My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

planner.cpp 41KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #if defined(MESH_BED_LEVELING)
  43. #include "mesh_bed_leveling.h"
  44. #endif // MESH_BED_LEVELING
  45. //===========================================================================
  46. //============================= public variables ============================
  47. //===========================================================================
  48. unsigned long minsegmenttime;
  49. float max_feedrate[NUM_AXIS]; // set the max speeds
  50. float axis_steps_per_unit[NUM_AXIS];
  51. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  52. float minimumfeedrate;
  53. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  54. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  55. float travel_acceleration; // Travel acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  56. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  57. float max_z_jerk;
  58. float max_e_jerk;
  59. float mintravelfeedrate;
  60. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  61. #ifdef ENABLE_AUTO_BED_LEVELING
  62. // this holds the required transform to compensate for bed level
  63. matrix_3x3 plan_bed_level_matrix = {
  64. 1.0, 0.0, 0.0,
  65. 0.0, 1.0, 0.0,
  66. 0.0, 0.0, 1.0
  67. };
  68. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  69. // The current position of the tool in absolute steps
  70. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  71. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  72. static float previous_nominal_speed; // Nominal speed of previous path line segment
  73. #ifdef AUTOTEMP
  74. float autotemp_max = 250;
  75. float autotemp_min = 210;
  76. float autotemp_factor = 0.1;
  77. bool autotemp_enabled = false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. //===========================================================================
  87. //=============================private variables ============================
  88. //===========================================================================
  89. #ifdef PREVENT_DANGEROUS_EXTRUDE
  90. float extrude_min_temp = EXTRUDE_MINTEMP;
  91. #endif
  92. #ifdef XY_FREQUENCY_LIMIT
  93. // Used for the frequency limit
  94. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  95. // Old direction bits. Used for speed calculations
  96. static unsigned char old_direction_bits = 0;
  97. // Segment times (in µs). Used for speed calculations
  98. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
  99. #endif
  100. #ifdef FILAMENT_SENSOR
  101. static char meas_sample; //temporary variable to hold filament measurement sample
  102. #endif
  103. // Get the next / previous index of the next block in the ring buffer
  104. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  105. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  106. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  107. //===========================================================================
  108. //================================ Functions ================================
  109. //===========================================================================
  110. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  111. // given acceleration:
  112. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  113. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  114. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  115. }
  116. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  117. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  118. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  119. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  120. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  121. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  122. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  123. }
  124. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  125. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  126. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  127. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  128. // Limit minimal step rate (Otherwise the timer will overflow.)
  129. if (initial_rate < 120) initial_rate = 120;
  130. if (final_rate < 120) final_rate = 120;
  131. long acceleration = block->acceleration_st;
  132. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  133. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  134. // Calculate the size of Plateau of Nominal Rate.
  135. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  136. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  137. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  138. // in order to reach the final_rate exactly at the end of this block.
  139. if (plateau_steps < 0) {
  140. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  141. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  142. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  143. plateau_steps = 0;
  144. }
  145. #ifdef ADVANCE
  146. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  147. volatile long final_advance = block->advance * exit_factor * exit_factor;
  148. #endif // ADVANCE
  149. // block->accelerate_until = accelerate_steps;
  150. // block->decelerate_after = accelerate_steps+plateau_steps;
  151. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  152. if (!block->busy) { // Don't update variables if block is busy.
  153. block->accelerate_until = accelerate_steps;
  154. block->decelerate_after = accelerate_steps+plateau_steps;
  155. block->initial_rate = initial_rate;
  156. block->final_rate = final_rate;
  157. #ifdef ADVANCE
  158. block->initial_advance = initial_advance;
  159. block->final_advance = final_advance;
  160. #endif
  161. }
  162. CRITICAL_SECTION_END;
  163. }
  164. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  165. // acceleration within the allotted distance.
  166. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  167. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  168. }
  169. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  170. // This method will calculate the junction jerk as the euclidean distance between the nominal
  171. // velocities of the respective blocks.
  172. //inline float junction_jerk(block_t *before, block_t *after) {
  173. // return sqrt(
  174. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  175. //}
  176. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  177. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  178. if (!current) return;
  179. if (next) {
  180. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  181. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  182. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  183. if (current->entry_speed != current->max_entry_speed) {
  184. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  185. // for max allowable speed if block is decelerating and nominal length is false.
