My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 117KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef ACCURATE_BED_LEVELING
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #include "ultralcd.h"
  31. #include "planner.h"
  32. #include "stepper.h"
  33. #include "temperature.h"
  34. #include "motion_control.h"
  35. #include "cardreader.h"
  36. #include "watchdog.h"
  37. #include "ConfigurationStore.h"
  38. #include "language.h"
  39. #include "pins_arduino.h"
  40. #include "math.h"
  41. #ifdef BLINKM
  42. #include "BlinkM.h"
  43. #include "Wire.h"
  44. #endif
  45. #if NUM_SERVOS > 0
  46. #include "Servo.h"
  47. #endif
  48. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  49. #include <SPI.h>
  50. #endif
  51. #define VERSION_STRING "1.0.0"
  52. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  53. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  54. //Implemented Codes
  55. //-------------------
  56. // G0 -> G1
  57. // G1 - Coordinated Movement X Y Z E
  58. // G2 - CW ARC
  59. // G3 - CCW ARC
  60. // G4 - Dwell S<seconds> or P<milliseconds>
  61. // G10 - retract filament according to settings of M207
  62. // G11 - retract recover filament according to settings of M208
  63. // G28 - Home all Axis
  64. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  65. // G30 - Single Z Probe, probes bed at current XY location.
  66. // G90 - Use Absolute Coordinates
  67. // G91 - Use Relative Coordinates
  68. // G92 - Set current position to cordinates given
  69. // M Codes
  70. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  71. // M1 - Same as M0
  72. // M17 - Enable/Power all stepper motors
  73. // M18 - Disable all stepper motors; same as M84
  74. // M20 - List SD card
  75. // M21 - Init SD card
  76. // M22 - Release SD card
  77. // M23 - Select SD file (M23 filename.g)
  78. // M24 - Start/resume SD print
  79. // M25 - Pause SD print
  80. // M26 - Set SD position in bytes (M26 S12345)
  81. // M27 - Report SD print status
  82. // M28 - Start SD write (M28 filename.g)
  83. // M29 - Stop SD write
  84. // M30 - Delete file from SD (M30 filename.g)
  85. // M31 - Output time since last M109 or SD card start to serial
  86. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  87. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  88. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (simiarl to #include).
  89. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  90. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  91. // M80 - Turn on Power Supply
  92. // M81 - Turn off Power Supply
  93. // M82 - Set E codes absolute (default)
  94. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  95. // M84 - Disable steppers until next move,
  96. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  97. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  98. // M92 - Set axis_steps_per_unit - same syntax as G92
  99. // M104 - Set extruder target temp
  100. // M105 - Read current temp
  101. // M106 - Fan on
  102. // M107 - Fan off
  103. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  105. // M114 - Output current position to serial port
  106. // M115 - Capabilities string
  107. // M117 - display message
  108. // M119 - Output Endstop status to serial port
  109. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  110. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  111. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  112. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  113. // M140 - Set bed target temp
  114. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  115. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  116. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  117. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  118. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  119. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  120. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  121. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  122. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  123. // M206 - set additional homeing offset
  124. // M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  125. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  126. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  127. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  128. // M220 S<factor in percent>- set speed factor override percentage
  129. // M221 S<factor in percent>- set extrude factor override percentage
  130. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  131. // M240 - Trigger a camera to take a photograph
  132. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  133. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  134. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  135. // M301 - Set PID parameters P I and D
  136. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  137. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  138. // M304 - Set bed PID parameters P I and D
  139. // M400 - Finish all moves
  140. // M401 - Lower z-probe if present
  141. // M402 - Raise z-probe if present
  142. // M500 - stores paramters in EEPROM
  143. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  144. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  145. // M503 - print the current settings (from memory not from eeprom)
  146. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  147. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  148. // M666 - set delta endstop adjustemnt
  149. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  150. // M907 - Set digital trimpot motor current using axis codes.
  151. // M908 - Control digital trimpot directly.
  152. // M350 - Set microstepping mode.
  153. // M351 - Toggle MS1 MS2 pins directly.
  154. // M928 - Start SD logging (M928 filename.g) - ended by M29
  155. // M999 - Restart after being stopped by error
  156. //Stepper Movement Variables
  157. //===========================================================================
  158. //=============================imported variables============================
  159. //===========================================================================
  160. //===========================================================================
  161. //=============================public variables=============================
  162. //===========================================================================
  163. #ifdef SDSUPPORT
  164. CardReader card;
  165. #endif
  166. float homing_feedrate[] = HOMING_FEEDRATE;
  167. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  168. int feedmultiply=100; //100->1 200->2
  169. int saved_feedmultiply;
  170. int extrudemultiply=100; //100->1 200->2
  171. float volumetric_multiplier[EXTRUDERS] = {1.0
  172. #if EXTRUDERS > 1
  173. , 1.0
  174. #if EXTRUDERS > 2
  175. , 1.0
  176. #endif
  177. #endif
  178. };
  179. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  180. float add_homeing[3]={0,0,0};
  181. #ifdef DELTA
  182. float endstop_adj[3]={0,0,0};
  183. #endif
  184. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  185. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  186. bool axis_known_position[3] = {false, false, false};
  187. float zprobe_zoffset;
  188. // Extruder offset
  189. #if EXTRUDERS > 1
  190. #ifndef DUAL_X_CARRIAGE
  191. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  192. #else
  193. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  194. #endif
  195. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  196. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  197. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  198. #endif
  199. };
  200. #endif
  201. uint8_t active_extruder = 0;
  202. int fanSpeed=0;
  203. #ifdef SERVO_ENDSTOPS
  204. int servo_endstops[] = SERVO_ENDSTOPS;
  205. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  206. #endif
  207. #ifdef BARICUDA
  208. int ValvePressure=0;
  209. int EtoPPressure=0;
  210. #endif
  211. #ifdef FWRETRACT
  212. bool autoretract_enabled=true;
  213. bool retracted=false;
  214. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  215. float retract_recover_length=0, retract_recover_feedrate=8*60;
  216. #endif
  217. #ifdef ULTIPANEL
  218. #ifdef PS_DEFAULT_OFF
  219. bool powersupply = false;
  220. #else
  221. bool powersupply = true;
  222. #endif
  223. #endif
  224. #ifdef DELTA
  225. float delta[3] = {0.0, 0.0, 0.0};
  226. #endif
  227. //===========================================================================
  228. //=============================private variables=============================
  229. //===========================================================================
  230. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  231. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  232. static float offset[3] = {0.0, 0.0, 0.0};
  233. static bool home_all_axis = true;
  234. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  235. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  236. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  237. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  238. static bool fromsd[BUFSIZE];
  239. static int bufindr = 0;
  240. static int bufindw = 0;
  241. static int buflen = 0;
  242. //static int i = 0;
  243. static char serial_char;
  244. static int serial_count = 0;
  245. static boolean comment_mode = false;
  246. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  247. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  248. //static float tt = 0;
  249. //static float bt = 0;
  250. //Inactivity shutdown variables
  251. static unsigned long previous_millis_cmd = 0;
  252. static unsigned long max_inactive_time = 0;
  253. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  254. unsigned long starttime=0;
  255. unsigned long stoptime=0;
  256. static uint8_t tmp_extruder;
  257. bool Stopped=false;
  258. #if NUM_SERVOS > 0
  259. Servo servos[NUM_SERVOS];
  260. #endif
  261. bool CooldownNoWait = true;
  262. bool target_direction;
  263. //===========================================================================
  264. //=============================ROUTINES=============================
  265. //===========================================================================
  266. void get_arc_coordinates();
  267. bool setTargetedHotend(int code);
  268. void serial_echopair_P(const char *s_P, float v)
  269. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  270. void serial_echopair_P(const char *s_P, double v)
  271. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  272. void serial_echopair_P(const char *s_P, unsigned long v)
  273. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  274. extern "C"{
  275. extern unsigned int __bss_end;
  276. extern unsigned int __heap_start;
  277. extern void *__brkval;
  278. int freeMemory() {
  279. int free_memory;
  280. if((int)__brkval == 0)
  281. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  282. else
  283. free_memory = ((int)&free_memory) - ((int)__brkval);
  284. return free_memory;
  285. }
  286. }
  287. //adds an command to the main command buffer
  288. //thats really done in a non-safe way.
  289. //needs overworking someday
  290. void enquecommand(const char *cmd)
  291. {
  292. if(buflen < BUFSIZE)
  293. {
  294. //this is dangerous if a mixing of serial and this happsens
  295. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  296. SERIAL_ECHO_START;
  297. SERIAL_ECHOPGM("enqueing \"");
  298. SERIAL_ECHO(cmdbuffer[bufindw]);
  299. SERIAL_ECHOLNPGM("\"");
  300. bufindw= (bufindw + 1)%BUFSIZE;
  301. buflen += 1;
  302. }
  303. }
  304. void enquecommand_P(const char *cmd)
  305. {
  306. if(buflen < BUFSIZE)
  307. {
  308. //this is dangerous if a mixing of serial and this happsens
  309. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  310. SERIAL_ECHO_START;
  311. SERIAL_ECHOPGM("enqueing \"");
  312. SERIAL_ECHO(cmdbuffer[bufindw]);
  313. SERIAL_ECHOLNPGM("\"");
  314. bufindw= (bufindw + 1)%BUFSIZE;
  315. buflen += 1;
  316. }
  317. }
  318. void setup_killpin()
  319. {
  320. #if defined(KILL_PIN) && KILL_PIN > -1
  321. pinMode(KILL_PIN,INPUT);
  322. WRITE(KILL_PIN,HIGH);
  323. #endif
  324. }
  325. void setup_photpin()
  326. {
  327. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  328. SET_OUTPUT(PHOTOGRAPH_PIN);
  329. WRITE(PHOTOGRAPH_PIN, LOW);
  330. #endif
  331. }
  332. void setup_powerhold()
  333. {
  334. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  335. SET_OUTPUT(SUICIDE_PIN);
  336. WRITE(SUICIDE_PIN, HIGH);
  337. #endif
  338. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  339. SET_OUTPUT(PS_ON_PIN);
  340. #if defined(PS_DEFAULT_OFF)
  341. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  342. #else
  343. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  344. #endif
  345. #endif
  346. }
  347. void suicide()
  348. {
  349. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  350. SET_OUTPUT(SUICIDE_PIN);
  351. WRITE(SUICIDE_PIN, LOW);
  352. #endif
  353. }
  354. void servo_init()
  355. {
  356. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  357. servos[0].attach(SERVO0_PIN);
  358. #endif
  359. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  360. servos[1].attach(SERVO1_PIN);
  361. #endif
  362. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  363. servos[2].attach(SERVO2_PIN);
  364. #endif
  365. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  366. servos[3].attach(SERVO3_PIN);
  367. #endif
  368. #if (NUM_SERVOS >= 5)
  369. #error "TODO: enter initalisation code for more servos"
  370. #endif
  371. // Set position of Servo Endstops that are defined
  372. #ifdef SERVO_ENDSTOPS
  373. for(int8_t i = 0; i < 3; i++)
  374. {
  375. if(servo_endstops[i] > -1) {
  376. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  377. }
  378. }
  379. #endif
  380. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  381. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  382. servos[servo_endstops[Z_AXIS]].detach();
  383. #endif
  384. }
  385. void setup()
  386. {
  387. setup_killpin();
  388. setup_powerhold();
  389. MYSERIAL.begin(BAUDRATE);
  390. SERIAL_PROTOCOLLNPGM("start");
  391. SERIAL_ECHO_START;
  392. // Check startup - does nothing if bootloader sets MCUSR to 0
  393. byte mcu = MCUSR;
  394. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  395. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  396. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  397. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  398. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  399. MCUSR=0;
  400. SERIAL_ECHOPGM(MSG_MARLIN);
  401. SERIAL_ECHOLNPGM(VERSION_STRING);
  402. #ifdef STRING_VERSION_CONFIG_H
  403. #ifdef STRING_CONFIG_H_AUTHOR
  404. SERIAL_ECHO_START;
  405. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  406. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  407. SERIAL_ECHOPGM(MSG_AUTHOR);
  408. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  409. SERIAL_ECHOPGM("Compiled: ");
  410. SERIAL_ECHOLNPGM(__DATE__);
  411. #endif
  412. #endif
  413. SERIAL_ECHO_START;
  414. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  415. SERIAL_ECHO(freeMemory());
  416. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  417. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  418. for(int8_t i = 0; i < BUFSIZE; i++)
  419. {
  420. fromsd[i] = false;
  421. }
  422. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  423. Config_RetrieveSettings();
  424. tp_init(); // Initialize temperature loop
  425. plan_init(); // Initialize planner;
  426. watchdog_init();
  427. st_init(); // Initialize stepper, this enables interrupts!
