My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

Marlin_main.cpp 451KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071100721007310074100751007610077100781007910080100811008210083100841008510086100871008810089100901009110092100931009410095100961009710098100991010010101101021010310104101051010610107101081010910110101111011210113101141011510116101171011810119101201012110122101231012410125101261012710128101291013010131101321013310134101351013610137101381013910140101411014210143101441014510146101471014810149101501015110152101531015410155101561015710158101591016010161101621016310164101651016610167101681016910170101711017210173101741017510176101771017810179101801018110182101831018410185101861018710188101891019010191101921019310194101951019610197101981019910200102011020210203102041020510206102071020810209102101021110212102131021410215102161021710218102191022010221102221022310224102251022610227102281022910230102311023210233102341023510236102371023810239102401024110242102431024410245102461024710248102491025010251102521025310254102551025610257102581025910260102611026210263102641026510266102671026810269102701027110272102731027410275102761027710278102791028010281102821028310284102851028610287102881028910290102911029210293102941029510296102971029810299103001030110302103031030410305103061030710308103091031010311103121031310314103151031610317103181031910320103211032210323103241032510326103271032810329103301033110332103331033410335103361033710338103391034010341103421034310344103451034610347103481034910350103511035210353103541035510356103571035810359103601036110362103631036410365103661036710368103691037010371103721037310374103751037610377103781037910380103811038210383103841038510386103871038810389103901039110392103931039410395103961039710398103991040010401104021040310404104051040610407104081040910410104111041210413104141041510416104171041810419104201042110422104231042410425104261042710428104291043010431104321043310434104351043610437104381043910440104411044210443104441044510446104471044810449104501045110452104531045410455104561045710458104591046010461104621046310464104651046610467104681046910470104711047210473104741047510476104771047810479104801048110482104831048410485104861048710488104891049010491104921049310494104951049610497104981049910500105011050210503105041050510506105071050810509105101051110512105131051410515105161051710518105191052010521105221052310524105251052610527105281052910530105311053210533105341053510536105371053810539105401054110542105431054410545105461054710548105491055010551105521055310554105551055610557105581055910560105611056210563105641056510566105671056810569105701057110572105731057410575105761057710578105791058010581105821058310584105851058610587105881058910590105911059210593105941059510596105971059810599106001060110602106031060410605106061060710608106091061010611106121061310614106151061610617106181061910620106211062210623106241062510626106271062810629106301063110632106331063410635106361063710638106391064010641106421064310644106451064610647106481064910650106511065210653106541065510656106571065810659106601066110662106631066410665106661066710668106691067010671106721067310674106751067610677106781067910680106811068210683106841068510686106871068810689106901069110692106931069410695106961069710698106991070010701107021070310704107051070610707107081070910710107111071210713107141071510716107171071810719107201072110722107231072410725107261072710728107291073010731107321073310734107351073610737107381073910740107411074210743107441074510746107471074810749107501075110752107531075410755107561075710758107591076010761107621076310764107651076610767107681076910770107711077210773107741077510776107771077810779107801078110782107831078410785107861078710788107891079010791107921079310794107951079610797107981079910800108011080210803108041080510806108071080810809108101081110812108131081410815108161081710818108191082010821108221082310824108251082610827108281082910830108311083210833108341083510836108371083810839108401084110842108431084410845108461084710848108491085010851108521085310854108551085610857108581085910860108611086210863108641086510866108671086810869108701087110872108731087410875108761087710878108791088010881108821088310884108851088610887108881088910890108911089210893108941089510896108971089810899109001090110902109031090410905109061090710908109091091010911109121091310914109151091610917109181091910920109211092210923109241092510926109271092810929109301093110932109331093410935109361093710938109391094010941109421094310944109451094610947109481094910950109511095210953109541095510956109571095810959109601096110962109631096410965109661096710968109691097010971109721097310974109751097610977109781097910980109811098210983109841098510986109871098810989109901099110992109931099410995109961099710998109991100011001110021100311004110051100611007110081100911010110111101211013110141101511016110171101811019110201102111022110231102411025110261102711028110291103011031110321103311034110351103611037110381103911040110411104211043110441104511046110471104811049110501105111052110531105411055110561105711058110591106011061110621106311064110651106611067110681106911070110711107211073110741107511076110771107811079110801108111082110831108411085110861108711088110891109011091110921109311094110951109611097110981109911100111011110211103111041110511106111071110811109111101111111112111131111411115111161111711118111191112011121111221112311124111251112611127111281112911130111311113211133111341113511136111371113811139111401114111142111431114411145111461114711148111491115011151111521115311154111551115611157111581115911160111611116211163111641116511166111671116811169111701117111172111731117411175111761117711178111791118011181111821118311184111851118611187111881118911190111911119211193111941119511196111971119811199112001120111202112031120411205112061120711208112091121011211112121121311214112151121611217112181121911220112211122211223112241122511226112271122811229112301123111232112331123411235112361123711238112391124011241112421124311244112451124611247112481124911250112511125211253112541125511256112571125811259112601126111262112631126411265112661126711268112691127011271112721127311274112751127611277112781127911280112811128211283112841128511286112871128811289112901129111292112931129411295112961129711298112991130011301113021130311304113051130611307113081130911310113111131211313113141131511316113171131811319113201132111322113231132411325113261132711328113291133011331113321133311334113351133611337113381133911340113411134211343113441134511346113471134811349113501135111352113531135411355113561135711358113591136011361113621136311364113651136611367113681136911370113711137211373113741137511376113771137811379113801138111382113831138411385113861138711388113891139011391113921139311394113951139611397113981139911400114011140211403114041140511406114071140811409114101141111412114131141411415114161141711418114191142011421114221142311424114251142611427114281142911430114311143211433114341143511436114371143811439114401144111442114431144411445114461144711448114491145011451114521145311454114551145611457114581145911460114611146211463114641146511466114671146811469114701147111472114731147411475114761147711478114791148011481114821148311484114851148611487114881148911490114911149211493114941149511496114971149811499115001150111502115031150411505115061150711508115091151011511115121151311514115151151611517115181151911520115211152211523115241152511526115271152811529115301153111532115331153411535115361153711538115391154011541115421154311544115451154611547115481154911550115511155211553115541155511556115571155811559115601156111562115631156411565115661156711568115691157011571115721157311574115751157611577115781157911580115811158211583115841158511586115871158811589115901159111592115931159411595115961159711598115991160011601116021160311604116051160611607116081160911610116111161211613116141161511616116171161811619116201162111622116231162411625116261162711628116291163011631116321163311634116351163611637116381163911640116411164211643116441164511646116471164811649116501165111652116531165411655116561165711658116591166011661116621166311664116651166611667116681166911670116711167211673116741167511676116771167811679116801168111682116831168411685116861168711688116891169011691116921169311694116951169611697116981169911700117011170211703117041170511706117071170811709117101171111712117131171411715117161171711718117191172011721117221172311724117251172611727117281172911730117311173211733117341173511736117371173811739117401174111742117431174411745117461174711748117491175011751117521175311754117551175611757117581175911760117611176211763117641176511766117671176811769117701177111772117731177411775117761177711778117791178011781117821178311784117851178611787117881178911790117911179211793117941179511796117971179811799118001180111802118031180411805118061180711808118091181011811118121181311814118151181611817118181181911820118211182211823118241182511826118271182811829118301183111832118331183411835118361183711838118391184011841118421184311844118451184611847118481184911850118511185211853118541185511856118571185811859118601186111862118631186411865118661186711868118691187011871118721187311874118751187611877118781187911880118811188211883118841188511886118871188811889118901189111892118931189411895118961189711898118991190011901119021190311904119051190611907119081190911910119111191211913119141191511916119171191811919119201192111922119231192411925119261192711928119291193011931119321193311934119351193611937119381193911940119411194211943119441194511946119471194811949119501195111952119531195411955119561195711958119591196011961119621196311964119651196611967119681196911970119711197211973119741197511976119771197811979119801198111982119831198411985119861198711988119891199011991119921199311994119951199611997119981199912000120011200212003120041200512006120071200812009120101201112012120131201412015120161201712018120191202012021120221202312024120251202612027120281202912030120311203212033120341203512036120371203812039120401204112042120431204412045120461204712048120491205012051120521205312054120551205612057120581205912060120611206212063120641206512066120671206812069120701207112072120731207412075120761207712078120791208012081120821208312084120851208612087120881208912090120911209212093120941209512096120971209812099121001210112102121031210412105121061210712108121091211012111121121211312114121151211612117121181211912120121211212212123121241212512126121271212812129121301213112132121331213412135121361213712138121391214012141121421214312144121451214612147121481214912150121511215212153121541215512156121571215812159121601216112162121631216412165121661216712168121691217012171121721217312174121751217612177121781217912180121811218212183121841218512186121871218812189121901219112192121931219412195121961219712198121991220012201122021220312204122051220612207122081220912210122111221212213122141221512216122171221812219122201222112222122231222412225122261222712228122291223012231122321223312234122351223612237122381223912240122411224212243122441224512246122471224812249122501225112252122531225412255122561225712258122591226012261122621226312264122651226612267122681226912270122711227212273122741227512276122771227812279122801228112282122831228412285122861228712288122891229012291122921229312294122951229612297122981229912300123011230212303123041230512306123071230812309123101231112312123131231412315123161231712318123191232012321123221232312324123251232612327123281232912330123311233212333123341233512336123371233812339123401234112342123431234412345123461234712348123491235012351123521235312354123551235612357123581235912360123611236212363123641236512366123671236812369123701237112372123731237412375123761237712378123791238012381123821238312384123851238612387123881238912390123911239212393123941239512396123971239812399124001240112402124031240412405124061240712408124091241012411124121241312414124151241612417124181241912420124211242212423124241242512426124271242812429124301243112432124331243412435124361243712438124391244012441124421244312444124451244612447124481244912450124511245212453124541245512456124571245812459124601246112462124631246412465124661246712468124691247012471124721247312474124751247612477124781247912480124811248212483124841248512486124871248812489124901249112492124931249412495124961249712498124991250012501125021250312504125051250612507125081250912510125111251212513125141251512516125171251812519125201252112522125231252412525125261252712528125291253012531125321253312534125351253612537125381253912540125411254212543125441254512546125471254812549125501255112552125531255412555125561255712558125591256012561125621256312564125651256612567125681256912570125711257212573125741257512576125771257812579125801258112582125831258412585125861258712588125891259012591125921259312594125951259612597125981259912600126011260212603126041260512606126071260812609126101261112612126131261412615126161261712618126191262012621126221262312624126251262612627126281262912630126311263212633126341263512636126371263812639126401264112642126431264412645126461264712648126491265012651126521265312654126551265612657126581265912660126611266212663126641266512666126671266812669126701267112672126731267412675126761267712678126791268012681126821268312684126851268612687126881268912690126911269212693126941269512696126971269812699127001270112702127031270412705127061270712708127091271012711127121271312714127151271612717127181271912720127211272212723127241272512726127271272812729127301273112732127331273412735127361273712738127391274012741127421274312744127451274612747127481274912750127511275212753127541275512756127571275812759127601276112762127631276412765127661276712768127691277012771127721277312774127751277612777127781277912780127811278212783127841278512786127871278812789127901279112792127931279412795127961279712798127991280012801128021280312804128051280612807128081280912810128111281212813128141281512816128171281812819128201282112822128231282412825128261282712828128291283012831128321283312834128351283612837128381283912840128411284212843128441284512846128471284812849128501285112852128531285412855128561285712858128591286012861128621286312864128651286612867128681286912870128711287212873128741287512876128771287812879128801288112882128831288412885128861288712888128891289012891128921289312894128951289612897128981289912900129011290212903129041290512906129071290812909129101291112912129131291412915129161291712918129191292012921129221292312924129251292612927129281292912930129311293212933129341293512936129371293812939129401294112942129431294412945129461294712948129491295012951129521295312954129551295612957129581295912960129611296212963129641296512966129671296812969129701297112972129731297412975129761297712978129791298012981129821298312984129851298612987129881298912990129911299212993129941299512996129971299812999130001300113002130031300413005130061300713008130091301013011130121301313014130151301613017130181301913020130211302213023130241302513026130271302813029130301303113032130331303413035130361303713038130391304013041130421304313044130451304613047130481304913050130511305213053130541305513056130571305813059130601306113062130631306413065130661306713068130691307013071130721307313074130751307613077130781307913080130811308213083130841308513086130871308813089130901309113092130931309413095130961309713098130991310013101131021310313104131051310613107131081310913110131111311213113131141311513116131171311813119131201312113122131231312413125131261312713128131291313013131131321313313134131351313613137131381313913140131411314213143131441314513146131471314813149131501315113152131531315413155131561315713158131591316013161131621316313164131651316613167131681316913170131711317213173131741317513176131771317813179131801318113182131831318413185131861318713188131891319013191131921319313194131951319613197131981319913200132011320213203132041320513206132071320813209132101321113212132131321413215132161321713218132191322013221132221322313224132251322613227132281322913230132311323213233132341323513236132371323813239132401324113242132431324413245132461324713248132491325013251132521325313254132551325613257132581325913260132611326213263132641326513266132671326813269132701327113272132731327413275132761327713278132791328013281132821328313284132851328613287132881328913290132911329213293132941329513296132971329813299133001330113302133031330413305133061330713308133091331013311133121331313314133151331613317133181331913320133211332213323133241332513326133271332813329133301333113332133331333413335133361333713338133391334013341133421334313344133451334613347133481334913350133511335213353133541335513356133571335813359133601336113362133631336413365133661336713368133691337013371133721337313374133751337613377133781337913380133811338213383133841338513386133871338813389133901339113392133931339413395133961339713398133991340013401134021340313404134051340613407134081340913410134111341213413134141341513416134171341813419134201342113422134231342413425134261342713428134291343013431134321343313434134351343613437134381343913440134411344213443134441344513446134471344813449134501345113452134531345413455134561345713458134591346013461134621346313464134651346613467134681346913470134711347213473134741347513476134771347813479134801348113482134831348413485134861348713488134891349013491134921349313494134951349613497134981349913500135011350213503135041350513506135071350813509135101351113512135131351413515135161351713518135191352013521135221352313524135251352613527135281352913530135311353213533135341353513536135371353813539135401354113542135431354413545135461354713548135491355013551135521355313554135551355613557135581355913560135611356213563135641356513566135671356813569135701357113572135731357413575135761357713578135791358013581135821358313584135851358613587135881358913590135911359213593135941359513596135971359813599136001360113602136031360413605136061360713608136091361013611136121361313614136151361613617136181361913620136211362213623136241362513626136271362813629136301363113632136331363413635136361363713638136391364013641136421364313644136451364613647136481364913650136511365213653136541365513656136571365813659136601366113662136631366413665136661366713668136691367013671136721367313674136751367613677136781367913680136811368213683136841368513686136871368813689136901369113692136931369413695136961369713698136991370013701137021370313704137051370613707137081370913710137111371213713137141371513716137171371813719137201372113722137231372413725137261372713728137291373013731137321373313734137351373613737137381373913740137411374213743137441374513746137471374813749137501375113752137531375413755137561375713758137591376013761137621376313764137651376613767137681376913770137711377213773137741377513776137771377813779137801378113782137831378413785137861378713788137891379013791137921379313794137951379613797137981379913800138011380213803138041380513806138071380813809138101381113812138131381413815138161381713818138191382013821138221382313824138251382613827138281382913830138311383213833138341383513836138371383813839138401384113842138431384413845138461384713848138491385013851138521385313854138551385613857138581385913860138611386213863138641386513866138671386813869138701387113872138731387413875138761387713878138791388013881138821388313884138851388613887138881388913890138911389213893138941389513896138971389813899139001390113902139031390413905139061390713908139091391013911139121391313914139151391613917139181391913920139211392213923139241392513926139271392813929139301393113932139331393413935139361393713938139391394013941139421394313944139451394613947139481394913950139511395213953139541395513956139571395813959139601396113962139631396413965139661396713968139691397013971139721397313974139751397613977139781397913980139811398213983139841398513986139871398813989139901399113992139931399413995139961399713998139991400014001140021400314004140051400614007140081400914010140111401214013140141401514016140171401814019140201402114022140231402414025140261402714028140291403014031140321403314034140351403614037140381403914040140411404214043140441404514046140471404814049140501405114052140531405414055140561405714058140591406014061140621406314064140651406614067
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. */
  29. /**
  30. * -----------------
  31. * G-Codes in Marlin
  32. * -----------------
  33. *
  34. * Helpful G-code references:
  35. * - http://linuxcnc.org/handbook/gcode/g-code.html
  36. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  37. *
  38. * Help to document Marlin's G-codes online:
  39. * - http://reprap.org/wiki/G-code
  40. * - https://github.com/MarlinFirmware/MarlinDocumentation
  41. *
  42. * -----------------
  43. *
  44. * "G" Codes
  45. *
  46. * G0 -> G1
  47. * G1 - Coordinated Movement X Y Z E
  48. * G2 - CW ARC
  49. * G3 - CCW ARC
  50. * G4 - Dwell S<seconds> or P<milliseconds>
  51. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  52. * G10 - Retract filament according to settings of M207 (Requires FWRETRACT)
  53. * G11 - Retract recover filament according to settings of M208 (Requires FWRETRACT)
  54. * G12 - Clean tool (Requires NOZZLE_CLEAN_FEATURE)
  55. * G17 - Select Plane XY (Requires CNC_WORKSPACE_PLANES)
  56. * G18 - Select Plane ZX (Requires CNC_WORKSPACE_PLANES)
  57. * G19 - Select Plane YZ (Requires CNC_WORKSPACE_PLANES)
  58. * G20 - Set input units to inches (Requires INCH_MODE_SUPPORT)
  59. * G21 - Set input units to millimeters (Requires INCH_MODE_SUPPORT)
  60. * G26 - Mesh Validation Pattern (Requires G26_MESH_VALIDATION)
  61. * G27 - Park Nozzle (Requires NOZZLE_PARK_FEATURE)
  62. * G28 - Home one or more axes
  63. * G29 - Start or continue the bed leveling probe procedure (Requires bed leveling)
  64. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  65. * G31 - Dock sled (Z_PROBE_SLED only)
  66. * G32 - Undock sled (Z_PROBE_SLED only)
  67. * G33 - Delta Auto-Calibration (Requires DELTA_AUTO_CALIBRATION)
  68. * G38 - Probe in any direction using the Z_MIN_PROBE (Requires G38_PROBE_TARGET)
  69. * G42 - Coordinated move to a mesh point (Requires MESH_BED_LEVELING, AUTO_BED_LEVELING_BLINEAR, or AUTO_BED_LEVELING_UBL)
  70. * G90 - Use Absolute Coordinates
  71. * G91 - Use Relative Coordinates
  72. * G92 - Set current position to coordinates given
  73. *
  74. * "M" Codes
  75. *
  76. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  77. * M1 -> M0
  78. * M3 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to clockwise
  79. * M4 - Turn laser/spindle on, set spindle/laser speed/power, set rotation to counter-clockwise
  80. * M5 - Turn laser/spindle off
  81. * M17 - Enable/Power all stepper motors
  82. * M18 - Disable all stepper motors; same as M84
  83. * M20 - List SD card. (Requires SDSUPPORT)
  84. * M21 - Init SD card. (Requires SDSUPPORT)
  85. * M22 - Release SD card. (Requires SDSUPPORT)
  86. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  87. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  88. * M25 - Pause SD print. (Requires SDSUPPORT)
  89. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  90. * M27 - Report SD print status. (Requires SDSUPPORT)
  91. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  92. * M29 - Stop SD write. (Requires SDSUPPORT)
  93. * M30 - Delete file from SD: "M30 /path/file.gco"
  94. * M31 - Report time since last M109 or SD card start to serial.
