My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

Marlin_main.cpp 185KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0
  31. #if defined(MESH_BED_LEVELING)
  32. #include "mesh_bed_leveling.h"
  33. #endif // MESH_BED_LEVELING
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. #ifdef ENABLE_AUTO_BED_LEVELING
  185. int xy_travel_speed = XY_TRAVEL_SPEED;
  186. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  187. #endif
  188. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  189. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  190. int feedmultiply = 100; //100->1 200->2
  191. int saved_feedmultiply;
  192. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  193. bool volumetric_enabled = false;
  194. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  195. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  196. float current_position[NUM_AXIS] = { 0.0 };
  197. float home_offset[3] = { 0 };
  198. #ifdef DELTA
  199. float endstop_adj[3] = { 0 };
  200. #elif defined(Z_DUAL_ENDSTOPS)
  201. float z_endstop_adj = 0;
  202. #endif
  203. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  204. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  205. bool axis_known_position[3] = { false };
  206. // Extruder offsets
  207. #if EXTRUDERS > 1
  208. #ifndef EXTRUDER_OFFSET_X
  209. #define EXTRUDER_OFFSET_X { 0 }
  210. #endif
  211. #ifndef EXTRUDER_OFFSET_Y
  212. #define EXTRUDER_OFFSET_Y { 0 }
  213. #endif
  214. float extruder_offset[][EXTRUDERS] = {
  215. EXTRUDER_OFFSET_X,
  216. EXTRUDER_OFFSET_Y
  217. #ifdef DUAL_X_CARRIAGE
  218. , { 0 } // supports offsets in XYZ plane
  219. #endif
  220. };
  221. #endif
  222. uint8_t active_extruder = 0;
  223. int fanSpeed = 0;
  224. #ifdef SERVO_ENDSTOPS
  225. int servo_endstops[] = SERVO_ENDSTOPS;
  226. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  227. #endif
  228. #ifdef BARICUDA
  229. int ValvePressure = 0;
  230. int EtoPPressure = 0;
  231. #endif
  232. #ifdef FWRETRACT
  233. bool autoretract_enabled = false;
  234. bool retracted[EXTRUDERS] = { false };
  235. bool retracted_swap[EXTRUDERS] = { false };
  236. float retract_length = RETRACT_LENGTH;
  237. float retract_length_swap = RETRACT_LENGTH_SWAP;
  238. float retract_feedrate = RETRACT_FEEDRATE;
  239. float retract_zlift = RETRACT_ZLIFT;
  240. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  241. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  242. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  243. #endif // FWRETRACT
  244. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  245. bool powersupply =
  246. #ifdef PS_DEFAULT_OFF
  247. false
  248. #else
  249. true
  250. #endif
  251. ;
  252. #endif
  253. #ifdef DELTA
  254. float delta[3] = { 0, 0, 0 };
  255. #define SIN_60 0.8660254037844386
  256. #define COS_60 0.5
  257. // these are the default values, can be overriden with M665
  258. float delta_radius = DELTA_RADIUS;
  259. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  260. float delta_tower1_y = -COS_60 * delta_radius;
  261. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  262. float delta_tower2_y = -COS_60 * delta_radius;
  263. float delta_tower3_x = 0; // back middle tower
  264. float delta_tower3_y = delta_radius;
  265. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  266. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  267. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  268. #ifdef ENABLE_AUTO_BED_LEVELING
  269. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  270. #endif
  271. #endif
  272. #ifdef SCARA
  273. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  274. static float delta[3] = { 0, 0, 0 };
  275. #endif
  276. bool cancel_heatup = false;
  277. #ifdef FILAMENT_SENSOR
  278. //Variables for Filament Sensor input
  279. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  280. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  281. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  282. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  283. int delay_index1 = 0; //index into ring buffer
  284. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  285. float delay_dist = 0; //delay distance counter
  286. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  287. #endif
  288. #ifdef FILAMENT_RUNOUT_SENSOR
  289. static bool filrunoutEnqued = false;
  290. #endif
  291. const char errormagic[] PROGMEM = "Error:";
  292. const char echomagic[] PROGMEM = "echo:";
  293. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  294. static float destination[NUM_AXIS] = { 0 };
  295. static float offset[3] = { 0 };
  296. #ifndef DELTA
  297. static bool home_all_axis = true;
  298. #endif
  299. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  300. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  301. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  302. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  303. #ifdef SDSUPPORT
  304. static bool fromsd[BUFSIZE];
  305. #endif
  306. static int bufindr = 0;
  307. static int bufindw = 0;
  308. static int buflen = 0;
  309. static char serial_char;
  310. static int serial_count = 0;
  311. static boolean comment_mode = false;
  312. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  313. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  314. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  315. // Inactivity shutdown
  316. static unsigned long previous_millis_cmd = 0;
  317. static unsigned long max_inactive_time = 0;
  318. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  319. unsigned long starttime = 0; ///< Print job start time
  320. unsigned long stoptime = 0; ///< Print job stop time
  321. static uint8_t tmp_extruder;
  322. bool Stopped = false;
  323. #if NUM_SERVOS > 0
  324. Servo servos[NUM_SERVOS];
  325. #endif
  326. bool CooldownNoWait = true;
  327. bool target_direction;
  328. #ifdef CHDK
  329. unsigned long chdkHigh = 0;
  330. boolean chdkActive = false;
  331. #endif
  332. //===========================================================================
  333. //=============================Routines======================================
  334. //===========================================================================
  335. void get_arc_coordinates();
  336. bool setTargetedHotend(int code);
  337. void serial_echopair_P(const char *s_P, float v)
  338. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  339. void serial_echopair_P(const char *s_P, double v)
  340. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  341. void serial_echopair_P(const char *s_P, unsigned long v)
  342. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  343. #ifdef SDSUPPORT
  344. #include "SdFatUtil.h"
  345. int freeMemory() { return SdFatUtil::FreeRam(); }
  346. #else
  347. extern "C" {
  348. extern unsigned int __bss_end;
  349. extern unsigned int __heap_start;
  350. extern void *__brkval;
  351. int freeMemory() {
  352. int free_memory;
  353. if ((int)__brkval == 0)
  354. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  355. else
  356. free_memory = ((int)&free_memory) - ((int)__brkval);
  357. return free_memory;
  358. }
  359. }
  360. #endif //!SDSUPPORT
  361. //Injects the next command from the pending sequence of commands, when possible
  362. //Return false if and only if no command was pending
  363. static bool drain_queued_commands_P()
  364. {
  365. char cmd[30];
  366. if(!queued_commands_P)
  367. return false;
  368. // Get the next 30 chars from the sequence of gcodes to run
  369. strncpy_P(cmd, queued_commands_P, sizeof(cmd)-1);
  370. cmd[sizeof(cmd)-1]= 0;
  371. // Look for the end of line, or the end of sequence
  372. size_t i= 0;
  373. char c;
  374. while( (c= cmd[i]) && c!='\n' )
  375. ++i; // look for the end of this gcode command
  376. cmd[i]= 0;
  377. if(enquecommand(cmd)) // buffer was not full (else we will retry later)
  378. {
  379. if(c)
  380. queued_commands_P+= i+1; // move to next command
  381. else
  382. queued_commands_P= NULL; // will have no more commands in the sequence
  383. }
  384. return true;
  385. }
  386. //Record one or many commands to run from program memory.
  387. //Aborts the current queue, if any.
  388. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  389. void enquecommands_P(const char* pgcode)
  390. {
  391. queued_commands_P= pgcode;
  392. drain_queued_commands_P(); // first command exectuted asap (when possible)
  393. }
  394. //adds a single command to the main command buffer, from RAM
  395. //that is really done in a non-safe way.
  396. //needs overworking someday
  397. //Returns false if it failed to do so
  398. bool enquecommand(const char *cmd)
  399. {
  400. if(*cmd==';')
  401. return false;
  402. if(buflen >= BUFSIZE)
  403. return false;
  404. //this is dangerous if a mixing of serial and this happens
  405. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  406. SERIAL_ECHO_START;
  407. SERIAL_ECHOPGM(MSG_Enqueing);
  408. SERIAL_ECHO(cmdbuffer[bufindw]);
  409. SERIAL_ECHOLNPGM("\"");
  410. bufindw= (bufindw + 1)%BUFSIZE;
  411. buflen += 1;
  412. return true;
  413. }
  414. void setup_killpin()
  415. {
  416. #if defined(KILL_PIN) && KILL_PIN > -1
  417. SET_INPUT(KILL_PIN);
  418. WRITE(KILL_PIN,HIGH);
  419. #endif
  420. }
  421. void setup_filrunoutpin()
  422. {
  423. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  424. pinMode(FILRUNOUT_PIN,INPUT);
  425. #if defined(ENDSTOPPULLUP_FIL_RUNOUT)
  426. WRITE(FILLRUNOUT_PIN,HIGH);
  427. #endif
  428. #endif
  429. }
  430. // Set home pin
  431. void setup_homepin(void)
  432. {
  433. #if defined(HOME_PIN) && HOME_PIN > -1
  434. SET_INPUT(HOME_PIN);
  435. WRITE(HOME_PIN,HIGH);
  436. #endif
  437. }
  438. void setup_photpin()
  439. {
  440. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  441. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  442. #endif
  443. }
  444. void setup_powerhold()
  445. {
  446. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  447. OUT_WRITE(SUICIDE_PIN, HIGH);
  448. #endif
  449. #if HAS_POWER_SWITCH
  450. #ifdef PS_DEFAULT_OFF
  451. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  452. #else
  453. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  454. #endif
  455. #endif
  456. }
  457. void suicide()
  458. {
  459. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  460. OUT_WRITE(SUICIDE_PIN, LOW);
  461. #endif
  462. }
  463. void servo_init()
  464. {
  465. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  466. servos[0].attach(SERVO0_PIN);
  467. #endif
  468. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  469. servos[1].attach(SERVO1_PIN);
  470. #endif
  471. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  472. servos[2].attach(SERVO2_PIN);
  473. #endif
  474. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  475. servos[3].attach(SERVO3_PIN);
  476. #endif
  477. #if (NUM_SERVOS >= 5)
  478. #error "TODO: enter initalisation code for more servos"
  479. #endif
  480. // Set position of Servo Endstops that are defined
  481. #ifdef SERVO_ENDSTOPS
  482. for(int8_t i = 0; i < 3; i++)
  483. {
  484. if(servo_endstops[i] > -1) {
  485. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  486. }
  487. }
  488. #endif
  489. #if SERVO_LEVELING
  490. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  491. servos[servo_endstops[Z_AXIS]].detach();
  492. #endif
  493. }
  494. void setup()
  495. {
  496. setup_killpin();
  497. setup_filrunoutpin();
  498. setup_powerhold();
  499. MYSERIAL.begin(BAUDRATE);
  500. SERIAL_PROTOCOLLNPGM("start");
  501. SERIAL_ECHO_START;
  502. // Check startup - does nothing if bootloader sets MCUSR to 0
  503. byte mcu = MCUSR;
  504. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  505. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  506. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  507. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  508. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  509. MCUSR=0;
  510. SERIAL_ECHOPGM(MSG_MARLIN);
  511. SERIAL_ECHOLNPGM(STRING_VERSION);
  512. #ifdef STRING_VERSION_CONFIG_H
  513. #ifdef STRING_CONFIG_H_AUTHOR
  514. SERIAL_ECHO_START;
  515. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  516. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  517. SERIAL_ECHOPGM(MSG_AUTHOR);
  518. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  519. SERIAL_ECHOPGM("Compiled: ");
  520. SERIAL_ECHOLNPGM(__DATE__);
  521. #endif // STRING_CONFIG_H_AUTHOR
  522. #endif // STRING_VERSION_CONFIG_H
  523. SERIAL_ECHO_START;
  524. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  525. SERIAL_ECHO(freeMemory());
  526. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  527. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  528. #ifdef SDSUPPORT
  529. for(int8_t i = 0; i < BUFSIZE; i++)
  530. {
  531. fromsd[i] = false;
  532. }
  533. #endif //!SDSUPPORT
  534. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  535. Config_RetrieveSettings();
  536. tp_init(); // Initialize temperature loop
  537. plan_init(); // Initialize planner;
  538. watchdog_init();
  539. st_init(); // Initialize stepper, this enables interrupts!
  540. setup_photpin();
  541. servo_init();
  542. lcd_init();
  543. _delay_ms(1000); // wait 1sec to display the splash screen
  544. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  545. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  546. #endif
  547. #ifdef DIGIPOT_I2C
  548. digipot_i2c_init();
  549. #endif
  550. #ifdef Z_PROBE_SLED
  551. pinMode(SERVO0_PIN, OUTPUT);
  552. digitalWrite(SERVO0_PIN, LOW); // turn it off
  553. #endif // Z_PROBE_SLED
  554. setup_homepin();
  555. #ifdef STAT_LED_RED
  556. pinMode(STAT_LED_RED, OUTPUT);
  557. digitalWrite(STAT_LED_RED, LOW); // turn it off
  558. #endif
  559. #ifdef STAT_LED_BLUE
  560. pinMode(STAT_LED_BLUE, OUTPUT);
  561. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  562. #endif
  563. }
  564. void loop()
  565. {
  566. if(buflen < (BUFSIZE-1))
  567. get_command();
  568. #ifdef SDSUPPORT
  569. card.checkautostart(false);
  570. #endif
  571. if(buflen)
  572. {
  573. #ifdef SDSUPPORT
  574. if(card.saving)
  575. {
  576. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  577. {
  578. card.write_command(cmdbuffer[bufindr]);
  579. if(card.logging)
  580. {
  581. process_commands();
  582. }
  583. else
  584. {
  585. SERIAL_PROTOCOLLNPGM(MSG_OK);
  586. }
  587. }
  588. else
  589. {
  590. card.closefile();
  591. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  592. }
  593. }
  594. else
  595. {
  596. process_commands();
  597. }
  598. #else
  599. process_commands();
  600. #endif //SDSUPPORT
  601. buflen = (buflen-1);
  602. bufindr = (bufindr + 1)%BUFSIZE;
  603. }
  604. //check heater every n milliseconds
  605. manage_heater();
  606. manage_inactivity();
  607. checkHitEndstops();
  608. lcd_update();
  609. }
  610. void get_command()
  611. {
  612. if(drain_queued_commands_P()) // priority is given to non-serial commands
  613. return;
  614. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  615. serial_char = MYSERIAL.read();
  616. if(serial_char == '\n' ||
  617. serial_char == '\r' ||
  618. serial_count >= (MAX_CMD_SIZE - 1) )
  619. {
  620. // end of line == end of comment
  621. comment_mode = false;
  622. if(!serial_count) {
  623. // short cut for empty lines
  624. return;
  625. }
  626. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  627. #ifdef SDSUPPORT
  628. fromsd[bufindw] = false;
  629. #endif //!SDSUPPORT
  630. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  631. {
  632. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  633. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  634. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  635. SERIAL_ERROR_START;
  636. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  637. SERIAL_ERRORLN(gcode_LastN);
  638. //Serial.println(gcode_N);
  639. FlushSerialRequestResend();
  640. serial_count = 0;
  641. return;
  642. }
  643. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  644. {
  645. byte checksum = 0;
  646. byte count = 0;
  647. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  648. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  649. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  650. SERIAL_ERROR_START;
  651. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  652. SERIAL_ERRORLN(gcode_LastN);
  653. FlushSerialRequestResend();
  654. serial_count = 0;
  655. return;
  656. }
  657. //if no errors, continue parsing
  658. }
  659. else
  660. {
  661. SERIAL_ERROR_START;
  662. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  663. SERIAL_ERRORLN(gcode_LastN);
  664. FlushSerialRequestResend();
  665. serial_count = 0;
  666. return;
  667. }
  668. gcode_LastN = gcode_N;
  669. //if no errors, continue parsing
  670. }
  671. else // if we don't receive 'N' but still see '*'
  672. {
  673. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  674. {
  675. SERIAL_ERROR_START;
  676. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  677. SERIAL_ERRORLN(gcode_LastN);
  678. serial_count = 0;
  679. return;
  680. }
  681. }
  682. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  683. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  684. switch(strtol(strchr_pointer + 1, NULL, 10)){
  685. case 0:
  686. case 1:
  687. case 2:
  688. case 3:
  689. if (Stopped == true) {
  690. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  691. LCD_MESSAGEPGM(MSG_STOPPED);
  692. }
  693. break;
  694. default:
  695. break;
  696. }
  697. }
  698. //If command was e-stop process now
  699. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  700. kill();
  701. bufindw = (bufindw + 1)%BUFSIZE;
  702. buflen += 1;
  703. serial_count = 0; //clear buffer
  704. }
  705. else if(serial_char == '\\') { //Handle escapes
  706. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  707. // if we have one more character, copy it over
  708. serial_char = MYSERIAL.read();
  709. cmdbuffer[bufindw][serial_count++] = serial_char;
  710. }
  711. //otherwise do nothing
  712. }
  713. else { // its not a newline, carriage return or escape char
  714. if(serial_char == ';') comment_mode = true;
  715. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  716. }
  717. }
  718. #ifdef SDSUPPORT
  719. if(!card.sdprinting || serial_count!=0){
  720. return;
  721. }
  722. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  723. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  724. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  725. static bool stop_buffering=false;
  726. if(buflen==0) stop_buffering=false;
  727. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  728. int16_t n=card.get();
  729. serial_char = (char)n;
  730. if(serial_char == '\n' ||
  731. serial_char == '\r' ||
  732. (serial_char == '#' && comment_mode == false) ||
  733. (serial_char == ':' && comment_mode == false) ||
  734. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  735. {
  736. if(card.eof()){
  737. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  738. stoptime=millis();
  739. char time[30];
  740. unsigned long t=(stoptime-starttime)/1000;
  741. int hours, minutes;
  742. minutes=(t/60)%60;
  743. hours=t/60/60;
  744. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  745. SERIAL_ECHO_START;
  746. SERIAL_ECHOLN(time);
  747. lcd_setstatus(time, true);
  748. card.printingHasFinished();
  749. card.checkautostart(true);
  750. }
  751. if(serial_char=='#')
  752. stop_buffering=true;
  753. if(!serial_count)
  754. {
  755. comment_mode = false; //for new command
  756. return; //if empty line
  757. }
  758. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  759. // if(!comment_mode){
  760. fromsd[bufindw] = true;
  761. buflen += 1;
  762. bufindw = (bufindw + 1)%BUFSIZE;
  763. // }
  764. comment_mode = false; //for new command
  765. serial_count = 0; //clear buffer
  766. }
  767. else
  768. {
  769. if(serial_char == ';') comment_mode = true;
  770. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  771. }
  772. }
  773. #endif //SDSUPPORT
  774. }
  775. float code_value() {
  776. float ret;
  777. char *e = strchr(strchr_pointer, 'E');
  778. if (e) {
  779. *e = 0;
  780. ret = strtod(strchr_pointer+1, NULL);
  781. *e = 'E';
  782. }
  783. else
  784. ret = strtod(strchr_pointer+1, NULL);
  785. return ret;
  786. }
  787. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  788. bool code_seen(char code) {
  789. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  790. return (strchr_pointer != NULL); //Return True if a character was found
  791. }
  792. #define DEFINE_PGM_READ_ANY(type, reader) \
  793. static inline type pgm_read_any(const type *p) \
  794. { return pgm_read_##reader##_near(p); }
  795. DEFINE_PGM_READ_ANY(float, float);
  796. DEFINE_PGM_READ_ANY(signed char, byte);
  797. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  798. static const PROGMEM type array##_P[3] = \
  799. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  800. static inline type array(int axis) \
  801. { return pgm_read_any(&array##_P[axis]); }
  802. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  803. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  804. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  805. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  806. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  807. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  808. #ifdef DUAL_X_CARRIAGE
  809. #define DXC_FULL_CONTROL_MODE 0
  810. #define DXC_AUTO_PARK_MODE 1
  811. #define DXC_DUPLICATION_MODE 2
  812. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  813. static float x_home_pos(int extruder) {
  814. if (extruder == 0)
  815. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  816. else
  817. // In dual carriage mode the extruder offset provides an override of the
  818. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  819. // This allow soft recalibration of the second extruder offset position without firmware reflash
  820. // (through the M218 command).
