My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 183KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "ConfigurationStore.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "BlinkM.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. // look here for descriptions of G-codes: http://linuxcnc.org/handbook/gcode/g-code.html
  56. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  57. //Implemented Codes
  58. //-------------------
  59. // G0 -> G1
  60. // G1 - Coordinated Movement X Y Z E
  61. // G2 - CW ARC
  62. // G3 - CCW ARC
  63. // G4 - Dwell S<seconds> or P<milliseconds>
  64. // G10 - retract filament according to settings of M207
  65. // G11 - retract recover filament according to settings of M208
  66. // G28 - Home one or more axes
  67. // G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  68. // G30 - Single Z Probe, probes bed at current XY location.
  69. // G31 - Dock sled (Z_PROBE_SLED only)
  70. // G32 - Undock sled (Z_PROBE_SLED only)
  71. // G90 - Use Absolute Coordinates
  72. // G91 - Use Relative Coordinates
  73. // G92 - Set current position to coordinates given
  74. // M Codes
  75. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  76. // M1 - Same as M0
  77. // M17 - Enable/Power all stepper motors
  78. // M18 - Disable all stepper motors; same as M84
  79. // M20 - List SD card
  80. // M21 - Init SD card
  81. // M22 - Release SD card
  82. // M23 - Select SD file (M23 filename.g)
  83. // M24 - Start/resume SD print
  84. // M25 - Pause SD print
  85. // M26 - Set SD position in bytes (M26 S12345)
  86. // M27 - Report SD print status
  87. // M28 - Start SD write (M28 filename.g)
  88. // M29 - Stop SD write
  89. // M30 - Delete file from SD (M30 filename.g)
  90. // M31 - Output time since last M109 or SD card start to serial
  91. // M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  92. // syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  93. // Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  94. // The '#' is necessary when calling from within sd files, as it stops buffer prereading
  95. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  96. // M80 - Turn on Power Supply
  97. // M81 - Turn off Power Supply
  98. // M82 - Set E codes absolute (default)
  99. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  100. // M84 - Disable steppers until next move,
  101. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  102. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  103. // M92 - Set axis_steps_per_unit - same syntax as G92
  104. // M104 - Set extruder target temp
  105. // M105 - Read current temp
  106. // M106 - Fan on
  107. // M107 - Fan off
  108. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  110. // IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  111. // M112 - Emergency stop
  112. // M114 - Output current position to serial port
  113. // M115 - Capabilities string
  114. // M117 - display message
  115. // M119 - Output Endstop status to serial port
  116. // M120 - Enable endstop detection
  117. // M121 - Disable endstop detection
  118. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  119. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  120. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  121. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  122. // M140 - Set bed target temp
  123. // M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  124. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  125. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  126. // M200 D<millimeters>- set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  127. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  128. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  129. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  130. // M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  131. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  132. // M206 - Set additional homing offset
  133. // M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  134. // M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  135. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  136. // M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  137. // M220 S<factor in percent>- set speed factor override percentage
  138. // M221 S<factor in percent>- set extrude factor override percentage
  139. // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  140. // M240 - Trigger a camera to take a photograph
  141. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  142. // M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  143. // M300 - Play beep sound S<frequency Hz> P<duration ms>
  144. // M301 - Set PID parameters P I and D
  145. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  146. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  147. // M304 - Set bed PID parameters P I and D
  148. // M380 - Activate solenoid on active extruder
  149. // M381 - Disable all solenoids
  150. // M400 - Finish all moves
  151. // M401 - Lower z-probe if present
  152. // M402 - Raise z-probe if present
  153. // M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  154. // M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  155. // M406 - Turn off Filament Sensor extrusion control
  156. // M407 - Display measured filament diameter
  157. // M500 - Store parameters in EEPROM
  158. // M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  159. // M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  160. // M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  161. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  162. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  163. // M665 - Set delta configurations
  164. // M666 - Set delta endstop adjustment
  165. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  166. // M907 - Set digital trimpot motor current using axis codes.
  167. // M908 - Control digital trimpot directly.
  168. // M350 - Set microstepping mode.
  169. // M351 - Toggle MS1 MS2 pins directly.
  170. // ************ SCARA Specific - This can change to suit future G-code regulations
  171. // M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  172. // M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  173. // M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  174. // M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  175. // M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  176. // M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  177. //************* SCARA End ***************
  178. // M928 - Start SD logging (M928 filename.g) - ended by M29
  179. // M999 - Restart after being stopped by error
  180. #ifdef SDSUPPORT
  181. CardReader card;
  182. #endif
  183. float homing_feedrate[] = HOMING_FEEDRATE;
  184. int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  185. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  186. int feedmultiply = 100; //100->1 200->2
  187. int saved_feedmultiply;
  188. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  189. bool volumetric_enabled = false;
  190. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  191. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  192. float current_position[NUM_AXIS] = { 0.0 };
  193. float home_offset[3] = { 0 };
  194. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  195. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  196. bool axis_known_position[3] = { false };
  197. uint8_t active_extruder = 0;
  198. int fanSpeed = 0;
  199. bool cancel_heatup = false;
  200. const char errormagic[] PROGMEM = "Error:";
  201. const char echomagic[] PROGMEM = "echo:";
  202. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  203. static float destination[NUM_AXIS] = { 0 };
  204. static float offset[3] = { 0 };
  205. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  206. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  207. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  208. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  209. static int bufindr = 0;
  210. static int bufindw = 0;
  211. static int buflen = 0;
  212. static char serial_char;
  213. static int serial_count = 0;
  214. static boolean comment_mode = false;
  215. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  216. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  217. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  218. // Inactivity shutdown
  219. static unsigned long previous_millis_cmd = 0;
  220. static unsigned long max_inactive_time = 0;
  221. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  222. unsigned long starttime = 0; ///< Print job start time
  223. unsigned long stoptime = 0; ///< Print job stop time
  224. static uint8_t tmp_extruder;
  225. bool Stopped = false;
  226. bool CooldownNoWait = true;
  227. bool target_direction;
  228. #ifdef ENABLE_AUTO_BED_LEVELING
  229. int xy_travel_speed = XY_TRAVEL_SPEED;
  230. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  231. #endif
  232. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  233. float z_endstop_adj = 0;
  234. #endif
  235. // Extruder offsets
  236. #if EXTRUDERS > 1
  237. #ifndef EXTRUDER_OFFSET_X
  238. #define EXTRUDER_OFFSET_X { 0 }
  239. #endif
  240. #ifndef EXTRUDER_OFFSET_Y
  241. #define EXTRUDER_OFFSET_Y { 0 }
  242. #endif
  243. float extruder_offset[][EXTRUDERS] = {
  244. EXTRUDER_OFFSET_X,
  245. EXTRUDER_OFFSET_Y
  246. #ifdef DUAL_X_CARRIAGE
  247. , { 0 } // supports offsets in XYZ plane
  248. #endif
  249. };
  250. #endif
  251. #ifdef SERVO_ENDSTOPS
  252. int servo_endstops[] = SERVO_ENDSTOPS;
  253. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  254. #endif
  255. #ifdef BARICUDA
  256. int ValvePressure = 0;
  257. int EtoPPressure = 0;
  258. #endif
  259. #ifdef FWRETRACT
  260. bool autoretract_enabled = false;
  261. bool retracted[EXTRUDERS] = { false };
  262. bool retracted_swap[EXTRUDERS] = { false };
  263. float retract_length = RETRACT_LENGTH;
  264. float retract_length_swap = RETRACT_LENGTH_SWAP;
  265. float retract_feedrate = RETRACT_FEEDRATE;
  266. float retract_zlift = RETRACT_ZLIFT;
  267. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  268. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  269. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  270. #endif // FWRETRACT
  271. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  272. bool powersupply =
  273. #ifdef PS_DEFAULT_OFF
  274. false
  275. #else
  276. true
  277. #endif
  278. ;
  279. #endif
  280. #ifdef DELTA
  281. float delta[3] = { 0 };
  282. #define SIN_60 0.8660254037844386
  283. #define COS_60 0.5
  284. float endstop_adj[3] = { 0 };
  285. // these are the default values, can be overriden with M665
  286. float delta_radius = DELTA_RADIUS;
  287. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  288. float delta_tower1_y = -COS_60 * delta_radius;
  289. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  290. float delta_tower2_y = -COS_60 * delta_radius;
  291. float delta_tower3_x = 0; // back middle tower
  292. float delta_tower3_y = delta_radius;
  293. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  294. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  295. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  296. #ifdef ENABLE_AUTO_BED_LEVELING
  297. int delta_grid_spacing[2] = { 0, 0 };
  298. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  299. #endif
  300. #else
  301. static bool home_all_axis = true;
  302. #endif
  303. #ifdef SCARA
  304. static float delta[3] = { 0 };
  305. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  306. #endif
  307. #ifdef FILAMENT_SENSOR
  308. //Variables for Filament Sensor input
  309. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  310. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  311. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  312. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  313. int delay_index1 = 0; //index into ring buffer
  314. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  315. float delay_dist = 0; //delay distance counter
  316. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  317. #endif
  318. #ifdef FILAMENT_RUNOUT_SENSOR
  319. static bool filrunoutEnqued = false;
  320. #endif
  321. #ifdef SDSUPPORT
  322. static bool fromsd[BUFSIZE];
  323. #endif
  324. #if NUM_SERVOS > 0
  325. Servo servos[NUM_SERVOS];
  326. #endif
  327. #ifdef CHDK
  328. unsigned long chdkHigh = 0;
  329. boolean chdkActive = false;
  330. #endif
  331. //===========================================================================
  332. //================================ Functions ================================
  333. //===========================================================================
  334. void get_arc_coordinates();
  335. bool setTargetedHotend(int code);
  336. void serial_echopair_P(const char *s_P, float v)
  337. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  338. void serial_echopair_P(const char *s_P, double v)
  339. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  340. void serial_echopair_P(const char *s_P, unsigned long v)
  341. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  342. #ifdef SDSUPPORT
  343. #include "SdFatUtil.h"
  344. int freeMemory() { return SdFatUtil::FreeRam(); }
  345. #else
  346. extern "C" {
  347. extern unsigned int __bss_end;
  348. extern unsigned int __heap_start;
  349. extern void *__brkval;
  350. int freeMemory() {
  351. int free_memory;
  352. if ((int)__brkval == 0)
  353. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  354. else
  355. free_memory = ((int)&free_memory) - ((int)__brkval);
  356. return free_memory;
  357. }
  358. }
  359. #endif //!SDSUPPORT
  360. //Injects the next command from the pending sequence of commands, when possible
  361. //Return false if and only if no command was pending
  362. static bool drain_queued_commands_P() {
  363. if (!queued_commands_P) return false;
  364. // Get the next 30 chars from the sequence of gcodes to run
  365. char cmd[30];
  366. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  367. cmd[sizeof(cmd) - 1] = '\0';
  368. // Look for the end of line, or the end of sequence
  369. size_t i = 0;
  370. char c;
  371. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  372. cmd[i] = '\0';
  373. if (enquecommand(cmd)) { // buffer was not full (else we will retry later)
  374. if (c)
  375. queued_commands_P += i + 1; // move to next command
  376. else
  377. queued_commands_P = NULL; // will have no more commands in the sequence
  378. }
  379. return true;
  380. }
  381. //Record one or many commands to run from program memory.
  382. //Aborts the current queue, if any.
  383. //Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  384. void enquecommands_P(const char* pgcode) {
  385. queued_commands_P = pgcode;
  386. drain_queued_commands_P(); // first command executed asap (when possible)
  387. }
  388. //adds a single command to the main command buffer, from RAM
  389. //that is really done in a non-safe way.
  390. //needs overworking someday
  391. //Returns false if it failed to do so
  392. bool enquecommand(const char *cmd)
  393. {
  394. if(*cmd==';')
  395. return false;
  396. if(buflen >= BUFSIZE)
  397. return false;
  398. //this is dangerous if a mixing of serial and this happens
  399. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  400. SERIAL_ECHO_START;
  401. SERIAL_ECHOPGM(MSG_Enqueing);
  402. SERIAL_ECHO(cmdbuffer[bufindw]);
  403. SERIAL_ECHOLNPGM("\"");
  404. bufindw= (bufindw + 1)%BUFSIZE;
  405. buflen += 1;
  406. return true;
  407. }
  408. void setup_killpin()
  409. {
  410. #if HAS_KILL
  411. SET_INPUT(KILL_PIN);
  412. WRITE(KILL_PIN, HIGH);
  413. #endif
  414. }
  415. void setup_filrunoutpin()
  416. {
  417. #if HAS_FILRUNOUT
  418. pinMode(FILRUNOUT_PIN, INPUT);
  419. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  420. WRITE(FILLRUNOUT_PIN, HIGH);
  421. #endif
  422. #endif
  423. }
  424. // Set home pin
  425. void setup_homepin(void)
  426. {
  427. #if HAS_HOME
  428. SET_INPUT(HOME_PIN);
  429. WRITE(HOME_PIN, HIGH);
  430. #endif
  431. }
  432. void setup_photpin()
  433. {
  434. #if HAS_PHOTOGRAPH
  435. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  436. #endif
  437. }
  438. void setup_powerhold()
  439. {
  440. #if HAS_SUICIDE
  441. OUT_WRITE(SUICIDE_PIN, HIGH);
  442. #endif
  443. #if HAS_POWER_SWITCH
  444. #ifdef PS_DEFAULT_OFF
  445. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  446. #else
  447. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  448. #endif
  449. #endif
  450. }
  451. void suicide()
  452. {
  453. #if HAS_SUICIDE
  454. OUT_WRITE(SUICIDE_PIN, LOW);
  455. #endif
  456. }
  457. void servo_init()
  458. {
  459. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  460. servos[0].attach(SERVO0_PIN);
  461. #endif
  462. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  463. servos[1].attach(SERVO1_PIN);
  464. #endif
  465. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  466. servos[2].attach(SERVO2_PIN);
  467. #endif
  468. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  469. servos[3].attach(SERVO3_PIN);
  470. #endif
  471. // Set position of Servo Endstops that are defined
  472. #ifdef SERVO_ENDSTOPS
  473. for (int i = 0; i < 3; i++)
  474. if (servo_endstops[i] >= 0)
  475. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  476. #endif
  477. #if SERVO_LEVELING
  478. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  479. servos[servo_endstops[Z_AXIS]].detach();
  480. #endif
  481. }
  482. void setup()
  483. {
  484. setup_killpin();
  485. setup_filrunoutpin();
  486. setup_powerhold();
  487. MYSERIAL.begin(BAUDRATE);
  488. SERIAL_PROTOCOLLNPGM("start");
  489. SERIAL_ECHO_START;
  490. // Check startup - does nothing if bootloader sets MCUSR to 0
  491. byte mcu = MCUSR;
  492. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  493. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  494. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  495. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  496. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  497. MCUSR=0;
  498. SERIAL_ECHOPGM(MSG_MARLIN);
  499. SERIAL_ECHOLNPGM(STRING_VERSION);
  500. #ifdef STRING_VERSION_CONFIG_H
  501. #ifdef STRING_CONFIG_H_AUTHOR
  502. SERIAL_ECHO_START;
  503. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  504. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  505. SERIAL_ECHOPGM(MSG_AUTHOR);
  506. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  507. SERIAL_ECHOPGM("Compiled: ");
  508. SERIAL_ECHOLNPGM(__DATE__);
  509. #endif // STRING_CONFIG_H_AUTHOR
  510. #endif // STRING_VERSION_CONFIG_H
  511. SERIAL_ECHO_START;
  512. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  513. SERIAL_ECHO(freeMemory());
  514. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  515. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  516. #ifdef SDSUPPORT
  517. for(int8_t i = 0; i < BUFSIZE; i++)
  518. {
  519. fromsd[i] = false;
  520. }
  521. #endif //!SDSUPPORT
  522. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  523. Config_RetrieveSettings();
  524. tp_init(); // Initialize temperature loop
  525. plan_init(); // Initialize planner;
  526. watchdog_init();
  527. st_init(); // Initialize stepper, this enables interrupts!
  528. setup_photpin();
  529. servo_init();
  530. lcd_init();
  531. _delay_ms(1000); // wait 1sec to display the splash screen
  532. #if HAS_CONTROLLERFAN
  533. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  534. #endif
  535. #ifdef DIGIPOT_I2C
  536. digipot_i2c_init();
  537. #endif
  538. #ifdef Z_PROBE_SLED
  539. pinMode(SERVO0_PIN, OUTPUT);
  540. digitalWrite(SERVO0_PIN, LOW); // turn it off
  541. #endif // Z_PROBE_SLED
  542. setup_homepin();
  543. #ifdef STAT_LED_RED
  544. pinMode(STAT_LED_RED, OUTPUT);
  545. digitalWrite(STAT_LED_RED, LOW); // turn it off
  546. #endif
  547. #ifdef STAT_LED_BLUE
  548. pinMode(STAT_LED_BLUE, OUTPUT);
  549. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  550. #endif
  551. }
  552. void loop() {
  553. if (buflen < BUFSIZE - 1) get_command();
  554. #ifdef SDSUPPORT
  555. card.checkautostart(false);
  556. #endif
  557. if (buflen) {
  558. #ifdef SDSUPPORT
  559. if (card.saving) {
  560. if (strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL) {
  561. card.write_command(cmdbuffer[bufindr]);
  562. if (card.logging)
  563. process_commands();
  564. else
  565. SERIAL_PROTOCOLLNPGM(MSG_OK);
  566. }
  567. else {
  568. card.closefile();
  569. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  570. }
  571. }
  572. else
  573. process_commands();
  574. #else
  575. process_commands();
  576. #endif // SDSUPPORT
  577. buflen--;
  578. bufindr = (bufindr + 1) % BUFSIZE;
  579. }
  580. // Check heater every n milliseconds
  581. manage_heater();
  582. manage_inactivity();
  583. checkHitEndstops();
  584. lcd_update();
  585. }
  586. void get_command()
  587. {
  588. if (drain_queued_commands_P()) // priority is given to non-serial commands
  589. return;
  590. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  591. serial_char = MYSERIAL.read();
  592. if(serial_char == '\n' ||
  593. serial_char == '\r' ||
  594. serial_count >= (MAX_CMD_SIZE - 1) )
  595. {
  596. // end of line == end of comment
  597. comment_mode = false;
  598. if(!serial_count) {
  599. // short cut for empty lines
  600. return;
  601. }
  602. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  603. #ifdef SDSUPPORT
  604. fromsd[bufindw] = false;
  605. #endif //!SDSUPPORT
  606. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  607. {
  608. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  609. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  610. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  611. SERIAL_ERROR_START;
  612. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  613. SERIAL_ERRORLN(gcode_LastN);
  614. //Serial.println(gcode_N);
  615. FlushSerialRequestResend();
  616. serial_count = 0;
  617. return;
  618. }
  619. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  620. {
  621. byte checksum = 0;
  622. byte count = 0;
  623. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  624. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  625. if(strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  626. SERIAL_ERROR_START;
  627. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  628. SERIAL_ERRORLN(gcode_LastN);
  629. FlushSerialRequestResend();
  630. serial_count = 0;
  631. return;
  632. }
  633. //if no errors, continue parsing
  634. }
  635. else
  636. {
  637. SERIAL_ERROR_START;
  638. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  639. SERIAL_ERRORLN(gcode_LastN);
  640. FlushSerialRequestResend();
  641. serial_count = 0;
  642. return;
  643. }
  644. gcode_LastN = gcode_N;
  645. //if no errors, continue parsing
  646. }
  647. else // if we don't receive 'N' but still see '*'
  648. {
  649. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  650. {
  651. SERIAL_ERROR_START;
  652. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  653. SERIAL_ERRORLN(gcode_LastN);
  654. serial_count = 0;
  655. return;
  656. }
  657. }
  658. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  659. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  660. switch(strtol(strchr_pointer + 1, NULL, 10)){
  661. case 0:
  662. case 1:
  663. case 2:
  664. case 3:
  665. if (Stopped == true) {
  666. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  667. LCD_MESSAGEPGM(MSG_STOPPED);
  668. }
  669. break;
  670. default:
  671. break;
  672. }
  673. }
  674. //If command was e-stop process now
  675. if(strcmp(cmdbuffer[bufindw], "M112") == 0)
  676. kill();
  677. bufindw = (bufindw + 1)%BUFSIZE;
  678. buflen += 1;
  679. serial_count = 0; //clear buffer
  680. }
  681. else if(serial_char == '\\') { //Handle escapes
  682. if(MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  683. // if we have one more character, copy it over
  684. serial_char = MYSERIAL.read();
  685. cmdbuffer[bufindw][serial_count++] = serial_char;
  686. }
  687. //otherwise do nothing
  688. }
  689. else { // its not a newline, carriage return or escape char
  690. if(serial_char == ';') comment_mode = true;
  691. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  692. }
  693. }
  694. #ifdef SDSUPPORT
  695. if(!card.sdprinting || serial_count!=0){
  696. return;
  697. }
  698. //'#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  699. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  700. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  701. static bool stop_buffering=false;
  702. if(buflen==0) stop_buffering=false;
  703. while( !card.eof() && buflen < BUFSIZE && !stop_buffering) {
  704. int16_t n=card.get();
  705. serial_char = (char)n;
  706. if(serial_char == '\n' ||
  707. serial_char == '\r' ||
  708. (serial_char == '#' && comment_mode == false) ||
  709. (serial_char == ':' && comment_mode == false) ||
  710. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  711. {
  712. if(card.eof()){
  713. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  714. stoptime=millis();
  715. char time[30];
  716. unsigned long t=(stoptime-starttime)/1000;
  717. int hours, minutes;
  718. minutes=(t/60)%60;
  719. hours=t/60/60;
  720. sprintf_P(time, PSTR("%i "MSG_END_HOUR" %i "MSG_END_MINUTE),hours, minutes);
  721. SERIAL_ECHO_START;
  722. SERIAL_ECHOLN(time);
  723. lcd_setstatus(time, true);
  724. card.printingHasFinished();
  725. card.checkautostart(true);
  726. }
  727. if(serial_char=='#')
  728. stop_buffering=true;
  729. if(!serial_count)
  730. {
  731. comment_mode = false; //for new command
  732. return; //if empty line
  733. }
  734. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  735. // if(!comment_mode){
  736. fromsd[bufindw] = true;
  737. buflen += 1;
  738. bufindw = (bufindw + 1)%BUFSIZE;
  739. // }
  740. comment_mode = false; //for new command
  741. serial_count = 0; //clear buffer
  742. }
  743. else
  744. {
  745. if(serial_char == ';') comment_mode = true;
  746. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  747. }
  748. }
  749. #endif //SDSUPPORT
  750. }
  751. float code_value() {
  752. float ret;
  753. char *e = strchr(strchr_pointer, 'E');
  754. if (e) {
  755. *e = 0;
  756. ret = strtod(strchr_pointer+1, NULL);
  757. *e = 'E';
  758. }
  759. else
  760. ret = strtod(strchr_pointer+1, NULL);
  761. return ret;
  762. }
  763. long code_value_long() { return (strtol(strchr_pointer + 1, NULL, 10)); }
  764. bool code_seen(char code) {
  765. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  766. return (strchr_pointer != NULL); //Return True if a character was found
  767. }
  768. #define DEFINE_PGM_READ_ANY(type, reader) \
  769. static inline type pgm_read_any(const type *p) \
  770. { return pgm_read_##reader##_near(p); }
  771. DEFINE_PGM_READ_ANY(float, float);
  772. DEFINE_PGM_READ_ANY(signed char, byte);
  773. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  774. static const PROGMEM type array##_P[3] = \
  775. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  776. static inline type array(int axis) \
  777. { return pgm_read_any(&array##_P[axis]); }
  778. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  779. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  780. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  781. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  782. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  783. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  784. #ifdef DUAL_X_CARRIAGE
  785. #define DXC_FULL_CONTROL_MODE 0
  786. #define DXC_AUTO_PARK_MODE 1
  787. #define DXC_DUPLICATION_MODE 2
  788. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  789. static float x_home_pos(int extruder) {
  790. if (extruder == 0)
  791. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  792. else
  793. // In dual carriage mode the extruder offset provides an override of the
  794. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  795. // This allow soft recalibration of the second extruder offset position without firmware reflash
  796. // (through the M218 command).
