = code_value_temp_abs();
  3847. thermalManager.setTargetHotend(temp, target_extruder);
  3848. #if ENABLED(DUAL_X_CARRIAGE)
  3849. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3850. thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
  3851. #endif
  3852. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3853. /**
  3854. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3855. * stand by mode, for instance in a dual extruder setup, without affecting
  3856. * the running print timer.
  3857. */
  3858. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3859. print_job_timer.stop();
  3860. LCD_MESSAGEPGM(WELCOME_MSG);
  3861. }
  3862. /**
  3863. * We do not check if the timer is already running because this check will
  3864. * be done for us inside the Stopwatch::start() method thus a running timer
  3865. * will not restart.
  3866. */
  3867. else print_job_timer.start();
  3868. #endif
  3869. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3870. }
  3871. #if ENABLED(AUTOTEMP)
  3872. planner.autotemp_M109();
  3873. #endif
  3874. #if TEMP_RESIDENCY_TIME > 0
  3875. millis_t residency_start_ms = 0;
  3876. // Loop until the temperature has stabilized
  3877. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3878. #else
  3879. // Loop until the temperature is very close target
  3880. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3881. #endif //TEMP_RESIDENCY_TIME > 0
  3882. float theTarget = -1.0, old_temp = 9999.0;
  3883. bool wants_to_cool = false;
  3884. wait_for_heatup = true;
  3885. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3886. KEEPALIVE_STATE(NOT_BUSY);
  3887. do {
  3888. // Target temperature might be changed during the loop
  3889. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3890. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3891. theTarget = thermalManager.degTargetHotend(target_extruder);
  3892. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3893. if (no_wait_for_cooling && wants_to_cool) break;
  3894. }
  3895. now = millis();
  3896. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3897. next_temp_ms = now + 1000UL;
  3898. print_heaterstates();
  3899. #if TEMP_RESIDENCY_TIME > 0
  3900. SERIAL_PROTOCOLPGM(" W:");
  3901. if (residency_start_ms) {
  3902. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3903. SERIAL_PROTOCOLLN(rem);
  3904. }
  3905. else {
  3906. SERIAL_PROTOCOLLNPGM("?");
  3907. }
  3908. #else
  3909. SERIAL_EOL;
  3910. #endif
  3911. }
  3912. idle();
  3913. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3914. float temp = thermalManager.degHotend(target_extruder);
  3915. #if TEMP_RESIDENCY_TIME > 0
  3916. float temp_diff = fabs(theTarget - temp);
  3917. if (!residency_start_ms) {
  3918. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3919. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3920. }
  3921. else if (temp_diff > TEMP_HYSTERESIS) {
  3922. // Restart the timer whenever the temperature falls outside the hysteresis.
  3923. residency_start_ms = now;
  3924. }
  3925. #endif //TEMP_RESIDENCY_TIME > 0
  3926. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3927. if (wants_to_cool) {
  3928. if (temp < (EXTRUDE_MINTEMP) / 2) break; // always break at (default) 85°
  3929. // break after 20 seconds if cooling stalls
  3930. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3931. if (old_temp - temp < 1.0) break;
  3932. next_cool_check_ms = now + 20000;
  3933. old_temp = temp;
  3934. }
  3935. }
  3936. } while (wait_for_heatup && TEMP_CONDITIONS);
  3937. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3938. KEEPALIVE_STATE(IN_HANDLER);
  3939. }
  3940. #if HAS_TEMP_BED
  3941. /**
  3942. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3943. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3944. */
  3945. inline void gcode_M190() {
  3946. if (DEBUGGING(DRYRUN)) return;
  3947. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3948. bool no_wait_for_cooling = code_seen('S');
  3949. if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value_temp_abs());
  3950. #if TEMP_BED_RESIDENCY_TIME > 0
  3951. millis_t residency_start_ms = 0;
  3952. // Loop until the temperature has stabilized
  3953. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3954. #else
  3955. // Loop until the temperature is very close target
  3956. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3957. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3958. float theTarget = -1.0, old_temp = 9999.0;
  3959. bool wants_to_cool = false;
  3960. wait_for_heatup = true;
  3961. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3962. KEEPALIVE_STATE(NOT_BUSY);
  3963. do {
  3964. // Target temperature might be changed during the loop
  3965. if (theTarget != thermalManager.degTargetBed()) {
  3966. wants_to_cool = thermalManager.isCoolingBed();
  3967. theTarget = thermalManager.degTargetBed();
  3968. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3969. if (no_wait_for_cooling && wants_to_cool) break;
  3970. }
  3971. now = millis();
  3972. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3973. next_temp_ms = now + 1000UL;
  3974. print_heaterstates();
  3975. #if TEMP_BED_RESIDENCY_TIME > 0
  3976. SERIAL_PROTOCOLPGM(" W:");
  3977. if (residency_start_ms) {
  3978. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3979. SERIAL_PROTOCOLLN(rem);
  3980. }
  3981. else {
  3982. SERIAL_PROTOCOLLNPGM("?");
  3983. }
  3984. #else
  3985. SERIAL_EOL;
  3986. #endif
  3987. }
  3988. idle();
  3989. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3990. float temp = thermalManager.degBed();
  3991. #if TEMP_BED_RESIDENCY_TIME > 0
  3992. float temp_diff = fabs(theTarget - temp);
  3993. if (!residency_start_ms) {
  3994. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3995. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3996. }
  3997. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3998. // Restart the timer whenever the temperature falls outside the hysteresis.
  3999. residency_start_ms = now;
  4000. }
  4001. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4002. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4003. if (wants_to_cool) {
  4004. if (temp < 30.0) break; // always break at 30°
  4005. // break after 20 seconds if cooling stalls
  4006. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4007. if (old_temp - temp < 1.0) break;
  4008. next_cool_check_ms = now + 20000;
  4009. old_temp = temp;
  4010. }
  4011. }
  4012. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4013. LCD_MESSAGEPGM(MSG_BED_DONE);
  4014. KEEPALIVE_STATE(IN_HANDLER);
  4015. }
  4016. #endif // HAS_TEMP_BED
  4017. /**
  4018. * M110: Set Current Line Number
  4019. */
  4020. inline void gcode_M110() {
  4021. if (code_seen('N')) gcode_N = code_value_long();
  4022. }
  4023. /**
  4024. * M111: Set the debug level
  4025. */
  4026. inline void gcode_M111() {
  4027. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4028. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4029. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4030. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4031. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4032. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4033. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4034. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4035. #endif
  4036. const static char* const debug_strings[] PROGMEM = {
  4037. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4038. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4039. str_debug_32
  4040. #endif
  4041. };
  4042. SERIAL_ECHO_START;
  4043. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4044. if (marlin_debug_flags) {
  4045. uint8_t comma = 0;
  4046. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4047. if (TEST(marlin_debug_flags, i)) {
  4048. if (comma++) SERIAL_CHAR(',');
  4049. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4050. }
  4051. }
  4052. }
  4053. else {
  4054. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4055. }
  4056. SERIAL_EOL;
  4057. }
  4058. /**
  4059. * M112: Emergency Stop
  4060. */
  4061. #if DISABLED(EMERGENCY_PARSER)
  4062. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4063. #endif
  4064. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4065. /**
  4066. * M113: Get or set Host Keepalive interval (0 to disable)
  4067. *
  4068. * S<seconds> Optional. Set the keepalive interval.
  4069. */
  4070. inline void gcode_M113() {
  4071. if (code_seen('S')) {
  4072. host_keepalive_interval = code_value_byte();
  4073. NOMORE(host_keepalive_interval, 60);
  4074. }
  4075. else {
  4076. SERIAL_ECHO_START;
  4077. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4078. SERIAL_EOL;
  4079. }
  4080. }
  4081. #endif
  4082. #if ENABLED(BARICUDA)
  4083. #if HAS_HEATER_1
  4084. /**
  4085. * M126: Heater 1 valve open
  4086. */
  4087. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4088. /**
  4089. * M127: Heater 1 valve close
  4090. */
  4091. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4092. #endif
  4093. #if HAS_HEATER_2
  4094. /**
  4095. * M128: Heater 2 valve open
  4096. */
  4097. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4098. /**
  4099. * M129: Heater 2 valve close
  4100. */
  4101. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4102. #endif
  4103. #endif //BARICUDA
  4104. /**
  4105. * M140: Set bed temperature
  4106. */
  4107. inline void gcode_M140() {
  4108. if (DEBUGGING(DRYRUN)) return;
  4109. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4110. }
  4111. #if ENABLED(ULTIPANEL)
  4112. /**
  4113. * M145: Set the heatup state for a material in the LCD menu
  4114. * S<material> (0=PLA, 1=ABS)
  4115. * H<hotend temp>
  4116. * B<bed temp>
  4117. * F<fan speed>
  4118. */
  4119. inline void gcode_M145() {
  4120. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4121. if (material < 0 || material > 1) {
  4122. SERIAL_ERROR_START;
  4123. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4124. }
  4125. else {
  4126. int v;
  4127. switch (material) {
  4128. case 0:
  4129. if (code_seen('H')) {
  4130. v = code_value_int();
  4131. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4132. }
  4133. if (code_seen('F')) {
  4134. v = code_value_int();
  4135. plaPreheatFanSpeed = constrain(v, 0, 255);
  4136. }
  4137. #if TEMP_SENSOR_BED != 0
  4138. if (code_seen('B')) {
  4139. v = code_value_int();
  4140. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4141. }
  4142. #endif
  4143. break;
  4144. case 1:
  4145. if (code_seen('H')) {
  4146. v = code_value_int();
  4147. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4148. }
  4149. if (code_seen('F')) {
  4150. v = code_value_int();
  4151. absPreheatFanSpeed = constrain(v, 0, 255);
  4152. }
  4153. #if TEMP_SENSOR_BED != 0
  4154. if (code_seen('B')) {
  4155. v = code_value_int();
  4156. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4157. }
  4158. #endif
  4159. break;
  4160. }
  4161. }
  4162. }
  4163. #endif
  4164. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4165. /**
  4166. * M149: Set temperature units
  4167. */
  4168. inline void gcode_M149() {
  4169. if (code_seen('C')) {
  4170. set_input_temp_units(TEMPUNIT_C);
  4171. } else if (code_seen('K')) {
  4172. set_input_temp_units(TEMPUNIT_K);
  4173. } else if (code_seen('F')) {
  4174. set_input_temp_units(TEMPUNIT_F);
  4175. }
  4176. }
  4177. #endif
  4178. #if HAS_POWER_SWITCH
  4179. /**
  4180. * M80: Turn on Power Supply
  4181. */
  4182. inline void gcode_M80() {
  4183. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4184. /**
  4185. * If you have a switch on suicide pin, this is useful
  4186. * if you want to start another print with suicide feature after
  4187. * a print without suicide...
  4188. */
  4189. #if HAS_SUICIDE
  4190. OUT_WRITE(SUICIDE_PIN, HIGH);
  4191. #endif
  4192. #if ENABLED(ULTIPANEL)
  4193. powersupply = true;
  4194. LCD_MESSAGEPGM(WELCOME_MSG);
  4195. lcd_update();
  4196. #endif
  4197. }
  4198. #endif // HAS_POWER_SWITCH
  4199. /**
  4200. * M81: Turn off Power, including Power Supply, if there is one.