  95. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  96. * Use P to run other files as sub-programs: "M32 P !filename#"
  97. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  98. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  99. * M34 - Set SD Card sorting options. (Requires SDCARD_SORT_ALPHA)
  100. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  101. * M43 - Display pin status, watch pins for changes, watch endstops & toggle LED, Z servo probe test, toggle pins
  102. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  103. * M75 - Start the print job timer.
  104. * M76 - Pause the print job timer.
  105. * M77 - Stop the print job timer.
  106. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  107. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY > 0)
  108. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY > 0)
  109. * M82 - Set E codes absolute (default).
  110. * M83 - Set E codes relative while in Absolute (G90) mode.
  111. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  112. * duration after which steppers should turn off. S0 disables the timeout.
  113. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  114. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  115. * M100 - Watch Free Memory (for debugging) (Requires M100_FREE_MEMORY_WATCHER)
  116. * M104 - Set extruder target temp.
  117. * M105 - Report current temperatures.
  118. * M106 - Set print fan speed.
  119. * M107 - Print fan off.
  120. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  121. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  122. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  123. * If AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  124. * M110 - Set the current line number. (Used by host printing)
  125. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  126. * M112 - Emergency stop.
  127. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  128. * M114 - Report current position.
  129. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  130. * M117 - Display a message on the controller screen. (Requires an LCD)
  131. * M118 - Display a message in the host console.
  132. * M119 - Report endstops status.
  133. * M120 - Enable endstops detection.
  134. * M121 - Disable endstops detection.
  135. * M125 - Save current position and move to filament change position. (Requires PARK_HEAD_ON_PAUSE)
  136. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  137. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  138. * M128 - EtoP Open. (Requires BARICUDA)
  139. * M129 - EtoP Closed. (Requires BARICUDA)
  140. * M140 - Set bed target temp. S<temp>
  141. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  142. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  143. * M150 - Set Status LED Color as R<red> U<green> B<blue> P<bright>. Values 0-255. (Requires BLINKM, RGB_LED, RGBW_LED, NEOPIXEL_LED, or PCA9632).
  144. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  145. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  146. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  147. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  148. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  149. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  150. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  151. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  152. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  153. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  154. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  155. * M205 - Set advanced settings. Current units apply:
  156. S<print> T<travel> minimum speeds
  157. B<minimum segment time>
  158. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  159. * M206 - Set additional homing offset. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  160. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  161. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  162. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  163. Every normal extrude-only move will be classified as retract depending on the direction.
  164. * M211 - Enable, Disable, and/or Report software endstops: S<0|1> (Requires MIN_SOFTWARE_ENDSTOPS or MAX_SOFTWARE_ENDSTOPS)
  165. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  166. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  167. * M221 - Set Flow Percentage: "M221 S<percent>"
  168. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  169. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  170. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  171. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  172. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  173. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  174. * M290 - Babystepping (Requires BABYSTEPPING)
  175. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  176. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  177. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  178. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  179. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  180. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  181. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  182. * M355 - Set Case Light on/off and set brightness. (Requires CASE_LIGHT_PIN)
  183. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  184. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  185. * M400 - Finish all moves.
  186. * M401 - Lower Z probe. (Requires a probe)
  187. * M402 - Raise Z probe. (Requires a probe)
  188. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  189. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  190. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  191. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  192. * M410 - Quickstop. Abort all planned moves.
  193. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  194. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING or AUTO_BED_LEVELING_UBL)
  195. * M428 - Set the home_offset based on the current_position. Nearest edge applies. (Disabled by NO_WORKSPACE_OFFSETS or DELTA)
  196. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  197. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  198. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  199. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  200. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  201. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires ADVANCED_PAUSE_FEATURE)
  202. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s> A<rod A trim mm> B<rod B trim mm> C<rod C trim mm> I<tower A trim angle> J<tower B trim angle> K<tower C trim angle>" (Requires DELTA)
  203. * M666 - Set delta endstop adjustment. (Requires DELTA)
  204. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  205. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  206. * M860 - Report the position of position encoder modules.
  207. * M861 - Report the status of position encoder modules.
  208. * M862 - Perform an axis continuity test for position encoder modules.
  209. * M863 - Perform steps-per-mm calibration for position encoder modules.
  210. * M864 - Change position encoder module I2C address.
  211. * M865 - Check position encoder module firmware version.
  212. * M866 - Report or reset position encoder module error count.
  213. * M867 - Enable/disable or toggle error correction for position encoder modules.
  214. * M868 - Report or set position encoder module error correction threshold.
  215. * M869 - Report position encoder module error.
  216. * M900 - Get and/or Set advance K factor and WH/D ratio. (Requires LIN_ADVANCE)
  217. * M906 - Set or get motor current in milliamps using axis codes X, Y, Z, E. Report values if no axis codes given. (Requires HAVE_TMC2130)
  218. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  219. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  220. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  221. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  222. * M911 - Report stepper driver overtemperature pre-warn condition. (Requires HAVE_TMC2130)
  223. * M912 - Clear stepper driver overtemperature pre-warn condition flag. (Requires HAVE_TMC2130)
  224. * M913 - Set HYBRID_THRESHOLD speed. (Requires HYBRID_THRESHOLD)
  225. * M914 - Set SENSORLESS_HOMING sensitivity. (Requires SENSORLESS_HOMING)
  226. *
  227. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  228. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  229. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  230. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  231. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  232. *
  233. * ************ Custom codes - This can change to suit future G-code regulations
  234. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  235. * M999 - Restart after being stopped by error
  236. *
  237. * "T" Codes
  238. *
  239. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  240. *
  241. */
  242. #include "Marlin.h"
  243. #include "ultralcd.h"
  244. #include "planner.h"
  245. #include "stepper.h"
  246. #include "endstops.h"
  247. #include "temperature.h"
  248. #include "cardreader.h"
  249. #include "configuration_store.h"
  250. #include "language.h"
  251. #include "pins_arduino.h"
  252. #include "math.h"
  253. #include "nozzle.h"
  254. #include "duration_t.h"
  255. #include "types.h"
  256. #include "gcode.h"
  257. #if HAS_ABL
  258. #include "vector_3.h"
  259. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  260. #include "least_squares_fit.h"
  261. #endif
  262. #elif ENABLED(MESH_BED_LEVELING)
  263. #include "mesh_bed_leveling.h"
  264. #endif
  265. #if ENABLED(BEZIER_CURVE_SUPPORT)
  266. #include "planner_bezier.h"
  267. #endif
  268. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  269. #include "buzzer.h"
  270. #endif
  271. #if ENABLED(USE_WATCHDOG)
  272. #include "watchdog.h"
  273. #endif
  274. #if ENABLED(MAX7219_DEBUG)
  275. #include "Max7219_Debug_LEDs.h"
  276. #endif
  277. #if ENABLED(NEOPIXEL_LED)
  278. #include <Adafruit_NeoPixel.h>
  279. #endif
  280. #if ENABLED(BLINKM)
  281. #include "blinkm.h"
  282. #include "Wire.h"
  283. #endif
  284. #if ENABLED(PCA9632)
  285. #include "pca9632.h"
  286. #endif
  287. #if HAS_SERVOS
  288. #include "servo.h"
  289. #endif
  290. #if HAS_DIGIPOTSS
  291. #include <SPI.h>
  292. #endif
  293. #if ENABLED(DAC_STEPPER_CURRENT)
  294. #include "stepper_dac.h"
  295. #endif
  296. #if ENABLED(EXPERIMENTAL_I2CBUS)
  297. #include "twibus.h"
  298. #endif
  299. #if ENABLED(I2C_POSITION_ENCODERS)
  300. #include "I2CPositionEncoder.h"
  301. #endif
  302. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  303. #include "endstop_interrupts.h"
  304. #endif
  305. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  306. void gcode_M100();
  307. void M100_dump_routine(const char * const title, const char *start, const char *end);
  308. #endif
  309. #if ENABLED(G26_MESH_VALIDATION)
  310. bool g26_debug_flag; // =false
  311. void gcode_G26();
  312. #endif
  313. #if ENABLED(SDSUPPORT)
  314. CardReader card;
  315. #endif
  316. #if ENABLED(EXPERIMENTAL_I2CBUS)
  317. TWIBus i2c;
  318. #endif
  319. #if ENABLED(G38_PROBE_TARGET)
  320. bool G38_move = false,
  321. G38_endstop_hit = false;
  322. #endif
  323. #if ENABLED(AUTO_BED_LEVELING_UBL)
  324. #include "ubl.h"
  325. extern bool defer_return_to_status;
  326. unified_bed_leveling ubl;
  327. #define UBL_MESH_VALID !( ( ubl.z_values[0][0] == ubl.z_values[0][1] && ubl.z_values[0][1] == ubl.z_values[0][2] \
  328. && ubl.z_values[1][0] == ubl.z_values[1][1] && ubl.z_values[1][1] == ubl.z_values[1][2] \
  329. && ubl.z_values[2][0] == ubl.z_values[2][1] && ubl.z_values[2][1] == ubl.z_values[2][2] \
  330. && ubl.z_values[0][0] == 0 && ubl.z_values[1][0] == 0 && ubl.z_values[2][0] == 0 ) \
  331. || isnan(ubl.z_values[0][0]))
  332. #endif
  333. #if ENABLED(NEOPIXEL_LED)
  334. #if NEOPIXEL_TYPE == NEO_RGB || NEOPIXEL_TYPE == NEO_RBG || NEOPIXEL_TYPE == NEO_GRB || NEOPIXEL_TYPE == NEO_GBR || NEOPIXEL_TYPE == NEO_BRG || NEOPIXEL_TYPE == NEO_BGR
  335. #define NEO_WHITE 255, 255, 255
  336. #else
  337. #define NEO_WHITE 0, 0, 0, 255
  338. #endif
  339. #endif
  340. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632)
  341. #define LED_WHITE 255, 255, 255
  342. #elif ENABLED(RGBW_LED)
  343. #define LED_WHITE 0, 0, 0, 255
  344. #endif
  345. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  346. int8_t active_coordinate_system = -1; // machine space
  347. float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ];
  348. #endif
  349. bool Running = true;
  350. uint8_t marlin_debug_flags = DEBUG_NONE;
  351. /**
  352. * Cartesian Current Position
  353. * Used to track the native machine position as moves are queued.
  354. * Used by 'buffer_line_to_current_position' to do a move after changing it.
  355. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  356. */
  357. float current_position[XYZE] = { 0.0 };
  358. /**
  359. * Cartesian Destination
  360. * The destination for a move, filled in by G-code movement commands,
  361. * and expected by functions like 'prepare_move_to_destination'.
  362. * Set with 'gcode_get_destination' or 'set_destination_from_current'.
  363. */
  364. float destination[XYZE] = { 0.0 };
  365. /**
  366. * axis_homed
  367. * Flags that each linear axis was homed.
  368. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  369. *
  370. * axis_known_position
  371. * Flags that the position is known in each linear axis. Set when homed.
  372. * Cleared whenever a stepper powers off, potentially losing its position.
  373. */
  374. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  375. /**
  376. * GCode line number handling. Hosts may opt to include line numbers when
  377. * sending commands to Marlin, and lines will be checked for sequentiality.
  378. * M110 N<int> sets the current line number.
  379. */
  380. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  381. /**
  382. * GCode Command Queue
  383. * A simple ring buffer of BUFSIZE command strings.
  384. *
  385. * Commands are copied into this buffer by the command injectors
  386. * (immediate, serial, sd card) and they are processed sequentially by
  387. * the main loop. The process_next_command function parses the next
  388. * command and hands off execution to individual handler functions.
  389. */
  390. uint8_t commands_in_queue = 0; // Count of commands in the queue
  391. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  392. cmd_queue_index_w = 0; // Ring buffer write position
  393. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  394. char command_queue[BUFSIZE][MAX_CMD_SIZE]; // Necessary so M100 Free Memory Dumper can show us the commands and any corruption
  395. #else // This can be collapsed back to the way it was soon.
  396. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  397. #endif
  398. /**
  399. * Next Injected Command pointer. NULL if no commands are being injected.
  400. * Used by Marlin internally to ensure that commands initiated from within
  401. * are enqueued ahead of any pending serial or sd card commands.
  402. */
  403. static const char *injected_commands_P = NULL;
  404. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  405. TempUnit input_temp_units = TEMPUNIT_C;
  406. #endif
  407. /**
  408. * Feed rates are often configured with mm/m
  409. * but the planner and stepper like mm/s units.
  410. */
  411. static const float homing_feedrate_mm_s[] PROGMEM = {
  412. #if ENABLED(DELTA)
  413. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  414. #else
  415. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  416. #endif
  417. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  418. };
  419. FORCE_INLINE float homing_feedrate(const AxisEnum a) { return pgm_read_float(&homing_feedrate_mm_s[a]); }
  420. float feedrate_mm_s = MMM_TO_MMS(1500.0);
  421. static float saved_feedrate_mm_s;
  422. int16_t feedrate_percentage = 100, saved_feedrate_percentage;
  423. // Initialized by settings.load()
  424. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  425. #if HAS_WORKSPACE_OFFSET
  426. #if HAS_POSITION_SHIFT
  427. // The distance that XYZ has been offset by G92. Reset by G28.
  428. float position_shift[XYZ] = { 0 };
  429. #endif
  430. #if HAS_HOME_OFFSET
  431. // This offset is added to the configured home position.
  432. // Set by M206, M428, or menu item. Saved to EEPROM.
  433. float home_offset[XYZ] = { 0 };
  434. #endif
  435. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  436. // The above two are combined to save on computes
  437. float workspace_offset[XYZ] = { 0 };
  438. #endif
  439. #endif
  440. // Software Endstops are based on the configured limits.
  441. float soft_endstop_min[XYZ] = { X_MIN_BED, Y_MIN_BED, Z_MIN_POS },
  442. soft_endstop_max[XYZ] = { X_MAX_BED, Y_MAX_BED, Z_MAX_POS };
  443. #if HAS_SOFTWARE_ENDSTOPS
  444. bool soft_endstops_enabled = true;
  445. #if IS_KINEMATIC
  446. float soft_endstop_radius, soft_endstop_radius_2;
  447. #endif
  448. #endif
  449. #if FAN_COUNT > 0
  450. int16_t fanSpeeds[FAN_COUNT] = { 0 };
  451. #if ENABLED(EXTRA_FAN_SPEED)
  452. int16_t old_fanSpeeds[FAN_COUNT],
  453. new_fanSpeeds[FAN_COUNT];
  454. #endif
  455. #if ENABLED(PROBING_FANS_OFF)
  456. bool fans_paused = false;
  457. int16_t paused_fanSpeeds[FAN_COUNT] = { 0 };
  458. #endif
  459. #endif
  460. // The active extruder (tool). Set with T<extruder> command.
  461. uint8_t active_extruder = 0;
  462. // Relative Mode. Enable with G91, disable with G90.