  428. setup_photpin();
  429. servo_init();
  430. lcd_init();
  431. _delay_ms(1000); // wait 1sec to display the splash screen
  432. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  433. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  434. #endif
  435. #ifdef DIGIPOT_I2C
  436. digipot_i2c_init();
  437. #endif
  438. }
  439. void loop()
  440. {
  441. if(buflen < (BUFSIZE-1))
  442. get_command();
  443. #ifdef SDSUPPORT
  444. card.checkautostart(false);
  445. #endif
  446. if(buflen)
  447. {
  448. #ifdef SDSUPPORT
  449. if(card.saving)
  450. {
  451. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  452. {
  453. card.write_command(cmdbuffer[bufindr]);
  454. if(card.logging)
  455. {
  456. process_commands();
  457. }
  458. else
  459. {
  460. SERIAL_PROTOCOLLNPGM(MSG_OK);
  461. }
  462. }
  463. else
  464. {
  465. card.closefile();
  466. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  467. }
  468. }
  469. else
  470. {
  471. process_commands();
  472. }
  473. #else
  474. process_commands();
  475. #endif //SDSUPPORT
  476. buflen = (buflen-1);
  477. bufindr = (bufindr + 1)%BUFSIZE;
  478. }
  479. //check heater every n milliseconds
  480. manage_heater();
  481. manage_inactivity();
  482. checkHitEndstops();
  483. lcd_update();
  484. }
  485. void get_command()
  486. {
  487. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  488. serial_char = MYSERIAL.read();
  489. if(serial_char == '\n' ||
  490. serial_char == '\r' ||
  491. (serial_char == ':' && comment_mode == false) ||
  492. serial_count >= (MAX_CMD_SIZE - 1) )
  493. {
  494. if(!serial_count) { //if empty line
  495. comment_mode = false; //for new command
  496. return;
  497. }
  498. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  499. if(!comment_mode){
  500. comment_mode = false; //for new command
  501. fromsd[bufindw] = false;
  502. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  503. {
  504. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  505. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  506. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  507. SERIAL_ERROR_START;
  508. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  509. SERIAL_ERRORLN(gcode_LastN);
  510. //Serial.println(gcode_N);
  511. FlushSerialRequestResend();
  512. serial_count = 0;
  513. return;
  514. }
  515. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  516. {
  517. byte checksum = 0;
  518. byte count = 0;
  519. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  520. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  521. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  522. SERIAL_ERROR_START;
  523. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  524. SERIAL_ERRORLN(gcode_LastN);
  525. FlushSerialRequestResend();
  526. serial_count = 0;
  527. return;
  528. }
  529. //if no errors, continue parsing
  530. }
  531. else
  532. {
  533. SERIAL_ERROR_START;
  534. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  535. SERIAL_ERRORLN(gcode_LastN);
  536. FlushSerialRequestResend();
  537. serial_count = 0;
  538. return;
  539. }
  540. gcode_LastN = gcode_N;
  541. //if no errors, continue parsing
  542. }
  543. else // if we don't receive 'N' but still see '*'
  544. {
  545. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  546. {
  547. SERIAL_ERROR_START;
  548. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  549. SERIAL_ERRORLN(gcode_LastN);
  550. serial_count = 0;
  551. return;
  552. }
  553. }
  554. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  555. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  556. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  557. case 0:
  558. case 1:
  559. case 2:
  560. case 3:
  561. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  562. #ifdef SDSUPPORT
  563. if(card.saving)
  564. break;
  565. #endif //SDSUPPORT
  566. SERIAL_PROTOCOLLNPGM(MSG_OK);
  567. }
  568. else {
  569. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  570. LCD_MESSAGEPGM(MSG_STOPPED);
  571. }
  572. break;
  573. default:
  574. break;
  575. }
  576. }
  577. bufindw = (bufindw + 1)%BUFSIZE;
  578. buflen += 1;
  579. }
  580. serial_count = 0; //clear buffer
  581. }
  582. else
  583. {
  584. if(serial_char == ';') comment_mode = true;
  585. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  586. }
  587. }
  588. #ifdef SDSUPPORT
  589. if(!card.sdprinting || serial_count!=0){
  590. return;
  591. }
  592. //'#' stops reading from sd to the buffer prematurely, so procedural macro calls are possible
  593. // if it occures, stop_buffering is triggered and the buffer is ran dry.
  594. // this character _can_ occure in serial com, due to checksums. however, no checksums are used in sd printing
  595. static bool stop_buffering=false;
  596. if(buflen==0) stop_buffering=false;
  597. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  598. int16_t n=card.get();
  599. serial_char = (char)n;
  600. if(serial_char == '\n' ||
  601. serial_char == '\r' ||
  602. (serial_char == '#' && comment_mode == false) ||
  603. (serial_char == ':' && comment_mode == false) ||
  604. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  605. {
  606. if(card.eof()){
  607. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  608. stoptime=millis();
  609. char time[30];
  610. unsigned long t=(stoptime-starttime)/1000;
  611. int hours, minutes;
  612. minutes=(t/60)%60;
  613. hours=t/60/60;
  614. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  615. SERIAL_ECHO_START;
  616. SERIAL_ECHOLN(time);
  617. lcd_setstatus(time);
  618. card.printingHasFinished();
  619. card.checkautostart(true);
  620. }
  621. if(serial_char=='#')
  622. stop_buffering=true;
  623. if(!serial_count)
  624. {
  625. comment_mode = false; //for new command
  626. return; //if empty line
  627. }
  628. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  629. // if(!comment_mode){
  630. fromsd[bufindw] = true;
  631. buflen += 1;
  632. bufindw = (bufindw + 1)%BUFSIZE;
  633. // }
  634. comment_mode = false; //for new command
  635. serial_count = 0; //clear buffer
  636. }
  637. else
  638. {
  639. if(serial_char == ';') comment_mode = true;
  640. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  641. }
  642. }
  643. #endif //SDSUPPORT
  644. }
  645. float code_value()
  646. {
  647. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  648. }
  649. long code_value_long()
  650. {
  651. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  652. }
  653. bool code_seen(char code)
  654. {
  655. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  656. return (strchr_pointer != NULL); //Return True if a character was found
  657. }
  658. #define DEFINE_PGM_READ_ANY(type, reader) \
  659. static inline type pgm_read_any(const type *p) \
  660. { return pgm_read_##reader##_near(p); }
  661. DEFINE_PGM_READ_ANY(float, float);
  662. DEFINE_PGM_READ_ANY(signed char, byte);
  663. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  664. static const PROGMEM type array##_P[3] = \
  665. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  666. static inline type array(int axis) \
  667. { return pgm_read_any(&array##_P[axis]); }
  668. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  669. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  670. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  671. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  672. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  673. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  674. #ifdef DUAL_X_CARRIAGE
  675. #if EXTRUDERS == 1 || defined(COREXY) \
  676. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  677. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  678. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  679. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  680. #endif
  681. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  682. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  683. #endif
  684. #define DXC_FULL_CONTROL_MODE 0
  685. #define DXC_AUTO_PARK_MODE 1
  686. #define DXC_DUPLICATION_MODE 2
  687. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  688. static float x_home_pos(int extruder) {
  689. if (extruder == 0)
  690. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  691. else
  692. // In dual carriage mode the extruder offset provides an override of the
  693. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  694. // This allow soft recalibration of the second extruder offset position without firmware reflash
  695. // (through the M218 command).
  696. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  697. }
  698. static int x_home_dir(int extruder) {
  699. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  700. }
  701. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  702. static bool active_extruder_parked = false; // used in mode 1 & 2
  703. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  704. static unsigned long delayed_move_time = 0; // used in mode 1
  705. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  706. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  707. bool extruder_duplication_enabled = false; // used in mode 2
  708. #endif //DUAL_X_CARRIAGE
  709. static void axis_is_at_home(int axis) {
  710. #ifdef DUAL_X_CARRIAGE
  711. if (axis == X_AXIS) {
  712. if (active_extruder != 0) {
  713. current_position[X_AXIS] = x_home_pos(active_extruder);
  714. min_pos[X_AXIS] = X2_MIN_POS;
  715. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  716. return;
  717. }
  718. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  719. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  720. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  721. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  722. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  723. return;
  724. }
  725. }
  726. #endif
  727. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  728. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  729. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  730. }
  731. #ifdef ENABLE_AUTO_BED_LEVELING
  732. #ifdef ACCURATE_BED_LEVELING
  733. static void set_bed_level_equation_lsq(double *plane_equation_coefficients)
  734. {
  735. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  736. planeNormal.debug("planeNormal");
  737. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  738. //bedLevel.debug("bedLevel");
  739. //plan_bed_level_matrix.debug("bed level before");
  740. //vector_3 uncorrected_position = plan_get_position_mm();
  741. //uncorrected_position.debug("position before");
  742. vector_3 corrected_position = plan_get_position();
  743. // corrected_position.debug("position after");
  744. current_position[X_AXIS] = corrected_position.x;
  745. current_position[Y_AXIS] = corrected_position.y;
  746. current_position[Z_AXIS] = corrected_position.z;
  747. // but the bed at 0 so we don't go below it.
  748. current_position[Z_AXIS] = zprobe_zoffset; // in the lsq we reach here after raising the extruder due to the loop structure
  749. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  750. }
  751. #else
  752. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  753. plan_bed_level_matrix.set_to_identity();
  754. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  755. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  756. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  757. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  758. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  759. vector_3 planeNormal = vector_3::cross(xPositive, yPositive).get_normal();
  760. //planeNormal.debug("planeNormal");
  761. //yPositive.debug("yPositive");
  762. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  763. //bedLevel.debug("bedLevel");
  764. //plan_bed_level_matrix.debug("bed level before");
  765. //vector_3 uncorrected_position = plan_get_position_mm();
  766. //uncorrected_position.debug("position before");
  767. // and set our bed level equation to do the right thing
  768. //plan_bed_level_matrix.debug("bed level after");
  769. vector_3 corrected_position = plan_get_position();
  770. //corrected_position.debug("position after");
  771. current_position[X_AXIS] = corrected_position.x;
  772. current_position[Y_AXIS] = corrected_position.y;
  773. current_position[Z_AXIS] = corrected_position.z;
  774. // but the bed at 0 so we don't go below it.
  775. current_position[Z_AXIS] = zprobe_zoffset;
  776. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  777. }
  778. #endif // ACCURATE_BED_LEVELING
  779. static void run_z_probe() {
  780. plan_bed_level_matrix.set_to_identity();
  781. feedrate = homing_feedrate[Z_AXIS];
  782. // move down until you find the bed
  783. float zPosition = -10;
  784. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  785. st_synchronize();
  786. // we have to let the planner know where we are right now as it is not where we said to go.