  186. if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
  187. current->entry_speed = min(current->max_entry_speed,
  188. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  189. }
  190. else {
  191. current->entry_speed = current->max_entry_speed;
  192. }
  193. current->recalculate_flag = true;
  194. }
  195. } // Skip last block. Already initialized and set for recalculation.
  196. }
  197. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  198. // implements the reverse pass.
  199. void planner_reverse_pass() {
  200. uint8_t block_index = block_buffer_head;
  201. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  202. CRITICAL_SECTION_START;
  203. unsigned char tail = block_buffer_tail;
  204. CRITICAL_SECTION_END
  205. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  206. block_index = BLOCK_MOD(block_buffer_head - 3);
  207. block_t *block[3] = { NULL, NULL, NULL };
  208. while (block_index != tail) {
  209. block_index = prev_block_index(block_index);
  210. block[2]= block[1];
  211. block[1]= block[0];
  212. block[0] = &block_buffer[block_index];
  213. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  214. }
  215. }
  216. }
  217. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  218. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  219. if (!previous) return;
  220. // If the previous block is an acceleration block, but it is not long enough to complete the
  221. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  222. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  223. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  224. if (!previous->nominal_length_flag) {
  225. if (previous->entry_speed < current->entry_speed) {
  226. double entry_speed = min(current->entry_speed,
  227. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  228. // Check for junction speed change
  229. if (current->entry_speed != entry_speed) {
  230. current->entry_speed = entry_speed;
  231. current->recalculate_flag = true;
  232. }
  233. }
  234. }
  235. }
  236. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  237. // implements the forward pass.
  238. void planner_forward_pass() {
  239. uint8_t block_index = block_buffer_tail;
  240. block_t *block[3] = { NULL, NULL, NULL };
  241. while (block_index != block_buffer_head) {
  242. block[0] = block[1];
  243. block[1] = block[2];
  244. block[2] = &block_buffer[block_index];
  245. planner_forward_pass_kernel(block[0], block[1], block[2]);
  246. block_index = next_block_index(block_index);
  247. }
  248. planner_forward_pass_kernel(block[1], block[2], NULL);
  249. }
  250. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  251. // entry_factor for each junction. Must be called by planner_recalculate() after
  252. // updating the blocks.
  253. void planner_recalculate_trapezoids() {
  254. int8_t block_index = block_buffer_tail;
  255. block_t *current;
  256. block_t *next = NULL;
  257. while (block_index != block_buffer_head) {
  258. current = next;
  259. next = &block_buffer[block_index];
  260. if (current) {
  261. // Recalculate if current block entry or exit junction speed has changed.
  262. if (current->recalculate_flag || next->recalculate_flag) {
  263. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  264. float nom = current->nominal_speed;
  265. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  266. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  267. }
  268. }
  269. block_index = next_block_index( block_index );
  270. }
  271. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  272. if (next) {
  273. float nom = next->nominal_speed;
  274. calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
  275. next->recalculate_flag = false;
  276. }
  277. }
  278. // Recalculates the motion plan according to the following algorithm:
  279. //
  280. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  281. // so that:
  282. // a. The junction jerk is within the set limit
  283. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  284. // acceleration.
  285. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  286. // a. The speed increase within one block would require faster acceleration than the one, true
  287. // constant acceleration.
  288. //
  289. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  290. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  291. // the set limit. Finally it will:
  292. //
  293. // 3. Recalculate trapezoids for all blocks.