  463. static bool relative_mode = false;
  464. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  465. volatile bool wait_for_heatup = true;
  466. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  467. #if HAS_RESUME_CONTINUE
  468. volatile bool wait_for_user = false;
  469. #endif
  470. const char axis_codes[XYZE] = { 'X', 'Y', 'Z', 'E' };
  471. // Number of characters read in the current line of serial input
  472. static int serial_count = 0;
  473. // Inactivity shutdown
  474. millis_t previous_cmd_ms = 0;
  475. static millis_t max_inactive_time = 0;
  476. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  477. // Print Job Timer
  478. #if ENABLED(PRINTCOUNTER)
  479. PrintCounter print_job_timer = PrintCounter();
  480. #else
  481. Stopwatch print_job_timer = Stopwatch();
  482. #endif
  483. // Buzzer - I2C on the LCD or a BEEPER_PIN
  484. #if ENABLED(LCD_USE_I2C_BUZZER)
  485. #define BUZZ(d,f) lcd_buzz(d, f)
  486. #elif PIN_EXISTS(BEEPER)
  487. Buzzer buzzer;
  488. #define BUZZ(d,f) buzzer.tone(d, f)
  489. #else
  490. #define BUZZ(d,f) NOOP
  491. #endif
  492. static uint8_t target_extruder;
  493. #if HAS_BED_PROBE
  494. float zprobe_zoffset; // Initialized by settings.load()
  495. #endif
  496. #if HAS_ABL
  497. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  498. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  499. #elif defined(XY_PROBE_SPEED)
  500. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  501. #else
  502. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  503. #endif
  504. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  505. #if ENABLED(DELTA)
  506. #define ADJUST_DELTA(V) \
  507. if (planner.leveling_active) { \
  508. const float zadj = bilinear_z_offset(V); \
  509. delta[A_AXIS] += zadj; \
  510. delta[B_AXIS] += zadj; \
  511. delta[C_AXIS] += zadj; \
  512. }
  513. #else
  514. #define ADJUST_DELTA(V) if (planner.leveling_active) { delta[Z_AXIS] += bilinear_z_offset(V); }
  515. #endif
  516. #elif IS_KINEMATIC
  517. #define ADJUST_DELTA(V) NOOP
  518. #endif
  519. #if ENABLED(X_DUAL_ENDSTOPS)
  520. float x_endstop_adj; // Initialized by settings.load()
  521. #endif
  522. #if ENABLED(Y_DUAL_ENDSTOPS)
  523. float y_endstop_adj; // Initialized by settings.load()
  524. #endif
  525. #if ENABLED(Z_DUAL_ENDSTOPS)
  526. float z_endstop_adj; // Initialized by settings.load()
  527. #endif
  528. // Extruder offsets
  529. #if HOTENDS > 1
  530. float hotend_offset[XYZ][HOTENDS]; // Initialized by settings.load()
  531. #endif
  532. #if HAS_Z_SERVO_ENDSTOP
  533. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  534. #endif
  535. #if ENABLED(BARICUDA)
  536. uint8_t baricuda_valve_pressure = 0,
  537. baricuda_e_to_p_pressure = 0;
  538. #endif
  539. #if ENABLED(FWRETRACT) // Initialized by settings.load()...
  540. bool autoretract_enabled, // M209 S - Autoretract switch
  541. retracted[EXTRUDERS] = { false }; // Which extruders are currently retracted
  542. float retract_length, // M207 S - G10 Retract length
  543. retract_feedrate_mm_s, // M207 F - G10 Retract feedrate
  544. retract_zlift, // M207 Z - G10 Retract hop size
  545. retract_recover_length, // M208 S - G11 Recover length
  546. retract_recover_feedrate_mm_s, // M208 F - G11 Recover feedrate
  547. swap_retract_length, // M207 W - G10 Swap Retract length
  548. swap_retract_recover_length, // M208 W - G11 Swap Recover length
  549. swap_retract_recover_feedrate_mm_s; // M208 R - G11 Swap Recover feedrate
  550. #if EXTRUDERS > 1
  551. bool retracted_swap[EXTRUDERS] = { false }; // Which extruders are swap-retracted
  552. #else
  553. constexpr bool retracted_swap[1] = { false };
  554. #endif
  555. #endif // FWRETRACT
  556. #if HAS_POWER_SWITCH
  557. bool powersupply_on =
  558. #if ENABLED(PS_DEFAULT_OFF)
  559. false
  560. #else
  561. true
  562. #endif
  563. ;
  564. #endif
  565. #if ENABLED(DELTA)
  566. float delta[ABC];
  567. // Initialized by settings.load()
  568. float delta_height,
  569. delta_endstop_adj[ABC] = { 0 },
  570. delta_radius,
  571. delta_tower_angle_trim[ABC],
  572. delta_tower[ABC][2],
  573. delta_diagonal_rod,
  574. delta_calibration_radius,
  575. delta_diagonal_rod_2_tower[ABC],
  576. delta_segments_per_second,
  577. delta_clip_start_height = Z_MAX_POS;
  578. float delta_safe_distance_from_top();
  579. #endif
  580. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  581. int bilinear_grid_spacing[2], bilinear_start[2];
  582. float bilinear_grid_factor[2],
  583. z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  584. #endif
  585. #if IS_SCARA
  586. // Float constants for SCARA calculations
  587. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  588. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  589. L2_2 = sq(float(L2));
  590. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  591. delta[ABC];
  592. #endif
  593. float cartes[XYZ] = { 0 };
  594. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  595. bool filament_sensor = false; // M405 turns on filament sensor control. M406 turns it off.
  596. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404.
  597. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  598. uint8_t meas_delay_cm = MEASUREMENT_DELAY_CM, // Distance delay setting
  599. measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  600. int8_t filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  601. #endif
  602. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  603. static bool filament_ran_out = false;
  604. #endif
  605. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  606. AdvancedPauseMenuResponse advanced_pause_menu_response;
  607. #endif
  608. #if ENABLED(MIXING_EXTRUDER)
  609. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  610. #if MIXING_VIRTUAL_TOOLS > 1
  611. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  612. #endif
  613. #endif
  614. static bool send_ok[BUFSIZE];
  615. #if HAS_SERVOS
  616. Servo servo[NUM_SERVOS];
  617. #define MOVE_SERVO(I, P) servo[I].move(P)
  618. #if HAS_Z_SERVO_ENDSTOP
  619. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  620. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  621. #endif
  622. #endif
  623. #ifdef CHDK
  624. millis_t chdkHigh = 0;
  625. bool chdkActive = false;
  626. #endif
  627. #ifdef AUTOMATIC_CURRENT_CONTROL
  628. bool auto_current_control = 0;
  629. #endif
  630. #if ENABLED(PID_EXTRUSION_SCALING)
  631. int lpq_len = 20;
  632. #endif
  633. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  634. MarlinBusyState busy_state = NOT_BUSY;
  635. static millis_t next_busy_signal_ms = 0;
  636. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  637. #else
  638. #define host_keepalive() NOOP
  639. #endif
  640. #if ENABLED(I2C_POSITION_ENCODERS)
  641. I2CPositionEncodersMgr I2CPEM;
  642. uint8_t blockBufferIndexRef = 0;
  643. millis_t lastUpdateMillis;
  644. #endif
  645. #if ENABLED(CNC_WORKSPACE_PLANES)
  646. static WorkspacePlane workspace_plane = PLANE_XY;
  647. #endif
  648. FORCE_INLINE float pgm_read_any(const float *p) { return pgm_read_float_near(p); }
  649. FORCE_INLINE signed char pgm_read_any(const signed char *p) { return pgm_read_byte_near(p); }
  650. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  651. static const PROGMEM type array##_P[XYZ] = { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  652. static inline type array(AxisEnum axis) { return pgm_read_any(&array##_P[axis]); } \
  653. typedef void __void_##CONFIG##__
  654. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  655. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  656. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  657. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  658. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  659. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  660. /**
  661. * ***************************************************************************
  662. * ******************************** FUNCTIONS ********************************
  663. * ***************************************************************************
  664. */
  665. void stop();
  666. void get_available_commands();
  667. void process_next_command();
  668. void process_parsed_command();
  669. void prepare_move_to_destination();
  670. void get_cartesian_from_steppers();
  671. void set_current_from_steppers_for_axis(const AxisEnum axis);
  672. #if ENABLED(ARC_SUPPORT)
  673. void plan_arc(float target[XYZE], float* offset, uint8_t clockwise);
  674. #endif
  675. #if ENABLED(BEZIER_CURVE_SUPPORT)
  676. void plan_cubic_move(const float offset[4]);
  677. #endif
  678. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  679. void report_current_position();
  680. void report_current_position_detail();
  681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  682. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  683. serialprintPGM(prefix);
  684. SERIAL_CHAR('(');
  685. SERIAL_ECHO(x);
  686. SERIAL_ECHOPAIR(", ", y);
  687. SERIAL_ECHOPAIR(", ", z);
  688. SERIAL_CHAR(')');
  689. if (suffix) serialprintPGM(suffix); else SERIAL_EOL();
  690. }
  691. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  692. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  693. }
  694. #if HAS_ABL
  695. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  696. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  697. }
  698. #endif
  699. #define DEBUG_POS(SUFFIX,VAR) do { \
  700. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  701. #endif
  702. /**
  703. * sync_plan_position
  704. *
  705. * Set the planner/stepper positions directly from current_position with
  706. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  707. */
  708. void sync_plan_position() {
  709. #if ENABLED(DEBUG_LEVELING_FEATURE)
  710. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  711. #endif
  712. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  713. }
  714. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  715. #if IS_KINEMATIC
  716. inline void sync_plan_position_kinematic() {
  717. #if ENABLED(DEBUG_LEVELING_FEATURE)
  718. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  719. #endif
  720. planner.set_position_mm_kinematic(current_position);
  721. }
  722. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  723. #else
  724. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  725. #endif
  726. #if ENABLED(SDSUPPORT)
  727. #include "SdFatUtil.h"
  728. int freeMemory() { return SdFatUtil::FreeRam(); }
  729. #else
  730. extern "C" {
  731. extern char __bss_end;
  732. extern char __heap_start;
  733. extern void* __brkval;
  734. int freeMemory() {
  735. int free_memory;
  736. if ((int)__brkval == 0)
  737. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  738. else
  739. free_memory = ((int)&free_memory) - ((int)__brkval);
  740. return free_memory;
  741. }
  742. }
  743. #endif // !SDSUPPORT
  744. #if ENABLED(DIGIPOT_I2C)
  745. extern void digipot_i2c_set_current(uint8_t channel, float current);
  746. extern void digipot_i2c_init();
  747. #endif
  748. /**
  749. * Inject the next "immediate" command, when possible, onto the front of the queue.
  750. * Return true if any immediate commands remain to inject.
  751. */
  752. static bool drain_injected_commands_P() {
  753. if (injected_commands_P != NULL) {
  754. size_t i = 0;
  755. char c, cmd[30];
  756. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  757. cmd[sizeof(cmd) - 1] = '\0';
  758. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  759. cmd[i] = '\0';
  760. if (enqueue_and_echo_command(cmd)) // success?
  761. injected_commands_P = c ? injected_commands_P + i + 1 : NULL; // next command or done
  762. }
  763. return (injected_commands_P != NULL); // return whether any more remain
  764. }
  765. /**
  766. * Record one or many commands to run from program memory.
  767. * Aborts the current queue, if any.
  768. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  769. */
  770. void enqueue_and_echo_commands_P(const char * const pgcode) {
  771. injected_commands_P = pgcode;
  772. drain_injected_commands_P(); // first command executed asap (when possible)
  773. }
  774. /**
  775. * Clear the Marlin command queue
  776. */
  777. void clear_command_queue() {
  778. cmd_queue_index_r = cmd_queue_index_w;
  779. commands_in_queue = 0;
  780. }
  781. /**
  782. * Once a new command is in the ring buffer, call this to commit it
  783. */
  784. inline void _commit_command(bool say_ok) {
  785. send_ok[cmd_queue_index_w] = say_ok;
  786. if (++cmd_queue_index_w >= BUFSIZE) cmd_queue_index_w = 0;
  787. commands_in_queue++;
  788. }
  789. /**
  790. * Copy a command from RAM into the main command buffer.
  791. * Return true if the command was successfully added.
  792. * Return false for a full buffer, or if the 'command' is a comment.
  793. */
  794. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  795. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  796. strcpy(command_queue[cmd_queue_index_w], cmd);
  797. _commit_command(say_ok);
  798. return true;
  799. }
  800. /**
  801. * Enqueue with Serial Echo
  802. */
  803. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  804. if (_enqueuecommand(cmd, say_ok)) {
  805. SERIAL_ECHO_START();
  806. SERIAL_ECHOPAIR(MSG_ENQUEUEING, cmd);
  807. SERIAL_CHAR('"');
  808. SERIAL_EOL();
  809. return true;
  810. }
  811. return false;
  812. }
  813. void setup_killpin() {
  814. #if HAS_KILL
  815. SET_INPUT_PULLUP(KILL_PIN);
  816. #endif
  817. }
  818. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  819. void setup_filrunoutpin() {
  820. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  821. SET_INPUT_PULLUP(FIL_RUNOUT_PIN);
  822. #else
  823. SET_INPUT(FIL_RUNOUT_PIN);
  824. #endif
  825. }
  826. #endif
  827. void setup_powerhold() {
  828. #if HAS_SUICIDE
  829. OUT_WRITE(SUICIDE_PIN, HIGH);
  830. #endif
  831. #if HAS_POWER_SWITCH
  832. #if ENABLED(PS_DEFAULT_OFF)
  833. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  834. #else
  835. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  836. #endif
  837. #endif
  838. }
  839. void suicide() {
  840. #if HAS_SUICIDE
  841. OUT_WRITE(SUICIDE_PIN, LOW);
  842. #endif
  843. }
  844. void servo_init() {
  845. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  846. servo[0].attach(SERVO0_PIN);
  847. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  848. #endif
  849. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  850. servo[1].attach(SERVO1_PIN);
  851. servo[1].detach();
  852. #endif
  853. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  854. servo[2].attach(SERVO2_PIN);
  855. servo[2].detach();
  856. #endif
  857. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  858. servo[3].attach(SERVO3_PIN);
  859. servo[3].detach();
  860. #endif
  861. #if HAS_Z_SERVO_ENDSTOP
  862. /**
  863. * Set position of Z Servo Endstop
  864. *
  865. * The servo might be deployed and positioned too low to stow
  866. * when starting up the machine or rebooting the board.
  867. * There's no way to know where the nozzle is positioned until
  868. * homing has been done - no homing with z-probe without init!
  869. *
  870. */
  871. STOW_Z_SERVO();
  872. #endif
  873. }
  874. /**
  875. * Stepper Reset (RigidBoard, et.al.)
  876. */
  877. #if HAS_STEPPER_RESET
  878. void disableStepperDrivers() {
  879. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  880. }
  881. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  882. #endif
  883. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  884. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  885. i2c.receive(bytes);
  886. }
  887. void i2c_on_request() { // just send dummy data for now
  888. i2c.reply("Hello World!\n");
  889. }
  890. #endif
  891. #if HAS_COLOR_LEDS
  892. #if ENABLED(NEOPIXEL_LED)
  893. Adafruit_NeoPixel pixels(NEOPIXEL_PIXELS, NEOPIXEL_PIN, NEOPIXEL_TYPE + NEO_KHZ800);
  894. void set_neopixel_color(const uint32_t color) {
  895. for (uint16_t i = 0; i < pixels.numPixels(); ++i)
  896. pixels.setPixelColor(i, color);
  897. pixels.show();
  898. }
  899. void setup_neopixel() {
  900. pixels.setBrightness(NEOPIXEL_BRIGHTNESS); // 0 - 255 range
  901. pixels.begin();
  902. pixels.show(); // initialize to all off
  903. #if ENABLED(NEOPIXEL_STARTUP_TEST)
  904. safe_delay(1000);
  905. set_neopixel_color(pixels.Color(255, 0, 0, 0)); // red
  906. safe_delay(1000);
  907. set_neopixel_color(pixels.Color(0, 255, 0, 0)); // green
  908. safe_delay(1000);
  909. set_neopixel_color(pixels.Color(0, 0, 255, 0)); // blue
  910. safe_delay(1000);
  911. #endif
  912. set_neopixel_color(pixels.Color(NEO_WHITE)); // white
  913. }
  914. #endif // NEOPIXEL_LED
  915. void set_led_color(
  916. const uint8_t r, const uint8_t g, const uint8_t b
  917. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  918. , const uint8_t w = 0
  919. #if ENABLED(NEOPIXEL_LED)
  920. , const uint8_t p = NEOPIXEL_BRIGHTNESS
  921. , bool isSequence = false
  922. #endif
  923. #endif
  924. ) {
  925. #if ENABLED(NEOPIXEL_LED)
  926. const uint32_t color = pixels.Color(r, g, b, w);
  927. static uint16_t nextLed = 0;
  928. pixels.setBrightness(p);
  929. if (!isSequence)
  930. set_neopixel_color(color);
  931. else {
  932. pixels.setPixelColor(nextLed, color);
  933. pixels.show();
  934. if (++nextLed >= pixels.numPixels()) nextLed = 0;
  935. return;
  936. }
  937. #endif
  938. #if ENABLED(BLINKM)
  939. // This variant uses i2c to send the RGB components to the device.