  4201. *
  4202. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4203. */
  4204. inline void gcode_M81() {
  4205. thermalManager.disable_all_heaters();
  4206. stepper.finish_and_disable();
  4207. #if FAN_COUNT > 0
  4208. #if FAN_COUNT > 1
  4209. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4210. #else
  4211. fanSpeeds[0] = 0;
  4212. #endif
  4213. #endif
  4214. delay(1000); // Wait 1 second before switching off
  4215. #if HAS_SUICIDE
  4216. stepper.synchronize();
  4217. suicide();
  4218. #elif HAS_POWER_SWITCH
  4219. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4220. #endif
  4221. #if ENABLED(ULTIPANEL)
  4222. #if HAS_POWER_SWITCH
  4223. powersupply = false;
  4224. #endif
  4225. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4226. lcd_update();
  4227. #endif
  4228. }
  4229. /**
  4230. * M82: Set E codes absolute (default)
  4231. */
  4232. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4233. /**
  4234. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4235. */
  4236. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4237. /**
  4238. * M18, M84: Disable all stepper motors
  4239. */
  4240. inline void gcode_M18_M84() {
  4241. if (code_seen('S')) {
  4242. stepper_inactive_time = code_value_millis_from_seconds();
  4243. }
  4244. else {
  4245. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4246. if (all_axis) {
  4247. stepper.finish_and_disable();
  4248. }
  4249. else {
  4250. stepper.synchronize();
  4251. if (code_seen('X')) disable_x();
  4252. if (code_seen('Y')) disable_y();
  4253. if (code_seen('Z')) disable_z();
  4254. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4255. if (code_seen('E')) {
  4256. disable_e0();
  4257. disable_e1();
  4258. disable_e2();
  4259. disable_e3();
  4260. }
  4261. #endif
  4262. }
  4263. }
  4264. }
  4265. /**
  4266. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4267. */
  4268. inline void gcode_M85() {
  4269. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4270. }
  4271. /**
  4272. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4273. * (Follows the same syntax as G92)
  4274. */
  4275. inline void gcode_M92() {
  4276. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4277. if (code_seen(axis_codes[i])) {
  4278. if (i == E_AXIS) {
  4279. float value = code_value_per_axis_unit(i);
  4280. if (value < 20.0) {
  4281. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4282. planner.max_e_jerk *= factor;
  4283. planner.max_feedrate[i] *= factor;
  4284. planner.max_acceleration_steps_per_s2[i] *= factor;
  4285. }
  4286. planner.axis_steps_per_mm[i] = value;
  4287. }
  4288. else {
  4289. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4290. }
  4291. }
  4292. }
  4293. }
  4294. /**
  4295. * Output the current position to serial
  4296. */
  4297. static void report_current_position() {
  4298. SERIAL_PROTOCOLPGM("X:");
  4299. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4300. SERIAL_PROTOCOLPGM(" Y:");
  4301. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4302. SERIAL_PROTOCOLPGM(" Z:");
  4303. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4304. SERIAL_PROTOCOLPGM(" E:");
  4305. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4306. stepper.report_positions();
  4307. #if ENABLED(SCARA)
  4308. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4309. SERIAL_PROTOCOL(delta[X_AXIS]);
  4310. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4311. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4312. SERIAL_EOL;
  4313. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4314. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4315. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4316. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4317. SERIAL_EOL;
  4318. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4319. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4320. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4321. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4322. SERIAL_EOL; SERIAL_EOL;
  4323. #endif
  4324. }
  4325. /**
  4326. * M114: Output current position to serial port
  4327. */
  4328. inline void gcode_M114() { report_current_position(); }
  4329. /**
  4330. * M115: Capabilities string
  4331. */
  4332. inline void gcode_M115() {
  4333. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4334. }
  4335. /**
  4336. * M117: Set LCD Status Message
  4337. */
  4338. inline void gcode_M117() {
  4339. lcd_setstatus(current_command_args);
  4340. }
  4341. /**
  4342. * M119: Output endstop states to serial output
  4343. */
  4344. inline void gcode_M119() { endstops.M119(); }
  4345. /**
  4346. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4347. */
  4348. inline void gcode_M120() { endstops.enable_globally(true); }
  4349. /**
  4350. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4351. */
  4352. inline void gcode_M121() { endstops.enable_globally(false); }
  4353. #if ENABLED(BLINKM)
  4354. /**
  4355. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4356. */
  4357. inline void gcode_M150() {
  4358. SendColors(
  4359. code_seen('R') ? code_value_byte() : 0,
  4360. code_seen('U') ? code_value_byte() : 0,
  4361. code_seen('B') ? code_value_byte() : 0
  4362. );
  4363. }
  4364. #endif // BLINKM
  4365. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4366. /**
  4367. * M155: Send data to a I2C slave device
  4368. *
  4369. * This is a PoC, the formating and arguments for the GCODE will
  4370. * change to be more compatible, the current proposal is:
  4371. *
  4372. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4373. *
  4374. * M155 B<byte-1 value in base 10>
  4375. * M155 B<byte-2 value in base 10>
  4376. * M155 B<byte-3 value in base 10>
  4377. *
  4378. * M155 S1 ; Send the buffered data and reset the buffer
  4379. * M155 R1 ; Reset the buffer without sending data
  4380. *
  4381. */
  4382. inline void gcode_M155() {
  4383. // Set the target address
  4384. if (code_seen('A'))
  4385. i2c.address(code_value_byte());
  4386. // Add a new byte to the buffer
  4387. else if (code_seen('B'))
  4388. i2c.addbyte(code_value_int());
  4389. // Flush the buffer to the bus
  4390. else if (code_seen('S')) i2c.send();
  4391. // Reset and rewind the buffer
  4392. else if (code_seen('R')) i2c.reset();
  4393. }
  4394. /**
  4395. * M156: Request X bytes from I2C slave device
  4396. *
  4397. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4398. */
  4399. inline void gcode_M156() {
  4400. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4401. int bytes = code_seen('B') ? code_value_int() : 1;
  4402. if (addr && bytes > 0 && bytes <= 32) {
  4403. i2c.address(addr);
  4404. i2c.reqbytes(bytes);
  4405. }
  4406. else {
  4407. SERIAL_ERROR_START;
  4408. SERIAL_ERRORLN("Bad i2c request");
  4409. }
  4410. }
  4411. #endif //EXPERIMENTAL_I2CBUS
  4412. /**
  4413. * M200: Set filament diameter and set E axis units to cubic units
  4414. *
  4415. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4416. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4417. */
  4418. inline void gcode_M200() {
  4419. if (get_target_extruder_from_command(200)) return;
  4420. if (code_seen('D')) {
  4421. float diameter = code_value_linear_units();
  4422. // setting any extruder filament size disables volumetric on the assumption that
  4423. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4424. // for all extruders
  4425. volumetric_enabled = (diameter != 0.0);
  4426. if (volumetric_enabled) {
  4427. filament_size[target_extruder] = diameter;
  4428. // make sure all extruders have some sane value for the filament size
  4429. for (int i = 0; i < EXTRUDERS; i++)
  4430. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4431. }
  4432. }
  4433. else {
  4434. //reserved for setting filament diameter via UFID or filament measuring device
  4435. return;
  4436. }
  4437. calculate_volumetric_multipliers();
  4438. }
  4439. /**
  4440. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4441. */
  4442. inline void gcode_M201() {
  4443. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4444. if (code_seen(axis_codes[i])) {
  4445. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4446. }
  4447. }
  4448. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4449. planner.reset_acceleration_rates();
  4450. }
  4451. #if 0 // Not used for Sprinter/grbl gen6
  4452. inline void gcode_M202() {
  4453. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4454. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4455. }
  4456. }
  4457. #endif
  4458. /**
  4459. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4460. */
  4461. inline void gcode_M203() {
  4462. for (int8_t i = 0; i < NUM_AXIS; i++)
  4463. if (code_seen(axis_codes[i]))
  4464. planner.max_feedrate[i] = code_value_axis_units(i);
  4465. }
  4466. /**
  4467. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4468. *
  4469. * P = Printing moves
  4470. * R = Retract only (no X, Y, Z) moves
  4471. * T = Travel (non printing) moves
  4472. *
  4473. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4474. */
  4475. inline void gcode_M204() {
  4476. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4477. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4478. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4479. SERIAL_EOL;
  4480. }
  4481. if (code_seen('P')) {
  4482. planner.acceleration = code_value_linear_units();
  4483. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4484. SERIAL_EOL;
  4485. }
  4486. if (code_seen('R')) {
  4487. planner.retract_acceleration = code_value_linear_units();
  4488. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4489. SERIAL_EOL;
  4490. }
  4491. if (code_seen('T')) {
  4492. planner.travel_acceleration = code_value_linear_units();
  4493. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4494. SERIAL_EOL;
  4495. }
  4496. }
  4497. /**
  4498. * M205: Set Advanced Settings
  4499. *
  4500. * S = Min Feed Rate (units/s)
  4501. * T = Min Travel Feed Rate (units/s)
  4502. * B = Min Segment Time (µs)
  4503. * X = Max XY Jerk (units/sec^2)
  4504. * Z = Max Z Jerk (units/sec^2)
  4505. * E = Max E Jerk (units/sec^2)
  4506. */
  4507. inline void gcode_M205() {
  4508. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4509. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4510. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4511. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4512. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4513. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4514. }
  4515. /**
  4516. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4517. */
  4518. inline void gcode_M206() {
  4519. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4520. if (code_seen(axis_codes[i]))
  4521. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4522. #if ENABLED(SCARA)
  4523. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4524. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4525. #endif
  4526. SYNC_PLAN_POSITION_KINEMATIC();
  4527. report_current_position();
  4528. }
  4529. #if ENABLED(DELTA)
  4530. /**
  4531. * M665: Set delta configurations
  4532. *
  4533. * L = diagonal rod
  4534. * R = delta radius
  4535. * S = segments per second
  4536. * A = Alpha (Tower 1) diagonal rod trim
  4537. * B = Beta (Tower 2) diagonal rod trim
  4538. * C = Gamma (Tower 3) diagonal rod trim
  4539. */
  4540. inline void gcode_M665() {
  4541. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4542. if (code_seen('R')) delta_radius = code_value_linear_units();
  4543. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4544. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4545. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4546. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4547. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4548. }
  4549. /**
  4550. * M666: Set delta endstop adjustment
  4551. */
  4552. inline void gcode_M666() {
  4553. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4554. if (DEBUGGING(LEVELING)) {
  4555. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4556. }
  4557. #endif
  4558. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4559. if (code_seen(axis_codes[i])) {
  4560. endstop_adj[i] = code_value_axis_units(i);
  4561. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4562. if (DEBUGGING(LEVELING)) {
  4563. SERIAL_ECHOPGM("endstop_adj[");
  4564. SERIAL_ECHO(axis_codes[i]);
  4565. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4566. SERIAL_EOL;
  4567. }
  4568. #endif
  4569. }
  4570. }
  4571. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4572. if (DEBUGGING(LEVELING)) {
  4573. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4574. }
  4575. #endif
  4576. }
  4577. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4578. /**
  4579. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4580. */
  4581. inline void gcode_M666() {
  4582. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4583. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4584. SERIAL_EOL;
  4585. }
  4586. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4587. #if ENABLED(FWRETRACT)
  4588. /**
  4589. * M207: Set firmware retraction values
  4590. *
  4591. * S[+units] retract_length
  4592. * W[+units] retract_length_swap (multi-extruder)
  4593. * F[units/min] retract_feedrate_mm_s
  4594. * Z[units] retract_zlift
  4595. */
  4596. inline void gcode_M207() {
  4597. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4598. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4599. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4600. #if EXTRUDERS > 1
  4601. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4602. #endif
  4603. }
  4604. /**
  4605. * M208: Set firmware un-retraction values
  4606. *
  4607. * S[+units] retract_recover_length (in addition to M207 S*)
  4608. * W[+units] retract_recover_length_swap (multi-extruder)
  4609. * F[units/min] retract_recover_feedrate
  4610. */
  4611. inline void gcode_M208() {
  4612. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4613. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4614. #if EXTRUDERS > 1
  4615. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4616. #endif
  4617. }
  4618. /**
  4619. * M209: Enable automatic retract (M209 S1)
  4620. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4621. */
  4622. inline void gcode_M209() {
  4623. if (code_seen('S')) {
  4624. int t = code_value_int();
  4625. switch (t) {
  4626. case 0:
  4627. autoretract_enabled = false;
  4628. break;
  4629. case 1:
  4630. autoretract_enabled = true;
  4631. break;
  4632. default:
  4633. unknown_command_error();
  4634. return;
  4635. }
  4636. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4637. }
  4638. }
  4639. #endif // FWRETRACT
  4640. #if HOTENDS > 1
  4641. /**
  4642. * M218 - set hotend offset (in linear units)
  4643. *
  4644. * T<tool>
  4645. * X<xoffset>
  4646. * Y<yoffset>
  4647. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4648. */
  4649. inline void gcode_M218() {
  4650. if (get_target_extruder_from_command(218)) return;
  4651. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4652. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4653. #if ENABLED(DUAL_X_CARRIAGE)
  4654. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4655. #endif
  4656. SERIAL_ECHO_START;
  4657. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4658. for (int e = 0; e < HOTENDS; e++) {
  4659. SERIAL_CHAR(' ');
  4660. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4661. SERIAL_CHAR(',');
  4662. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4663. #if ENABLED(DUAL_X_CARRIAGE)
  4664. SERIAL_CHAR(',');
  4665. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4666. #endif
  4667. }
  4668. SERIAL_EOL;
  4669. }
  4670. #endif // HOTENDS > 1
  4671. /**
  4672. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4673. */
  4674. inline void gcode_M220() {
  4675. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4676. }
  4677. /**
  4678. * M221: Set extrusion percentage (M221 T0 S95)
  4679. */
  4680. inline void gcode_M221() {
  4681. if (code_seen('S')) {
  4682. int sval = code_value_int();
  4683. if (get_target_extruder_from_command(221)) return;
  4684. extruder_multiplier[target_extruder] = sval;
  4685. }
  4686. }
  4687. /**
  4688. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4689. */
  4690. inline void gcode_M226() {
  4691. if (code_seen('P')) {
  4692. int pin_number = code_value_int();
  4693. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4694. if (pin_state >= -1 && pin_state <= 1) {
  4695. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4696. if (sensitive_pins[i] == pin_number) {
  4697. pin_number = -1;
  4698. break;
  4699. }
  4700. }
  4701. if (pin_number > -1) {
  4702. int target = LOW;
  4703. stepper.synchronize();
  4704. pinMode(pin_number, INPUT);
  4705. switch (pin_state) {
  4706. case 1:
  4707. target = HIGH;
  4708. break;
  4709. case 0:
  4710. target = LOW;
  4711. break;
  4712. case -1:
  4713. target = !digitalRead(pin_number);
  4714. break;
  4715. }
  4716. while (digitalRead(pin_number) != target) idle();
  4717. } // pin_number > -1
  4718. } // pin_state -1 0 1
  4719. } // code_seen('P')
  4720. }
  4721. #if HAS_SERVOS
  4722. /**
  4723. * M280: Get or set servo position. P<index> S<angle>
  4724. */
  4725. inline void gcode_M280() {
  4726. int servo_index = code_seen('P') ? code_value_int() : -1;
  4727. int servo_position = 0;
  4728. if (code_seen('S')) {
  4729. servo_position = code_value_int();
  4730. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4731. MOVE_SERVO(servo_index, servo_position);
  4732. else {
  4733. SERIAL_ERROR_START;
  4734. SERIAL_ERROR("Servo ");
  4735. SERIAL_ERROR(servo_index);
  4736. SERIAL_ERRORLN(" out of range");
  4737. }
  4738. }
  4739. else if (servo_index >= 0) {
  4740. SERIAL_ECHO_START;
  4741. SERIAL_ECHOPGM(" Servo ");
  4742. SERIAL_ECHO(servo_index);
  4743. SERIAL_ECHOPGM(": ");
  4744. SERIAL_ECHOLN(servo[servo_index].read());
  4745. }
  4746. }
  4747. #endif // HAS_SERVOS
  4748. #if HAS_BUZZER
  4749. /**
  4750. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4751. */
  4752. inline void gcode_M300() {
  4753. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4754. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4755. // Limits the tone duration to 0-5 seconds.
