123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * planner.h
- *
- * Buffer movement commands and manage the acceleration profile plan
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- */
-
- #ifndef PLANNER_H
- #define PLANNER_H
-
- #include "types.h"
- #include "enum.h"
- #include "Marlin.h"
-
- #if HAS_ABL
- #include "vector_3.h"
- #endif
-
- enum BlockFlagBit {
- // Recalculate trapezoids on entry junction. For optimization.
- BLOCK_BIT_RECALCULATE,
-
- // Nominal speed always reached.
- // i.e., The segment is long enough, so the nominal speed is reachable if accelerating
- // from a safe speed (in consideration of jerking from zero speed).
- BLOCK_BIT_NOMINAL_LENGTH,
-
- // Start from a halt at the start of this block, respecting the maximum allowed jerk.
- BLOCK_BIT_START_FROM_FULL_HALT,
-
- // The block is busy
- BLOCK_BIT_BUSY
- };
-
- enum BlockFlag {
- BLOCK_FLAG_RECALCULATE = _BV(BLOCK_BIT_RECALCULATE),
- BLOCK_FLAG_NOMINAL_LENGTH = _BV(BLOCK_BIT_NOMINAL_LENGTH),
- BLOCK_FLAG_START_FROM_FULL_HALT = _BV(BLOCK_BIT_START_FROM_FULL_HALT),
- BLOCK_FLAG_BUSY = _BV(BLOCK_BIT_BUSY)
- };
-
- /**
- * struct block_t
- *
- * A single entry in the planner buffer.
- * Tracks linear movement over multiple axes.
- *
- * The "nominal" values are as-specified by gcode, and
- * may never actually be reached due to acceleration limits.
- */
- typedef struct {
-
- uint8_t flag; // Block flags (See BlockFlag enum above)
-
- unsigned char active_extruder; // The extruder to move (if E move)
-
- // Fields used by the Bresenham algorithm for tracing the line
- int32_t steps[NUM_AXIS]; // Step count along each axis
- uint32_t step_event_count; // The number of step events required to complete this block
-
- #if ENABLED(MIXING_EXTRUDER)
- uint32_t mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
- #endif
-
- int32_t accelerate_until, // The index of the step event on which to stop acceleration
- decelerate_after, // The index of the step event on which to start decelerating
- acceleration_rate; // The acceleration rate used for acceleration calculation
-
- uint8_t direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
-
- // Advance extrusion
- #if ENABLED(LIN_ADVANCE)
- bool use_advance_lead;
- uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
- #endif
-
- // Fields used by the motion planner to manage acceleration
- float nominal_speed, // The nominal speed for this block in mm/sec
- entry_speed, // Entry speed at previous-current junction in mm/sec
- max_entry_speed, // Maximum allowable junction entry speed in mm/sec
- millimeters, // The total travel of this block in mm
- acceleration; // acceleration mm/sec^2
-
- // Settings for the trapezoid generator
- uint32_t nominal_rate, // The nominal step rate for this block in step_events/sec
- initial_rate, // The jerk-adjusted step rate at start of block
- final_rate, // The minimal rate at exit
- acceleration_steps_per_s2; // acceleration steps/sec^2
-
- #if FAN_COUNT > 0
- uint16_t fan_speed[FAN_COUNT];
- #endif
-
- #if ENABLED(BARICUDA)
- uint8_t valve_pressure, e_to_p_pressure;
- #endif
-
- uint32_t segment_time_us;
-
- } block_t;
-
- #define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))
-
- class Planner {
-
- public:
-
- /**
- * A ring buffer of moves described in steps
- */
- static block_t block_buffer[BLOCK_BUFFER_SIZE];
- static volatile uint8_t block_buffer_head, // Index of the next block to be pushed
- block_buffer_tail;
-
- #if ENABLED(DISTINCT_E_FACTORS)
- static uint8_t last_extruder; // Respond to extruder change
- #endif
-
- static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
-
- static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
- filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
- volumetric_area_nominal, // Nominal cross-sectional area
- volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
- // May be auto-adjusted by a filament width sensor
-
- static float max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
- axis_steps_per_mm[XYZE_N],
- steps_to_mm[XYZE_N];
- static uint32_t max_acceleration_steps_per_s2[XYZE_N],
- max_acceleration_mm_per_s2[XYZE_N]; // Use M201 to override
-
- static uint32_t min_segment_time_us; // Use 'M205 B<µs>' to override