  787. zPosition = st_get_position_mm(Z_AXIS);
  788. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  789. // move up the retract distance
  790. zPosition += home_retract_mm(Z_AXIS);
  791. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  792. st_synchronize();
  793. // move back down slowly to find bed
  794. feedrate = homing_feedrate[Z_AXIS]/4;
  795. zPosition -= home_retract_mm(Z_AXIS) * 2;
  796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  797. st_synchronize();
  798. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  799. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  800. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  801. }
  802. static void do_blocking_move_to(float x, float y, float z) {
  803. float oldFeedRate = feedrate;
  804. feedrate = XY_TRAVEL_SPEED;
  805. current_position[X_AXIS] = x;
  806. current_position[Y_AXIS] = y;
  807. current_position[Z_AXIS] = z;
  808. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  809. st_synchronize();
  810. feedrate = oldFeedRate;
  811. }
  812. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  813. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  814. }
  815. static void setup_for_endstop_move() {
  816. saved_feedrate = feedrate;
  817. saved_feedmultiply = feedmultiply;
  818. feedmultiply = 100;
  819. previous_millis_cmd = millis();
  820. enable_endstops(true);
  821. }
  822. static void clean_up_after_endstop_move() {
  823. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  824. enable_endstops(false);
  825. #endif
  826. feedrate = saved_feedrate;
  827. feedmultiply = saved_feedmultiply;
  828. previous_millis_cmd = millis();
  829. }
  830. static void engage_z_probe() {
  831. // Engage Z Servo endstop if enabled
  832. #ifdef SERVO_ENDSTOPS
  833. if (servo_endstops[Z_AXIS] > -1) {
  834. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  835. servos[servo_endstops[Z_AXIS]].attach(0);
  836. #endif
  837. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  838. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  839. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  840. servos[servo_endstops[Z_AXIS]].detach();
  841. #endif
  842. }
  843. #endif
  844. }
  845. static void retract_z_probe() {
  846. // Retract Z Servo endstop if enabled
  847. #ifdef SERVO_ENDSTOPS
  848. if (servo_endstops[Z_AXIS] > -1) {
  849. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  850. servos[servo_endstops[Z_AXIS]].attach(0);
  851. #endif
  852. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  853. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  854. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  855. servos[servo_endstops[Z_AXIS]].detach();
  856. #endif
  857. }
  858. #endif
  859. }
  860. /// Probe bed height at position (x,y), returns the measured z value
  861. static float probe_pt(float x, float y, float z_before) {
  862. // move to right place
  863. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  864. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  865. engage_z_probe(); // Engage Z Servo endstop if available
  866. run_z_probe();
  867. float measured_z = current_position[Z_AXIS];
  868. retract_z_probe();
  869. SERIAL_PROTOCOLPGM("Bed x: ");
  870. SERIAL_PROTOCOL(x);
  871. SERIAL_PROTOCOLPGM(" y: ");
  872. SERIAL_PROTOCOL(y);
  873. SERIAL_PROTOCOLPGM(" z: ");
  874. SERIAL_PROTOCOL(measured_z);
  875. SERIAL_PROTOCOLPGM("\n");
  876. return measured_z;
  877. }
  878. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  879. static void homeaxis(int axis) {
  880. #define HOMEAXIS_DO(LETTER) \
  881. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  882. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  883. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  884. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  885. 0) {
  886. int axis_home_dir = home_dir(axis);
  887. #ifdef DUAL_X_CARRIAGE
  888. if (axis == X_AXIS)
  889. axis_home_dir = x_home_dir(active_extruder);
  890. #endif
  891. current_position[axis] = 0;
  892. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  893. // Engage Servo endstop if enabled
  894. #ifdef SERVO_ENDSTOPS
  895. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  896. if (axis==Z_AXIS) {
  897. engage_z_probe();
  898. }
  899. else
  900. #endif
  901. if (servo_endstops[axis] > -1) {
  902. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  903. }
  904. #endif
  905. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  906. feedrate = homing_feedrate[axis];
  907. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  908. st_synchronize();
  909. current_position[axis] = 0;
  910. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  911. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  912. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  913. st_synchronize();
  914. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  915. #ifdef DELTA
  916. feedrate = homing_feedrate[axis]/10;
  917. #else
  918. feedrate = homing_feedrate[axis]/2 ;
  919. #endif
  920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  921. st_synchronize();
  922. #ifdef DELTA
  923. // retrace by the amount specified in endstop_adj
  924. if (endstop_adj[axis] * axis_home_dir < 0) {
  925. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  926. destination[axis] = endstop_adj[axis];
  927. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  928. st_synchronize();
  929. }
  930. #endif
  931. axis_is_at_home(axis);
  932. destination[axis] = current_position[axis];
  933. feedrate = 0.0;
  934. endstops_hit_on_purpose();
  935. axis_known_position[axis] = true;
  936. // Retract Servo endstop if enabled
  937. #ifdef SERVO_ENDSTOPS
  938. if (servo_endstops[axis] > -1) {
  939. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  940. }
  941. #endif
  942. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  943. if (axis==Z_AXIS) retract_z_probe();
  944. #endif
  945. }
  946. }
  947. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  948. void process_commands()
  949. {
  950. unsigned long codenum; //throw away variable
  951. char *starpos = NULL;
  952. #ifdef ENABLE_AUTO_BED_LEVELING
  953. float x_tmp, y_tmp, z_tmp, real_z;
  954. #endif
  955. if(code_seen('G'))
  956. {
  957. switch((int)code_value())
  958. {
  959. case 0: // G0 -> G1
  960. case 1: // G1
  961. if(Stopped == false) {
  962. get_coordinates(); // For X Y Z E F
  963. prepare_move();
  964. //ClearToSend();
  965. return;
  966. }
  967. //break;
  968. case 2: // G2 - CW ARC
  969. if(Stopped == false) {
  970. get_arc_coordinates();
  971. prepare_arc_move(true);
  972. return;
  973. }
  974. case 3: // G3 - CCW ARC
  975. if(Stopped == false) {
  976. get_arc_coordinates();
  977. prepare_arc_move(false);
  978. return;
  979. }
  980. case 4: // G4 dwell
  981. LCD_MESSAGEPGM(MSG_DWELL);
  982. codenum = 0;
  983. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  984. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  985. st_synchronize();
  986. codenum += millis(); // keep track of when we started waiting
  987. previous_millis_cmd = millis();
  988. while(millis() < codenum ){
  989. manage_heater();
  990. manage_inactivity();
  991. lcd_update();
  992. }
  993. break;
  994. #ifdef FWRETRACT
  995. case 10: // G10 retract
  996. if(!retracted)
  997. {
  998. destination[X_AXIS]=current_position[X_AXIS];
  999. destination[Y_AXIS]=current_position[Y_AXIS];
  1000. destination[Z_AXIS]=current_position[Z_AXIS];
  1001. current_position[Z_AXIS]-=retract_zlift;
  1002. destination[E_AXIS]=current_position[E_AXIS];
  1003. current_position[E_AXIS]+=retract_length/volumetric_multiplier[active_extruder];
  1004. plan_set_e_position(current_position[E_AXIS]);
  1005. float oldFeedrate = feedrate;
  1006. feedrate=retract_feedrate;
  1007. retracted=true;
  1008. prepare_move();
  1009. feedrate = oldFeedrate;
  1010. }
  1011. break;
  1012. case 11: // G11 retract_recover
  1013. if(retracted)
  1014. {
  1015. destination[X_AXIS]=current_position[X_AXIS];
  1016. destination[Y_AXIS]=current_position[Y_AXIS];
  1017. destination[Z_AXIS]=current_position[Z_AXIS];
  1018. current_position[Z_AXIS]+=retract_zlift;
  1019. destination[E_AXIS]=current_position[E_AXIS];
  1020. current_position[E_AXIS]-=(retract_length+retract_recover_length)/volumetric_multiplier[active_extruder];
  1021. plan_set_e_position(current_position[E_AXIS]);
  1022. float oldFeedrate = feedrate;
  1023. feedrate=retract_recover_feedrate;
  1024. retracted=false;
  1025. prepare_move();
  1026. feedrate = oldFeedrate;
  1027. }
  1028. break;
  1029. #endif //FWRETRACT
  1030. case 28: //G28 Home all Axis one at a time
  1031. #ifdef ENABLE_AUTO_BED_LEVELING
  1032. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  1033. #endif //ENABLE_AUTO_BED_LEVELING
  1034. saved_feedrate = feedrate;
  1035. saved_feedmultiply = feedmultiply;
  1036. feedmultiply = 100;
  1037. previous_millis_cmd = millis();
  1038. enable_endstops(true);
  1039. for(int8_t i=0; i < NUM_AXIS; i++) {
  1040. destination[i] = current_position[i];
  1041. }
  1042. feedrate = 0.0;
  1043. #ifdef DELTA
  1044. // A delta can only safely home all axis at the same time
  1045. // all axis have to home at the same time
  1046. // Move all carriages up together until the first endstop is hit.
  1047. current_position[X_AXIS] = 0;
  1048. current_position[Y_AXIS] = 0;
  1049. current_position[Z_AXIS] = 0;
  1050. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1051. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  1052. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  1053. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  1054. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1055. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1056. st_synchronize();
  1057. endstops_hit_on_purpose();
  1058. current_position[X_AXIS] = destination[X_AXIS];
  1059. current_position[Y_AXIS] = destination[Y_AXIS];
  1060. current_position[Z_AXIS] = destination[Z_AXIS];
  1061. // take care of back off and rehome now we are all at the top
  1062. HOMEAXIS(X);
  1063. HOMEAXIS(Y);
  1064. HOMEAXIS(Z);
  1065. calculate_delta(current_position);
  1066. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  1067. #else // NOT DELTA
  1068. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  1069. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1070. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1071. HOMEAXIS(Z);
  1072. }
  1073. #endif
  1074. #ifdef QUICK_HOME
  1075. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  1076. {
  1077. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1078. #ifndef DUAL_X_CARRIAGE
  1079. int x_axis_home_dir = home_dir(X_AXIS);
  1080. #else
  1081. int x_axis_home_dir = x_home_dir(active_extruder);
  1082. extruder_duplication_enabled = false;
  1083. #endif
  1084. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1085. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1086. feedrate = homing_feedrate[X_AXIS];
  1087. if(homing_feedrate[Y_AXIS]<feedrate)
  1088. feedrate =homing_feedrate[Y_AXIS];
  1089. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1090. st_synchronize();
  1091. axis_is_at_home(X_AXIS);
  1092. axis_is_at_home(Y_AXIS);
  1093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1094. destination[X_AXIS] = current_position[X_AXIS];
  1095. destination[Y_AXIS] = current_position[Y_AXIS];
  1096. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1097. feedrate = 0.0;
  1098. st_synchronize();
  1099. endstops_hit_on_purpose();
  1100. current_position[X_AXIS] = destination[X_AXIS];
  1101. current_position[Y_AXIS] = destination[Y_AXIS];
  1102. current_position[Z_AXIS] = destination[Z_AXIS];
  1103. }
  1104. #endif
  1105. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1106. {
  1107. #ifdef DUAL_X_CARRIAGE
  1108. int tmp_extruder = active_extruder;
  1109. extruder_duplication_enabled = false;
  1110. active_extruder = !active_extruder;
  1111. HOMEAXIS(X);
  1112. inactive_extruder_x_pos = current_position[X_AXIS];
  1113. active_extruder = tmp_extruder;
  1114. HOMEAXIS(X);
  1115. // reset state used by the different modes
  1116. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1117. delayed_move_time = 0;
  1118. active_extruder_parked = true;
  1119. #else
  1120. HOMEAXIS(X);
  1121. #endif
  1122. }
  1123. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1124. HOMEAXIS(Y);
  1125. }
  1126. if(code_seen(axis_codes[X_AXIS]))
  1127. {
  1128. if(code_value_long() != 0) {
  1129. current_position[X_AXIS]=code_value()+add_homeing[0];
  1130. }
  1131. }
  1132. if(code_seen(axis_codes[Y_AXIS])) {
  1133. if(code_value_long() != 0) {
  1134. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1135. }
  1136. }
  1137. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1138. #ifndef Z_SAFE_HOMING
  1139. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1140. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  1141. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1142. feedrate = max_feedrate[Z_AXIS];
  1143. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1144. st_synchronize();
  1145. #endif
  1146. HOMEAXIS(Z);
  1147. }
  1148. #else // Z Safe mode activated.
  1149. if(home_all_axis) {
  1150. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1151. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1152. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1153. feedrate = XY_TRAVEL_SPEED;
  1154. current_position[Z_AXIS] = 0;
  1155. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1156. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1157. st_synchronize();
  1158. current_position[X_AXIS] = destination[X_AXIS];
  1159. current_position[Y_AXIS] = destination[Y_AXIS];
  1160. HOMEAXIS(Z);
  1161. }
  1162. // Let's see if X and Y are homed and probe is inside bed area.