  940. SendColors(r, g, b);
  941. #endif
  942. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  943. // This variant uses 3 separate pins for the RGB components.
  944. // If the pins can do PWM then their intensity will be set.
  945. WRITE(RGB_LED_R_PIN, r ? HIGH : LOW);
  946. WRITE(RGB_LED_G_PIN, g ? HIGH : LOW);
  947. WRITE(RGB_LED_B_PIN, b ? HIGH : LOW);
  948. analogWrite(RGB_LED_R_PIN, r);
  949. analogWrite(RGB_LED_G_PIN, g);
  950. analogWrite(RGB_LED_B_PIN, b);
  951. #if ENABLED(RGBW_LED)
  952. WRITE(RGB_LED_W_PIN, w ? HIGH : LOW);
  953. analogWrite(RGB_LED_W_PIN, w);
  954. #endif
  955. #endif
  956. #if ENABLED(PCA9632)
  957. // Update I2C LED driver
  958. PCA9632_SetColor(r, g, b);
  959. #endif
  960. }
  961. #endif // HAS_COLOR_LEDS
  962. void gcode_line_error(const char* err, bool doFlush = true) {
  963. SERIAL_ERROR_START();
  964. serialprintPGM(err);
  965. SERIAL_ERRORLN(gcode_LastN);
  966. //Serial.println(gcode_N);
  967. if (doFlush) FlushSerialRequestResend();
  968. serial_count = 0;
  969. }
  970. /**
  971. * Get all commands waiting on the serial port and queue them.
  972. * Exit when the buffer is full or when no more characters are
  973. * left on the serial port.
  974. */
  975. inline void get_serial_commands() {
  976. static char serial_line_buffer[MAX_CMD_SIZE];
  977. static bool serial_comment_mode = false;
  978. // If the command buffer is empty for too long,
  979. // send "wait" to indicate Marlin is still waiting.
  980. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  981. static millis_t last_command_time = 0;
  982. const millis_t ms = millis();
  983. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  984. SERIAL_ECHOLNPGM(MSG_WAIT);
  985. last_command_time = ms;
  986. }
  987. #endif
  988. /**
  989. * Loop while serial characters are incoming and the queue is not full
  990. */
  991. int c;
  992. while (commands_in_queue < BUFSIZE && (c = MYSERIAL.read()) >= 0) {
  993. char serial_char = c;
  994. /**
  995. * If the character ends the line
  996. */
  997. if (serial_char == '\n' || serial_char == '\r') {
  998. serial_comment_mode = false; // end of line == end of comment
  999. if (!serial_count) continue; // Skip empty lines
  1000. serial_line_buffer[serial_count] = 0; // Terminate string
  1001. serial_count = 0; // Reset buffer
  1002. char* command = serial_line_buffer;
  1003. while (*command == ' ') command++; // Skip leading spaces
  1004. char *npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  1005. if (npos) {
  1006. bool M110 = strstr_P(command, PSTR("M110")) != NULL;
  1007. if (M110) {
  1008. char* n2pos = strchr(command + 4, 'N');
  1009. if (n2pos) npos = n2pos;
  1010. }
  1011. gcode_N = strtol(npos + 1, NULL, 10);
  1012. if (gcode_N != gcode_LastN + 1 && !M110) {
  1013. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  1014. return;
  1015. }
  1016. char *apos = strrchr(command, '*');
  1017. if (apos) {
  1018. uint8_t checksum = 0, count = uint8_t(apos - command);
  1019. while (count) checksum ^= command[--count];
  1020. if (strtol(apos + 1, NULL, 10) != checksum) {
  1021. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  1022. return;
  1023. }
  1024. }
  1025. else {
  1026. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  1027. return;
  1028. }
  1029. gcode_LastN = gcode_N;
  1030. }
  1031. // Movement commands alert when stopped
  1032. if (IsStopped()) {
  1033. char* gpos = strchr(command, 'G');
  1034. if (gpos) {
  1035. const int codenum = strtol(gpos + 1, NULL, 10);
  1036. switch (codenum) {
  1037. case 0:
  1038. case 1:
  1039. case 2:
  1040. case 3:
  1041. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  1042. LCD_MESSAGEPGM(MSG_STOPPED);
  1043. break;
  1044. }
  1045. }
  1046. }
  1047. #if DISABLED(EMERGENCY_PARSER)
  1048. // If command was e-stop process now
  1049. if (strcmp(command, "M108") == 0) {
  1050. wait_for_heatup = false;
  1051. #if ENABLED(ULTIPANEL)
  1052. wait_for_user = false;
  1053. #endif
  1054. }
  1055. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  1056. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  1057. #endif
  1058. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  1059. last_command_time = ms;
  1060. #endif
  1061. // Add the command to the queue
  1062. _enqueuecommand(serial_line_buffer, true);
  1063. }
  1064. else if (serial_count >= MAX_CMD_SIZE - 1) {
  1065. // Keep fetching, but ignore normal characters beyond the max length
  1066. // The command will be injected when EOL is reached
  1067. }
  1068. else if (serial_char == '\\') { // Handle escapes
  1069. if ((c = MYSERIAL.read()) >= 0) {
  1070. // if we have one more character, copy it over
  1071. serial_char = c;
  1072. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1073. }
  1074. // otherwise do nothing
  1075. }
  1076. else { // it's not a newline, carriage return or escape char
  1077. if (serial_char == ';') serial_comment_mode = true;
  1078. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  1079. }
  1080. } // queue has space, serial has data
  1081. }
  1082. #if ENABLED(SDSUPPORT)
  1083. /**
  1084. * Get commands from the SD Card until the command buffer is full
  1085. * or until the end of the file is reached. The special character '#'
  1086. * can also interrupt buffering.
  1087. */
  1088. inline void get_sdcard_commands() {
  1089. static bool stop_buffering = false,
  1090. sd_comment_mode = false;
  1091. if (!card.sdprinting) return;
  1092. /**
  1093. * '#' stops reading from SD to the buffer prematurely, so procedural
  1094. * macro calls are possible. If it occurs, stop_buffering is triggered
  1095. * and the buffer is run dry; this character _can_ occur in serial com
  1096. * due to checksums, however, no checksums are used in SD printing.
  1097. */
  1098. if (commands_in_queue == 0) stop_buffering = false;
  1099. uint16_t sd_count = 0;
  1100. bool card_eof = card.eof();
  1101. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  1102. const int16_t n = card.get();
  1103. char sd_char = (char)n;
  1104. card_eof = card.eof();
  1105. if (card_eof || n == -1
  1106. || sd_char == '\n' || sd_char == '\r'
  1107. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1108. ) {
  1109. if (card_eof) {
  1110. card.printingHasFinished();
  1111. if (card.sdprinting)
  1112. sd_count = 0; // If a sub-file was printing, continue from call point
  1113. else {
  1114. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1115. #if ENABLED(PRINTER_EVENT_LEDS)
  1116. LCD_MESSAGEPGM(MSG_INFO_COMPLETED_PRINTS);
  1117. set_led_color(0, 255, 0); // Green
  1118. #if HAS_RESUME_CONTINUE
  1119. enqueue_and_echo_commands_P(PSTR("M0")); // end of the queue!
  1120. #else
  1121. safe_delay(1000);
  1122. #endif
  1123. set_led_color(0, 0, 0); // OFF
  1124. #endif
  1125. card.checkautostart(true);
  1126. }
  1127. }
  1128. else if (n == -1) {
  1129. SERIAL_ERROR_START();
  1130. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1131. }
  1132. if (sd_char == '#') stop_buffering = true;
  1133. sd_comment_mode = false; // for new command
  1134. if (!sd_count) continue; // skip empty lines (and comment lines)
  1135. command_queue[cmd_queue_index_w][sd_count] = '\0'; // terminate string
  1136. sd_count = 0; // clear sd line buffer
  1137. _commit_command(false);
  1138. }
  1139. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1140. /**
  1141. * Keep fetching, but ignore normal characters beyond the max length
  1142. * The command will be injected when EOL is reached
  1143. */
  1144. }
  1145. else {
  1146. if (sd_char == ';') sd_comment_mode = true;
  1147. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1148. }
  1149. }
  1150. }
  1151. #endif // SDSUPPORT
  1152. /**
  1153. * Add to the circular command queue the next command from:
  1154. * - The command-injection queue (injected_commands_P)
  1155. * - The active serial input (usually USB)
  1156. * - The SD card file being actively printed
  1157. */
  1158. void get_available_commands() {
  1159. // if any immediate commands remain, don't get other commands yet
  1160. if (drain_injected_commands_P()) return;
  1161. get_serial_commands();
  1162. #if ENABLED(SDSUPPORT)
  1163. get_sdcard_commands();
  1164. #endif
  1165. }
  1166. /**
  1167. * Set target_extruder from the T parameter or the active_extruder
  1168. *
  1169. * Returns TRUE if the target is invalid
  1170. */
  1171. bool get_target_extruder_from_command(const uint16_t code) {
  1172. if (parser.seenval('T')) {
  1173. const int8_t e = parser.value_byte();
  1174. if (e >= EXTRUDERS) {
  1175. SERIAL_ECHO_START();
  1176. SERIAL_CHAR('M');
  1177. SERIAL_ECHO(code);
  1178. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", e);
  1179. return true;
  1180. }
  1181. target_extruder = e;
  1182. }
  1183. else
  1184. target_extruder = active_extruder;
  1185. return false;
  1186. }
  1187. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1188. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1189. #endif
  1190. #if ENABLED(DUAL_X_CARRIAGE)
  1191. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1192. static float x_home_pos(const int extruder) {
  1193. if (extruder == 0)
  1194. return base_home_pos(X_AXIS);
  1195. else
  1196. /**
  1197. * In dual carriage mode the extruder offset provides an override of the
  1198. * second X-carriage position when homed - otherwise X2_HOME_POS is used.
  1199. * This allows soft recalibration of the second extruder home position
  1200. * without firmware reflash (through the M218 command).
  1201. */
  1202. return hotend_offset[X_AXIS][1] > 0 ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1203. }
  1204. static int x_home_dir(const int extruder) { return extruder ? X2_HOME_DIR : X_HOME_DIR; }
  1205. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1206. static bool active_extruder_parked = false; // used in mode 1 & 2
  1207. static float raised_parked_position[XYZE]; // used in mode 1
  1208. static millis_t delayed_move_time = 0; // used in mode 1
  1209. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1210. static int16_t duplicate_extruder_temp_offset = 0; // used in mode 2
  1211. #endif // DUAL_X_CARRIAGE
  1212. #if HAS_WORKSPACE_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  1213. /**
  1214. * Software endstops can be used to monitor the open end of
  1215. * an axis that has a hardware endstop on the other end. Or
  1216. * they can prevent axes from moving past endstops and grinding.
  1217. *
  1218. * To keep doing their job as the coordinate system changes,
  1219. * the software endstop positions must be refreshed to remain
  1220. * at the same positions relative to the machine.
  1221. */
  1222. void update_software_endstops(const AxisEnum axis) {
  1223. #if HAS_HOME_OFFSET && HAS_POSITION_SHIFT
  1224. workspace_offset[axis] = home_offset[axis] + position_shift[axis];
  1225. #endif
  1226. #if ENABLED(DUAL_X_CARRIAGE)
  1227. if (axis == X_AXIS) {
  1228. // In Dual X mode hotend_offset[X] is T1's home position
  1229. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1230. if (active_extruder != 0) {
  1231. // T1 can move from X2_MIN_POS to X2_MAX_POS or X2 home position (whichever is larger)
  1232. soft_endstop_min[X_AXIS] = X2_MIN_POS;
  1233. soft_endstop_max[X_AXIS] = dual_max_x;
  1234. }
  1235. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1236. // In Duplication Mode, T0 can move as far left as X_MIN_POS
  1237. // but not so far to the right that T1 would move past the end
  1238. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS);
  1239. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset);
  1240. }
  1241. else {
  1242. // In other modes, T0 can move from X_MIN_POS to X_MAX_POS
  1243. soft_endstop_min[axis] = base_min_pos(axis);
  1244. soft_endstop_max[axis] = base_max_pos(axis);
  1245. }
  1246. }
  1247. #elif ENABLED(DELTA)
  1248. soft_endstop_min[axis] = base_min_pos(axis);
  1249. soft_endstop_max[axis] = axis == Z_AXIS ? delta_height : base_max_pos(axis);
  1250. #else
  1251. soft_endstop_min[axis] = base_min_pos(axis);
  1252. soft_endstop_max[axis] = base_max_pos(axis);
  1253. #endif
  1254. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1255. if (DEBUGGING(LEVELING)) {
  1256. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1257. #if HAS_HOME_OFFSET
  1258. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1259. #endif
  1260. #if HAS_POSITION_SHIFT
  1261. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1262. #endif
  1263. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1264. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1265. }
  1266. #endif
  1267. #if ENABLED(DELTA)
  1268. switch(axis) {
  1269. case X_AXIS:
  1270. case Y_AXIS:
  1271. // Get a minimum radius for clamping
  1272. soft_endstop_radius = MIN3(FABS(max(soft_endstop_min[X_AXIS], soft_endstop_min[Y_AXIS])), soft_endstop_max[X_AXIS], soft_endstop_max[Y_AXIS]);
  1273. soft_endstop_radius_2 = sq(soft_endstop_radius);
  1274. break;
  1275. case Z_AXIS:
  1276. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1277. default: break;
  1278. }
  1279. #endif
  1280. }
  1281. #endif // HAS_WORKSPACE_OFFSET || DUAL_X_CARRIAGE
  1282. #if HAS_M206_COMMAND
  1283. /**
  1284. * Change the home offset for an axis, update the current
  1285. * position and the software endstops to retain the same
  1286. * relative distance to the new home.
  1287. *
  1288. * Since this changes the current_position, code should
  1289. * call sync_plan_position soon after this.
  1290. */
  1291. static void set_home_offset(const AxisEnum axis, const float v) {
  1292. home_offset[axis] = v;
  1293. update_software_endstops(axis);
  1294. }
  1295. #endif // HAS_M206_COMMAND
  1296. /**
  1297. * Set an axis' current position to its home position (after homing).
  1298. *
  1299. * For Core and Cartesian robots this applies one-to-one when an
  1300. * individual axis has been homed.
  1301. *
  1302. * DELTA should wait until all homing is done before setting the XYZ
  1303. * current_position to home, because homing is a single operation.
  1304. * In the case where the axis positions are already known and previously
  1305. * homed, DELTA could home to X or Y individually by moving either one
  1306. * to the center. However, homing Z always homes XY and Z.
  1307. *
  1308. * SCARA should wait until all XY homing is done before setting the XY
  1309. * current_position to home, because neither X nor Y is at home until
  1310. * both are at home. Z can however be homed individually.
  1311. *
  1312. * Callers must sync the planner position after calling this!
  1313. */
  1314. static void set_axis_is_at_home(const AxisEnum axis) {
  1315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1316. if (DEBUGGING(LEVELING)) {
  1317. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1318. SERIAL_CHAR(')');
  1319. SERIAL_EOL();
  1320. }
  1321. #endif
  1322. axis_known_position[axis] = axis_homed[axis] = true;
  1323. #if HAS_POSITION_SHIFT
  1324. position_shift[axis] = 0;
  1325. update_software_endstops(axis);
  1326. #endif
  1327. #if ENABLED(DUAL_X_CARRIAGE)
  1328. if (axis == X_AXIS && (active_extruder == 1 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1329. current_position[X_AXIS] = x_home_pos(active_extruder);
  1330. return;
  1331. }
  1332. #endif
  1333. #if ENABLED(MORGAN_SCARA)
  1334. /**
  1335. * Morgan SCARA homes XY at the same time
  1336. */
  1337. if (axis == X_AXIS || axis == Y_AXIS) {
  1338. float homeposition[XYZ] = {
  1339. base_home_pos(X_AXIS),
  1340. base_home_pos(Y_AXIS),
  1341. base_home_pos(Z_AXIS)
  1342. };
  1343. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1344. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1345. /**
  1346. * Get Home position SCARA arm angles using inverse kinematics,
  1347. * and calculate homing offset using forward kinematics
  1348. */
  1349. inverse_kinematics(homeposition);
  1350. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1351. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1352. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1353. current_position[axis] = cartes[axis];
  1354. /**
  1355. * SCARA home positions are based on configuration since the actual
  1356. * limits are determined by the inverse kinematic transform.
  1357. */
  1358. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1359. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1360. }
  1361. else
  1362. #elif ENABLED(DELTA)
  1363. if (axis == Z_AXIS)
  1364. current_position[axis] = delta_height;
  1365. else
  1366. #endif
  1367. {
  1368. current_position[axis] = base_home_pos(axis);
  1369. }
  1370. /**
  1371. * Z Probe Z Homing? Account for the probe's Z offset.