  821. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  822. }
  823. static int x_home_dir(int extruder) {
  824. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  825. }
  826. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  827. static bool active_extruder_parked = false; // used in mode 1 & 2
  828. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  829. static unsigned long delayed_move_time = 0; // used in mode 1
  830. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  831. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  832. bool extruder_duplication_enabled = false; // used in mode 2
  833. #endif //DUAL_X_CARRIAGE
  834. static void axis_is_at_home(int axis) {
  835. #ifdef DUAL_X_CARRIAGE
  836. if (axis == X_AXIS) {
  837. if (active_extruder != 0) {
  838. current_position[X_AXIS] = x_home_pos(active_extruder);
  839. min_pos[X_AXIS] = X2_MIN_POS;
  840. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  841. return;
  842. }
  843. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  844. float xoff = home_offset[X_AXIS];
  845. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  846. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  847. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  848. return;
  849. }
  850. }
  851. #endif
  852. #ifdef SCARA
  853. float homeposition[3];
  854. if (axis < 2) {
  855. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  856. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  857. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  858. // Works out real Homeposition angles using inverse kinematics,
  859. // and calculates homing offset using forward kinematics
  860. calculate_delta(homeposition);
  861. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  862. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  863. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  864. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  865. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  866. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  867. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  868. calculate_SCARA_forward_Transform(delta);
  869. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  870. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  871. current_position[axis] = delta[axis];
  872. // SCARA home positions are based on configuration since the actual limits are determined by the
  873. // inverse kinematic transform.
  874. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  875. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  876. }
  877. else {
  878. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  879. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  880. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  881. }
  882. #else
  883. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  884. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  885. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  886. #endif
  887. }
  888. /**
  889. * Some planner shorthand inline functions
  890. */
  891. inline void line_to_current_position() {
  892. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  893. }
  894. inline void line_to_z(float zPosition) {
  895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  896. }
  897. inline void line_to_destination() {
  898. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  899. }
  900. inline void sync_plan_position() {
  901. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  902. }
  903. #if defined(DELTA) || defined(SCARA)
  904. inline void sync_plan_position_delta() {
  905. calculate_delta(current_position);
  906. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  907. }
  908. #endif
  909. #ifdef ENABLE_AUTO_BED_LEVELING
  910. #ifdef AUTO_BED_LEVELING_GRID
  911. #ifndef DELTA
  912. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  913. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  914. planeNormal.debug("planeNormal");
  915. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  916. //bedLevel.debug("bedLevel");
  917. //plan_bed_level_matrix.debug("bed level before");
  918. //vector_3 uncorrected_position = plan_get_position_mm();
  919. //uncorrected_position.debug("position before");
  920. vector_3 corrected_position = plan_get_position();
  921. //corrected_position.debug("position after");
  922. current_position[X_AXIS] = corrected_position.x;
  923. current_position[Y_AXIS] = corrected_position.y;
  924. current_position[Z_AXIS] = corrected_position.z;
  925. sync_plan_position();
  926. }
  927. #endif // !DELTA
  928. #else // !AUTO_BED_LEVELING_GRID
  929. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  930. plan_bed_level_matrix.set_to_identity();
  931. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  932. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  933. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  934. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  935. if (planeNormal.z < 0) {
  936. planeNormal.x = -planeNormal.x;
  937. planeNormal.y = -planeNormal.y;
  938. planeNormal.z = -planeNormal.z;
  939. }
  940. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  941. vector_3 corrected_position = plan_get_position();
  942. current_position[X_AXIS] = corrected_position.x;
  943. current_position[Y_AXIS] = corrected_position.y;
  944. current_position[Z_AXIS] = corrected_position.z;
  945. sync_plan_position();
  946. }
  947. #endif // !AUTO_BED_LEVELING_GRID
  948. static void run_z_probe() {
  949. #ifdef DELTA
  950. float start_z = current_position[Z_AXIS];
  951. long start_steps = st_get_position(Z_AXIS);
  952. // move down slowly until you find the bed
  953. feedrate = homing_feedrate[Z_AXIS] / 4;
  954. destination[Z_AXIS] = -10;
  955. prepare_move_raw();
  956. st_synchronize();
  957. endstops_hit_on_purpose(); // clear endstop hit flags
  958. // we have to let the planner know where we are right now as it is not where we said to go.
  959. long stop_steps = st_get_position(Z_AXIS);
  960. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  961. current_position[Z_AXIS] = mm;
  962. sync_plan_position_delta();
  963. #else // !DELTA
  964. plan_bed_level_matrix.set_to_identity();
  965. feedrate = homing_feedrate[Z_AXIS];
  966. // move down until you find the bed
  967. float zPosition = -10;
  968. line_to_z(zPosition);
  969. st_synchronize();
  970. // we have to let the planner know where we are right now as it is not where we said to go.
  971. zPosition = st_get_position_mm(Z_AXIS);
  972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  973. // move up the retract distance
  974. zPosition += home_retract_mm(Z_AXIS);
  975. line_to_z(zPosition);
  976. st_synchronize();
  977. endstops_hit_on_purpose(); // clear endstop hit flags
  978. // move back down slowly to find bed
  979. if (homing_bump_divisor[Z_AXIS] >= 1)
  980. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  981. else {
  982. feedrate = homing_feedrate[Z_AXIS] / 10;
  983. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  984. }
  985. zPosition -= home_retract_mm(Z_AXIS) * 2;
  986. line_to_z(zPosition);
  987. st_synchronize();
  988. endstops_hit_on_purpose(); // clear endstop hit flags
  989. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  990. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  991. sync_plan_position();
  992. #endif // !DELTA
  993. }
  994. static void do_blocking_move_to(float x, float y, float z) {
  995. float oldFeedRate = feedrate;
  996. #ifdef DELTA
  997. feedrate = XY_TRAVEL_SPEED;
  998. destination[X_AXIS] = x;
  999. destination[Y_AXIS] = y;
  1000. destination[Z_AXIS] = z;
  1001. prepare_move_raw();
  1002. st_synchronize();
  1003. #else
  1004. feedrate = homing_feedrate[Z_AXIS];
  1005. current_position[Z_AXIS] = z;
  1006. line_to_current_position();
  1007. st_synchronize();
  1008. feedrate = xy_travel_speed;
  1009. current_position[X_AXIS] = x;
  1010. current_position[Y_AXIS] = y;
  1011. line_to_current_position();
  1012. st_synchronize();
  1013. #endif
  1014. feedrate = oldFeedRate;
  1015. }
  1016. static void setup_for_endstop_move() {
  1017. saved_feedrate = feedrate;
  1018. saved_feedmultiply = feedmultiply;
  1019. feedmultiply = 100;
  1020. previous_millis_cmd = millis();
  1021. enable_endstops(true);
  1022. }
  1023. static void clean_up_after_endstop_move() {
  1024. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1025. enable_endstops(false);
  1026. #endif
  1027. feedrate = saved_feedrate;
  1028. feedmultiply = saved_feedmultiply;
  1029. previous_millis_cmd = millis();
  1030. }
  1031. static void engage_z_probe() {
  1032. #ifdef SERVO_ENDSTOPS
  1033. // Engage Z Servo endstop if enabled
  1034. if (servo_endstops[Z_AXIS] >= 0) {
  1035. #if SERVO_LEVELING
  1036. servos[servo_endstops[Z_AXIS]].attach(0);
  1037. #endif
  1038. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1039. #if SERVO_LEVELING
  1040. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1041. servos[servo_endstops[Z_AXIS]].detach();
  1042. #endif
  1043. }
  1044. #elif defined(Z_PROBE_ALLEN_KEY)
  1045. feedrate = homing_feedrate[X_AXIS];
  1046. // Move to the start position to initiate deployment
  1047. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1048. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1049. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1050. prepare_move_raw();
  1051. // Home X to touch the belt
  1052. feedrate = homing_feedrate[X_AXIS]/10;
  1053. destination[X_AXIS] = 0;
  1054. prepare_move_raw();
  1055. // Home Y for safety
  1056. feedrate = homing_feedrate[X_AXIS]/2;
  1057. destination[Y_AXIS] = 0;
  1058. prepare_move_raw();
  1059. st_synchronize();
  1060. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1061. if (z_min_endstop) {
  1062. if (!Stopped) {
  1063. SERIAL_ERROR_START;
  1064. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1065. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1066. }
  1067. Stop();
  1068. }
  1069. #endif // Z_PROBE_ALLEN_KEY
  1070. }
  1071. static void retract_z_probe() {
  1072. #ifdef SERVO_ENDSTOPS
  1073. // Retract Z Servo endstop if enabled
  1074. if (servo_endstops[Z_AXIS] >= 0) {
  1075. #if Z_RAISE_AFTER_PROBING > 0
  1076. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1077. st_synchronize();
  1078. #endif
  1079. #if SERVO_LEVELING
  1080. servos[servo_endstops[Z_AXIS]].attach(0);
  1081. #endif
  1082. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1083. #if SERVO_LEVELING
  1084. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1085. servos[servo_endstops[Z_AXIS]].detach();
  1086. #endif
  1087. }
  1088. #elif defined(Z_PROBE_ALLEN_KEY)
  1089. // Move up for safety
  1090. feedrate = homing_feedrate[X_AXIS];
  1091. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1092. prepare_move_raw();
  1093. // Move to the start position to initiate retraction
  1094. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_X;
  1095. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Y;
  1096. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_RETRACT_Z;
  1097. prepare_move_raw();
  1098. // Move the nozzle down to push the probe into retracted position
  1099. feedrate = homing_feedrate[Z_AXIS]/10;
  1100. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_RETRACT_DEPTH;
  1101. prepare_move_raw();
  1102. // Move up for safety
  1103. feedrate = homing_feedrate[Z_AXIS]/2;
  1104. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_RETRACT_DEPTH * 2;
  1105. prepare_move_raw();
  1106. // Home XY for safety
  1107. feedrate = homing_feedrate[X_AXIS]/2;
  1108. destination[X_AXIS] = 0;
  1109. destination[Y_AXIS] = 0;
  1110. prepare_move_raw();
  1111. st_synchronize();
  1112. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1113. if (!z_min_endstop) {
  1114. if (!Stopped) {
  1115. SERIAL_ERROR_START;
  1116. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1117. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1118. }
  1119. Stop();
  1120. }
  1121. #endif
  1122. }
  1123. enum ProbeAction {
  1124. ProbeStay = 0,
  1125. ProbeEngage = BIT(0),
  1126. ProbeRetract = BIT(1),
  1127. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1128. };
  1129. // Probe bed height at position (x,y), returns the measured z value
  1130. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1131. // move to right place
  1132. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1133. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1134. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1135. if (retract_action & ProbeEngage) engage_z_probe();
  1136. #endif
  1137. run_z_probe();
  1138. float measured_z = current_position[Z_AXIS];
  1139. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1140. if (retract_action == ProbeStay) {
  1141. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1142. st_synchronize();
  1143. }
  1144. #endif
  1145. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1146. if (retract_action & ProbeRetract) retract_z_probe();
  1147. #endif
  1148. if (verbose_level > 2) {
  1149. SERIAL_PROTOCOLPGM(MSG_BED);
  1150. SERIAL_PROTOCOLPGM(" X: ");
  1151. SERIAL_PROTOCOL_F(x, 3);
  1152. SERIAL_PROTOCOLPGM(" Y: ");
  1153. SERIAL_PROTOCOL_F(y, 3);
  1154. SERIAL_PROTOCOLPGM(" Z: ");
  1155. SERIAL_PROTOCOL_F(measured_z, 3);
  1156. SERIAL_EOL;
  1157. }
  1158. return measured_z;
  1159. }
  1160. #ifdef DELTA
  1161. /**
  1162. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1163. */
  1164. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1165. if (bed_level[x][y] != 0.0) {
  1166. return; // Don't overwrite good values.
  1167. }
  1168. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1169. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1170. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1171. float median = c; // Median is robust (ignores outliers).
  1172. if (a < b) {
  1173. if (b < c) median = b;
  1174. if (c < a) median = a;
  1175. } else { // b <= a
  1176. if (c < b) median = b;
  1177. if (a < c) median = a;
  1178. }
  1179. bed_level[x][y] = median;
  1180. }
  1181. // Fill in the unprobed points (corners of circular print surface)
  1182. // using linear extrapolation, away from the center.
  1183. static void extrapolate_unprobed_bed_level() {
  1184. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1185. for (int y = 0; y <= half; y++) {
  1186. for (int x = 0; x <= half; x++) {
  1187. if (x + y < 3) continue;
  1188. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1189. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1190. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1191. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1192. }
  1193. }
  1194. }
  1195. // Print calibration results for plotting or manual frame adjustment.
  1196. static void print_bed_level() {
  1197. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1198. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1199. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1200. SERIAL_PROTOCOLPGM(" ");
  1201. }
  1202. SERIAL_ECHOLN("");
  1203. }
  1204. }
  1205. // Reset calibration results to zero.
  1206. void reset_bed_level() {
  1207. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1208. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1209. bed_level[x][y] = 0.0;
  1210. }
  1211. }
  1212. }
  1213. #endif // DELTA
  1214. #endif // ENABLE_AUTO_BED_LEVELING
  1215. /**
  1216. * Home an individual axis
  1217. */
  1218. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1219. static void homeaxis(int axis) {
  1220. #define HOMEAXIS_DO(LETTER) \
  1221. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1222. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1223. int axis_home_dir;
  1224. #ifdef DUAL_X_CARRIAGE
  1225. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1226. #else
  1227. axis_home_dir = home_dir(axis);
  1228. #endif
  1229. // Set the axis position as setup for the move
  1230. current_position[axis] = 0;
  1231. sync_plan_position();
  1232. // Engage Servo endstop if enabled
  1233. #ifdef SERVO_ENDSTOPS && !defined(Z_PROBE_SLED)
  1234. #if SERVO_LEVELING
  1235. if (axis == Z_AXIS) engage_z_probe(); else
  1236. #endif
  1237. {
  1238. if (servo_endstops[axis] > -1)
  1239. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1240. }
  1241. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1242. #ifdef Z_DUAL_ENDSTOPS
  1243. if (axis == Z_AXIS) In_Homing_Process(true);
  1244. #endif
  1245. // Move towards the endstop until an endstop is triggered
  1246. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1247. feedrate = homing_feedrate[axis];
  1248. line_to_destination();
  1249. st_synchronize();
  1250. // Set the axis position as setup for the move
  1251. current_position[axis] = 0;
  1252. sync_plan_position();
  1253. // Move away from the endstop by the axis HOME_RETRACT_MM
  1254. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  1255. line_to_destination();
  1256. st_synchronize();
  1257. // Slow down the feedrate for the next move
  1258. if (homing_bump_divisor[axis] >= 1)
  1259. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1260. else {
  1261. feedrate = homing_feedrate[axis] / 10;
  1262. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1263. }
  1264. // Move slowly towards the endstop until triggered
  1265. destination[axis] = 2 * home_retract_mm(axis) * axis_home_dir;
  1266. line_to_destination();
  1267. st_synchronize();
  1268. #ifdef Z_DUAL_ENDSTOPS
  1269. if (axis == Z_AXIS) {
  1270. float adj = fabs(z_endstop_adj);
  1271. bool lockZ1;
  1272. if (axis_home_dir > 0) {
  1273. adj = -adj;
  1274. lockZ1 = (z_endstop_adj > 0);
  1275. }
  1276. else
  1277. lockZ1 = (z_endstop_adj < 0);
  1278. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1279. sync_plan_position();
  1280. // Move to the adjusted endstop height
  1281. feedrate = homing_feedrate[axis];
  1282. destination[Z_AXIS] = adj;
  1283. line_to_destination();
  1284. st_synchronize();
  1285. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1286. In_Homing_Process(false);
  1287. } // Z_AXIS
  1288. #endif
  1289. #ifdef DELTA
  1290. // retrace by the amount specified in endstop_adj
  1291. if (endstop_adj[axis] * axis_home_dir < 0) {
  1292. sync_plan_position();
  1293. destination[axis] = endstop_adj[axis];
  1294. line_to_destination();
  1295. st_synchronize();
  1296. }
  1297. #endif
  1298. // Set the axis position to its home position (plus home offsets)
  1299. axis_is_at_home(axis);
  1300. destination[axis] = current_position[axis];
  1301. feedrate = 0.0;
  1302. endstops_hit_on_purpose(); // clear endstop hit flags
  1303. axis_known_position[axis] = true;
  1304. // Retract Servo endstop if enabled
  1305. #ifdef SERVO_ENDSTOPS
  1306. if (servo_endstops[axis] > -1)
  1307. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1308. #endif
  1309. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1310. if (axis == Z_AXIS) retract_z_probe();
  1311. #endif
  1312. }
  1313. }
  1314. void refresh_cmd_timeout(void) { previous_millis_cmd = millis(); }
  1315. #ifdef FWRETRACT
  1316. void retract(bool retracting, bool swapretract = false) {
  1317. if (retracting == retracted[active_extruder]) return;
  1318. float oldFeedrate = feedrate;
  1319. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1320. if (retracting) {
  1321. feedrate = retract_feedrate * 60;
  1322. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1323. plan_set_e_position(current_position[E_AXIS]);
  1324. prepare_move();
  1325. if (retract_zlift > 0.01) {
  1326. current_position[Z_AXIS] -= retract_zlift;
  1327. #ifdef DELTA
  1328. sync_plan_position_delta();
  1329. #else
  1330. sync_plan_position();
  1331. #endif
  1332. prepare_move();
  1333. }
  1334. }
  1335. else {
  1336. if (retract_zlift > 0.01) {
  1337. current_position[Z_AXIS] + =retract_zlift;
  1338. #ifdef DELTA
  1339. sync_plan_position_delta();
  1340. #else
  1341. sync_plan_position();
  1342. #endif
  1343. //prepare_move();
  1344. }
  1345. feedrate = retract_recover_feedrate * 60;
  1346. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1347. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1348. plan_set_e_position(current_position[E_AXIS]);
  1349. prepare_move();
  1350. }
  1351. feedrate = oldFeedrate;
  1352. retracted[active_extruder] = retract;
  1353. } // retract()
  1354. #endif // FWRETRACT
  1355. #ifdef Z_PROBE_SLED
  1356. #ifndef SLED_DOCKING_OFFSET
  1357. #define SLED_DOCKING_OFFSET 0
  1358. #endif
  1359. //
  1360. // Method to dock/undock a sled designed by Charles Bell.
  1361. //
  1362. // dock[in] If true, move to MAX_X and engage the electromagnet
  1363. // offset[in] The additional distance to move to adjust docking location
  1364. //
  1365. static void dock_sled(bool dock, int offset=0) {
  1366. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1367. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1368. SERIAL_ECHO_START;
  1369. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1370. return;
  1371. }
  1372. if (dock) {
  1373. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1374. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1375. } else {
  1376. float z_loc = current_position[Z_AXIS];
  1377. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1378. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1379. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1380. }
  1381. }
  1382. #endif // Z_PROBE_SLED
  1383. /**
  1384. *
  1385. * G-Code Handler functions
  1386. *
  1387. */
  1388. /**
  1389. * G0, G1: Coordinated movement of X Y Z E axes
  1390. */
  1391. inline void gcode_G0_G1() {
  1392. if (!Stopped) {
  1393. get_coordinates(); // For X Y Z E F
  1394. #ifdef FWRETRACT
  1395. if (autoretract_enabled)
  1396. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1397. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1398. // Is this move an attempt to retract or recover?