  797. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  798. }
  799. static int x_home_dir(int extruder) {
  800. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  801. }
  802. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  803. static bool active_extruder_parked = false; // used in mode 1 & 2
  804. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  805. static unsigned long delayed_move_time = 0; // used in mode 1
  806. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  807. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  808. bool extruder_duplication_enabled = false; // used in mode 2
  809. #endif //DUAL_X_CARRIAGE
  810. static void axis_is_at_home(int axis) {
  811. #ifdef DUAL_X_CARRIAGE
  812. if (axis == X_AXIS) {
  813. if (active_extruder != 0) {
  814. current_position[X_AXIS] = x_home_pos(active_extruder);
  815. min_pos[X_AXIS] = X2_MIN_POS;
  816. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  817. return;
  818. }
  819. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  820. float xoff = home_offset[X_AXIS];
  821. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  822. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  823. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  824. return;
  825. }
  826. }
  827. #endif
  828. #ifdef SCARA
  829. float homeposition[3];
  830. if (axis < 2) {
  831. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  832. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  833. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  834. // Works out real Homeposition angles using inverse kinematics,
  835. // and calculates homing offset using forward kinematics
  836. calculate_delta(homeposition);
  837. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  838. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  839. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  840. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  841. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  842. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  843. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  844. calculate_SCARA_forward_Transform(delta);
  845. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  846. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  847. current_position[axis] = delta[axis];
  848. // SCARA home positions are based on configuration since the actual limits are determined by the
  849. // inverse kinematic transform.
  850. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  851. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  852. }
  853. else {
  854. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  855. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  856. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  857. }
  858. #else
  859. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  860. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  861. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  862. #endif
  863. }
  864. inline void refresh_cmd_timeout() { previous_millis_cmd = millis(); }
  865. /**
  866. * Some planner shorthand inline functions
  867. */
  868. inline void line_to_current_position() {
  869. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  870. }
  871. inline void line_to_z(float zPosition) {
  872. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  873. }
  874. inline void line_to_destination() {
  875. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  876. }
  877. inline void sync_plan_position() {
  878. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  879. }
  880. #if defined(DELTA) || defined(SCARA)
  881. inline void sync_plan_position_delta() {
  882. calculate_delta(current_position);
  883. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  884. }
  885. #endif
  886. #ifdef ENABLE_AUTO_BED_LEVELING
  887. #ifdef DELTA
  888. /**
  889. * Calculate delta, start a line, and set current_position to destination
  890. */
  891. void prepare_move_raw() {
  892. refresh_cmd_timeout();
  893. calculate_delta(destination);
  894. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  895. for (int i = 0; i < NUM_AXIS; i++) current_position[i] = destination[i];
  896. }
  897. #endif
  898. #ifdef AUTO_BED_LEVELING_GRID
  899. #ifndef DELTA
  900. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  901. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  902. planeNormal.debug("planeNormal");
  903. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  904. //bedLevel.debug("bedLevel");
  905. //plan_bed_level_matrix.debug("bed level before");
  906. //vector_3 uncorrected_position = plan_get_position_mm();
  907. //uncorrected_position.debug("position before");
  908. vector_3 corrected_position = plan_get_position();
  909. //corrected_position.debug("position after");
  910. current_position[X_AXIS] = corrected_position.x;
  911. current_position[Y_AXIS] = corrected_position.y;
  912. current_position[Z_AXIS] = corrected_position.z;
  913. sync_plan_position();
  914. }
  915. #endif // !DELTA
  916. #else // !AUTO_BED_LEVELING_GRID
  917. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  918. plan_bed_level_matrix.set_to_identity();
  919. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  920. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  921. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  922. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  923. if (planeNormal.z < 0) {
  924. planeNormal.x = -planeNormal.x;
  925. planeNormal.y = -planeNormal.y;
  926. planeNormal.z = -planeNormal.z;
  927. }
  928. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  929. vector_3 corrected_position = plan_get_position();
  930. current_position[X_AXIS] = corrected_position.x;
  931. current_position[Y_AXIS] = corrected_position.y;
  932. current_position[Z_AXIS] = corrected_position.z;
  933. sync_plan_position();
  934. }
  935. #endif // !AUTO_BED_LEVELING_GRID
  936. static void run_z_probe() {
  937. #ifdef DELTA
  938. float start_z = current_position[Z_AXIS];
  939. long start_steps = st_get_position(Z_AXIS);
  940. // move down slowly until you find the bed
  941. feedrate = homing_feedrate[Z_AXIS] / 4;
  942. destination[Z_AXIS] = -10;
  943. prepare_move_raw();
  944. st_synchronize();
  945. endstops_hit_on_purpose(); // clear endstop hit flags
  946. // we have to let the planner know where we are right now as it is not where we said to go.
  947. long stop_steps = st_get_position(Z_AXIS);
  948. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  949. current_position[Z_AXIS] = mm;
  950. sync_plan_position_delta();
  951. #else // !DELTA
  952. plan_bed_level_matrix.set_to_identity();
  953. feedrate = homing_feedrate[Z_AXIS];
  954. // move down until you find the bed
  955. float zPosition = -10;
  956. line_to_z(zPosition);
  957. st_synchronize();
  958. // we have to let the planner know where we are right now as it is not where we said to go.
  959. zPosition = st_get_position_mm(Z_AXIS);
  960. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  961. // move up the retract distance
  962. zPosition += home_bump_mm(Z_AXIS);
  963. line_to_z(zPosition);
  964. st_synchronize();
  965. endstops_hit_on_purpose(); // clear endstop hit flags
  966. // move back down slowly to find bed
  967. if (homing_bump_divisor[Z_AXIS] >= 1)
  968. feedrate = homing_feedrate[Z_AXIS] / homing_bump_divisor[Z_AXIS];
  969. else {
  970. feedrate = homing_feedrate[Z_AXIS] / 10;
  971. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  972. }
  973. zPosition -= home_bump_mm(Z_AXIS) * 2;
  974. line_to_z(zPosition);
  975. st_synchronize();
  976. endstops_hit_on_purpose(); // clear endstop hit flags
  977. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  978. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  979. sync_plan_position();
  980. #endif // !DELTA
  981. }
  982. /**
  983. *
  984. */
  985. static void do_blocking_move_to(float x, float y, float z) {
  986. float oldFeedRate = feedrate;
  987. #ifdef DELTA
  988. feedrate = XY_TRAVEL_SPEED;
  989. destination[X_AXIS] = x;
  990. destination[Y_AXIS] = y;
  991. destination[Z_AXIS] = z;
  992. prepare_move_raw();
  993. st_synchronize();
  994. #else
  995. feedrate = homing_feedrate[Z_AXIS];
  996. current_position[Z_AXIS] = z;
  997. line_to_current_position();
  998. st_synchronize();
  999. feedrate = xy_travel_speed;
  1000. current_position[X_AXIS] = x;
  1001. current_position[Y_AXIS] = y;
  1002. line_to_current_position();
  1003. st_synchronize();
  1004. #endif
  1005. feedrate = oldFeedRate;
  1006. }
  1007. static void setup_for_endstop_move() {
  1008. saved_feedrate = feedrate;
  1009. saved_feedmultiply = feedmultiply;
  1010. feedmultiply = 100;
  1011. refresh_cmd_timeout();
  1012. enable_endstops(true);
  1013. }
  1014. static void clean_up_after_endstop_move() {
  1015. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1016. enable_endstops(false);
  1017. #endif
  1018. feedrate = saved_feedrate;
  1019. feedmultiply = saved_feedmultiply;
  1020. refresh_cmd_timeout();
  1021. }
  1022. static void deploy_z_probe() {
  1023. #ifdef SERVO_ENDSTOPS
  1024. // Engage Z Servo endstop if enabled
  1025. if (servo_endstops[Z_AXIS] >= 0) {
  1026. #if SERVO_LEVELING
  1027. servos[servo_endstops[Z_AXIS]].attach(0);
  1028. #endif
  1029. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1030. #if SERVO_LEVELING
  1031. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1032. servos[servo_endstops[Z_AXIS]].detach();
  1033. #endif
  1034. }
  1035. #elif defined(Z_PROBE_ALLEN_KEY)
  1036. feedrate = homing_feedrate[X_AXIS];
  1037. // Move to the start position to initiate deployment
  1038. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1039. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1040. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1041. prepare_move_raw();
  1042. // Home X to touch the belt
  1043. feedrate = homing_feedrate[X_AXIS]/10;
  1044. destination[X_AXIS] = 0;
  1045. prepare_move_raw();
  1046. // Home Y for safety
  1047. feedrate = homing_feedrate[X_AXIS]/2;
  1048. destination[Y_AXIS] = 0;
  1049. prepare_move_raw();
  1050. st_synchronize();
  1051. #ifdef Z_PROBE_ENDSTOP
  1052. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1053. if (z_probe_endstop)
  1054. #else
  1055. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1056. if (z_min_endstop)
  1057. #endif
  1058. {
  1059. if (!Stopped) {
  1060. SERIAL_ERROR_START;
  1061. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1062. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1063. }
  1064. Stop();
  1065. }
  1066. #endif // Z_PROBE_ALLEN_KEY
  1067. }
  1068. static void stow_z_probe() {
  1069. #ifdef SERVO_ENDSTOPS
  1070. // Retract Z Servo endstop if enabled
  1071. if (servo_endstops[Z_AXIS] >= 0) {
  1072. #if Z_RAISE_AFTER_PROBING > 0
  1073. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1074. st_synchronize();
  1075. #endif
  1076. #if SERVO_LEVELING
  1077. servos[servo_endstops[Z_AXIS]].attach(0);
  1078. #endif
  1079. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1080. #if SERVO_LEVELING
  1081. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1082. servos[servo_endstops[Z_AXIS]].detach();
  1083. #endif
  1084. }
  1085. #elif defined(Z_PROBE_ALLEN_KEY)
  1086. // Move up for safety
  1087. feedrate = homing_feedrate[X_AXIS];
  1088. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1089. prepare_move_raw();
  1090. // Move to the start position to initiate retraction
  1091. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1092. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1093. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1094. prepare_move_raw();
  1095. // Move the nozzle down to push the probe into retracted position
  1096. feedrate = homing_feedrate[Z_AXIS]/10;
  1097. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1098. prepare_move_raw();
  1099. // Move up for safety
  1100. feedrate = homing_feedrate[Z_AXIS]/2;
  1101. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1102. prepare_move_raw();
  1103. // Home XY for safety
  1104. feedrate = homing_feedrate[X_AXIS]/2;
  1105. destination[X_AXIS] = 0;
  1106. destination[Y_AXIS] = 0;
  1107. prepare_move_raw();
  1108. st_synchronize();
  1109. #ifdef Z_PROBE_ENDSTOP
  1110. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1111. if (!z_probe_endstop)
  1112. #else
  1113. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1114. if (!z_min_endstop)
  1115. #endif
  1116. {
  1117. if (!Stopped) {
  1118. SERIAL_ERROR_START;
  1119. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1120. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1121. }
  1122. Stop();
  1123. }
  1124. #endif
  1125. }
  1126. enum ProbeAction {
  1127. ProbeStay = 0,
  1128. ProbeEngage = BIT(0),
  1129. ProbeRetract = BIT(1),
  1130. ProbeEngageAndRetract = (ProbeEngage | ProbeRetract)
  1131. };
  1132. // Probe bed height at position (x,y), returns the measured z value
  1133. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeEngageAndRetract, int verbose_level=1) {
  1134. // move to right place
  1135. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before);
  1136. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1137. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1138. if (retract_action & ProbeEngage) deploy_z_probe();
  1139. #endif
  1140. run_z_probe();
  1141. float measured_z = current_position[Z_AXIS];
  1142. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1143. if (retract_action == ProbeStay) {
  1144. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1145. st_synchronize();
  1146. }
  1147. #endif
  1148. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1149. if (retract_action & ProbeRetract) stow_z_probe();
  1150. #endif
  1151. if (verbose_level > 2) {
  1152. SERIAL_PROTOCOLPGM(MSG_BED);
  1153. SERIAL_PROTOCOLPGM(" X: ");
  1154. SERIAL_PROTOCOL_F(x, 3);
  1155. SERIAL_PROTOCOLPGM(" Y: ");
  1156. SERIAL_PROTOCOL_F(y, 3);
  1157. SERIAL_PROTOCOLPGM(" Z: ");
  1158. SERIAL_PROTOCOL_F(measured_z, 3);
  1159. SERIAL_EOL;
  1160. }
  1161. return measured_z;
  1162. }
  1163. #ifdef DELTA
  1164. /**
  1165. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1166. */
  1167. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1168. if (bed_level[x][y] != 0.0) {
  1169. return; // Don't overwrite good values.
  1170. }
  1171. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1172. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1173. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1174. float median = c; // Median is robust (ignores outliers).
  1175. if (a < b) {
  1176. if (b < c) median = b;
  1177. if (c < a) median = a;
  1178. } else { // b <= a
  1179. if (c < b) median = b;
  1180. if (a < c) median = a;
  1181. }
  1182. bed_level[x][y] = median;
  1183. }
  1184. // Fill in the unprobed points (corners of circular print surface)
  1185. // using linear extrapolation, away from the center.
  1186. static void extrapolate_unprobed_bed_level() {
  1187. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1188. for (int y = 0; y <= half; y++) {
  1189. for (int x = 0; x <= half; x++) {
  1190. if (x + y < 3) continue;
  1191. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1192. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1193. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1194. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1195. }
  1196. }
  1197. }
  1198. // Print calibration results for plotting or manual frame adjustment.
  1199. static void print_bed_level() {
  1200. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1201. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1202. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1203. SERIAL_PROTOCOLPGM(" ");
  1204. }
  1205. SERIAL_ECHOLN("");
  1206. }
  1207. }
  1208. // Reset calibration results to zero.
  1209. void reset_bed_level() {
  1210. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1211. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1212. bed_level[x][y] = 0.0;
  1213. }
  1214. }
  1215. }
  1216. #endif // DELTA
  1217. #endif // ENABLE_AUTO_BED_LEVELING
  1218. /**
  1219. * Home an individual axis
  1220. */
  1221. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1222. static void homeaxis(int axis) {
  1223. #define HOMEAXIS_DO(LETTER) \
  1224. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1225. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1226. int axis_home_dir;
  1227. #ifdef DUAL_X_CARRIAGE
  1228. if (axis == X_AXIS) axis_home_dir = x_home_dir(active_extruder);
  1229. #else
  1230. axis_home_dir = home_dir(axis);
  1231. #endif
  1232. // Set the axis position as setup for the move
  1233. current_position[axis] = 0;
  1234. sync_plan_position();
  1235. // Engage Servo endstop if enabled
  1236. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1237. #if SERVO_LEVELING
  1238. if (axis == Z_AXIS) deploy_z_probe(); else
  1239. #endif
  1240. {
  1241. if (servo_endstops[axis] > -1)
  1242. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1243. }
  1244. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1245. #ifdef Z_DUAL_ENDSTOPS
  1246. if (axis == Z_AXIS) In_Homing_Process(true);
  1247. #endif
  1248. // Move towards the endstop until an endstop is triggered
  1249. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1250. feedrate = homing_feedrate[axis];
  1251. line_to_destination();
  1252. st_synchronize();
  1253. // Set the axis position as setup for the move
  1254. current_position[axis] = 0;
  1255. sync_plan_position();
  1256. // Move away from the endstop by the axis HOME_BUMP_MM
  1257. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1258. line_to_destination();
  1259. st_synchronize();
  1260. // Slow down the feedrate for the next move
  1261. if (homing_bump_divisor[axis] >= 1)
  1262. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  1263. else {
  1264. feedrate = homing_feedrate[axis] / 10;
  1265. SERIAL_ECHOLNPGM("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  1266. }
  1267. // Move slowly towards the endstop until triggered
  1268. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1269. line_to_destination();
  1270. st_synchronize();
  1271. #ifdef Z_DUAL_ENDSTOPS
  1272. if (axis == Z_AXIS) {
  1273. float adj = fabs(z_endstop_adj);
  1274. bool lockZ1;
  1275. if (axis_home_dir > 0) {
  1276. adj = -adj;
  1277. lockZ1 = (z_endstop_adj > 0);
  1278. }
  1279. else
  1280. lockZ1 = (z_endstop_adj < 0);
  1281. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1282. sync_plan_position();
  1283. // Move to the adjusted endstop height
  1284. feedrate = homing_feedrate[axis];
  1285. destination[Z_AXIS] = adj;
  1286. line_to_destination();
  1287. st_synchronize();
  1288. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1289. In_Homing_Process(false);
  1290. } // Z_AXIS
  1291. #endif
  1292. #ifdef DELTA
  1293. // retrace by the amount specified in endstop_adj
  1294. if (endstop_adj[axis] * axis_home_dir < 0) {
  1295. sync_plan_position();
  1296. destination[axis] = endstop_adj[axis];
  1297. line_to_destination();
  1298. st_synchronize();
  1299. }
  1300. #endif
  1301. // Set the axis position to its home position (plus home offsets)
  1302. axis_is_at_home(axis);
  1303. destination[axis] = current_position[axis];
  1304. feedrate = 0.0;
  1305. endstops_hit_on_purpose(); // clear endstop hit flags
  1306. axis_known_position[axis] = true;
  1307. // Retract Servo endstop if enabled
  1308. #ifdef SERVO_ENDSTOPS
  1309. if (servo_endstops[axis] > -1)
  1310. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1311. #endif
  1312. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1313. if (axis == Z_AXIS) stow_z_probe();
  1314. #endif
  1315. }
  1316. }
  1317. #ifdef FWRETRACT
  1318. void retract(bool retracting, bool swapretract = false) {
  1319. if (retracting == retracted[active_extruder]) return;
  1320. float oldFeedrate = feedrate;
  1321. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1322. if (retracting) {
  1323. feedrate = retract_feedrate * 60;
  1324. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1325. plan_set_e_position(current_position[E_AXIS]);
  1326. prepare_move();
  1327. if (retract_zlift > 0.01) {
  1328. current_position[Z_AXIS] -= retract_zlift;
  1329. #ifdef DELTA
  1330. sync_plan_position_delta();
  1331. #else
  1332. sync_plan_position();
  1333. #endif
  1334. prepare_move();
  1335. }
  1336. }
  1337. else {
  1338. if (retract_zlift > 0.01) {
  1339. current_position[Z_AXIS] += retract_zlift;
  1340. #ifdef DELTA
  1341. sync_plan_position_delta();
  1342. #else
  1343. sync_plan_position();
  1344. #endif
  1345. //prepare_move();
  1346. }
  1347. feedrate = retract_recover_feedrate * 60;
  1348. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1349. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1350. plan_set_e_position(current_position[E_AXIS]);
  1351. prepare_move();
  1352. }
  1353. feedrate = oldFeedrate;
  1354. retracted[active_extruder] = retract;
  1355. } // retract()
  1356. #endif // FWRETRACT
  1357. #ifdef Z_PROBE_SLED
  1358. #ifndef SLED_DOCKING_OFFSET
  1359. #define SLED_DOCKING_OFFSET 0
  1360. #endif
  1361. //
  1362. // Method to dock/undock a sled designed by Charles Bell.