  294. void planner_recalculate() {
  295. planner_reverse_pass();
  296. planner_forward_pass();
  297. planner_recalculate_trapezoids();
  298. }
  299. void plan_init() {
  300. block_buffer_head = block_buffer_tail = 0;
  301. memset(position, 0, sizeof(position)); // clear position
  302. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  303. previous_nominal_speed = 0.0;
  304. }
  305. #ifdef AUTOTEMP
  306. void getHighESpeed() {
  307. static float oldt = 0;
  308. if (!autotemp_enabled) return;
  309. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  310. float high = 0.0;
  311. uint8_t block_index = block_buffer_tail;
  312. while (block_index != block_buffer_head) {
  313. block_t *block = &block_buffer[block_index];
  314. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  315. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  316. if (se > high) high = se;
  317. }
  318. block_index = next_block_index(block_index);
  319. }
  320. float t = autotemp_min + high * autotemp_factor;
  321. if (t < autotemp_min) t = autotemp_min;
  322. if (t > autotemp_max) t = autotemp_max;
  323. if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t;
  324. oldt = t;
  325. setTargetHotend0(t);
  326. }
  327. #endif
  328. void check_axes_activity() {
  329. unsigned char axis_active[NUM_AXIS],
  330. tail_fan_speed = fanSpeed;
  331. #ifdef BARICUDA
  332. unsigned char tail_valve_pressure = ValvePressure,
  333. tail_e_to_p_pressure = EtoPPressure;
  334. #endif
  335. block_t *block;
  336. if (blocks_queued()) {
  337. uint8_t block_index = block_buffer_tail;
  338. tail_fan_speed = block_buffer[block_index].fan_speed;
  339. #ifdef BARICUDA
  340. block = &block_buffer[block_index];
  341. tail_valve_pressure = block->valve_pressure;
  342. tail_e_to_p_pressure = block->e_to_p_pressure;
  343. #endif
  344. while (block_index != block_buffer_head) {
  345. block = &block_buffer[block_index];
  346. for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  347. block_index = next_block_index(block_index);
  348. }
  349. }
  350. if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
  351. if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
  352. if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
  353. if (DISABLE_E && !axis_active[E_AXIS]) {
  354. disable_e0();
  355. disable_e1();
  356. disable_e2();
  357. disable_e3();
  358. }
  359. #if defined(FAN_PIN) && FAN_PIN > -1 // HAS_FAN
  360. #ifdef FAN_KICKSTART_TIME
  361. static unsigned long fan_kick_end;
  362. if (tail_fan_speed) {
  363. if (fan_kick_end == 0) {
  364. // Just starting up fan - run at full power.
  365. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  366. tail_fan_speed = 255;
  367. } else if (fan_kick_end > millis())
  368. // Fan still spinning up.
  369. tail_fan_speed = 255;
  370. } else {
  371. fan_kick_end = 0;
  372. }
  373. #endif//FAN_KICKSTART_TIME
  374. #ifdef FAN_SOFT_PWM
  375. fanSpeedSoftPwm = tail_fan_speed;
  376. #else
  377. analogWrite(FAN_PIN, tail_fan_speed);
  378. #endif //!FAN_SOFT_PWM
  379. #endif //FAN_PIN > -1
  380. #ifdef AUTOTEMP
  381. getHighESpeed();
  382. #endif
  383. #ifdef BARICUDA
  384. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1 // HAS_HEATER_1
  385. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  386. #endif
  387. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1 // HAS_HEATER_2
  388. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  389. #endif
  390. #endif
  391. }
  392. float junction_deviation = 0.1;
  393. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  394. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  395. // calculation the caller must also provide the physical length of the line in millimeters.
  396. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  397. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  398. #else
  399. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  400. #endif //ENABLE_AUTO_BED_LEVELING
  401. {
  402. // Calculate the buffer head after we push this byte
  403. int next_buffer_head = next_block_index(block_buffer_head);
  404. // If the buffer is full: good! That means we are well ahead of the robot.
  405. // Rest here until there is room in the buffer.