  1163. if(code_seen(axis_codes[Z_AXIS])) {
  1164. if ( (axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]) \
  1165. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER >= X_MIN_POS) \
  1166. && (current_position[X_AXIS]+X_PROBE_OFFSET_FROM_EXTRUDER <= X_MAX_POS) \
  1167. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER >= Y_MIN_POS) \
  1168. && (current_position[Y_AXIS]+Y_PROBE_OFFSET_FROM_EXTRUDER <= Y_MAX_POS)) {
  1169. current_position[Z_AXIS] = 0;
  1170. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1171. destination[Z_AXIS] = Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS) * (-1); // Set destination away from bed
  1172. feedrate = max_feedrate[Z_AXIS];
  1173. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  1174. st_synchronize();
  1175. HOMEAXIS(Z);
  1176. } else if (!((axis_known_position[X_AXIS]) && (axis_known_position[Y_AXIS]))) {
  1177. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1178. SERIAL_ECHO_START;
  1179. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1180. } else {
  1181. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1182. SERIAL_ECHO_START;
  1183. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1184. }
  1185. }
  1186. #endif
  1187. #endif
  1188. if(code_seen(axis_codes[Z_AXIS])) {
  1189. if(code_value_long() != 0) {
  1190. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1191. }
  1192. }
  1193. #ifdef ENABLE_AUTO_BED_LEVELING
  1194. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1195. current_position[Z_AXIS] += zprobe_zoffset; //Add Z_Probe offset (the distance is negative)
  1196. }
  1197. #endif
  1198. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1199. #endif // else DELTA
  1200. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1201. enable_endstops(false);
  1202. #endif
  1203. feedrate = saved_feedrate;
  1204. feedmultiply = saved_feedmultiply;
  1205. previous_millis_cmd = millis();
  1206. endstops_hit_on_purpose();
  1207. break;
  1208. #ifdef ENABLE_AUTO_BED_LEVELING
  1209. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1210. {
  1211. #if Z_MIN_PIN == -1
  1212. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1213. #endif
  1214. st_synchronize();
  1215. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1216. //vector_3 corrected_position = plan_get_position_mm();
  1217. //corrected_position.debug("position before G29");
  1218. plan_bed_level_matrix.set_to_identity();
  1219. vector_3 uncorrected_position = plan_get_position();
  1220. //uncorrected_position.debug("position durring G29");
  1221. current_position[X_AXIS] = uncorrected_position.x;
  1222. current_position[Y_AXIS] = uncorrected_position.y;
  1223. current_position[Z_AXIS] = uncorrected_position.z;
  1224. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1225. setup_for_endstop_move();
  1226. feedrate = homing_feedrate[Z_AXIS];
  1227. #ifdef ACCURATE_BED_LEVELING
  1228. int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1229. int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (ACCURATE_BED_LEVELING_POINTS-1);
  1230. // solve the plane equation ax + by + d = z
  1231. // A is the matrix with rows [x y 1] for all the probed points
  1232. // B is the vector of the Z positions
  1233. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1234. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1235. // "A" matrix of the linear system of equations
  1236. double eqnAMatrix[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS*3];
  1237. // "B" vector of Z points
  1238. double eqnBVector[ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS];
  1239. int probePointCounter = 0;
  1240. bool zig = true;
  1241. for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing)
  1242. {
  1243. int xProbe, xInc;
  1244. if (zig)
  1245. {
  1246. xProbe = LEFT_PROBE_BED_POSITION;
  1247. //xEnd = RIGHT_PROBE_BED_POSITION;
  1248. xInc = xGridSpacing;
  1249. zig = false;
  1250. } else // zag
  1251. {
  1252. xProbe = RIGHT_PROBE_BED_POSITION;
  1253. //xEnd = LEFT_PROBE_BED_POSITION;
  1254. xInc = -xGridSpacing;
  1255. zig = true;
  1256. }
  1257. for (int xCount=0; xCount < ACCURATE_BED_LEVELING_POINTS; xCount++)
  1258. {
  1259. float z_before;
  1260. if (probePointCounter == 0)
  1261. {
  1262. // raise before probing
  1263. z_before = Z_RAISE_BEFORE_PROBING;
  1264. } else
  1265. {
  1266. // raise extruder
  1267. z_before = current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS;
  1268. }
  1269. float measured_z = probe_pt(xProbe, yProbe, z_before);
  1270. eqnBVector[probePointCounter] = measured_z;
  1271. eqnAMatrix[probePointCounter + 0*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = xProbe;
  1272. eqnAMatrix[probePointCounter + 1*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = yProbe;
  1273. eqnAMatrix[probePointCounter + 2*ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS] = 1;
  1274. probePointCounter++;
  1275. xProbe += xInc;
  1276. }
  1277. }
  1278. clean_up_after_endstop_move();
  1279. // solve lsq problem
  1280. double *plane_equation_coefficients = qr_solve(ACCURATE_BED_LEVELING_POINTS*ACCURATE_BED_LEVELING_POINTS, 3, eqnAMatrix, eqnBVector);
  1281. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1282. SERIAL_PROTOCOL(plane_equation_coefficients[0]);
  1283. SERIAL_PROTOCOLPGM(" b: ");
  1284. SERIAL_PROTOCOL(plane_equation_coefficients[1]);
  1285. SERIAL_PROTOCOLPGM(" d: ");
  1286. SERIAL_PROTOCOLLN(plane_equation_coefficients[2]);
  1287. set_bed_level_equation_lsq(plane_equation_coefficients);
  1288. free(plane_equation_coefficients);
  1289. #else // ACCURATE_BED_LEVELING not defined
  1290. // prob 1
  1291. float z_at_xLeft_yBack = probe_pt(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, Z_RAISE_BEFORE_PROBING);
  1292. // prob 2
  1293. float z_at_xLeft_yFront = probe_pt(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1294. // prob 3
  1295. float z_at_xRight_yFront = probe_pt(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1296. clean_up_after_endstop_move();
  1297. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1298. #endif // ACCURATE_BED_LEVELING
  1299. st_synchronize();
  1300. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1301. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1302. // When the bed is uneven, this height must be corrected.
  1303. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1304. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1305. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1306. z_tmp = current_position[Z_AXIS];
  1307. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1308. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1309. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1310. }
  1311. break;
  1312. case 30: // G30 Single Z Probe
  1313. {
  1314. engage_z_probe(); // Engage Z Servo endstop if available
  1315. st_synchronize();
  1316. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1317. setup_for_endstop_move();
  1318. feedrate = homing_feedrate[Z_AXIS];
  1319. run_z_probe();
  1320. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1321. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1322. SERIAL_PROTOCOLPGM(" Y: ");
  1323. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1324. SERIAL_PROTOCOLPGM(" Z: ");
  1325. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1326. SERIAL_PROTOCOLPGM("\n");
  1327. clean_up_after_endstop_move();
  1328. retract_z_probe(); // Retract Z Servo endstop if available
  1329. }
  1330. break;
  1331. #endif // ENABLE_AUTO_BED_LEVELING
  1332. case 90: // G90
  1333. relative_mode = false;
  1334. break;
  1335. case 91: // G91
  1336. relative_mode = true;
  1337. break;
  1338. case 92: // G92
  1339. if(!code_seen(axis_codes[E_AXIS]))
  1340. st_synchronize();
  1341. for(int8_t i=0; i < NUM_AXIS; i++) {
  1342. if(code_seen(axis_codes[i])) {
  1343. if(i == E_AXIS) {
  1344. current_position[i] = code_value();
  1345. plan_set_e_position(current_position[E_AXIS]);
  1346. }
  1347. else {
  1348. current_position[i] = code_value()+add_homeing[i];
  1349. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1350. }
  1351. }
  1352. }
  1353. break;
  1354. }
  1355. }
  1356. else if(code_seen('M'))
  1357. {
  1358. switch( (int)code_value() )
  1359. {
  1360. #ifdef ULTIPANEL
  1361. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1362. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1363. {
  1364. LCD_MESSAGEPGM(MSG_USERWAIT);
  1365. codenum = 0;
  1366. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1367. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1368. st_synchronize();
  1369. previous_millis_cmd = millis();
  1370. if (codenum > 0){
  1371. codenum += millis(); // keep track of when we started waiting
  1372. while(millis() < codenum && !lcd_clicked()){
  1373. manage_heater();
  1374. manage_inactivity();
  1375. lcd_update();
  1376. }
  1377. }else{
  1378. while(!lcd_clicked()){
  1379. manage_heater();
  1380. manage_inactivity();
  1381. lcd_update();
  1382. }
  1383. }
  1384. LCD_MESSAGEPGM(MSG_RESUMING);
  1385. }
  1386. break;
  1387. #endif
  1388. case 17:
  1389. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1390. enable_x();
  1391. enable_y();
  1392. enable_z();
  1393. enable_e0();
  1394. enable_e1();
  1395. enable_e2();
  1396. break;
  1397. #ifdef SDSUPPORT
  1398. case 20: // M20 - list SD card
  1399. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1400. card.ls();
  1401. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1402. break;
  1403. case 21: // M21 - init SD card
  1404. card.initsd();
  1405. break;
  1406. case 22: //M22 - release SD card
  1407. card.release();
  1408. break;
  1409. case 23: //M23 - Select file
  1410. starpos = (strchr(strchr_pointer + 4,'*'));
  1411. if(starpos!=NULL)
  1412. *(starpos-1)='\0';
  1413. card.openFile(strchr_pointer + 4,true);
  1414. break;
  1415. case 24: //M24 - Start SD print
  1416. card.startFileprint();
  1417. starttime=millis();
  1418. break;
  1419. case 25: //M25 - Pause SD print
  1420. card.pauseSDPrint();
  1421. break;
  1422. case 26: //M26 - Set SD index
  1423. if(card.cardOK && code_seen('S')) {
  1424. card.setIndex(code_value_long());
  1425. }
  1426. break;
  1427. case 27: //M27 - Get SD status
  1428. card.getStatus();
  1429. break;
  1430. case 28: //M28 - Start SD write
  1431. starpos = (strchr(strchr_pointer + 4,'*'));
  1432. if(starpos != NULL){
  1433. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1434. strchr_pointer = strchr(npos,' ') + 1;
  1435. *(starpos-1) = '\0';
  1436. }
  1437. card.openFile(strchr_pointer+4,false);
  1438. break;
  1439. case 29: //M29 - Stop SD write
  1440. //processed in write to file routine above
  1441. //card,saving = false;
  1442. break;
  1443. case 30: //M30 <filename> Delete File
  1444. if (card.cardOK){
  1445. card.closefile();
  1446. starpos = (strchr(strchr_pointer + 4,'*'));
  1447. if(starpos != NULL){
  1448. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1449. strchr_pointer = strchr(npos,' ') + 1;
  1450. *(starpos-1) = '\0';
  1451. }
  1452. card.removeFile(strchr_pointer + 4);
  1453. }
  1454. break;
  1455. case 32: //M32 - Select file and start SD print
  1456. {
  1457. if(card.sdprinting) {
  1458. st_synchronize();
  1459. }
  1460. starpos = (strchr(strchr_pointer + 4,'*'));
  1461. char* namestartpos = (strchr(strchr_pointer + 4,'!')); //find ! to indicate filename string start.
  1462. if(namestartpos==NULL)
  1463. {
  1464. namestartpos=strchr_pointer + 4; //default name position, 4 letters after the M
  1465. }
  1466. else
  1467. namestartpos++; //to skip the '!'
  1468. if(starpos!=NULL)
  1469. *(starpos-1)='\0';
  1470. bool call_procedure=(code_seen('P'));
  1471. if(strchr_pointer>namestartpos)
  1472. call_procedure=false; //false alert, 'P' found within filename
  1473. if( card.cardOK )
  1474. {
  1475. card.openFile(namestartpos,true,!call_procedure);
  1476. if(code_seen('S'))
  1477. if(strchr_pointer<namestartpos) //only if "S" is occuring _before_ the filename
  1478. card.setIndex(code_value_long());
  1479. card.startFileprint();
  1480. if(!call_procedure)
  1481. starttime=millis(); //procedure calls count as normal print time.