  1399. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1400. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1401. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1402. retract(!retracted[active_extruder]);
  1403. return;
  1404. }
  1405. }
  1406. #endif //FWRETRACT
  1407. prepare_move();
  1408. //ClearToSend();
  1409. }
  1410. }
  1411. /**
  1412. * G2: Clockwise Arc
  1413. * G3: Counterclockwise Arc
  1414. */
  1415. inline void gcode_G2_G3(bool clockwise) {
  1416. if (!Stopped) {
  1417. get_arc_coordinates();
  1418. prepare_arc_move(clockwise);
  1419. }
  1420. }
  1421. /**
  1422. * G4: Dwell S<seconds> or P<milliseconds>
  1423. */
  1424. inline void gcode_G4() {
  1425. unsigned long codenum=0;
  1426. LCD_MESSAGEPGM(MSG_DWELL);
  1427. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1428. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1429. st_synchronize();
  1430. previous_millis_cmd = millis();
  1431. codenum += previous_millis_cmd; // keep track of when we started waiting
  1432. while(millis() < codenum) {
  1433. manage_heater();
  1434. manage_inactivity();
  1435. lcd_update();
  1436. }
  1437. }
  1438. #ifdef FWRETRACT
  1439. /**
  1440. * G10 - Retract filament according to settings of M207
  1441. * G11 - Recover filament according to settings of M208
  1442. */
  1443. inline void gcode_G10_G11(bool doRetract=false) {
  1444. #if EXTRUDERS > 1
  1445. if (doRetract) {
  1446. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1447. }
  1448. #endif
  1449. retract(doRetract
  1450. #if EXTRUDERS > 1
  1451. , retracted_swap[active_extruder]
  1452. #endif
  1453. );
  1454. }
  1455. #endif //FWRETRACT
  1456. /**
  1457. * G28: Home all axes according to settings
  1458. *
  1459. * Parameters
  1460. *
  1461. * None Home to all axes with no parameters.
  1462. * With QUICK_HOME enabled XY will home together, then Z.
  1463. *
  1464. * Cartesian parameters
  1465. *
  1466. * X Home to the X endstop
  1467. * Y Home to the Y endstop
  1468. * Z Home to the Z endstop
  1469. *
  1470. * If numbers are included with XYZ set the position as with G92
  1471. * Currently adds the home_offset, which may be wrong and removed soon.
  1472. *
  1473. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1474. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1475. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1476. */
  1477. inline void gcode_G28() {
  1478. #ifdef ENABLE_AUTO_BED_LEVELING
  1479. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1480. #ifdef DELTA
  1481. reset_bed_level();
  1482. #endif
  1483. #endif
  1484. #if defined(MESH_BED_LEVELING)
  1485. uint8_t mbl_was_active = mbl.active;
  1486. mbl.active = 0;
  1487. #endif
  1488. saved_feedrate = feedrate;
  1489. saved_feedmultiply = feedmultiply;
  1490. feedmultiply = 100;
  1491. previous_millis_cmd = millis();
  1492. enable_endstops(true);
  1493. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1494. feedrate = 0.0;
  1495. #ifdef DELTA
  1496. // A delta can only safely home all axis at the same time
  1497. // all axis have to home at the same time
  1498. // Move all carriages up together until the first endstop is hit.
  1499. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1500. sync_plan_position();
  1501. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1502. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1503. line_to_destination();
  1504. st_synchronize();
  1505. endstops_hit_on_purpose(); // clear endstop hit flags
  1506. // Destination reached
  1507. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1508. // take care of back off and rehome now we are all at the top
  1509. HOMEAXIS(X);
  1510. HOMEAXIS(Y);
  1511. HOMEAXIS(Z);
  1512. sync_plan_position_delta();
  1513. #else // NOT DELTA
  1514. bool homeX = code_seen(axis_codes[X_AXIS]),
  1515. homeY = code_seen(axis_codes[Y_AXIS]),
  1516. homeZ = code_seen(axis_codes[Z_AXIS]);
  1517. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1518. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1519. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1520. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1521. // Raise Z before homing any other axes
  1522. if (home_all_axis || homeZ) {
  1523. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1524. feedrate = max_feedrate[Z_AXIS];
  1525. line_to_destination();
  1526. st_synchronize();
  1527. }
  1528. #endif
  1529. #ifdef QUICK_HOME
  1530. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1531. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1532. #ifdef DUAL_X_CARRIAGE
  1533. int x_axis_home_dir = x_home_dir(active_extruder);
  1534. extruder_duplication_enabled = false;
  1535. #else
  1536. int x_axis_home_dir = home_dir(X_AXIS);
  1537. #endif
  1538. sync_plan_position();
  1539. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1540. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1541. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1542. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1543. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1544. line_to_destination();
  1545. st_synchronize();
  1546. axis_is_at_home(X_AXIS);
  1547. axis_is_at_home(Y_AXIS);
  1548. sync_plan_position();
  1549. destination[X_AXIS] = current_position[X_AXIS];
  1550. destination[Y_AXIS] = current_position[Y_AXIS];
  1551. line_to_destination();
  1552. feedrate = 0.0;
  1553. st_synchronize();
  1554. endstops_hit_on_purpose(); // clear endstop hit flags
  1555. current_position[X_AXIS] = destination[X_AXIS];
  1556. current_position[Y_AXIS] = destination[Y_AXIS];
  1557. #ifndef SCARA
  1558. current_position[Z_AXIS] = destination[Z_AXIS];
  1559. #endif
  1560. }
  1561. #endif // QUICK_HOME
  1562. // Home X
  1563. if (home_all_axis || homeX) {
  1564. #ifdef DUAL_X_CARRIAGE
  1565. int tmp_extruder = active_extruder;
  1566. extruder_duplication_enabled = false;
  1567. active_extruder = !active_extruder;
  1568. HOMEAXIS(X);
  1569. inactive_extruder_x_pos = current_position[X_AXIS];
  1570. active_extruder = tmp_extruder;
  1571. HOMEAXIS(X);
  1572. // reset state used by the different modes
  1573. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1574. delayed_move_time = 0;
  1575. active_extruder_parked = true;
  1576. #else
  1577. HOMEAXIS(X);
  1578. #endif
  1579. }
  1580. // Home Y
  1581. if (home_all_axis || homeY) HOMEAXIS(Y);
  1582. // Set the X position, if included
  1583. // Adds the home_offset as well, which may be wrong
  1584. if (code_seen(axis_codes[X_AXIS])) {
  1585. float v = code_value();
  1586. if (v) current_position[X_AXIS] = v
  1587. #ifndef SCARA
  1588. + home_offset[X_AXIS]
  1589. #endif
  1590. ;
  1591. }
  1592. // Set the Y position, if included
  1593. // Adds the home_offset as well, which may be wrong
  1594. if (code_seen(axis_codes[Y_AXIS])) {
  1595. float v = code_value();
  1596. if (v) current_position[Y_AXIS] = v
  1597. #ifndef SCARA
  1598. + home_offset[Y_AXIS]
  1599. #endif
  1600. ;
  1601. }
  1602. // Home Z last if homing towards the bed
  1603. #if Z_HOME_DIR < 0
  1604. #ifndef Z_SAFE_HOMING
  1605. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1606. #else // Z_SAFE_HOMING
  1607. if (home_all_axis) {
  1608. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1609. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1610. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1611. feedrate = XY_TRAVEL_SPEED;
  1612. current_position[Z_AXIS] = 0;
  1613. sync_plan_position();
  1614. line_to_destination();
  1615. st_synchronize();
  1616. current_position[X_AXIS] = destination[X_AXIS];
  1617. current_position[Y_AXIS] = destination[Y_AXIS];
  1618. HOMEAXIS(Z);
  1619. }
  1620. // Let's see if X and Y are homed and probe is inside bed area.
  1621. if (homeZ) {
  1622. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1623. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1624. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1625. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1626. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1627. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1628. current_position[Z_AXIS] = 0;
  1629. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1630. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1631. feedrate = max_feedrate[Z_AXIS];
  1632. line_to_destination();
  1633. st_synchronize();
  1634. HOMEAXIS(Z);
  1635. }
  1636. else {
  1637. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1638. SERIAL_ECHO_START;
  1639. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1640. }
  1641. }
  1642. else {
  1643. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1644. SERIAL_ECHO_START;
  1645. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1646. }
  1647. }
  1648. #endif // Z_SAFE_HOMING
  1649. #endif // Z_HOME_DIR < 0
  1650. // Set the Z position, if included
  1651. // Adds the home_offset as well, which may be wrong
  1652. if (code_seen(axis_codes[Z_AXIS])) {
  1653. float v = code_value();
  1654. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1655. }
  1656. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1657. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1658. #endif
  1659. sync_plan_position();
  1660. #endif // else DELTA
  1661. #ifdef SCARA
  1662. sync_plan_position_delta();
  1663. #endif
  1664. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1665. enable_endstops(false);
  1666. #endif
  1667. #if defined(MESH_BED_LEVELING)
  1668. if (mbl_was_active) {
  1669. current_position[X_AXIS] = mbl.get_x(0);
  1670. current_position[Y_AXIS] = mbl.get_y(0);
  1671. destination[X_AXIS] = current_position[X_AXIS];
  1672. destination[Y_AXIS] = current_position[Y_AXIS];
  1673. destination[Z_AXIS] = current_position[Z_AXIS];
  1674. destination[E_AXIS] = current_position[E_AXIS];
  1675. feedrate = homing_feedrate[X_AXIS];
  1676. line_to_destination();
  1677. st_synchronize();
  1678. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1679. sync_plan_position();
  1680. mbl.active = 1;
  1681. }
  1682. #endif
  1683. feedrate = saved_feedrate;
  1684. feedmultiply = saved_feedmultiply;
  1685. previous_millis_cmd = millis();
  1686. endstops_hit_on_purpose(); // clear endstop hit flags
  1687. }
  1688. #if defined(MESH_BED_LEVELING) || defined(ENABLE_AUTO_BED_LEVELING)
  1689. // Check for known positions in X and Y
  1690. inline bool can_run_bed_leveling() {
  1691. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) return true;
  1692. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1693. SERIAL_ECHO_START;
  1694. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1695. return false;
  1696. }
  1697. #endif // MESH_BED_LEVELING || ENABLE_AUTO_BED_LEVELING
  1698. #ifdef MESH_BED_LEVELING
  1699. /**
  1700. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1701. * mesh to compensate for variable bed height
  1702. *
  1703. * Parameters With MESH_BED_LEVELING:
  1704. *
  1705. * S0 Produce a mesh report
  1706. * S1 Start probing mesh points
  1707. * S2 Probe the next mesh point
  1708. *
  1709. */
  1710. inline void gcode_G29() {
  1711. // Prevent leveling without first homing in X and Y
  1712. if (!can_run_bed_leveling()) return;
  1713. static int probe_point = -1;
  1714. int state = 0;
  1715. if (code_seen('S') || code_seen('s')) {
  1716. state = code_value_long();
  1717. if (state < 0 || state > 2) {
  1718. SERIAL_PROTOCOLPGM("S out of range (0-2).\n");
  1719. return;
  1720. }
  1721. }
  1722. if (state == 0) { // Dump mesh_bed_leveling
  1723. if (mbl.active) {
  1724. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1725. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1726. SERIAL_PROTOCOLPGM(",");
  1727. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1728. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1729. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1730. SERIAL_PROTOCOLPGM("\nMeasured points:\n");
  1731. for (int y=0; y<MESH_NUM_Y_POINTS; y++) {
  1732. for (int x=0; x<MESH_NUM_X_POINTS; x++) {
  1733. SERIAL_PROTOCOLPGM(" ");
  1734. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1735. }
  1736. SERIAL_EOL;
  1737. }
  1738. } else {
  1739. SERIAL_PROTOCOLPGM("Mesh bed leveling not active.\n");
  1740. }
  1741. } else if (state == 1) { // Begin probing mesh points
  1742. mbl.reset();
  1743. probe_point = 0;
  1744. enquecommands_P(PSTR("G28"));
  1745. enquecommands_P(PSTR("G29 S2"));
  1746. } else if (state == 2) { // Goto next point
  1747. if (probe_point < 0) {
  1748. SERIAL_PROTOCOLPGM("Start mesh probing with \"G29 S1\" first.\n");
  1749. return;
  1750. }
  1751. int ix, iy;
  1752. if (probe_point == 0) {
  1753. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1754. sync_plan_position();
  1755. } else {
  1756. ix = (probe_point-1) % MESH_NUM_X_POINTS;
  1757. iy = (probe_point-1) / MESH_NUM_X_POINTS;
  1758. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1759. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1760. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1761. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1762. st_synchronize();
  1763. }
  1764. if (probe_point == MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1765. SERIAL_PROTOCOLPGM("Mesh probing done.\n");
  1766. probe_point = -1;
  1767. mbl.active = 1;
  1768. enquecommands_P(PSTR("G28"));
  1769. return;
  1770. }
  1771. ix = probe_point % MESH_NUM_X_POINTS;
  1772. iy = probe_point / MESH_NUM_X_POINTS;
  1773. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1774. current_position[X_AXIS] = mbl.get_x(ix);
  1775. current_position[Y_AXIS] = mbl.get_y(iy);
  1776. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1777. st_synchronize();
  1778. probe_point++;
  1779. }
  1780. }
  1781. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1782. /**
  1783. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1784. * Will fail if the printer has not been homed with G28.
  1785. *
  1786. * Enhanced G29 Auto Bed Leveling Probe Routine
  1787. *
  1788. * Parameters With AUTO_BED_LEVELING_GRID:
  1789. *
  1790. * P Set the size of the grid that will be probed (P x P points).
  1791. * Not supported by non-linear delta printer bed leveling.
  1792. * Example: "G29 P4"
  1793. *
  1794. * S Set the XY travel speed between probe points (in mm/min)
  1795. *
  1796. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1797. * or clean the rotation Matrix. Useful to check the topology
  1798. * after a first run of G29.
  1799. *
  1800. * V Set the verbose level (0-4). Example: "G29 V3"
  1801. *
  1802. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1803. * This is useful for manual bed leveling and finding flaws in the bed (to
  1804. * assist with part placement).
  1805. * Not supported by non-linear delta printer bed leveling.
  1806. *
  1807. * F Set the Front limit of the probing grid
  1808. * B Set the Back limit of the probing grid
  1809. * L Set the Left limit of the probing grid
  1810. * R Set the Right limit of the probing grid
  1811. *
  1812. * Global Parameters:
  1813. *
  1814. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1815. * Include "E" to engage/disengage the probe for each sample.
  1816. * There's no extra effect if you have a fixed probe.
  1817. * Usage: "G29 E" or "G29 e"
  1818. *
  1819. */
  1820. inline void gcode_G29() {
  1821. // Prevent leveling without first homing in X and Y
  1822. if (!can_run_bed_leveling()) return;
  1823. int verbose_level = 1;
  1824. if (code_seen('V') || code_seen('v')) {
  1825. verbose_level = code_value_long();
  1826. if (verbose_level < 0 || verbose_level > 4) {
  1827. SERIAL_PROTOCOLPGM("?(V)erbose Level is implausible (0-4).\n");
  1828. return;
  1829. }
  1830. }
  1831. bool dryrun = code_seen('D') || code_seen('d');
  1832. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1833. #ifdef AUTO_BED_LEVELING_GRID
  1834. #ifndef DELTA
  1835. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1836. #endif
  1837. if (verbose_level > 0) {
  1838. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1839. if (dryrun) SERIAL_ECHOLN("Running in DRY-RUN mode");
  1840. }
  1841. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1842. #ifndef DELTA
  1843. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1844. if (auto_bed_leveling_grid_points < 2) {
  1845. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1846. return;
  1847. }
  1848. #endif
  1849. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1850. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1851. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1852. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1853. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1854. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1855. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1856. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1857. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1858. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1859. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1860. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1861. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1862. if (left_out || right_out || front_out || back_out) {
  1863. if (left_out) {
  1864. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1865. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1866. }
  1867. if (right_out) {
  1868. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1869. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1870. }
  1871. if (front_out) {
  1872. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1873. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1874. }
  1875. if (back_out) {
  1876. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1877. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1878. }
  1879. return;
  1880. }
  1881. #endif // AUTO_BED_LEVELING_GRID
  1882. #ifdef Z_PROBE_SLED
  1883. dock_sled(false); // engage (un-dock) the probe
  1884. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1885. engage_z_probe();
  1886. #endif
  1887. st_synchronize();
  1888. if (!dryrun) {
  1889. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1890. plan_bed_level_matrix.set_to_identity();
  1891. #ifdef DELTA
  1892. reset_bed_level();
  1893. #else //!DELTA
  1894. //vector_3 corrected_position = plan_get_position_mm();
  1895. //corrected_position.debug("position before G29");
  1896. vector_3 uncorrected_position = plan_get_position();
  1897. //uncorrected_position.debug("position during G29");
  1898. current_position[X_AXIS] = uncorrected_position.x;
  1899. current_position[Y_AXIS] = uncorrected_position.y;
  1900. current_position[Z_AXIS] = uncorrected_position.z;
  1901. sync_plan_position();
  1902. #endif // !DELTA
  1903. }
  1904. setup_for_endstop_move();
  1905. feedrate = homing_feedrate[Z_AXIS];
  1906. #ifdef AUTO_BED_LEVELING_GRID
  1907. // probe at the points of a lattice grid
  1908. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1909. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1910. #ifdef DELTA
  1911. delta_grid_spacing[0] = xGridSpacing;
  1912. delta_grid_spacing[1] = yGridSpacing;
  1913. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1914. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1915. #else // !DELTA
  1916. // solve the plane equation ax + by + d = z
  1917. // A is the matrix with rows [x y 1] for all the probed points
  1918. // B is the vector of the Z positions
  1919. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1920. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1921. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1922. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1923. eqnBVector[abl2], // "B" vector of Z points
  1924. mean = 0.0;
  1925. #endif // !DELTA
  1926. int probePointCounter = 0;
  1927. bool zig = true;
  1928. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1929. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1930. int xStart, xStop, xInc;
  1931. if (zig) {
  1932. xStart = 0;
  1933. xStop = auto_bed_leveling_grid_points;
  1934. xInc = 1;
  1935. }
  1936. else {
  1937. xStart = auto_bed_leveling_grid_points - 1;
  1938. xStop = -1;
  1939. xInc = -1;
  1940. }
  1941. #ifndef DELTA
  1942. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1943. // This gets the probe points in more readable order.