  1372. */
  1373. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1374. if (axis == Z_AXIS) {
  1375. #if HOMING_Z_WITH_PROBE
  1376. current_position[Z_AXIS] -= zprobe_zoffset;
  1377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1378. if (DEBUGGING(LEVELING)) {
  1379. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1380. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1381. }
  1382. #endif
  1383. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1384. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1385. #endif
  1386. }
  1387. #endif
  1388. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1389. if (DEBUGGING(LEVELING)) {
  1390. #if HAS_HOME_OFFSET
  1391. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1392. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1393. #endif
  1394. DEBUG_POS("", current_position);
  1395. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1396. SERIAL_CHAR(')');
  1397. SERIAL_EOL();
  1398. }
  1399. #endif
  1400. #if ENABLED(I2C_POSITION_ENCODERS)
  1401. I2CPEM.homed(axis);
  1402. #endif
  1403. }
  1404. /**
  1405. * Some planner shorthand inline functions
  1406. */
  1407. inline float get_homing_bump_feedrate(const AxisEnum axis) {
  1408. static const uint8_t homing_bump_divisor[] PROGMEM = HOMING_BUMP_DIVISOR;
  1409. uint8_t hbd = pgm_read_byte(&homing_bump_divisor[axis]);
  1410. if (hbd < 1) {
  1411. hbd = 10;
  1412. SERIAL_ECHO_START();
  1413. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1414. }
  1415. return homing_feedrate(axis) / hbd;
  1416. }
  1417. /**
  1418. * Move the planner to the current position from wherever it last moved
  1419. * (or from wherever it has been told it is located).
  1420. */
  1421. inline void buffer_line_to_current_position() {
  1422. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1423. }
  1424. /**
  1425. * Move the planner to the position stored in the destination array, which is
  1426. * used by G0/G1/G2/G3/G5 and many other functions to set a destination.
  1427. */
  1428. inline void buffer_line_to_destination(const float fr_mm_s) {
  1429. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1430. }
  1431. inline void set_current_from_destination() { COPY(current_position, destination); }
  1432. inline void set_destination_from_current() { COPY(destination, current_position); }
  1433. #if IS_KINEMATIC
  1434. /**
  1435. * Calculate delta, start a line, and set current_position to destination
  1436. */
  1437. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1440. #endif
  1441. refresh_cmd_timeout();
  1442. #if UBL_DELTA
  1443. // ubl segmented line will do z-only moves in single segment
  1444. ubl.prepare_segmented_line_to(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s));
  1445. #else
  1446. if ( current_position[X_AXIS] == destination[X_AXIS]
  1447. && current_position[Y_AXIS] == destination[Y_AXIS]
  1448. && current_position[Z_AXIS] == destination[Z_AXIS]
  1449. && current_position[E_AXIS] == destination[E_AXIS]
  1450. ) return;
  1451. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1452. #endif
  1453. set_current_from_destination();
  1454. }
  1455. #endif // IS_KINEMATIC
  1456. /**
  1457. * Plan a move to (X, Y, Z) and set the current_position
  1458. * The final current_position may not be the one that was requested
  1459. */
  1460. void do_blocking_move_to(const float &rx, const float &ry, const float &rz, const float &fr_mm_s/*=0.0*/) {
  1461. const float old_feedrate_mm_s = feedrate_mm_s;
  1462. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1463. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, LOGICAL_X_POSITION(rx), LOGICAL_Y_POSITION(ry), LOGICAL_Z_POSITION(rz));
  1464. #endif
  1465. const float z_feedrate = fr_mm_s ? fr_mm_s : homing_feedrate(Z_AXIS);
  1466. #if ENABLED(DELTA)
  1467. if (!position_is_reachable(rx, ry)) return;
  1468. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1469. set_destination_from_current(); // sync destination at the start
  1470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1471. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_from_current", destination);
  1472. #endif
  1473. // when in the danger zone
  1474. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1475. if (rz > delta_clip_start_height) { // staying in the danger zone
  1476. destination[X_AXIS] = rx; // move directly (uninterpolated)
  1477. destination[Y_AXIS] = ry;
  1478. destination[Z_AXIS] = rz;
  1479. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1480. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1481. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1482. #endif
  1483. return;
  1484. }
  1485. destination[Z_AXIS] = delta_clip_start_height;
  1486. prepare_uninterpolated_move_to_destination(); // set_current_from_destination
  1487. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1488. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1489. #endif
  1490. }
  1491. if (rz > current_position[Z_AXIS]) { // raising?
  1492. destination[Z_AXIS] = rz;
  1493. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1494. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1495. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1496. #endif
  1497. }
  1498. destination[X_AXIS] = rx;
  1499. destination[Y_AXIS] = ry;
  1500. prepare_move_to_destination(); // set_current_from_destination
  1501. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1502. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1503. #endif
  1504. if (rz < current_position[Z_AXIS]) { // lowering?
  1505. destination[Z_AXIS] = rz;
  1506. prepare_uninterpolated_move_to_destination(z_feedrate); // set_current_from_destination
  1507. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1508. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1509. #endif
  1510. }
  1511. #elif IS_SCARA
  1512. if (!position_is_reachable(rx, ry)) return;
  1513. set_destination_from_current();
  1514. // If Z needs to raise, do it before moving XY
  1515. if (destination[Z_AXIS] < rz) {
  1516. destination[Z_AXIS] = rz;
  1517. prepare_uninterpolated_move_to_destination(z_feedrate);
  1518. }
  1519. destination[X_AXIS] = rx;
  1520. destination[Y_AXIS] = ry;
  1521. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1522. // If Z needs to lower, do it after moving XY
  1523. if (destination[Z_AXIS] > rz) {
  1524. destination[Z_AXIS] = rz;
  1525. prepare_uninterpolated_move_to_destination(z_feedrate);
  1526. }
  1527. #else
  1528. // If Z needs to raise, do it before moving XY
  1529. if (current_position[Z_AXIS] < rz) {
  1530. feedrate_mm_s = z_feedrate;
  1531. current_position[Z_AXIS] = rz;
  1532. buffer_line_to_current_position();
  1533. }
  1534. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1535. current_position[X_AXIS] = rx;
  1536. current_position[Y_AXIS] = ry;
  1537. buffer_line_to_current_position();
  1538. // If Z needs to lower, do it after moving XY
  1539. if (current_position[Z_AXIS] > rz) {
  1540. feedrate_mm_s = z_feedrate;
  1541. current_position[Z_AXIS] = rz;
  1542. buffer_line_to_current_position();
  1543. }
  1544. #endif
  1545. stepper.synchronize();
  1546. feedrate_mm_s = old_feedrate_mm_s;
  1547. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1548. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1549. #endif
  1550. }
  1551. void do_blocking_move_to_x(const float &rx, const float &fr_mm_s/*=0.0*/) {
  1552. do_blocking_move_to(rx, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1553. }
  1554. void do_blocking_move_to_z(const float &rz, const float &fr_mm_s/*=0.0*/) {
  1555. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], rz, fr_mm_s);
  1556. }
  1557. void do_blocking_move_to_xy(const float &rx, const float &ry, const float &fr_mm_s/*=0.0*/) {
  1558. do_blocking_move_to(rx, ry, current_position[Z_AXIS], fr_mm_s);
  1559. }
  1560. //
  1561. // Prepare to do endstop or probe moves
  1562. // with custom feedrates.
  1563. //
  1564. // - Save current feedrates
  1565. // - Reset the rate multiplier
  1566. // - Reset the command timeout
  1567. // - Enable the endstops (for endstop moves)
  1568. //
  1569. static void setup_for_endstop_or_probe_move() {
  1570. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1571. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1572. #endif
  1573. saved_feedrate_mm_s = feedrate_mm_s;
  1574. saved_feedrate_percentage = feedrate_percentage;
  1575. feedrate_percentage = 100;
  1576. refresh_cmd_timeout();
  1577. }
  1578. static void clean_up_after_endstop_or_probe_move() {
  1579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1580. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1581. #endif
  1582. feedrate_mm_s = saved_feedrate_mm_s;
  1583. feedrate_percentage = saved_feedrate_percentage;
  1584. refresh_cmd_timeout();
  1585. }
  1586. #if HAS_BED_PROBE
  1587. /**
  1588. * Raise Z to a minimum height to make room for a probe to move
  1589. */
  1590. inline void do_probe_raise(const float z_raise) {
  1591. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1592. if (DEBUGGING(LEVELING)) {
  1593. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1594. SERIAL_CHAR(')');
  1595. SERIAL_EOL();
  1596. }
  1597. #endif
  1598. float z_dest = z_raise;
  1599. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1600. if (z_dest > current_position[Z_AXIS])
  1601. do_blocking_move_to_z(z_dest);
  1602. }
  1603. #endif // HAS_BED_PROBE
  1604. #if HAS_AXIS_UNHOMED_ERR
  1605. bool axis_unhomed_error(const bool x/*=true*/, const bool y/*=true*/, const bool z/*=true*/) {
  1606. #if ENABLED(HOME_AFTER_DEACTIVATE)
  1607. const bool xx = x && !axis_known_position[X_AXIS],
  1608. yy = y && !axis_known_position[Y_AXIS],
  1609. zz = z && !axis_known_position[Z_AXIS];
  1610. #else
  1611. const bool xx = x && !axis_homed[X_AXIS],
  1612. yy = y && !axis_homed[Y_AXIS],
  1613. zz = z && !axis_homed[Z_AXIS];
  1614. #endif
  1615. if (xx || yy || zz) {
  1616. SERIAL_ECHO_START();
  1617. SERIAL_ECHOPGM(MSG_HOME " ");
  1618. if (xx) SERIAL_ECHOPGM(MSG_X);
  1619. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1620. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1621. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1622. #if ENABLED(ULTRA_LCD)
  1623. lcd_status_printf_P(0, PSTR(MSG_HOME " %s%s%s " MSG_FIRST), xx ? MSG_X : "", yy ? MSG_Y : "", zz ? MSG_Z : "");
  1624. #endif
  1625. return true;
  1626. }
  1627. return false;
  1628. }
  1629. #endif // HAS_AXIS_UNHOMED_ERR
  1630. #if ENABLED(Z_PROBE_SLED)
  1631. #ifndef SLED_DOCKING_OFFSET
  1632. #define SLED_DOCKING_OFFSET 0
  1633. #endif
  1634. /**
  1635. * Method to dock/undock a sled designed by Charles Bell.
  1636. *
  1637. * stow[in] If false, move to MAX_X and engage the solenoid
  1638. * If true, move to MAX_X and release the solenoid
  1639. */
  1640. static void dock_sled(bool stow) {
  1641. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1642. if (DEBUGGING(LEVELING)) {
  1643. SERIAL_ECHOPAIR("dock_sled(", stow);
  1644. SERIAL_CHAR(')');
  1645. SERIAL_EOL();
  1646. }
  1647. #endif
  1648. // Dock sled a bit closer to ensure proper capturing
  1649. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1650. #if HAS_SOLENOID_1 && DISABLED(EXT_SOLENOID)
  1651. WRITE(SOL1_PIN, !stow); // switch solenoid
  1652. #endif
  1653. }
  1654. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1655. FORCE_INLINE void do_blocking_move_to(const float raw[XYZ], const float &fr_mm_s) {
  1656. do_blocking_move_to(raw[X_AXIS], raw[Y_AXIS], raw[Z_AXIS], fr_mm_s);
  1657. }
  1658. void run_deploy_moves_script() {
  1659. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1660. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1661. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1662. #endif
  1663. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1664. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1665. #endif
  1666. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1667. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1668. #endif
  1669. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1670. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1671. #endif
  1672. const float deploy_1[] = { Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z };
  1673. do_blocking_move_to(deploy_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1677. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1680. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1683. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1687. #endif
  1688. const float deploy_2[] = { Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z };
  1689. do_blocking_move_to(deploy_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1690. #endif
  1691. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1692. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1693. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1694. #endif
  1695. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1696. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1697. #endif
  1698. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1699. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1700. #endif
  1701. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1702. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1703. #endif
  1704. const float deploy_3[] = { Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z };
  1705. do_blocking_move_to(deploy_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1706. #endif
  1707. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1708. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1709. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1710. #endif
  1711. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1712. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1713. #endif
  1714. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1715. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1716. #endif
  1717. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1718. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1719. #endif
  1720. const float deploy_4[] = { Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z };
  1721. do_blocking_move_to(deploy_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1722. #endif
  1723. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1724. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1725. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1726. #endif
  1727. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1728. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1729. #endif
  1730. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1731. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1732. #endif
  1733. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1734. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1735. #endif
  1736. const float deploy_5[] = { Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z };
  1737. do_blocking_move_to(deploy_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1738. #endif
  1739. }
  1740. void run_stow_moves_script() {
  1741. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1742. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1743. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1744. #endif
  1745. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1746. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1747. #endif
  1748. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1749. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1750. #endif
  1751. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1752. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1753. #endif
  1754. const float stow_1[] = { Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z };
  1755. do_blocking_move_to(stow_1, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1756. #endif
  1757. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1758. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1759. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1760. #endif
  1761. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1762. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1763. #endif
  1764. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1765. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1766. #endif
  1767. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1768. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1769. #endif
  1770. const float stow_2[] = { Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z };
  1771. do_blocking_move_to(stow_2, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1772. #endif
  1773. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1774. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1775. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1776. #endif
  1777. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1778. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1779. #endif
  1780. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1781. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1782. #endif
  1783. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1784. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1785. #endif
  1786. const float stow_3[] = { Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z };
  1787. do_blocking_move_to(stow_3, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1788. #endif
  1789. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1790. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1791. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1792. #endif
  1793. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1794. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1795. #endif
  1796. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1797. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1798. #endif
  1799. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1800. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1801. #endif
  1802. const float stow_4[] = { Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z };
  1803. do_blocking_move_to(stow_4, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1804. #endif
  1805. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1806. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1807. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1808. #endif
  1809. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1810. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1811. #endif
  1812. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1813. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1814. #endif
  1815. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1816. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1817. #endif
  1818. const float stow_5[] = { Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z };
  1819. do_blocking_move_to(stow_5, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1820. #endif
  1821. }
  1822. #endif // Z_PROBE_ALLEN_KEY
  1823. #if ENABLED(PROBING_FANS_OFF)
  1824. void fans_pause(const bool p) {
  1825. if (p != fans_paused) {
  1826. fans_paused = p;
  1827. if (p)
  1828. for (uint8_t x = 0; x < FAN_COUNT; x++) {
  1829. paused_fanSpeeds[x] = fanSpeeds[x];
  1830. fanSpeeds[x] = 0;
  1831. }
  1832. else
  1833. for (uint8_t x = 0; x < FAN_COUNT; x++)
  1834. fanSpeeds[x] = paused_fanSpeeds[x];
  1835. }
  1836. }
  1837. #endif // PROBING_FANS_OFF
  1838. #if HAS_BED_PROBE
  1839. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1840. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1841. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1842. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1843. #else
  1844. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1845. #endif
  1846. #endif
  1847. #if QUIET_PROBING
  1848. void probing_pause(const bool p) {
  1849. #if ENABLED(PROBING_HEATERS_OFF)
  1850. thermalManager.pause(p);
  1851. #endif
  1852. #if ENABLED(PROBING_FANS_OFF)
  1853. fans_pause(p);
  1854. #endif
  1855. if (p) safe_delay(
  1856. #if DELAY_BEFORE_PROBING > 25
  1857. DELAY_BEFORE_PROBING
  1858. #else
  1859. 25
  1860. #endif
  1861. );
  1862. }
  1863. #endif // QUIET_PROBING
  1864. #if ENABLED(BLTOUCH)
  1865. void bltouch_command(int angle) {
  1866. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, angle); // Give the BL-Touch the command and wait
  1867. safe_delay(BLTOUCH_DELAY);
  1868. }
  1869. bool set_bltouch_deployed(const bool deploy) {
  1870. if (deploy && TEST_BLTOUCH()) { // If BL-Touch says it's triggered
  1871. bltouch_command(BLTOUCH_RESET); // try to reset it.
  1872. bltouch_command(BLTOUCH_DEPLOY); // Also needs to deploy and stow to
  1873. bltouch_command(BLTOUCH_STOW); // clear the triggered condition.
  1874. safe_delay(1500); // Wait for internal self-test to complete.
  1875. // (Measured completion time was 0.65 seconds
  1876. // after reset, deploy, and stow sequence)
  1877. if (TEST_BLTOUCH()) { // If it still claims to be triggered...
  1878. SERIAL_ERROR_START();
  1879. SERIAL_ERRORLNPGM(MSG_STOP_BLTOUCH);
  1880. stop(); // punt!
  1881. return true;
  1882. }
  1883. }
  1884. bltouch_command(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1885. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1886. if (DEBUGGING(LEVELING)) {
  1887. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1888. SERIAL_CHAR(')');
  1889. SERIAL_EOL();
  1890. }
  1891. #endif
  1892. return false;
  1893. }
  1894. #endif // BLTOUCH
  1895. // returns false for ok and true for failure
  1896. bool set_probe_deployed(bool deploy) {
  1897. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1898. if (DEBUGGING(LEVELING)) {
  1899. DEBUG_POS("set_probe_deployed", current_position);
  1900. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1901. }
  1902. #endif
  1903. if (endstops.z_probe_enabled == deploy) return false;
  1904. // Make room for probe
  1905. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1906. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_PROBE_ALLEN_KEY)
  1907. #if ENABLED(Z_PROBE_SLED)
  1908. #define _AUE_ARGS true, false, false
  1909. #else
  1910. #define _AUE_ARGS
  1911. #endif
  1912. if (axis_unhomed_error(_AUE_ARGS)) {
  1913. SERIAL_ERROR_START();
  1914. SERIAL_ERRORLNPGM(MSG_STOP_UNHOMED);
  1915. stop();
  1916. return true;
  1917. }
  1918. #endif
  1919. const float oldXpos = current_position[X_AXIS],
  1920. oldYpos = current_position[Y_AXIS];
  1921. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1922. // If endstop is already false, the Z probe is deployed
  1923. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1924. // Would a goto be less ugly?
