My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

ubl.h 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #ifndef UNIFIED_BED_LEVELING_H
  23. #define UNIFIED_BED_LEVELING_H
  24. #include "MarlinConfig.h"
  25. #if ENABLED(AUTO_BED_LEVELING_UBL)
  26. #include "Marlin.h"
  27. #include "planner.h"
  28. #include "math.h"
  29. #include "vector_3.h"
  30. #include "configuration_store.h"
  31. #define UBL_VERSION "1.01"
  32. #define UBL_OK false
  33. #define UBL_ERR true
  34. #define USE_NOZZLE_AS_REFERENCE 0
  35. #define USE_PROBE_AS_REFERENCE 1
  36. typedef struct {
  37. int8_t x_index, y_index;
  38. float distance; // When populated, the distance from the search location
  39. } mesh_index_pair;
  40. // ubl.cpp
  41. void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  42. void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  43. bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  44. // ubl_motion.cpp
  45. void debug_current_and_destination(const char * const title);
  46. // ubl_G29.cpp
  47. enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
  48. // External references
  49. char *ftostr43sign(const float&, char);
  50. bool ubl_lcd_clicked();
  51. void home_all_axes();
  52. extern uint8_t ubl_cnt;
  53. ///////////////////////////////////////////////////////////////////////////////////////////////////////
  54. #if ENABLED(ULTRA_LCD)
  55. extern char lcd_status_message[];
  56. void lcd_quick_feedback();
  57. #endif
  58. #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  59. #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))
  60. typedef struct {
  61. bool active = false;
  62. float z_offset = 0.0;
  63. int8_t storage_slot = -1;
  64. } ubl_state;
  65. class unified_bed_leveling {
  66. private:
  67. static float last_specified_z;
  68. static int g29_verbose_level,
  69. g29_phase_value,
  70. g29_repetition_cnt,
  71. g29_storage_slot,
  72. g29_map_type,
  73. g29_grid_size;
  74. static bool g29_c_flag, g29_x_flag, g29_y_flag;
  75. static float g29_x_pos, g29_y_pos,
  76. g29_card_thickness,
  77. g29_constant;
  78. #if ENABLED(UBL_G26_MESH_VALIDATION)
  79. static float g26_extrusion_multiplier,
  80. g26_retraction_multiplier,
  81. g26_nozzle,
  82. g26_filament_diameter,
  83. g26_prime_length,
  84. g26_x_pos, g26_y_pos,
  85. g26_ooze_amount,
  86. g26_layer_height;
  87. static int16_t g26_bed_temp,
  88. g26_hotend_temp,
  89. g26_repeats;
  90. static int8_t g26_prime_flag;
  91. static bool g26_continue_with_closest, g26_keep_heaters_on;
  92. #endif
  93. static float measure_point_with_encoder();
  94. static float measure_business_card_thickness(float);
  95. static bool g29_parameter_parsing();
  96. static void find_mean_mesh_height();
  97. static void shift_mesh_height();
  98. static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
  99. static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
  100. static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
  101. static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
  102. static void g29_what_command();
  103. static void g29_eeprom_dump();
  104. static void g29_compare_current_mesh_to_stored_mesh();
  105. static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
  106. static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
  107. static void smart_fill_mesh();
  108. #if ENABLED(UBL_G26_MESH_VALIDATION)
  109. static bool exit_from_g26();
  110. static bool parse_G26_parameters();
  111. static void G26_line_to_destination(const float &feed_rate);
  112. static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
  113. static bool look_for_lines_to_connect();
  114. static bool turn_on_heaters();
  115. static bool prime_nozzle();
  116. static void retract_filament(const float where[XYZE]);
  117. static void recover_filament(const float where[XYZE]);
  118. static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
  119. static void move_to(const float&, const float&, const float&, const float&);
  120. inline static void move_to(const float where[XYZE], const float &de) { move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], de); }
  121. #endif
  122. public:
  123. static void echo_name();
  124. static void report_state();
  125. static void save_ubl_active_state_and_disable();
  126. static void restore_ubl_active_state_and_leave();
  127. static void display_map(const int);
  128. static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, uint16_t[16], bool);
  129. static void reset();
  130. static void invalidate();
  131. static void set_all_mesh_points_to_value(float);
  132. static bool sanity_check();
  133. static void G29() _O0; // O0 for no optimization
  134. static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560
  135. #if ENABLED(UBL_G26_MESH_VALIDATION)
  136. static void G26();
  137. #endif
  138. static ubl_state state;
  139. static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  140. // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
  141. // until determinism prevails
  142. constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
  143. UBL_MESH_MIN_X + 0 * (MESH_X_DIST), UBL_MESH_MIN_X + 1 * (MESH_X_DIST),