  1363. //
  1364. // dock[in] If true, move to MAX_X and engage the electromagnet
  1365. // offset[in] The additional distance to move to adjust docking location
  1366. //
  1367. static void dock_sled(bool dock, int offset=0) {
  1368. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1369. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1370. SERIAL_ECHO_START;
  1371. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1372. return;
  1373. }
  1374. if (dock) {
  1375. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]);
  1376. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1377. } else {
  1378. float z_loc = current_position[Z_AXIS];
  1379. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1380. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc);
  1381. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1382. }
  1383. }
  1384. #endif // Z_PROBE_SLED
  1385. /**
  1386. *
  1387. * G-Code Handler functions
  1388. *
  1389. */
  1390. /**
  1391. * G0, G1: Coordinated movement of X Y Z E axes
  1392. */
  1393. inline void gcode_G0_G1() {
  1394. if (!Stopped) {
  1395. get_coordinates(); // For X Y Z E F
  1396. #ifdef FWRETRACT
  1397. if (autoretract_enabled)
  1398. if (!(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1399. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1400. // Is this move an attempt to retract or recover?
  1401. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1402. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1403. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1404. retract(!retracted[active_extruder]);
  1405. return;
  1406. }
  1407. }
  1408. #endif //FWRETRACT
  1409. prepare_move();
  1410. //ClearToSend();
  1411. }
  1412. }
  1413. /**
  1414. * G2: Clockwise Arc
  1415. * G3: Counterclockwise Arc
  1416. */
  1417. inline void gcode_G2_G3(bool clockwise) {
  1418. if (!Stopped) {
  1419. get_arc_coordinates();
  1420. prepare_arc_move(clockwise);
  1421. }
  1422. }
  1423. /**
  1424. * G4: Dwell S<seconds> or P<milliseconds>
  1425. */
  1426. inline void gcode_G4() {
  1427. unsigned long codenum=0;
  1428. LCD_MESSAGEPGM(MSG_DWELL);
  1429. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1430. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1431. st_synchronize();
  1432. refresh_cmd_timeout();
  1433. codenum += previous_millis_cmd; // keep track of when we started waiting
  1434. while (millis() < codenum) {
  1435. manage_heater();
  1436. manage_inactivity();
  1437. lcd_update();
  1438. }
  1439. }
  1440. #ifdef FWRETRACT
  1441. /**
  1442. * G10 - Retract filament according to settings of M207
  1443. * G11 - Recover filament according to settings of M208
  1444. */
  1445. inline void gcode_G10_G11(bool doRetract=false) {
  1446. #if EXTRUDERS > 1
  1447. if (doRetract) {
  1448. retracted_swap[active_extruder] = (code_seen('S') && code_value_long() == 1); // checks for swap retract argument
  1449. }
  1450. #endif
  1451. retract(doRetract
  1452. #if EXTRUDERS > 1
  1453. , retracted_swap[active_extruder]
  1454. #endif
  1455. );
  1456. }
  1457. #endif //FWRETRACT
  1458. /**
  1459. * G28: Home all axes according to settings
  1460. *
  1461. * Parameters
  1462. *
  1463. * None Home to all axes with no parameters.
  1464. * With QUICK_HOME enabled XY will home together, then Z.
  1465. *
  1466. * Cartesian parameters
  1467. *
  1468. * X Home to the X endstop
  1469. * Y Home to the Y endstop
  1470. * Z Home to the Z endstop
  1471. *
  1472. * If numbers are included with XYZ set the position as with G92
  1473. * Currently adds the home_offset, which may be wrong and removed soon.
  1474. *
  1475. * Xn Home X, setting X to n + home_offset[X_AXIS]
  1476. * Yn Home Y, setting Y to n + home_offset[Y_AXIS]
  1477. * Zn Home Z, setting Z to n + home_offset[Z_AXIS]
  1478. */
  1479. inline void gcode_G28() {
  1480. // For auto bed leveling, clear the level matrix
  1481. #ifdef ENABLE_AUTO_BED_LEVELING
  1482. plan_bed_level_matrix.set_to_identity();
  1483. #ifdef DELTA
  1484. reset_bed_level();
  1485. #endif
  1486. #endif
  1487. // For manual bed leveling deactivate the matrix temporarily
  1488. #ifdef MESH_BED_LEVELING
  1489. uint8_t mbl_was_active = mbl.active;
  1490. mbl.active = 0;
  1491. #endif
  1492. saved_feedrate = feedrate;
  1493. saved_feedmultiply = feedmultiply;
  1494. feedmultiply = 100;
  1495. refresh_cmd_timeout();
  1496. enable_endstops(true);
  1497. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i]; // includes E_AXIS
  1498. feedrate = 0.0;
  1499. #ifdef DELTA
  1500. // A delta can only safely home all axis at the same time
  1501. // all axis have to home at the same time
  1502. // Pretend the current position is 0,0,0
  1503. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1504. sync_plan_position();
  1505. // Move all carriages up together until the first endstop is hit.
  1506. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1507. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1508. line_to_destination();
  1509. st_synchronize();
  1510. endstops_hit_on_purpose(); // clear endstop hit flags
  1511. // Destination reached
  1512. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1513. // take care of back off and rehome now we are all at the top
  1514. HOMEAXIS(X);
  1515. HOMEAXIS(Y);
  1516. HOMEAXIS(Z);
  1517. sync_plan_position_delta();
  1518. #else // NOT DELTA
  1519. bool homeX = code_seen(axis_codes[X_AXIS]),
  1520. homeY = code_seen(axis_codes[Y_AXIS]),
  1521. homeZ = code_seen(axis_codes[Z_AXIS]);
  1522. home_all_axis = !(homeX || homeY || homeZ) || (homeX && homeY && homeZ);
  1523. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1524. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1525. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1526. // Raise Z before homing any other axes
  1527. if (home_all_axis || homeZ) {
  1528. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1529. feedrate = max_feedrate[Z_AXIS];
  1530. line_to_destination();
  1531. st_synchronize();
  1532. }
  1533. #endif
  1534. #ifdef QUICK_HOME
  1535. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1536. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1537. #ifdef DUAL_X_CARRIAGE
  1538. int x_axis_home_dir = x_home_dir(active_extruder);
  1539. extruder_duplication_enabled = false;
  1540. #else
  1541. int x_axis_home_dir = home_dir(X_AXIS);
  1542. #endif
  1543. sync_plan_position();
  1544. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1545. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1546. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1547. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1548. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1549. line_to_destination();
  1550. st_synchronize();
  1551. axis_is_at_home(X_AXIS);
  1552. axis_is_at_home(Y_AXIS);
  1553. sync_plan_position();
  1554. destination[X_AXIS] = current_position[X_AXIS];
  1555. destination[Y_AXIS] = current_position[Y_AXIS];
  1556. line_to_destination();
  1557. feedrate = 0.0;
  1558. st_synchronize();
  1559. endstops_hit_on_purpose(); // clear endstop hit flags
  1560. current_position[X_AXIS] = destination[X_AXIS];
  1561. current_position[Y_AXIS] = destination[Y_AXIS];
  1562. #ifndef SCARA
  1563. current_position[Z_AXIS] = destination[Z_AXIS];
  1564. #endif
  1565. }
  1566. #endif // QUICK_HOME
  1567. // Home X
  1568. if (home_all_axis || homeX) {
  1569. #ifdef DUAL_X_CARRIAGE
  1570. int tmp_extruder = active_extruder;
  1571. extruder_duplication_enabled = false;
  1572. active_extruder = !active_extruder;
  1573. HOMEAXIS(X);
  1574. inactive_extruder_x_pos = current_position[X_AXIS];
  1575. active_extruder = tmp_extruder;
  1576. HOMEAXIS(X);
  1577. // reset state used by the different modes
  1578. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1579. delayed_move_time = 0;
  1580. active_extruder_parked = true;
  1581. #else
  1582. HOMEAXIS(X);
  1583. #endif
  1584. }
  1585. // Home Y
  1586. if (home_all_axis || homeY) HOMEAXIS(Y);
  1587. // Set the X position, if included
  1588. // Adds the home_offset as well, which may be wrong
  1589. if (code_seen(axis_codes[X_AXIS])) {
  1590. float v = code_value();
  1591. if (v) current_position[X_AXIS] = v
  1592. #ifndef SCARA
  1593. + home_offset[X_AXIS]
  1594. #endif
  1595. ;
  1596. }
  1597. // Set the Y position, if included
  1598. // Adds the home_offset as well, which may be wrong
  1599. if (code_seen(axis_codes[Y_AXIS])) {
  1600. float v = code_value();
  1601. if (v) current_position[Y_AXIS] = v
  1602. #ifndef SCARA
  1603. + home_offset[Y_AXIS]
  1604. #endif
  1605. ;
  1606. }
  1607. // Home Z last if homing towards the bed
  1608. #if Z_HOME_DIR < 0
  1609. #ifndef Z_SAFE_HOMING
  1610. if (home_all_axis || homeZ) HOMEAXIS(Z);
  1611. #else // Z_SAFE_HOMING
  1612. if (home_all_axis) {
  1613. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1614. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1615. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1616. feedrate = XY_TRAVEL_SPEED;
  1617. current_position[Z_AXIS] = 0;
  1618. sync_plan_position();
  1619. line_to_destination();
  1620. st_synchronize();
  1621. current_position[X_AXIS] = destination[X_AXIS];
  1622. current_position[Y_AXIS] = destination[Y_AXIS];
  1623. HOMEAXIS(Z);
  1624. }
  1625. // Let's see if X and Y are homed and probe is inside bed area.
  1626. if (homeZ) {
  1627. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1628. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1629. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1630. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1631. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1632. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1633. current_position[Z_AXIS] = 0;
  1634. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]);
  1635. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1636. feedrate = max_feedrate[Z_AXIS];
  1637. line_to_destination();
  1638. st_synchronize();
  1639. HOMEAXIS(Z);
  1640. }
  1641. else {
  1642. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1643. SERIAL_ECHO_START;
  1644. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1645. }
  1646. }
  1647. else {
  1648. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1649. SERIAL_ECHO_START;
  1650. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1651. }
  1652. }
  1653. #endif // Z_SAFE_HOMING
  1654. #endif // Z_HOME_DIR < 0
  1655. // Set the Z position, if included
  1656. // Adds the home_offset as well, which may be wrong
  1657. if (code_seen(axis_codes[Z_AXIS])) {
  1658. float v = code_value();
  1659. if (v) current_position[Z_AXIS] = v + home_offset[Z_AXIS];
  1660. }
  1661. #if defined(ENABLE_AUTO_BED_LEVELING) && (Z_HOME_DIR < 0)
  1662. if (home_all_axis || homeZ) current_position[Z_AXIS] += zprobe_zoffset; // Add Z_Probe offset (the distance is negative)
  1663. #endif
  1664. sync_plan_position();
  1665. #endif // else DELTA
  1666. #ifdef SCARA
  1667. sync_plan_position_delta();
  1668. #endif
  1669. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1670. enable_endstops(false);
  1671. #endif
  1672. // For manual leveling move back to 0,0
  1673. #ifdef MESH_BED_LEVELING
  1674. if (mbl_was_active) {
  1675. current_position[X_AXIS] = mbl.get_x(0);
  1676. current_position[Y_AXIS] = mbl.get_y(0);
  1677. for (int i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i];
  1678. feedrate = homing_feedrate[X_AXIS];
  1679. line_to_destination();
  1680. st_synchronize();
  1681. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1682. sync_plan_position();
  1683. mbl.active = 1;
  1684. }
  1685. #endif
  1686. feedrate = saved_feedrate;
  1687. feedmultiply = saved_feedmultiply;
  1688. refresh_cmd_timeout();
  1689. endstops_hit_on_purpose(); // clear endstop hit flags
  1690. }
  1691. #ifdef MESH_BED_LEVELING
  1692. enum MeshLevelingState { MeshReport, MeshStart, MeshNext };
  1693. /**
  1694. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1695. * mesh to compensate for variable bed height
  1696. *
  1697. * Parameters With MESH_BED_LEVELING:
  1698. *
  1699. * S0 Produce a mesh report
  1700. * S1 Start probing mesh points
  1701. * S2 Probe the next mesh point
  1702. *
  1703. */
  1704. inline void gcode_G29() {
  1705. static int probe_point = -1;
  1706. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_long() : MeshReport;
  1707. if (state < 0 || state > 2) {
  1708. SERIAL_PROTOCOLLNPGM("S out of range (0-2).");
  1709. return;
  1710. }
  1711. switch(state) {
  1712. case MeshReport:
  1713. if (mbl.active) {
  1714. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1715. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1716. SERIAL_PROTOCOLPGM(",");
  1717. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1718. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1719. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1720. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1721. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1722. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1723. SERIAL_PROTOCOLPGM(" ");
  1724. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1725. }
  1726. SERIAL_EOL;
  1727. }
  1728. }
  1729. else
  1730. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1731. break;
  1732. case MeshStart:
  1733. mbl.reset();
  1734. probe_point = 0;
  1735. enquecommands_P(PSTR("G28\nG29 S2"));
  1736. break;
  1737. case MeshNext:
  1738. if (probe_point < 0) {
  1739. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1740. return;
  1741. }
  1742. int ix, iy;
  1743. if (probe_point == 0) {
  1744. // Set Z to a positive value before recording the first Z.
  1745. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1746. sync_plan_position();
  1747. }
  1748. else {
  1749. // For others, save the Z of the previous point, then raise Z again.
  1750. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1751. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1752. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1753. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1754. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1755. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1756. st_synchronize();
  1757. }
  1758. // Is there another point to sample? Move there.
  1759. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1760. ix = probe_point % MESH_NUM_X_POINTS;
  1761. iy = probe_point / MESH_NUM_X_POINTS;
  1762. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1763. current_position[X_AXIS] = mbl.get_x(ix);
  1764. current_position[Y_AXIS] = mbl.get_y(iy);
  1765. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1766. st_synchronize();
  1767. probe_point++;
  1768. }
  1769. else {
  1770. // After recording the last point, activate the mbl and home
  1771. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1772. probe_point = -1;
  1773. mbl.active = 1;
  1774. enquecommands_P(PSTR("G28"));
  1775. }
  1776. } // switch(state)
  1777. }
  1778. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1779. /**
  1780. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1781. * Will fail if the printer has not been homed with G28.
  1782. *
  1783. * Enhanced G29 Auto Bed Leveling Probe Routine
  1784. *
  1785. * Parameters With AUTO_BED_LEVELING_GRID:
  1786. *
  1787. * P Set the size of the grid that will be probed (P x P points).
  1788. * Not supported by non-linear delta printer bed leveling.
  1789. * Example: "G29 P4"
  1790. *
  1791. * S Set the XY travel speed between probe points (in mm/min)
  1792. *
  1793. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1794. * or clean the rotation Matrix. Useful to check the topology
  1795. * after a first run of G29.
  1796. *
  1797. * V Set the verbose level (0-4). Example: "G29 V3"
  1798. *
  1799. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1800. * This is useful for manual bed leveling and finding flaws in the bed (to
  1801. * assist with part placement).
  1802. * Not supported by non-linear delta printer bed leveling.
  1803. *
  1804. * F Set the Front limit of the probing grid
  1805. * B Set the Back limit of the probing grid
  1806. * L Set the Left limit of the probing grid
  1807. * R Set the Right limit of the probing grid
  1808. *
  1809. * Global Parameters:
  1810. *
  1811. * E/e By default G29 will engages the probe, test the bed, then disengage.
  1812. * Include "E" to engage/disengage the probe for each sample.
  1813. * There's no extra effect if you have a fixed probe.
  1814. * Usage: "G29 E" or "G29 e"
  1815. *
  1816. */
  1817. inline void gcode_G29() {
  1818. // Don't allow auto-leveling without homing first
  1819. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1820. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1821. SERIAL_ECHO_START;
  1822. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1823. return;
  1824. }
  1825. int verbose_level = code_seen('V') || code_seen('v') ? code_value_long() : 1;
  1826. if (verbose_level < 0 || verbose_level > 4) {
  1827. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1828. return;
  1829. }
  1830. bool dryrun = code_seen('D') || code_seen('d'),
  1831. engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  1832. #ifdef AUTO_BED_LEVELING_GRID
  1833. #ifndef DELTA
  1834. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1835. #endif
  1836. if (verbose_level > 0) {
  1837. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1838. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1839. }
  1840. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1841. #ifndef DELTA
  1842. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_long();
  1843. if (auto_bed_leveling_grid_points < 2) {
  1844. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1845. return;
  1846. }
  1847. #endif
  1848. xy_travel_speed = code_seen('S') ? code_value_long() : XY_TRAVEL_SPEED;
  1849. int left_probe_bed_position = code_seen('L') ? code_value_long() : LEFT_PROBE_BED_POSITION,
  1850. right_probe_bed_position = code_seen('R') ? code_value_long() : RIGHT_PROBE_BED_POSITION,
  1851. front_probe_bed_position = code_seen('F') ? code_value_long() : FRONT_PROBE_BED_POSITION,
  1852. back_probe_bed_position = code_seen('B') ? code_value_long() : BACK_PROBE_BED_POSITION;
  1853. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1854. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1855. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1856. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1857. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1858. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1859. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1860. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1861. if (left_out || right_out || front_out || back_out) {
  1862. if (left_out) {
  1863. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1864. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1865. }
  1866. if (right_out) {
  1867. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1868. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1869. }
  1870. if (front_out) {
  1871. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1872. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1873. }
  1874. if (back_out) {
  1875. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1876. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1877. }
  1878. return;
  1879. }
  1880. #endif // AUTO_BED_LEVELING_GRID
  1881. #ifdef Z_PROBE_SLED
  1882. dock_sled(false); // engage (un-dock) the probe
  1883. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1884. deploy_z_probe();
  1885. #endif
  1886. st_synchronize();
  1887. if (!dryrun) {
  1888. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1889. plan_bed_level_matrix.set_to_identity();
  1890. #ifdef DELTA
  1891. reset_bed_level();
  1892. #else //!DELTA
  1893. //vector_3 corrected_position = plan_get_position_mm();
  1894. //corrected_position.debug("position before G29");
  1895. vector_3 uncorrected_position = plan_get_position();
  1896. //uncorrected_position.debug("position during G29");
  1897. current_position[X_AXIS] = uncorrected_position.x;
  1898. current_position[Y_AXIS] = uncorrected_position.y;
  1899. current_position[Z_AXIS] = uncorrected_position.z;
  1900. sync_plan_position();
  1901. #endif // !DELTA
  1902. }
  1903. setup_for_endstop_move();
  1904. feedrate = homing_feedrate[Z_AXIS];
  1905. #ifdef AUTO_BED_LEVELING_GRID
  1906. // probe at the points of a lattice grid
  1907. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1908. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1909. #ifdef DELTA
  1910. delta_grid_spacing[0] = xGridSpacing;
  1911. delta_grid_spacing[1] = yGridSpacing;
  1912. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1913. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1914. #else // !DELTA
  1915. // solve the plane equation ax + by + d = z
  1916. // A is the matrix with rows [x y 1] for all the probed points
  1917. // B is the vector of the Z positions
  1918. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1919. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1920. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1921. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1922. eqnBVector[abl2], // "B" vector of Z points
  1923. mean = 0.0;
  1924. #endif // !DELTA
  1925. int probePointCounter = 0;
  1926. bool zig = true;
  1927. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1928. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1929. int xStart, xStop, xInc;
  1930. if (zig) {
  1931. xStart = 0;
  1932. xStop = auto_bed_leveling_grid_points;
  1933. xInc = 1;
  1934. }
  1935. else {
  1936. xStart = auto_bed_leveling_grid_points - 1;
  1937. xStop = -1;
  1938. xInc = -1;
  1939. }
  1940. #ifndef DELTA
  1941. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  1942. // This gets the probe points in more readable order.