  1925. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1926. // for a triggered when stowed manual probe.
  1927. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1928. // otherwise an Allen-Key probe can't be stowed.
  1929. #endif
  1930. #if ENABLED(SOLENOID_PROBE)
  1931. #if HAS_SOLENOID_1
  1932. WRITE(SOL1_PIN, deploy);
  1933. #endif
  1934. #elif ENABLED(Z_PROBE_SLED)
  1935. dock_sled(!deploy);
  1936. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1937. MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[deploy ? 0 : 1]);
  1938. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1939. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1940. #endif
  1941. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1942. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1943. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1944. if (IsRunning()) {
  1945. SERIAL_ERROR_START();
  1946. SERIAL_ERRORLNPGM("Z-Probe failed");
  1947. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1948. }
  1949. stop();
  1950. return true;
  1951. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1952. #endif
  1953. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1954. endstops.enable_z_probe(deploy);
  1955. return false;
  1956. }
  1957. /**
  1958. * @brief Used by run_z_probe to do a single Z probe move.
  1959. *
  1960. * @param z Z destination
  1961. * @param fr_mm_s Feedrate in mm/s
  1962. * @return true to indicate an error
  1963. */
  1964. static bool do_probe_move(const float z, const float fr_mm_m) {
  1965. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1966. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1967. #endif
  1968. // Deploy BLTouch at the start of any probe
  1969. #if ENABLED(BLTOUCH)
  1970. if (set_bltouch_deployed(true)) return true;
  1971. #endif
  1972. #if QUIET_PROBING
  1973. probing_pause(true);
  1974. #endif
  1975. // Move down until probe triggered
  1976. do_blocking_move_to_z(z, MMM_TO_MMS(fr_mm_m));
  1977. // Check to see if the probe was triggered
  1978. const bool probe_triggered = TEST(Endstops::endstop_hit_bits,
  1979. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  1980. Z_MIN
  1981. #else
  1982. Z_MIN_PROBE
  1983. #endif
  1984. );
  1985. #if QUIET_PROBING
  1986. probing_pause(false);
  1987. #endif
  1988. // Retract BLTouch immediately after a probe if it was triggered
  1989. #if ENABLED(BLTOUCH)
  1990. if (probe_triggered && set_bltouch_deployed(false)) return true;
  1991. #endif
  1992. // Clear endstop flags
  1993. endstops.hit_on_purpose();
  1994. // Get Z where the steppers were interrupted
  1995. set_current_from_steppers_for_axis(Z_AXIS);
  1996. // Tell the planner where we actually are
  1997. SYNC_PLAN_POSITION_KINEMATIC();
  1998. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1999. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  2000. #endif
  2001. return !probe_triggered;
  2002. }
  2003. /**
  2004. * @details Used by probe_pt to do a single Z probe.
  2005. * Leaves current_position[Z_AXIS] at the height where the probe triggered.
  2006. *
  2007. * @return The raw Z position where the probe was triggered
  2008. */
  2009. static float run_z_probe() {
  2010. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2011. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  2012. #endif
  2013. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  2014. refresh_cmd_timeout();
  2015. #if ENABLED(PROBE_DOUBLE_TOUCH)
  2016. // Do a first probe at the fast speed
  2017. if (do_probe_move(-10, Z_PROBE_SPEED_FAST)) return NAN;
  2018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2019. float first_probe_z = current_position[Z_AXIS];
  2020. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  2021. #endif
  2022. // move up to make clearance for the probe
  2023. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2024. #else
  2025. // If the nozzle is above the travel height then
  2026. // move down quickly before doing the slow probe
  2027. float z = Z_CLEARANCE_DEPLOY_PROBE;
  2028. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  2029. if (z < current_position[Z_AXIS]) {
  2030. // If we don't make it to the z position (i.e. the probe triggered), move up to make clearance for the probe
  2031. if (!do_probe_move(z, Z_PROBE_SPEED_FAST))
  2032. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2033. }
  2034. #endif
  2035. // move down slowly to find bed
  2036. if (do_probe_move(-10, Z_PROBE_SPEED_SLOW)) return NAN;
  2037. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2038. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  2039. #endif
  2040. // Debug: compare probe heights
  2041. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  2042. if (DEBUGGING(LEVELING)) {
  2043. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  2044. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  2045. }
  2046. #endif
  2047. return current_position[Z_AXIS];
  2048. }
  2049. /**
  2050. * - Move to the given XY
  2051. * - Deploy the probe, if not already deployed
  2052. * - Probe the bed, get the Z position
  2053. * - Depending on the 'stow' flag
  2054. * - Stow the probe, or
  2055. * - Raise to the BETWEEN height
  2056. * - Return the probed Z position
  2057. */
  2058. float probe_pt(const float &rx, const float &ry, const bool stow, const uint8_t verbose_level, const bool probe_relative=true) {
  2059. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2060. if (DEBUGGING(LEVELING)) {
  2061. SERIAL_ECHOPAIR(">>> probe_pt(", LOGICAL_X_POSITION(rx));
  2062. SERIAL_ECHOPAIR(", ", LOGICAL_Y_POSITION(ry));
  2063. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  2064. SERIAL_ECHOLNPGM("stow)");
  2065. DEBUG_POS("", current_position);
  2066. }
  2067. #endif
  2068. // TODO: Adapt for SCARA, where the offset rotates
  2069. float nx = rx, ny = ry;
  2070. if (probe_relative) {
  2071. if (!position_is_reachable_by_probe(rx, ry)) return NAN; // The given position is in terms of the probe
  2072. nx -= (X_PROBE_OFFSET_FROM_EXTRUDER); // Get the nozzle position
  2073. ny -= (Y_PROBE_OFFSET_FROM_EXTRUDER);
  2074. }
  2075. else if (!position_is_reachable(nx, ny)) return NAN; // The given position is in terms of the nozzle
  2076. const float nz =
  2077. #if ENABLED(DELTA)
  2078. // Move below clip height or xy move will be aborted by do_blocking_move_to
  2079. min(current_position[Z_AXIS], delta_clip_start_height)
  2080. #else
  2081. current_position[Z_AXIS]
  2082. #endif
  2083. ;
  2084. const float old_feedrate_mm_s = feedrate_mm_s;
  2085. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  2086. // Move the probe to the starting XYZ
  2087. do_blocking_move_to(nx, ny, nz);
  2088. float measured_z = NAN;
  2089. if (!DEPLOY_PROBE()) {
  2090. measured_z = run_z_probe() + zprobe_zoffset;
  2091. if (!stow)
  2092. do_blocking_move_to_z(current_position[Z_AXIS] + Z_CLEARANCE_BETWEEN_PROBES, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  2093. else
  2094. if (STOW_PROBE()) measured_z = NAN;
  2095. }
  2096. if (verbose_level > 2) {
  2097. SERIAL_PROTOCOLPGM("Bed X: ");
  2098. SERIAL_PROTOCOL_F(LOGICAL_X_POSITION(rx), 3);
  2099. SERIAL_PROTOCOLPGM(" Y: ");
  2100. SERIAL_PROTOCOL_F(LOGICAL_Y_POSITION(ry), 3);
  2101. SERIAL_PROTOCOLPGM(" Z: ");
  2102. SERIAL_PROTOCOL_F(measured_z, 3);
  2103. SERIAL_EOL();
  2104. }
  2105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2106. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  2107. #endif
  2108. feedrate_mm_s = old_feedrate_mm_s;
  2109. if (isnan(measured_z)) {
  2110. LCD_MESSAGEPGM(MSG_ERR_PROBING_FAILED);
  2111. SERIAL_ERROR_START();
  2112. SERIAL_ERRORLNPGM(MSG_ERR_PROBING_FAILED);
  2113. }
  2114. return measured_z;
  2115. }
  2116. #endif // HAS_BED_PROBE
  2117. #if HAS_LEVELING
  2118. bool leveling_is_valid() {
  2119. return
  2120. #if ENABLED(MESH_BED_LEVELING)
  2121. mbl.has_mesh
  2122. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2123. !!bilinear_grid_spacing[X_AXIS]
  2124. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2125. true
  2126. #else // 3POINT, LINEAR
  2127. true
  2128. #endif
  2129. ;
  2130. }
  2131. /**
  2132. * Turn bed leveling on or off, fixing the current
  2133. * position as-needed.
  2134. *
  2135. * Disable: Current position = physical position
  2136. * Enable: Current position = "unleveled" physical position
  2137. */
  2138. void set_bed_leveling_enabled(const bool enable/*=true*/) {
  2139. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2140. const bool can_change = (!enable || leveling_is_valid());
  2141. #else
  2142. constexpr bool can_change = true;
  2143. #endif
  2144. if (can_change && enable != planner.leveling_active) {
  2145. #if ENABLED(MESH_BED_LEVELING)
  2146. if (!enable)
  2147. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2148. const bool enabling = enable && leveling_is_valid();
  2149. planner.leveling_active = enabling;
  2150. if (enabling) planner.unapply_leveling(current_position);
  2151. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2152. #if PLANNER_LEVELING
  2153. if (planner.leveling_active) { // leveling from on to off
  2154. // change unleveled current_position to physical current_position without moving steppers.
  2155. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
  2156. planner.leveling_active = false; // disable only AFTER calling apply_leveling
  2157. }
  2158. else { // leveling from off to on
  2159. planner.leveling_active = true; // enable BEFORE calling unapply_leveling, otherwise ignored
  2160. // change physical current_position to unleveled current_position without moving steppers.
  2161. planner.unapply_leveling(current_position);
  2162. }
  2163. #else
  2164. planner.leveling_active = enable; // just flip the bit, current_position will be wrong until next move.
  2165. #endif
  2166. #else // ABL
  2167. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2168. // Force bilinear_z_offset to re-calculate next time
  2169. const float reset[XYZ] = { -9999.999, -9999.999, 0 };
  2170. (void)bilinear_z_offset(reset);
  2171. #endif
  2172. // Enable or disable leveling compensation in the planner
  2173. planner.leveling_active = enable;
  2174. if (!enable)
  2175. // When disabling just get the current position from the steppers.
  2176. // This will yield the smallest error when first converted back to steps.
  2177. set_current_from_steppers_for_axis(
  2178. #if ABL_PLANAR
  2179. ALL_AXES
  2180. #else
  2181. Z_AXIS
  2182. #endif
  2183. );
  2184. else
  2185. // When enabling, remove compensation from the current position,
  2186. // so compensation will give the right stepper counts.
  2187. planner.unapply_leveling(current_position);
  2188. #endif // ABL
  2189. }
  2190. }
  2191. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2192. void set_z_fade_height(const float zfh) {
  2193. const bool level_active = planner.leveling_active;
  2194. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2195. if (level_active) set_bed_leveling_enabled(false); // turn off before changing fade height for proper apply/unapply leveling to maintain current_position
  2196. #endif
  2197. planner.set_z_fade_height(zfh);
  2198. if (level_active) {
  2199. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2200. set_bed_leveling_enabled(true); // turn back on after changing fade height
  2201. #else
  2202. set_current_from_steppers_for_axis(
  2203. #if ABL_PLANAR
  2204. ALL_AXES
  2205. #else
  2206. Z_AXIS
  2207. #endif
  2208. );
  2209. #endif
  2210. }
  2211. }
  2212. #endif // LEVELING_FADE_HEIGHT
  2213. /**
  2214. * Reset calibration results to zero.
  2215. */
  2216. void reset_bed_level() {
  2217. set_bed_leveling_enabled(false);
  2218. #if ENABLED(MESH_BED_LEVELING)
  2219. if (leveling_is_valid()) {
  2220. mbl.reset();
  2221. mbl.has_mesh = false;
  2222. }
  2223. #else
  2224. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2225. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  2226. #endif
  2227. #if ABL_PLANAR
  2228. planner.bed_level_matrix.set_to_identity();
  2229. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2230. bilinear_start[X_AXIS] = bilinear_start[Y_AXIS] =
  2231. bilinear_grid_spacing[X_AXIS] = bilinear_grid_spacing[Y_AXIS] = 0;
  2232. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2233. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2234. z_values[x][y] = NAN;
  2235. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2236. ubl.reset();
  2237. #endif
  2238. #endif
  2239. }
  2240. #endif // HAS_LEVELING
  2241. #if ENABLED(AUTO_BED_LEVELING_BILINEAR) || ENABLED(MESH_BED_LEVELING)
  2242. /**
  2243. * Enable to produce output in JSON format suitable
  2244. * for SCAD or JavaScript mesh visualizers.
  2245. *
  2246. * Visualize meshes in OpenSCAD using the included script.
  2247. *
  2248. * buildroot/shared/scripts/MarlinMesh.scad
  2249. */
  2250. //#define SCAD_MESH_OUTPUT
  2251. /**
  2252. * Print calibration results for plotting or manual frame adjustment.
  2253. */
  2254. static void print_2d_array(const uint8_t sx, const uint8_t sy, const uint8_t precision, float (*fn)(const uint8_t, const uint8_t)) {
  2255. #ifndef SCAD_MESH_OUTPUT
  2256. for (uint8_t x = 0; x < sx; x++) {
  2257. for (uint8_t i = 0; i < precision + 2 + (x < 10 ? 1 : 0); i++)
  2258. SERIAL_PROTOCOLCHAR(' ');
  2259. SERIAL_PROTOCOL((int)x);
  2260. }
  2261. SERIAL_EOL();
  2262. #endif
  2263. #ifdef SCAD_MESH_OUTPUT
  2264. SERIAL_PROTOCOLLNPGM("measured_z = ["); // open 2D array
  2265. #endif
  2266. for (uint8_t y = 0; y < sy; y++) {
  2267. #ifdef SCAD_MESH_OUTPUT
  2268. SERIAL_PROTOCOLPGM(" ["); // open sub-array
  2269. #else
  2270. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2271. SERIAL_PROTOCOL((int)y);
  2272. #endif
  2273. for (uint8_t x = 0; x < sx; x++) {
  2274. SERIAL_PROTOCOLCHAR(' ');
  2275. const float offset = fn(x, y);
  2276. if (!isnan(offset)) {
  2277. if (offset >= 0) SERIAL_PROTOCOLCHAR('+');
  2278. SERIAL_PROTOCOL_F(offset, precision);
  2279. }
  2280. else {
  2281. #ifdef SCAD_MESH_OUTPUT
  2282. for (uint8_t i = 3; i < precision + 3; i++)
  2283. SERIAL_PROTOCOLCHAR(' ');
  2284. SERIAL_PROTOCOLPGM("NAN");
  2285. #else
  2286. for (uint8_t i = 0; i < precision + 3; i++)
  2287. SERIAL_PROTOCOLCHAR(i ? '=' : ' ');
  2288. #endif
  2289. }
  2290. #ifdef SCAD_MESH_OUTPUT
  2291. if (x < sx - 1) SERIAL_PROTOCOLCHAR(',');
  2292. #endif
  2293. }
  2294. #ifdef SCAD_MESH_OUTPUT
  2295. SERIAL_PROTOCOLCHAR(' ');
  2296. SERIAL_PROTOCOLCHAR(']'); // close sub-array
  2297. if (y < sy - 1) SERIAL_PROTOCOLCHAR(',');
  2298. #endif
  2299. SERIAL_EOL();
  2300. }
  2301. #ifdef SCAD_MESH_OUTPUT
  2302. SERIAL_PROTOCOLPGM("];"); // close 2D array
  2303. #endif
  2304. SERIAL_EOL();
  2305. }
  2306. #endif
  2307. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2308. /**
  2309. * Extrapolate a single point from its neighbors
  2310. */
  2311. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  2312. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2313. if (DEBUGGING(LEVELING)) {
  2314. SERIAL_ECHOPGM("Extrapolate [");
  2315. if (x < 10) SERIAL_CHAR(' ');
  2316. SERIAL_ECHO((int)x);
  2317. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  2318. SERIAL_CHAR(' ');
  2319. if (y < 10) SERIAL_CHAR(' ');
  2320. SERIAL_ECHO((int)y);
  2321. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  2322. SERIAL_CHAR(']');
  2323. }
  2324. #endif
  2325. if (!isnan(z_values[x][y])) {
  2326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2327. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  2328. #endif
  2329. return; // Don't overwrite good values.
  2330. }
  2331. SERIAL_EOL();
  2332. // Get X neighbors, Y neighbors, and XY neighbors
  2333. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  2334. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  2335. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  2336. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  2337. // Treat far unprobed points as zero, near as equal to far
  2338. if (isnan(a2)) a2 = 0.0; if (isnan(a1)) a1 = a2;
  2339. if (isnan(b2)) b2 = 0.0; if (isnan(b1)) b1 = b2;
  2340. if (isnan(c2)) c2 = 0.0; if (isnan(c1)) c1 = c2;
  2341. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  2342. // Take the average instead of the median
  2343. z_values[x][y] = (a + b + c) / 3.0;
  2344. // Median is robust (ignores outliers).