  1482. }
  1483. } break;
  1484. case 928: //M928 - Start SD write
  1485. starpos = (strchr(strchr_pointer + 5,'*'));
  1486. if(starpos != NULL){
  1487. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1488. strchr_pointer = strchr(npos,' ') + 1;
  1489. *(starpos-1) = '\0';
  1490. }
  1491. card.openLogFile(strchr_pointer+5);
  1492. break;
  1493. #endif //SDSUPPORT
  1494. case 31: //M31 take time since the start of the SD print or an M109 command
  1495. {
  1496. stoptime=millis();
  1497. char time[30];
  1498. unsigned long t=(stoptime-starttime)/1000;
  1499. int sec,min;
  1500. min=t/60;
  1501. sec=t%60;
  1502. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1503. SERIAL_ECHO_START;
  1504. SERIAL_ECHOLN(time);
  1505. lcd_setstatus(time);
  1506. autotempShutdown();
  1507. }
  1508. break;
  1509. case 42: //M42 -Change pin status via gcode
  1510. if (code_seen('S'))
  1511. {
  1512. int pin_status = code_value();
  1513. int pin_number = LED_PIN;
  1514. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1515. pin_number = code_value();
  1516. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1517. {
  1518. if (sensitive_pins[i] == pin_number)
  1519. {
  1520. pin_number = -1;
  1521. break;
  1522. }
  1523. }
  1524. #if defined(FAN_PIN) && FAN_PIN > -1
  1525. if (pin_number == FAN_PIN)
  1526. fanSpeed = pin_status;
  1527. #endif
  1528. if (pin_number > -1)
  1529. {
  1530. pinMode(pin_number, OUTPUT);
  1531. digitalWrite(pin_number, pin_status);
  1532. analogWrite(pin_number, pin_status);
  1533. }
  1534. }
  1535. break;
  1536. case 104: // M104
  1537. if(setTargetedHotend(104)){
  1538. break;
  1539. }
  1540. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1541. #ifdef DUAL_X_CARRIAGE
  1542. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1543. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1544. #endif
  1545. setWatch();
  1546. break;
  1547. case 140: // M140 set bed temp
  1548. if (code_seen('S')) setTargetBed(code_value());
  1549. break;
  1550. case 105 : // M105
  1551. if(setTargetedHotend(105)){
  1552. break;
  1553. }
  1554. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1555. SERIAL_PROTOCOLPGM("ok T:");
  1556. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1557. SERIAL_PROTOCOLPGM(" /");
  1558. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1559. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1560. SERIAL_PROTOCOLPGM(" B:");
  1561. SERIAL_PROTOCOL_F(degBed(),1);
  1562. SERIAL_PROTOCOLPGM(" /");
  1563. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1564. #endif //TEMP_BED_PIN
  1565. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1566. SERIAL_PROTOCOLPGM(" T");
  1567. SERIAL_PROTOCOL(cur_extruder);
  1568. SERIAL_PROTOCOLPGM(":");
  1569. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1570. SERIAL_PROTOCOLPGM(" /");
  1571. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1572. }
  1573. #else
  1574. SERIAL_ERROR_START;
  1575. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1576. #endif
  1577. SERIAL_PROTOCOLPGM(" @:");
  1578. #ifdef EXTRUDER_WATTS
  1579. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  1580. SERIAL_PROTOCOLPGM("W");
  1581. #else
  1582. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1583. #endif
  1584. SERIAL_PROTOCOLPGM(" B@:");
  1585. #ifdef BED_WATTS
  1586. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  1587. SERIAL_PROTOCOLPGM("W");
  1588. #else
  1589. SERIAL_PROTOCOL(getHeaterPower(-1));
  1590. #endif
  1591. #ifdef SHOW_TEMP_ADC_VALUES
  1592. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1593. SERIAL_PROTOCOLPGM(" ADC B:");
  1594. SERIAL_PROTOCOL_F(degBed(),1);
  1595. SERIAL_PROTOCOLPGM("C->");
  1596. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1597. #endif
  1598. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1599. SERIAL_PROTOCOLPGM(" T");
  1600. SERIAL_PROTOCOL(cur_extruder);
  1601. SERIAL_PROTOCOLPGM(":");
  1602. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1603. SERIAL_PROTOCOLPGM("C->");
  1604. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1605. }
  1606. #endif
  1607. SERIAL_PROTOCOLLN("");
  1608. return;
  1609. break;
  1610. case 109:
  1611. {// M109 - Wait for extruder heater to reach target.
  1612. if(setTargetedHotend(109)){
  1613. break;
  1614. }
  1615. LCD_MESSAGEPGM(MSG_HEATING);
  1616. #ifdef AUTOTEMP
  1617. autotemp_enabled=false;
  1618. #endif
  1619. if (code_seen('S')) {
  1620. setTargetHotend(code_value(), tmp_extruder);
  1621. #ifdef DUAL_X_CARRIAGE
  1622. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1623. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1624. #endif
  1625. CooldownNoWait = true;
  1626. } else if (code_seen('R')) {
  1627. setTargetHotend(code_value(), tmp_extruder);
  1628. #ifdef DUAL_X_CARRIAGE
  1629. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1630. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1631. #endif
  1632. CooldownNoWait = false;
  1633. }
  1634. #ifdef AUTOTEMP
  1635. if (code_seen('S')) autotemp_min=code_value();
  1636. if (code_seen('B')) autotemp_max=code_value();
  1637. if (code_seen('F'))
  1638. {
  1639. autotemp_factor=code_value();
  1640. autotemp_enabled=true;
  1641. }
  1642. #endif
  1643. setWatch();
  1644. codenum = millis();
  1645. /* See if we are heating up or cooling down */
  1646. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1647. #ifdef TEMP_RESIDENCY_TIME
  1648. long residencyStart;
  1649. residencyStart = -1;
  1650. /* continue to loop until we have reached the target temp
  1651. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1652. while((residencyStart == -1) ||
  1653. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1654. #else
  1655. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1656. #endif //TEMP_RESIDENCY_TIME
  1657. if( (millis() - codenum) > 1000UL )
  1658. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1659. SERIAL_PROTOCOLPGM("T:");
  1660. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1661. SERIAL_PROTOCOLPGM(" E:");
  1662. SERIAL_PROTOCOL((int)tmp_extruder);
  1663. #ifdef TEMP_RESIDENCY_TIME
  1664. SERIAL_PROTOCOLPGM(" W:");
  1665. if(residencyStart > -1)
  1666. {
  1667. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1668. SERIAL_PROTOCOLLN( codenum );
  1669. }
  1670. else
  1671. {
  1672. SERIAL_PROTOCOLLN( "?" );
  1673. }
  1674. #else
  1675. SERIAL_PROTOCOLLN("");
  1676. #endif
  1677. codenum = millis();
  1678. }
  1679. manage_heater();
  1680. manage_inactivity();
  1681. lcd_update();
  1682. #ifdef TEMP_RESIDENCY_TIME
  1683. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1684. or when current temp falls outside the hysteresis after target temp was reached */
  1685. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1686. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1687. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1688. {
  1689. residencyStart = millis();
  1690. }
  1691. #endif //TEMP_RESIDENCY_TIME
  1692. }
  1693. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1694. starttime=millis();
  1695. previous_millis_cmd = millis();
  1696. }
  1697. break;
  1698. case 190: // M190 - Wait for bed heater to reach target.
  1699. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1700. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1701. if (code_seen('S')) {
  1702. setTargetBed(code_value());
  1703. CooldownNoWait = true;
  1704. } else if (code_seen('R')) {
  1705. setTargetBed(code_value());
  1706. CooldownNoWait = false;
  1707. }
  1708. codenum = millis();
  1709. target_direction = isHeatingBed(); // true if heating, false if cooling
  1710. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1711. {
  1712. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1713. {
  1714. float tt=degHotend(active_extruder);
  1715. SERIAL_PROTOCOLPGM("T:");
  1716. SERIAL_PROTOCOL(tt);
  1717. SERIAL_PROTOCOLPGM(" E:");
  1718. SERIAL_PROTOCOL((int)active_extruder);
  1719. SERIAL_PROTOCOLPGM(" B:");
  1720. SERIAL_PROTOCOL_F(degBed(),1);
  1721. SERIAL_PROTOCOLLN("");
  1722. codenum = millis();
  1723. }
  1724. manage_heater();
  1725. manage_inactivity();
  1726. lcd_update();
  1727. }
  1728. LCD_MESSAGEPGM(MSG_BED_DONE);
  1729. previous_millis_cmd = millis();
  1730. #endif
  1731. break;
  1732. #if defined(FAN_PIN) && FAN_PIN > -1
  1733. case 106: //M106 Fan On
  1734. if (code_seen('S')){
  1735. fanSpeed=constrain(code_value(),0,255);
  1736. }
  1737. else {
  1738. fanSpeed=255;
  1739. }
  1740. break;
  1741. case 107: //M107 Fan Off
  1742. fanSpeed = 0;
  1743. break;
  1744. #endif //FAN_PIN
  1745. #ifdef BARICUDA
  1746. // PWM for HEATER_1_PIN
  1747. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1748. case 126: //M126 valve open
  1749. if (code_seen('S')){
  1750. ValvePressure=constrain(code_value(),0,255);
  1751. }
  1752. else {
  1753. ValvePressure=255;
  1754. }
  1755. break;
  1756. case 127: //M127 valve closed
  1757. ValvePressure = 0;
  1758. break;
  1759. #endif //HEATER_1_PIN
  1760. // PWM for HEATER_2_PIN
  1761. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1762. case 128: //M128 valve open
  1763. if (code_seen('S')){
  1764. EtoPPressure=constrain(code_value(),0,255);
  1765. }
  1766. else {
  1767. EtoPPressure=255;
  1768. }
  1769. break;
  1770. case 129: //M129 valve closed
  1771. EtoPPressure = 0;
  1772. break;
  1773. #endif //HEATER_2_PIN
  1774. #endif
  1775. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1776. case 80: // M80 - Turn on Power Supply
  1777. SET_OUTPUT(PS_ON_PIN); //GND
  1778. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1779. // If you have a switch on suicide pin, this is useful
  1780. // if you want to start another print with suicide feature after
  1781. // a print without suicide...
  1782. #if defined SUICIDE_PIN && SUICIDE_PIN > -1
  1783. SET_OUTPUT(SUICIDE_PIN);
  1784. WRITE(SUICIDE_PIN, HIGH);
  1785. #endif
  1786. #ifdef ULTIPANEL
  1787. powersupply = true;
  1788. LCD_MESSAGEPGM(WELCOME_MSG);
  1789. lcd_update();
  1790. #endif
  1791. break;
  1792. #endif
  1793. case 81: // M81 - Turn off Power Supply
  1794. disable_heater();
  1795. st_synchronize();
  1796. disable_e0();
  1797. disable_e1();
  1798. disable_e2();
  1799. finishAndDisableSteppers();
  1800. fanSpeed = 0;
  1801. delay(1000); // Wait a little before to switch off
  1802. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1803. st_synchronize();
  1804. suicide();
  1805. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1806. SET_OUTPUT(PS_ON_PIN);
  1807. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1808. #endif
  1809. #ifdef ULTIPANEL
  1810. powersupply = false;
  1811. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1812. lcd_update();
  1813. #endif
  1814. break;
  1815. case 82:
  1816. axis_relative_modes[3] = false;
  1817. break;
  1818. case 83:
  1819. axis_relative_modes[3] = true;
  1820. break;
  1821. case 18: //compatibility
  1822. case 84: // M84
  1823. if(code_seen('S')){
  1824. stepper_inactive_time = code_value() * 1000;
  1825. }
  1826. else
  1827. {
  1828. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1829. if(all_axis)
  1830. {
  1831. st_synchronize();
  1832. disable_e0();
  1833. disable_e1();
  1834. disable_e2();
  1835. finishAndDisableSteppers();
  1836. }
  1837. else
  1838. {
  1839. st_synchronize();
  1840. if(code_seen('X')) disable_x();
  1841. if(code_seen('Y')) disable_y();
  1842. if(code_seen('Z')) disable_z();
  1843. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1844. if(code_seen('E')) {
  1845. disable_e0();
  1846. disable_e1();
  1847. disable_e2();
  1848. }
  1849. #endif
  1850. }
  1851. }
  1852. break;
  1853. case 85: // M85
  1854. code_seen('S');
  1855. max_inactive_time = code_value() * 1000;
  1856. break;
  1857. case 92: // M92
  1858. for(int8_t i=0; i < NUM_AXIS; i++)
  1859. {
  1860. if(code_seen(axis_codes[i]))
  1861. {
  1862. if(i == 3) { // E
  1863. float value = code_value();
  1864. if(value < 20.0) {
  1865. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1866. max_e_jerk *= factor;
  1867. max_feedrate[i] *= factor;
  1868. axis_steps_per_sqr_second[i] *= factor;
  1869. }
  1870. axis_steps_per_unit[i] = value;
  1871. }
  1872. else {
  1873. axis_steps_per_unit[i] = code_value();
  1874. }
  1875. }
  1876. }
  1877. break;
  1878. case 115: // M115
  1879. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1880. break;
  1881. case 117: // M117 display message
  1882. starpos = (strchr(strchr_pointer + 5,'*'));
  1883. if(starpos!=NULL)
  1884. *(starpos-1)='\0';
  1885. lcd_setstatus(strchr_pointer + 5);
  1886. break;
  1887. case 114: // M114
  1888. SERIAL_PROTOCOLPGM("X:");
  1889. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1890. SERIAL_PROTOCOLPGM("Y:");
  1891. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1892. SERIAL_PROTOCOLPGM("Z:");
  1893. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1894. SERIAL_PROTOCOLPGM("E:");
  1895. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1896. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1897. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1898. SERIAL_PROTOCOLPGM("Y:");