  144. UBL_MESH_MIN_X + 2 * (MESH_X_DIST), UBL_MESH_MIN_X + 3 * (MESH_X_DIST),
  145. UBL_MESH_MIN_X + 4 * (MESH_X_DIST), UBL_MESH_MIN_X + 5 * (MESH_X_DIST),
  146. UBL_MESH_MIN_X + 6 * (MESH_X_DIST), UBL_MESH_MIN_X + 7 * (MESH_X_DIST),
  147. UBL_MESH_MIN_X + 8 * (MESH_X_DIST), UBL_MESH_MIN_X + 9 * (MESH_X_DIST),
  148. UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
  149. UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
  150. UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
  151. };
  152. constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
  153. UBL_MESH_MIN_Y + 0 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 1 * (MESH_Y_DIST),
  154. UBL_MESH_MIN_Y + 2 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 3 * (MESH_Y_DIST),
  155. UBL_MESH_MIN_Y + 4 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 5 * (MESH_Y_DIST),
  156. UBL_MESH_MIN_Y + 6 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 7 * (MESH_Y_DIST),
  157. UBL_MESH_MIN_Y + 8 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 9 * (MESH_Y_DIST),
  158. UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
  159. UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
  160. UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
  161. };
  162. static bool g26_debug_flag, has_control_of_lcd_panel;
  163. static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
  164. unified_bed_leveling();
  165. FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
  166. static int8_t get_cell_index_x(const float &x) {
  167. const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
  168. return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1); // -1 is appropriate if we want all movement to the X_MAX
  169. } // position. But with this defined this way, it is possible
  170. // to extrapolate off of this point even further out. Probably
  171. // that is OK because something else should be keeping that from
  172. // happening and should not be worried about at this level.
  173. static int8_t get_cell_index_y(const float &y) {
  174. const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
  175. return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1); // -1 is appropriate if we want all movement to the Y_MAX
  176. } // position. But with this defined this way, it is possible
  177. // to extrapolate off of this point even further out. Probably
  178. // that is OK because something else should be keeping that from
  179. // happening and should not be worried about at this level.
  180. static int8_t find_closest_x_index(const float &x) {
  181. const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
  182. return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
  183. }
  184. static int8_t find_closest_y_index(const float &y) {
  185. const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
  186. return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
  187. }
  188. /**
  189. * z2 --|
  190. * z0 | |
  191. * | | + (z2-z1)
  192. * z1 | | |
  193. * ---+-------------+--------+-- --|
  194. * a1 a0 a2
  195. * |<---delta_a---------->|
  196. *
  197. * calc_z0 is the basis for all the Mesh Based correction. It is used to
  198. * find the expected Z Height at a position between two known Z-Height locations.
  199. *
  200. * It is fairly expensive with its 4 floating point additions and 2 floating point
  201. * multiplications.
  202. */
  203. FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
  204. return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
  205. }
  206. /**
  207. * z_correction_for_x_on_horizontal_mesh_line is an optimization for
  208. * the case where the printer is making a vertical line that only crosses horizontal mesh lines.
  209. */
  210. inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
  211. if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
  212. serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
  213. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
  214. SERIAL_ECHOPAIR(",x1_i=", x1_i);
  215. SERIAL_ECHOPAIR(",yi=", yi);
  216. SERIAL_CHAR(')');
  217. SERIAL_EOL();
  218. return NAN;
  219. }
  220. const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
  221. z1 = z_values[x1_i][yi];
  222. return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
  223. }
  224. //
  225. // See comments above for z_correction_for_x_on_horizontal_mesh_line
  226. //
  227. inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
  228. if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 2)) {
  229. serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
  230. SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
  231. SERIAL_ECHOPAIR(", xi=", xi);
  232. SERIAL_ECHOPAIR(", y1_i=", y1_i);
  233. SERIAL_CHAR(')');
  234. SERIAL_EOL();
  235. return NAN;
  236. }
  237. const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
  238. z1 = z_values[xi][y1_i];
  239. return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
  240. }
  241. /**
  242. * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
  243. * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
  244. * Z-Height at both ends. Then it does a linear interpolation of these heights based
  245. * on the Y position within the cell.