- static float min_feedrate_mm_s,
- acceleration, // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX
- retract_acceleration, // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX
- travel_acceleration, // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
- max_jerk[XYZE], // The largest speed change requiring no acceleration
- min_travel_feedrate_mm_s;
-
- #if HAS_LEVELING
- static bool leveling_active; // Flag that bed leveling is enabled
- #if ABL_PLANAR
- static matrix_3x3 bed_level_matrix; // Transform to compensate for bed level
- #endif
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- static float z_fade_height, inverse_z_fade_height;
- #endif
- #endif
-
- #if ENABLED(LIN_ADVANCE)
- static float extruder_advance_k, advance_ed_ratio;
- #endif
-
- private:
-
- /**
- * The current position of the tool in absolute steps
- * Recalculated if any axis_steps_per_mm are changed by gcode
- */
- static long position[NUM_AXIS];
-
- /**
- * Speed of previous path line segment
- */
- static float previous_speed[NUM_AXIS];
-
- /**
- * Nominal speed of previous path line segment
- */
- static float previous_nominal_speed;
-
- /**
- * Limit where 64bit math is necessary for acceleration calculation
- */
- static uint32_t cutoff_long;
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
- static float last_fade_z;
- #endif
-
- #if ENABLED(DISABLE_INACTIVE_EXTRUDER)
- /**
- * Counters to manage disabling inactive extruders
- */
- static uint8_t g_uc_extruder_last_move[EXTRUDERS];
- #endif // DISABLE_INACTIVE_EXTRUDER
-
- #ifdef XY_FREQUENCY_LIMIT
- // Used for the frequency limit
- #define MAX_FREQ_TIME_US (uint32_t)(1000000.0 / XY_FREQUENCY_LIMIT)
- // Old direction bits. Used for speed calculations
- static unsigned char old_direction_bits;
- // Segment times (in µs). Used for speed calculations
- static uint32_t axis_segment_time_us[2][3];
- #endif
-
- #if ENABLED(LIN_ADVANCE)
- static float position_float[NUM_AXIS];
- #endif
-
- #if ENABLED(ULTRA_LCD)
- volatile static uint32_t block_buffer_runtime_us; //Theoretical block buffer runtime in µs
- #endif
-
- public:
-
- /**
- * Instance Methods
- */
-
- Planner();
-
- void init();
-
- /**
- * Static (class) Methods
- */
-
- static void reset_acceleration_rates();
- static void refresh_positioning();
-
- FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
- e_factor[e] = volumetric_multiplier[e] * flow_percentage[e] * 0.01;
- }
-
- // Manage fans, paste pressure, etc.
- static void check_axes_activity();
-
- static void calculate_volumetric_multipliers();
-
- /**
- * Number of moves currently in the planner
- */
- static uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }
-
- static bool is_full() { return (block_buffer_tail == BLOCK_MOD(block_buffer_head + 1)); }
-
- #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
-
- /**
- * Get the Z leveling fade factor based on the given Z height,
- * re-calculating only when needed.
- *
- * Returns 1.0 if planner.z_fade_height is 0.0.
- * Returns 0.0 if Z is past the specified 'Fade Height'.
- */
- inline static float fade_scaling_factor_for_z(const float &rz) {
- static float z_fade_factor = 1.0;
- if (z_fade_height) {
- if (rz >= z_fade_height) return 0.0;
- if (last_fade_z != rz) {
- last_fade_z = rz;
- z_fade_factor = 1.0 - rz * inverse_z_fade_height;
- }
- return z_fade_factor;
- }
- return 1.0;
- }
-
- FORCE_INLINE static void force_fade_recalc() { last_fade_z = -999.999; }
-
- FORCE_INLINE static void set_z_fade_height(const float &zfh) {
- z_fade_height = zfh > 0 ? zfh : 0;
- inverse_z_fade_height = RECIPROCAL(z_fade_height);
- force_fade_recalc();
- }
-
- FORCE_INLINE static bool leveling_active_at_z(const float &rz) {
- return !z_fade_height || rz < z_fade_height;
- }
-
- #else
-
- FORCE_INLINE static float fade_scaling_factor_for_z(const float &rz) {
- UNUSED(rz);
- return 1.0;
- }
-
- FORCE_INLINE static bool leveling_active_at_z(const float &rz) { UNUSED(rz); return true; }
-
- #endif
-
- #if PLANNER_LEVELING
-
- #define ARG_X float rx
- #define ARG_Y float ry
- #define ARG_Z float rz
-
- /**
- * Apply leveling to transform a cartesian position
- * as it will be given to the planner and steppers.