  4756. NOMORE(duration, 5000);
  4757. buzzer.tone(duration, frequency);
  4758. }
  4759. #endif // HAS_BUZZER
  4760. #if ENABLED(PIDTEMP)
  4761. /**
  4762. * M301: Set PID parameters P I D (and optionally C, L)
  4763. *
  4764. * P[float] Kp term
  4765. * I[float] Ki term (unscaled)
  4766. * D[float] Kd term (unscaled)
  4767. *
  4768. * With PID_ADD_EXTRUSION_RATE:
  4769. *
  4770. * C[float] Kc term
  4771. * L[float] LPQ length
  4772. */
  4773. inline void gcode_M301() {
  4774. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4775. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4776. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4777. if (e < HOTENDS) { // catch bad input value
  4778. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4779. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4780. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4781. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4782. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4783. if (code_seen('L')) lpq_len = code_value_float();
  4784. NOMORE(lpq_len, LPQ_MAX_LEN);
  4785. #endif
  4786. thermalManager.updatePID();
  4787. SERIAL_ECHO_START;
  4788. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4789. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4790. SERIAL_ECHO(e);
  4791. #endif // PID_PARAMS_PER_HOTEND
  4792. SERIAL_ECHOPGM(" p:");
  4793. SERIAL_ECHO(PID_PARAM(Kp, e));
  4794. SERIAL_ECHOPGM(" i:");
  4795. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4796. SERIAL_ECHOPGM(" d:");
  4797. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4798. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4799. SERIAL_ECHOPGM(" c:");
  4800. //Kc does not have scaling applied above, or in resetting defaults
  4801. SERIAL_ECHO(PID_PARAM(Kc, e));
  4802. #endif
  4803. SERIAL_EOL;
  4804. }
  4805. else {
  4806. SERIAL_ERROR_START;
  4807. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4808. }
  4809. }
  4810. #endif // PIDTEMP
  4811. #if ENABLED(PIDTEMPBED)
  4812. inline void gcode_M304() {
  4813. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4814. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4815. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4816. thermalManager.updatePID();
  4817. SERIAL_ECHO_START;
  4818. SERIAL_ECHOPGM(" p:");
  4819. SERIAL_ECHO(thermalManager.bedKp);
  4820. SERIAL_ECHOPGM(" i:");
  4821. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4822. SERIAL_ECHOPGM(" d:");
  4823. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4824. }
  4825. #endif // PIDTEMPBED
  4826. #if defined(CHDK) || HAS_PHOTOGRAPH
  4827. /**
  4828. * M240: Trigger a camera by emulating a Canon RC-1
  4829. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4830. */
  4831. inline void gcode_M240() {
  4832. #ifdef CHDK
  4833. OUT_WRITE(CHDK, HIGH);
  4834. chdkHigh = millis();
  4835. chdkActive = true;
  4836. #elif HAS_PHOTOGRAPH
  4837. const uint8_t NUM_PULSES = 16;
  4838. const float PULSE_LENGTH = 0.01524;
  4839. for (int i = 0; i < NUM_PULSES; i++) {
  4840. WRITE(PHOTOGRAPH_PIN, HIGH);
  4841. _delay_ms(PULSE_LENGTH);
  4842. WRITE(PHOTOGRAPH_PIN, LOW);
  4843. _delay_ms(PULSE_LENGTH);
  4844. }
  4845. delay(7.33);
  4846. for (int i = 0; i < NUM_PULSES; i++) {
  4847. WRITE(PHOTOGRAPH_PIN, HIGH);
  4848. _delay_ms(PULSE_LENGTH);
  4849. WRITE(PHOTOGRAPH_PIN, LOW);
  4850. _delay_ms(PULSE_LENGTH);
  4851. }
  4852. #endif // !CHDK && HAS_PHOTOGRAPH
  4853. }
  4854. #endif // CHDK || PHOTOGRAPH_PIN
  4855. #if HAS_LCD_CONTRAST
  4856. /**
  4857. * M250: Read and optionally set the LCD contrast
  4858. */
  4859. inline void gcode_M250() {
  4860. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4861. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4862. SERIAL_PROTOCOL(lcd_contrast);
  4863. SERIAL_EOL;
  4864. }
  4865. #endif // HAS_LCD_CONTRAST
  4866. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4867. /**
  4868. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4869. */
  4870. inline void gcode_M302() {
  4871. thermalManager.extrude_min_temp = code_seen('S') ? code_value_temp_abs() : 0;
  4872. }
  4873. #endif // PREVENT_DANGEROUS_EXTRUDE
  4874. /**
  4875. * M303: PID relay autotune
  4876. *
  4877. * S<temperature> sets the target temperature. (default 150C)
  4878. * E<extruder> (-1 for the bed) (default 0)
  4879. * C<cycles>
  4880. * U<bool> with a non-zero value will apply the result to current settings
  4881. */
  4882. inline void gcode_M303() {
  4883. #if HAS_PID_HEATING
  4884. int e = code_seen('E') ? code_value_int() : 0;
  4885. int c = code_seen('C') ? code_value_int() : 5;
  4886. bool u = code_seen('U') && code_value_bool();
  4887. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4888. if (e >= 0 && e < HOTENDS)
  4889. target_extruder = e;
  4890. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4891. thermalManager.PID_autotune(temp, e, c, u);
  4892. KEEPALIVE_STATE(IN_HANDLER);
  4893. #else
  4894. SERIAL_ERROR_START;
  4895. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4896. #endif
  4897. }
  4898. #if ENABLED(SCARA)
  4899. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4900. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4901. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4902. if (IsRunning()) {
  4903. //gcode_get_destination(); // For X Y Z E F
  4904. delta[X_AXIS] = delta_x;
  4905. delta[Y_AXIS] = delta_y;
  4906. calculate_SCARA_forward_Transform(delta);
  4907. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4908. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4909. prepare_move_to_destination();
  4910. //ok_to_send();
  4911. return true;
  4912. }
  4913. return false;
  4914. }
  4915. /**
  4916. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4917. */
  4918. inline bool gcode_M360() {
  4919. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4920. return SCARA_move_to_cal(0, 120);
  4921. }
  4922. /**
  4923. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4924. */
  4925. inline bool gcode_M361() {
  4926. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4927. return SCARA_move_to_cal(90, 130);
  4928. }
  4929. /**
  4930. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4931. */
  4932. inline bool gcode_M362() {
  4933. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4934. return SCARA_move_to_cal(60, 180);
  4935. }
  4936. /**
  4937. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4938. */
  4939. inline bool gcode_M363() {
  4940. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4941. return SCARA_move_to_cal(50, 90);
  4942. }
  4943. /**
  4944. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4945. */
  4946. inline bool gcode_M364() {
  4947. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4948. return SCARA_move_to_cal(45, 135);
  4949. }
  4950. /**
  4951. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4952. */
  4953. inline void gcode_M365() {
  4954. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4955. if (code_seen(axis_codes[i])) {
  4956. axis_scaling[i] = code_value_float();
  4957. }
  4958. }
  4959. }
  4960. #endif // SCARA
  4961. #if ENABLED(EXT_SOLENOID)
  4962. void enable_solenoid(uint8_t num) {
  4963. switch (num) {
  4964. case 0:
  4965. OUT_WRITE(SOL0_PIN, HIGH);
  4966. break;
  4967. #if HAS_SOLENOID_1
  4968. case 1:
  4969. OUT_WRITE(SOL1_PIN, HIGH);
  4970. break;
  4971. #endif
  4972. #if HAS_SOLENOID_2
  4973. case 2:
  4974. OUT_WRITE(SOL2_PIN, HIGH);
  4975. break;
  4976. #endif
  4977. #if HAS_SOLENOID_3
  4978. case 3:
  4979. OUT_WRITE(SOL3_PIN, HIGH);
  4980. break;
  4981. #endif
  4982. default:
  4983. SERIAL_ECHO_START;
  4984. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4985. break;
  4986. }
  4987. }
  4988. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4989. void disable_all_solenoids() {
  4990. OUT_WRITE(SOL0_PIN, LOW);
  4991. OUT_WRITE(SOL1_PIN, LOW);
  4992. OUT_WRITE(SOL2_PIN, LOW);
  4993. OUT_WRITE(SOL3_PIN, LOW);
  4994. }
  4995. /**
  4996. * M380: Enable solenoid on the active extruder
  4997. */
  4998. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4999. /**
  5000. * M381: Disable all solenoids
  5001. */
  5002. inline void gcode_M381() { disable_all_solenoids(); }
  5003. #endif // EXT_SOLENOID
  5004. /**
  5005. * M400: Finish all moves
  5006. */
  5007. inline void gcode_M400() { stepper.synchronize(); }
  5008. #if HAS_BED_PROBE
  5009. /**
  5010. * M401: Engage Z Servo endstop if available
  5011. */
  5012. inline void gcode_M401() { DEPLOY_PROBE(); }
  5013. /**
  5014. * M402: Retract Z Servo endstop if enabled
  5015. */
  5016. inline void gcode_M402() { STOW_PROBE(); }
  5017. #endif // HAS_BED_PROBE
  5018. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5019. /**
  5020. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5021. */
  5022. inline void gcode_M404() {
  5023. if (code_seen('W')) {
  5024. filament_width_nominal = code_value_linear_units();
  5025. }
  5026. else {
  5027. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5028. SERIAL_PROTOCOLLN(filament_width_nominal);
  5029. }
  5030. }
  5031. /**
  5032. * M405: Turn on filament sensor for control
  5033. */
  5034. inline void gcode_M405() {
  5035. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5036. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5037. if (code_seen('D')) meas_delay_cm = code_value_int();
  5038. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5039. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5040. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5041. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5042. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5043. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5044. }
  5045. filament_sensor = true;
  5046. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5047. //SERIAL_PROTOCOL(filament_width_meas);
  5048. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5049. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5050. }
  5051. /**
  5052. * M406: Turn off filament sensor for control
  5053. */
  5054. inline void gcode_M406() { filament_sensor = false; }
  5055. /**
  5056. * M407: Get measured filament diameter on serial output
  5057. */
  5058. inline void gcode_M407() {
  5059. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5060. SERIAL_PROTOCOLLN(filament_width_meas);
  5061. }
  5062. #endif // FILAMENT_WIDTH_SENSOR
  5063. #if DISABLED(DELTA) && DISABLED(SCARA)
  5064. void set_current_position_from_planner() {
  5065. stepper.synchronize();
  5066. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5067. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5068. current_position[X_AXIS] = pos.x;
  5069. current_position[Y_AXIS] = pos.y;
  5070. current_position[Z_AXIS] = pos.z;
  5071. #else
  5072. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5073. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5074. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5075. #endif
  5076. sync_plan_position(); // ...re-apply to planner position
  5077. }
  5078. #endif
  5079. /**
  5080. * M410: Quickstop - Abort all planned moves
  5081. *
  5082. * This will stop the carriages mid-move, so most likely they
  5083. * will be out of sync with the stepper position after this.