  1899. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1900. SERIAL_PROTOCOLPGM("Z:");
  1901. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1902. SERIAL_PROTOCOLLN("");
  1903. break;
  1904. case 120: // M120
  1905. enable_endstops(false) ;
  1906. break;
  1907. case 121: // M121
  1908. enable_endstops(true) ;
  1909. break;
  1910. case 119: // M119
  1911. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1912. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1913. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1914. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1915. #endif
  1916. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1917. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1918. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1919. #endif
  1920. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1921. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1922. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1923. #endif
  1924. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1925. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1926. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1927. #endif
  1928. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1929. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1930. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1931. #endif
  1932. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1933. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1934. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1935. #endif
  1936. break;
  1937. //TODO: update for all axis, use for loop
  1938. #ifdef BLINKM
  1939. case 150: // M150
  1940. {
  1941. byte red;
  1942. byte grn;
  1943. byte blu;
  1944. if(code_seen('R')) red = code_value();
  1945. if(code_seen('U')) grn = code_value();
  1946. if(code_seen('B')) blu = code_value();
  1947. SendColors(red,grn,blu);
  1948. }
  1949. break;
  1950. #endif //BLINKM
  1951. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  1952. {
  1953. float area = .0;
  1954. float radius = .0;
  1955. if(code_seen('D')) {
  1956. radius = (float)code_value() * .5;
  1957. if(radius == 0) {
  1958. area = 1;
  1959. } else {
  1960. area = M_PI * pow(radius, 2);
  1961. }
  1962. } else {
  1963. //reserved for setting filament diameter via UFID or filament measuring device
  1964. break;
  1965. }
  1966. tmp_extruder = active_extruder;
  1967. if(code_seen('T')) {
  1968. tmp_extruder = code_value();
  1969. if(tmp_extruder >= EXTRUDERS) {
  1970. SERIAL_ECHO_START;
  1971. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  1972. }
  1973. SERIAL_ECHOLN(tmp_extruder);
  1974. break;
  1975. }
  1976. volumetric_multiplier[tmp_extruder] = 1 / area;
  1977. }
  1978. break;
  1979. case 201: // M201
  1980. for(int8_t i=0; i < NUM_AXIS; i++)
  1981. {
  1982. if(code_seen(axis_codes[i]))
  1983. {
  1984. max_acceleration_units_per_sq_second[i] = code_value();
  1985. }
  1986. }
  1987. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1988. reset_acceleration_rates();
  1989. break;
  1990. #if 0 // Not used for Sprinter/grbl gen6
  1991. case 202: // M202
  1992. for(int8_t i=0; i < NUM_AXIS; i++) {
  1993. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1994. }
  1995. break;
  1996. #endif
  1997. case 203: // M203 max feedrate mm/sec
  1998. for(int8_t i=0; i < NUM_AXIS; i++) {
  1999. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  2000. }
  2001. break;
  2002. case 204: // M204 acclereration S normal moves T filmanent only moves
  2003. {
  2004. if(code_seen('S')) acceleration = code_value() ;
  2005. if(code_seen('T')) retract_acceleration = code_value() ;
  2006. }
  2007. break;
  2008. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  2009. {
  2010. if(code_seen('S')) minimumfeedrate = code_value();
  2011. if(code_seen('T')) mintravelfeedrate = code_value();
  2012. if(code_seen('B')) minsegmenttime = code_value() ;
  2013. if(code_seen('X')) max_xy_jerk = code_value() ;
  2014. if(code_seen('Z')) max_z_jerk = code_value() ;
  2015. if(code_seen('E')) max_e_jerk = code_value() ;
  2016. }
  2017. break;
  2018. case 206: // M206 additional homeing offset
  2019. for(int8_t i=0; i < 3; i++)
  2020. {
  2021. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  2022. }
  2023. break;
  2024. #ifdef DELTA
  2025. case 666: // M666 set delta endstop adjustemnt
  2026. for(int8_t i=0; i < 3; i++)
  2027. {
  2028. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  2029. }
  2030. break;
  2031. #endif
  2032. #ifdef FWRETRACT
  2033. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  2034. {
  2035. if(code_seen('S'))
  2036. {
  2037. retract_length = code_value() ;
  2038. }
  2039. if(code_seen('F'))
  2040. {
  2041. retract_feedrate = code_value() ;
  2042. }
  2043. if(code_seen('Z'))
  2044. {
  2045. retract_zlift = code_value() ;
  2046. }
  2047. }break;
  2048. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  2049. {
  2050. if(code_seen('S'))
  2051. {
  2052. retract_recover_length = code_value() ;
  2053. }
  2054. if(code_seen('F'))
  2055. {
  2056. retract_recover_feedrate = code_value() ;
  2057. }
  2058. }break;
  2059. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  2060. {
  2061. if(code_seen('S'))
  2062. {
  2063. int t= code_value() ;
  2064. switch(t)
  2065. {
  2066. case 0: autoretract_enabled=false;retracted=false;break;
  2067. case 1: autoretract_enabled=true;retracted=false;break;
  2068. default:
  2069. SERIAL_ECHO_START;
  2070. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2071. SERIAL_ECHO(cmdbuffer[bufindr]);
  2072. SERIAL_ECHOLNPGM("\"");
  2073. }
  2074. }
  2075. }break;
  2076. #endif // FWRETRACT
  2077. #if EXTRUDERS > 1
  2078. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  2079. {
  2080. if(setTargetedHotend(218)){
  2081. break;
  2082. }
  2083. if(code_seen('X'))
  2084. {
  2085. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  2086. }
  2087. if(code_seen('Y'))
  2088. {
  2089. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  2090. }
  2091. #ifdef DUAL_X_CARRIAGE
  2092. if(code_seen('Z'))
  2093. {
  2094. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  2095. }
  2096. #endif
  2097. SERIAL_ECHO_START;
  2098. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2099. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  2100. {
  2101. SERIAL_ECHO(" ");
  2102. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  2103. SERIAL_ECHO(",");
  2104. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  2105. #ifdef DUAL_X_CARRIAGE
  2106. SERIAL_ECHO(",");
  2107. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  2108. #endif
  2109. }
  2110. SERIAL_ECHOLN("");
  2111. }break;
  2112. #endif
  2113. case 220: // M220 S<factor in percent>- set speed factor override percentage
  2114. {
  2115. if(code_seen('S'))
  2116. {
  2117. feedmultiply = code_value() ;
  2118. }
  2119. }
  2120. break;
  2121. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  2122. {
  2123. if(code_seen('S'))
  2124. {
  2125. extrudemultiply = code_value() ;
  2126. }
  2127. }
  2128. break;
  2129. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  2130. {
  2131. if(code_seen('P')){
  2132. int pin_number = code_value(); // pin number
  2133. int pin_state = -1; // required pin state - default is inverted
  2134. if(code_seen('S')) pin_state = code_value(); // required pin state
  2135. if(pin_state >= -1 && pin_state <= 1){
  2136. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  2137. {
  2138. if (sensitive_pins[i] == pin_number)
  2139. {
  2140. pin_number = -1;
  2141. break;
  2142. }
  2143. }
  2144. if (pin_number > -1)
  2145. {
  2146. st_synchronize();
  2147. pinMode(pin_number, INPUT);
  2148. int target;
  2149. switch(pin_state){
  2150. case 1:
  2151. target = HIGH;
  2152. break;
  2153. case 0:
  2154. target = LOW;
  2155. break;
  2156. case -1:
  2157. target = !digitalRead(pin_number);
  2158. break;
  2159. }
  2160. while(digitalRead(pin_number) != target){
  2161. manage_heater();
  2162. manage_inactivity();
  2163. lcd_update();
  2164. }
  2165. }
  2166. }
  2167. }
  2168. }
  2169. break;
  2170. #if NUM_SERVOS > 0
  2171. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  2172. {
  2173. int servo_index = -1;
  2174. int servo_position = 0;
  2175. if (code_seen('P'))
  2176. servo_index = code_value();
  2177. if (code_seen('S')) {
  2178. servo_position = code_value();
  2179. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  2180. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2181. servos[servo_index].attach(0);
  2182. #endif
  2183. servos[servo_index].write(servo_position);
  2184. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  2185. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  2186. servos[servo_index].detach();
  2187. #endif
  2188. }
  2189. else {
  2190. SERIAL_ECHO_START;
  2191. SERIAL_ECHO("Servo ");
  2192. SERIAL_ECHO(servo_index);
  2193. SERIAL_ECHOLN(" out of range");
  2194. }
  2195. }
  2196. else if (servo_index >= 0) {
  2197. SERIAL_PROTOCOL(MSG_OK);
  2198. SERIAL_PROTOCOL(" Servo ");
  2199. SERIAL_PROTOCOL(servo_index);
  2200. SERIAL_PROTOCOL(": ");
  2201. SERIAL_PROTOCOL(servos[servo_index].read());
  2202. SERIAL_PROTOCOLLN("");
  2203. }
  2204. }
  2205. break;
  2206. #endif // NUM_SERVOS > 0
  2207. #if (LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)))
  2208. case 300: // M300
  2209. {
  2210. int beepS = code_seen('S') ? code_value() : 110;
  2211. int beepP = code_seen('P') ? code_value() : 1000;
  2212. if (beepS > 0)
  2213. {
  2214. #if BEEPER > 0
  2215. tone(BEEPER, beepS);
  2216. delay(beepP);
  2217. noTone(BEEPER);
  2218. #elif defined(ULTRALCD)
  2219. lcd_buzz(beepS, beepP);
  2220. #elif defined(LCD_USE_I2C_BUZZER)
  2221. lcd_buzz(beepP, beepS);
  2222. #endif
  2223. }
  2224. else
  2225. {
  2226. delay(beepP);
  2227. }
  2228. }
  2229. break;
  2230. #endif // M300
  2231. #ifdef PIDTEMP
  2232. case 301: // M301
  2233. {
  2234. if(code_seen('P')) Kp = code_value();
  2235. if(code_seen('I')) Ki = scalePID_i(code_value());
  2236. if(code_seen('D')) Kd = scalePID_d(code_value());
  2237. #ifdef PID_ADD_EXTRUSION_RATE
  2238. if(code_seen('C')) Kc = code_value();
  2239. #endif
  2240. updatePID();
  2241. SERIAL_PROTOCOL(MSG_OK);
  2242. SERIAL_PROTOCOL(" p:");
  2243. SERIAL_PROTOCOL(Kp);
  2244. SERIAL_PROTOCOL(" i:");
  2245. SERIAL_PROTOCOL(unscalePID_i(Ki));
  2246. SERIAL_PROTOCOL(" d:");
  2247. SERIAL_PROTOCOL(unscalePID_d(Kd));
  2248. #ifdef PID_ADD_EXTRUSION_RATE
  2249. SERIAL_PROTOCOL(" c:");
  2250. //Kc does not have scaling applied above, or in resetting defaults
  2251. SERIAL_PROTOCOL(Kc);
  2252. #endif
  2253. SERIAL_PROTOCOLLN("");
  2254. }
  2255. break;
  2256. #endif //PIDTEMP
  2257. #ifdef PIDTEMPBED
  2258. case 304: // M304
  2259. {
  2260. if(code_seen('P')) bedKp = code_value();
  2261. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2262. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2263. updatePID();
  2264. SERIAL_PROTOCOL(MSG_OK);
  2265. SERIAL_PROTOCOL(" p:");
  2266. SERIAL_PROTOCOL(bedKp);
  2267. SERIAL_PROTOCOL(" i:");
  2268. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2269. SERIAL_PROTOCOL(" d:");
  2270. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2271. SERIAL_PROTOCOLLN("");
  2272. }
  2273. break;
  2274. #endif //PIDTEMP
  2275. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2276. {
  2277. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2278. const uint8_t NUM_PULSES=16;
  2279. const float PULSE_LENGTH=0.01524;
  2280. for(int i=0; i < NUM_PULSES; i++) {
  2281. WRITE(PHOTOGRAPH_PIN, HIGH);
  2282. _delay_ms(PULSE_LENGTH);
  2283. WRITE(PHOTOGRAPH_PIN, LOW);
  2284. _delay_ms(PULSE_LENGTH);
  2285. }
  2286. delay(7.33);
  2287. for(int i=0; i < NUM_PULSES; i++) {
  2288. WRITE(PHOTOGRAPH_PIN, HIGH);
  2289. _delay_ms(PULSE_LENGTH);
  2290. WRITE(PHOTOGRAPH_PIN, LOW);
  2291. _delay_ms(PULSE_LENGTH);
  2292. }
  2293. #endif
  2294. }
  2295. break;
  2296. #ifdef DOGLCD
  2297. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2298. {
  2299. if (code_seen('C')) {
  2300. lcd_setcontrast( ((int)code_value())&63 );
  2301. }
  2302. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2303. SERIAL_PROTOCOL(lcd_contrast);
  2304. SERIAL_PROTOCOLLN("");
  2305. }
  2306. break;
  2307. #endif
  2308. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2309. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2310. {
  2311. float temp = .0;
  2312. if (code_seen('S')) temp=code_value();
  2313. set_extrude_min_temp(temp);
  2314. }
  2315. break;
  2316. #endif
  2317. case 303: // M303 PID autotune
  2318. {
  2319. float temp = 150.0;
  2320. int e=0;
  2321. int c=5;
  2322. if (code_seen('E')) e=code_value();
  2323. if (e<0)
  2324. temp=70;
  2325. if (code_seen('S')) temp=code_value();
  2326. if (code_seen('C')) c=code_value();
  2327. PID_autotune(temp, e, c);
  2328. }
  2329. break;
  2330. case 400: // M400 finish all moves
  2331. {
  2332. st_synchronize();
  2333. }
  2334. break;