  1944. if (!do_topography_map) zig = !zig;
  1945. #endif
  1946. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1947. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1948. // raise extruder
  1949. float measured_z,
  1950. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1951. #ifdef DELTA
  1952. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1953. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1954. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1955. #endif //DELTA
  1956. // Enhanced G29 - Do not retract servo between probes
  1957. ProbeAction act;
  1958. if (engage_probe_for_each_reading)
  1959. act = ProbeEngageAndRetract;
  1960. else if (yProbe == front_probe_bed_position && xCount == 0)
  1961. act = ProbeEngage;
  1962. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1963. act = ProbeRetract;
  1964. else
  1965. act = ProbeStay;
  1966. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1967. #ifndef DELTA
  1968. mean += measured_z;
  1969. eqnBVector[probePointCounter] = measured_z;
  1970. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1971. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1972. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1973. #else
  1974. bed_level[xCount][yCount] = measured_z + z_offset;
  1975. #endif
  1976. probePointCounter++;
  1977. manage_heater();
  1978. manage_inactivity();
  1979. lcd_update();
  1980. } //xProbe
  1981. } //yProbe
  1982. clean_up_after_endstop_move();
  1983. #ifdef DELTA
  1984. if (!dryrun) extrapolate_unprobed_bed_level();
  1985. print_bed_level();
  1986. #else // !DELTA
  1987. // solve lsq problem
  1988. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1989. mean /= abl2;
  1990. if (verbose_level) {
  1991. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1992. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1993. SERIAL_PROTOCOLPGM(" b: ");
  1994. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1995. SERIAL_PROTOCOLPGM(" d: ");
  1996. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1997. SERIAL_EOL;
  1998. if (verbose_level > 2) {
  1999. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2000. SERIAL_PROTOCOL_F(mean, 8);
  2001. SERIAL_EOL;
  2002. }
  2003. }
  2004. // Show the Topography map if enabled
  2005. if (do_topography_map) {
  2006. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2007. SERIAL_PROTOCOLPGM("+-----------+\n");
  2008. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2009. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2010. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2011. SERIAL_PROTOCOLPGM("+-----------+\n");
  2012. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2013. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2014. int ind = yy * auto_bed_leveling_grid_points + xx;
  2015. float diff = eqnBVector[ind] - mean;
  2016. if (diff >= 0.0)
  2017. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2018. else
  2019. SERIAL_PROTOCOLPGM(" ");
  2020. SERIAL_PROTOCOL_F(diff, 5);
  2021. } // xx
  2022. SERIAL_EOL;
  2023. } // yy
  2024. SERIAL_EOL;
  2025. } //do_topography_map
  2026. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2027. free(plane_equation_coefficients);
  2028. #endif //!DELTA
  2029. #else // !AUTO_BED_LEVELING_GRID
  2030. // Actions for each probe
  2031. ProbeAction p1, p2, p3;
  2032. if (engage_probe_for_each_reading)
  2033. p1 = p2 = p3 = ProbeEngageAndRetract;
  2034. else
  2035. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2036. // Probe at 3 arbitrary points
  2037. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2038. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2039. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2040. clean_up_after_endstop_move();
  2041. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2042. #endif // !AUTO_BED_LEVELING_GRID
  2043. #ifndef DELTA
  2044. if (verbose_level > 0)
  2045. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2046. if (!dryrun) {
  2047. // Correct the Z height difference from z-probe position and hotend tip position.
  2048. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2049. // When the bed is uneven, this height must be corrected.
  2050. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2051. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2052. z_tmp = current_position[Z_AXIS],
  2053. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2054. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2055. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2056. sync_plan_position();
  2057. }
  2058. #endif // !DELTA
  2059. #ifdef Z_PROBE_SLED
  2060. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2061. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2062. retract_z_probe();
  2063. #endif
  2064. #ifdef Z_PROBE_END_SCRIPT
  2065. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2066. st_synchronize();
  2067. #endif
  2068. }
  2069. #ifndef Z_PROBE_SLED
  2070. inline void gcode_G30() {
  2071. engage_z_probe(); // Engage Z Servo endstop if available
  2072. st_synchronize();
  2073. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2074. setup_for_endstop_move();
  2075. feedrate = homing_feedrate[Z_AXIS];
  2076. run_z_probe();
  2077. SERIAL_PROTOCOLPGM(MSG_BED);
  2078. SERIAL_PROTOCOLPGM(" X: ");
  2079. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2080. SERIAL_PROTOCOLPGM(" Y: ");
  2081. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2082. SERIAL_PROTOCOLPGM(" Z: ");
  2083. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2084. SERIAL_EOL;
  2085. clean_up_after_endstop_move();
  2086. retract_z_probe(); // Retract Z Servo endstop if available
  2087. }
  2088. #endif //!Z_PROBE_SLED
  2089. #endif //ENABLE_AUTO_BED_LEVELING
  2090. /**
  2091. * G92: Set current position to given X Y Z E
  2092. */
  2093. inline void gcode_G92() {
  2094. if (!code_seen(axis_codes[E_AXIS]))
  2095. st_synchronize();
  2096. bool didXYZ = false;
  2097. for (int i = 0; i < NUM_AXIS; i++) {
  2098. if (code_seen(axis_codes[i])) {
  2099. float v = current_position[i] = code_value();
  2100. if (i == E_AXIS)
  2101. plan_set_e_position(v);
  2102. else
  2103. didXYZ = true;
  2104. }
  2105. }
  2106. if (didXYZ) sync_plan_position();
  2107. }
  2108. #ifdef ULTIPANEL
  2109. /**
  2110. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2111. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2112. */
  2113. inline void gcode_M0_M1() {
  2114. char *src = strchr_pointer + 2;
  2115. unsigned long codenum = 0;
  2116. bool hasP = false, hasS = false;
  2117. if (code_seen('P')) {
  2118. codenum = code_value(); // milliseconds to wait
  2119. hasP = codenum > 0;
  2120. }
  2121. if (code_seen('S')) {
  2122. codenum = code_value() * 1000; // seconds to wait
  2123. hasS = codenum > 0;
  2124. }
  2125. char* starpos = strchr(src, '*');
  2126. if (starpos != NULL) *(starpos) = '\0';
  2127. while (*src == ' ') ++src;
  2128. if (!hasP && !hasS && *src != '\0')
  2129. lcd_setstatus(src, true);
  2130. else {
  2131. LCD_MESSAGEPGM(MSG_USERWAIT);
  2132. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2133. dontExpireStatus();
  2134. #endif
  2135. }
  2136. lcd_ignore_click();
  2137. st_synchronize();
  2138. previous_millis_cmd = millis();
  2139. if (codenum > 0) {
  2140. codenum += previous_millis_cmd; // keep track of when we started waiting
  2141. while(millis() < codenum && !lcd_clicked()) {
  2142. manage_heater();
  2143. manage_inactivity();
  2144. lcd_update();
  2145. }
  2146. lcd_ignore_click(false);
  2147. }
  2148. else {
  2149. if (!lcd_detected()) return;
  2150. while (!lcd_clicked()) {
  2151. manage_heater();
  2152. manage_inactivity();
  2153. lcd_update();
  2154. }
  2155. }
  2156. if (IS_SD_PRINTING)
  2157. LCD_MESSAGEPGM(MSG_RESUMING);
  2158. else
  2159. LCD_MESSAGEPGM(WELCOME_MSG);
  2160. }
  2161. #endif // ULTIPANEL
  2162. /**
  2163. * M17: Enable power on all stepper motors
  2164. */
  2165. inline void gcode_M17() {
  2166. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2167. enable_x();
  2168. enable_y();
  2169. enable_z();
  2170. enable_e0();
  2171. enable_e1();
  2172. enable_e2();
  2173. enable_e3();
  2174. }
  2175. #ifdef SDSUPPORT
  2176. /**
  2177. * M20: List SD card to serial output
  2178. */
  2179. inline void gcode_M20() {
  2180. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2181. card.ls();
  2182. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2183. }
  2184. /**
  2185. * M21: Init SD Card
  2186. */
  2187. inline void gcode_M21() {
  2188. card.initsd();
  2189. }
  2190. /**
  2191. * M22: Release SD Card
  2192. */
  2193. inline void gcode_M22() {
  2194. card.release();
  2195. }
  2196. /**
  2197. * M23: Select a file
  2198. */
  2199. inline void gcode_M23() {
  2200. char* codepos = strchr_pointer + 4;
  2201. char* starpos = strchr(codepos, '*');
  2202. if (starpos) *starpos = '\0';
  2203. card.openFile(codepos, true);
  2204. }
  2205. /**
  2206. * M24: Start SD Print
  2207. */
  2208. inline void gcode_M24() {
  2209. card.startFileprint();
  2210. starttime = millis();
  2211. }
  2212. /**
  2213. * M25: Pause SD Print
  2214. */
  2215. inline void gcode_M25() {
  2216. card.pauseSDPrint();
  2217. }
  2218. /**
  2219. * M26: Set SD Card file index
  2220. */
  2221. inline void gcode_M26() {
  2222. if (card.cardOK && code_seen('S'))
  2223. card.setIndex(code_value_long());
  2224. }
  2225. /**
  2226. * M27: Get SD Card status
  2227. */
  2228. inline void gcode_M27() {
  2229. card.getStatus();
  2230. }
  2231. /**
  2232. * M28: Start SD Write
  2233. */
  2234. inline void gcode_M28() {
  2235. char* codepos = strchr_pointer + 4;
  2236. char* starpos = strchr(codepos, '*');
  2237. if (starpos) {
  2238. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2239. strchr_pointer = strchr(npos, ' ') + 1;
  2240. *(starpos) = '\0';
  2241. }
  2242. card.openFile(codepos, false);
  2243. }
  2244. /**
  2245. * M29: Stop SD Write
  2246. * Processed in write to file routine above
  2247. */
  2248. inline void gcode_M29() {
  2249. // card.saving = false;
  2250. }
  2251. /**
  2252. * M30 <filename>: Delete SD Card file
  2253. */
  2254. inline void gcode_M30() {
  2255. if (card.cardOK) {
  2256. card.closefile();
  2257. char* starpos = strchr(strchr_pointer + 4, '*');
  2258. if (starpos) {
  2259. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2260. strchr_pointer = strchr(npos, ' ') + 1;
  2261. *(starpos) = '\0';
  2262. }
  2263. card.removeFile(strchr_pointer + 4);
  2264. }
  2265. }
  2266. #endif
  2267. /**
  2268. * M31: Get the time since the start of SD Print (or last M109)
  2269. */
  2270. inline void gcode_M31() {
  2271. stoptime = millis();
  2272. unsigned long t = (stoptime - starttime) / 1000;
  2273. int min = t / 60, sec = t % 60;
  2274. char time[30];
  2275. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2276. SERIAL_ECHO_START;
  2277. SERIAL_ECHOLN(time);
  2278. lcd_setstatus(time);
  2279. autotempShutdown();
  2280. }
  2281. #ifdef SDSUPPORT
  2282. /**
  2283. * M32: Select file and start SD Print
  2284. */
  2285. inline void gcode_M32() {
  2286. if (card.sdprinting)
  2287. st_synchronize();
  2288. char* codepos = strchr_pointer + 4;
  2289. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2290. if (! namestartpos)
  2291. namestartpos = codepos; //default name position, 4 letters after the M
  2292. else
  2293. namestartpos++; //to skip the '!'
  2294. char* starpos = strchr(codepos, '*');
  2295. if (starpos) *(starpos) = '\0';
  2296. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2297. if (card.cardOK) {
  2298. card.openFile(namestartpos, true, !call_procedure);
  2299. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2300. card.setIndex(code_value_long());
  2301. card.startFileprint();
  2302. if (!call_procedure)
  2303. starttime = millis(); //procedure calls count as normal print time.
  2304. }
  2305. }
  2306. /**
  2307. * M928: Start SD Write
  2308. */
  2309. inline void gcode_M928() {
  2310. char* starpos = strchr(strchr_pointer + 5, '*');
  2311. if (starpos) {
  2312. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2313. strchr_pointer = strchr(npos, ' ') + 1;
  2314. *(starpos) = '\0';
  2315. }
  2316. card.openLogFile(strchr_pointer + 5);
  2317. }
  2318. #endif // SDSUPPORT
  2319. /**
  2320. * M42: Change pin status via GCode
  2321. */
  2322. inline void gcode_M42() {
  2323. if (code_seen('S')) {
  2324. int pin_status = code_value(),
  2325. pin_number = LED_PIN;
  2326. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2327. pin_number = code_value();
  2328. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2329. if (sensitive_pins[i] == pin_number) {
  2330. pin_number = -1;
  2331. break;
  2332. }
  2333. }
  2334. #if defined(FAN_PIN) && FAN_PIN > -1
  2335. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2336. #endif
  2337. if (pin_number > -1) {
  2338. pinMode(pin_number, OUTPUT);
  2339. digitalWrite(pin_number, pin_status);
  2340. analogWrite(pin_number, pin_status);
  2341. }
  2342. } // code_seen('S')
  2343. }
  2344. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2345. #if Z_MIN_PIN == -1
  2346. #error "You must have a Z_MIN endstop in order to enable calculation of Z-Probe repeatability."
  2347. #endif
  2348. /**
  2349. * M48: Z-Probe repeatability measurement function.
  2350. *
  2351. * Usage:
  2352. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2353. * P = Number of sampled points (4-50, default 10)
  2354. * X = Sample X position
  2355. * Y = Sample Y position
  2356. * V = Verbose level (0-4, default=1)
  2357. * E = Engage probe for each reading
  2358. * L = Number of legs of movement before probe
  2359. *
  2360. * This function assumes the bed has been homed. Specifically, that a G28 command
  2361. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2362. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2363. * regenerated.
  2364. *
  2365. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2366. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2367. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2368. */
  2369. inline void gcode_M48() {
  2370. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2371. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2372. if (code_seen('V') || code_seen('v')) {
  2373. verbose_level = code_value();
  2374. if (verbose_level < 0 || verbose_level > 4 ) {
  2375. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2376. return;
  2377. }
  2378. }
  2379. if (verbose_level > 0)
  2380. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2381. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2382. n_samples = code_value();
  2383. if (n_samples < 4 || n_samples > 50) {
  2384. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2385. return;
  2386. }
  2387. }
  2388. double X_probe_location, Y_probe_location,
  2389. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2390. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2391. Z_current = st_get_position_mm(Z_AXIS),
  2392. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2393. ext_position = st_get_position_mm(E_AXIS);
  2394. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  2395. if (code_seen('X') || code_seen('x')) {
  2396. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2397. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2398. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2399. return;
  2400. }
  2401. }
  2402. if (code_seen('Y') || code_seen('y')) {
  2403. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2404. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2405. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2406. return;
  2407. }
  2408. }
  2409. if (code_seen('L') || code_seen('l')) {
  2410. n_legs = code_value();
  2411. if (n_legs == 1) n_legs = 2;
  2412. if (n_legs < 0 || n_legs > 15) {
  2413. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2414. return;
  2415. }
  2416. }
  2417. //
  2418. // Do all the preliminary setup work. First raise the probe.
  2419. //
  2420. st_synchronize();
  2421. plan_bed_level_matrix.set_to_identity();
  2422. plan_buffer_line(X_current, Y_current, Z_start_location,
  2423. ext_position,
  2424. homing_feedrate[Z_AXIS] / 60,
  2425. active_extruder);
  2426. st_synchronize();
  2427. //
  2428. // Now get everything to the specified probe point So we can safely do a probe to
  2429. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2430. // use that as a starting point for each probe.
  2431. //
  2432. if (verbose_level > 2)
  2433. SERIAL_PROTOCOL("Positioning the probe...\n");
  2434. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2435. ext_position,
  2436. homing_feedrate[X_AXIS]/60,
  2437. active_extruder);
  2438. st_synchronize();
  2439. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2440. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2441. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2442. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2443. //
  2444. // OK, do the inital probe to get us close to the bed.