  5084. */
  5085. #if DISABLED(EMERGENCY_PARSER)
  5086. inline void gcode_M410() {
  5087. stepper.quick_stop();
  5088. #if DISABLED(DELTA) && DISABLED(SCARA)
  5089. set_current_position_from_planner();
  5090. #endif
  5091. }
  5092. #endif
  5093. #if ENABLED(MESH_BED_LEVELING)
  5094. /**
  5095. * M420: Enable/Disable Mesh Bed Leveling
  5096. */
  5097. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5098. /**
  5099. * M421: Set a single Mesh Bed Leveling Z coordinate
  5100. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5101. */
  5102. inline void gcode_M421() {
  5103. int8_t px, py;
  5104. float z = 0;
  5105. bool hasX, hasY, hasZ, hasI, hasJ;
  5106. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5107. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5108. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5109. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5110. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5111. if (hasX && hasY && hasZ) {
  5112. if (px >= 0 && py >= 0)
  5113. mbl.set_z(px, py, z);
  5114. else {
  5115. SERIAL_ERROR_START;
  5116. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5117. }
  5118. }
  5119. else if (hasI && hasJ && hasZ) {
  5120. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5121. mbl.set_z(px, py, z);
  5122. else {
  5123. SERIAL_ERROR_START;
  5124. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5125. }
  5126. }
  5127. else {
  5128. SERIAL_ERROR_START;
  5129. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5130. }
  5131. }
  5132. #endif
  5133. /**
  5134. * M428: Set home_offset based on the distance between the
  5135. * current_position and the nearest "reference point."
  5136. * If an axis is past center its endstop position
  5137. * is the reference-point. Otherwise it uses 0. This allows
  5138. * the Z offset to be set near the bed when using a max endstop.
  5139. *
  5140. * M428 can't be used more than 2cm away from 0 or an endstop.
  5141. *
  5142. * Use M206 to set these values directly.
  5143. */
  5144. inline void gcode_M428() {
  5145. bool err = false;
  5146. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5147. if (axis_homed[i]) {
  5148. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5149. diff = current_position[i] - base;
  5150. if (diff > -20 && diff < 20) {
  5151. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5152. }
  5153. else {
  5154. SERIAL_ERROR_START;
  5155. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5156. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5157. #if HAS_BUZZER
  5158. buzzer.tone(200, 40);
  5159. #endif
  5160. err = true;
  5161. break;
  5162. }
  5163. }
  5164. }
  5165. if (!err) {
  5166. SYNC_PLAN_POSITION_KINEMATIC();
  5167. report_current_position();
  5168. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5169. #if HAS_BUZZER
  5170. buzzer.tone(200, 659);
  5171. buzzer.tone(200, 698);
  5172. #endif
  5173. }
  5174. }
  5175. /**
  5176. * M500: Store settings in EEPROM
  5177. */
  5178. inline void gcode_M500() {
  5179. Config_StoreSettings();
  5180. }
  5181. /**
  5182. * M501: Read settings from EEPROM
  5183. */
  5184. inline void gcode_M501() {
  5185. Config_RetrieveSettings();
  5186. }
  5187. /**
  5188. * M502: Revert to default settings
  5189. */
  5190. inline void gcode_M502() {
  5191. Config_ResetDefault();
  5192. }
  5193. /**
  5194. * M503: print settings currently in memory
  5195. */
  5196. inline void gcode_M503() {
  5197. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5198. }
  5199. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5200. /**
  5201. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5202. */
  5203. inline void gcode_M540() {
  5204. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5205. }
  5206. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5207. #if HAS_BED_PROBE
  5208. inline void gcode_M851() {
  5209. SERIAL_ECHO_START;
  5210. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5211. SERIAL_CHAR(' ');
  5212. if (code_seen('Z')) {
  5213. float value = code_value_axis_units(Z_AXIS);
  5214. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5215. zprobe_zoffset = value;
  5216. SERIAL_ECHO(zprobe_zoffset);
  5217. }
  5218. else {
  5219. SERIAL_ECHOPGM(MSG_Z_MIN);
  5220. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5221. SERIAL_CHAR(' ');
  5222. SERIAL_ECHOPGM(MSG_Z_MAX);
  5223. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5224. }
  5225. }
  5226. else {
  5227. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5228. }
  5229. SERIAL_EOL;
  5230. }
  5231. #endif // HAS_BED_PROBE
  5232. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5233. /**
  5234. * M600: Pause for filament change
  5235. *
  5236. * E[distance] - Retract the filament this far (negative value)
  5237. * Z[distance] - Move the Z axis by this distance
  5238. * X[position] - Move to this X position, with Y
  5239. * Y[position] - Move to this Y position, with X
  5240. * L[distance] - Retract distance for removal (manual reload)
  5241. *
  5242. * Default values are used for omitted arguments.
  5243. *
  5244. */
  5245. inline void gcode_M600() {
  5246. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5247. SERIAL_ERROR_START;
  5248. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5249. return;
  5250. }
  5251. // Show initial message and wait for synchronize steppers
  5252. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5253. stepper.synchronize();
  5254. float lastpos[NUM_AXIS];
  5255. // Save current position of all axes
  5256. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5257. lastpos[i] = destination[i] = current_position[i];
  5258. // Define runplan for move axes
  5259. #if ENABLED(DELTA)
  5260. #define RUNPLAN(RATE) calculate_delta(destination); \
  5261. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5262. #else
  5263. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5264. #endif
  5265. KEEPALIVE_STATE(IN_HANDLER);
  5266. // Initial retract before move to filament change position
  5267. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5268. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5269. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5270. #endif
  5271. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5272. // Lift Z axis
  5273. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5274. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5275. FILAMENT_CHANGE_Z_ADD
  5276. #else
  5277. 0
  5278. #endif
  5279. ;
  5280. if (z_lift > 0) {
  5281. destination[Z_AXIS] += z_lift;
  5282. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5283. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5284. }
  5285. // Move XY axes to filament exchange position
  5286. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5287. #ifdef FILAMENT_CHANGE_X_POS
  5288. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5289. #endif
  5290. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5291. #ifdef FILAMENT_CHANGE_Y_POS
  5292. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5293. #endif
  5294. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5295. stepper.synchronize();
  5296. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5297. // Unload filament
  5298. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5299. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5300. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5301. #endif
  5302. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5303. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5304. stepper.synchronize();
  5305. disable_e0();
  5306. disable_e1();
  5307. disable_e2();
  5308. disable_e3();
  5309. delay(100);
  5310. millis_t next_tick = 0;
  5311. // Wait for filament insert by user and press button
  5312. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5313. while (!lcd_clicked()) {
  5314. #if HAS_BUZZER
  5315. millis_t ms = millis();
  5316. if (ms >= next_tick) {
  5317. buzzer.tone(300, 2000);
  5318. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5319. }
  5320. #endif
  5321. idle(true);
  5322. }
  5323. delay(100);
  5324. while (lcd_clicked()) idle(true);
  5325. delay(100);
  5326. // Show load message
  5327. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5328. // Load filament
  5329. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5330. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5331. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5332. #endif
  5333. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5334. stepper.synchronize();
  5335. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5336. do {
  5337. // Extrude filament to get into hotend
  5338. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5339. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5340. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5341. stepper.synchronize();
  5342. // Ask user if more filament should be extruded
  5343. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5344. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5345. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5346. KEEPALIVE_STATE(IN_HANDLER);
  5347. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5348. #endif
  5349. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5350. KEEPALIVE_STATE(IN_HANDLER);
  5351. // Set extruder to saved position
  5352. current_position[E_AXIS] = lastpos[E_AXIS];
  5353. destination[E_AXIS] = lastpos[E_AXIS];
  5354. planner.set_e_position_mm(current_position[E_AXIS]);
  5355. #if ENABLED(DELTA)
  5356. // Move XYZ to starting position, then E
  5357. calculate_delta(lastpos);
  5358. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5359. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5360. #else
  5361. // Move XY to starting position, then Z, then E
  5362. destination[X_AXIS] = lastpos[X_AXIS];
  5363. destination[Y_AXIS] = lastpos[Y_AXIS];
  5364. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5365. destination[Z_AXIS] = lastpos[Z_AXIS];
  5366. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5367. #endif
  5368. stepper.synchronize();
  5369. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5370. filament_ran_out = false;
  5371. #endif
  5372. // Show status screen
  5373. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5374. }
  5375. #endif // FILAMENT_CHANGE_FEATURE
  5376. #if ENABLED(DUAL_X_CARRIAGE)
  5377. /**
  5378. * M605: Set dual x-carriage movement mode
  5379. *
  5380. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5381. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5382. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5383. * units x-offset and an optional differential hotend temperature of
  5384. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5385. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5386. *
  5387. * Note: the X axis should be homed after changing dual x-carriage mode.
  5388. */
  5389. inline void gcode_M605() {
  5390. stepper.synchronize();
  5391. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5392. switch (dual_x_carriage_mode) {
  5393. case DXC_DUPLICATION_MODE:
  5394. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5395. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5396. SERIAL_ECHO_START;
  5397. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5398. SERIAL_CHAR(' ');
  5399. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5400. SERIAL_CHAR(',');
  5401. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5402. SERIAL_CHAR(' ');
  5403. SERIAL_ECHO(duplicate_extruder_x_offset);
  5404. SERIAL_CHAR(',');
  5405. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5406. break;
  5407. case DXC_FULL_CONTROL_MODE:
  5408. case DXC_AUTO_PARK_MODE:
  5409. break;
  5410. default:
  5411. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5412. break;
  5413. }
  5414. active_extruder_parked = false;
  5415. extruder_duplication_enabled = false;
  5416. delayed_move_time = 0;
  5417. }
  5418. #endif // DUAL_X_CARRIAGE
  5419. #if ENABLED(LIN_ADVANCE)
  5420. /**
  5421. * M905: Set advance factor
  5422. */
  5423. inline void gcode_M905() {
  5424. stepper.synchronize();
  5425. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5426. }
  5427. #endif
  5428. /**
  5429. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5430. */
  5431. inline void gcode_M907() {
  5432. #if HAS_DIGIPOTSS
  5433. for (int i = 0; i < NUM_AXIS; i++)
  5434. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5435. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5436. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5437. #endif
  5438. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5439. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5440. #endif
  5441. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5442. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5443. #endif
  5444. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5445. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5446. #endif
  5447. #if ENABLED(DIGIPOT_I2C)
  5448. // this one uses actual amps in floating point
  5449. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5450. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5451. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5452. #endif
  5453. #if ENABLED(DAC_STEPPER_CURRENT)
  5454. if (code_seen('S')) {
  5455. float dac_percent = code_value_float();
  5456. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5457. }
  5458. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5459. #endif
  5460. }
  5461. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5462. /**
  5463. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5464. */
  5465. inline void gcode_M908() {
  5466. #if HAS_DIGIPOTSS
  5467. stepper.digitalPotWrite(
  5468. code_seen('P') ? code_value_int() : 0,
  5469. code_seen('S') ? code_value_int() : 0
  5470. );
  5471. #endif
  5472. #ifdef DAC_STEPPER_CURRENT
  5473. dac_current_raw(
  5474. code_seen('P') ? code_value_byte() : -1,
  5475. code_seen('S') ? code_value_ushort() : 0
  5476. );
  5477. #endif
  5478. }
  5479. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5480. inline void gcode_M909() { dac_print_values(); }
  5481. inline void gcode_M910() { dac_commit_eeprom(); }
  5482. #endif
  5483. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5484. #if HAS_MICROSTEPS
  5485. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5486. inline void gcode_M350() {
  5487. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5488. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5489. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5490. stepper.microstep_readings();
  5491. }
  5492. /**
  5493. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5494. * S# determines MS1 or MS2, X# sets the pin high/low.
  5495. */
  5496. inline void gcode_M351() {
  5497. if (code_seen('S')) switch (code_value_byte()) {
  5498. case 1:
  5499. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5500. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5501. break;
  5502. case 2:
  5503. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5504. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5505. break;
  5506. }
  5507. stepper.microstep_readings();
  5508. }
  5509. #endif // HAS_MICROSTEPS
  5510. /**
  5511. * M999: Restart after being stopped
  5512. *
  5513. * Default behaviour is to flush the serial buffer and request
  5514. * a resend to the host starting on the last N line received.