  1943. if (!do_topography_map) zig = !zig;
  1944. #endif
  1945. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  1946. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  1947. // raise extruder
  1948. float measured_z,
  1949. z_before = Z_RAISE_BETWEEN_PROBINGS + (probePointCounter ? current_position[Z_AXIS] : 0);
  1950. #ifdef DELTA
  1951. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  1952. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  1953. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  1954. #endif //DELTA
  1955. // Enhanced G29 - Do not retract servo between probes
  1956. ProbeAction act;
  1957. if (engage_probe_for_each_reading)
  1958. act = ProbeEngageAndRetract;
  1959. else if (yProbe == front_probe_bed_position && xCount == 0)
  1960. act = ProbeEngage;
  1961. else if (yProbe == front_probe_bed_position + (yGridSpacing * (auto_bed_leveling_grid_points - 1)) && xCount == auto_bed_leveling_grid_points - 1)
  1962. act = ProbeRetract;
  1963. else
  1964. act = ProbeStay;
  1965. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  1966. #ifndef DELTA
  1967. mean += measured_z;
  1968. eqnBVector[probePointCounter] = measured_z;
  1969. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  1970. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  1971. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  1972. #else
  1973. bed_level[xCount][yCount] = measured_z + z_offset;
  1974. #endif
  1975. probePointCounter++;
  1976. manage_heater();
  1977. manage_inactivity();
  1978. lcd_update();
  1979. } //xProbe
  1980. } //yProbe
  1981. clean_up_after_endstop_move();
  1982. #ifdef DELTA
  1983. if (!dryrun) extrapolate_unprobed_bed_level();
  1984. print_bed_level();
  1985. #else // !DELTA
  1986. // solve lsq problem
  1987. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  1988. mean /= abl2;
  1989. if (verbose_level) {
  1990. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  1991. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  1992. SERIAL_PROTOCOLPGM(" b: ");
  1993. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  1994. SERIAL_PROTOCOLPGM(" d: ");
  1995. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  1996. SERIAL_EOL;
  1997. if (verbose_level > 2) {
  1998. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  1999. SERIAL_PROTOCOL_F(mean, 8);
  2000. SERIAL_EOL;
  2001. }
  2002. }
  2003. // Show the Topography map if enabled
  2004. if (do_topography_map) {
  2005. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2006. SERIAL_PROTOCOLPGM("+-----------+\n");
  2007. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2008. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2009. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2010. SERIAL_PROTOCOLPGM("+-----------+\n");
  2011. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2012. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2013. int ind = yy * auto_bed_leveling_grid_points + xx;
  2014. float diff = eqnBVector[ind] - mean;
  2015. if (diff >= 0.0)
  2016. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2017. else
  2018. SERIAL_PROTOCOLPGM(" ");
  2019. SERIAL_PROTOCOL_F(diff, 5);
  2020. } // xx
  2021. SERIAL_EOL;
  2022. } // yy
  2023. SERIAL_EOL;
  2024. } //do_topography_map
  2025. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2026. free(plane_equation_coefficients);
  2027. #endif //!DELTA
  2028. #else // !AUTO_BED_LEVELING_GRID
  2029. // Actions for each probe
  2030. ProbeAction p1, p2, p3;
  2031. if (engage_probe_for_each_reading)
  2032. p1 = p2 = p3 = ProbeEngageAndRetract;
  2033. else
  2034. p1 = ProbeEngage, p2 = ProbeStay, p3 = ProbeRetract;
  2035. // Probe at 3 arbitrary points
  2036. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2037. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2038. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2039. clean_up_after_endstop_move();
  2040. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2041. #endif // !AUTO_BED_LEVELING_GRID
  2042. #ifndef DELTA
  2043. if (verbose_level > 0)
  2044. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2045. if (!dryrun) {
  2046. // Correct the Z height difference from z-probe position and hotend tip position.
  2047. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2048. // When the bed is uneven, this height must be corrected.
  2049. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2050. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2051. z_tmp = current_position[Z_AXIS],
  2052. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2053. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2054. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2055. sync_plan_position();
  2056. }
  2057. #endif // !DELTA
  2058. #ifdef Z_PROBE_SLED
  2059. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2060. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2061. stow_z_probe();
  2062. #endif
  2063. #ifdef Z_PROBE_END_SCRIPT
  2064. enquecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2065. st_synchronize();
  2066. #endif
  2067. }
  2068. #ifndef Z_PROBE_SLED
  2069. inline void gcode_G30() {
  2070. deploy_z_probe(); // Engage Z Servo endstop if available
  2071. st_synchronize();
  2072. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2073. setup_for_endstop_move();
  2074. feedrate = homing_feedrate[Z_AXIS];
  2075. run_z_probe();
  2076. SERIAL_PROTOCOLPGM(MSG_BED);
  2077. SERIAL_PROTOCOLPGM(" X: ");
  2078. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2079. SERIAL_PROTOCOLPGM(" Y: ");
  2080. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2081. SERIAL_PROTOCOLPGM(" Z: ");
  2082. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2083. SERIAL_EOL;
  2084. clean_up_after_endstop_move();
  2085. stow_z_probe(); // Retract Z Servo endstop if available
  2086. }
  2087. #endif //!Z_PROBE_SLED
  2088. #endif //ENABLE_AUTO_BED_LEVELING
  2089. /**
  2090. * G92: Set current position to given X Y Z E
  2091. */
  2092. inline void gcode_G92() {
  2093. if (!code_seen(axis_codes[E_AXIS]))
  2094. st_synchronize();
  2095. bool didXYZ = false;
  2096. for (int i = 0; i < NUM_AXIS; i++) {
  2097. if (code_seen(axis_codes[i])) {
  2098. float v = current_position[i] = code_value();
  2099. if (i == E_AXIS)
  2100. plan_set_e_position(v);
  2101. else
  2102. didXYZ = true;
  2103. }
  2104. }
  2105. if (didXYZ) sync_plan_position();
  2106. }
  2107. #ifdef ULTIPANEL
  2108. /**
  2109. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2110. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2111. */
  2112. inline void gcode_M0_M1() {
  2113. char *src = strchr_pointer + 2;
  2114. unsigned long codenum = 0;
  2115. bool hasP = false, hasS = false;
  2116. if (code_seen('P')) {
  2117. codenum = code_value(); // milliseconds to wait
  2118. hasP = codenum > 0;
  2119. }
  2120. if (code_seen('S')) {
  2121. codenum = code_value() * 1000; // seconds to wait
  2122. hasS = codenum > 0;
  2123. }
  2124. char* starpos = strchr(src, '*');
  2125. if (starpos != NULL) *(starpos) = '\0';
  2126. while (*src == ' ') ++src;
  2127. if (!hasP && !hasS && *src != '\0')
  2128. lcd_setstatus(src, true);
  2129. else {
  2130. LCD_MESSAGEPGM(MSG_USERWAIT);
  2131. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2132. dontExpireStatus();
  2133. #endif
  2134. }
  2135. lcd_ignore_click();
  2136. st_synchronize();
  2137. refresh_cmd_timeout();
  2138. if (codenum > 0) {
  2139. codenum += previous_millis_cmd; // keep track of when we started waiting
  2140. while(millis() < codenum && !lcd_clicked()) {
  2141. manage_heater();
  2142. manage_inactivity();
  2143. lcd_update();
  2144. }
  2145. lcd_ignore_click(false);
  2146. }
  2147. else {
  2148. if (!lcd_detected()) return;
  2149. while (!lcd_clicked()) {
  2150. manage_heater();
  2151. manage_inactivity();
  2152. lcd_update();
  2153. }
  2154. }
  2155. if (IS_SD_PRINTING)
  2156. LCD_MESSAGEPGM(MSG_RESUMING);
  2157. else
  2158. LCD_MESSAGEPGM(WELCOME_MSG);
  2159. }
  2160. #endif // ULTIPANEL
  2161. /**
  2162. * M17: Enable power on all stepper motors
  2163. */
  2164. inline void gcode_M17() {
  2165. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2166. enable_x();
  2167. enable_y();
  2168. enable_z();
  2169. enable_e0();
  2170. enable_e1();
  2171. enable_e2();
  2172. enable_e3();
  2173. }
  2174. #ifdef SDSUPPORT
  2175. /**
  2176. * M20: List SD card to serial output
  2177. */
  2178. inline void gcode_M20() {
  2179. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2180. card.ls();
  2181. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2182. }
  2183. /**
  2184. * M21: Init SD Card
  2185. */
  2186. inline void gcode_M21() {
  2187. card.initsd();
  2188. }
  2189. /**
  2190. * M22: Release SD Card
  2191. */
  2192. inline void gcode_M22() {
  2193. card.release();
  2194. }
  2195. /**
  2196. * M23: Select a file
  2197. */
  2198. inline void gcode_M23() {
  2199. char* codepos = strchr_pointer + 4;
  2200. char* starpos = strchr(codepos, '*');
  2201. if (starpos) *starpos = '\0';
  2202. card.openFile(codepos, true);
  2203. }
  2204. /**
  2205. * M24: Start SD Print
  2206. */
  2207. inline void gcode_M24() {
  2208. card.startFileprint();
  2209. starttime = millis();
  2210. }
  2211. /**
  2212. * M25: Pause SD Print
  2213. */
  2214. inline void gcode_M25() {
  2215. card.pauseSDPrint();
  2216. }
  2217. /**
  2218. * M26: Set SD Card file index
  2219. */
  2220. inline void gcode_M26() {
  2221. if (card.cardOK && code_seen('S'))
  2222. card.setIndex(code_value_long());
  2223. }
  2224. /**
  2225. * M27: Get SD Card status
  2226. */
  2227. inline void gcode_M27() {
  2228. card.getStatus();
  2229. }
  2230. /**
  2231. * M28: Start SD Write
  2232. */
  2233. inline void gcode_M28() {
  2234. char* codepos = strchr_pointer + 4;
  2235. char* starpos = strchr(codepos, '*');
  2236. if (starpos) {
  2237. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2238. strchr_pointer = strchr(npos, ' ') + 1;
  2239. *(starpos) = '\0';
  2240. }
  2241. card.openFile(codepos, false);
  2242. }
  2243. /**
  2244. * M29: Stop SD Write
  2245. * Processed in write to file routine above
  2246. */
  2247. inline void gcode_M29() {
  2248. // card.saving = false;
  2249. }
  2250. /**
  2251. * M30 <filename>: Delete SD Card file
  2252. */
  2253. inline void gcode_M30() {
  2254. if (card.cardOK) {
  2255. card.closefile();
  2256. char* starpos = strchr(strchr_pointer + 4, '*');
  2257. if (starpos) {
  2258. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2259. strchr_pointer = strchr(npos, ' ') + 1;
  2260. *(starpos) = '\0';
  2261. }
  2262. card.removeFile(strchr_pointer + 4);
  2263. }
  2264. }
  2265. #endif
  2266. /**
  2267. * M31: Get the time since the start of SD Print (or last M109)
  2268. */
  2269. inline void gcode_M31() {
  2270. stoptime = millis();
  2271. unsigned long t = (stoptime - starttime) / 1000;
  2272. int min = t / 60, sec = t % 60;
  2273. char time[30];
  2274. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2275. SERIAL_ECHO_START;
  2276. SERIAL_ECHOLN(time);
  2277. lcd_setstatus(time);
  2278. autotempShutdown();
  2279. }
  2280. #ifdef SDSUPPORT
  2281. /**
  2282. * M32: Select file and start SD Print
  2283. */
  2284. inline void gcode_M32() {
  2285. if (card.sdprinting)
  2286. st_synchronize();
  2287. char* codepos = strchr_pointer + 4;
  2288. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2289. if (! namestartpos)
  2290. namestartpos = codepos; //default name position, 4 letters after the M
  2291. else
  2292. namestartpos++; //to skip the '!'
  2293. char* starpos = strchr(codepos, '*');
  2294. if (starpos) *(starpos) = '\0';
  2295. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2296. if (card.cardOK) {
  2297. card.openFile(namestartpos, true, !call_procedure);
  2298. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2299. card.setIndex(code_value_long());
  2300. card.startFileprint();
  2301. if (!call_procedure)
  2302. starttime = millis(); //procedure calls count as normal print time.
  2303. }
  2304. }
  2305. /**
  2306. * M928: Start SD Write
  2307. */
  2308. inline void gcode_M928() {
  2309. char* starpos = strchr(strchr_pointer + 5, '*');
  2310. if (starpos) {
  2311. char* npos = strchr(cmdbuffer[bufindr], 'N');
  2312. strchr_pointer = strchr(npos, ' ') + 1;
  2313. *(starpos) = '\0';
  2314. }
  2315. card.openLogFile(strchr_pointer + 5);
  2316. }
  2317. #endif // SDSUPPORT
  2318. /**
  2319. * M42: Change pin status via GCode
  2320. */
  2321. inline void gcode_M42() {
  2322. if (code_seen('S')) {
  2323. int pin_status = code_value(),
  2324. pin_number = LED_PIN;
  2325. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2326. pin_number = code_value();
  2327. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2328. if (sensitive_pins[i] == pin_number) {
  2329. pin_number = -1;
  2330. break;
  2331. }
  2332. }
  2333. #if HAS_FAN
  2334. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2335. #endif
  2336. if (pin_number > -1) {
  2337. pinMode(pin_number, OUTPUT);
  2338. digitalWrite(pin_number, pin_status);
  2339. analogWrite(pin_number, pin_status);
  2340. }
  2341. } // code_seen('S')
  2342. }
  2343. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2344. // This is redudant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2345. #ifdef Z_PROBE_ENDSTOP
  2346. #if !HAS_Z_PROBE
  2347. #error "You must have a Z_PROBE_PIN defined in order to enable calculation of Z-Probe repeatability."
  2348. #endif
  2349. #elif !HAS_Z_MIN
  2350. #error "You must have a Z_MIN_PIN defined in order to enable calculation of Z-Probe repeatability."
  2351. #endif
  2352. /**
  2353. * M48: Z-Probe repeatability measurement function.
  2354. *
  2355. * Usage:
  2356. * M48 <n#> <X#> <Y#> <V#> <E> <L#>
  2357. * P = Number of sampled points (4-50, default 10)
  2358. * X = Sample X position
  2359. * Y = Sample Y position
  2360. * V = Verbose level (0-4, default=1)
  2361. * E = Engage probe for each reading
  2362. * L = Number of legs of movement before probe
  2363. *
  2364. * This function assumes the bed has been homed. Specifically, that a G28 command
  2365. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2366. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2367. * regenerated.
  2368. *
  2369. * The number of samples will default to 10 if not specified. You can use upper or lower case
  2370. * letters for any of the options EXCEPT n. n must be in lower case because Marlin uses a capital
  2371. * N for its communication protocol and will get horribly confused if you send it a capital N.
  2372. */
  2373. inline void gcode_M48() {
  2374. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2375. int verbose_level = 1, n_samples = 10, n_legs = 0;
  2376. if (code_seen('V') || code_seen('v')) {
  2377. verbose_level = code_value();
  2378. if (verbose_level < 0 || verbose_level > 4 ) {
  2379. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2380. return;
  2381. }
  2382. }
  2383. if (verbose_level > 0)
  2384. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2385. if (code_seen('P') || code_seen('p') || code_seen('n')) { // `n` for legacy support only - please use `P`!
  2386. n_samples = code_value();
  2387. if (n_samples < 4 || n_samples > 50) {
  2388. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2389. return;
  2390. }
  2391. }
  2392. double X_probe_location, Y_probe_location,
  2393. X_current = X_probe_location = st_get_position_mm(X_AXIS),
  2394. Y_current = Y_probe_location = st_get_position_mm(Y_AXIS),
  2395. Z_current = st_get_position_mm(Z_AXIS),
  2396. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING,
  2397. ext_position = st_get_position_mm(E_AXIS);
  2398. bool engage_probe_for_each_reading = code_seen('E') || code_seen('e');
  2399. if (code_seen('X') || code_seen('x')) {
  2400. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2401. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2402. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2403. return;
  2404. }
  2405. }
  2406. if (code_seen('Y') || code_seen('y')) {
  2407. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2408. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2409. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2410. return;
  2411. }
  2412. }
  2413. if (code_seen('L') || code_seen('l')) {
  2414. n_legs = code_value();
  2415. if (n_legs == 1) n_legs = 2;
  2416. if (n_legs < 0 || n_legs > 15) {
  2417. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2418. return;
  2419. }
  2420. }
  2421. //
  2422. // Do all the preliminary setup work. First raise the probe.
  2423. //
  2424. st_synchronize();
  2425. plan_bed_level_matrix.set_to_identity();
  2426. plan_buffer_line(X_current, Y_current, Z_start_location,
  2427. ext_position,
  2428. homing_feedrate[Z_AXIS] / 60,
  2429. active_extruder);
  2430. st_synchronize();
  2431. //
  2432. // Now get everything to the specified probe point So we can safely do a probe to
  2433. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2434. // use that as a starting point for each probe.
  2435. //
  2436. if (verbose_level > 2)
  2437. SERIAL_PROTOCOL("Positioning the probe...\n");
  2438. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2439. ext_position,
  2440. homing_feedrate[X_AXIS]/60,
  2441. active_extruder);
  2442. st_synchronize();
  2443. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2444. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2445. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2446. current_position[E_AXIS] = ext_position = st_get_position_mm(E_AXIS);
  2447. //
  2448. // OK, do the inital probe to get us close to the bed.