  406. while(block_buffer_tail == next_buffer_head) {
  407. manage_heater();
  408. manage_inactivity();
  409. lcd_update();
  410. }
  411. #ifdef MESH_BED_LEVELING
  412. if (mbl.active) z += mbl.get_z(x, y);
  413. #endif
  414. #ifdef ENABLE_AUTO_BED_LEVELING
  415. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  416. #endif
  417. // The target position of the tool in absolute steps
  418. // Calculate target position in absolute steps
  419. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  420. long target[NUM_AXIS];
  421. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  422. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  423. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  424. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  425. float dx = target[X_AXIS] - position[X_AXIS],
  426. dy = target[Y_AXIS] - position[Y_AXIS],
  427. dz = target[Z_AXIS] - position[Z_AXIS],
  428. de = target[E_AXIS] - position[E_AXIS];
  429. #ifdef PREVENT_DANGEROUS_EXTRUDE
  430. if (de) {
  431. if (degHotend(active_extruder) < extrude_min_temp) {
  432. position[E_AXIS] = target[E_AXIS]; //behave as if the move really took place, but ignore E part
  433. SERIAL_ECHO_START;
  434. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  435. }
  436. #ifdef PREVENT_LENGTHY_EXTRUDE
  437. if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
  438. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  439. SERIAL_ECHO_START;
  440. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  441. }
  442. #endif
  443. }
  444. #endif
  445. // Prepare to set up new block
  446. block_t *block = &block_buffer[block_buffer_head];
  447. // Mark block as not busy (Not executed by the stepper interrupt)
  448. block->busy = false;
  449. // Number of steps for each axis
  450. #ifdef COREXY
  451. // corexy planning
  452. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  453. block->steps[A_AXIS] = labs(dx + dy);
  454. block->steps[B_AXIS] = labs(dx - dy);
  455. #else
  456. // default non-h-bot planning
  457. block->steps[X_AXIS] = labs(dx);
  458. block->steps[Y_AXIS] = labs(dy);
  459. #endif
  460. block->steps[Z_AXIS] = labs(dz);
  461. block->steps[E_AXIS] = labs(de);
  462. block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
  463. block->steps[E_AXIS] *= extruder_multiply[active_extruder];
  464. block->steps[E_AXIS] /= 100;
  465. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  466. // Bail if this is a zero-length block
  467. if (block->step_event_count <= dropsegments) return;
  468. block->fan_speed = fanSpeed;
  469. #ifdef BARICUDA
  470. block->valve_pressure = ValvePressure;
  471. block->e_to_p_pressure = EtoPPressure;
  472. #endif
  473. // Compute direction bits for this block
  474. uint8_t db = 0;
  475. #ifdef COREXY
  476. if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
  477. if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
  478. if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
  479. if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
  480. #else
  481. if (dx < 0) db |= BIT(X_AXIS);
  482. if (dy < 0) db |= BIT(Y_AXIS);
  483. #endif
  484. if (dz < 0) db |= BIT(Z_AXIS);
  485. if (de < 0) db |= BIT(E_AXIS);
  486. block->direction_bits = db;
  487. block->active_extruder = extruder;
  488. //enable active axes
  489. #ifdef COREXY
  490. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  491. enable_x();
  492. enable_y();
  493. }
  494. #else
  495. if (block->steps[X_AXIS]) enable_x();
  496. if (block->steps[Y_AXIS]) enable_y();
  497. #endif
  498. #ifndef Z_LATE_ENABLE
  499. if (block->steps[Z_AXIS]) enable_z();
  500. #endif
  501. // Enable extruder(s)
  502. if (block->steps[E_AXIS]) {
  503. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  504. for (int i=0; i<EXTRUDERS; i++)
  505. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  506. switch(extruder) {
  507. case 0:
  508. enable_e0();
  509. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
  510. #if EXTRUDERS > 1
  511. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  512. #if EXTRUDERS > 2
  513. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  514. #if EXTRUDERS > 3
  515. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  516. #endif
  517. #endif
  518. #endif
  519. break;
  520. #if EXTRUDERS > 1
  521. case 1:
  522. enable_e1();
  523. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE*2;
  524. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  525. #if EXTRUDERS > 2
  526. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  527. #if EXTRUDERS > 3
  528. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  529. #endif
  530. #endif
  531. break;
  532. #if EXTRUDERS > 2
  533. case 2:
  534. enable_e2();
  535. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE*2;
  536. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  537. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  538. #if EXTRUDERS > 3
  539. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  540. #endif
  541. break;
  542. #if EXTRUDERS > 3
  543. case 3:
  544. enable_e3();
  545. g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE*2;
  546. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  547. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  548. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  549. break;
  550. #endif // EXTRUDERS > 3
  551. #endif // EXTRUDERS > 2
  552. #endif // EXTRUDERS > 1
  553. }
  554. }
  555. else { // enable all
  556. enable_e0();
  557. enable_e1();
  558. enable_e2();
  559. enable_e3();
  560. }
  561. }
  562. if (block->steps[E_AXIS]) {
  563. if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate;
  564. }
  565. else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate;
  566. /**
  567. * This part of the code calculates the total length of the movement.