  5515. *
  5516. * Sending "M999 S1" will resume printing without flushing the
  5517. * existing command buffer.
  5518. *
  5519. */
  5520. inline void gcode_M999() {
  5521. Running = true;
  5522. lcd_reset_alert_level();
  5523. if (code_seen('S') && code_value_bool()) return;
  5524. // gcode_LastN = Stopped_gcode_LastN;
  5525. FlushSerialRequestResend();
  5526. }
  5527. /**
  5528. * T0-T3: Switch tool, usually switching extruders
  5529. *
  5530. * F[units/min] Set the movement feedrate
  5531. * S1 Don't move the tool in XY after change
  5532. */
  5533. inline void gcode_T(uint8_t tmp_extruder) {
  5534. if (tmp_extruder >= EXTRUDERS) {
  5535. SERIAL_ECHO_START;
  5536. SERIAL_CHAR('T');
  5537. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5538. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5539. return;
  5540. }
  5541. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5542. if (DEBUGGING(LEVELING)) {
  5543. SERIAL_ECHOLNPGM(">>> gcode_T");
  5544. DEBUG_POS("BEFORE", current_position);
  5545. }
  5546. #endif
  5547. #if HOTENDS > 1
  5548. float old_feedrate = feedrate;
  5549. if (code_seen('F')) {
  5550. float next_feedrate = code_value_axis_units(X_AXIS);
  5551. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5552. }
  5553. else
  5554. feedrate = XY_PROBE_FEEDRATE;
  5555. if (tmp_extruder != active_extruder) {
  5556. bool no_move = code_seen('S') && code_value_bool();
  5557. // Save current position to return to after applying extruder offset
  5558. if (!no_move) set_destination_to_current();
  5559. #if ENABLED(DUAL_X_CARRIAGE)
  5560. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5561. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5562. // Park old head: 1) raise 2) move to park position 3) lower
  5563. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5564. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5565. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5566. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5567. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5568. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5569. stepper.synchronize();
  5570. }
  5571. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5572. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5573. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5574. active_extruder = tmp_extruder;
  5575. // This function resets the max/min values - the current position may be overwritten below.
  5576. set_axis_is_at_home(X_AXIS);
  5577. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5578. current_position[X_AXIS] = inactive_extruder_x_pos;
  5579. inactive_extruder_x_pos = destination[X_AXIS];
  5580. }
  5581. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5582. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5583. if (active_extruder_parked)
  5584. current_position[X_AXIS] = inactive_extruder_x_pos;
  5585. else
  5586. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5587. inactive_extruder_x_pos = destination[X_AXIS];
  5588. extruder_duplication_enabled = false;
  5589. }
  5590. else {
  5591. // record raised toolhead position for use by unpark
  5592. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5593. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5594. active_extruder_parked = true;
  5595. delayed_move_time = 0;
  5596. }
  5597. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5598. #else // !DUAL_X_CARRIAGE
  5599. //
  5600. // Set current_position to the position of the new nozzle.
  5601. // Offsets are based on linear distance, so we need to get
  5602. // the resulting position in coordinate space.
  5603. //
  5604. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5605. // - With mesh leveling, update Z for the new position
  5606. // - Otherwise, just use the raw linear distance
  5607. //
  5608. // Software endstops are altered here too. Consider a case where:
  5609. // E0 at X=0 ... E1 at X=10
  5610. // When we switch to E1 now X=10, but E1 can't move left.
  5611. // To express this we apply the change in XY to the software endstops.
  5612. // E1 can move farther right than E0, so the right limit is extended.
  5613. //
  5614. // Note that we don't adjust the Z software endstops. Why not?
  5615. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5616. // because the bed is 1mm lower at the new position. As long as
  5617. // the first nozzle is out of the way, the carriage should be
  5618. // allowed to move 1mm lower. This technically "breaks" the
  5619. // Z software endstop. But this is technically correct (and
  5620. // there is no viable alternative).
  5621. //
  5622. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5623. // Offset extruder, make sure to apply the bed level rotation matrix
  5624. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5625. hotend_offset[Y_AXIS][tmp_extruder],
  5626. 0),
  5627. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5628. hotend_offset[Y_AXIS][active_extruder],
  5629. 0),
  5630. offset_vec = tmp_offset_vec - act_offset_vec;
  5631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5632. if (DEBUGGING(LEVELING)) {
  5633. tmp_offset_vec.debug("tmp_offset_vec");
  5634. act_offset_vec.debug("act_offset_vec");
  5635. offset_vec.debug("offset_vec (BEFORE)");
  5636. }
  5637. #endif
  5638. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5639. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5640. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5641. #endif
  5642. // Adjustments to the current position
  5643. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5644. current_position[Z_AXIS] += offset_vec.z;
  5645. #else // !AUTO_BED_LEVELING_FEATURE
  5646. float xydiff[2] = {
  5647. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5648. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5649. };
  5650. #if ENABLED(MESH_BED_LEVELING)
  5651. if (mbl.active()) {
  5652. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5653. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5654. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5655. }
  5656. #endif // MESH_BED_LEVELING
  5657. #endif // !AUTO_BED_LEVELING_FEATURE
  5658. // The newly-selected extruder XY is actually at...
  5659. current_position[X_AXIS] += xydiff[X_AXIS];
  5660. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5661. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5662. position_shift[i] += xydiff[i];
  5663. update_software_endstops((AxisEnum)i);
  5664. }
  5665. // Set the new active extruder
  5666. active_extruder = tmp_extruder;
  5667. #endif // !DUAL_X_CARRIAGE
  5668. // Tell the planner the new "current position"
  5669. SYNC_PLAN_POSITION_KINEMATIC();
  5670. // Move to the "old position" (move the extruder into place)
  5671. if (!no_move && IsRunning()) prepare_move_to_destination();
  5672. } // (tmp_extruder != active_extruder)
  5673. #if ENABLED(EXT_SOLENOID)
  5674. stepper.synchronize();
  5675. disable_all_solenoids();
  5676. enable_solenoid_on_active_extruder();
  5677. #endif // EXT_SOLENOID
  5678. feedrate = old_feedrate;
  5679. #else // !HOTENDS > 1
  5680. // Set the new active extruder
  5681. active_extruder = tmp_extruder;
  5682. #endif
  5683. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5684. if (DEBUGGING(LEVELING)) {
  5685. DEBUG_POS("AFTER", current_position);
  5686. SERIAL_ECHOLNPGM("<<< gcode_T");
  5687. }
  5688. #endif
  5689. SERIAL_ECHO_START;
  5690. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5691. SERIAL_PROTOCOLLN((int)active_extruder);
  5692. }
  5693. /**
  5694. * Process a single command and dispatch it to its handler
  5695. * This is called from the main loop()
  5696. */
  5697. void process_next_command() {
  5698. current_command = command_queue[cmd_queue_index_r];
  5699. if (DEBUGGING(ECHO)) {
  5700. SERIAL_ECHO_START;
  5701. SERIAL_ECHOLN(current_command);
  5702. }
  5703. // Sanitize the current command:
  5704. // - Skip leading spaces
  5705. // - Bypass N[-0-9][0-9]*[ ]*
  5706. // - Overwrite * with nul to mark the end
  5707. while (*current_command == ' ') ++current_command;
  5708. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5709. current_command += 2; // skip N[-0-9]
  5710. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5711. while (*current_command == ' ') ++current_command; // skip [ ]*
  5712. }
  5713. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5714. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5715. char *cmd_ptr = current_command;
  5716. // Get the command code, which must be G, M, or T
  5717. char command_code = *cmd_ptr++;
  5718. // Skip spaces to get the numeric part
  5719. while (*cmd_ptr == ' ') cmd_ptr++;
  5720. uint16_t codenum = 0; // define ahead of goto
  5721. // Bail early if there's no code
  5722. bool code_is_good = NUMERIC(*cmd_ptr);
  5723. if (!code_is_good) goto ExitUnknownCommand;
  5724. // Get and skip the code number
  5725. do {
  5726. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5727. cmd_ptr++;
  5728. } while (NUMERIC(*cmd_ptr));
  5729. // Skip all spaces to get to the first argument, or nul
  5730. while (*cmd_ptr == ' ') cmd_ptr++;
  5731. // The command's arguments (if any) start here, for sure!
  5732. current_command_args = cmd_ptr;
  5733. KEEPALIVE_STATE(IN_HANDLER);
  5734. // Handle a known G, M, or T
  5735. switch (command_code) {
  5736. case 'G': switch (codenum) {
  5737. // G0, G1
  5738. case 0:
  5739. case 1:
  5740. gcode_G0_G1();
  5741. break;
  5742. // G2, G3
  5743. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5744. case 2: // G2 - CW ARC
  5745. case 3: // G3 - CCW ARC
  5746. gcode_G2_G3(codenum == 2);
  5747. break;
  5748. #endif
  5749. // G4 Dwell
  5750. case 4:
  5751. gcode_G4();
  5752. break;
  5753. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5754. // G5
  5755. case 5: // G5 - Cubic B_spline
  5756. gcode_G5();
  5757. break;
  5758. #endif // BEZIER_CURVE_SUPPORT
  5759. #if ENABLED(FWRETRACT)
  5760. case 10: // G10: retract
  5761. case 11: // G11: retract_recover
  5762. gcode_G10_G11(codenum == 10);
  5763. break;
  5764. #endif // FWRETRACT
  5765. #if ENABLED(INCH_MODE_SUPPORT)
  5766. case 20: //G20: Inch Mode
  5767. gcode_G20();
  5768. break;
  5769. case 21: //G21: MM Mode
  5770. gcode_G21();
  5771. break;
  5772. #endif
  5773. case 28: // G28: Home all axes, one at a time
  5774. gcode_G28();
  5775. break;
  5776. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5777. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5778. gcode_G29();
  5779. break;
  5780. #endif
  5781. #if HAS_BED_PROBE
  5782. case 30: // G30 Single Z probe
  5783. gcode_G30();
  5784. break;
  5785. #if ENABLED(Z_PROBE_SLED)
  5786. case 31: // G31: dock the sled
  5787. gcode_G31();
  5788. break;
  5789. case 32: // G32: undock the sled
  5790. gcode_G32();
  5791. break;
  5792. #endif // Z_PROBE_SLED
  5793. #endif // HAS_BED_PROBE
  5794. case 90: // G90
  5795. relative_mode = false;
  5796. break;
  5797. case 91: // G91
  5798. relative_mode = true;
  5799. break;
  5800. case 92: // G92
  5801. gcode_G92();
  5802. break;
  5803. }
  5804. break;
  5805. case 'M': switch (codenum) {
  5806. #if ENABLED(ULTIPANEL)
  5807. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5808. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5809. gcode_M0_M1();
  5810. break;
  5811. #endif // ULTIPANEL
  5812. case 17:
  5813. gcode_M17();
  5814. break;
  5815. #if ENABLED(SDSUPPORT)
  5816. case 20: // M20 - list SD card
  5817. gcode_M20(); break;
  5818. case 21: // M21 - init SD card
  5819. gcode_M21(); break;
  5820. case 22: //M22 - release SD card
  5821. gcode_M22(); break;
  5822. case 23: //M23 - Select file
  5823. gcode_M23(); break;
  5824. case 24: //M24 - Start SD print
  5825. gcode_M24(); break;
  5826. case 25: //M25 - Pause SD print
  5827. gcode_M25(); break;
  5828. case 26: //M26 - Set SD index
  5829. gcode_M26(); break;
  5830. case 27: //M27 - Get SD status
  5831. gcode_M27(); break;
  5832. case 28: //M28 - Start SD write
  5833. gcode_M28(); break;
  5834. case 29: //M29 - Stop SD write
  5835. gcode_M29(); break;
  5836. case 30: //M30 <filename> Delete File
  5837. gcode_M30(); break;
  5838. case 32: //M32 - Select file and start SD print
  5839. gcode_M32(); break;
  5840. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5841. case 33: //M33 - Get the long full path to a file or folder
  5842. gcode_M33(); break;
  5843. #endif // LONG_FILENAME_HOST_SUPPORT
  5844. case 928: //M928 - Start SD write
  5845. gcode_M928(); break;
  5846. #endif //SDSUPPORT
  5847. case 31: //M31 take time since the start of the SD print or an M109 command
  5848. gcode_M31();
  5849. break;
  5850. case 42: //M42 -Change pin status via gcode
  5851. gcode_M42();
  5852. break;
  5853. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5854. case 48: // M48 Z probe repeatability
  5855. gcode_M48();
  5856. break;
  5857. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5858. case 75: // Start print timer
  5859. gcode_M75();
  5860. break;
  5861. case 76: // Pause print timer
  5862. gcode_M76();
  5863. break;
  5864. case 77: // Stop print timer
  5865. gcode_M77();
  5866. break;
  5867. #if ENABLED(PRINTCOUNTER)
  5868. case 78: // Show print statistics
  5869. gcode_M78();
  5870. break;
  5871. #endif
  5872. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5873. case 100:
  5874. gcode_M100();
  5875. break;
  5876. #endif
  5877. case 104: // M104
  5878. gcode_M104();
  5879. break;