  2445. // Then retrace the right amount and use that in subsequent probes
  2446. //
  2447. engage_z_probe();
  2448. setup_for_endstop_move();
  2449. run_z_probe();
  2450. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2451. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2452. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2453. ext_position,
  2454. homing_feedrate[X_AXIS]/60,
  2455. active_extruder);
  2456. st_synchronize();
  2457. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2458. if (engage_probe_for_each_reading) retract_z_probe();
  2459. for (uint16_t n=0; n < n_samples; n++) {
  2460. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2461. if (n_legs) {
  2462. unsigned long ms = millis();
  2463. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2464. theta = RADIANS(ms % 360L);
  2465. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2466. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2467. //SERIAL_ECHOPAIR(" theta: ",theta);
  2468. //SERIAL_ECHOPAIR(" direction: ",dir);
  2469. //SERIAL_EOL;
  2470. for (int l = 0; l < n_legs - 1; l++) {
  2471. ms = millis();
  2472. theta += RADIANS(dir * (ms % 20L));
  2473. radius += (ms % 10L) - 5L;
  2474. if (radius < 0.0) radius = -radius;
  2475. X_current = X_probe_location + cos(theta) * radius;
  2476. Y_current = Y_probe_location + sin(theta) * radius;
  2477. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2478. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2479. if (verbose_level > 3) {
  2480. SERIAL_ECHOPAIR("x: ", X_current);
  2481. SERIAL_ECHOPAIR("y: ", Y_current);
  2482. SERIAL_EOL;
  2483. }
  2484. do_blocking_move_to(X_current, Y_current, Z_current);
  2485. } // n_legs loop
  2486. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2487. } // n_legs
  2488. if (engage_probe_for_each_reading) {
  2489. engage_z_probe();
  2490. delay(1000);
  2491. }
  2492. setup_for_endstop_move();
  2493. run_z_probe();
  2494. sample_set[n] = current_position[Z_AXIS];
  2495. //
  2496. // Get the current mean for the data points we have so far
  2497. //
  2498. sum = 0.0;
  2499. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2500. mean = sum / (n + 1);
  2501. //
  2502. // Now, use that mean to calculate the standard deviation for the
  2503. // data points we have so far
  2504. //
  2505. sum = 0.0;
  2506. for (int j = 0; j <= n; j++) {
  2507. float ss = sample_set[j] - mean;
  2508. sum += ss * ss;
  2509. }
  2510. sigma = sqrt(sum / (n + 1));
  2511. if (verbose_level > 1) {
  2512. SERIAL_PROTOCOL(n+1);
  2513. SERIAL_PROTOCOLPGM(" of ");
  2514. SERIAL_PROTOCOL(n_samples);
  2515. SERIAL_PROTOCOLPGM(" z: ");
  2516. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2517. if (verbose_level > 2) {
  2518. SERIAL_PROTOCOLPGM(" mean: ");
  2519. SERIAL_PROTOCOL_F(mean,6);
  2520. SERIAL_PROTOCOLPGM(" sigma: ");
  2521. SERIAL_PROTOCOL_F(sigma,6);
  2522. }
  2523. }
  2524. if (verbose_level > 0) SERIAL_EOL;
  2525. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2526. st_synchronize();
  2527. if (engage_probe_for_each_reading) {
  2528. retract_z_probe();
  2529. delay(1000);
  2530. }
  2531. }
  2532. if (!engage_probe_for_each_reading) {
  2533. retract_z_probe();
  2534. delay(1000);
  2535. }
  2536. clean_up_after_endstop_move();
  2537. // enable_endstops(true);
  2538. if (verbose_level > 0) {
  2539. SERIAL_PROTOCOLPGM("Mean: ");
  2540. SERIAL_PROTOCOL_F(mean, 6);
  2541. SERIAL_EOL;
  2542. }
  2543. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2544. SERIAL_PROTOCOL_F(sigma, 6);
  2545. SERIAL_EOL; SERIAL_EOL;
  2546. }
  2547. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2548. /**
  2549. * M104: Set hot end temperature
  2550. */
  2551. inline void gcode_M104() {
  2552. if (setTargetedHotend(104)) return;
  2553. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2554. #ifdef DUAL_X_CARRIAGE
  2555. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2556. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2557. #endif
  2558. setWatch();
  2559. }
  2560. /**
  2561. * M105: Read hot end and bed temperature
  2562. */
  2563. inline void gcode_M105() {
  2564. if (setTargetedHotend(105)) return;
  2565. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  2566. SERIAL_PROTOCOLPGM("ok T:");
  2567. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2568. SERIAL_PROTOCOLPGM(" /");
  2569. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2570. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2571. SERIAL_PROTOCOLPGM(" B:");
  2572. SERIAL_PROTOCOL_F(degBed(),1);
  2573. SERIAL_PROTOCOLPGM(" /");
  2574. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2575. #endif //TEMP_BED_PIN
  2576. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2577. SERIAL_PROTOCOLPGM(" T");
  2578. SERIAL_PROTOCOL(cur_extruder);
  2579. SERIAL_PROTOCOLPGM(":");
  2580. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2581. SERIAL_PROTOCOLPGM(" /");
  2582. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2583. }
  2584. #else
  2585. SERIAL_ERROR_START;
  2586. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2587. #endif
  2588. SERIAL_PROTOCOLPGM(" @:");
  2589. #ifdef EXTRUDER_WATTS
  2590. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2591. SERIAL_PROTOCOLPGM("W");
  2592. #else
  2593. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2594. #endif
  2595. SERIAL_PROTOCOLPGM(" B@:");
  2596. #ifdef BED_WATTS
  2597. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2598. SERIAL_PROTOCOLPGM("W");
  2599. #else
  2600. SERIAL_PROTOCOL(getHeaterPower(-1));
  2601. #endif
  2602. #ifdef SHOW_TEMP_ADC_VALUES
  2603. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2604. SERIAL_PROTOCOLPGM(" ADC B:");
  2605. SERIAL_PROTOCOL_F(degBed(),1);
  2606. SERIAL_PROTOCOLPGM("C->");
  2607. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2608. #endif
  2609. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2610. SERIAL_PROTOCOLPGM(" T");
  2611. SERIAL_PROTOCOL(cur_extruder);
  2612. SERIAL_PROTOCOLPGM(":");
  2613. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2614. SERIAL_PROTOCOLPGM("C->");
  2615. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2616. }
  2617. #endif
  2618. SERIAL_PROTOCOLLN("");
  2619. }
  2620. #if defined(FAN_PIN) && FAN_PIN > -1
  2621. /**
  2622. * M106: Set Fan Speed
  2623. */
  2624. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2625. /**
  2626. * M107: Fan Off
  2627. */
  2628. inline void gcode_M107() { fanSpeed = 0; }
  2629. #endif //FAN_PIN
  2630. /**
  2631. * M109: Wait for extruder(s) to reach temperature
  2632. */
  2633. inline void gcode_M109() {
  2634. if (setTargetedHotend(109)) return;
  2635. LCD_MESSAGEPGM(MSG_HEATING);
  2636. CooldownNoWait = code_seen('S');
  2637. if (CooldownNoWait || code_seen('R')) {
  2638. setTargetHotend(code_value(), tmp_extruder);
  2639. #ifdef DUAL_X_CARRIAGE
  2640. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2641. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2642. #endif
  2643. }
  2644. #ifdef AUTOTEMP
  2645. autotemp_enabled = code_seen('F');
  2646. if (autotemp_enabled) autotemp_factor = code_value();
  2647. if (code_seen('S')) autotemp_min = code_value();
  2648. if (code_seen('B')) autotemp_max = code_value();
  2649. #endif
  2650. setWatch();
  2651. unsigned long timetemp = millis();
  2652. /* See if we are heating up or cooling down */
  2653. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2654. cancel_heatup = false;
  2655. #ifdef TEMP_RESIDENCY_TIME
  2656. long residencyStart = -1;
  2657. /* continue to loop until we have reached the target temp
  2658. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2659. while((!cancel_heatup)&&((residencyStart == -1) ||
  2660. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2661. #else
  2662. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2663. #endif //TEMP_RESIDENCY_TIME
  2664. { // while loop
  2665. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2666. SERIAL_PROTOCOLPGM("T:");
  2667. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2668. SERIAL_PROTOCOLPGM(" E:");
  2669. SERIAL_PROTOCOL((int)tmp_extruder);
  2670. #ifdef TEMP_RESIDENCY_TIME
  2671. SERIAL_PROTOCOLPGM(" W:");
  2672. if (residencyStart > -1) {
  2673. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2674. SERIAL_PROTOCOLLN( timetemp );
  2675. }
  2676. else {
  2677. SERIAL_PROTOCOLLN( "?" );
  2678. }
  2679. #else
  2680. SERIAL_PROTOCOLLN("");
  2681. #endif
  2682. timetemp = millis();
  2683. }
  2684. manage_heater();
  2685. manage_inactivity();
  2686. lcd_update();
  2687. #ifdef TEMP_RESIDENCY_TIME
  2688. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2689. // or when current temp falls outside the hysteresis after target temp was reached
  2690. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2691. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2692. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2693. {
  2694. residencyStart = millis();
  2695. }
  2696. #endif //TEMP_RESIDENCY_TIME
  2697. }
  2698. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2699. starttime = previous_millis_cmd = millis();
  2700. }
  2701. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2702. /**
  2703. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2704. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2705. */
  2706. inline void gcode_M190() {
  2707. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2708. CooldownNoWait = code_seen('S');
  2709. if (CooldownNoWait || code_seen('R'))
  2710. setTargetBed(code_value());
  2711. unsigned long timetemp = millis();
  2712. cancel_heatup = false;
  2713. target_direction = isHeatingBed(); // true if heating, false if cooling
  2714. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2715. unsigned long ms = millis();
  2716. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2717. timetemp = ms;
  2718. float tt = degHotend(active_extruder);
  2719. SERIAL_PROTOCOLPGM("T:");
  2720. SERIAL_PROTOCOL(tt);
  2721. SERIAL_PROTOCOLPGM(" E:");
  2722. SERIAL_PROTOCOL((int)active_extruder);
  2723. SERIAL_PROTOCOLPGM(" B:");
  2724. SERIAL_PROTOCOL_F(degBed(), 1);
  2725. SERIAL_PROTOCOLLN("");
  2726. }
  2727. manage_heater();
  2728. manage_inactivity();
  2729. lcd_update();
  2730. }
  2731. LCD_MESSAGEPGM(MSG_BED_DONE);
  2732. previous_millis_cmd = millis();
  2733. }
  2734. #endif // TEMP_BED_PIN > -1
  2735. /**
  2736. * M112: Emergency Stop
  2737. */
  2738. inline void gcode_M112() {
  2739. kill();
  2740. }
  2741. #ifdef BARICUDA
  2742. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  2743. /**
  2744. * M126: Heater 1 valve open
  2745. */
  2746. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2747. /**
  2748. * M127: Heater 1 valve close
  2749. */
  2750. inline void gcode_M127() { ValvePressure = 0; }
  2751. #endif
  2752. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  2753. /**
  2754. * M128: Heater 2 valve open
  2755. */
  2756. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2757. /**
  2758. * M129: Heater 2 valve close
  2759. */
  2760. inline void gcode_M129() { EtoPPressure = 0; }
  2761. #endif
  2762. #endif //BARICUDA
  2763. /**
  2764. * M140: Set bed temperature
  2765. */
  2766. inline void gcode_M140() {
  2767. if (code_seen('S')) setTargetBed(code_value());
  2768. }
  2769. #if HAS_POWER_SWITCH
  2770. /**
  2771. * M80: Turn on Power Supply
  2772. */
  2773. inline void gcode_M80() {
  2774. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2775. // If you have a switch on suicide pin, this is useful
  2776. // if you want to start another print with suicide feature after
  2777. // a print without suicide...
  2778. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2779. OUT_WRITE(SUICIDE_PIN, HIGH);
  2780. #endif
  2781. #ifdef ULTIPANEL
  2782. powersupply = true;
  2783. LCD_MESSAGEPGM(WELCOME_MSG);
  2784. lcd_update();
  2785. #endif
  2786. }
  2787. #endif // HAS_POWER_SWITCH
  2788. /**
  2789. * M81: Turn off Power, including Power Supply, if there is one.
  2790. *
  2791. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2792. */
  2793. inline void gcode_M81() {
  2794. disable_heater();
  2795. st_synchronize();
  2796. disable_e0();
  2797. disable_e1();
  2798. disable_e2();
  2799. disable_e3();
  2800. finishAndDisableSteppers();
  2801. fanSpeed = 0;
  2802. delay(1000); // Wait 1 second before switching off
  2803. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  2804. st_synchronize();
  2805. suicide();
  2806. #elif HAS_POWER_SWITCH
  2807. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2808. #endif
  2809. #ifdef ULTIPANEL
  2810. #if HAS_POWER_SWITCH
  2811. powersupply = false;
  2812. #endif
  2813. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2814. lcd_update();
  2815. #endif
  2816. }
  2817. /**
  2818. * M82: Set E codes absolute (default)
  2819. */
  2820. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2821. /**
  2822. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2823. */
  2824. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2825. /**
  2826. * M18, M84: Disable all stepper motors
  2827. */
  2828. inline void gcode_M18_M84() {
  2829. if (code_seen('S')) {
  2830. stepper_inactive_time = code_value() * 1000;
  2831. }
  2832. else {
  2833. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2834. if (all_axis) {
  2835. st_synchronize();
  2836. disable_e0();
  2837. disable_e1();
  2838. disable_e2();
  2839. disable_e3();
  2840. finishAndDisableSteppers();
  2841. }
  2842. else {
  2843. st_synchronize();
  2844. if (code_seen('X')) disable_x();
  2845. if (code_seen('Y')) disable_y();
  2846. if (code_seen('Z')) disable_z();
  2847. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2848. if (code_seen('E')) {
  2849. disable_e0();
  2850. disable_e1();
  2851. disable_e2();
  2852. disable_e3();
  2853. }
  2854. #endif
  2855. }
  2856. }
  2857. }
  2858. /**
  2859. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2860. */
  2861. inline void gcode_M85() {
  2862. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2863. }
  2864. /**
  2865. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2866. */
  2867. inline void gcode_M92() {
  2868. for(int8_t i=0; i < NUM_AXIS; i++) {
  2869. if (code_seen(axis_codes[i])) {
  2870. if (i == E_AXIS) {
  2871. float value = code_value();
  2872. if (value < 20.0) {
  2873. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2874. max_e_jerk *= factor;
  2875. max_feedrate[i] *= factor;
  2876. axis_steps_per_sqr_second[i] *= factor;
  2877. }
  2878. axis_steps_per_unit[i] = value;
  2879. }
  2880. else {
  2881. axis_steps_per_unit[i] = code_value();
  2882. }
  2883. }
  2884. }
  2885. }
  2886. /**
  2887. * M114: Output current position to serial port
  2888. */
  2889. inline void gcode_M114() {
  2890. SERIAL_PROTOCOLPGM("X:");
  2891. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2892. SERIAL_PROTOCOLPGM(" Y:");
  2893. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2894. SERIAL_PROTOCOLPGM(" Z:");
  2895. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2896. SERIAL_PROTOCOLPGM(" E:");
  2897. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2898. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2899. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2900. SERIAL_PROTOCOLPGM(" Y:");
  2901. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2902. SERIAL_PROTOCOLPGM(" Z:");
  2903. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2904. SERIAL_PROTOCOLLN("");
  2905. #ifdef SCARA
  2906. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2907. SERIAL_PROTOCOL(delta[X_AXIS]);
  2908. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2909. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2910. SERIAL_PROTOCOLLN("");
  2911. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2912. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2913. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2914. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2915. SERIAL_PROTOCOLLN("");
  2916. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2917. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2918. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2919. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2920. SERIAL_PROTOCOLLN("");
  2921. SERIAL_PROTOCOLLN("");
  2922. #endif
  2923. }
  2924. /**
  2925. * M115: Capabilities string
  2926. */
  2927. inline void gcode_M115() {
  2928. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2929. }
  2930. /**
  2931. * M117: Set LCD Status Message
  2932. */
  2933. inline void gcode_M117() {
  2934. char* codepos = strchr_pointer + 5;
  2935. char* starpos = strchr(codepos, '*');
  2936. if (starpos) *starpos = '\0';
  2937. lcd_setstatus(codepos);
  2938. }
  2939. /**
  2940. * M119: Output endstop states to serial output
  2941. */
  2942. inline void gcode_M119() {
  2943. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2944. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  2945. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2946. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2947. #endif
  2948. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  2949. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2950. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2951. #endif
  2952. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  2953. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2954. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2955. #endif
  2956. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  2957. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2958. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2959. #endif
  2960. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  2961. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2962. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2963. #endif
  2964. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  2965. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2966. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2967. #endif
  2968. #if defined(Z2_MAX_PIN) && Z2_MAX_PIN > -1
  2969. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2970. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2971. #endif
  2972. }
  2973. /**
  2974. * M120: Enable endstops
  2975. */
  2976. inline void gcode_M120() { enable_endstops(false); }
  2977. /**
  2978. * M121: Disable endstops
  2979. */
  2980. inline void gcode_M121() { enable_endstops(true); }
  2981. #ifdef BLINKM
  2982. /**
  2983. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2984. */
  2985. inline void gcode_M150() {
  2986. SendColors(
  2987. code_seen('R') ? (byte)code_value() : 0,
  2988. code_seen('U') ? (byte)code_value() : 0,
  2989. code_seen('B') ? (byte)code_value() : 0
  2990. );
  2991. }
  2992. #endif // BLINKM
  2993. /**
  2994. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  2995. * T<extruder>
  2996. * D<millimeters>
  2997. */
  2998. inline void gcode_M200() {
  2999. tmp_extruder = active_extruder;
  3000. if (code_seen('T')) {
  3001. tmp_extruder = code_value();
  3002. if (tmp_extruder >= EXTRUDERS) {
  3003. SERIAL_ECHO_START;
  3004. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3005. return;
  3006. }
  3007. }
  3008. if (code_seen('D')) {
  3009. float diameter = code_value();
  3010. // setting any extruder filament size disables volumetric on the assumption that
  3011. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3012. // for all extruders
  3013. volumetric_enabled = (diameter != 0.0);
  3014. if (volumetric_enabled) {
  3015. filament_size[tmp_extruder] = diameter;
  3016. // make sure all extruders have some sane value for the filament size
  3017. for (int i=0; i<EXTRUDERS; i++)
  3018. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3019. }
  3020. }
  3021. else {
  3022. //reserved for setting filament diameter via UFID or filament measuring device
  3023. return;
  3024. }
  3025. calculate_volumetric_multipliers();
  3026. }
  3027. /**
  3028. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3029. */
  3030. inline void gcode_M201() {
  3031. for (int8_t i=0; i < NUM_AXIS; i++) {
  3032. if (code_seen(axis_codes[i])) {
  3033. max_acceleration_units_per_sq_second[i] = code_value();
  3034. }
  3035. }
  3036. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3037. reset_acceleration_rates();
  3038. }
  3039. #if 0 // Not used for Sprinter/grbl gen6
  3040. inline void gcode_M202() {
  3041. for(int8_t i=0; i < NUM_AXIS; i++) {
  3042. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3043. }
  3044. }
  3045. #endif
  3046. /**
  3047. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3048. */
  3049. inline void gcode_M203() {
  3050. for (int8_t i=0; i < NUM_AXIS; i++) {
  3051. if (code_seen(axis_codes[i])) {
  3052. max_feedrate[i] = code_value();
  3053. }
  3054. }
  3055. }
  3056. /**
  3057. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3058. *
  3059. * P = Printing moves
  3060. * R = Retract only (no X, Y, Z) moves
  3061. * T = Travel (non printing) moves
  3062. *
  3063. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3064. */
  3065. inline void gcode_M204() {
  3066. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3067. {
  3068. acceleration = code_value();
  3069. travel_acceleration = acceleration;
  3070. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3071. SERIAL_EOL;
  3072. }
  3073. if (code_seen('P'))
  3074. {
  3075. acceleration = code_value();
  3076. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3077. SERIAL_EOL;
  3078. }
  3079. if (code_seen('R'))
  3080. {
  3081. retract_acceleration = code_value();
  3082. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3083. SERIAL_EOL;
  3084. }
  3085. if (code_seen('T'))
  3086. {
  3087. travel_acceleration = code_value();
  3088. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3089. SERIAL_EOL;
  3090. }
  3091. }
  3092. /**
  3093. * M205: Set Advanced Settings
  3094. *
  3095. * S = Min Feed Rate (mm/s)
  3096. * T = Min Travel Feed Rate (mm/s)
  3097. * B = Min Segment Time (µs)
  3098. * X = Max XY Jerk (mm/s/s)
  3099. * Z = Max Z Jerk (mm/s/s)
  3100. * E = Max E Jerk (mm/s/s)
  3101. */
  3102. inline void gcode_M205() {
  3103. if (code_seen('S')) minimumfeedrate = code_value();
  3104. if (code_seen('T')) mintravelfeedrate = code_value();
  3105. if (code_seen('B')) minsegmenttime = code_value();
  3106. if (code_seen('X')) max_xy_jerk = code_value();
  3107. if (code_seen('Z')) max_z_jerk = code_value();
  3108. if (code_seen('E')) max_e_jerk = code_value();
  3109. }
  3110. /**
  3111. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3112. */
  3113. inline void gcode_M206() {
  3114. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3115. if (code_seen(axis_codes[i])) {
  3116. home_offset[i] = code_value();
  3117. }
  3118. }
  3119. #ifdef SCARA
  3120. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3121. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3122. #endif
  3123. }
  3124. #ifdef DELTA
  3125. /**
  3126. * M665: Set delta configurations
  3127. *
  3128. * L = diagonal rod
  3129. * R = delta radius
  3130. * S = segments per second
  3131. */
  3132. inline void gcode_M665() {
  3133. if (code_seen('L')) delta_diagonal_rod = code_value();
  3134. if (code_seen('R')) delta_radius = code_value();
  3135. if (code_seen('S')) delta_segments_per_second = code_value();
  3136. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3137. }
  3138. /**
  3139. * M666: Set delta endstop adjustment
  3140. */
  3141. inline void gcode_M666() {
  3142. for (int8_t i = 0; i < 3; i++) {
  3143. if (code_seen(axis_codes[i])) {
  3144. endstop_adj[i] = code_value();
  3145. }
  3146. }
  3147. }
  3148. #elif defined(Z_DUAL_ENDSTOPS)