  568. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  569. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  570. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  571. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  572. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  573. */
  574. #ifdef COREXY
  575. float delta_mm[6];
  576. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  577. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  578. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  579. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  580. #else
  581. float delta_mm[4];
  582. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  583. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  584. #endif
  585. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  586. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extruder_multiply[active_extruder] / 100.0;
  587. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  588. block->millimeters = fabs(delta_mm[E_AXIS]);
  589. }
  590. else {
  591. block->millimeters = sqrt(
  592. #ifdef COREXY
  593. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
  594. #else
  595. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
  596. #endif
  597. + square(delta_mm[Z_AXIS])
  598. );
  599. }
  600. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  601. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  602. float inverse_second = feed_rate * inverse_millimeters;
  603. int moves_queued = movesplanned();
  604. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  605. #if defined(OLD_SLOWDOWN) || defined(SLOWDOWN)
  606. bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
  607. #ifdef OLD_SLOWDOWN
  608. if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
  609. #endif
  610. #ifdef SLOWDOWN
  611. // segment time im micro seconds
  612. unsigned long segment_time = lround(1000000.0/inverse_second);
  613. if (mq) {
  614. if (segment_time < minsegmenttime) {
  615. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  616. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  617. #ifdef XY_FREQUENCY_LIMIT
  618. segment_time = lround(1000000.0 / inverse_second);
  619. #endif
  620. }
  621. }
  622. #endif
  623. #endif
  624. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  625. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  626. #ifdef FILAMENT_SENSOR
  627. //FMM update ring buffer used for delay with filament measurements
  628. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  629. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  630. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  631. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  632. while (delay_dist < 0) delay_dist += MMD10;
  633. delay_index1 = delay_dist / 10.0; // calculate index
  634. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  635. if (delay_index1 != delay_index2) { // moved index
  636. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  637. while (delay_index1 != delay_index2) {
  638. // Increment and loop around buffer
  639. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  640. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  641. measurement_delay[delay_index2] = meas_sample;
  642. }
  643. }
  644. }
  645. #endif
  646. // Calculate and limit speed in mm/sec for each axis
  647. float current_speed[NUM_AXIS];
  648. float speed_factor = 1.0; //factor <=1 do decrease speed
  649. for (int i = 0; i < NUM_AXIS; i++) {
  650. current_speed[i] = delta_mm[i] * inverse_second;
  651. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  652. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  653. }
  654. // Max segement time in us.
  655. #ifdef XY_FREQUENCY_LIMIT
  656. #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
  657. // Check and limit the xy direction change frequency
  658. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  659. old_direction_bits = block->direction_bits;
  660. segment_time = lround((float)segment_time / speed_factor);
  661. long xs0 = axis_segment_time[X_AXIS][0],
  662. xs1 = axis_segment_time[X_AXIS][1],
  663. xs2 = axis_segment_time[X_AXIS][2],
  664. ys0 = axis_segment_time[Y_AXIS][0],
  665. ys1 = axis_segment_time[Y_AXIS][1],
  666. ys2 = axis_segment_time[Y_AXIS][2];
  667. if ((direction_change & BIT(X_AXIS)) != 0) {
  668. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  669. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  670. xs0 = 0;
  671. }
  672. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  673. if ((direction_change & BIT(Y_AXIS)) != 0) {
  674. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  675. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  676. ys0 = 0;
  677. }
  678. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  679. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  680. max_y_segment_time = max(ys0, max(ys1, ys2)),
  681. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  682. if (min_xy_segment_time < MAX_FREQ_TIME) {
  683. float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
  684. speed_factor = min(speed_factor, low_sf);
  685. }
  686. #endif // XY_FREQUENCY_LIMIT
  687. // Correct the speed
  688. if (speed_factor < 1.0) {
  689. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  690. block->nominal_speed *= speed_factor;
  691. block->nominal_rate *= speed_factor;
  692. }
  693. // Compute and limit the acceleration rate for the trapezoid generator.
  694. float steps_per_mm = block->step_event_count / block->millimeters;
  695. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  696. if (bsx == 0 && bsy == 0 && bsz == 0) {
  697. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  698. }
  699. else if (bse == 0) {
  700. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  701. }
  702. else {
  703. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  704. }
  705. // Limit acceleration per axis
  706. unsigned long acc_st = block->acceleration_st,
  707. xsteps = axis_steps_per_sqr_second[X_AXIS],
  708. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  709. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  710. esteps = axis_steps_per_sqr_second[E_AXIS];
  711. if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
  712. if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
  713. if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
  714. if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
  715. block->acceleration_st = acc_st;
  716. block->acceleration = acc_st / steps_per_mm;
  717. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  718. #if 0 // Use old jerk for now
  719. // Compute path unit vector
  720. double unit_vec[3];
  721. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  722. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  723. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  724. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  725. // Let a circle be tangent to both previous and current path line segments, where the junction
  726. // deviation is defined as the distance from the junction to the closest edge of the circle,
  727. // colinear with the circle center. The circular segment joining the two paths represents the
  728. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  729. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  730. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  731. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  732. // nonlinearities of both the junction angle and junction velocity.