  2449. // Then retrace the right amount and use that in subsequent probes
  2450. //
  2451. deploy_z_probe();
  2452. setup_for_endstop_move();
  2453. run_z_probe();
  2454. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2455. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2456. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2457. ext_position,
  2458. homing_feedrate[X_AXIS]/60,
  2459. active_extruder);
  2460. st_synchronize();
  2461. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2462. if (engage_probe_for_each_reading) stow_z_probe();
  2463. for (uint16_t n=0; n < n_samples; n++) {
  2464. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Make sure we are at the probe location
  2465. if (n_legs) {
  2466. unsigned long ms = millis();
  2467. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2468. theta = RADIANS(ms % 360L);
  2469. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2470. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2471. //SERIAL_ECHOPAIR(" theta: ",theta);
  2472. //SERIAL_ECHOPAIR(" direction: ",dir);
  2473. //SERIAL_EOL;
  2474. for (int l = 0; l < n_legs - 1; l++) {
  2475. ms = millis();
  2476. theta += RADIANS(dir * (ms % 20L));
  2477. radius += (ms % 10L) - 5L;
  2478. if (radius < 0.0) radius = -radius;
  2479. X_current = X_probe_location + cos(theta) * radius;
  2480. Y_current = Y_probe_location + sin(theta) * radius;
  2481. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2482. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2483. if (verbose_level > 3) {
  2484. SERIAL_ECHOPAIR("x: ", X_current);
  2485. SERIAL_ECHOPAIR("y: ", Y_current);
  2486. SERIAL_EOL;
  2487. }
  2488. do_blocking_move_to(X_current, Y_current, Z_current);
  2489. } // n_legs loop
  2490. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // Go back to the probe location
  2491. } // n_legs
  2492. if (engage_probe_for_each_reading) {
  2493. deploy_z_probe();
  2494. delay(1000);
  2495. }
  2496. setup_for_endstop_move();
  2497. run_z_probe();
  2498. sample_set[n] = current_position[Z_AXIS];
  2499. //
  2500. // Get the current mean for the data points we have so far
  2501. //
  2502. sum = 0.0;
  2503. for (int j = 0; j <= n; j++) sum += sample_set[j];
  2504. mean = sum / (n + 1);
  2505. //
  2506. // Now, use that mean to calculate the standard deviation for the
  2507. // data points we have so far
  2508. //
  2509. sum = 0.0;
  2510. for (int j = 0; j <= n; j++) {
  2511. float ss = sample_set[j] - mean;
  2512. sum += ss * ss;
  2513. }
  2514. sigma = sqrt(sum / (n + 1));
  2515. if (verbose_level > 1) {
  2516. SERIAL_PROTOCOL(n+1);
  2517. SERIAL_PROTOCOLPGM(" of ");
  2518. SERIAL_PROTOCOL(n_samples);
  2519. SERIAL_PROTOCOLPGM(" z: ");
  2520. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2521. if (verbose_level > 2) {
  2522. SERIAL_PROTOCOLPGM(" mean: ");
  2523. SERIAL_PROTOCOL_F(mean,6);
  2524. SERIAL_PROTOCOLPGM(" sigma: ");
  2525. SERIAL_PROTOCOL_F(sigma,6);
  2526. }
  2527. }
  2528. if (verbose_level > 0) SERIAL_EOL;
  2529. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2530. st_synchronize();
  2531. if (engage_probe_for_each_reading) {
  2532. stow_z_probe();
  2533. delay(1000);
  2534. }
  2535. }
  2536. if (!engage_probe_for_each_reading) {
  2537. stow_z_probe();
  2538. delay(1000);
  2539. }
  2540. clean_up_after_endstop_move();
  2541. // enable_endstops(true);
  2542. if (verbose_level > 0) {
  2543. SERIAL_PROTOCOLPGM("Mean: ");
  2544. SERIAL_PROTOCOL_F(mean, 6);
  2545. SERIAL_EOL;
  2546. }
  2547. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2548. SERIAL_PROTOCOL_F(sigma, 6);
  2549. SERIAL_EOL; SERIAL_EOL;
  2550. }
  2551. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2552. /**
  2553. * M104: Set hot end temperature
  2554. */
  2555. inline void gcode_M104() {
  2556. if (setTargetedHotend(104)) return;
  2557. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  2558. #ifdef DUAL_X_CARRIAGE
  2559. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2560. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2561. #endif
  2562. setWatch();
  2563. }
  2564. /**
  2565. * M105: Read hot end and bed temperature
  2566. */
  2567. inline void gcode_M105() {
  2568. if (setTargetedHotend(105)) return;
  2569. #if HAS_TEMP_0
  2570. SERIAL_PROTOCOLPGM("ok T:");
  2571. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2572. SERIAL_PROTOCOLPGM(" /");
  2573. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  2574. #if HAS_TEMP_BED
  2575. SERIAL_PROTOCOLPGM(" B:");
  2576. SERIAL_PROTOCOL_F(degBed(),1);
  2577. SERIAL_PROTOCOLPGM(" /");
  2578. SERIAL_PROTOCOL_F(degTargetBed(),1);
  2579. #endif // HAS_TEMP_BED
  2580. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2581. SERIAL_PROTOCOLPGM(" T");
  2582. SERIAL_PROTOCOL(cur_extruder);
  2583. SERIAL_PROTOCOLPGM(":");
  2584. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2585. SERIAL_PROTOCOLPGM(" /");
  2586. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  2587. }
  2588. #else // !HAS_TEMP_0
  2589. SERIAL_ERROR_START;
  2590. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2591. #endif
  2592. SERIAL_PROTOCOLPGM(" @:");
  2593. #ifdef EXTRUDER_WATTS
  2594. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(tmp_extruder))/127);
  2595. SERIAL_PROTOCOLPGM("W");
  2596. #else
  2597. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  2598. #endif
  2599. SERIAL_PROTOCOLPGM(" B@:");
  2600. #ifdef BED_WATTS
  2601. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2602. SERIAL_PROTOCOLPGM("W");
  2603. #else
  2604. SERIAL_PROTOCOL(getHeaterPower(-1));
  2605. #endif
  2606. #ifdef SHOW_TEMP_ADC_VALUES
  2607. #if HAS_TEMP_BED
  2608. SERIAL_PROTOCOLPGM(" ADC B:");
  2609. SERIAL_PROTOCOL_F(degBed(),1);
  2610. SERIAL_PROTOCOLPGM("C->");
  2611. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2612. #endif
  2613. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2614. SERIAL_PROTOCOLPGM(" T");
  2615. SERIAL_PROTOCOL(cur_extruder);
  2616. SERIAL_PROTOCOLPGM(":");
  2617. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2618. SERIAL_PROTOCOLPGM("C->");
  2619. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2620. }
  2621. #endif
  2622. SERIAL_PROTOCOLLN("");
  2623. }
  2624. #if HAS_FAN
  2625. /**
  2626. * M106: Set Fan Speed
  2627. */
  2628. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2629. /**
  2630. * M107: Fan Off
  2631. */
  2632. inline void gcode_M107() { fanSpeed = 0; }
  2633. #endif //FAN_PIN
  2634. /**
  2635. * M109: Wait for extruder(s) to reach temperature
  2636. */
  2637. inline void gcode_M109() {
  2638. if (setTargetedHotend(109)) return;
  2639. LCD_MESSAGEPGM(MSG_HEATING);
  2640. CooldownNoWait = code_seen('S');
  2641. if (CooldownNoWait || code_seen('R')) {
  2642. setTargetHotend(code_value(), tmp_extruder);
  2643. #ifdef DUAL_X_CARRIAGE
  2644. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  2645. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  2646. #endif
  2647. }
  2648. #ifdef AUTOTEMP
  2649. autotemp_enabled = code_seen('F');
  2650. if (autotemp_enabled) autotemp_factor = code_value();
  2651. if (code_seen('S')) autotemp_min = code_value();
  2652. if (code_seen('B')) autotemp_max = code_value();
  2653. #endif
  2654. setWatch();
  2655. unsigned long timetemp = millis();
  2656. /* See if we are heating up or cooling down */
  2657. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  2658. cancel_heatup = false;
  2659. #ifdef TEMP_RESIDENCY_TIME
  2660. long residencyStart = -1;
  2661. /* continue to loop until we have reached the target temp
  2662. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2663. while((!cancel_heatup)&&((residencyStart == -1) ||
  2664. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2665. #else
  2666. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) )
  2667. #endif //TEMP_RESIDENCY_TIME
  2668. { // while loop
  2669. if (millis() > timetemp + 1000UL) { //Print temp & remaining time every 1s while waiting
  2670. SERIAL_PROTOCOLPGM("T:");
  2671. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  2672. SERIAL_PROTOCOLPGM(" E:");
  2673. SERIAL_PROTOCOL((int)tmp_extruder);
  2674. #ifdef TEMP_RESIDENCY_TIME
  2675. SERIAL_PROTOCOLPGM(" W:");
  2676. if (residencyStart > -1) {
  2677. timetemp = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  2678. SERIAL_PROTOCOLLN( timetemp );
  2679. }
  2680. else {
  2681. SERIAL_PROTOCOLLN( "?" );
  2682. }
  2683. #else
  2684. SERIAL_PROTOCOLLN("");
  2685. #endif
  2686. timetemp = millis();
  2687. }
  2688. manage_heater();
  2689. manage_inactivity();
  2690. lcd_update();
  2691. #ifdef TEMP_RESIDENCY_TIME
  2692. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2693. // or when current temp falls outside the hysteresis after target temp was reached
  2694. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  2695. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  2696. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  2697. {
  2698. residencyStart = millis();
  2699. }
  2700. #endif //TEMP_RESIDENCY_TIME
  2701. }
  2702. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2703. refresh_cmd_timeout();
  2704. starttime = previous_millis_cmd;
  2705. }
  2706. #if HAS_TEMP_BED
  2707. /**
  2708. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2709. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2710. */
  2711. inline void gcode_M190() {
  2712. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2713. CooldownNoWait = code_seen('S');
  2714. if (CooldownNoWait || code_seen('R'))
  2715. setTargetBed(code_value());
  2716. unsigned long timetemp = millis();
  2717. cancel_heatup = false;
  2718. target_direction = isHeatingBed(); // true if heating, false if cooling
  2719. while ( (target_direction)&&(!cancel_heatup) ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) ) {
  2720. unsigned long ms = millis();
  2721. if (ms > timetemp + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2722. timetemp = ms;
  2723. float tt = degHotend(active_extruder);
  2724. SERIAL_PROTOCOLPGM("T:");
  2725. SERIAL_PROTOCOL(tt);
  2726. SERIAL_PROTOCOLPGM(" E:");
  2727. SERIAL_PROTOCOL((int)active_extruder);
  2728. SERIAL_PROTOCOLPGM(" B:");
  2729. SERIAL_PROTOCOL_F(degBed(), 1);
  2730. SERIAL_PROTOCOLLN("");
  2731. }
  2732. manage_heater();
  2733. manage_inactivity();
  2734. lcd_update();
  2735. }
  2736. LCD_MESSAGEPGM(MSG_BED_DONE);
  2737. refresh_cmd_timeout();
  2738. }
  2739. #endif // HAS_TEMP_BED
  2740. /**
  2741. * M112: Emergency Stop
  2742. */
  2743. inline void gcode_M112() {
  2744. kill();
  2745. }
  2746. #ifdef BARICUDA
  2747. #if HAS_HEATER_1
  2748. /**
  2749. * M126: Heater 1 valve open
  2750. */
  2751. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2752. /**
  2753. * M127: Heater 1 valve close
  2754. */
  2755. inline void gcode_M127() { ValvePressure = 0; }
  2756. #endif
  2757. #if HAS_HEATER_2
  2758. /**
  2759. * M128: Heater 2 valve open
  2760. */
  2761. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2762. /**
  2763. * M129: Heater 2 valve close
  2764. */
  2765. inline void gcode_M129() { EtoPPressure = 0; }
  2766. #endif
  2767. #endif //BARICUDA
  2768. /**
  2769. * M140: Set bed temperature
  2770. */
  2771. inline void gcode_M140() {
  2772. if (code_seen('S')) setTargetBed(code_value());
  2773. }
  2774. #if HAS_POWER_SWITCH
  2775. /**
  2776. * M80: Turn on Power Supply
  2777. */
  2778. inline void gcode_M80() {
  2779. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2780. // If you have a switch on suicide pin, this is useful
  2781. // if you want to start another print with suicide feature after
  2782. // a print without suicide...
  2783. #if HAS_SUICIDE
  2784. OUT_WRITE(SUICIDE_PIN, HIGH);
  2785. #endif
  2786. #ifdef ULTIPANEL
  2787. powersupply = true;
  2788. LCD_MESSAGEPGM(WELCOME_MSG);
  2789. lcd_update();
  2790. #endif
  2791. }
  2792. #endif // HAS_POWER_SWITCH
  2793. /**
  2794. * M81: Turn off Power, including Power Supply, if there is one.
  2795. *
  2796. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2797. */
  2798. inline void gcode_M81() {
  2799. disable_heater();
  2800. st_synchronize();
  2801. disable_e0();
  2802. disable_e1();
  2803. disable_e2();
  2804. disable_e3();
  2805. finishAndDisableSteppers();
  2806. fanSpeed = 0;
  2807. delay(1000); // Wait 1 second before switching off
  2808. #if HAS_SUICIDE
  2809. st_synchronize();
  2810. suicide();
  2811. #elif HAS_POWER_SWITCH
  2812. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2813. #endif
  2814. #ifdef ULTIPANEL
  2815. #if HAS_POWER_SWITCH
  2816. powersupply = false;
  2817. #endif
  2818. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2819. lcd_update();
  2820. #endif
  2821. }
  2822. /**
  2823. * M82: Set E codes absolute (default)
  2824. */
  2825. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2826. /**
  2827. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2828. */
  2829. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2830. /**
  2831. * M18, M84: Disable all stepper motors
  2832. */
  2833. inline void gcode_M18_M84() {
  2834. if (code_seen('S')) {
  2835. stepper_inactive_time = code_value() * 1000;
  2836. }
  2837. else {
  2838. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2839. if (all_axis) {
  2840. st_synchronize();
  2841. disable_e0();
  2842. disable_e1();
  2843. disable_e2();
  2844. disable_e3();
  2845. finishAndDisableSteppers();
  2846. }
  2847. else {
  2848. st_synchronize();
  2849. if (code_seen('X')) disable_x();
  2850. if (code_seen('Y')) disable_y();
  2851. if (code_seen('Z')) disable_z();
  2852. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2853. if (code_seen('E')) {
  2854. disable_e0();
  2855. disable_e1();
  2856. disable_e2();
  2857. disable_e3();
  2858. }
  2859. #endif
  2860. }
  2861. }
  2862. }
  2863. /**
  2864. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2865. */
  2866. inline void gcode_M85() {
  2867. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2868. }
  2869. /**
  2870. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2871. */
  2872. inline void gcode_M92() {
  2873. for(int8_t i=0; i < NUM_AXIS; i++) {
  2874. if (code_seen(axis_codes[i])) {
  2875. if (i == E_AXIS) {
  2876. float value = code_value();
  2877. if (value < 20.0) {
  2878. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2879. max_e_jerk *= factor;
  2880. max_feedrate[i] *= factor;
  2881. axis_steps_per_sqr_second[i] *= factor;
  2882. }
  2883. axis_steps_per_unit[i] = value;
  2884. }
  2885. else {
  2886. axis_steps_per_unit[i] = code_value();
  2887. }
  2888. }
  2889. }
  2890. }
  2891. /**
  2892. * M114: Output current position to serial port
  2893. */
  2894. inline void gcode_M114() {
  2895. SERIAL_PROTOCOLPGM("X:");
  2896. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2897. SERIAL_PROTOCOLPGM(" Y:");
  2898. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2899. SERIAL_PROTOCOLPGM(" Z:");
  2900. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2901. SERIAL_PROTOCOLPGM(" E:");
  2902. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2903. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2904. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2905. SERIAL_PROTOCOLPGM(" Y:");
  2906. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2907. SERIAL_PROTOCOLPGM(" Z:");
  2908. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2909. SERIAL_PROTOCOLLN("");
  2910. #ifdef SCARA
  2911. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2912. SERIAL_PROTOCOL(delta[X_AXIS]);
  2913. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2914. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2915. SERIAL_PROTOCOLLN("");
  2916. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2917. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2918. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2919. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2920. SERIAL_PROTOCOLLN("");
  2921. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2922. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2923. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2924. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2925. SERIAL_PROTOCOLLN("");
  2926. SERIAL_PROTOCOLLN("");
  2927. #endif
  2928. }
  2929. /**
  2930. * M115: Capabilities string
  2931. */
  2932. inline void gcode_M115() {
  2933. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  2934. }
  2935. /**
  2936. * M117: Set LCD Status Message
  2937. */
  2938. inline void gcode_M117() {
  2939. char* codepos = strchr_pointer + 5;
  2940. char* starpos = strchr(codepos, '*');
  2941. if (starpos) *starpos = '\0';
  2942. lcd_setstatus(codepos);
  2943. }
  2944. /**
  2945. * M119: Output endstop states to serial output
  2946. */
  2947. inline void gcode_M119() {
  2948. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  2949. #if HAS_X_MIN
  2950. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  2951. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2952. #endif
  2953. #if HAS_X_MAX
  2954. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  2955. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2956. #endif
  2957. #if HAS_Y_MIN
  2958. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  2959. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2960. #endif
  2961. #if HAS_Y_MAX
  2962. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  2963. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2964. #endif
  2965. #if HAS_Z_MIN
  2966. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  2967. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2968. #endif
  2969. #if HAS_Z_MAX
  2970. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  2971. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2972. #endif
  2973. #if HAS_Z2_MAX
  2974. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  2975. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2976. #endif
  2977. #if HAS_Z_PROBE
  2978. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  2979. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  2980. #endif
  2981. }
  2982. /**
  2983. * M120: Enable endstops
  2984. */
  2985. inline void gcode_M120() { enable_endstops(false); }
  2986. /**
  2987. * M121: Disable endstops
  2988. */
  2989. inline void gcode_M121() { enable_endstops(true); }
  2990. #ifdef BLINKM
  2991. /**
  2992. * M150: Set Status LED Color - Use R-U-B for R-G-B
  2993. */
  2994. inline void gcode_M150() {
  2995. SendColors(
  2996. code_seen('R') ? (byte)code_value() : 0,
  2997. code_seen('U') ? (byte)code_value() : 0,
  2998. code_seen('B') ? (byte)code_value() : 0
  2999. );
  3000. }
  3001. #endif // BLINKM
  3002. /**
  3003. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3004. * T<extruder>
  3005. * D<millimeters>
  3006. */
  3007. inline void gcode_M200() {
  3008. tmp_extruder = active_extruder;
  3009. if (code_seen('T')) {
  3010. tmp_extruder = code_value();
  3011. if (tmp_extruder >= EXTRUDERS) {
  3012. SERIAL_ECHO_START;
  3013. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3014. return;
  3015. }
  3016. }
  3017. if (code_seen('D')) {
  3018. float diameter = code_value();
  3019. // setting any extruder filament size disables volumetric on the assumption that
  3020. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3021. // for all extruders
  3022. volumetric_enabled = (diameter != 0.0);
  3023. if (volumetric_enabled) {
  3024. filament_size[tmp_extruder] = diameter;
  3025. // make sure all extruders have some sane value for the filament size
  3026. for (int i=0; i<EXTRUDERS; i++)
  3027. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3028. }
  3029. }
  3030. else {
  3031. //reserved for setting filament diameter via UFID or filament measuring device
  3032. return;
  3033. }
  3034. calculate_volumetric_multipliers();
  3035. }
  3036. /**
  3037. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3038. */
  3039. inline void gcode_M201() {
  3040. for (int8_t i=0; i < NUM_AXIS; i++) {
  3041. if (code_seen(axis_codes[i])) {
  3042. max_acceleration_units_per_sq_second[i] = code_value();
  3043. }
  3044. }
  3045. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3046. reset_acceleration_rates();
  3047. }
  3048. #if 0 // Not used for Sprinter/grbl gen6
  3049. inline void gcode_M202() {
  3050. for(int8_t i=0; i < NUM_AXIS; i++) {
  3051. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3052. }
  3053. }
  3054. #endif
  3055. /**
  3056. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3057. */
  3058. inline void gcode_M203() {
  3059. for (int8_t i=0; i < NUM_AXIS; i++) {
  3060. if (code_seen(axis_codes[i])) {
  3061. max_feedrate[i] = code_value();
  3062. }
  3063. }
  3064. }
  3065. /**
  3066. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3067. *
  3068. * P = Printing moves
  3069. * R = Retract only (no X, Y, Z) moves
  3070. * T = Travel (non printing) moves
  3071. *
  3072. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3073. */
  3074. inline void gcode_M204() {
  3075. if (code_seen('S')) // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3076. {
  3077. acceleration = code_value();
  3078. travel_acceleration = acceleration;
  3079. SERIAL_ECHOPAIR("Setting Printing and Travelling Acceleration: ", acceleration );
  3080. SERIAL_EOL;
  3081. }
  3082. if (code_seen('P'))
  3083. {
  3084. acceleration = code_value();
  3085. SERIAL_ECHOPAIR("Setting Printing Acceleration: ", acceleration );
  3086. SERIAL_EOL;
  3087. }
  3088. if (code_seen('R'))
  3089. {
  3090. retract_acceleration = code_value();
  3091. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3092. SERIAL_EOL;
  3093. }
  3094. if (code_seen('T'))
  3095. {
  3096. travel_acceleration = code_value();
  3097. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3098. SERIAL_EOL;
  3099. }
  3100. }
  3101. /**
  3102. * M205: Set Advanced Settings
  3103. *
  3104. * S = Min Feed Rate (mm/s)
  3105. * T = Min Travel Feed Rate (mm/s)
  3106. * B = Min Segment Time (µs)
  3107. * X = Max XY Jerk (mm/s/s)
  3108. * Z = Max Z Jerk (mm/s/s)
  3109. * E = Max E Jerk (mm/s/s)
  3110. */
  3111. inline void gcode_M205() {
  3112. if (code_seen('S')) minimumfeedrate = code_value();
  3113. if (code_seen('T')) mintravelfeedrate = code_value();