  2345. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  2346. // : ((c < b) ? b : (a < c) ? a : c);
  2347. }
  2348. //Enable this if your SCARA uses 180° of total area
  2349. //#define EXTRAPOLATE_FROM_EDGE
  2350. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  2351. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  2352. #define HALF_IN_X
  2353. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  2354. #define HALF_IN_Y
  2355. #endif
  2356. #endif
  2357. /**
  2358. * Fill in the unprobed points (corners of circular print surface)
  2359. * using linear extrapolation, away from the center.
  2360. */
  2361. static void extrapolate_unprobed_bed_level() {
  2362. #ifdef HALF_IN_X
  2363. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  2364. #else
  2365. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  2366. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  2367. xlen = ctrx1;
  2368. #endif
  2369. #ifdef HALF_IN_Y
  2370. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  2371. #else
  2372. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  2373. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  2374. ylen = ctry1;
  2375. #endif
  2376. for (uint8_t xo = 0; xo <= xlen; xo++)
  2377. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2378. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2379. #ifndef HALF_IN_X
  2380. const uint8_t x1 = ctrx1 - xo;
  2381. #endif
  2382. #ifndef HALF_IN_Y
  2383. const uint8_t y1 = ctry1 - yo;
  2384. #ifndef HALF_IN_X
  2385. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2386. #endif
  2387. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2388. #endif
  2389. #ifndef HALF_IN_X
  2390. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2391. #endif
  2392. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2393. }
  2394. }
  2395. static void print_bilinear_leveling_grid() {
  2396. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  2397. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  2398. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  2399. );
  2400. }
  2401. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2402. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2403. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  2404. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  2405. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  2406. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  2407. int bilinear_grid_spacing_virt[2] = { 0 };
  2408. float bilinear_grid_factor_virt[2] = { 0 };
  2409. static void print_bilinear_leveling_grid_virt() {
  2410. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  2411. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  2412. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  2413. );
  2414. }
  2415. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  2416. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  2417. uint8_t ep = 0, ip = 1;
  2418. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  2419. if (x) {
  2420. ep = GRID_MAX_POINTS_X - 1;
  2421. ip = GRID_MAX_POINTS_X - 2;
  2422. }
  2423. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  2424. return LINEAR_EXTRAPOLATION(
  2425. z_values[ep][y - 1],
  2426. z_values[ip][y - 1]
  2427. );
  2428. else
  2429. return LINEAR_EXTRAPOLATION(
  2430. bed_level_virt_coord(ep + 1, y),
  2431. bed_level_virt_coord(ip + 1, y)
  2432. );
  2433. }
  2434. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  2435. if (y) {
  2436. ep = GRID_MAX_POINTS_Y - 1;
  2437. ip = GRID_MAX_POINTS_Y - 2;
  2438. }
  2439. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  2440. return LINEAR_EXTRAPOLATION(
  2441. z_values[x - 1][ep],
  2442. z_values[x - 1][ip]
  2443. );
  2444. else
  2445. return LINEAR_EXTRAPOLATION(
  2446. bed_level_virt_coord(x, ep + 1),
  2447. bed_level_virt_coord(x, ip + 1)
  2448. );
  2449. }
  2450. return z_values[x - 1][y - 1];
  2451. }
  2452. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  2453. return (
  2454. p[i-1] * -t * sq(1 - t)
  2455. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  2456. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  2457. - p[i+2] * sq(t) * (1 - t)
  2458. ) * 0.5;
  2459. }
  2460. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  2461. float row[4], column[4];
  2462. for (uint8_t i = 0; i < 4; i++) {
  2463. for (uint8_t j = 0; j < 4; j++) {
  2464. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  2465. }
  2466. row[i] = bed_level_virt_cmr(column, 1, ty);
  2467. }
  2468. return bed_level_virt_cmr(row, 1, tx);
  2469. }
  2470. void bed_level_virt_interpolate() {
  2471. bilinear_grid_spacing_virt[X_AXIS] = bilinear_grid_spacing[X_AXIS] / (BILINEAR_SUBDIVISIONS);
  2472. bilinear_grid_spacing_virt[Y_AXIS] = bilinear_grid_spacing[Y_AXIS] / (BILINEAR_SUBDIVISIONS);
  2473. bilinear_grid_factor_virt[X_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[X_AXIS]);
  2474. bilinear_grid_factor_virt[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing_virt[Y_AXIS]);
  2475. for (uint8_t y = 0; y < GRID_MAX_POINTS_Y; y++)
  2476. for (uint8_t x = 0; x < GRID_MAX_POINTS_X; x++)
  2477. for (uint8_t ty = 0; ty < BILINEAR_SUBDIVISIONS; ty++)
  2478. for (uint8_t tx = 0; tx < BILINEAR_SUBDIVISIONS; tx++) {
  2479. if ((ty && y == GRID_MAX_POINTS_Y - 1) || (tx && x == GRID_MAX_POINTS_X - 1))
  2480. continue;
  2481. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  2482. bed_level_virt_2cmr(
  2483. x + 1,
  2484. y + 1,
  2485. (float)tx / (BILINEAR_SUBDIVISIONS),
  2486. (float)ty / (BILINEAR_SUBDIVISIONS)
  2487. );
  2488. }
  2489. }
  2490. #endif // ABL_BILINEAR_SUBDIVISION
  2491. // Refresh after other values have been updated
  2492. void refresh_bed_level() {
  2493. bilinear_grid_factor[X_AXIS] = RECIPROCAL(bilinear_grid_spacing[X_AXIS]);
  2494. bilinear_grid_factor[Y_AXIS] = RECIPROCAL(bilinear_grid_spacing[Y_AXIS]);
  2495. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  2496. bed_level_virt_interpolate();
  2497. #endif
  2498. }
  2499. #endif // AUTO_BED_LEVELING_BILINEAR
  2500. /**
  2501. * Home an individual linear axis
  2502. */
  2503. static void do_homing_move(const AxisEnum axis, const float distance, const float fr_mm_s=0.0) {
  2504. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2505. if (DEBUGGING(LEVELING)) {
  2506. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2507. SERIAL_ECHOPAIR(", ", distance);
  2508. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2509. SERIAL_CHAR(')');
  2510. SERIAL_EOL();
  2511. }
  2512. #endif
  2513. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2514. const bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2515. if (deploy_bltouch) set_bltouch_deployed(true);
  2516. #endif
  2517. #if QUIET_PROBING
  2518. if (axis == Z_AXIS) probing_pause(true);
  2519. #endif
  2520. // Tell the planner we're at Z=0
  2521. current_position[axis] = 0;
  2522. #if IS_SCARA
  2523. SYNC_PLAN_POSITION_KINEMATIC();
  2524. current_position[axis] = distance;
  2525. inverse_kinematics(current_position);
  2526. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2527. #else
  2528. sync_plan_position();
  2529. current_position[axis] = distance;
  2530. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate(axis), active_extruder);
  2531. #endif
  2532. stepper.synchronize();
  2533. #if QUIET_PROBING
  2534. if (axis == Z_AXIS) probing_pause(false);
  2535. #endif
  2536. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2537. if (deploy_bltouch) set_bltouch_deployed(false);
  2538. #endif
  2539. endstops.hit_on_purpose();
  2540. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2541. if (DEBUGGING(LEVELING)) {
  2542. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2543. SERIAL_CHAR(')');
  2544. SERIAL_EOL();
  2545. }
  2546. #endif
  2547. }
  2548. /**
  2549. * TMC2130 specific sensorless homing using stallGuard2.
  2550. * stallGuard2 only works when in spreadCycle mode.
  2551. * spreadCycle and stealthChop are mutually exclusive.
  2552. */
  2553. #if ENABLED(SENSORLESS_HOMING)
  2554. void tmc2130_sensorless_homing(TMC2130Stepper &st, bool enable=true) {
  2555. #if ENABLED(STEALTHCHOP)
  2556. if (enable) {
  2557. st.coolstep_min_speed(1024UL * 1024UL - 1UL);
  2558. st.stealthChop(0);
  2559. }
  2560. else {
  2561. st.coolstep_min_speed(0);
  2562. st.stealthChop(1);
  2563. }
  2564. #endif
  2565. st.diag1_stall(enable ? 1 : 0);
  2566. }
  2567. #endif
  2568. /**
  2569. * Home an individual "raw axis" to its endstop.
  2570. * This applies to XYZ on Cartesian and Core robots, and
  2571. * to the individual ABC steppers on DELTA and SCARA.
  2572. *
  2573. * At the end of the procedure the axis is marked as
  2574. * homed and the current position of that axis is updated.
  2575. * Kinematic robots should wait till all axes are homed
  2576. * before updating the current position.
  2577. */
  2578. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2579. static void homeaxis(const AxisEnum axis) {
  2580. #if IS_SCARA
  2581. // Only Z homing (with probe) is permitted
  2582. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2583. #else
  2584. #define CAN_HOME(A) \
  2585. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2586. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2587. #endif
  2588. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2589. if (DEBUGGING(LEVELING)) {
  2590. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2591. SERIAL_CHAR(')');
  2592. SERIAL_EOL();
  2593. }
  2594. #endif
  2595. const int axis_home_dir =
  2596. #if ENABLED(DUAL_X_CARRIAGE)
  2597. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2598. #endif
  2599. home_dir(axis);
  2600. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2601. #if HOMING_Z_WITH_PROBE
  2602. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2603. #endif
  2604. // Set flags for X, Y, Z motor locking
  2605. #if ENABLED(X_DUAL_ENDSTOPS)
  2606. if (axis == X_AXIS) stepper.set_homing_flag_x(true);
  2607. #endif
  2608. #if ENABLED(Y_DUAL_ENDSTOPS)
  2609. if (axis == Y_AXIS) stepper.set_homing_flag_y(true);
  2610. #endif
  2611. #if ENABLED(Z_DUAL_ENDSTOPS)
  2612. if (axis == Z_AXIS) stepper.set_homing_flag_z(true);
  2613. #endif
  2614. // Disable stealthChop if used. Enable diag1 pin on driver.
  2615. #if ENABLED(SENSORLESS_HOMING)
  2616. #if ENABLED(X_IS_TMC2130)
  2617. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX);
  2618. #endif
  2619. #if ENABLED(Y_IS_TMC2130)
  2620. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY);
  2621. #endif
  2622. #endif
  2623. // Fast move towards endstop until triggered
  2624. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2625. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2626. #endif
  2627. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2628. // When homing Z with probe respect probe clearance
  2629. const float bump = axis_home_dir * (
  2630. #if HOMING_Z_WITH_PROBE
  2631. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2632. #endif
  2633. home_bump_mm(axis)
  2634. );
  2635. // If a second homing move is configured...
  2636. if (bump) {
  2637. // Move away from the endstop by the axis HOME_BUMP_MM
  2638. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2639. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2640. #endif
  2641. do_homing_move(axis, -bump);
  2642. // Slow move towards endstop until triggered
  2643. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2644. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2645. #endif
  2646. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2647. }
  2648. /**
  2649. * Home axes that have dual endstops... differently
  2650. */
  2651. #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  2652. const bool pos_dir = axis_home_dir > 0;
  2653. #if ENABLED(X_DUAL_ENDSTOPS)
  2654. if (axis == X_AXIS) {
  2655. const bool lock_x1 = pos_dir ? (x_endstop_adj > 0) : (x_endstop_adj < 0);
  2656. const float adj = FABS(x_endstop_adj);
  2657. if (lock_x1) stepper.set_x_lock(true); else stepper.set_x2_lock(true);
  2658. do_homing_move(axis, pos_dir ? -adj : adj);
  2659. if (lock_x1) stepper.set_x_lock(false); else stepper.set_x2_lock(false);
  2660. stepper.set_homing_flag_x(false);
  2661. }
  2662. #endif
  2663. #if ENABLED(Y_DUAL_ENDSTOPS)
  2664. if (axis == Y_AXIS) {
  2665. const bool lock_y1 = pos_dir ? (y_endstop_adj > 0) : (y_endstop_adj < 0);
  2666. const float adj = FABS(y_endstop_adj);
  2667. if (lock_y1) stepper.set_y_lock(true); else stepper.set_y2_lock(true);
  2668. do_homing_move(axis, pos_dir ? -adj : adj);
  2669. if (lock_y1) stepper.set_y_lock(false); else stepper.set_y2_lock(false);
  2670. stepper.set_homing_flag_y(false);
  2671. }
  2672. #endif
  2673. #if ENABLED(Z_DUAL_ENDSTOPS)
  2674. if (axis == Z_AXIS) {
  2675. const bool lock_z1 = pos_dir ? (z_endstop_adj > 0) : (z_endstop_adj < 0);
  2676. const float adj = FABS(z_endstop_adj);
  2677. if (lock_z1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2678. do_homing_move(axis, pos_dir ? -adj : adj);
  2679. if (lock_z1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2680. stepper.set_homing_flag_z(false);
  2681. }
  2682. #endif
  2683. #endif
  2684. #if IS_SCARA
  2685. set_axis_is_at_home(axis);
  2686. SYNC_PLAN_POSITION_KINEMATIC();
  2687. #elif ENABLED(DELTA)
  2688. // Delta has already moved all three towers up in G28
  2689. // so here it re-homes each tower in turn.
  2690. // Delta homing treats the axes as normal linear axes.
  2691. // retrace by the amount specified in delta_endstop_adj + additional 0.1mm in order to have minimum steps
  2692. if (delta_endstop_adj[axis] * Z_HOME_DIR <= 0) {
  2693. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2694. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("delta_endstop_adj:");
  2695. #endif
  2696. do_homing_move(axis, delta_endstop_adj[axis] - 0.1 * Z_HOME_DIR);
  2697. }
  2698. #else
  2699. // For cartesian/core machines,
  2700. // set the axis to its home position
  2701. set_axis_is_at_home(axis);
  2702. sync_plan_position();
  2703. destination[axis] = current_position[axis];
  2704. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2705. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2706. #endif
  2707. #endif
  2708. // Re-enable stealthChop if used. Disable diag1 pin on driver.
  2709. #if ENABLED(SENSORLESS_HOMING)
  2710. #if ENABLED(X_IS_TMC2130)
  2711. if (axis == X_AXIS) tmc2130_sensorless_homing(stepperX, false);
  2712. #endif
  2713. #if ENABLED(Y_IS_TMC2130)
  2714. if (axis == Y_AXIS) tmc2130_sensorless_homing(stepperY, false);
  2715. #endif
  2716. #endif
  2717. // Put away the Z probe
  2718. #if HOMING_Z_WITH_PROBE
  2719. if (axis == Z_AXIS && STOW_PROBE()) return;
  2720. #endif
  2721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2722. if (DEBUGGING(LEVELING)) {
  2723. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2724. SERIAL_CHAR(')');
  2725. SERIAL_EOL();
  2726. }
  2727. #endif
  2728. } // homeaxis()
  2729. #if ENABLED(FWRETRACT)
  2730. /**
  2731. * Retract or recover according to firmware settings
  2732. *
  2733. * This function handles retract/recover moves for G10 and G11,
  2734. * plus auto-retract moves sent from G0/G1 when E-only moves are done.
  2735. *
  2736. * To simplify the logic, doubled retract/recover moves are ignored.
  2737. *
  2738. * Note: Z lift is done transparently to the planner. Aborting
  2739. * a print between G10 and G11 may corrupt the Z position.
  2740. *
  2741. * Note: Auto-retract will apply the set Z hop in addition to any Z hop
  2742. * included in the G-code. Use M207 Z0 to to prevent double hop.
  2743. */
  2744. void retract(const bool retracting
  2745. #if EXTRUDERS > 1
  2746. , bool swapping = false
  2747. #endif
  2748. ) {
  2749. static float hop_amount = 0.0; // Total amount lifted, for use in recover
  2750. // Prevent two retracts or recovers in a row
  2751. if (retracted[active_extruder] == retracting) return;
  2752. // Prevent two swap-retract or recovers in a row
  2753. #if EXTRUDERS > 1
  2754. // Allow G10 S1 only after G10
  2755. if (swapping && retracted_swap[active_extruder] == retracting) return;
  2756. // G11 priority to recover the long retract if activated
  2757. if (!retracting) swapping = retracted_swap[active_extruder];
  2758. #else
  2759. const bool swapping = false;
  2760. #endif
  2761. /* // debugging
  2762. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2763. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2764. SERIAL_ECHOLNPAIR("active extruder ", active_extruder);
  2765. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2766. SERIAL_ECHOPAIR("retracted[", i);
  2767. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2768. SERIAL_ECHOPAIR("retracted_swap[", i);
  2769. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2770. }
  2771. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2772. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2773. //*/
  2774. const bool has_zhop = retract_zlift > 0.01; // Is there a hop set?
  2775. const float old_feedrate_mm_s = feedrate_mm_s;
  2776. // The current position will be the destination for E and Z moves
  2777. set_destination_from_current();
  2778. stepper.synchronize(); // Wait for buffered moves to complete
  2779. const float renormalize = 1.0 / planner.e_factor[active_extruder];
  2780. if (retracting) {
  2781. // Retract by moving from a faux E position back to the current E position
  2782. feedrate_mm_s = retract_feedrate_mm_s;
  2783. current_position[E_AXIS] += (swapping ? swap_retract_length : retract_length) * renormalize;
  2784. sync_plan_position_e();
  2785. prepare_move_to_destination();
  2786. // Is a Z hop set, and has the hop not yet been done?