  733. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  734. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  735. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  736. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  737. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  738. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  739. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  740. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  741. // Skip and use default max junction speed for 0 degree acute junction.
  742. if (cos_theta < 0.95) {
  743. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  744. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  745. if (cos_theta > -0.95) {
  746. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  747. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  748. vmax_junction = min(vmax_junction,
  749. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  750. }
  751. }
  752. }
  753. #endif
  754. // Start with a safe speed
  755. float vmax_junction = max_xy_jerk / 2;
  756. float vmax_junction_factor = 1.0;
  757. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  758. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  759. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  760. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  761. vmax_junction = min(vmax_junction, block->nominal_speed);
  762. float safe_speed = vmax_junction;
  763. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  764. float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  765. dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  766. dz = fabs(csz - previous_speed[Z_AXIS]),
  767. de = fabs(cse - previous_speed[E_AXIS]),
  768. jerk = sqrt(dx * dx + dy * dy);
  769. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  770. vmax_junction = block->nominal_speed;
  771. // }
  772. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  773. if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
  774. if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
  775. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  776. }
  777. block->max_entry_speed = vmax_junction;
  778. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  779. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  780. block->entry_speed = min(vmax_junction, v_allowable);
  781. // Initialize planner efficiency flags
  782. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  783. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  784. // the current block and next block junction speeds are guaranteed to always be at their maximum
  785. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  786. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  787. // the reverse and forward planners, the corresponding block junction speed will always be at the
  788. // the maximum junction speed and may always be ignored for any speed reduction checks.
  789. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  790. block->recalculate_flag = true; // Always calculate trapezoid for new block
  791. // Update previous path unit_vector and nominal speed
  792. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  793. previous_nominal_speed = block->nominal_speed;
  794. #ifdef ADVANCE
  795. // Calculate advance rate
  796. if (!bse || (!bsx && !bsy && !bsz)) {
  797. block->advance_rate = 0;
  798. block->advance = 0;
  799. }
  800. else {
  801. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  802. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
  803. block->advance = advance;
  804. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  805. }
  806. /*
  807. SERIAL_ECHO_START;
  808. SERIAL_ECHOPGM("advance :");
  809. SERIAL_ECHO(block->advance/256.0);
  810. SERIAL_ECHOPGM("advance rate :");
  811. SERIAL_ECHOLN(block->advance_rate/256.0);
  812. */
  813. #endif // ADVANCE
  814. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  815. // Move buffer head
  816. block_buffer_head = next_buffer_head;
  817. // Update position
  818. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  819. planner_recalculate();
  820. st_wake_up();
  821. } // plan_buffer_line()
  822. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(DELTA)
  823. vector_3 plan_get_position() {
  824. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  825. //position.debug("in plan_get position");
  826. //plan_bed_level_matrix.debug("in plan_get bed_level");
  827. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  828. //inverse.debug("in plan_get inverse");
  829. position.apply_rotation(inverse);
  830. //position.debug("after rotation");
  831. return position;
  832. }
  833. #endif // ENABLE_AUTO_BED_LEVELING && !DELTA
  834. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  835. void plan_set_position(float x, float y, float z, const float &e)
  836. #else
  837. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  838. #endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
  839. {
  840. #ifdef ENABLE_AUTO_BED_LEVELING
  841. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  842. #elif defined(MESH_BED_LEVELING)
  843. if (mbl.active) z += mbl.get_z(x, y);
  844. #endif
  845. float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  846. float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  847. float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  848. float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  849. st_set_position(nx, ny, nz, ne);
  850. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  851. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  852. }
  853. void plan_set_e_position(const float &e) {
  854. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  855. st_set_e_position(position[E_AXIS]);
  856. }
  857. #ifdef PREVENT_DANGEROUS_EXTRUDE
  858. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  859. #endif
  860. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  861. void reset_acceleration_rates() {
  862. for (int i = 0; i < NUM_AXIS; i++)
  863. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  864. }