  3149. /**
  3150. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3151. */
  3152. inline void gcode_M666() {
  3153. if (code_seen('Z')) z_endstop_adj = code_value();
  3154. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3155. SERIAL_EOL;
  3156. }
  3157. #endif // DELTA
  3158. #ifdef FWRETRACT
  3159. /**
  3160. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3161. */
  3162. inline void gcode_M207() {
  3163. if (code_seen('S')) retract_length = code_value();
  3164. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3165. if (code_seen('Z')) retract_zlift = code_value();
  3166. }
  3167. /**
  3168. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3169. */
  3170. inline void gcode_M208() {
  3171. if (code_seen('S')) retract_recover_length = code_value();
  3172. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3173. }
  3174. /**
  3175. * M209: Enable automatic retract (M209 S1)
  3176. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3177. */
  3178. inline void gcode_M209() {
  3179. if (code_seen('S')) {
  3180. int t = code_value();
  3181. switch(t) {
  3182. case 0:
  3183. autoretract_enabled = false;
  3184. break;
  3185. case 1:
  3186. autoretract_enabled = true;
  3187. break;
  3188. default:
  3189. SERIAL_ECHO_START;
  3190. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3191. SERIAL_ECHO(cmdbuffer[bufindr]);
  3192. SERIAL_ECHOLNPGM("\"");
  3193. return;
  3194. }
  3195. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3196. }
  3197. }
  3198. #endif // FWRETRACT
  3199. #if EXTRUDERS > 1
  3200. /**
  3201. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3202. */
  3203. inline void gcode_M218() {
  3204. if (setTargetedHotend(218)) return;
  3205. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3206. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3207. #ifdef DUAL_X_CARRIAGE
  3208. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3209. #endif
  3210. SERIAL_ECHO_START;
  3211. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3212. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3213. SERIAL_ECHO(" ");
  3214. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3215. SERIAL_ECHO(",");
  3216. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3217. #ifdef DUAL_X_CARRIAGE
  3218. SERIAL_ECHO(",");
  3219. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3220. #endif
  3221. }
  3222. SERIAL_EOL;
  3223. }
  3224. #endif // EXTRUDERS > 1
  3225. /**
  3226. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3227. */
  3228. inline void gcode_M220() {
  3229. if (code_seen('S')) feedmultiply = code_value();
  3230. }
  3231. /**
  3232. * M221: Set extrusion percentage (M221 T0 S95)
  3233. */
  3234. inline void gcode_M221() {
  3235. if (code_seen('S')) {
  3236. int sval = code_value();
  3237. if (code_seen('T')) {
  3238. if (setTargetedHotend(221)) return;
  3239. extruder_multiply[tmp_extruder] = sval;
  3240. }
  3241. else {
  3242. extruder_multiply[active_extruder] = sval;
  3243. }
  3244. }
  3245. }
  3246. /**
  3247. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3248. */
  3249. inline void gcode_M226() {
  3250. if (code_seen('P')) {
  3251. int pin_number = code_value();
  3252. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3253. if (pin_state >= -1 && pin_state <= 1) {
  3254. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3255. if (sensitive_pins[i] == pin_number) {
  3256. pin_number = -1;
  3257. break;
  3258. }
  3259. }
  3260. if (pin_number > -1) {
  3261. int target = LOW;
  3262. st_synchronize();
  3263. pinMode(pin_number, INPUT);
  3264. switch(pin_state){
  3265. case 1:
  3266. target = HIGH;
  3267. break;
  3268. case 0:
  3269. target = LOW;
  3270. break;
  3271. case -1:
  3272. target = !digitalRead(pin_number);
  3273. break;
  3274. }
  3275. while(digitalRead(pin_number) != target) {
  3276. manage_heater();
  3277. manage_inactivity();
  3278. lcd_update();
  3279. }
  3280. } // pin_number > -1
  3281. } // pin_state -1 0 1
  3282. } // code_seen('P')
  3283. }
  3284. #if NUM_SERVOS > 0
  3285. /**
  3286. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3287. */
  3288. inline void gcode_M280() {
  3289. int servo_index = code_seen('P') ? code_value() : -1;
  3290. int servo_position = 0;
  3291. if (code_seen('S')) {
  3292. servo_position = code_value();
  3293. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3294. #if SERVO_LEVELING
  3295. servos[servo_index].attach(0);
  3296. #endif
  3297. servos[servo_index].write(servo_position);
  3298. #if SERVO_LEVELING
  3299. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3300. servos[servo_index].detach();
  3301. #endif
  3302. }
  3303. else {
  3304. SERIAL_ECHO_START;
  3305. SERIAL_ECHO("Servo ");
  3306. SERIAL_ECHO(servo_index);
  3307. SERIAL_ECHOLN(" out of range");
  3308. }
  3309. }
  3310. else if (servo_index >= 0) {
  3311. SERIAL_PROTOCOL(MSG_OK);
  3312. SERIAL_PROTOCOL(" Servo ");
  3313. SERIAL_PROTOCOL(servo_index);
  3314. SERIAL_PROTOCOL(": ");
  3315. SERIAL_PROTOCOL(servos[servo_index].read());
  3316. SERIAL_PROTOCOLLN("");
  3317. }
  3318. }
  3319. #endif // NUM_SERVOS > 0
  3320. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3321. /**
  3322. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3323. */
  3324. inline void gcode_M300() {
  3325. int beepS = code_seen('S') ? code_value() : 110;
  3326. int beepP = code_seen('P') ? code_value() : 1000;
  3327. if (beepS > 0) {
  3328. #if BEEPER > 0
  3329. tone(BEEPER, beepS);
  3330. delay(beepP);
  3331. noTone(BEEPER);
  3332. #elif defined(ULTRALCD)
  3333. lcd_buzz(beepS, beepP);
  3334. #elif defined(LCD_USE_I2C_BUZZER)
  3335. lcd_buzz(beepP, beepS);
  3336. #endif
  3337. }
  3338. else {
  3339. delay(beepP);
  3340. }
  3341. }
  3342. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3343. #ifdef PIDTEMP
  3344. /**
  3345. * M301: Set PID parameters P I D (and optionally C)
  3346. */
  3347. inline void gcode_M301() {
  3348. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3349. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3350. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3351. if (e < EXTRUDERS) { // catch bad input value
  3352. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3353. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3354. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3355. #ifdef PID_ADD_EXTRUSION_RATE
  3356. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3357. #endif
  3358. updatePID();
  3359. SERIAL_PROTOCOL(MSG_OK);
  3360. #ifdef PID_PARAMS_PER_EXTRUDER
  3361. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3362. SERIAL_PROTOCOL(e);
  3363. #endif // PID_PARAMS_PER_EXTRUDER
  3364. SERIAL_PROTOCOL(" p:");
  3365. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3366. SERIAL_PROTOCOL(" i:");
  3367. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3368. SERIAL_PROTOCOL(" d:");
  3369. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3370. #ifdef PID_ADD_EXTRUSION_RATE
  3371. SERIAL_PROTOCOL(" c:");
  3372. //Kc does not have scaling applied above, or in resetting defaults
  3373. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3374. #endif
  3375. SERIAL_PROTOCOLLN("");
  3376. }
  3377. else {
  3378. SERIAL_ECHO_START;
  3379. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3380. }
  3381. }
  3382. #endif // PIDTEMP
  3383. #ifdef PIDTEMPBED
  3384. inline void gcode_M304() {
  3385. if (code_seen('P')) bedKp = code_value();
  3386. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3387. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3388. updatePID();
  3389. SERIAL_PROTOCOL(MSG_OK);
  3390. SERIAL_PROTOCOL(" p:");
  3391. SERIAL_PROTOCOL(bedKp);
  3392. SERIAL_PROTOCOL(" i:");
  3393. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3394. SERIAL_PROTOCOL(" d:");
  3395. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3396. SERIAL_PROTOCOLLN("");
  3397. }
  3398. #endif // PIDTEMPBED
  3399. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  3400. /**
  3401. * M240: Trigger a camera by emulating a Canon RC-1
  3402. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3403. */
  3404. inline void gcode_M240() {
  3405. #ifdef CHDK
  3406. OUT_WRITE(CHDK, HIGH);
  3407. chdkHigh = millis();
  3408. chdkActive = true;
  3409. #elif defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  3410. const uint8_t NUM_PULSES = 16;
  3411. const float PULSE_LENGTH = 0.01524;
  3412. for (int i = 0; i < NUM_PULSES; i++) {
  3413. WRITE(PHOTOGRAPH_PIN, HIGH);
  3414. _delay_ms(PULSE_LENGTH);
  3415. WRITE(PHOTOGRAPH_PIN, LOW);
  3416. _delay_ms(PULSE_LENGTH);
  3417. }
  3418. delay(7.33);
  3419. for (int i = 0; i < NUM_PULSES; i++) {
  3420. WRITE(PHOTOGRAPH_PIN, HIGH);
  3421. _delay_ms(PULSE_LENGTH);
  3422. WRITE(PHOTOGRAPH_PIN, LOW);
  3423. _delay_ms(PULSE_LENGTH);
  3424. }
  3425. #endif // !CHDK && PHOTOGRAPH_PIN > -1
  3426. }
  3427. #endif // CHDK || PHOTOGRAPH_PIN
  3428. #ifdef DOGLCD
  3429. /**
  3430. * M250: Read and optionally set the LCD contrast
  3431. */
  3432. inline void gcode_M250() {
  3433. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3434. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3435. SERIAL_PROTOCOL(lcd_contrast);
  3436. SERIAL_PROTOCOLLN("");
  3437. }
  3438. #endif // DOGLCD
  3439. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3440. /**
  3441. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3442. */
  3443. inline void gcode_M302() {
  3444. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3445. }
  3446. #endif // PREVENT_DANGEROUS_EXTRUDE
  3447. /**
  3448. * M303: PID relay autotune
  3449. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3450. * E<extruder> (-1 for the bed)
  3451. * C<cycles>
  3452. */
  3453. inline void gcode_M303() {
  3454. int e = code_seen('E') ? code_value_long() : 0;
  3455. int c = code_seen('C') ? code_value_long() : 5;
  3456. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3457. PID_autotune(temp, e, c);
  3458. }
  3459. #ifdef SCARA
  3460. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3461. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3462. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3463. if (! Stopped) {
  3464. //get_coordinates(); // For X Y Z E F
  3465. delta[X_AXIS] = delta_x;
  3466. delta[Y_AXIS] = delta_y;
  3467. calculate_SCARA_forward_Transform(delta);
  3468. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3469. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3470. prepare_move();
  3471. //ClearToSend();
  3472. return true;
  3473. }
  3474. return false;
  3475. }
  3476. /**
  3477. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3478. */
  3479. inline bool gcode_M360() {
  3480. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3481. return SCARA_move_to_cal(0, 120);
  3482. }
  3483. /**
  3484. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3485. */
  3486. inline bool gcode_M361() {
  3487. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3488. return SCARA_move_to_cal(90, 130);
  3489. }
  3490. /**
  3491. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3492. */
  3493. inline bool gcode_M362() {
  3494. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3495. return SCARA_move_to_cal(60, 180);
  3496. }
  3497. /**
  3498. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3499. */
  3500. inline bool gcode_M363() {
  3501. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3502. return SCARA_move_to_cal(50, 90);
  3503. }
  3504. /**
  3505. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3506. */
  3507. inline bool gcode_M364() {
  3508. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3509. return SCARA_move_to_cal(45, 135);
  3510. }
  3511. /**
  3512. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3513. */
  3514. inline void gcode_M365() {
  3515. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3516. if (code_seen(axis_codes[i])) {
  3517. axis_scaling[i] = code_value();
  3518. }
  3519. }
  3520. }
  3521. #endif // SCARA
  3522. #ifdef EXT_SOLENOID
  3523. void enable_solenoid(uint8_t num) {
  3524. switch(num) {
  3525. case 0:
  3526. OUT_WRITE(SOL0_PIN, HIGH);
  3527. break;
  3528. #if defined(SOL1_PIN) && SOL1_PIN > -1
  3529. case 1:
  3530. OUT_WRITE(SOL1_PIN, HIGH);
  3531. break;
  3532. #endif
  3533. #if defined(SOL2_PIN) && SOL2_PIN > -1
  3534. case 2:
  3535. OUT_WRITE(SOL2_PIN, HIGH);
  3536. break;
  3537. #endif
  3538. #if defined(SOL3_PIN) && SOL3_PIN > -1
  3539. case 3:
  3540. OUT_WRITE(SOL3_PIN, HIGH);
  3541. break;
  3542. #endif
  3543. default:
  3544. SERIAL_ECHO_START;
  3545. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3546. break;
  3547. }
  3548. }
  3549. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3550. void disable_all_solenoids() {
  3551. OUT_WRITE(SOL0_PIN, LOW);
  3552. OUT_WRITE(SOL1_PIN, LOW);
  3553. OUT_WRITE(SOL2_PIN, LOW);
  3554. OUT_WRITE(SOL3_PIN, LOW);
  3555. }
  3556. /**
  3557. * M380: Enable solenoid on the active extruder
  3558. */
  3559. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3560. /**
  3561. * M381: Disable all solenoids
  3562. */
  3563. inline void gcode_M381() { disable_all_solenoids(); }
  3564. #endif // EXT_SOLENOID
  3565. /**
  3566. * M400: Finish all moves
  3567. */
  3568. inline void gcode_M400() { st_synchronize(); }
  3569. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3570. /**
  3571. * M401: Engage Z Servo endstop if available
  3572. */
  3573. inline void gcode_M401() { engage_z_probe(); }
  3574. /**
  3575. * M402: Retract Z Servo endstop if enabled
  3576. */
  3577. inline void gcode_M402() { retract_z_probe(); }
  3578. #endif
  3579. #ifdef FILAMENT_SENSOR
  3580. /**
  3581. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3582. */
  3583. inline void gcode_M404() {
  3584. #if FILWIDTH_PIN > -1
  3585. if (code_seen('W')) {
  3586. filament_width_nominal = code_value();
  3587. }
  3588. else {
  3589. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3590. SERIAL_PROTOCOLLN(filament_width_nominal);
  3591. }
  3592. #endif
  3593. }
  3594. /**
  3595. * M405: Turn on filament sensor for control
  3596. */
  3597. inline void gcode_M405() {
  3598. if (code_seen('D')) meas_delay_cm = code_value();
  3599. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3600. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3601. int temp_ratio = widthFil_to_size_ratio();
  3602. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3603. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3604. delay_index1 = delay_index2 = 0;
  3605. }
  3606. filament_sensor = true;
  3607. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3608. //SERIAL_PROTOCOL(filament_width_meas);
  3609. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3610. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3611. }
  3612. /**
  3613. * M406: Turn off filament sensor for control
  3614. */
  3615. inline void gcode_M406() { filament_sensor = false; }
  3616. /**
  3617. * M407: Get measured filament diameter on serial output
  3618. */
  3619. inline void gcode_M407() {
  3620. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3621. SERIAL_PROTOCOLLN(filament_width_meas);
  3622. }
  3623. #endif // FILAMENT_SENSOR
  3624. /**
  3625. * M500: Store settings in EEPROM
  3626. */
  3627. inline void gcode_M500() {
  3628. Config_StoreSettings();
  3629. }
  3630. /**
  3631. * M501: Read settings from EEPROM
  3632. */
  3633. inline void gcode_M501() {
  3634. Config_RetrieveSettings();
  3635. }
  3636. /**
  3637. * M502: Revert to default settings
  3638. */
  3639. inline void gcode_M502() {
  3640. Config_ResetDefault();
  3641. }
  3642. /**
  3643. * M503: print settings currently in memory
  3644. */
  3645. inline void gcode_M503() {
  3646. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3647. }
  3648. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3649. /**
  3650. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3651. */
  3652. inline void gcode_M540() {
  3653. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3654. }
  3655. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3656. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3657. inline void gcode_SET_Z_PROBE_OFFSET() {
  3658. float value;
  3659. if (code_seen('Z')) {
  3660. value = code_value();
  3661. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3662. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3663. SERIAL_ECHO_START;
  3664. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3665. SERIAL_PROTOCOLLN("");
  3666. }
  3667. else {
  3668. SERIAL_ECHO_START;
  3669. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3670. SERIAL_ECHOPGM(MSG_Z_MIN);
  3671. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3672. SERIAL_ECHOPGM(MSG_Z_MAX);
  3673. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3674. SERIAL_PROTOCOLLN("");
  3675. }
  3676. }
  3677. else {
  3678. SERIAL_ECHO_START;
  3679. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3680. SERIAL_ECHO(-zprobe_zoffset);
  3681. SERIAL_PROTOCOLLN("");
  3682. }
  3683. }
  3684. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3685. #ifdef FILAMENTCHANGEENABLE
  3686. /**
  3687. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3688. */
  3689. inline void gcode_M600() {
  3690. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3691. for (int i=0; i<NUM_AXIS; i++)
  3692. target[i] = lastpos[i] = current_position[i];
  3693. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3694. #ifdef DELTA
  3695. #define RUNPLAN calculate_delta(target); BASICPLAN
  3696. #else
  3697. #define RUNPLAN BASICPLAN
  3698. #endif
  3699. //retract by E
  3700. if (code_seen('E')) target[E_AXIS] += code_value();
  3701. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3702. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3703. #endif
  3704. RUNPLAN;
  3705. //lift Z
  3706. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3707. #ifdef FILAMENTCHANGE_ZADD
  3708. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3709. #endif
  3710. RUNPLAN;
  3711. //move xy
  3712. if (code_seen('X')) target[X_AXIS] = code_value();
  3713. #ifdef FILAMENTCHANGE_XPOS
  3714. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3715. #endif
  3716. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3717. #ifdef FILAMENTCHANGE_YPOS
  3718. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3719. #endif
  3720. RUNPLAN;
  3721. if (code_seen('L')) target[E_AXIS] += code_value();
  3722. #ifdef FILAMENTCHANGE_FINALRETRACT
  3723. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3724. #endif
  3725. RUNPLAN;
  3726. //finish moves
  3727. st_synchronize();
  3728. //disable extruder steppers so filament can be removed
  3729. disable_e0();
  3730. disable_e1();
  3731. disable_e2();
  3732. disable_e3();
  3733. delay(100);
  3734. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3735. uint8_t cnt = 0;
  3736. while (!lcd_clicked()) {
  3737. cnt++;
  3738. manage_heater();
  3739. manage_inactivity(true);
  3740. lcd_update();
  3741. if (cnt == 0) {
  3742. #if BEEPER > 0
  3743. OUT_WRITE(BEEPER,HIGH);
  3744. delay(3);
  3745. WRITE(BEEPER,LOW);
  3746. delay(3);
  3747. #else
  3748. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3749. lcd_buzz(1000/6, 100);
  3750. #else
  3751. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3752. #endif
  3753. #endif
  3754. }
  3755. } // while(!lcd_clicked)
  3756. //return to normal
  3757. if (code_seen('L')) target[E_AXIS] -= code_value();
  3758. #ifdef FILAMENTCHANGE_FINALRETRACT
  3759. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3760. #endif
  3761. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3762. plan_set_e_position(current_position[E_AXIS]);
  3763. RUNPLAN; //should do nothing
  3764. lcd_reset_alert_level();
  3765. #ifdef DELTA
  3766. calculate_delta(lastpos);
  3767. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3768. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3769. #else
  3770. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3771. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3772. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3773. #endif
  3774. #ifdef FILAMENT_RUNOUT_SENSOR
  3775. filrunoutEnqued = false;
  3776. #endif
  3777. }
  3778. #endif // FILAMENTCHANGEENABLE
  3779. #ifdef DUAL_X_CARRIAGE
  3780. /**
  3781. * M605: Set dual x-carriage movement mode
  3782. *
  3783. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3784. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3785. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3786. * millimeters x-offset and an optional differential hotend temperature of
  3787. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3788. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3789. *
  3790. * Note: the X axis should be homed after changing dual x-carriage mode.
  3791. */
  3792. inline void gcode_M605() {
  3793. st_synchronize();
  3794. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3795. switch(dual_x_carriage_mode) {
  3796. case DXC_DUPLICATION_MODE:
  3797. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3798. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3799. SERIAL_ECHO_START;
  3800. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3801. SERIAL_ECHO(" ");
  3802. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3803. SERIAL_ECHO(",");
  3804. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3805. SERIAL_ECHO(" ");
  3806. SERIAL_ECHO(duplicate_extruder_x_offset);
  3807. SERIAL_ECHO(",");
  3808. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3809. break;
  3810. case DXC_FULL_CONTROL_MODE:
  3811. case DXC_AUTO_PARK_MODE:
  3812. break;
  3813. default:
  3814. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3815. break;
  3816. }
  3817. active_extruder_parked = false;
  3818. extruder_duplication_enabled = false;
  3819. delayed_move_time = 0;
  3820. }
  3821. #endif // DUAL_X_CARRIAGE
  3822. /**
  3823. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3824. */
  3825. inline void gcode_M907() {
  3826. #if HAS_DIGIPOTSS
  3827. for (int i=0;i<NUM_AXIS;i++)
  3828. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3829. if (code_seen('B')) digipot_current(4, code_value());
  3830. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3831. #endif
  3832. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3833. if (code_seen('X')) digipot_current(0, code_value());
  3834. #endif
  3835. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3836. if (code_seen('Z')) digipot_current(1, code_value());
  3837. #endif
  3838. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3839. if (code_seen('E')) digipot_current(2, code_value());
  3840. #endif
  3841. #ifdef DIGIPOT_I2C
  3842. // this one uses actual amps in floating point
  3843. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3844. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3845. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3846. #endif
  3847. }
  3848. #if HAS_DIGIPOTSS
  3849. /**
  3850. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3851. */
  3852. inline void gcode_M908() {
  3853. digitalPotWrite(
  3854. code_seen('P') ? code_value() : 0,
  3855. code_seen('S') ? code_value() : 0
  3856. );
  3857. }
  3858. #endif // HAS_DIGIPOTSS
  3859. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3860. inline void gcode_M350() {
  3861. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3862. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3863. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3864. if(code_seen('B')) microstep_mode(4,code_value());
  3865. microstep_readings();
  3866. #endif
  3867. }
  3868. /**
  3869. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3870. * S# determines MS1 or MS2, X# sets the pin high/low.