  5880. case 110: // M110: Set Current Line Number
  5881. gcode_M110();
  5882. break;
  5883. case 111: // M111: Set debug level
  5884. gcode_M111();
  5885. break;
  5886. #if DISABLED(EMERGENCY_PARSER)
  5887. case 112: // M112: Emergency Stop
  5888. gcode_M112();
  5889. break;
  5890. #endif
  5891. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5892. case 113: // M113: Set Host Keepalive interval
  5893. gcode_M113();
  5894. break;
  5895. #endif
  5896. case 140: // M140: Set bed temp
  5897. gcode_M140();
  5898. break;
  5899. case 105: // M105: Read current temperature
  5900. gcode_M105();
  5901. KEEPALIVE_STATE(NOT_BUSY);
  5902. return; // "ok" already printed
  5903. #if DISABLED(EMERGENCY_PARSER)
  5904. case 108:
  5905. gcode_M108();
  5906. break;
  5907. #endif
  5908. case 109: // M109: Wait for temperature
  5909. gcode_M109();
  5910. break;
  5911. #if HAS_TEMP_BED
  5912. case 190: // M190: Wait for bed heater to reach target
  5913. gcode_M190();
  5914. break;
  5915. #endif // HAS_TEMP_BED
  5916. #if FAN_COUNT > 0
  5917. case 106: // M106: Fan On
  5918. gcode_M106();
  5919. break;
  5920. case 107: // M107: Fan Off
  5921. gcode_M107();
  5922. break;
  5923. #endif // FAN_COUNT > 0
  5924. #if ENABLED(BARICUDA)
  5925. // PWM for HEATER_1_PIN
  5926. #if HAS_HEATER_1
  5927. case 126: // M126: valve open
  5928. gcode_M126();
  5929. break;
  5930. case 127: // M127: valve closed
  5931. gcode_M127();
  5932. break;
  5933. #endif // HAS_HEATER_1
  5934. // PWM for HEATER_2_PIN
  5935. #if HAS_HEATER_2
  5936. case 128: // M128: valve open
  5937. gcode_M128();
  5938. break;
  5939. case 129: // M129: valve closed
  5940. gcode_M129();
  5941. break;
  5942. #endif // HAS_HEATER_2
  5943. #endif // BARICUDA
  5944. #if HAS_POWER_SWITCH
  5945. case 80: // M80: Turn on Power Supply
  5946. gcode_M80();
  5947. break;
  5948. #endif // HAS_POWER_SWITCH
  5949. case 81: // M81: Turn off Power, including Power Supply, if possible
  5950. gcode_M81();
  5951. break;
  5952. case 82:
  5953. gcode_M82();
  5954. break;
  5955. case 83:
  5956. gcode_M83();
  5957. break;
  5958. case 18: // (for compatibility)
  5959. case 84: // M84
  5960. gcode_M18_M84();
  5961. break;
  5962. case 85: // M85
  5963. gcode_M85();
  5964. break;
  5965. case 92: // M92: Set the steps-per-unit for one or more axes
  5966. gcode_M92();
  5967. break;
  5968. case 115: // M115: Report capabilities
  5969. gcode_M115();
  5970. break;
  5971. case 117: // M117: Set LCD message text, if possible
  5972. gcode_M117();
  5973. break;
  5974. case 114: // M114: Report current position
  5975. gcode_M114();
  5976. break;
  5977. case 120: // M120: Enable endstops
  5978. gcode_M120();
  5979. break;
  5980. case 121: // M121: Disable endstops
  5981. gcode_M121();
  5982. break;
  5983. case 119: // M119: Report endstop states
  5984. gcode_M119();
  5985. break;
  5986. #if ENABLED(ULTIPANEL)
  5987. case 145: // M145: Set material heatup parameters
  5988. gcode_M145();
  5989. break;
  5990. #endif
  5991. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5992. case 149:
  5993. gcode_M149();
  5994. break;
  5995. #endif
  5996. #if ENABLED(BLINKM)
  5997. case 150: // M150
  5998. gcode_M150();
  5999. break;
  6000. #endif //BLINKM
  6001. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6002. case 155:
  6003. gcode_M155();
  6004. break;
  6005. case 156:
  6006. gcode_M156();
  6007. break;
  6008. #endif //EXPERIMENTAL_I2CBUS
  6009. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6010. gcode_M200();
  6011. break;
  6012. case 201: // M201
  6013. gcode_M201();
  6014. break;
  6015. #if 0 // Not used for Sprinter/grbl gen6
  6016. case 202: // M202
  6017. gcode_M202();
  6018. break;
  6019. #endif
  6020. case 203: // M203 max feedrate units/sec
  6021. gcode_M203();
  6022. break;
  6023. case 204: // M204 acclereration S normal moves T filmanent only moves
  6024. gcode_M204();
  6025. break;
  6026. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6027. gcode_M205();
  6028. break;
  6029. case 206: // M206 additional homing offset
  6030. gcode_M206();
  6031. break;
  6032. #if ENABLED(DELTA)
  6033. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6034. gcode_M665();
  6035. break;
  6036. #endif
  6037. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6038. case 666: // M666 set delta / dual endstop adjustment
  6039. gcode_M666();
  6040. break;
  6041. #endif
  6042. #if ENABLED(FWRETRACT)
  6043. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6044. gcode_M207();
  6045. break;
  6046. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6047. gcode_M208();
  6048. break;
  6049. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6050. gcode_M209();
  6051. break;
  6052. #endif // FWRETRACT
  6053. #if HOTENDS > 1
  6054. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6055. gcode_M218();
  6056. break;
  6057. #endif
  6058. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6059. gcode_M220();
  6060. break;
  6061. case 221: // M221 - Set Flow Percentage: S<percent>
  6062. gcode_M221();
  6063. break;
  6064. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6065. gcode_M226();
  6066. break;
  6067. #if HAS_SERVOS
  6068. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6069. gcode_M280();
  6070. break;
  6071. #endif // HAS_SERVOS
  6072. #if HAS_BUZZER
  6073. case 300: // M300 - Play beep tone
  6074. gcode_M300();
  6075. break;
  6076. #endif // HAS_BUZZER
  6077. #if ENABLED(PIDTEMP)
  6078. case 301: // M301
  6079. gcode_M301();
  6080. break;
  6081. #endif // PIDTEMP
  6082. #if ENABLED(PIDTEMPBED)
  6083. case 304: // M304
  6084. gcode_M304();
  6085. break;
  6086. #endif // PIDTEMPBED
  6087. #if defined(CHDK) || HAS_PHOTOGRAPH
  6088. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6089. gcode_M240();
  6090. break;
  6091. #endif // CHDK || PHOTOGRAPH_PIN
  6092. #if HAS_LCD_CONTRAST
  6093. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6094. gcode_M250();
  6095. break;
  6096. #endif // HAS_LCD_CONTRAST
  6097. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6098. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6099. gcode_M302();
  6100. break;
  6101. #endif // PREVENT_DANGEROUS_EXTRUDE
  6102. case 303: // M303 PID autotune
  6103. gcode_M303();
  6104. break;
  6105. #if ENABLED(SCARA)
  6106. case 360: // M360 SCARA Theta pos1
  6107. if (gcode_M360()) return;
  6108. break;
  6109. case 361: // M361 SCARA Theta pos2
  6110. if (gcode_M361()) return;
  6111. break;
  6112. case 362: // M362 SCARA Psi pos1
  6113. if (gcode_M362()) return;
  6114. break;
  6115. case 363: // M363 SCARA Psi pos2
  6116. if (gcode_M363()) return;
  6117. break;
  6118. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6119. if (gcode_M364()) return;
  6120. break;
  6121. case 365: // M365 Set SCARA scaling for X Y Z
  6122. gcode_M365();
  6123. break;
  6124. #endif // SCARA
  6125. case 400: // M400 finish all moves
  6126. gcode_M400();
  6127. break;
  6128. #if HAS_BED_PROBE
  6129. case 401:
  6130. gcode_M401();
  6131. break;
  6132. case 402:
  6133. gcode_M402();
  6134. break;
  6135. #endif // HAS_BED_PROBE
  6136. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6137. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6138. gcode_M404();
  6139. break;
  6140. case 405: //M405 Turn on filament sensor for control
  6141. gcode_M405();
  6142. break;
  6143. case 406: //M406 Turn off filament sensor for control
  6144. gcode_M406();
  6145. break;
  6146. case 407: //M407 Display measured filament diameter
  6147. gcode_M407();
  6148. break;
  6149. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6150. #if DISABLED(EMERGENCY_PARSER)
  6151. case 410: // M410 quickstop - Abort all the planned moves.
  6152. gcode_M410();
  6153. break;
  6154. #endif
  6155. #if ENABLED(MESH_BED_LEVELING)
  6156. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6157. gcode_M420();
  6158. break;
  6159. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6160. gcode_M421();
  6161. break;
  6162. #endif
  6163. case 428: // M428 Apply current_position to home_offset
  6164. gcode_M428();
  6165. break;
  6166. case 500: // M500 Store settings in EEPROM
  6167. gcode_M500();
  6168. break;
  6169. case 501: // M501 Read settings from EEPROM
  6170. gcode_M501();
  6171. break;
  6172. case 502: // M502 Revert to default settings
  6173. gcode_M502();
  6174. break;
  6175. case 503: // M503 print settings currently in memory
  6176. gcode_M503();
  6177. break;
  6178. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6179. case 540:
  6180. gcode_M540();
  6181. break;
  6182. #endif
  6183. #if HAS_BED_PROBE
  6184. case 851:
  6185. gcode_M851();
  6186. break;
  6187. #endif // HAS_BED_PROBE
  6188. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6189. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6190. gcode_M600();
  6191. break;
  6192. #endif // FILAMENT_CHANGE_FEATURE
  6193. #if ENABLED(DUAL_X_CARRIAGE)
  6194. case 605:
  6195. gcode_M605();
  6196. break;
  6197. #endif // DUAL_X_CARRIAGE
  6198. #if ENABLED(LIN_ADVANCE)
  6199. case 905: // M905 Set advance factor.
  6200. gcode_M905();
  6201. break;
  6202. #endif
  6203. case 907: // M907 Set digital trimpot motor current using axis codes.
  6204. gcode_M907();
  6205. break;
  6206. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6207. case 908: // M908 Control digital trimpot directly.
  6208. gcode_M908();
  6209. break;
  6210. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6211. case 909: // M909 Print digipot/DAC current value
  6212. gcode_M909();
  6213. break;
  6214. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6215. gcode_M910();
  6216. break;
  6217. #endif
  6218. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6219. #if HAS_MICROSTEPS
  6220. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6221. gcode_M350();
  6222. break;
  6223. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6224. gcode_M351();
  6225. break;
  6226. #endif // HAS_MICROSTEPS
  6227. case 999: // M999: Restart after being Stopped
  6228. gcode_M999();
  6229. break;
  6230. }
  6231. break;
  6232. case 'T':
  6233. gcode_T(codenum);
  6234. break;
  6235. default: code_is_good = false;
  6236. }
  6237. KEEPALIVE_STATE(NOT_BUSY);
  6238. ExitUnknownCommand:
  6239. // Still unknown command? Throw an error
  6240. if (!code_is_good) unknown_command_error();
  6241. ok_to_send();
  6242. }
  6243. void FlushSerialRequestResend() {
  6244. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6245. MYSERIAL.flush();
  6246. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6247. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6248. ok_to_send();
  6249. }
  6250. void ok_to_send() {
  6251. refresh_cmd_timeout();
  6252. if (!send_ok[cmd_queue_index_r]) return;
  6253. SERIAL_PROTOCOLPGM(MSG_OK);
  6254. #if ENABLED(ADVANCED_OK)
  6255. char* p = command_queue[cmd_queue_index_r];
  6256. if (*p == 'N') {
  6257. SERIAL_PROTOCOL(' ');
  6258. SERIAL_ECHO(*p++);
  6259. while (NUMERIC_SIGNED(*p))
  6260. SERIAL_ECHO(*p++);
  6261. }
  6262. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6263. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6264. #endif
  6265. SERIAL_EOL;
  6266. }
  6267. void clamp_to_software_endstops(float target[3]) {
  6268. if (min_software_endstops) {
  6269. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6270. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6271. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6272. }
  6273. if (max_software_endstops) {
  6274. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6275. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6276. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6277. }
  6278. }
  6279. #if ENABLED(DELTA)
  6280. void recalc_delta_settings(float radius, float diagonal_rod) {
  6281. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6282. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6283. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6284. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6285. delta_tower3_x = 0.0; // back middle tower
  6286. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6287. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6288. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6289. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6290. }
  6291. void calculate_delta(float cartesian[3]) {
  6292. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6293. - sq(delta_tower1_x - cartesian[X_AXIS])
  6294. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6295. ) + cartesian[Z_AXIS];
  6296. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6297. - sq(delta_tower2_x - cartesian[X_AXIS])
  6298. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6299. ) + cartesian[Z_AXIS];
  6300. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6301. - sq(delta_tower3_x - cartesian[X_AXIS])
  6302. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6303. ) + cartesian[Z_AXIS];
  6304. /**
  6305. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6306. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6307. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6308. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6309. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6310. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6311. */
  6312. }
  6313. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6314. // Adjust print surface height by linear interpolation over the bed_level array.