  3114. if (code_seen('B')) minsegmenttime = code_value();
  3115. if (code_seen('X')) max_xy_jerk = code_value();
  3116. if (code_seen('Z')) max_z_jerk = code_value();
  3117. if (code_seen('E')) max_e_jerk = code_value();
  3118. }
  3119. /**
  3120. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3121. */
  3122. inline void gcode_M206() {
  3123. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3124. if (code_seen(axis_codes[i])) {
  3125. home_offset[i] = code_value();
  3126. }
  3127. }
  3128. #ifdef SCARA
  3129. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3130. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3131. #endif
  3132. }
  3133. #ifdef DELTA
  3134. /**
  3135. * M665: Set delta configurations
  3136. *
  3137. * L = diagonal rod
  3138. * R = delta radius
  3139. * S = segments per second
  3140. */
  3141. inline void gcode_M665() {
  3142. if (code_seen('L')) delta_diagonal_rod = code_value();
  3143. if (code_seen('R')) delta_radius = code_value();
  3144. if (code_seen('S')) delta_segments_per_second = code_value();
  3145. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3146. }
  3147. /**
  3148. * M666: Set delta endstop adjustment
  3149. */
  3150. inline void gcode_M666() {
  3151. for (int8_t i = 0; i < 3; i++) {
  3152. if (code_seen(axis_codes[i])) {
  3153. endstop_adj[i] = code_value();
  3154. }
  3155. }
  3156. }
  3157. #elif defined(Z_DUAL_ENDSTOPS)
  3158. /**
  3159. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3160. */
  3161. inline void gcode_M666() {
  3162. if (code_seen('Z')) z_endstop_adj = code_value();
  3163. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj );
  3164. SERIAL_EOL;
  3165. }
  3166. #endif // DELTA
  3167. #ifdef FWRETRACT
  3168. /**
  3169. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3170. */
  3171. inline void gcode_M207() {
  3172. if (code_seen('S')) retract_length = code_value();
  3173. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3174. if (code_seen('Z')) retract_zlift = code_value();
  3175. }
  3176. /**
  3177. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3178. */
  3179. inline void gcode_M208() {
  3180. if (code_seen('S')) retract_recover_length = code_value();
  3181. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3182. }
  3183. /**
  3184. * M209: Enable automatic retract (M209 S1)
  3185. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3186. */
  3187. inline void gcode_M209() {
  3188. if (code_seen('S')) {
  3189. int t = code_value();
  3190. switch(t) {
  3191. case 0:
  3192. autoretract_enabled = false;
  3193. break;
  3194. case 1:
  3195. autoretract_enabled = true;
  3196. break;
  3197. default:
  3198. SERIAL_ECHO_START;
  3199. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3200. SERIAL_ECHO(cmdbuffer[bufindr]);
  3201. SERIAL_ECHOLNPGM("\"");
  3202. return;
  3203. }
  3204. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3205. }
  3206. }
  3207. #endif // FWRETRACT
  3208. #if EXTRUDERS > 1
  3209. /**
  3210. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3211. */
  3212. inline void gcode_M218() {
  3213. if (setTargetedHotend(218)) return;
  3214. if (code_seen('X')) extruder_offset[X_AXIS][tmp_extruder] = code_value();
  3215. if (code_seen('Y')) extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  3216. #ifdef DUAL_X_CARRIAGE
  3217. if (code_seen('Z')) extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  3218. #endif
  3219. SERIAL_ECHO_START;
  3220. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3221. for (tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++) {
  3222. SERIAL_ECHO(" ");
  3223. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  3224. SERIAL_ECHO(",");
  3225. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  3226. #ifdef DUAL_X_CARRIAGE
  3227. SERIAL_ECHO(",");
  3228. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  3229. #endif
  3230. }
  3231. SERIAL_EOL;
  3232. }
  3233. #endif // EXTRUDERS > 1
  3234. /**
  3235. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3236. */
  3237. inline void gcode_M220() {
  3238. if (code_seen('S')) feedmultiply = code_value();
  3239. }
  3240. /**
  3241. * M221: Set extrusion percentage (M221 T0 S95)
  3242. */
  3243. inline void gcode_M221() {
  3244. if (code_seen('S')) {
  3245. int sval = code_value();
  3246. if (code_seen('T')) {
  3247. if (setTargetedHotend(221)) return;
  3248. extruder_multiply[tmp_extruder] = sval;
  3249. }
  3250. else {
  3251. extruder_multiply[active_extruder] = sval;
  3252. }
  3253. }
  3254. }
  3255. /**
  3256. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3257. */
  3258. inline void gcode_M226() {
  3259. if (code_seen('P')) {
  3260. int pin_number = code_value();
  3261. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3262. if (pin_state >= -1 && pin_state <= 1) {
  3263. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3264. if (sensitive_pins[i] == pin_number) {
  3265. pin_number = -1;
  3266. break;
  3267. }
  3268. }
  3269. if (pin_number > -1) {
  3270. int target = LOW;
  3271. st_synchronize();
  3272. pinMode(pin_number, INPUT);
  3273. switch(pin_state){
  3274. case 1:
  3275. target = HIGH;
  3276. break;
  3277. case 0:
  3278. target = LOW;
  3279. break;
  3280. case -1:
  3281. target = !digitalRead(pin_number);
  3282. break;
  3283. }
  3284. while(digitalRead(pin_number) != target) {
  3285. manage_heater();
  3286. manage_inactivity();
  3287. lcd_update();
  3288. }
  3289. } // pin_number > -1
  3290. } // pin_state -1 0 1
  3291. } // code_seen('P')
  3292. }
  3293. #if NUM_SERVOS > 0
  3294. /**
  3295. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3296. */
  3297. inline void gcode_M280() {
  3298. int servo_index = code_seen('P') ? code_value() : -1;
  3299. int servo_position = 0;
  3300. if (code_seen('S')) {
  3301. servo_position = code_value();
  3302. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3303. #if SERVO_LEVELING
  3304. servos[servo_index].attach(0);
  3305. #endif
  3306. servos[servo_index].write(servo_position);
  3307. #if SERVO_LEVELING
  3308. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3309. servos[servo_index].detach();
  3310. #endif
  3311. }
  3312. else {
  3313. SERIAL_ECHO_START;
  3314. SERIAL_ECHO("Servo ");
  3315. SERIAL_ECHO(servo_index);
  3316. SERIAL_ECHOLN(" out of range");
  3317. }
  3318. }
  3319. else if (servo_index >= 0) {
  3320. SERIAL_PROTOCOL(MSG_OK);
  3321. SERIAL_PROTOCOL(" Servo ");
  3322. SERIAL_PROTOCOL(servo_index);
  3323. SERIAL_PROTOCOL(": ");
  3324. SERIAL_PROTOCOL(servos[servo_index].read());
  3325. SERIAL_PROTOCOLLN("");
  3326. }
  3327. }
  3328. #endif // NUM_SERVOS > 0
  3329. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  3330. /**
  3331. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3332. */
  3333. inline void gcode_M300() {
  3334. int beepS = code_seen('S') ? code_value() : 110;
  3335. int beepP = code_seen('P') ? code_value() : 1000;
  3336. if (beepS > 0) {
  3337. #if BEEPER > 0
  3338. tone(BEEPER, beepS);
  3339. delay(beepP);
  3340. noTone(BEEPER);
  3341. #elif defined(ULTRALCD)
  3342. lcd_buzz(beepS, beepP);
  3343. #elif defined(LCD_USE_I2C_BUZZER)
  3344. lcd_buzz(beepP, beepS);
  3345. #endif
  3346. }
  3347. else {
  3348. delay(beepP);
  3349. }
  3350. }
  3351. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  3352. #ifdef PIDTEMP
  3353. /**
  3354. * M301: Set PID parameters P I D (and optionally C)
  3355. */
  3356. inline void gcode_M301() {
  3357. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3358. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3359. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3360. if (e < EXTRUDERS) { // catch bad input value
  3361. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3362. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3363. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3364. #ifdef PID_ADD_EXTRUSION_RATE
  3365. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3366. #endif
  3367. updatePID();
  3368. SERIAL_PROTOCOL(MSG_OK);
  3369. #ifdef PID_PARAMS_PER_EXTRUDER
  3370. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3371. SERIAL_PROTOCOL(e);
  3372. #endif // PID_PARAMS_PER_EXTRUDER
  3373. SERIAL_PROTOCOL(" p:");
  3374. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3375. SERIAL_PROTOCOL(" i:");
  3376. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3377. SERIAL_PROTOCOL(" d:");
  3378. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3379. #ifdef PID_ADD_EXTRUSION_RATE
  3380. SERIAL_PROTOCOL(" c:");
  3381. //Kc does not have scaling applied above, or in resetting defaults
  3382. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3383. #endif
  3384. SERIAL_PROTOCOLLN("");
  3385. }
  3386. else {
  3387. SERIAL_ECHO_START;
  3388. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3389. }
  3390. }
  3391. #endif // PIDTEMP
  3392. #ifdef PIDTEMPBED
  3393. inline void gcode_M304() {
  3394. if (code_seen('P')) bedKp = code_value();
  3395. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3396. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3397. updatePID();
  3398. SERIAL_PROTOCOL(MSG_OK);
  3399. SERIAL_PROTOCOL(" p:");
  3400. SERIAL_PROTOCOL(bedKp);
  3401. SERIAL_PROTOCOL(" i:");
  3402. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3403. SERIAL_PROTOCOL(" d:");
  3404. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3405. SERIAL_PROTOCOLLN("");
  3406. }
  3407. #endif // PIDTEMPBED
  3408. #if defined(CHDK) || HAS_PHOTOGRAPH
  3409. /**
  3410. * M240: Trigger a camera by emulating a Canon RC-1
  3411. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3412. */
  3413. inline void gcode_M240() {
  3414. #ifdef CHDK
  3415. OUT_WRITE(CHDK, HIGH);
  3416. chdkHigh = millis();
  3417. chdkActive = true;
  3418. #elif HAS_PHOTOGRAPH
  3419. const uint8_t NUM_PULSES = 16;
  3420. const float PULSE_LENGTH = 0.01524;
  3421. for (int i = 0; i < NUM_PULSES; i++) {
  3422. WRITE(PHOTOGRAPH_PIN, HIGH);
  3423. _delay_ms(PULSE_LENGTH);
  3424. WRITE(PHOTOGRAPH_PIN, LOW);
  3425. _delay_ms(PULSE_LENGTH);
  3426. }
  3427. delay(7.33);
  3428. for (int i = 0; i < NUM_PULSES; i++) {
  3429. WRITE(PHOTOGRAPH_PIN, HIGH);
  3430. _delay_ms(PULSE_LENGTH);
  3431. WRITE(PHOTOGRAPH_PIN, LOW);
  3432. _delay_ms(PULSE_LENGTH);
  3433. }
  3434. #endif // !CHDK && HAS_PHOTOGRAPH
  3435. }
  3436. #endif // CHDK || PHOTOGRAPH_PIN
  3437. #ifdef DOGLCD
  3438. /**
  3439. * M250: Read and optionally set the LCD contrast
  3440. */
  3441. inline void gcode_M250() {
  3442. if (code_seen('C')) lcd_setcontrast(code_value_long() & 0x3F);
  3443. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3444. SERIAL_PROTOCOL(lcd_contrast);
  3445. SERIAL_PROTOCOLLN("");
  3446. }
  3447. #endif // DOGLCD
  3448. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3449. /**
  3450. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3451. */
  3452. inline void gcode_M302() {
  3453. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3454. }
  3455. #endif // PREVENT_DANGEROUS_EXTRUDE
  3456. /**
  3457. * M303: PID relay autotune
  3458. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3459. * E<extruder> (-1 for the bed)
  3460. * C<cycles>
  3461. */
  3462. inline void gcode_M303() {
  3463. int e = code_seen('E') ? code_value_long() : 0;
  3464. int c = code_seen('C') ? code_value_long() : 5;
  3465. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3466. PID_autotune(temp, e, c);
  3467. }
  3468. #ifdef SCARA
  3469. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3470. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3471. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3472. if (! Stopped) {
  3473. //get_coordinates(); // For X Y Z E F
  3474. delta[X_AXIS] = delta_x;
  3475. delta[Y_AXIS] = delta_y;
  3476. calculate_SCARA_forward_Transform(delta);
  3477. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3478. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3479. prepare_move();
  3480. //ClearToSend();
  3481. return true;
  3482. }
  3483. return false;
  3484. }
  3485. /**
  3486. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3487. */
  3488. inline bool gcode_M360() {
  3489. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3490. return SCARA_move_to_cal(0, 120);
  3491. }
  3492. /**
  3493. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3494. */
  3495. inline bool gcode_M361() {
  3496. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3497. return SCARA_move_to_cal(90, 130);
  3498. }
  3499. /**
  3500. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3501. */
  3502. inline bool gcode_M362() {
  3503. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3504. return SCARA_move_to_cal(60, 180);
  3505. }
  3506. /**
  3507. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3508. */
  3509. inline bool gcode_M363() {
  3510. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3511. return SCARA_move_to_cal(50, 90);
  3512. }
  3513. /**
  3514. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3515. */
  3516. inline bool gcode_M364() {
  3517. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3518. return SCARA_move_to_cal(45, 135);
  3519. }
  3520. /**
  3521. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3522. */
  3523. inline void gcode_M365() {
  3524. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3525. if (code_seen(axis_codes[i])) {
  3526. axis_scaling[i] = code_value();
  3527. }
  3528. }
  3529. }
  3530. #endif // SCARA
  3531. #ifdef EXT_SOLENOID
  3532. void enable_solenoid(uint8_t num) {
  3533. switch(num) {
  3534. case 0:
  3535. OUT_WRITE(SOL0_PIN, HIGH);
  3536. break;
  3537. #if HAS_SOLENOID_1
  3538. case 1:
  3539. OUT_WRITE(SOL1_PIN, HIGH);
  3540. break;
  3541. #endif
  3542. #if HAS_SOLENOID_2
  3543. case 2:
  3544. OUT_WRITE(SOL2_PIN, HIGH);
  3545. break;
  3546. #endif
  3547. #if HAS_SOLENOID_3
  3548. case 3:
  3549. OUT_WRITE(SOL3_PIN, HIGH);
  3550. break;
  3551. #endif
  3552. default:
  3553. SERIAL_ECHO_START;
  3554. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3555. break;
  3556. }
  3557. }
  3558. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3559. void disable_all_solenoids() {
  3560. OUT_WRITE(SOL0_PIN, LOW);
  3561. OUT_WRITE(SOL1_PIN, LOW);
  3562. OUT_WRITE(SOL2_PIN, LOW);
  3563. OUT_WRITE(SOL3_PIN, LOW);
  3564. }
  3565. /**
  3566. * M380: Enable solenoid on the active extruder
  3567. */
  3568. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3569. /**
  3570. * M381: Disable all solenoids
  3571. */
  3572. inline void gcode_M381() { disable_all_solenoids(); }
  3573. #endif // EXT_SOLENOID
  3574. /**
  3575. * M400: Finish all moves
  3576. */
  3577. inline void gcode_M400() { st_synchronize(); }
  3578. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3579. /**
  3580. * M401: Engage Z Servo endstop if available
  3581. */
  3582. inline void gcode_M401() { deploy_z_probe(); }
  3583. /**
  3584. * M402: Retract Z Servo endstop if enabled
  3585. */
  3586. inline void gcode_M402() { stow_z_probe(); }
  3587. #endif
  3588. #ifdef FILAMENT_SENSOR
  3589. /**
  3590. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3591. */
  3592. inline void gcode_M404() {
  3593. #if HAS_FILWIDTH
  3594. if (code_seen('W')) {
  3595. filament_width_nominal = code_value();
  3596. }
  3597. else {
  3598. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3599. SERIAL_PROTOCOLLN(filament_width_nominal);
  3600. }
  3601. #endif
  3602. }
  3603. /**
  3604. * M405: Turn on filament sensor for control
  3605. */
  3606. inline void gcode_M405() {
  3607. if (code_seen('D')) meas_delay_cm = code_value();
  3608. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3609. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3610. int temp_ratio = widthFil_to_size_ratio();
  3611. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3612. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3613. delay_index1 = delay_index2 = 0;
  3614. }
  3615. filament_sensor = true;
  3616. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3617. //SERIAL_PROTOCOL(filament_width_meas);
  3618. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3619. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3620. }
  3621. /**
  3622. * M406: Turn off filament sensor for control
  3623. */
  3624. inline void gcode_M406() { filament_sensor = false; }
  3625. /**
  3626. * M407: Get measured filament diameter on serial output
  3627. */
  3628. inline void gcode_M407() {
  3629. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3630. SERIAL_PROTOCOLLN(filament_width_meas);
  3631. }
  3632. #endif // FILAMENT_SENSOR
  3633. /**
  3634. * M500: Store settings in EEPROM
  3635. */
  3636. inline void gcode_M500() {
  3637. Config_StoreSettings();
  3638. }
  3639. /**
  3640. * M501: Read settings from EEPROM
  3641. */
  3642. inline void gcode_M501() {
  3643. Config_RetrieveSettings();
  3644. }
  3645. /**
  3646. * M502: Revert to default settings
  3647. */
  3648. inline void gcode_M502() {
  3649. Config_ResetDefault();
  3650. }
  3651. /**
  3652. * M503: print settings currently in memory
  3653. */
  3654. inline void gcode_M503() {
  3655. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3656. }
  3657. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3658. /**
  3659. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3660. */
  3661. inline void gcode_M540() {
  3662. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3663. }
  3664. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3665. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3666. inline void gcode_SET_Z_PROBE_OFFSET() {
  3667. float value;
  3668. if (code_seen('Z')) {
  3669. value = code_value();
  3670. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3671. zprobe_zoffset = -value; // compare w/ line 278 of ConfigurationStore.cpp
  3672. SERIAL_ECHO_START;
  3673. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3674. SERIAL_PROTOCOLLN("");
  3675. }
  3676. else {
  3677. SERIAL_ECHO_START;
  3678. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3679. SERIAL_ECHOPGM(MSG_Z_MIN);
  3680. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3681. SERIAL_ECHOPGM(MSG_Z_MAX);
  3682. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3683. SERIAL_PROTOCOLLN("");
  3684. }
  3685. }
  3686. else {
  3687. SERIAL_ECHO_START;
  3688. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3689. SERIAL_ECHO(-zprobe_zoffset);
  3690. SERIAL_PROTOCOLLN("");
  3691. }
  3692. }
  3693. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3694. #ifdef FILAMENTCHANGEENABLE
  3695. /**
  3696. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3697. */
  3698. inline void gcode_M600() {
  3699. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3700. for (int i=0; i<NUM_AXIS; i++)
  3701. target[i] = lastpos[i] = current_position[i];
  3702. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3703. #ifdef DELTA
  3704. #define RUNPLAN calculate_delta(target); BASICPLAN
  3705. #else
  3706. #define RUNPLAN BASICPLAN
  3707. #endif
  3708. //retract by E
  3709. if (code_seen('E')) target[E_AXIS] += code_value();
  3710. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3711. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3712. #endif
  3713. RUNPLAN;
  3714. //lift Z
  3715. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3716. #ifdef FILAMENTCHANGE_ZADD
  3717. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3718. #endif
  3719. RUNPLAN;
  3720. //move xy
  3721. if (code_seen('X')) target[X_AXIS] = code_value();
  3722. #ifdef FILAMENTCHANGE_XPOS
  3723. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3724. #endif
  3725. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3726. #ifdef FILAMENTCHANGE_YPOS
  3727. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3728. #endif
  3729. RUNPLAN;
  3730. if (code_seen('L')) target[E_AXIS] += code_value();
  3731. #ifdef FILAMENTCHANGE_FINALRETRACT
  3732. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3733. #endif
  3734. RUNPLAN;
  3735. //finish moves
  3736. st_synchronize();
  3737. //disable extruder steppers so filament can be removed
  3738. disable_e0();
  3739. disable_e1();
  3740. disable_e2();
  3741. disable_e3();
  3742. delay(100);
  3743. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3744. uint8_t cnt = 0;
  3745. while (!lcd_clicked()) {
  3746. cnt++;
  3747. manage_heater();
  3748. manage_inactivity(true);
  3749. lcd_update();
  3750. if (cnt == 0) {
  3751. #if BEEPER > 0
  3752. OUT_WRITE(BEEPER,HIGH);
  3753. delay(3);
  3754. WRITE(BEEPER,LOW);
  3755. delay(3);
  3756. #else
  3757. #if !defined(LCD_FEEDBACK_FREQUENCY_HZ) || !defined(LCD_FEEDBACK_FREQUENCY_DURATION_MS)
  3758. lcd_buzz(1000/6, 100);
  3759. #else
  3760. lcd_buzz(LCD_FEEDBACK_FREQUENCY_DURATION_MS, LCD_FEEDBACK_FREQUENCY_HZ);
  3761. #endif
  3762. #endif
  3763. }
  3764. } // while(!lcd_clicked)
  3765. //return to normal
  3766. if (code_seen('L')) target[E_AXIS] -= code_value();
  3767. #ifdef FILAMENTCHANGE_FINALRETRACT
  3768. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3769. #endif
  3770. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3771. plan_set_e_position(current_position[E_AXIS]);
  3772. RUNPLAN; //should do nothing
  3773. lcd_reset_alert_level();
  3774. #ifdef DELTA
  3775. calculate_delta(lastpos);
  3776. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3777. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3778. #else
  3779. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3780. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3781. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3782. #endif
  3783. #ifdef FILAMENT_RUNOUT_SENSOR
  3784. filrunoutEnqued = false;
  3785. #endif
  3786. }
  3787. #endif // FILAMENTCHANGEENABLE
  3788. #ifdef DUAL_X_CARRIAGE
  3789. /**
  3790. * M605: Set dual x-carriage movement mode
  3791. *
  3792. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3793. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3794. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3795. * millimeters x-offset and an optional differential hotend temperature of
  3796. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3797. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3798. *
  3799. * Note: the X axis should be homed after changing dual x-carriage mode.