  2335. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2336. case 401:
  2337. {
  2338. engage_z_probe(); // Engage Z Servo endstop if available
  2339. }
  2340. break;
  2341. case 402:
  2342. {
  2343. retract_z_probe(); // Retract Z Servo endstop if enabled
  2344. }
  2345. break;
  2346. #endif
  2347. case 500: // M500 Store settings in EEPROM
  2348. {
  2349. Config_StoreSettings();
  2350. }
  2351. break;
  2352. case 501: // M501 Read settings from EEPROM
  2353. {
  2354. Config_RetrieveSettings();
  2355. }
  2356. break;
  2357. case 502: // M502 Revert to default settings
  2358. {
  2359. Config_ResetDefault();
  2360. }
  2361. break;
  2362. case 503: // M503 print settings currently in memory
  2363. {
  2364. Config_PrintSettings();
  2365. }
  2366. break;
  2367. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2368. case 540:
  2369. {
  2370. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2371. }
  2372. break;
  2373. #endif
  2374. #ifdef FILAMENTCHANGEENABLE
  2375. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2376. {
  2377. float target[4];
  2378. float lastpos[4];
  2379. target[X_AXIS]=current_position[X_AXIS];
  2380. target[Y_AXIS]=current_position[Y_AXIS];
  2381. target[Z_AXIS]=current_position[Z_AXIS];
  2382. target[E_AXIS]=current_position[E_AXIS];
  2383. lastpos[X_AXIS]=current_position[X_AXIS];
  2384. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2385. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2386. lastpos[E_AXIS]=current_position[E_AXIS];
  2387. //retract by E
  2388. if(code_seen('E'))
  2389. {
  2390. target[E_AXIS]+= code_value();
  2391. }
  2392. else
  2393. {
  2394. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2395. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2396. #endif
  2397. }
  2398. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2399. //lift Z
  2400. if(code_seen('Z'))
  2401. {
  2402. target[Z_AXIS]+= code_value();
  2403. }
  2404. else
  2405. {
  2406. #ifdef FILAMENTCHANGE_ZADD
  2407. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2408. #endif
  2409. }
  2410. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2411. //move xy
  2412. if(code_seen('X'))
  2413. {
  2414. target[X_AXIS]+= code_value();
  2415. }
  2416. else
  2417. {
  2418. #ifdef FILAMENTCHANGE_XPOS
  2419. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2420. #endif
  2421. }
  2422. if(code_seen('Y'))
  2423. {
  2424. target[Y_AXIS]= code_value();
  2425. }
  2426. else
  2427. {
  2428. #ifdef FILAMENTCHANGE_YPOS
  2429. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2430. #endif
  2431. }
  2432. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2433. if(code_seen('L'))
  2434. {
  2435. target[E_AXIS]+= code_value();
  2436. }
  2437. else
  2438. {
  2439. #ifdef FILAMENTCHANGE_FINALRETRACT
  2440. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2441. #endif
  2442. }
  2443. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2444. //finish moves
  2445. st_synchronize();
  2446. //disable extruder steppers so filament can be removed
  2447. disable_e0();
  2448. disable_e1();
  2449. disable_e2();
  2450. delay(100);
  2451. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2452. uint8_t cnt=0;
  2453. while(!lcd_clicked()){
  2454. cnt++;
  2455. manage_heater();
  2456. manage_inactivity();
  2457. lcd_update();
  2458. if(cnt==0)
  2459. {
  2460. #if BEEPER > 0
  2461. SET_OUTPUT(BEEPER);
  2462. WRITE(BEEPER,HIGH);
  2463. delay(3);
  2464. WRITE(BEEPER,LOW);
  2465. delay(3);
  2466. #else
  2467. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  2468. lcd_buzz(1000/6,100);
  2469. #else
  2470. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS,LCD_FEEDBACK_FREQUENCY_HZ);
  2471. #endif
  2472. #endif
  2473. }
  2474. }
  2475. //return to normal
  2476. if(code_seen('L'))
  2477. {
  2478. target[E_AXIS]+= -code_value();
  2479. }
  2480. else
  2481. {
  2482. #ifdef FILAMENTCHANGE_FINALRETRACT
  2483. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2484. #endif
  2485. }
  2486. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2487. plan_set_e_position(current_position[E_AXIS]);
  2488. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2489. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2490. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2491. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2492. }
  2493. break;
  2494. #endif //FILAMENTCHANGEENABLE
  2495. #ifdef DUAL_X_CARRIAGE
  2496. case 605: // Set dual x-carriage movement mode:
  2497. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2498. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2499. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2500. // millimeters x-offset and an optional differential hotend temperature of
  2501. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2502. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2503. //
  2504. // Note: the X axis should be homed after changing dual x-carriage mode.
  2505. {
  2506. st_synchronize();
  2507. if (code_seen('S'))
  2508. dual_x_carriage_mode = code_value();
  2509. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2510. {
  2511. if (code_seen('X'))
  2512. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2513. if (code_seen('R'))
  2514. duplicate_extruder_temp_offset = code_value();
  2515. SERIAL_ECHO_START;
  2516. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2517. SERIAL_ECHO(" ");
  2518. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2519. SERIAL_ECHO(",");
  2520. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2521. SERIAL_ECHO(" ");
  2522. SERIAL_ECHO(duplicate_extruder_x_offset);
  2523. SERIAL_ECHO(",");
  2524. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2525. }
  2526. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2527. {
  2528. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2529. }
  2530. active_extruder_parked = false;
  2531. extruder_duplication_enabled = false;
  2532. delayed_move_time = 0;
  2533. }
  2534. break;
  2535. #endif //DUAL_X_CARRIAGE
  2536. case 907: // M907 Set digital trimpot motor current using axis codes.
  2537. {
  2538. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2539. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2540. if(code_seen('B')) digipot_current(4,code_value());
  2541. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2542. #endif
  2543. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  2544. if(code_seen('X')) digipot_current(0, code_value());
  2545. #endif
  2546. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  2547. if(code_seen('Z')) digipot_current(1, code_value());
  2548. #endif
  2549. #ifdef MOTOR_CURRENT_PWM_E_PIN
  2550. if(code_seen('E')) digipot_current(2, code_value());
  2551. #endif
  2552. #ifdef DIGIPOT_I2C
  2553. // this one uses actual amps in floating point
  2554. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  2555. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  2556. for(int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  2557. #endif
  2558. }
  2559. break;
  2560. case 908: // M908 Control digital trimpot directly.
  2561. {
  2562. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2563. uint8_t channel,current;
  2564. if(code_seen('P')) channel=code_value();
  2565. if(code_seen('S')) current=code_value();
  2566. digitalPotWrite(channel, current);
  2567. #endif
  2568. }
  2569. break;
  2570. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2571. {
  2572. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2573. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2574. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2575. if(code_seen('B')) microstep_mode(4,code_value());
  2576. microstep_readings();
  2577. #endif
  2578. }
  2579. break;
  2580. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2581. {
  2582. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2583. if(code_seen('S')) switch((int)code_value())
  2584. {
  2585. case 1:
  2586. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2587. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2588. break;
  2589. case 2:
  2590. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2591. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2592. break;
  2593. }
  2594. microstep_readings();
  2595. #endif
  2596. }
  2597. break;
  2598. case 999: // M999: Restart after being stopped
  2599. Stopped = false;
  2600. lcd_reset_alert_level();
  2601. gcode_LastN = Stopped_gcode_LastN;
  2602. FlushSerialRequestResend();
  2603. break;
  2604. }
  2605. }
  2606. else if(code_seen('T'))
  2607. {
  2608. tmp_extruder = code_value();
  2609. if(tmp_extruder >= EXTRUDERS) {
  2610. SERIAL_ECHO_START;
  2611. SERIAL_ECHO("T");
  2612. SERIAL_ECHO(tmp_extruder);
  2613. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2614. }
  2615. else {
  2616. boolean make_move = false;
  2617. if(code_seen('F')) {
  2618. make_move = true;
  2619. next_feedrate = code_value();
  2620. if(next_feedrate > 0.0) {
  2621. feedrate = next_feedrate;
  2622. }
  2623. }
  2624. #if EXTRUDERS > 1
  2625. if(tmp_extruder != active_extruder) {
  2626. // Save current position to return to after applying extruder offset
  2627. memcpy(destination, current_position, sizeof(destination));
  2628. #ifdef DUAL_X_CARRIAGE
  2629. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2630. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2631. {
  2632. // Park old head: 1) raise 2) move to park position 3) lower
  2633. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2634. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2635. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2636. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2637. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2638. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2639. st_synchronize();
  2640. }
  2641. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2642. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2643. extruder_offset[Y_AXIS][active_extruder] +
  2644. extruder_offset[Y_AXIS][tmp_extruder];
  2645. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2646. extruder_offset[Z_AXIS][active_extruder] +
  2647. extruder_offset[Z_AXIS][tmp_extruder];
  2648. active_extruder = tmp_extruder;
  2649. // This function resets the max/min values - the current position may be overwritten below.
  2650. axis_is_at_home(X_AXIS);
  2651. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2652. {
  2653. current_position[X_AXIS] = inactive_extruder_x_pos;
  2654. inactive_extruder_x_pos = destination[X_AXIS];
  2655. }
  2656. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2657. {
  2658. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2659. if (active_extruder == 0 || active_extruder_parked)
  2660. current_position[X_AXIS] = inactive_extruder_x_pos;
  2661. else
  2662. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2663. inactive_extruder_x_pos = destination[X_AXIS];
  2664. extruder_duplication_enabled = false;
  2665. }
  2666. else
  2667. {
  2668. // record raised toolhead position for use by unpark
  2669. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2670. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2671. active_extruder_parked = true;
  2672. delayed_move_time = 0;
  2673. }
  2674. #else
  2675. // Offset extruder (only by XY)
  2676. int i;
  2677. for(i = 0; i < 2; i++) {
  2678. current_position[i] = current_position[i] -
  2679. extruder_offset[i][active_extruder] +
  2680. extruder_offset[i][tmp_extruder];
  2681. }
  2682. // Set the new active extruder and position
  2683. active_extruder = tmp_extruder;
  2684. #endif //else DUAL_X_CARRIAGE
  2685. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2686. // Move to the old position if 'F' was in the parameters
  2687. if(make_move && Stopped == false) {
  2688. prepare_move();
  2689. }
  2690. }
  2691. #endif
  2692. SERIAL_ECHO_START;
  2693. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2694. SERIAL_PROTOCOLLN((int)active_extruder);
  2695. }
  2696. }
  2697. else
  2698. {
  2699. SERIAL_ECHO_START;
  2700. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2701. SERIAL_ECHO(cmdbuffer[bufindr]);
  2702. SERIAL_ECHOLNPGM("\"");
  2703. }
  2704. ClearToSend();
  2705. }
  2706. void FlushSerialRequestResend()
  2707. {
  2708. //char cmdbuffer[bufindr][100]="Resend:";
  2709. MYSERIAL.flush();
  2710. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2711. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2712. ClearToSend();
  2713. }
  2714. void ClearToSend()
  2715. {
  2716. previous_millis_cmd = millis();
  2717. #ifdef SDSUPPORT
  2718. if(fromsd[bufindr])
  2719. return;
  2720. #endif //SDSUPPORT
  2721. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2722. }
  2723. void get_coordinates()
  2724. {
  2725. bool seen[4]={false,false,false,false};
  2726. for(int8_t i=0; i < NUM_AXIS; i++) {
  2727. if(code_seen(axis_codes[i]))
  2728. {
  2729. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2730. seen[i]=true;
  2731. }
  2732. else destination[i] = current_position[i]; //Are these else lines really needed?