  6315. void adjust_delta(float cartesian[3]) {
  6316. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6317. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6318. float h1 = 0.001 - half, h2 = half - 0.001,
  6319. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6320. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6321. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6322. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6323. z1 = bed_level[floor_x + half][floor_y + half],
  6324. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6325. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6326. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6327. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6328. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6329. offset = (1 - ratio_x) * left + ratio_x * right;
  6330. delta[X_AXIS] += offset;
  6331. delta[Y_AXIS] += offset;
  6332. delta[Z_AXIS] += offset;
  6333. /**
  6334. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6335. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6336. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6337. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6338. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6339. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6340. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6341. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6342. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6343. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6344. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6345. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6346. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6347. */
  6348. }
  6349. #endif // AUTO_BED_LEVELING_FEATURE
  6350. #endif // DELTA
  6351. #if ENABLED(MESH_BED_LEVELING)
  6352. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6353. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6354. if (!mbl.active()) {
  6355. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6356. set_current_to_destination();
  6357. return;
  6358. }
  6359. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6360. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6361. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6362. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6363. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6364. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6365. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6366. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6367. if (pcx == cx && pcy == cy) {
  6368. // Start and end on same mesh square
  6369. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6370. set_current_to_destination();
  6371. return;
  6372. }
  6373. float nx, ny, nz, ne, normalized_dist;
  6374. if (cx > pcx && TEST(x_splits, cx)) {
  6375. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6376. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6377. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6378. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6379. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6380. CBI(x_splits, cx);
  6381. }
  6382. else if (cx < pcx && TEST(x_splits, pcx)) {
  6383. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6384. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6385. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6386. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6387. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6388. CBI(x_splits, pcx);
  6389. }
  6390. else if (cy > pcy && TEST(y_splits, cy)) {
  6391. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6392. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6393. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6394. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6395. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6396. CBI(y_splits, cy);
  6397. }
  6398. else if (cy < pcy && TEST(y_splits, pcy)) {
  6399. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6400. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6401. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6402. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6403. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6404. CBI(y_splits, pcy);
  6405. }
  6406. else {
  6407. // Already split on a border
  6408. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6409. set_current_to_destination();
  6410. return;
  6411. }
  6412. // Do the split and look for more borders
  6413. destination[X_AXIS] = nx;
  6414. destination[Y_AXIS] = ny;
  6415. destination[Z_AXIS] = nz;
  6416. destination[E_AXIS] = ne;
  6417. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6418. destination[X_AXIS] = x;
  6419. destination[Y_AXIS] = y;
  6420. destination[Z_AXIS] = z;
  6421. destination[E_AXIS] = e;
  6422. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6423. }
  6424. #endif // MESH_BED_LEVELING
  6425. #if ENABLED(DELTA) || ENABLED(SCARA)
  6426. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6427. float difference[NUM_AXIS];
  6428. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6429. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6430. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6431. if (cartesian_mm < 0.000001) return false;
  6432. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6433. float seconds = cartesian_mm / _feedrate;
  6434. int steps = max(1, int(delta_segments_per_second * seconds));
  6435. float inv_steps = 1.0/steps;
  6436. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6437. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6438. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6439. for (int s = 1; s <= steps; s++) {
  6440. float fraction = float(s) * inv_steps;
  6441. for (int8_t i = 0; i < NUM_AXIS; i++)
  6442. target[i] = current_position[i] + difference[i] * fraction;
  6443. calculate_delta(target);
  6444. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6445. if (!bed_leveling_in_progress) adjust_delta(target);
  6446. #endif
  6447. //DEBUG_POS("prepare_delta_move_to", target);
  6448. //DEBUG_POS("prepare_delta_move_to", delta);
  6449. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6450. }
  6451. return true;
  6452. }
  6453. #endif // DELTA || SCARA
  6454. #if ENABLED(SCARA)
  6455. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6456. #endif
  6457. #if ENABLED(DUAL_X_CARRIAGE)
  6458. inline bool prepare_move_to_destination_dualx() {
  6459. if (active_extruder_parked) {
  6460. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6461. // move duplicate extruder into correct duplication position.
  6462. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6463. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6464. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6465. SYNC_PLAN_POSITION_KINEMATIC();
  6466. stepper.synchronize();
  6467. extruder_duplication_enabled = true;
  6468. active_extruder_parked = false;
  6469. }
  6470. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6471. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6472. // This is a travel move (with no extrusion)
  6473. // Skip it, but keep track of the current position
  6474. // (so it can be used as the start of the next non-travel move)
  6475. if (delayed_move_time != 0xFFFFFFFFUL) {
  6476. set_current_to_destination();
  6477. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6478. delayed_move_time = millis();
  6479. return false;
  6480. }
  6481. }
  6482. delayed_move_time = 0;
  6483. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6484. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6485. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6486. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6487. active_extruder_parked = false;
  6488. }
  6489. }
  6490. return true;
  6491. }
  6492. #endif // DUAL_X_CARRIAGE
  6493. #if DISABLED(DELTA) && DISABLED(SCARA)
  6494. inline bool prepare_move_to_destination_cartesian() {
  6495. // Do not use feedrate_multiplier for E or Z only moves
  6496. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6497. line_to_destination();
  6498. }
  6499. else {
  6500. #if ENABLED(MESH_BED_LEVELING)
  6501. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6502. return false;
  6503. #else
  6504. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6505. #endif
  6506. }
  6507. return true;
  6508. }
  6509. #endif // !DELTA && !SCARA
  6510. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6511. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6512. if (DEBUGGING(DRYRUN)) return;
  6513. float de = dest_e - curr_e;
  6514. if (de) {
  6515. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6516. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6517. SERIAL_ECHO_START;
  6518. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6519. }
  6520. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6521. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6522. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6523. SERIAL_ECHO_START;
  6524. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6525. }
  6526. #endif
  6527. }
  6528. }
  6529. #endif // PREVENT_DANGEROUS_EXTRUDE
  6530. /**
  6531. * Prepare a single move and get ready for the next one
  6532. *
  6533. * (This may call planner.buffer_line several times to put
  6534. * smaller moves into the planner for DELTA or SCARA.)
  6535. */
  6536. void prepare_move_to_destination() {
  6537. clamp_to_software_endstops(destination);
  6538. refresh_cmd_timeout();
  6539. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6540. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6541. #endif
  6542. #if ENABLED(SCARA)
  6543. if (!prepare_scara_move_to(destination)) return;
  6544. #elif ENABLED(DELTA)
  6545. if (!prepare_delta_move_to(destination)) return;
  6546. #else
  6547. #if ENABLED(DUAL_X_CARRIAGE)
  6548. if (!prepare_move_to_destination_dualx()) return;
  6549. #endif
  6550. if (!prepare_move_to_destination_cartesian()) return;
  6551. #endif
  6552. set_current_to_destination();
  6553. }
  6554. #if ENABLED(ARC_SUPPORT)
  6555. /**
  6556. * Plan an arc in 2 dimensions
  6557. *
  6558. * The arc is approximated by generating many small linear segments.
  6559. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6560. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6561. * larger segments will tend to be more efficient. Your slicer should have
  6562. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6563. */
  6564. void plan_arc(
  6565. float target[NUM_AXIS], // Destination position
  6566. float* offset, // Center of rotation relative to current_position
  6567. uint8_t clockwise // Clockwise?
  6568. ) {
  6569. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6570. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6571. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6572. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6573. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6574. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6575. r_Y = -offset[Y_AXIS],
  6576. rt_X = target[X_AXIS] - center_X,
  6577. rt_Y = target[Y_AXIS] - center_Y;
  6578. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6579. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6580. if (angular_travel < 0) angular_travel += RADIANS(360);
  6581. if (clockwise) angular_travel -= RADIANS(360);
  6582. // Make a circle if the angular rotation is 0
  6583. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6584. angular_travel += RADIANS(360);
  6585. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6586. if (mm_of_travel < 0.001) return;
  6587. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6588. if (segments == 0) segments = 1;
  6589. float theta_per_segment = angular_travel / segments;
  6590. float linear_per_segment = linear_travel / segments;
  6591. float extruder_per_segment = extruder_travel / segments;
  6592. /**
  6593. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6594. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6595. * r_T = [cos(phi) -sin(phi);
  6596. * sin(phi) cos(phi] * r ;
  6597. *
  6598. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6599. * defined from the circle center to the initial position. Each line segment is formed by successive
  6600. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6601. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6602. * all double numbers are single precision on the Arduino. (True double precision will not have
  6603. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6604. * tool precision in some cases. Therefore, arc path correction is implemented.
  6605. *
  6606. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6607. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6608. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6609. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6610. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6611. * issue for CNC machines with the single precision Arduino calculations.
  6612. *
  6613. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6614. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6615. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6616. * This is important when there are successive arc motions.
  6617. */
  6618. // Vector rotation matrix values
  6619. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6620. float sin_T = theta_per_segment;
  6621. float arc_target[NUM_AXIS];
  6622. float sin_Ti, cos_Ti, r_new_Y;
  6623. uint16_t i;
  6624. int8_t count = 0;
  6625. // Initialize the linear axis
  6626. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6627. // Initialize the extruder axis
  6628. arc_target[E_AXIS] = current_position[E_AXIS];
  6629. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6630. millis_t next_idle_ms = millis() + 200UL;
  6631. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6632. thermalManager.manage_heater();
  6633. millis_t now = millis();
  6634. if (ELAPSED(now, next_idle_ms)) {
  6635. next_idle_ms = now + 200UL;
  6636. idle();
  6637. }
  6638. if (++count < N_ARC_CORRECTION) {
  6639. // Apply vector rotation matrix to previous r_X / 1
  6640. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6641. r_X = r_X * cos_T - r_Y * sin_T;
  6642. r_Y = r_new_Y;
  6643. }
  6644. else {
  6645. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6646. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6647. // To reduce stuttering, the sin and cos could be computed at different times.
  6648. // For now, compute both at the same time.
  6649. cos_Ti = cos(i * theta_per_segment);
  6650. sin_Ti = sin(i * theta_per_segment);
  6651. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6652. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6653. count = 0;
  6654. }
  6655. // Update arc_target location
  6656. arc_target[X_AXIS] = center_X + r_X;
  6657. arc_target[Y_AXIS] = center_Y + r_Y;
  6658. arc_target[Z_AXIS] += linear_per_segment;
  6659. arc_target[E_AXIS] += extruder_per_segment;
  6660. clamp_to_software_endstops(arc_target);
  6661. #if ENABLED(DELTA) || ENABLED(SCARA)
  6662. calculate_delta(arc_target);
  6663. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6664. adjust_delta(arc_target);
  6665. #endif
  6666. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6667. #else
  6668. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6669. #endif
  6670. }
  6671. // Ensure last segment arrives at target location.
  6672. #if ENABLED(DELTA) || ENABLED(SCARA)
  6673. calculate_delta(target);
  6674. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6675. adjust_delta(target);
  6676. #endif
  6677. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6678. #else
  6679. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6680. #endif
  6681. // As far as the parser is concerned, the position is now == target. In reality the
  6682. // motion control system might still be processing the action and the real tool position
  6683. // in any intermediate location.
  6684. set_current_to_destination();
  6685. }
  6686. #endif
  6687. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6688. void plan_cubic_move(const float offset[4]) {
  6689. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6690. // As far as the parser is concerned, the position is now == target. In reality the
  6691. // motion control system might still be processing the action and the real tool position
  6692. // in any intermediate location.