  3800. */
  3801. inline void gcode_M605() {
  3802. st_synchronize();
  3803. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3804. switch(dual_x_carriage_mode) {
  3805. case DXC_DUPLICATION_MODE:
  3806. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3807. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3808. SERIAL_ECHO_START;
  3809. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3810. SERIAL_ECHO(" ");
  3811. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3812. SERIAL_ECHO(",");
  3813. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3814. SERIAL_ECHO(" ");
  3815. SERIAL_ECHO(duplicate_extruder_x_offset);
  3816. SERIAL_ECHO(",");
  3817. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3818. break;
  3819. case DXC_FULL_CONTROL_MODE:
  3820. case DXC_AUTO_PARK_MODE:
  3821. break;
  3822. default:
  3823. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3824. break;
  3825. }
  3826. active_extruder_parked = false;
  3827. extruder_duplication_enabled = false;
  3828. delayed_move_time = 0;
  3829. }
  3830. #endif // DUAL_X_CARRIAGE
  3831. /**
  3832. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3833. */
  3834. inline void gcode_M907() {
  3835. #if HAS_DIGIPOTSS
  3836. for (int i=0;i<NUM_AXIS;i++)
  3837. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3838. if (code_seen('B')) digipot_current(4, code_value());
  3839. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3840. #endif
  3841. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3842. if (code_seen('X')) digipot_current(0, code_value());
  3843. #endif
  3844. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3845. if (code_seen('Z')) digipot_current(1, code_value());
  3846. #endif
  3847. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3848. if (code_seen('E')) digipot_current(2, code_value());
  3849. #endif
  3850. #ifdef DIGIPOT_I2C
  3851. // this one uses actual amps in floating point
  3852. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3853. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3854. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3855. #endif
  3856. }
  3857. #if HAS_DIGIPOTSS
  3858. /**
  3859. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3860. */
  3861. inline void gcode_M908() {
  3862. digitalPotWrite(
  3863. code_seen('P') ? code_value() : 0,
  3864. code_seen('S') ? code_value() : 0
  3865. );
  3866. }
  3867. #endif // HAS_DIGIPOTSS
  3868. #if HAS_MICROSTEPS
  3869. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3870. inline void gcode_M350() {
  3871. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3872. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3873. if(code_seen('B')) microstep_mode(4,code_value());
  3874. microstep_readings();
  3875. }
  3876. /**
  3877. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3878. * S# determines MS1 or MS2, X# sets the pin high/low.
  3879. */
  3880. inline void gcode_M351() {
  3881. if (code_seen('S')) switch(code_value_long()) {
  3882. case 1:
  3883. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3884. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3885. break;
  3886. case 2:
  3887. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3888. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3889. break;
  3890. }
  3891. microstep_readings();
  3892. }
  3893. #endif // HAS_MICROSTEPS
  3894. /**
  3895. * M999: Restart after being stopped
  3896. */
  3897. inline void gcode_M999() {
  3898. Stopped = false;
  3899. lcd_reset_alert_level();
  3900. gcode_LastN = Stopped_gcode_LastN;
  3901. FlushSerialRequestResend();
  3902. }
  3903. inline void gcode_T() {
  3904. tmp_extruder = code_value();
  3905. if (tmp_extruder >= EXTRUDERS) {
  3906. SERIAL_ECHO_START;
  3907. SERIAL_ECHO("T");
  3908. SERIAL_ECHO(tmp_extruder);
  3909. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3910. }
  3911. else {
  3912. #if EXTRUDERS > 1
  3913. bool make_move = false;
  3914. #endif
  3915. if (code_seen('F')) {
  3916. #if EXTRUDERS > 1
  3917. make_move = true;
  3918. #endif
  3919. next_feedrate = code_value();
  3920. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3921. }
  3922. #if EXTRUDERS > 1
  3923. if (tmp_extruder != active_extruder) {
  3924. // Save current position to return to after applying extruder offset
  3925. memcpy(destination, current_position, sizeof(destination));
  3926. #ifdef DUAL_X_CARRIAGE
  3927. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  3928. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3929. // Park old head: 1) raise 2) move to park position 3) lower
  3930. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3931. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3932. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3933. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  3934. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  3935. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  3936. st_synchronize();
  3937. }
  3938. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  3939. current_position[Y_AXIS] = current_position[Y_AXIS] -
  3940. extruder_offset[Y_AXIS][active_extruder] +
  3941. extruder_offset[Y_AXIS][tmp_extruder];
  3942. current_position[Z_AXIS] = current_position[Z_AXIS] -
  3943. extruder_offset[Z_AXIS][active_extruder] +
  3944. extruder_offset[Z_AXIS][tmp_extruder];
  3945. active_extruder = tmp_extruder;
  3946. // This function resets the max/min values - the current position may be overwritten below.
  3947. axis_is_at_home(X_AXIS);
  3948. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  3949. current_position[X_AXIS] = inactive_extruder_x_pos;
  3950. inactive_extruder_x_pos = destination[X_AXIS];
  3951. }
  3952. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  3953. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  3954. if (active_extruder == 0 || active_extruder_parked)
  3955. current_position[X_AXIS] = inactive_extruder_x_pos;
  3956. else
  3957. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  3958. inactive_extruder_x_pos = destination[X_AXIS];
  3959. extruder_duplication_enabled = false;
  3960. }
  3961. else {
  3962. // record raised toolhead position for use by unpark
  3963. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  3964. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  3965. active_extruder_parked = true;
  3966. delayed_move_time = 0;
  3967. }
  3968. #else // !DUAL_X_CARRIAGE
  3969. // Offset extruder (only by XY)
  3970. for (int i=X_AXIS; i<=Y_AXIS; i++)
  3971. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  3972. // Set the new active extruder and position
  3973. active_extruder = tmp_extruder;
  3974. #endif // !DUAL_X_CARRIAGE
  3975. #ifdef DELTA
  3976. sync_plan_position_delta();
  3977. #else
  3978. sync_plan_position();
  3979. #endif
  3980. // Move to the old position if 'F' was in the parameters
  3981. if (make_move && !Stopped) prepare_move();
  3982. }
  3983. #ifdef EXT_SOLENOID
  3984. st_synchronize();
  3985. disable_all_solenoids();
  3986. enable_solenoid_on_active_extruder();
  3987. #endif // EXT_SOLENOID
  3988. #endif // EXTRUDERS > 1
  3989. SERIAL_ECHO_START;
  3990. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  3991. SERIAL_PROTOCOLLN((int)active_extruder);
  3992. }
  3993. }
  3994. /**
  3995. * Process Commands and dispatch them to handlers
  3996. * This is called from the main loop()
  3997. */
  3998. void process_commands() {
  3999. if (code_seen('G')) {
  4000. int gCode = code_value_long();
  4001. switch(gCode) {
  4002. // G0, G1
  4003. case 0:
  4004. case 1:
  4005. gcode_G0_G1();
  4006. break;
  4007. // G2, G3
  4008. #ifndef SCARA
  4009. case 2: // G2 - CW ARC
  4010. case 3: // G3 - CCW ARC
  4011. gcode_G2_G3(gCode == 2);
  4012. break;
  4013. #endif
  4014. // G4 Dwell
  4015. case 4:
  4016. gcode_G4();
  4017. break;
  4018. #ifdef FWRETRACT
  4019. case 10: // G10: retract
  4020. case 11: // G11: retract_recover
  4021. gcode_G10_G11(gCode == 10);
  4022. break;
  4023. #endif //FWRETRACT
  4024. case 28: // G28: Home all axes, one at a time
  4025. gcode_G28();
  4026. break;
  4027. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4028. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4029. gcode_G29();
  4030. break;
  4031. #endif
  4032. #ifdef ENABLE_AUTO_BED_LEVELING
  4033. #ifndef Z_PROBE_SLED
  4034. case 30: // G30 Single Z Probe
  4035. gcode_G30();
  4036. break;
  4037. #else // Z_PROBE_SLED
  4038. case 31: // G31: dock the sled
  4039. case 32: // G32: undock the sled
  4040. dock_sled(gCode == 31);
  4041. break;
  4042. #endif // Z_PROBE_SLED
  4043. #endif // ENABLE_AUTO_BED_LEVELING
  4044. case 90: // G90
  4045. relative_mode = false;
  4046. break;
  4047. case 91: // G91
  4048. relative_mode = true;
  4049. break;
  4050. case 92: // G92
  4051. gcode_G92();
  4052. break;
  4053. }
  4054. }
  4055. else if (code_seen('M')) {
  4056. switch( code_value_long() ) {
  4057. #ifdef ULTIPANEL
  4058. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4059. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4060. gcode_M0_M1();
  4061. break;
  4062. #endif // ULTIPANEL
  4063. case 17:
  4064. gcode_M17();
  4065. break;
  4066. #ifdef SDSUPPORT
  4067. case 20: // M20 - list SD card
  4068. gcode_M20(); break;
  4069. case 21: // M21 - init SD card
  4070. gcode_M21(); break;
  4071. case 22: //M22 - release SD card
  4072. gcode_M22(); break;
  4073. case 23: //M23 - Select file
  4074. gcode_M23(); break;
  4075. case 24: //M24 - Start SD print
  4076. gcode_M24(); break;
  4077. case 25: //M25 - Pause SD print
  4078. gcode_M25(); break;
  4079. case 26: //M26 - Set SD index
  4080. gcode_M26(); break;
  4081. case 27: //M27 - Get SD status
  4082. gcode_M27(); break;
  4083. case 28: //M28 - Start SD write
  4084. gcode_M28(); break;
  4085. case 29: //M29 - Stop SD write
  4086. gcode_M29(); break;
  4087. case 30: //M30 <filename> Delete File
  4088. gcode_M30(); break;
  4089. case 32: //M32 - Select file and start SD print
  4090. gcode_M32(); break;
  4091. case 928: //M928 - Start SD write
  4092. gcode_M928(); break;
  4093. #endif //SDSUPPORT
  4094. case 31: //M31 take time since the start of the SD print or an M109 command
  4095. gcode_M31();
  4096. break;
  4097. case 42: //M42 -Change pin status via gcode
  4098. gcode_M42();
  4099. break;
  4100. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4101. case 48: // M48 Z-Probe repeatability
  4102. gcode_M48();
  4103. break;
  4104. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4105. case 104: // M104
  4106. gcode_M104();
  4107. break;
  4108. case 112: // M112 Emergency Stop
  4109. gcode_M112();
  4110. break;
  4111. case 140: // M140 Set bed temp
  4112. gcode_M140();
  4113. break;
  4114. case 105: // M105 Read current temperature
  4115. gcode_M105();
  4116. return;
  4117. break;
  4118. case 109: // M109 Wait for temperature
  4119. gcode_M109();
  4120. break;
  4121. #if HAS_TEMP_BED
  4122. case 190: // M190 - Wait for bed heater to reach target.
  4123. gcode_M190();
  4124. break;
  4125. #endif // HAS_TEMP_BED
  4126. #if HAS_FAN
  4127. case 106: //M106 Fan On
  4128. gcode_M106();
  4129. break;
  4130. case 107: //M107 Fan Off
  4131. gcode_M107();
  4132. break;
  4133. #endif // HAS_FAN
  4134. #ifdef BARICUDA
  4135. // PWM for HEATER_1_PIN
  4136. #if HAS_HEATER_1
  4137. case 126: // M126 valve open
  4138. gcode_M126();
  4139. break;
  4140. case 127: // M127 valve closed
  4141. gcode_M127();
  4142. break;
  4143. #endif // HAS_HEATER_1
  4144. // PWM for HEATER_2_PIN
  4145. #if HAS_HEATER_2
  4146. case 128: // M128 valve open
  4147. gcode_M128();
  4148. break;
  4149. case 129: // M129 valve closed
  4150. gcode_M129();
  4151. break;
  4152. #endif // HAS_HEATER_2
  4153. #endif // BARICUDA
  4154. #if HAS_POWER_SWITCH
  4155. case 80: // M80 - Turn on Power Supply
  4156. gcode_M80();
  4157. break;
  4158. #endif // HAS_POWER_SWITCH
  4159. case 81: // M81 - Turn off Power, including Power Supply, if possible
  4160. gcode_M81();
  4161. break;
  4162. case 82:
  4163. gcode_M82();
  4164. break;
  4165. case 83:
  4166. gcode_M83();
  4167. break;
  4168. case 18: //compatibility
  4169. case 84: // M84
  4170. gcode_M18_M84();
  4171. break;
  4172. case 85: // M85
  4173. gcode_M85();
  4174. break;
  4175. case 92: // M92
  4176. gcode_M92();
  4177. break;
  4178. case 115: // M115
  4179. gcode_M115();
  4180. break;
  4181. case 117: // M117 display message
  4182. gcode_M117();
  4183. break;
  4184. case 114: // M114
  4185. gcode_M114();
  4186. break;
  4187. case 120: // M120
  4188. gcode_M120();
  4189. break;
  4190. case 121: // M121
  4191. gcode_M121();
  4192. break;
  4193. case 119: // M119
  4194. gcode_M119();
  4195. break;
  4196. //TODO: update for all axis, use for loop
  4197. #ifdef BLINKM
  4198. case 150: // M150
  4199. gcode_M150();
  4200. break;
  4201. #endif //BLINKM
  4202. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4203. gcode_M200();
  4204. break;
  4205. case 201: // M201
  4206. gcode_M201();
  4207. break;
  4208. #if 0 // Not used for Sprinter/grbl gen6
  4209. case 202: // M202
  4210. gcode_M202();
  4211. break;
  4212. #endif
  4213. case 203: // M203 max feedrate mm/sec
  4214. gcode_M203();
  4215. break;
  4216. case 204: // M204 acclereration S normal moves T filmanent only moves
  4217. gcode_M204();
  4218. break;
  4219. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4220. gcode_M205();
  4221. break;
  4222. case 206: // M206 additional homing offset
  4223. gcode_M206();
  4224. break;
  4225. #ifdef DELTA
  4226. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4227. gcode_M665();
  4228. break;
  4229. #endif
  4230. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4231. case 666: // M666 set delta / dual endstop adjustment
  4232. gcode_M666();
  4233. break;
  4234. #endif
  4235. #ifdef FWRETRACT
  4236. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4237. gcode_M207();
  4238. break;
  4239. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4240. gcode_M208();
  4241. break;
  4242. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4243. gcode_M209();
  4244. break;
  4245. #endif // FWRETRACT
  4246. #if EXTRUDERS > 1
  4247. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4248. gcode_M218();
  4249. break;
  4250. #endif
  4251. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4252. gcode_M220();
  4253. break;
  4254. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4255. gcode_M221();
  4256. break;
  4257. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4258. gcode_M226();
  4259. break;
  4260. #if NUM_SERVOS > 0
  4261. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4262. gcode_M280();
  4263. break;
  4264. #endif // NUM_SERVOS > 0
  4265. #if defined(LARGE_FLASH) && (BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER))
  4266. case 300: // M300 - Play beep tone
  4267. gcode_M300();
  4268. break;
  4269. #endif // LARGE_FLASH && (BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER)
  4270. #ifdef PIDTEMP
  4271. case 301: // M301
  4272. gcode_M301();
  4273. break;
  4274. #endif // PIDTEMP
  4275. #ifdef PIDTEMPBED
  4276. case 304: // M304
  4277. gcode_M304();
  4278. break;
  4279. #endif // PIDTEMPBED
  4280. #if defined(CHDK) || HAS_PHOTOGRAPH
  4281. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4282. gcode_M240();
  4283. break;
  4284. #endif // CHDK || PHOTOGRAPH_PIN
  4285. #ifdef DOGLCD
  4286. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4287. gcode_M250();
  4288. break;
  4289. #endif // DOGLCD
  4290. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4291. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4292. gcode_M302();
  4293. break;
  4294. #endif // PREVENT_DANGEROUS_EXTRUDE
  4295. case 303: // M303 PID autotune
  4296. gcode_M303();
  4297. break;
  4298. #ifdef SCARA
  4299. case 360: // M360 SCARA Theta pos1
  4300. if (gcode_M360()) return;
  4301. break;
  4302. case 361: // M361 SCARA Theta pos2
  4303. if (gcode_M361()) return;
  4304. break;
  4305. case 362: // M362 SCARA Psi pos1
  4306. if (gcode_M362()) return;
  4307. break;
  4308. case 363: // M363 SCARA Psi pos2
  4309. if (gcode_M363()) return;
  4310. break;
  4311. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4312. if (gcode_M364()) return;
  4313. break;
  4314. case 365: // M365 Set SCARA scaling for X Y Z
  4315. gcode_M365();
  4316. break;
  4317. #endif // SCARA
  4318. case 400: // M400 finish all moves
  4319. gcode_M400();
  4320. break;
  4321. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4322. case 401:
  4323. gcode_M401();
  4324. break;
  4325. case 402:
  4326. gcode_M402();
  4327. break;
  4328. #endif
  4329. #ifdef FILAMENT_SENSOR
  4330. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4331. gcode_M404();
  4332. break;
  4333. case 405: //M405 Turn on filament sensor for control
  4334. gcode_M405();
  4335. break;
  4336. case 406: //M406 Turn off filament sensor for control
  4337. gcode_M406();
  4338. break;
  4339. case 407: //M407 Display measured filament diameter
  4340. gcode_M407();
  4341. break;
  4342. #endif // FILAMENT_SENSOR
  4343. case 500: // M500 Store settings in EEPROM
  4344. gcode_M500();
  4345. break;
  4346. case 501: // M501 Read settings from EEPROM
  4347. gcode_M501();
  4348. break;
  4349. case 502: // M502 Revert to default settings
  4350. gcode_M502();
  4351. break;
  4352. case 503: // M503 print settings currently in memory
  4353. gcode_M503();
  4354. break;
  4355. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4356. case 540:
  4357. gcode_M540();
  4358. break;
  4359. #endif
  4360. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4361. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4362. gcode_SET_Z_PROBE_OFFSET();
  4363. break;
  4364. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4365. #ifdef FILAMENTCHANGEENABLE
  4366. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4367. gcode_M600();
  4368. break;
  4369. #endif // FILAMENTCHANGEENABLE
  4370. #ifdef DUAL_X_CARRIAGE
  4371. case 605:
  4372. gcode_M605();
  4373. break;
  4374. #endif // DUAL_X_CARRIAGE
  4375. case 907: // M907 Set digital trimpot motor current using axis codes.
  4376. gcode_M907();
  4377. break;
  4378. #if HAS_DIGIPOTSS
  4379. case 908: // M908 Control digital trimpot directly.