- */
- static void apply_leveling(float &rx, float &ry, float &rz);
- static void apply_leveling(float raw[XYZ]) { apply_leveling(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS]); }
- static void unapply_leveling(float raw[XYZ]);
-
- #else
-
- #define ARG_X const float &rx
- #define ARG_Y const float &ry
- #define ARG_Z const float &rz
-
- #endif
-
- /**
- * Planner::_buffer_line
- *
- * Add a new direct linear movement to the buffer.
- *
- * Leveling and kinematics should be applied ahead of this.
- *
- * a,b,c,e - target position in mm or degrees
- * fr_mm_s - (target) speed of the move (mm/s)
- * extruder - target extruder
- */
- static void _buffer_line(const float &a, const float &b, const float &c, const float &e, float fr_mm_s, const uint8_t extruder);
-
- static void _set_position_mm(const float &a, const float &b, const float &c, const float &e);
-
- /**
- * Add a new linear movement to the buffer.
- * The target is NOT translated to delta/scara
- *
- * Leveling will be applied to input on cartesians.
- * Kinematic machines should call buffer_line_kinematic (for leveled moves).
- * (Cartesians may also call buffer_line_kinematic.)
- *
- * rx,ry,rz,e - target position in mm or degrees
- * fr_mm_s - (target) speed of the move (mm/s)
- * extruder - target extruder
- */
- static FORCE_INLINE void buffer_line(ARG_X, ARG_Y, ARG_Z, const float &e, const float &fr_mm_s, const uint8_t extruder) {
- #if PLANNER_LEVELING && IS_CARTESIAN
- apply_leveling(rx, ry, rz);
- #endif
- _buffer_line(rx, ry, rz, e, fr_mm_s, extruder);
- }
-
- /**
- * Add a new linear movement to the buffer.
- * The target is cartesian, it's translated to delta/scara if
- * needed.
- *
- * cart - x,y,z,e CARTESIAN target in mm
- * fr_mm_s - (target) speed of the move (mm/s)
- * extruder - target extruder
- */
- static FORCE_INLINE void buffer_line_kinematic(const float cart[XYZE], const float &fr_mm_s, const uint8_t extruder) {
- #if PLANNER_LEVELING
- float raw[XYZ] = { cart[X_AXIS], cart[Y_AXIS], cart[Z_AXIS] };
- apply_leveling(raw);
- #else
- const float * const raw = cart;
- #endif
- #if IS_KINEMATIC
- inverse_kinematics(raw);
- _buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], cart[E_AXIS], fr_mm_s, extruder);
- #else
- _buffer_line(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], cart[E_AXIS], fr_mm_s, extruder);
- #endif
- }
-
- /**
- * Set the planner.position and individual stepper positions.
- * Used by G92, G28, G29, and other procedures.
- *
- * Multiplies by axis_steps_per_mm[] and does necessary conversion
- * for COREXY / COREXZ / COREYZ to set the corresponding stepper positions.
- *
- * Clears previous speed values.
- */
- static FORCE_INLINE void set_position_mm(ARG_X, ARG_Y, ARG_Z, const float &e) {
- #if PLANNER_LEVELING && IS_CARTESIAN
- apply_leveling(rx, ry, rz);
- #endif
- _set_position_mm(rx, ry, rz, e);
- }
- static void set_position_mm_kinematic(const float position[NUM_AXIS]);
- static void set_position_mm(const AxisEnum axis, const float &v);
- static FORCE_INLINE void set_z_position_mm(const float &z) { set_position_mm(Z_AXIS, z); }
- static FORCE_INLINE void set_e_position_mm(const float &e) { set_position_mm(AxisEnum(E_AXIS), e); }
-
- /**
- * Sync from the stepper positions. (e.g., after an interrupted move)
- */
- static void sync_from_steppers();
-
- /**
- * Does the buffer have any blocks queued?