  2733. }
  2734. if(code_seen('F')) {
  2735. next_feedrate = code_value();
  2736. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2737. }
  2738. #ifdef FWRETRACT
  2739. if(autoretract_enabled)
  2740. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2741. {
  2742. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2743. if(echange<-MIN_RETRACT) //retract
  2744. {
  2745. if(!retracted)
  2746. {
  2747. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2748. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2749. float correctede=-echange-retract_length;
  2750. //to generate the additional steps, not the destination is changed, but inversely the current position
  2751. current_position[E_AXIS]+=-correctede;
  2752. feedrate=retract_feedrate;
  2753. retracted=true;
  2754. }
  2755. }
  2756. else
  2757. if(echange>MIN_RETRACT) //retract_recover
  2758. {
  2759. if(retracted)
  2760. {
  2761. //current_position[Z_AXIS]+=-retract_zlift;
  2762. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2763. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2764. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2765. feedrate=retract_recover_feedrate;
  2766. retracted=false;
  2767. }
  2768. }
  2769. }
  2770. #endif //FWRETRACT
  2771. }
  2772. void get_arc_coordinates()
  2773. {
  2774. #ifdef SF_ARC_FIX
  2775. bool relative_mode_backup = relative_mode;
  2776. relative_mode = true;
  2777. #endif
  2778. get_coordinates();
  2779. #ifdef SF_ARC_FIX
  2780. relative_mode=relative_mode_backup;
  2781. #endif
  2782. if(code_seen('I')) {
  2783. offset[0] = code_value();
  2784. }
  2785. else {
  2786. offset[0] = 0.0;
  2787. }
  2788. if(code_seen('J')) {
  2789. offset[1] = code_value();
  2790. }
  2791. else {
  2792. offset[1] = 0.0;
  2793. }
  2794. }
  2795. void clamp_to_software_endstops(float target[3])
  2796. {
  2797. if (min_software_endstops) {
  2798. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2799. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2800. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2801. }
  2802. if (max_software_endstops) {
  2803. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2804. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2805. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2806. }
  2807. }
  2808. #ifdef DELTA
  2809. void calculate_delta(float cartesian[3])
  2810. {
  2811. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2812. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2813. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2814. ) + cartesian[Z_AXIS];
  2815. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2816. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2817. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2818. ) + cartesian[Z_AXIS];
  2819. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2820. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2821. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2822. ) + cartesian[Z_AXIS];
  2823. /*
  2824. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2825. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2826. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2827. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2828. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2829. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2830. */
  2831. }
  2832. #endif
  2833. void prepare_move()
  2834. {
  2835. clamp_to_software_endstops(destination);
  2836. previous_millis_cmd = millis();
  2837. #ifdef DELTA
  2838. float difference[NUM_AXIS];
  2839. for (int8_t i=0; i < NUM_AXIS; i++) {
  2840. difference[i] = destination[i] - current_position[i];
  2841. }
  2842. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2843. sq(difference[Y_AXIS]) +
  2844. sq(difference[Z_AXIS]));
  2845. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2846. if (cartesian_mm < 0.000001) { return; }
  2847. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2848. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2849. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2850. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2851. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2852. for (int s = 1; s <= steps; s++) {
  2853. float fraction = float(s) / float(steps);
  2854. for(int8_t i=0; i < NUM_AXIS; i++) {
  2855. destination[i] = current_position[i] + difference[i] * fraction;
  2856. }
  2857. calculate_delta(destination);
  2858. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2859. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2860. active_extruder);
  2861. }
  2862. #else
  2863. #ifdef DUAL_X_CARRIAGE
  2864. if (active_extruder_parked)
  2865. {
  2866. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2867. {
  2868. // move duplicate extruder into correct duplication position.
  2869. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2870. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2871. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2872. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2873. st_synchronize();
  2874. extruder_duplication_enabled = true;
  2875. active_extruder_parked = false;
  2876. }
  2877. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2878. {
  2879. if (current_position[E_AXIS] == destination[E_AXIS])
  2880. {
  2881. // this is a travel move - skit it but keep track of current position (so that it can later
  2882. // be used as start of first non-travel move)
  2883. if (delayed_move_time != 0xFFFFFFFFUL)
  2884. {
  2885. memcpy(current_position, destination, sizeof(current_position));
  2886. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2887. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2888. delayed_move_time = millis();
  2889. return;
  2890. }
  2891. }
  2892. delayed_move_time = 0;
  2893. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2894. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2895. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2896. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2897. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2898. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2899. active_extruder_parked = false;
  2900. }
  2901. }
  2902. #endif //DUAL_X_CARRIAGE
  2903. // Do not use feedmultiply for E or Z only moves
  2904. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2905. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2906. }
  2907. else {
  2908. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2909. }
  2910. #endif //else DELTA
  2911. for(int8_t i=0; i < NUM_AXIS; i++) {
  2912. current_position[i] = destination[i];
  2913. }
  2914. }
  2915. void prepare_arc_move(char isclockwise) {
  2916. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2917. // Trace the arc
  2918. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2919. // As far as the parser is concerned, the position is now == target. In reality the
  2920. // motion control system might still be processing the action and the real tool position
  2921. // in any intermediate location.
  2922. for(int8_t i=0; i < NUM_AXIS; i++) {
  2923. current_position[i] = destination[i];
  2924. }
  2925. previous_millis_cmd = millis();
  2926. }
  2927. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2928. #if defined(FAN_PIN)
  2929. #if CONTROLLERFAN_PIN == FAN_PIN
  2930. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2931. #endif
  2932. #endif
  2933. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2934. unsigned long lastMotorCheck = 0;
  2935. void controllerFan()
  2936. {
  2937. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2938. {
  2939. lastMotorCheck = millis();
  2940. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN) || (soft_pwm_bed > 0)
  2941. #if EXTRUDERS > 2
  2942. || !READ(E2_ENABLE_PIN)
  2943. #endif
  2944. #if EXTRUDER > 1
  2945. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2946. || !READ(X2_ENABLE_PIN)
  2947. #endif
  2948. || !READ(E1_ENABLE_PIN)
  2949. #endif
  2950. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2951. {
  2952. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2953. }
  2954. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2955. {
  2956. digitalWrite(CONTROLLERFAN_PIN, 0);
  2957. analogWrite(CONTROLLERFAN_PIN, 0);
  2958. }
  2959. else
  2960. {
  2961. // allows digital or PWM fan output to be used (see M42 handling)
  2962. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2963. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2964. }
  2965. }
  2966. }
  2967. #endif
  2968. #ifdef TEMP_STAT_LEDS
  2969. static bool blue_led = false;
  2970. static bool red_led = false;
  2971. static uint32_t stat_update = 0;
  2972. void handle_status_leds(void) {
  2973. float max_temp = 0.0;
  2974. if(millis() > stat_update) {
  2975. stat_update += 500; // Update every 0.5s
  2976. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2977. max_temp = max(max_temp, degHotend(cur_extruder));
  2978. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  2979. }
  2980. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  2981. max_temp = max(max_temp, degTargetBed());
  2982. max_temp = max(max_temp, degBed());
  2983. #endif
  2984. if((max_temp > 55.0) && (red_led == false)) {
  2985. digitalWrite(STAT_LED_RED, 1);
  2986. digitalWrite(STAT_LED_BLUE, 0);
  2987. red_led = true;
  2988. blue_led = false;
  2989. }
  2990. if((max_temp < 54.0) && (blue_led == false)) {
  2991. digitalWrite(STAT_LED_RED, 0);
  2992. digitalWrite(STAT_LED_BLUE, 1);
  2993. red_led = false;
  2994. blue_led = true;
  2995. }
  2996. }
  2997. }
  2998. #endif
  2999. void manage_inactivity()
  3000. {
  3001. if( (millis() - previous_millis_cmd) > max_inactive_time )
  3002. if(max_inactive_time)
  3003. kill();
  3004. if(stepper_inactive_time) {
  3005. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  3006. {
  3007. if(blocks_queued() == false) {
  3008. disable_x();
  3009. disable_y();
  3010. disable_z();
  3011. disable_e0();
  3012. disable_e1();
  3013. disable_e2();
  3014. }
  3015. }
  3016. }
  3017. #if defined(KILL_PIN) && KILL_PIN > -1
  3018. if( 0 == READ(KILL_PIN) )
  3019. kill();
  3020. #endif
  3021. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  3022. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  3023. #endif
  3024. #ifdef EXTRUDER_RUNOUT_PREVENT
  3025. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  3026. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  3027. {
  3028. bool oldstatus=READ(E0_ENABLE_PIN);
  3029. enable_e0();
  3030. float oldepos=current_position[E_AXIS];
  3031. float oldedes=destination[E_AXIS];
  3032. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  3033. destination[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  3034. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  3035. current_position[E_AXIS]=oldepos;
  3036. destination[E_AXIS]=oldedes;
  3037. plan_set_e_position(oldepos);
  3038. previous_millis_cmd=millis();
  3039. st_synchronize();
  3040. WRITE(E0_ENABLE_PIN,oldstatus);
  3041. }
  3042. #endif
  3043. #if defined(DUAL_X_CARRIAGE)
  3044. // handle delayed move timeout
  3045. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  3046. {
  3047. // travel moves have been received so enact them
  3048. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  3049. memcpy(destination,current_position,sizeof(destination));
  3050. prepare_move();
  3051. }
  3052. #endif
  3053. #ifdef TEMP_STAT_LEDS
  3054. handle_status_leds();
  3055. #endif
  3056. check_axes_activity();
  3057. }
  3058. void kill()
  3059. {
  3060. cli(); // Stop interrupts
  3061. disable_heater();
  3062. disable_x();
  3063. disable_y();
  3064. disable_z();
  3065. disable_e0();
  3066. disable_e1();
  3067. disable_e2();
  3068. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  3069. pinMode(PS_ON_PIN,INPUT);
  3070. #endif
  3071. SERIAL_ERROR_START;
  3072. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  3073. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  3074. suicide();
  3075. while(1) { /* Intentionally left empty */ } // Wait for reset
  3076. }
  3077. void Stop()
  3078. {
  3079. disable_heater();
  3080. if(Stopped == false) {
  3081. Stopped = true;
  3082. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  3083. SERIAL_ERROR_START;
  3084. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  3085. LCD_MESSAGEPGM(MSG_STOPPED);
  3086. }
  3087. }
  3088. bool IsStopped() { return Stopped; };
  3089. #ifdef FAST_PWM_FAN
  3090. void setPwmFrequency(uint8_t pin, int val)
  3091. {
  3092. val &= 0x07;
  3093. switch(digitalPinToTimer(pin))
  3094. {
  3095. #if defined(TCCR0A)
  3096. case TIMER0A:
  3097. case TIMER0B:
  3098. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  3099. // TCCR0B |= val;
  3100. break;
  3101. #endif
  3102. #if defined(TCCR1A)
  3103. case TIMER1A:
  3104. case TIMER1B:
  3105. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3106. // TCCR1B |= val;
  3107. break;
  3108. #endif
  3109. #if defined(TCCR2)
  3110. case TIMER2:
  3111. case TIMER2:
  3112. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  3113. TCCR2 |= val;
  3114. break;
  3115. #endif
  3116. #if defined(TCCR2A)
  3117. case TIMER2A:
  3118. case TIMER2B:
  3119. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  3120. TCCR2B |= val;
  3121. break;
  3122. #endif
  3123. #if defined(TCCR3A)
  3124. case TIMER3A:
  3125. case TIMER3B:
  3126. case TIMER3C:
  3127. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  3128. TCCR3B |= val;
  3129. break;
  3130. #endif
  3131. #if defined(TCCR4A)
  3132. case TIMER4A:
  3133. case TIMER4B:
  3134. case TIMER4C:
  3135. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  3136. TCCR4B |= val;
  3137. break;
  3138. #endif
  3139. #if defined(TCCR5A)
  3140. case TIMER5A:
  3141. case TIMER5B:
  3142. case TIMER5C:
  3143. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  3144. TCCR5B |= val;
  3145. break;
  3146. #endif
  3147. }
  3148. }
  3149. #endif //FAST_PWM_FAN
  3150. bool setTargetedHotend(int code){
  3151. tmp_extruder = active_extruder;
  3152. if(code_seen('T')) {
  3153. tmp_extruder = code_value();
  3154. if(tmp_extruder >= EXTRUDERS) {
  3155. SERIAL_ECHO_START;
  3156. switch(code){
  3157. case 104:
  3158. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  3159. break;
  3160. case 105:
  3161. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  3162. break;
  3163. case 109:
  3164. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  3165. break;
  3166. case 218:
  3167. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  3168. break;
  3169. }
  3170. SERIAL_ECHOLN(tmp_extruder);
  3171. return true;
  3172. }
  3173. }
  3174. return false;
  3175. }