  3871. */
  3872. inline void gcode_M351() {
  3873. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  3874. if (code_seen('S')) switch(code_value_long()) {
  3875. case 1:
  3876. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3877. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3878. break;
  3879. case 2:
  3880. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3881. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3882. break;
  3883. }
  3884. microstep_readings();
  3885. #endif
  3886. }
  3887. /**
  3888. * M999: Restart after being stopped
  3889. */
  3890. inline void gcode_M999() {
  3891. Stopped = false;
  3892. lcd_reset_alert_level();
  3893. gcode_LastN = Stopped_gcode_LastN;
  3894. FlushSerialRequestResend();
  3895. }
  3896. inline void gcode_T() {
  3897. tmp_extruder = code_value();
  3898. if (tmp_extruder >= EXTRUDERS) {
  3899. SERIAL_ECHO_START;
  3900. SERIAL_ECHO("T");
  3901. SERIAL_ECHO(tmp_extruder);
  3902. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3903. }
  3904. else {
  3905. #if EXTRUDERS > 1
  3906. bool make_move = false;
  3907. #endif
  3908. if (code_seen('F')) {
  3909. #if EXTRUDERS > 1
  3910. make_move = true;
  3911. #endif
  3912. next_feedrate = code_value();
  3913. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3914. }
  3915. #if EXTRUDERS > 1
  3916. if (tmp_extruder != active_extruder) {
  3917. // Save current position to return to after applying extruder offset
  3918. memcpy(destination, current_position, sizeof(destination));
  3919. #ifdef DUAL_X_CARRIAGE
  3920. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3921. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3922. // Park old head: 1) raise 2) move to park position 3) lower
  3923. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3924. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3925. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3926. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3927. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3928. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3929. st_synchronize();
  3930. }
  3931. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3932. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3933. extruder_offset[Y_AXIS][active_extruder] +
  3934. extruder_offset[Y_AXIS][tmp_extruder];
  3935. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3936. extruder_offset[Z_AXIS][active_extruder] +
  3937. extruder_offset[Z_AXIS][tmp_extruder];
  3938. active_extruder = tmp_extruder;
  3939. // This function resets the max/min values - the current position may be overwritten below.
  3940. axis_is_at_home(X_AXIS);
  3941. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3942. current_position[X_AXIS] = inactive_extruder_x_pos;
  3943. inactive_extruder_x_pos = destination[X_AXIS];
  3944. }
  3945. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3946. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3947. if (active_extruder == 0 || active_extruder_parked)
  3948. current_position[X_AXIS] = inactive_extruder_x_pos;
  3949. else
  3950. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3951. inactive_extruder_x_pos = destination[X_AXIS];
  3952. extruder_duplication_enabled = false;
  3953. }
  3954. else {
  3955. // record raised toolhead position for use by unpark
  3956. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3957. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3958. active_extruder_parked = true;
  3959. delayed_move_time = 0;
  3960. }
  3961. #else // !DUAL_X_CARRIAGE
  3962. // Offset extruder (only by XY)
  3963. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3964. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3965. // Set the new active extruder and position
  3966. active_extruder = tmp_extruder;
  3967. #endif // !DUAL_X_CARRIAGE
  3968. #ifdef DELTA
  3969. sync_plan_position_delta();
  3970. #else
  3971. sync_plan_position();
  3972. #endif
  3973. // Move to the old position if 'F' was in the parameters
  3974. if (make_move && !Stopped) prepare_move();
  3975. }
  3976. #ifdef EXT_SOLENOID
  3977. st_synchronize();
  3978. disable_all_solenoids();
  3979. enable_solenoid_on_active_extruder();
  3980. #endif // EXT_SOLENOID
  3981. #endif // EXTRUDERS > 1
  3982. SERIAL_ECHO_START;
  3983. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3984. SERIAL_PROTOCOLLN((int)active_extruder);
  3985. }
  3986. }
  3987. /**
  3988. * Process Commands and dispatch them to handlers
  3989. */
  3990. void process_commands() {
  3991. if (code_seen('G')) {
  3992. int gCode = code_value_long();
  3993. switch(gCode) {
  3994. // G0, G1
  3995. case 0:
  3996. case 1:
  3997. gcode_G0_G1();
  3998. break;
  3999. // G2, G3
  4000. #ifndef SCARA
  4001. case 2: // G2 - CW ARC
  4002. case 3: // G3 - CCW ARC
  4003. gcode_G2_G3(gCode == 2);
  4004. break;
  4005. #endif
  4006. // G4 Dwell
  4007. case 4:
  4008. gcode_G4();
  4009. break;
  4010. #ifdef FWRETRACT
  4011. case 10: // G10: retract
  4012. case 11: // G11: retract_recover
  4013. gcode_G10_G11(gCode == 10);
  4014. break;
  4015. #endif //FWRETRACT
  4016. case 28: // G28: Home all axes, one at a time
  4017. gcode_G28();
  4018. break;
  4019. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4020. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4021. gcode_G29();
  4022. break;
  4023. #endif
  4024. #ifdef ENABLE_AUTO_BED_LEVELING
  4025. #ifndef Z_PROBE_SLED
  4026. case 30: // G30 Single Z Probe
  4027. gcode_G30();
  4028. break;
  4029. #else // Z_PROBE_SLED
  4030. case 31: // G31: dock the sled
  4031. case 32: // G32: undock the sled
  4032. dock_sled(gCode == 31);
  4033. break;
  4034. #endif // Z_PROBE_SLED
  4035. #endif // ENABLE_AUTO_BED_LEVELING
  4036. case 90: // G90
  4037. relative_mode = false;
  4038. break;
  4039. case 91: // G91
  4040. relative_mode = true;
  4041. break;
  4042. case 92: // G92
  4043. gcode_G92();
  4044. break;
  4045. }
  4046. }
  4047. else if (code_seen('M')) {
  4048. switch( code_value_long() ) {
  4049. #ifdef ULTIPANEL
  4050. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4051. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4052. gcode_M0_M1();
  4053. break;
  4054. #endif // ULTIPANEL
  4055. case 17:
  4056. gcode_M17();
  4057. break;
  4058. #ifdef SDSUPPORT
  4059. case 20: // M20 - list SD card
  4060. gcode_M20(); break;
  4061. case 21: // M21 - init SD card
  4062. gcode_M21(); break;
  4063. case 22: //M22 - release SD card
  4064. gcode_M22(); break;
  4065. case 23: //M23 - Select file
  4066. gcode_M23(); break;
  4067. case 24: //M24 - Start SD print
  4068. gcode_M24(); break;
  4069. case 25: //M25 - Pause SD print
  4070. gcode_M25(); break;
  4071. case 26: //M26 - Set SD index
  4072. gcode_M26(); break;
  4073. case 27: //M27 - Get SD status
  4074. gcode_M27(); break;
  4075. case 28: //M28 - Start SD write
  4076. gcode_M28(); break;
  4077. case 29: //M29 - Stop SD write
  4078. gcode_M29(); break;
  4079. case 30: //M30 <filename> Delete File
  4080. gcode_M30(); break;
  4081. case 32: //M32 - Select file and start SD print
  4082. gcode_M32(); break;
  4083. case 928: //M928 - Start SD write
  4084. gcode_M928(); break;
  4085. #endif //SDSUPPORT
  4086. case 31: //M31 take time since the start of the SD print or an M109 command
  4087. gcode_M31();
  4088. break;
  4089. case 42: //M42 -Change pin status via gcode
  4090. gcode_M42();
  4091. break;
  4092. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4093. case 48: // M48 Z-Probe repeatability
  4094. gcode_M48();
  4095. break;
  4096. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4097. case 104: // M104
  4098. gcode_M104();
  4099. break;
  4100. case 112: // M112 Emergency Stop
  4101. gcode_M112();
  4102. break;
  4103. case 140: // M140 Set bed temp
  4104. gcode_M140();
  4105. break;
  4106. case 105: // M105 Read current temperature
  4107. gcode_M105();
  4108. return;
  4109. break;
  4110. case 109: // M109 Wait for temperature
  4111. gcode_M109();
  4112. break;
  4113. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4114. case 190: // M190 - Wait for bed heater to reach target.
  4115. gcode_M190();
  4116. break;
  4117. #endif //TEMP_BED_PIN
  4118. #if defined(FAN_PIN) && FAN_PIN > -1
  4119. case 106: //M106 Fan On
  4120. gcode_M106();
  4121. break;
  4122. case 107: //M107 Fan Off
  4123. gcode_M107();
  4124. break;
  4125. #endif //FAN_PIN
  4126. #ifdef BARICUDA
  4127. // PWM for HEATER_1_PIN
  4128. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  4129. case 126: // M126 valve open
  4130. gcode_M126();
  4131. break;
  4132. case 127: // M127 valve closed
  4133. gcode_M127();
  4134. break;
  4135. #endif //HEATER_1_PIN
  4136. // PWM for HEATER_2_PIN
  4137. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  4138. case 128: // M128 valve open
  4139. gcode_M128();
  4140. break;
  4141. case 129: // M129 valve closed
  4142. gcode_M129();
  4143. break;
  4144. #endif //HEATER_2_PIN
  4145. #endif //BARICUDA
  4146. #if HAS_POWER_SWITCH
  4147. case 80: // M80 - Turn on Power Supply
  4148. gcode_M80();
  4149. break;
  4150. #endif // HAS_POWER_SWITCH
  4151. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4152. gcode_M81();
  4153. break;
  4154. case 82:
  4155. gcode_M82();
  4156. break;
  4157. case 83:
  4158. gcode_M83();
  4159. break;
  4160. case 18: //compatibility
  4161. case 84: // M84
  4162. gcode_M18_M84();
  4163. break;
  4164. case 85: // M85
  4165. gcode_M85();
  4166. break;
  4167. case 92: // M92
  4168. gcode_M92();
  4169. break;
  4170. case 115: // M115
  4171. gcode_M115();
  4172. break;
  4173. case 117: // M117 display message
  4174. gcode_M117();
  4175. break;
  4176. case 114: // M114
  4177. gcode_M114();
  4178. break;
  4179. case 120: // M120
  4180. gcode_M120();
  4181. break;
  4182. case 121: // M121
  4183. gcode_M121();
  4184. break;
  4185. case 119: // M119
  4186. gcode_M119();
  4187. break;
  4188. //TODO: update for all axis, use for loop
  4189. #ifdef BLINKM
  4190. case 150: // M150
  4191. gcode_M150();
  4192. break;
  4193. #endif //BLINKM
  4194. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4195. gcode_M200();
  4196. break;
  4197. case 201: // M201
  4198. gcode_M201();
  4199. break;
  4200. #if 0 // Not used for Sprinter/grbl gen6
  4201. case 202: // M202
  4202. gcode_M202();
  4203. break;
  4204. #endif
  4205. case 203: // M203 max feedrate mm/sec
  4206. gcode_M203();
  4207. break;
  4208. case 204: // M204 acclereration S normal moves T filmanent only moves
  4209. gcode_M204();
  4210. break;
  4211. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4212. gcode_M205();
  4213. break;
  4214. case 206: // M206 additional homing offset
  4215. gcode_M206();
  4216. break;
  4217. #ifdef DELTA
  4218. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4219. gcode_M665();
  4220. break;
  4221. #endif
  4222. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4223. case 666: // M666 set delta / dual endstop adjustment
  4224. gcode_M666();
  4225. break;
  4226. #endif
  4227. #ifdef FWRETRACT
  4228. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4229. gcode_M207();
  4230. break;
  4231. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4232. gcode_M208();
  4233. break;
  4234. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4235. gcode_M209();
  4236. break;
  4237. #endif // FWRETRACT
  4238. #if EXTRUDERS > 1
  4239. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4240. gcode_M218();
  4241. break;
  4242. #endif
  4243. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4244. gcode_M220();
  4245. break;
  4246. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4247. gcode_M221();
  4248. break;
  4249. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4250. gcode_M226();
  4251. break;
  4252. #if NUM_SERVOS > 0
  4253. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4254. gcode_M280();
  4255. break;
  4256. #endif // NUM_SERVOS > 0
  4257. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4258. case 300: // M300 - Play beep tone
  4259. gcode_M300();
  4260. break;
  4261. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4262. #ifdef PIDTEMP
  4263. case 301: // M301
  4264. gcode_M301();
  4265. break;
  4266. #endif // PIDTEMP
  4267. #ifdef PIDTEMPBED
  4268. case 304: // M304
  4269. gcode_M304();
  4270. break;
  4271. #endif // PIDTEMPBED
  4272. #if defined(CHDK) || (defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1)
  4273. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4274. gcode_M240();
  4275. break;
  4276. #endif // CHDK || PHOTOGRAPH_PIN
  4277. #ifdef DOGLCD
  4278. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4279. gcode_M250();
  4280. break;
  4281. #endif // DOGLCD
  4282. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4283. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4284. gcode_M302();
  4285. break;
  4286. #endif // PREVENT_DANGEROUS_EXTRUDE
  4287. case 303: // M303 PID autotune
  4288. gcode_M303();
  4289. break;
  4290. #ifdef SCARA
  4291. case 360: // M360 SCARA Theta pos1
  4292. if (gcode_M360()) return;
  4293. break;
  4294. case 361: // M361 SCARA Theta pos2
  4295. if (gcode_M361()) return;
  4296. break;
  4297. case 362: // M362 SCARA Psi pos1
  4298. if (gcode_M362()) return;
  4299. break;
  4300. case 363: // M363 SCARA Psi pos2
  4301. if (gcode_M363()) return;
  4302. break;
  4303. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4304. if (gcode_M364()) return;
  4305. break;
  4306. case 365: // M365 Set SCARA scaling for X Y Z
  4307. gcode_M365();
  4308. break;
  4309. #endif // SCARA
  4310. case 400: // M400 finish all moves
  4311. gcode_M400();
  4312. break;
  4313. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4314. case 401:
  4315. gcode_M401();
  4316. break;
  4317. case 402:
  4318. gcode_M402();
  4319. break;
  4320. #endif
  4321. #ifdef FILAMENT_SENSOR
  4322. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4323. gcode_M404();
  4324. break;
  4325. case 405: //M405 Turn on filament sensor for control
  4326. gcode_M405();
  4327. break;
  4328. case 406: //M406 Turn off filament sensor for control
  4329. gcode_M406();
  4330. break;
  4331. case 407: //M407 Display measured filament diameter
  4332. gcode_M407();
  4333. break;
  4334. #endif // FILAMENT_SENSOR
  4335. case 500: // M500 Store settings in EEPROM
  4336. gcode_M500();
  4337. break;
  4338. case 501: // M501 Read settings from EEPROM
  4339. gcode_M501();
  4340. break;
  4341. case 502: // M502 Revert to default settings
  4342. gcode_M502();
  4343. break;
  4344. case 503: // M503 print settings currently in memory
  4345. gcode_M503();
  4346. break;
  4347. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4348. case 540:
  4349. gcode_M540();
  4350. break;
  4351. #endif
  4352. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4353. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4354. gcode_SET_Z_PROBE_OFFSET();
  4355. break;
  4356. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4357. #ifdef FILAMENTCHANGEENABLE
  4358. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4359. gcode_M600();
  4360. break;
  4361. #endif // FILAMENTCHANGEENABLE
  4362. #ifdef DUAL_X_CARRIAGE
  4363. case 605:
  4364. gcode_M605();
  4365. break;
  4366. #endif // DUAL_X_CARRIAGE
  4367. case 907: // M907 Set digital trimpot motor current using axis codes.
  4368. gcode_M907();
  4369. break;
  4370. #if HAS_DIGIPOTSS
  4371. case 908: // M908 Control digital trimpot directly.
  4372. gcode_M908();
  4373. break;
  4374. #endif // HAS_DIGIPOTSS
  4375. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4376. gcode_M350();
  4377. break;
  4378. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4379. gcode_M351();
  4380. break;
  4381. case 999: // M999: Restart after being Stopped
  4382. gcode_M999();
  4383. break;
  4384. }
  4385. }
  4386. else if (code_seen('T')) {
  4387. gcode_T();
  4388. }
  4389. else {
  4390. SERIAL_ECHO_START;
  4391. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4392. SERIAL_ECHO(cmdbuffer[bufindr]);
  4393. SERIAL_ECHOLNPGM("\"");
  4394. }
  4395. ClearToSend();
  4396. }
  4397. void FlushSerialRequestResend()
  4398. {
  4399. //char cmdbuffer[bufindr][100]="Resend:";
  4400. MYSERIAL.flush();
  4401. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4402. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4403. ClearToSend();
  4404. }
  4405. void ClearToSend()
  4406. {
  4407. previous_millis_cmd = millis();
  4408. #ifdef SDSUPPORT
  4409. if(fromsd[bufindr])
  4410. return;
  4411. #endif //SDSUPPORT
  4412. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4413. }
  4414. void get_coordinates() {
  4415. for (int i = 0; i < NUM_AXIS; i++) {
  4416. if (code_seen(axis_codes[i]))
  4417. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4418. else
  4419. destination[i] = current_position[i];
  4420. }
  4421. if (code_seen('F')) {
  4422. next_feedrate = code_value();
  4423. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4424. }
  4425. }
  4426. void get_arc_coordinates()
  4427. {
  4428. #ifdef SF_ARC_FIX
  4429. bool relative_mode_backup = relative_mode;
  4430. relative_mode = true;
  4431. #endif
  4432. get_coordinates();
  4433. #ifdef SF_ARC_FIX
  4434. relative_mode=relative_mode_backup;
  4435. #endif
  4436. if(code_seen('I')) {
  4437. offset[0] = code_value();
  4438. }
  4439. else {
  4440. offset[0] = 0.0;
  4441. }
  4442. if(code_seen('J')) {
  4443. offset[1] = code_value();
  4444. }
  4445. else {
  4446. offset[1] = 0.0;
  4447. }
  4448. }
  4449. void clamp_to_software_endstops(float target[3])
  4450. {
  4451. if (min_software_endstops) {
  4452. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4453. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4454. float negative_z_offset = 0;
  4455. #ifdef ENABLE_AUTO_BED_LEVELING
  4456. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4457. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4458. #endif
  4459. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4460. }
  4461. if (max_software_endstops) {
  4462. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4463. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4464. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4465. }
  4466. }
  4467. #ifdef DELTA
  4468. void recalc_delta_settings(float radius, float diagonal_rod) {
  4469. delta_tower1_x = -SIN_60 * radius; // front left tower
  4470. delta_tower1_y = -COS_60 * radius;
  4471. delta_tower2_x = SIN_60 * radius; // front right tower
  4472. delta_tower2_y = -COS_60 * radius;
  4473. delta_tower3_x = 0.0; // back middle tower
  4474. delta_tower3_y = radius;
  4475. delta_diagonal_rod_2 = sq(diagonal_rod);
  4476. }
  4477. void calculate_delta(float cartesian[3]) {
  4478. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4479. - sq(delta_tower1_x-cartesian[X_AXIS])
  4480. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4481. ) + cartesian[Z_AXIS];
  4482. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4483. - sq(delta_tower2_x-cartesian[X_AXIS])
  4484. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4485. ) + cartesian[Z_AXIS];
  4486. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4487. - sq(delta_tower3_x-cartesian[X_AXIS])
  4488. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4489. ) + cartesian[Z_AXIS];
  4490. /*
  4491. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4492. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4493. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4494. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4495. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4496. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4497. */
  4498. }
  4499. #ifdef ENABLE_AUTO_BED_LEVELING
  4500. // Adjust print surface height by linear interpolation over the bed_level array.