- */
- static bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }
-
- /**
- * "Discards" the block and "releases" the memory.
- * Called when the current block is no longer needed.
- */
- static void discard_current_block() {
- if (blocks_queued())
- block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
- }
-
- /**
- * The current block. NULL if the buffer is empty.
- * This also marks the block as busy.
- */
- static block_t* get_current_block() {
- if (blocks_queued()) {
- block_t* block = &block_buffer[block_buffer_tail];
- #if ENABLED(ULTRA_LCD)
- block_buffer_runtime_us -= block->segment_time_us; // We can't be sure how long an active block will take, so don't count it.
- #endif
- SBI(block->flag, BLOCK_BIT_BUSY);
- return block;
- }
- else {
- #if ENABLED(ULTRA_LCD)
- clear_block_buffer_runtime(); // paranoia. Buffer is empty now - so reset accumulated time to zero.
- #endif
- return NULL;
- }
- }
-
- #if ENABLED(ULTRA_LCD)
-
- static uint16_t block_buffer_runtime() {
- CRITICAL_SECTION_START
- millis_t bbru = block_buffer_runtime_us;
- CRITICAL_SECTION_END
- // To translate µs to ms a division by 1000 would be required.
- // We introduce 2.4% error here by dividing by 1024.
- // Doesn't matter because block_buffer_runtime_us is already too small an estimation.
- bbru >>= 10;
- // limit to about a minute.
- NOMORE(bbru, 0xFFFFul);
- return bbru;
- }
-
- static void clear_block_buffer_runtime(){
- CRITICAL_SECTION_START
- block_buffer_runtime_us = 0;
- CRITICAL_SECTION_END
- }
-
- #endif
-
- #if ENABLED(AUTOTEMP)
- static float autotemp_min, autotemp_max, autotemp_factor;
- static bool autotemp_enabled;
- static void getHighESpeed();
- static void autotemp_M104_M109();
- #endif
-
- private:
-
- /**
- * Get the index of the next / previous block in the ring buffer
- */
- static int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
- static int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
-
- /**
- * Calculate the distance (not time) it takes to accelerate
- * from initial_rate to target_rate using the given acceleration:
- */
- static float estimate_acceleration_distance(const float &initial_rate, const float &target_rate, const float &accel) {
- if (accel == 0) return 0; // accel was 0, set acceleration distance to 0
- return (sq(target_rate) - sq(initial_rate)) / (accel * 2);
- }
-
- /**
- * Return the point at which you must start braking (at the rate of -'acceleration') if
- * you start at 'initial_rate', accelerate (until reaching the point), and want to end at
- * 'final_rate' after traveling 'distance'.
- *
- * This is used to compute the intersection point between acceleration and deceleration
- * in cases where the "trapezoid" has no plateau (i.e., never reaches maximum speed)
- */
- static float intersection_distance(const float &initial_rate, const float &final_rate, const float &accel, const float &distance) {
- if (accel == 0) return 0; // accel was 0, set intersection distance to 0
- return (accel * 2 * distance - sq(initial_rate) + sq(final_rate)) / (accel * 4);
- }
-
- /**
- * Calculate the maximum allowable speed at this point, in order
- * to reach 'target_velocity' using 'acceleration' within a given
- * 'distance'.
- */
- static float max_allowable_speed(const float &accel, const float &target_velocity, const float &distance) {
- return SQRT(sq(target_velocity) - 2 * accel * distance);
- }
-
- static void calculate_trapezoid_for_block(block_t* const block, const float &entry_factor, const float &exit_factor);
-
- static void reverse_pass_kernel(block_t* const current, const block_t *next);
- static void forward_pass_kernel(const block_t *previous, block_t* const current);
-
- static void reverse_pass();
- static void forward_pass();
-
- static void recalculate_trapezoids();
-
- static void recalculate();
-
- };
-
- #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
-
- extern Planner planner;
-
- #endif // PLANNER_H
|