  6693. set_current_to_destination();
  6694. }
  6695. #endif // BEZIER_CURVE_SUPPORT
  6696. #if HAS_CONTROLLERFAN
  6697. void controllerFan() {
  6698. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6699. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6700. millis_t ms = millis();
  6701. if (ELAPSED(ms, nextMotorCheck)) {
  6702. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6703. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6704. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6705. #if EXTRUDERS > 1
  6706. || E1_ENABLE_READ == E_ENABLE_ON
  6707. #if HAS_X2_ENABLE
  6708. || X2_ENABLE_READ == X_ENABLE_ON
  6709. #endif
  6710. #if EXTRUDERS > 2
  6711. || E2_ENABLE_READ == E_ENABLE_ON
  6712. #if EXTRUDERS > 3
  6713. || E3_ENABLE_READ == E_ENABLE_ON
  6714. #endif
  6715. #endif
  6716. #endif
  6717. ) {
  6718. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6719. }
  6720. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6721. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6722. // allows digital or PWM fan output to be used (see M42 handling)
  6723. digitalWrite(CONTROLLERFAN_PIN, speed);
  6724. analogWrite(CONTROLLERFAN_PIN, speed);
  6725. }
  6726. }
  6727. #endif // HAS_CONTROLLERFAN
  6728. #if ENABLED(SCARA)
  6729. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6730. // Perform forward kinematics, and place results in delta[3]
  6731. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6732. float x_sin, x_cos, y_sin, y_cos;
  6733. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6734. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6735. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6736. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6737. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6738. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6739. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6740. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6741. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6742. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6743. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6744. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6745. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6746. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6747. }
  6748. void calculate_delta(float cartesian[3]) {
  6749. //reverse kinematics.
  6750. // Perform reversed kinematics, and place results in delta[3]
  6751. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6752. float SCARA_pos[2];
  6753. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6754. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6755. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6756. #if (Linkage_1 == Linkage_2)
  6757. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6758. #else
  6759. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6760. #endif
  6761. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6762. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6763. SCARA_K2 = Linkage_2 * SCARA_S2;
  6764. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6765. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6766. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6767. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6768. delta[Z_AXIS] = cartesian[Z_AXIS];
  6769. /**
  6770. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6771. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6772. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6773. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6774. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6775. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6776. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6777. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6778. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6779. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6780. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6781. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6782. SERIAL_EOL;
  6783. */
  6784. }
  6785. #endif // SCARA
  6786. #if ENABLED(TEMP_STAT_LEDS)
  6787. static bool red_led = false;
  6788. static millis_t next_status_led_update_ms = 0;
  6789. void handle_status_leds(void) {
  6790. float max_temp = 0.0;
  6791. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6792. next_status_led_update_ms += 500; // Update every 0.5s
  6793. for (int8_t cur_hotend = 0; cur_hotend < HOTENDS; ++cur_hotend)
  6794. max_temp = max(max(max_temp, thermalManager.degHotend(cur_hotend)), thermalManager.degTargetHotend(cur_hotend));
  6795. #if HAS_TEMP_BED
  6796. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6797. #endif
  6798. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6799. if (new_led != red_led) {
  6800. red_led = new_led;
  6801. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6802. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6803. }
  6804. }
  6805. }
  6806. #endif
  6807. void enable_all_steppers() {
  6808. enable_x();
  6809. enable_y();
  6810. enable_z();
  6811. enable_e0();
  6812. enable_e1();
  6813. enable_e2();
  6814. enable_e3();
  6815. }
  6816. void disable_all_steppers() {
  6817. disable_x();
  6818. disable_y();
  6819. disable_z();
  6820. disable_e0();
  6821. disable_e1();
  6822. disable_e2();
  6823. disable_e3();
  6824. }
  6825. /**
  6826. * Standard idle routine keeps the machine alive
  6827. */
  6828. void idle(
  6829. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6830. bool no_stepper_sleep/*=false*/
  6831. #endif
  6832. ) {
  6833. lcd_update();
  6834. host_keepalive();
  6835. manage_inactivity(
  6836. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6837. no_stepper_sleep
  6838. #endif
  6839. );
  6840. thermalManager.manage_heater();
  6841. #if ENABLED(PRINTCOUNTER)
  6842. print_job_timer.tick();
  6843. #endif
  6844. #if HAS_BUZZER
  6845. buzzer.tick();
  6846. #endif
  6847. }
  6848. /**
  6849. * Manage several activities:
  6850. * - Check for Filament Runout
  6851. * - Keep the command buffer full
  6852. * - Check for maximum inactive time between commands
  6853. * - Check for maximum inactive time between stepper commands
  6854. * - Check if pin CHDK needs to go LOW
  6855. * - Check for KILL button held down
  6856. * - Check for HOME button held down
  6857. * - Check if cooling fan needs to be switched on
  6858. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6859. */
  6860. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6861. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6862. if (IS_SD_PRINTING && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6863. handle_filament_runout();
  6864. #endif
  6865. if (commands_in_queue < BUFSIZE) get_available_commands();
  6866. millis_t ms = millis();
  6867. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6868. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6869. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6870. #if ENABLED(DISABLE_INACTIVE_X)
  6871. disable_x();
  6872. #endif
  6873. #if ENABLED(DISABLE_INACTIVE_Y)
  6874. disable_y();
  6875. #endif
  6876. #if ENABLED(DISABLE_INACTIVE_Z)
  6877. disable_z();
  6878. #endif
  6879. #if ENABLED(DISABLE_INACTIVE_E)
  6880. disable_e0();
  6881. disable_e1();
  6882. disable_e2();
  6883. disable_e3();
  6884. #endif
  6885. }
  6886. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6887. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6888. chdkActive = false;
  6889. WRITE(CHDK, LOW);
  6890. }
  6891. #endif
  6892. #if HAS_KILL
  6893. // Check if the kill button was pressed and wait just in case it was an accidental
  6894. // key kill key press
  6895. // -------------------------------------------------------------------------------
  6896. static int killCount = 0; // make the inactivity button a bit less responsive
  6897. const int KILL_DELAY = 750;
  6898. if (!READ(KILL_PIN))
  6899. killCount++;
  6900. else if (killCount > 0)
  6901. killCount--;
  6902. // Exceeded threshold and we can confirm that it was not accidental
  6903. // KILL the machine
  6904. // ----------------------------------------------------------------
  6905. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6906. #endif
  6907. #if HAS_HOME
  6908. // Check to see if we have to home, use poor man's debouncer
  6909. // ---------------------------------------------------------
  6910. static int homeDebounceCount = 0; // poor man's debouncing count
  6911. const int HOME_DEBOUNCE_DELAY = 2500;
  6912. if (!READ(HOME_PIN)) {
  6913. if (!homeDebounceCount) {
  6914. enqueue_and_echo_commands_P(PSTR("G28"));
  6915. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6916. }
  6917. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6918. homeDebounceCount++;
  6919. else
  6920. homeDebounceCount = 0;
  6921. }
  6922. #endif
  6923. #if HAS_CONTROLLERFAN
  6924. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6925. #endif
  6926. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6927. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6928. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6929. bool oldstatus;
  6930. switch (active_extruder) {
  6931. case 0:
  6932. oldstatus = E0_ENABLE_READ;
  6933. enable_e0();
  6934. break;
  6935. #if EXTRUDERS > 1
  6936. case 1:
  6937. oldstatus = E1_ENABLE_READ;
  6938. enable_e1();
  6939. break;
  6940. #if EXTRUDERS > 2
  6941. case 2:
  6942. oldstatus = E2_ENABLE_READ;
  6943. enable_e2();
  6944. break;
  6945. #if EXTRUDERS > 3
  6946. case 3:
  6947. oldstatus = E3_ENABLE_READ;
  6948. enable_e3();
  6949. break;
  6950. #endif
  6951. #endif
  6952. #endif
  6953. }
  6954. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6955. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6956. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6957. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6958. current_position[E_AXIS] = oldepos;
  6959. destination[E_AXIS] = oldedes;
  6960. planner.set_e_position_mm(oldepos);
  6961. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6962. stepper.synchronize();
  6963. switch (active_extruder) {
  6964. case 0:
  6965. E0_ENABLE_WRITE(oldstatus);
  6966. break;
  6967. #if EXTRUDERS > 1
  6968. case 1:
  6969. E1_ENABLE_WRITE(oldstatus);
  6970. break;
  6971. #if EXTRUDERS > 2
  6972. case 2:
  6973. E2_ENABLE_WRITE(oldstatus);
  6974. break;
  6975. #if EXTRUDERS > 3
  6976. case 3:
  6977. E3_ENABLE_WRITE(oldstatus);
  6978. break;
  6979. #endif
  6980. #endif
  6981. #endif
  6982. }
  6983. }
  6984. #endif
  6985. #if ENABLED(DUAL_X_CARRIAGE)
  6986. // handle delayed move timeout
  6987. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6988. // travel moves have been received so enact them
  6989. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6990. set_destination_to_current();
  6991. prepare_move_to_destination();
  6992. }
  6993. #endif
  6994. #if ENABLED(TEMP_STAT_LEDS)
  6995. handle_status_leds();
  6996. #endif
  6997. planner.check_axes_activity();
  6998. }
  6999. void kill(const char* lcd_msg) {
  7000. #if ENABLED(ULTRA_LCD)
  7001. lcd_init();
  7002. lcd_setalertstatuspgm(lcd_msg);
  7003. #else
  7004. UNUSED(lcd_msg);
  7005. #endif
  7006. cli(); // Stop interrupts
  7007. thermalManager.disable_all_heaters();
  7008. disable_all_steppers();
  7009. #if HAS_POWER_SWITCH
  7010. pinMode(PS_ON_PIN, INPUT);
  7011. #endif
  7012. SERIAL_ERROR_START;
  7013. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7014. // FMC small patch to update the LCD before ending
  7015. sei(); // enable interrupts
  7016. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  7017. cli(); // disable interrupts
  7018. suicide();
  7019. while (1) {
  7020. #if ENABLED(USE_WATCHDOG)
  7021. watchdog_reset();
  7022. #endif
  7023. } // Wait for reset
  7024. }
  7025. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7026. void handle_filament_runout() {
  7027. if (!filament_ran_out) {
  7028. filament_ran_out = true;
  7029. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7030. stepper.synchronize();
  7031. }
  7032. }
  7033. #endif // FILAMENT_RUNOUT_SENSOR
  7034. #if ENABLED(FAST_PWM_FAN)
  7035. void setPwmFrequency(uint8_t pin, int val) {
  7036. val &= 0x07;
  7037. switch (digitalPinToTimer(pin)) {
  7038. #if defined(TCCR0A)
  7039. case TIMER0A:
  7040. case TIMER0B:
  7041. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7042. // TCCR0B |= val;
  7043. break;
  7044. #endif
  7045. #if defined(TCCR1A)
  7046. case TIMER1A:
  7047. case TIMER1B:
  7048. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7049. // TCCR1B |= val;
  7050. break;
  7051. #endif
  7052. #if defined(TCCR2)
  7053. case TIMER2:
  7054. case TIMER2:
  7055. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7056. TCCR2 |= val;
  7057. break;
  7058. #endif
  7059. #if defined(TCCR2A)
  7060. case TIMER2A:
  7061. case TIMER2B:
  7062. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7063. TCCR2B |= val;
  7064. break;
  7065. #endif
  7066. #if defined(TCCR3A)
  7067. case TIMER3A:
  7068. case TIMER3B:
  7069. case TIMER3C:
  7070. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7071. TCCR3B |= val;
  7072. break;
  7073. #endif
  7074. #if defined(TCCR4A)
  7075. case TIMER4A:
  7076. case TIMER4B:
  7077. case TIMER4C:
  7078. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7079. TCCR4B |= val;
  7080. break;
  7081. #endif
  7082. #if defined(TCCR5A)
  7083. case TIMER5A:
  7084. case TIMER5B:
  7085. case TIMER5C:
  7086. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7087. TCCR5B |= val;
  7088. break;
  7089. #endif
  7090. }
  7091. }
  7092. #endif // FAST_PWM_FAN
  7093. void stop() {
  7094. thermalManager.disable_all_heaters();
  7095. if (IsRunning()) {
  7096. Running = false;
  7097. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7098. SERIAL_ERROR_START;
  7099. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7100. LCD_MESSAGEPGM(MSG_STOPPED);
  7101. }
  7102. }
  7103. float calculate_volumetric_multiplier(float diameter) {
  7104. if (!volumetric_enabled || diameter == 0) return 1.0;
  7105. float d2 = diameter * 0.5;
  7106. return 1.0 / (M_PI * d2 * d2);
  7107. }
  7108. void calculate_volumetric_multipliers() {
  7109. for (int i = 0; i < EXTRUDERS; i++)
  7110. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7111. }