  246. */
  247. static float get_z_correction(const float &lx0, const float &ly0) {
  248. const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
  249. cy = get_cell_index_y(RAW_Y_POSITION(ly0));
  250. if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 2) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 2)) {
  251. SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
  252. SERIAL_ECHOPAIR(", ly0=", ly0);
  253. SERIAL_CHAR(')');
  254. SERIAL_EOL();
  255. #if ENABLED(ULTRA_LCD)
  256. strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
  257. lcd_quick_feedback();
  258. #endif
  259. return NAN; // this used to return state.z_offset
  260. }
  261. const float z1 = calc_z0(RAW_X_POSITION(lx0),
  262. mesh_index_to_xpos(cx), z_values[cx][cy],
  263. mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);
  264. const float z2 = calc_z0(RAW_X_POSITION(lx0),
  265. mesh_index_to_xpos(cx), z_values[cx][cy + 1],
  266. mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);
  267. float z0 = calc_z0(RAW_Y_POSITION(ly0),
  268. mesh_index_to_ypos(cy), z1,
  269. mesh_index_to_ypos(cy + 1), z2);
  270. #if ENABLED(DEBUG_LEVELING_FEATURE)
  271. if (DEBUGGING(MESH_ADJUST)) {
  272. SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
  273. SERIAL_CHAR(',');
  274. SERIAL_ECHO(ly0);
  275. SERIAL_ECHOPGM(") = ");
  276. SERIAL_ECHO_F(z0, 6);
  277. }
  278. #endif
  279. #if ENABLED(DEBUG_LEVELING_FEATURE)
  280. if (DEBUGGING(MESH_ADJUST)) {
  281. SERIAL_ECHOPGM(" >>>---> ");
  282. SERIAL_ECHO_F(z0, 6);
  283. SERIAL_EOL();
  284. }
  285. #endif
  286. if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
  287. z0 = 0.0; // in ubl.z_values[][] and propagate through the
  288. // calculations. If our correction is NAN, we throw it out
  289. // because part of the Mesh is undefined and we don't have the
  290. // information we need to complete the height correction.
  291. #if ENABLED(DEBUG_LEVELING_FEATURE)
  292. if (DEBUGGING(MESH_ADJUST)) {
  293. SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
  294. SERIAL_CHAR(',');
  295. SERIAL_ECHO(ly0);
  296. SERIAL_CHAR(')');
  297. SERIAL_EOL();
  298. }
  299. #endif
  300. }
  301. return z0; // there used to be a +state.z_offset on this line
  302. }
  303. /**
  304. * This function sets the Z leveling fade factor based on the given Z height,
  305. * only re-calculating when necessary.
  306. *
  307. * Returns 1.0 if planner.z_fade_height is 0.0.
  308. * Returns 0.0 if Z is past the specified 'Fade Height'.
  309. */
  310. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  311. static inline float fade_scaling_factor_for_z(const float &lz) {
  312. if (planner.z_fade_height == 0.0) return 1.0;
  313. static float fade_scaling_factor = 1.0;
  314. const float rz = RAW_Z_POSITION(lz);
  315. if (last_specified_z != rz) {
  316. last_specified_z = rz;
  317. fade_scaling_factor =
  318. rz < planner.z_fade_height
  319. ? 1.0 - (rz * planner.inverse_z_fade_height)
  320. : 0.0;
  321. }
  322. return fade_scaling_factor;
  323. }
  324. #else
  325. FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
  326. #endif
  327. FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) {
  328. return i < GRID_MAX_POINTS_X ? pgm_read_float(&_mesh_index_to_xpos[i]) : UBL_MESH_MIN_X + i * (MESH_X_DIST);
  329. }
  330. FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) {
  331. return i < GRID_MAX_POINTS_Y ? pgm_read_float(&_mesh_index_to_ypos[i]) : UBL_MESH_MIN_Y + i * (MESH_Y_DIST);
  332. }
  333. static bool prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate);
  334. static void line_to_destination_cartesian(const float &fr, uint8_t e);
  335. }; // class unified_bed_leveling
  336. extern unified_bed_leveling ubl;
  337. #if ENABLED(UBL_G26_MESH_VALIDATION)
  338. FORCE_INLINE void gcode_G26() { ubl.G26(); }
  339. #endif
  340. FORCE_INLINE void gcode_G29() { ubl.G29(); }
  341. #endif // AUTO_BED_LEVELING_UBL
  342. #endif // UNIFIED_BED_LEVELING_H