  4501. int delta_grid_spacing[2] = { 0, 0 };
  4502. void adjust_delta(float cartesian[3]) {
  4503. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4504. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4505. float h1 = 0.001 - half, h2 = half - 0.001,
  4506. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4507. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4508. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4509. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4510. z1 = bed_level[floor_x + half][floor_y + half],
  4511. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4512. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4513. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4514. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4515. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4516. offset = (1 - ratio_x) * left + ratio_x * right;
  4517. delta[X_AXIS] += offset;
  4518. delta[Y_AXIS] += offset;
  4519. delta[Z_AXIS] += offset;
  4520. /*
  4521. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4522. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4523. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4524. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4525. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4526. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4527. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4528. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4529. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4530. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4531. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4532. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4533. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4534. */
  4535. }
  4536. #endif // ENABLE_AUTO_BED_LEVELING
  4537. void prepare_move_raw() {
  4538. previous_millis_cmd = millis();
  4539. calculate_delta(destination);
  4540. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4541. for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
  4542. }
  4543. #endif // DELTA
  4544. #if defined(MESH_BED_LEVELING)
  4545. #if !defined(MIN)
  4546. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4547. #endif // ! MIN
  4548. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4549. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4550. {
  4551. if (!mbl.active) {
  4552. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4553. for(int8_t i=0; i < NUM_AXIS; i++) {
  4554. current_position[i] = destination[i];
  4555. }
  4556. return;
  4557. }
  4558. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4559. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4560. int ix = mbl.select_x_index(x);
  4561. int iy = mbl.select_y_index(y);
  4562. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4563. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4564. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4565. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4566. if (pix == ix && piy == iy) {
  4567. // Start and end on same mesh square
  4568. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4569. for(int8_t i=0; i < NUM_AXIS; i++) {
  4570. current_position[i] = destination[i];
  4571. }
  4572. return;
  4573. }
  4574. float nx, ny, ne, normalized_dist;
  4575. if (ix > pix && (x_splits) & BIT(ix)) {
  4576. nx = mbl.get_x(ix);
  4577. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4578. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4579. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4580. x_splits ^= BIT(ix);
  4581. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4582. nx = mbl.get_x(pix);
  4583. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4584. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4585. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4586. x_splits ^= BIT(pix);
  4587. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4588. ny = mbl.get_y(iy);
  4589. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4590. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4591. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4592. y_splits ^= BIT(iy);
  4593. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4594. ny = mbl.get_y(piy);
  4595. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4596. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4597. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4598. y_splits ^= BIT(piy);
  4599. } else {
  4600. // Already split on a border
  4601. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4602. for(int8_t i=0; i < NUM_AXIS; i++) {
  4603. current_position[i] = destination[i];
  4604. }
  4605. return;
  4606. }
  4607. // Do the split and look for more borders
  4608. destination[X_AXIS] = nx;
  4609. destination[Y_AXIS] = ny;
  4610. destination[E_AXIS] = ne;
  4611. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4612. destination[X_AXIS] = x;
  4613. destination[Y_AXIS] = y;
  4614. destination[E_AXIS] = e;
  4615. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4616. }
  4617. #endif // MESH_BED_LEVELING
  4618. void prepare_move() {
  4619. clamp_to_software_endstops(destination);
  4620. previous_millis_cmd = millis();
  4621. #ifdef SCARA //for now same as delta-code
  4622. float difference[NUM_AXIS];
  4623. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4624. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4625. sq(difference[Y_AXIS]) +
  4626. sq(difference[Z_AXIS]));
  4627. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4628. if (cartesian_mm < 0.000001) { return; }
  4629. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4630. int steps = max(1, int(scara_segments_per_second * seconds));
  4631. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4632. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4633. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4634. for (int s = 1; s <= steps; s++) {
  4635. float fraction = float(s) / float(steps);
  4636. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4637. destination[i] = current_position[i] + difference[i] * fraction;
  4638. }
  4639. calculate_delta(destination);
  4640. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4641. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4642. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4643. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4644. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4645. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4646. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4647. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4648. active_extruder);
  4649. }
  4650. #endif // SCARA
  4651. #ifdef DELTA
  4652. float difference[NUM_AXIS];
  4653. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4654. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4655. sq(difference[Y_AXIS]) +
  4656. sq(difference[Z_AXIS]));
  4657. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4658. if (cartesian_mm < 0.000001) return;
  4659. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4660. int steps = max(1, int(delta_segments_per_second * seconds));
  4661. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4662. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4663. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4664. for (int s = 1; s <= steps; s++) {
  4665. float fraction = float(s) / float(steps);
  4666. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4667. calculate_delta(destination);
  4668. #ifdef ENABLE_AUTO_BED_LEVELING
  4669. adjust_delta(destination);
  4670. #endif
  4671. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4672. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4673. active_extruder);
  4674. }
  4675. #endif // DELTA
  4676. #ifdef DUAL_X_CARRIAGE
  4677. if (active_extruder_parked)
  4678. {
  4679. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4680. {
  4681. // move duplicate extruder into correct duplication position.
  4682. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4683. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4684. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4685. sync_plan_position();
  4686. st_synchronize();
  4687. extruder_duplication_enabled = true;
  4688. active_extruder_parked = false;
  4689. }
  4690. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4691. {
  4692. if (current_position[E_AXIS] == destination[E_AXIS])
  4693. {
  4694. // this is a travel move - skit it but keep track of current position (so that it can later
  4695. // be used as start of first non-travel move)
  4696. if (delayed_move_time != 0xFFFFFFFFUL)
  4697. {
  4698. memcpy(current_position, destination, sizeof(current_position));
  4699. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4700. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4701. delayed_move_time = millis();
  4702. return;
  4703. }
  4704. }
  4705. delayed_move_time = 0;
  4706. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4707. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4708. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4709. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4710. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4711. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4712. active_extruder_parked = false;
  4713. }
  4714. }
  4715. #endif //DUAL_X_CARRIAGE
  4716. #if !defined(DELTA) && !defined(SCARA)
  4717. // Do not use feedmultiply for E or Z only moves
  4718. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4719. line_to_destination();
  4720. } else {
  4721. #if defined(MESH_BED_LEVELING)
  4722. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4723. return;
  4724. #else
  4725. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4726. #endif // MESH_BED_LEVELING
  4727. }
  4728. #endif // !(DELTA || SCARA)
  4729. for(int8_t i=0; i < NUM_AXIS; i++) {
  4730. current_position[i] = destination[i];
  4731. }
  4732. }
  4733. void prepare_arc_move(char isclockwise) {
  4734. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4735. // Trace the arc
  4736. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4737. // As far as the parser is concerned, the position is now == target. In reality the
  4738. // motion control system might still be processing the action and the real tool position
  4739. // in any intermediate location.
  4740. for(int8_t i=0; i < NUM_AXIS; i++) {
  4741. current_position[i] = destination[i];
  4742. }
  4743. previous_millis_cmd = millis();
  4744. }
  4745. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4746. #if defined(FAN_PIN)
  4747. #if CONTROLLERFAN_PIN == FAN_PIN
  4748. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  4749. #endif
  4750. #endif
  4751. unsigned long lastMotor = 0; // Last time a motor was turned on
  4752. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4753. void controllerFan() {
  4754. uint32_t ms = millis();
  4755. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4756. lastMotorCheck = ms;
  4757. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4758. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4759. #if EXTRUDERS > 1
  4760. || E1_ENABLE_READ == E_ENABLE_ON
  4761. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  4762. || X2_ENABLE_READ == X_ENABLE_ON
  4763. #endif
  4764. #if EXTRUDERS > 2
  4765. || E2_ENABLE_READ == E_ENABLE_ON
  4766. #if EXTRUDERS > 3
  4767. || E3_ENABLE_READ == E_ENABLE_ON
  4768. #endif
  4769. #endif
  4770. #endif
  4771. ) {
  4772. lastMotor = ms; //... set time to NOW so the fan will turn on
  4773. }
  4774. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4775. // allows digital or PWM fan output to be used (see M42 handling)
  4776. digitalWrite(CONTROLLERFAN_PIN, speed);
  4777. analogWrite(CONTROLLERFAN_PIN, speed);
  4778. }
  4779. }
  4780. #endif
  4781. #ifdef SCARA
  4782. void calculate_SCARA_forward_Transform(float f_scara[3])
  4783. {
  4784. // Perform forward kinematics, and place results in delta[3]
  4785. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4786. float x_sin, x_cos, y_sin, y_cos;
  4787. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4788. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4789. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4790. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4791. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4792. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4793. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4794. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4795. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4796. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4797. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4798. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4799. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4800. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4801. }
  4802. void calculate_delta(float cartesian[3]){
  4803. //reverse kinematics.
  4804. // Perform reversed kinematics, and place results in delta[3]
  4805. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4806. float SCARA_pos[2];
  4807. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4808. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4809. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4810. #if (Linkage_1 == Linkage_2)
  4811. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4812. #else
  4813. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4814. #endif
  4815. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4816. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4817. SCARA_K2 = Linkage_2 * SCARA_S2;
  4818. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4819. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4820. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4821. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4822. delta[Z_AXIS] = cartesian[Z_AXIS];
  4823. /*
  4824. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4825. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4826. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4827. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4828. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4829. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4830. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4831. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4832. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4833. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4834. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4835. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4836. SERIAL_ECHOLN(" ");*/
  4837. }
  4838. #endif
  4839. #ifdef TEMP_STAT_LEDS
  4840. static bool blue_led = false;
  4841. static bool red_led = false;
  4842. static uint32_t stat_update = 0;
  4843. void handle_status_leds(void) {
  4844. float max_temp = 0.0;
  4845. if(millis() > stat_update) {
  4846. stat_update += 500; // Update every 0.5s
  4847. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4848. max_temp = max(max_temp, degHotend(cur_extruder));
  4849. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4850. }
  4851. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  4852. max_temp = max(max_temp, degTargetBed());
  4853. max_temp = max(max_temp, degBed());
  4854. #endif
  4855. if((max_temp > 55.0) && (red_led == false)) {
  4856. digitalWrite(STAT_LED_RED, 1);
  4857. digitalWrite(STAT_LED_BLUE, 0);
  4858. red_led = true;
  4859. blue_led = false;
  4860. }
  4861. if((max_temp < 54.0) && (blue_led == false)) {
  4862. digitalWrite(STAT_LED_RED, 0);
  4863. digitalWrite(STAT_LED_BLUE, 1);
  4864. red_led = false;
  4865. blue_led = true;
  4866. }
  4867. }
  4868. }
  4869. #endif
  4870. void manage_inactivity(bool ignore_stepper_queue/*=false*/) //default argument set in Marlin.h
  4871. {
  4872. #if defined(KILL_PIN) && KILL_PIN > -1
  4873. static int killCount = 0; // make the inactivity button a bit less responsive
  4874. const int KILL_DELAY = 750;
  4875. #endif
  4876. #if defined(FILRUNOUT_PIN) && FILRUNOUT_PIN > -1
  4877. if(card.sdprinting) {
  4878. if(!(READ(FILRUNOUT_PIN))^FIL_RUNOUT_INVERTING)
  4879. filrunout(); }
  4880. #endif
  4881. #if defined(HOME_PIN) && HOME_PIN > -1
  4882. static int homeDebounceCount = 0; // poor man's debouncing count
  4883. const int HOME_DEBOUNCE_DELAY = 750;
  4884. #endif
  4885. if(buflen < (BUFSIZE-1))
  4886. get_command();
  4887. if( (millis() - previous_millis_cmd) > max_inactive_time )
  4888. if(max_inactive_time)
  4889. kill();
  4890. if(stepper_inactive_time) {
  4891. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  4892. {
  4893. if(blocks_queued() == false && ignore_stepper_queue == false) {
  4894. disable_x();
  4895. disable_y();
  4896. disable_z();
  4897. disable_e0();
  4898. disable_e1();
  4899. disable_e2();
  4900. disable_e3();
  4901. }
  4902. }
  4903. }
  4904. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4905. if (chdkActive && (millis() - chdkHigh > CHDK_DELAY))
  4906. {
  4907. chdkActive = false;
  4908. WRITE(CHDK, LOW);
  4909. }
  4910. #endif
  4911. #if defined(KILL_PIN) && KILL_PIN > -1
  4912. // Check if the kill button was pressed and wait just in case it was an accidental
  4913. // key kill key press
  4914. // -------------------------------------------------------------------------------
  4915. if( 0 == READ(KILL_PIN) )
  4916. {
  4917. killCount++;
  4918. }
  4919. else if (killCount > 0)
  4920. {
  4921. killCount--;
  4922. }
  4923. // Exceeded threshold and we can confirm that it was not accidental
  4924. // KILL the machine
  4925. // ----------------------------------------------------------------
  4926. if ( killCount >= KILL_DELAY)
  4927. {
  4928. kill();
  4929. }
  4930. #endif
  4931. #if defined(HOME_PIN) && HOME_PIN > -1
  4932. // Check to see if we have to home, use poor man's debouncer
  4933. // ---------------------------------------------------------
  4934. if ( 0 == READ(HOME_PIN) )
  4935. {
  4936. if (homeDebounceCount == 0)
  4937. {
  4938. enquecommands_P((PSTR("G28")));
  4939. homeDebounceCount++;
  4940. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4941. }
  4942. else if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4943. {
  4944. homeDebounceCount++;
  4945. }
  4946. else
  4947. {
  4948. homeDebounceCount = 0;
  4949. }
  4950. }
  4951. #endif
  4952. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  4953. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4954. #endif
  4955. #ifdef EXTRUDER_RUNOUT_PREVENT
  4956. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  4957. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  4958. {
  4959. bool oldstatus=E0_ENABLE_READ;
  4960. enable_e0();
  4961. float oldepos=current_position[E_AXIS];
  4962. float oldedes=destination[E_AXIS];
  4963. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4964. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  4965. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  4966. current_position[E_AXIS]=oldepos;
  4967. destination[E_AXIS]=oldedes;
  4968. plan_set_e_position(oldepos);
  4969. previous_millis_cmd=millis();
  4970. st_synchronize();
  4971. E0_ENABLE_WRITE(oldstatus);
  4972. }
  4973. #endif
  4974. #if defined(DUAL_X_CARRIAGE)
  4975. // handle delayed move timeout
  4976. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  4977. {
  4978. // travel moves have been received so enact them
  4979. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4980. memcpy(destination,current_position,sizeof(destination));
  4981. prepare_move();
  4982. }
  4983. #endif
  4984. #ifdef TEMP_STAT_LEDS
  4985. handle_status_leds();
  4986. #endif
  4987. check_axes_activity();
  4988. }
  4989. void kill()
  4990. {
  4991. cli(); // Stop interrupts
  4992. disable_heater();
  4993. disable_x();
  4994. disable_y();
  4995. disable_z();
  4996. disable_e0();
  4997. disable_e1();
  4998. disable_e2();
  4999. disable_e3();
  5000. #if HAS_POWER_SWITCH
  5001. pinMode(PS_ON_PIN, INPUT);
  5002. #endif
  5003. SERIAL_ERROR_START;
  5004. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5005. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5006. // FMC small patch to update the LCD before ending
  5007. sei(); // enable interrupts
  5008. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5009. cli(); // disable interrupts
  5010. suicide();
  5011. while(1) { /* Intentionally left empty */ } // Wait for reset
  5012. }
  5013. #ifdef FILAMENT_RUNOUT_SENSOR
  5014. void filrunout()
  5015. {
  5016. if filrunoutEnqued == false {
  5017. filrunoutEnqued = true;
  5018. enquecommand("M600");
  5019. }
  5020. }
  5021. #endif
  5022. void Stop()
  5023. {
  5024. disable_heater();
  5025. if(Stopped == false) {
  5026. Stopped = true;
  5027. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5028. SERIAL_ERROR_START;
  5029. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5030. LCD_MESSAGEPGM(MSG_STOPPED);
  5031. }
  5032. }
  5033. bool IsStopped() { return Stopped; };
  5034. #ifdef FAST_PWM_FAN
  5035. void setPwmFrequency(uint8_t pin, int val)
  5036. {
  5037. val &= 0x07;
  5038. switch(digitalPinToTimer(pin))
  5039. {
  5040. #if defined(TCCR0A)
  5041. case TIMER0A:
  5042. case TIMER0B:
  5043. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5044. // TCCR0B |= val;
  5045. break;
  5046. #endif
  5047. #if defined(TCCR1A)
  5048. case TIMER1A:
  5049. case TIMER1B:
  5050. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5051. // TCCR1B |= val;
  5052. break;
  5053. #endif
  5054. #if defined(TCCR2)
  5055. case TIMER2:
  5056. case TIMER2:
  5057. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5058. TCCR2 |= val;
  5059. break;
  5060. #endif
  5061. #if defined(TCCR2A)
  5062. case TIMER2A:
  5063. case TIMER2B:
  5064. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5065. TCCR2B |= val;
  5066. break;
  5067. #endif
  5068. #if defined(TCCR3A)
  5069. case TIMER3A:
  5070. case TIMER3B:
  5071. case TIMER3C:
  5072. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5073. TCCR3B |= val;
  5074. break;
  5075. #endif
  5076. #if defined(TCCR4A)
  5077. case TIMER4A:
  5078. case TIMER4B:
  5079. case TIMER4C:
  5080. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5081. TCCR4B |= val;
  5082. break;
  5083. #endif
  5084. #if defined(TCCR5A)
  5085. case TIMER5A:
  5086. case TIMER5B:
  5087. case TIMER5C:
  5088. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5089. TCCR5B |= val;
  5090. break;
  5091. #endif
  5092. }
  5093. }
  5094. #endif //FAST_PWM_FAN
  5095. bool setTargetedHotend(int code){
  5096. tmp_extruder = active_extruder;
  5097. if(code_seen('T')) {
  5098. tmp_extruder = code_value();
  5099. if(tmp_extruder >= EXTRUDERS) {
  5100. SERIAL_ECHO_START;
  5101. switch(code){
  5102. case 104:
  5103. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5104. break;
  5105. case 105:
  5106. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5107. break;
  5108. case 109:
  5109. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5110. break;
  5111. case 218:
  5112. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5113. break;
  5114. case 221:
  5115. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5116. break;
  5117. }
  5118. SERIAL_ECHOLN(tmp_extruder);
  5119. return true;
  5120. }
  5121. }
  5122. return false;
  5123. }
  5124. float calculate_volumetric_multiplier(float diameter) {
  5125. if (!volumetric_enabled || diameter == 0) return 1.0;
  5126. float d2 = diameter * 0.5;
  5127. return 1.0 / (M_PI * d2 * d2);
  5128. }
  5129. void calculate_volumetric_multipliers() {
  5130. for (int i=0; i<EXTRUDERS; i++)
  5131. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5132. }