  4380. gcode_M908();
  4381. break;
  4382. #endif // HAS_DIGIPOTSS
  4383. #if HAS_MICROSTEPS
  4384. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4385. gcode_M350();
  4386. break;
  4387. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4388. gcode_M351();
  4389. break;
  4390. #endif // HAS_MICROSTEPS
  4391. case 999: // M999: Restart after being Stopped
  4392. gcode_M999();
  4393. break;
  4394. }
  4395. }
  4396. else if (code_seen('T')) {
  4397. gcode_T();
  4398. }
  4399. else {
  4400. SERIAL_ECHO_START;
  4401. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4402. SERIAL_ECHO(cmdbuffer[bufindr]);
  4403. SERIAL_ECHOLNPGM("\"");
  4404. }
  4405. ClearToSend();
  4406. }
  4407. void FlushSerialRequestResend() {
  4408. //char cmdbuffer[bufindr][100]="Resend:";
  4409. MYSERIAL.flush();
  4410. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4411. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4412. ClearToSend();
  4413. }
  4414. void ClearToSend() {
  4415. refresh_cmd_timeout();
  4416. #ifdef SDSUPPORT
  4417. if (fromsd[bufindr]) return;
  4418. #endif
  4419. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4420. }
  4421. void get_coordinates() {
  4422. for (int i = 0; i < NUM_AXIS; i++) {
  4423. if (code_seen(axis_codes[i]))
  4424. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4425. else
  4426. destination[i] = current_position[i];
  4427. }
  4428. if (code_seen('F')) {
  4429. next_feedrate = code_value();
  4430. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4431. }
  4432. }
  4433. void get_arc_coordinates() {
  4434. #ifdef SF_ARC_FIX
  4435. bool relative_mode_backup = relative_mode;
  4436. relative_mode = true;
  4437. #endif
  4438. get_coordinates();
  4439. #ifdef SF_ARC_FIX
  4440. relative_mode = relative_mode_backup;
  4441. #endif
  4442. offset[0] = code_seen('I') ? code_value() : 0;
  4443. offset[1] = code_seen('J') ? code_value() : 0;
  4444. }
  4445. void clamp_to_software_endstops(float target[3])
  4446. {
  4447. if (min_software_endstops) {
  4448. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  4449. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  4450. float negative_z_offset = 0;
  4451. #ifdef ENABLE_AUTO_BED_LEVELING
  4452. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset = negative_z_offset + Z_PROBE_OFFSET_FROM_EXTRUDER;
  4453. if (home_offset[Z_AXIS] < 0) negative_z_offset = negative_z_offset + home_offset[Z_AXIS];
  4454. #endif
  4455. if (target[Z_AXIS] < min_pos[Z_AXIS]+negative_z_offset) target[Z_AXIS] = min_pos[Z_AXIS]+negative_z_offset;
  4456. }
  4457. if (max_software_endstops) {
  4458. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  4459. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  4460. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  4461. }
  4462. }
  4463. #ifdef DELTA
  4464. void recalc_delta_settings(float radius, float diagonal_rod) {
  4465. delta_tower1_x = -SIN_60 * radius; // front left tower
  4466. delta_tower1_y = -COS_60 * radius;
  4467. delta_tower2_x = SIN_60 * radius; // front right tower
  4468. delta_tower2_y = -COS_60 * radius;
  4469. delta_tower3_x = 0.0; // back middle tower
  4470. delta_tower3_y = radius;
  4471. delta_diagonal_rod_2 = sq(diagonal_rod);
  4472. }
  4473. void calculate_delta(float cartesian[3]) {
  4474. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4475. - sq(delta_tower1_x-cartesian[X_AXIS])
  4476. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4477. ) + cartesian[Z_AXIS];
  4478. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4479. - sq(delta_tower2_x-cartesian[X_AXIS])
  4480. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4481. ) + cartesian[Z_AXIS];
  4482. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4483. - sq(delta_tower3_x-cartesian[X_AXIS])
  4484. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4485. ) + cartesian[Z_AXIS];
  4486. /*
  4487. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4488. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4489. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4490. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4491. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4492. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4493. */
  4494. }
  4495. #ifdef ENABLE_AUTO_BED_LEVELING
  4496. // Adjust print surface height by linear interpolation over the bed_level array.
  4497. void adjust_delta(float cartesian[3]) {
  4498. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4499. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4500. float h1 = 0.001 - half, h2 = half - 0.001,
  4501. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4502. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4503. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4504. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4505. z1 = bed_level[floor_x + half][floor_y + half],
  4506. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4507. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4508. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4509. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4510. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4511. offset = (1 - ratio_x) * left + ratio_x * right;
  4512. delta[X_AXIS] += offset;
  4513. delta[Y_AXIS] += offset;
  4514. delta[Z_AXIS] += offset;
  4515. /*
  4516. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4517. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4518. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4519. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4520. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4521. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4522. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4523. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4524. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4525. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4526. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4527. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4528. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4529. */
  4530. }
  4531. #endif // ENABLE_AUTO_BED_LEVELING
  4532. #endif // DELTA
  4533. #ifdef MESH_BED_LEVELING
  4534. #if !defined(MIN)
  4535. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4536. #endif // ! MIN
  4537. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4538. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4539. {
  4540. if (!mbl.active) {
  4541. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4542. for(int8_t i=0; i < NUM_AXIS; i++) {
  4543. current_position[i] = destination[i];
  4544. }
  4545. return;
  4546. }
  4547. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4548. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4549. int ix = mbl.select_x_index(x);
  4550. int iy = mbl.select_y_index(y);
  4551. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4552. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4553. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4554. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4555. if (pix == ix && piy == iy) {
  4556. // Start and end on same mesh square
  4557. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4558. for(int8_t i=0; i < NUM_AXIS; i++) {
  4559. current_position[i] = destination[i];
  4560. }
  4561. return;
  4562. }
  4563. float nx, ny, ne, normalized_dist;
  4564. if (ix > pix && (x_splits) & BIT(ix)) {
  4565. nx = mbl.get_x(ix);
  4566. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4567. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4568. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4569. x_splits ^= BIT(ix);
  4570. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4571. nx = mbl.get_x(pix);
  4572. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4573. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4574. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4575. x_splits ^= BIT(pix);
  4576. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4577. ny = mbl.get_y(iy);
  4578. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4579. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4580. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4581. y_splits ^= BIT(iy);
  4582. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4583. ny = mbl.get_y(piy);
  4584. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4585. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4586. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4587. y_splits ^= BIT(piy);
  4588. } else {
  4589. // Already split on a border
  4590. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4591. for(int8_t i=0; i < NUM_AXIS; i++) {
  4592. current_position[i] = destination[i];
  4593. }
  4594. return;
  4595. }
  4596. // Do the split and look for more borders
  4597. destination[X_AXIS] = nx;
  4598. destination[Y_AXIS] = ny;
  4599. destination[E_AXIS] = ne;
  4600. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4601. destination[X_AXIS] = x;
  4602. destination[Y_AXIS] = y;
  4603. destination[E_AXIS] = e;
  4604. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4605. }
  4606. #endif // MESH_BED_LEVELING
  4607. void prepare_move() {
  4608. clamp_to_software_endstops(destination);
  4609. refresh_cmd_timeout();
  4610. #ifdef SCARA //for now same as delta-code
  4611. float difference[NUM_AXIS];
  4612. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4613. float cartesian_mm = sqrt( sq(difference[X_AXIS]) +
  4614. sq(difference[Y_AXIS]) +
  4615. sq(difference[Z_AXIS]));
  4616. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4617. if (cartesian_mm < 0.000001) { return; }
  4618. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4619. int steps = max(1, int(scara_segments_per_second * seconds));
  4620. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4621. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4622. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4623. for (int s = 1; s <= steps; s++) {
  4624. float fraction = float(s) / float(steps);
  4625. for(int8_t i = 0; i < NUM_AXIS; i++) {
  4626. destination[i] = current_position[i] + difference[i] * fraction;
  4627. }
  4628. calculate_delta(destination);
  4629. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4630. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4631. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4632. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4633. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4634. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4635. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4636. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4637. active_extruder);
  4638. }
  4639. #endif // SCARA
  4640. #ifdef DELTA
  4641. float difference[NUM_AXIS];
  4642. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4643. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  4644. sq(difference[Y_AXIS]) +
  4645. sq(difference[Z_AXIS]));
  4646. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4647. if (cartesian_mm < 0.000001) return;
  4648. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  4649. int steps = max(1, int(delta_segments_per_second * seconds));
  4650. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4651. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4652. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4653. for (int s = 1; s <= steps; s++) {
  4654. float fraction = float(s) / float(steps);
  4655. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4656. calculate_delta(destination);
  4657. #ifdef ENABLE_AUTO_BED_LEVELING
  4658. adjust_delta(destination);
  4659. #endif
  4660. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  4661. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  4662. active_extruder);
  4663. }
  4664. #endif // DELTA
  4665. #ifdef DUAL_X_CARRIAGE
  4666. if (active_extruder_parked)
  4667. {
  4668. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  4669. {
  4670. // move duplicate extruder into correct duplication position.
  4671. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4672. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  4673. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4674. sync_plan_position();
  4675. st_synchronize();
  4676. extruder_duplication_enabled = true;
  4677. active_extruder_parked = false;
  4678. }
  4679. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  4680. {
  4681. if (current_position[E_AXIS] == destination[E_AXIS])
  4682. {
  4683. // this is a travel move - skit it but keep track of current position (so that it can later
  4684. // be used as start of first non-travel move)
  4685. if (delayed_move_time != 0xFFFFFFFFUL)
  4686. {
  4687. memcpy(current_position, destination, sizeof(current_position));
  4688. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  4689. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  4690. delayed_move_time = millis();
  4691. return;
  4692. }
  4693. }
  4694. delayed_move_time = 0;
  4695. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4696. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4697. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  4698. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  4699. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  4700. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4701. active_extruder_parked = false;
  4702. }
  4703. }
  4704. #endif //DUAL_X_CARRIAGE
  4705. #if !defined(DELTA) && !defined(SCARA)
  4706. // Do not use feedmultiply for E or Z only moves
  4707. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  4708. line_to_destination();
  4709. } else {
  4710. #ifdef MESH_BED_LEVELING
  4711. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4712. return;
  4713. #else
  4714. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedmultiply/100.0), active_extruder);
  4715. #endif // MESH_BED_LEVELING
  4716. }
  4717. #endif // !(DELTA || SCARA)
  4718. for(int8_t i=0; i < NUM_AXIS; i++) {
  4719. current_position[i] = destination[i];
  4720. }
  4721. }
  4722. void prepare_arc_move(char isclockwise) {
  4723. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4724. // Trace the arc
  4725. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  4726. // As far as the parser is concerned, the position is now == target. In reality the
  4727. // motion control system might still be processing the action and the real tool position
  4728. // in any intermediate location.
  4729. for(int8_t i=0; i < NUM_AXIS; i++) {
  4730. current_position[i] = destination[i];
  4731. }
  4732. refresh_cmd_timeout();
  4733. }
  4734. #if HAS_CONTROLLERFAN
  4735. unsigned long lastMotor = 0; // Last time a motor was turned on
  4736. unsigned long lastMotorCheck = 0; // Last time the state was checked
  4737. void controllerFan() {
  4738. uint32_t ms = millis();
  4739. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4740. lastMotorCheck = ms;
  4741. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4742. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4743. #if EXTRUDERS > 1
  4744. || E1_ENABLE_READ == E_ENABLE_ON
  4745. #if HAS_X2_ENABLE
  4746. || X2_ENABLE_READ == X_ENABLE_ON
  4747. #endif
  4748. #if EXTRUDERS > 2
  4749. || E2_ENABLE_READ == E_ENABLE_ON
  4750. #if EXTRUDERS > 3
  4751. || E3_ENABLE_READ == E_ENABLE_ON
  4752. #endif
  4753. #endif
  4754. #endif
  4755. ) {
  4756. lastMotor = ms; //... set time to NOW so the fan will turn on
  4757. }
  4758. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4759. // allows digital or PWM fan output to be used (see M42 handling)
  4760. digitalWrite(CONTROLLERFAN_PIN, speed);
  4761. analogWrite(CONTROLLERFAN_PIN, speed);
  4762. }
  4763. }
  4764. #endif
  4765. #ifdef SCARA
  4766. void calculate_SCARA_forward_Transform(float f_scara[3])
  4767. {
  4768. // Perform forward kinematics, and place results in delta[3]
  4769. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4770. float x_sin, x_cos, y_sin, y_cos;
  4771. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4772. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4773. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4774. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4775. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4776. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4777. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4778. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4779. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4780. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4781. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4782. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4783. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4784. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4785. }
  4786. void calculate_delta(float cartesian[3]){
  4787. //reverse kinematics.
  4788. // Perform reversed kinematics, and place results in delta[3]
  4789. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4790. float SCARA_pos[2];
  4791. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4792. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4793. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4794. #if (Linkage_1 == Linkage_2)
  4795. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4796. #else
  4797. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4798. #endif
  4799. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4800. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4801. SCARA_K2 = Linkage_2 * SCARA_S2;
  4802. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4803. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4804. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4805. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4806. delta[Z_AXIS] = cartesian[Z_AXIS];
  4807. /*
  4808. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4809. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4810. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4811. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4812. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4813. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4814. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4815. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4816. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4817. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4818. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4819. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4820. SERIAL_ECHOLN(" ");*/
  4821. }
  4822. #endif
  4823. #ifdef TEMP_STAT_LEDS
  4824. static bool blue_led = false;
  4825. static bool red_led = false;
  4826. static uint32_t stat_update = 0;
  4827. void handle_status_leds(void) {
  4828. float max_temp = 0.0;
  4829. if(millis() > stat_update) {
  4830. stat_update += 500; // Update every 0.5s
  4831. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  4832. max_temp = max(max_temp, degHotend(cur_extruder));
  4833. max_temp = max(max_temp, degTargetHotend(cur_extruder));
  4834. }
  4835. #if HAS_TEMP_BED
  4836. max_temp = max(max_temp, degTargetBed());
  4837. max_temp = max(max_temp, degBed());
  4838. #endif
  4839. if((max_temp > 55.0) && (red_led == false)) {
  4840. digitalWrite(STAT_LED_RED, 1);
  4841. digitalWrite(STAT_LED_BLUE, 0);
  4842. red_led = true;
  4843. blue_led = false;
  4844. }
  4845. if((max_temp < 54.0) && (blue_led == false)) {
  4846. digitalWrite(STAT_LED_RED, 0);
  4847. digitalWrite(STAT_LED_BLUE, 1);
  4848. red_led = false;
  4849. blue_led = true;
  4850. }
  4851. }
  4852. }
  4853. #endif
  4854. void disable_all_axes() {
  4855. disable_x();
  4856. disable_y();
  4857. disable_z();
  4858. disable_e0();
  4859. disable_e1();
  4860. disable_e2();
  4861. disable_e3();
  4862. }
  4863. /**
  4864. *
  4865. */
  4866. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4867. #if HAS_FILRUNOUT
  4868. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4869. filrunout();
  4870. #endif
  4871. if (buflen < BUFSIZE - 1) get_command();
  4872. unsigned long ms = millis();
  4873. if (max_inactive_time && ms > previous_millis_cmd + max_inactive_time) kill();
  4874. if (stepper_inactive_time && ms > previous_millis_cmd + stepper_inactive_time
  4875. && !ignore_stepper_queue && !blocks_queued())
  4876. disable_all_axes();
  4877. #ifdef CHDK //Check if pin should be set to LOW after M240 set it to HIGH
  4878. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4879. chdkActive = false;
  4880. WRITE(CHDK, LOW);
  4881. }
  4882. #endif
  4883. #if HAS_KILL
  4884. // Check if the kill button was pressed and wait just in case it was an accidental
  4885. // key kill key press
  4886. // -------------------------------------------------------------------------------
  4887. static int killCount = 0; // make the inactivity button a bit less responsive
  4888. const int KILL_DELAY = 750;
  4889. if (!READ(KILL_PIN))
  4890. killCount++;
  4891. else if (killCount > 0)
  4892. killCount--;
  4893. // Exceeded threshold and we can confirm that it was not accidental
  4894. // KILL the machine
  4895. // ----------------------------------------------------------------
  4896. if (killCount >= KILL_DELAY) kill();
  4897. #endif
  4898. #if HAS_HOME
  4899. // Check to see if we have to home, use poor man's debouncer
  4900. // ---------------------------------------------------------
  4901. static int homeDebounceCount = 0; // poor man's debouncing count
  4902. const int HOME_DEBOUNCE_DELAY = 750;
  4903. if (!READ(HOME_PIN)) {
  4904. if (!homeDebounceCount) {
  4905. enquecommands_P(PSTR("G28"));
  4906. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4907. }
  4908. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4909. homeDebounceCount++;
  4910. else
  4911. homeDebounceCount = 0;
  4912. }
  4913. #endif
  4914. #if HAS_CONTROLLERFAN
  4915. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  4916. #endif
  4917. #ifdef EXTRUDER_RUNOUT_PREVENT
  4918. if (ms > previous_millis_cmd + EXTRUDER_RUNOUT_SECONDS * 1000)
  4919. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  4920. bool oldstatus = E0_ENABLE_READ;
  4921. enable_e0();
  4922. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  4923. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  4924. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  4925. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  4926. current_position[E_AXIS] = oldepos;
  4927. destination[E_AXIS] = oldedes;
  4928. plan_set_e_position(oldepos);
  4929. previous_millis_cmd = ms; // refresh_cmd_timeout()
  4930. st_synchronize();
  4931. E0_ENABLE_WRITE(oldstatus);
  4932. }
  4933. #endif
  4934. #ifdef DUAL_X_CARRIAGE
  4935. // handle delayed move timeout
  4936. if (delayed_move_time && ms > delayed_move_time + 1000 && !Stopped) {
  4937. // travel moves have been received so enact them
  4938. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  4939. memcpy(destination, current_position, sizeof(destination));
  4940. prepare_move();
  4941. }
  4942. #endif
  4943. #ifdef TEMP_STAT_LEDS
  4944. handle_status_leds();
  4945. #endif
  4946. check_axes_activity();
  4947. }
  4948. void kill()
  4949. {
  4950. cli(); // Stop interrupts
  4951. disable_heater();
  4952. disable_all_axes();
  4953. #if HAS_POWER_SWITCH
  4954. pinMode(PS_ON_PIN, INPUT);
  4955. #endif
  4956. SERIAL_ERROR_START;
  4957. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  4958. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  4959. // FMC small patch to update the LCD before ending
  4960. sei(); // enable interrupts
  4961. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  4962. cli(); // disable interrupts
  4963. suicide();
  4964. while(1) { /* Intentionally left empty */ } // Wait for reset
  4965. }
  4966. #ifdef FILAMENT_RUNOUT_SENSOR
  4967. void filrunout()
  4968. {
  4969. if filrunoutEnqued == false {
  4970. filrunoutEnqued = true;
  4971. enquecommand("M600");
  4972. }
  4973. }
  4974. #endif
  4975. void Stop()
  4976. {
  4977. disable_heater();
  4978. if(Stopped == false) {
  4979. Stopped = true;
  4980. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  4981. SERIAL_ERROR_START;
  4982. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  4983. LCD_MESSAGEPGM(MSG_STOPPED);
  4984. }
  4985. }
  4986. bool IsStopped() { return Stopped; };
  4987. #ifdef FAST_PWM_FAN
  4988. void setPwmFrequency(uint8_t pin, int val)
  4989. {
  4990. val &= 0x07;
  4991. switch(digitalPinToTimer(pin))
  4992. {
  4993. #if defined(TCCR0A)
  4994. case TIMER0A:
  4995. case TIMER0B:
  4996. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  4997. // TCCR0B |= val;
  4998. break;
  4999. #endif
  5000. #if defined(TCCR1A)
  5001. case TIMER1A:
  5002. case TIMER1B:
  5003. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5004. // TCCR1B |= val;
  5005. break;
  5006. #endif
  5007. #if defined(TCCR2)
  5008. case TIMER2:
  5009. case TIMER2:
  5010. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5011. TCCR2 |= val;
  5012. break;
  5013. #endif
  5014. #if defined(TCCR2A)
  5015. case TIMER2A:
  5016. case TIMER2B:
  5017. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5018. TCCR2B |= val;
  5019. break;
  5020. #endif
  5021. #if defined(TCCR3A)
  5022. case TIMER3A:
  5023. case TIMER3B:
  5024. case TIMER3C:
  5025. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5026. TCCR3B |= val;
  5027. break;
  5028. #endif
  5029. #if defined(TCCR4A)
  5030. case TIMER4A:
  5031. case TIMER4B:
  5032. case TIMER4C:
  5033. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5034. TCCR4B |= val;
  5035. break;
  5036. #endif
  5037. #if defined(TCCR5A)
  5038. case TIMER5A:
  5039. case TIMER5B:
  5040. case TIMER5C:
  5041. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5042. TCCR5B |= val;
  5043. break;
  5044. #endif
  5045. }
  5046. }
  5047. #endif //FAST_PWM_FAN
  5048. bool setTargetedHotend(int code){
  5049. tmp_extruder = active_extruder;
  5050. if(code_seen('T')) {
  5051. tmp_extruder = code_value();
  5052. if(tmp_extruder >= EXTRUDERS) {
  5053. SERIAL_ECHO_START;
  5054. switch(code){
  5055. case 104:
  5056. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5057. break;
  5058. case 105:
  5059. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5060. break;
  5061. case 109:
  5062. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5063. break;
  5064. case 218:
  5065. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5066. break;
  5067. case 221:
  5068. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5069. break;
  5070. }
  5071. SERIAL_ECHOLN(tmp_extruder);
  5072. return true;
  5073. }
  5074. }
  5075. return false;
  5076. }
  5077. float calculate_volumetric_multiplier(float diameter) {
  5078. if (!volumetric_enabled || diameter == 0) return 1.0;
  5079. float d2 = diameter * 0.5;
  5080. return 1.0 / (M_PI * d2 * d2);
  5081. }
  5082. void calculate_volumetric_multipliers() {
  5083. for (int i=0; i<EXTRUDERS; i++)
  5084. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5085. }