  2787. if (has_zhop && !hop_amount) {
  2788. hop_amount += retract_zlift; // Carriage is raised for retraction hop
  2789. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2790. current_position[Z_AXIS] -= retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2791. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2792. prepare_move_to_destination(); // Raise up to the old current pos
  2793. feedrate_mm_s = retract_feedrate_mm_s; // Restore feedrate
  2794. }
  2795. }
  2796. else {
  2797. // If a hop was done and Z hasn't changed, undo the Z hop
  2798. if (hop_amount) {
  2799. current_position[Z_AXIS] += retract_zlift; // Pretend current pos is lower. Next move raises Z.
  2800. SYNC_PLAN_POSITION_KINEMATIC(); // Set the planner to the new position
  2801. feedrate_mm_s = planner.max_feedrate_mm_s[Z_AXIS]; // Z feedrate to max
  2802. prepare_move_to_destination(); // Raise up to the old current pos
  2803. hop_amount = 0.0; // Clear hop
  2804. }
  2805. // A retract multiplier has been added here to get faster swap recovery
  2806. feedrate_mm_s = swapping ? swap_retract_recover_feedrate_mm_s : retract_recover_feedrate_mm_s;
  2807. const float move_e = swapping ? swap_retract_length + swap_retract_recover_length : retract_length + retract_recover_length;
  2808. current_position[E_AXIS] -= move_e * renormalize;
  2809. sync_plan_position_e();
  2810. prepare_move_to_destination(); // Recover E
  2811. }
  2812. feedrate_mm_s = old_feedrate_mm_s; // Restore original feedrate
  2813. retracted[active_extruder] = retracting; // Active extruder now retracted / recovered
  2814. // If swap retract/recover update the retracted_swap flag too
  2815. #if EXTRUDERS > 1
  2816. if (swapping) retracted_swap[active_extruder] = retracting;
  2817. #endif
  2818. /* // debugging
  2819. SERIAL_ECHOLNPAIR("retracting ", retracting);
  2820. SERIAL_ECHOLNPAIR("swapping ", swapping);
  2821. SERIAL_ECHOLNPAIR("active_extruder ", active_extruder);
  2822. for (uint8_t i = 0; i < EXTRUDERS; ++i) {
  2823. SERIAL_ECHOPAIR("retracted[", i);
  2824. SERIAL_ECHOLNPAIR("] ", retracted[i]);
  2825. SERIAL_ECHOPAIR("retracted_swap[", i);
  2826. SERIAL_ECHOLNPAIR("] ", retracted_swap[i]);
  2827. }
  2828. SERIAL_ECHOLNPAIR("current_position[z] ", current_position[Z_AXIS]);
  2829. SERIAL_ECHOLNPAIR("hop_amount ", hop_amount);
  2830. //*/
  2831. }
  2832. #endif // FWRETRACT
  2833. #if ENABLED(MIXING_EXTRUDER)
  2834. void normalize_mix() {
  2835. float mix_total = 0.0;
  2836. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2837. // Scale all values if they don't add up to ~1.0
  2838. if (!NEAR(mix_total, 1.0)) {
  2839. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2840. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2841. }
  2842. }
  2843. #if ENABLED(DIRECT_MIXING_IN_G1)
  2844. // Get mixing parameters from the GCode
  2845. // The total "must" be 1.0 (but it will be normalized)
  2846. // If no mix factors are given, the old mix is preserved
  2847. void gcode_get_mix() {
  2848. const char* mixing_codes = "ABCDHI";
  2849. byte mix_bits = 0;
  2850. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2851. if (parser.seenval(mixing_codes[i])) {
  2852. SBI(mix_bits, i);
  2853. float v = parser.value_float();
  2854. NOLESS(v, 0.0);
  2855. mixing_factor[i] = RECIPROCAL(v);
  2856. }
  2857. }
  2858. // If any mixing factors were included, clear the rest
  2859. // If none were included, preserve the last mix
  2860. if (mix_bits) {
  2861. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2862. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2863. normalize_mix();
  2864. }
  2865. }
  2866. #endif
  2867. #endif
  2868. /**
  2869. * ***************************************************************************
  2870. * ***************************** G-CODE HANDLING *****************************
  2871. * ***************************************************************************
  2872. */
  2873. /**
  2874. * Set XYZE destination and feedrate from the current GCode command
  2875. *
  2876. * - Set destination from included axis codes
  2877. * - Set to current for missing axis codes
  2878. * - Set the feedrate, if included
  2879. */
  2880. void gcode_get_destination() {
  2881. LOOP_XYZE(i) {
  2882. if (parser.seen(axis_codes[i])) {
  2883. const float v = parser.value_axis_units((AxisEnum)i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2884. destination[i] = i == E_AXIS ? v : LOGICAL_TO_NATIVE(v, i);
  2885. }
  2886. else
  2887. destination[i] = current_position[i];
  2888. }
  2889. if (parser.linearval('F') > 0.0)
  2890. feedrate_mm_s = MMM_TO_MMS(parser.value_feedrate());
  2891. #if ENABLED(PRINTCOUNTER)
  2892. if (!DEBUGGING(DRYRUN))
  2893. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2894. #endif
  2895. // Get ABCDHI mixing factors
  2896. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2897. gcode_get_mix();
  2898. #endif
  2899. }
  2900. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2901. /**
  2902. * Output a "busy" message at regular intervals
  2903. * while the machine is not accepting commands.
  2904. */
  2905. void host_keepalive() {
  2906. const millis_t ms = millis();
  2907. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2908. if (PENDING(ms, next_busy_signal_ms)) return;
  2909. switch (busy_state) {
  2910. case IN_HANDLER:
  2911. case IN_PROCESS:
  2912. SERIAL_ECHO_START();
  2913. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2914. break;
  2915. case PAUSED_FOR_USER:
  2916. SERIAL_ECHO_START();
  2917. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2918. break;
  2919. case PAUSED_FOR_INPUT:
  2920. SERIAL_ECHO_START();
  2921. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2922. break;
  2923. default:
  2924. break;
  2925. }
  2926. }
  2927. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2928. }
  2929. #endif // HOST_KEEPALIVE_FEATURE
  2930. /**************************************************
  2931. ***************** GCode Handlers *****************
  2932. **************************************************/
  2933. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  2934. #define G0_G1_CONDITION !axis_unhomed_error(parser.seen('X'), parser.seen('Y'), parser.seen('Z'))
  2935. #else
  2936. #define G0_G1_CONDITION true
  2937. #endif
  2938. /**
  2939. * G0, G1: Coordinated movement of X Y Z E axes
  2940. */
  2941. inline void gcode_G0_G1(
  2942. #if IS_SCARA
  2943. bool fast_move=false
  2944. #endif
  2945. ) {
  2946. if (IsRunning() && G0_G1_CONDITION) {
  2947. gcode_get_destination(); // For X Y Z E F
  2948. #if ENABLED(FWRETRACT)
  2949. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  2950. // When M209 Autoretract is enabled, convert E-only moves to firmware retract/recover moves
  2951. if (autoretract_enabled && parser.seen('E') && !(parser.seen('X') || parser.seen('Y') || parser.seen('Z'))) {
  2952. const float echange = destination[E_AXIS] - current_position[E_AXIS];
  2953. // Is this a retract or recover move?
  2954. if (WITHIN(FABS(echange), MIN_AUTORETRACT, MAX_AUTORETRACT) && retracted[active_extruder] == (echange > 0.0)) {
  2955. current_position[E_AXIS] = destination[E_AXIS]; // Hide a G1-based retract/recover from calculations
  2956. sync_plan_position_e(); // AND from the planner
  2957. return retract(echange < 0.0); // Firmware-based retract/recover (double-retract ignored)
  2958. }
  2959. }
  2960. }
  2961. #endif // FWRETRACT
  2962. #if IS_SCARA
  2963. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2964. #else
  2965. prepare_move_to_destination();
  2966. #endif
  2967. #if ENABLED(NANODLP_Z_SYNC)
  2968. // If G0/G1 command include Z-axis, wait for move and output sync text.
  2969. if (parser.seenval('Z')) {
  2970. stepper.synchronize();
  2971. SERIAL_ECHOLNPGM(MSG_Z_MOVE_COMP);
  2972. }
  2973. #endif
  2974. }
  2975. }
  2976. /**
  2977. * G2: Clockwise Arc
  2978. * G3: Counterclockwise Arc
  2979. *
  2980. * This command has two forms: IJ-form and R-form.
  2981. *
  2982. * - I specifies an X offset. J specifies a Y offset.
  2983. * At least one of the IJ parameters is required.
  2984. * X and Y can be omitted to do a complete circle.
  2985. * The given XY is not error-checked. The arc ends
  2986. * based on the angle of the destination.
  2987. * Mixing I or J with R will throw an error.
  2988. *
  2989. * - R specifies the radius. X or Y is required.
  2990. * Omitting both X and Y will throw an error.
  2991. * X or Y must differ from the current XY.
  2992. * Mixing R with I or J will throw an error.
  2993. *
  2994. * - P specifies the number of full circles to do
  2995. * before the specified arc move.
  2996. *
  2997. * Examples:
  2998. *
  2999. * G2 I10 ; CW circle centered at X+10
  3000. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  3001. */
  3002. #if ENABLED(ARC_SUPPORT)
  3003. inline void gcode_G2_G3(const bool clockwise) {
  3004. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3005. if (axis_unhomed_error()) return;
  3006. #endif
  3007. if (IsRunning()) {
  3008. #if ENABLED(SF_ARC_FIX)
  3009. const bool relative_mode_backup = relative_mode;
  3010. relative_mode = true;
  3011. #endif
  3012. gcode_get_destination();
  3013. #if ENABLED(SF_ARC_FIX)
  3014. relative_mode = relative_mode_backup;
  3015. #endif
  3016. float arc_offset[2] = { 0.0, 0.0 };
  3017. if (parser.seenval('R')) {
  3018. const float r = parser.value_linear_units(),
  3019. p1 = current_position[X_AXIS], q1 = current_position[Y_AXIS],
  3020. p2 = destination[X_AXIS], q2 = destination[Y_AXIS];
  3021. if (r && (p2 != p1 || q2 != q1)) {
  3022. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  3023. dx = p2 - p1, dy = q2 - q1, // X and Y differences
  3024. d = HYPOT(dx, dy), // Linear distance between the points
  3025. h = SQRT(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  3026. mx = (p1 + p2) * 0.5, my = (q1 + q2) * 0.5, // Point between the two points
  3027. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  3028. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  3029. arc_offset[0] = cx - p1;
  3030. arc_offset[1] = cy - q1;
  3031. }
  3032. }
  3033. else {
  3034. if (parser.seenval('I')) arc_offset[0] = parser.value_linear_units();
  3035. if (parser.seenval('J')) arc_offset[1] = parser.value_linear_units();
  3036. }
  3037. if (arc_offset[0] || arc_offset[1]) {
  3038. #if ENABLED(ARC_P_CIRCLES)
  3039. // P indicates number of circles to do
  3040. int8_t circles_to_do = parser.byteval('P');
  3041. if (!WITHIN(circles_to_do, 0, 100)) {
  3042. SERIAL_ERROR_START();
  3043. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3044. }
  3045. while (circles_to_do--)
  3046. plan_arc(current_position, arc_offset, clockwise);
  3047. #endif
  3048. // Send the arc to the planner
  3049. plan_arc(destination, arc_offset, clockwise);
  3050. refresh_cmd_timeout();
  3051. }
  3052. else {
  3053. // Bad arguments
  3054. SERIAL_ERROR_START();
  3055. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  3056. }
  3057. }
  3058. }
  3059. #endif // ARC_SUPPORT
  3060. void dwell(millis_t time) {
  3061. refresh_cmd_timeout();
  3062. time += previous_cmd_ms;
  3063. while (PENDING(millis(), time)) idle();
  3064. }
  3065. /**
  3066. * G4: Dwell S<seconds> or P<milliseconds>
  3067. */
  3068. inline void gcode_G4() {
  3069. millis_t dwell_ms = 0;
  3070. if (parser.seenval('P')) dwell_ms = parser.value_millis(); // milliseconds to wait
  3071. if (parser.seenval('S')) dwell_ms = parser.value_millis_from_seconds(); // seconds to wait
  3072. stepper.synchronize();
  3073. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  3074. dwell(dwell_ms);
  3075. }
  3076. #if ENABLED(BEZIER_CURVE_SUPPORT)
  3077. /**
  3078. * Parameters interpreted according to:
  3079. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  3080. * However I, J omission is not supported at this point; all
  3081. * parameters can be omitted and default to zero.
  3082. */
  3083. /**
  3084. * G5: Cubic B-spline
  3085. */
  3086. inline void gcode_G5() {
  3087. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  3088. if (axis_unhomed_error()) return;
  3089. #endif
  3090. if (IsRunning()) {
  3091. #if ENABLED(CNC_WORKSPACE_PLANES)
  3092. if (workspace_plane != PLANE_XY) {
  3093. SERIAL_ERROR_START();
  3094. SERIAL_ERRORLNPGM(MSG_ERR_BAD_PLANE_MODE);
  3095. return;
  3096. }
  3097. #endif
  3098. gcode_get_destination();
  3099. const float offset[] = {
  3100. parser.linearval('I'),
  3101. parser.linearval('J'),
  3102. parser.linearval('P'),
  3103. parser.linearval('Q')
  3104. };
  3105. plan_cubic_move(offset);
  3106. }
  3107. }
  3108. #endif // BEZIER_CURVE_SUPPORT
  3109. #if ENABLED(FWRETRACT)
  3110. /**
  3111. * G10 - Retract filament according to settings of M207
  3112. */
  3113. inline void gcode_G10() {
  3114. #if EXTRUDERS > 1
  3115. const bool rs = parser.boolval('S');
  3116. retracted_swap[active_extruder] = rs; // Use 'S' for swap, default to false
  3117. #endif
  3118. retract(true
  3119. #if EXTRUDERS > 1
  3120. , rs
  3121. #endif
  3122. );
  3123. }
  3124. /**
  3125. * G11 - Recover filament according to settings of M208
  3126. */
  3127. inline void gcode_G11() { retract(false); }
  3128. #endif // FWRETRACT
  3129. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  3130. /**
  3131. * G12: Clean the nozzle
  3132. */
  3133. inline void gcode_G12() {
  3134. // Don't allow nozzle cleaning without homing first
  3135. if (axis_unhomed_error()) return;
  3136. const uint8_t pattern = parser.ushortval('P', 0),
  3137. strokes = parser.ushortval('S', NOZZLE_CLEAN_STROKES),
  3138. objects = parser.ushortval('T', NOZZLE_CLEAN_TRIANGLES);
  3139. const float radius = parser.floatval('R', NOZZLE_CLEAN_CIRCLE_RADIUS);
  3140. Nozzle::clean(pattern, strokes, radius, objects);
  3141. }
  3142. #endif
  3143. #if ENABLED(CNC_WORKSPACE_PLANES)
  3144. inline void report_workspace_plane() {
  3145. SERIAL_ECHO_START();
  3146. SERIAL_ECHOPGM("Workspace Plane ");
  3147. serialprintPGM(
  3148. workspace_plane == PLANE_YZ ? PSTR("YZ\n") :
  3149. workspace_plane == PLANE_ZX ? PSTR("ZX\n") :
  3150. PSTR("XY\n")
  3151. );
  3152. }
  3153. inline void set_workspace_plane(const WorkspacePlane plane) {
  3154. workspace_plane = plane;
  3155. if (DEBUGGING(INFO)) report_workspace_plane();
  3156. }
  3157. /**
  3158. * G17: Select Plane XY
  3159. * G18: Select Plane ZX
  3160. * G19: Select Plane YZ
  3161. */
  3162. inline void gcode_G17() { set_workspace_plane(PLANE_XY); }
  3163. inline void gcode_G18() { set_workspace_plane(PLANE_ZX); }
  3164. inline void gcode_G19() { set_workspace_plane(PLANE_YZ); }
  3165. #endif // CNC_WORKSPACE_PLANES
  3166. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  3167. /**
  3168. * Select a coordinate system and update the workspace offset.
  3169. * System index -1 is used to specify machine-native.
  3170. */
  3171. bool select_coordinate_system(const int8_t _new) {
  3172. if (active_coordinate_system == _new) return false;
  3173. float old_offset[XYZ] = { 0 }, new_offset[XYZ] = { 0 };
  3174. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  3175. COPY(old_offset, coordinate_system[active_coordinate_system]);
  3176. if (WITHIN(_new, 0, MAX_COORDINATE_SYSTEMS - 1))
  3177. COPY(new_offset, coordinate_system[_new]);
  3178. active_coordinate_system = _new;
  3179. LOOP_XYZ(i) {
  3180. const float diff = new_offset[i] - old_offset[i];
  3181. if (diff) {
  3182. position_shift[i] += diff;
  3183. update_software_endstops((AxisEnum)i);
  3184. }
  3185. }
  3186. return true;
  3187. }
  3188. /**
  3189. * In CNC G-code G53 is like a modifier
  3190. * It precedes a movement command (or other modifiers) on the same line.
  3191. * This is the first command to use parser.chain() to make this possible.
  3192. */
  3193. inline void gcode_G53() {
  3194. // If this command has more following...
  3195. if (parser.chain()) {
  3196. const int8_t _system = active_coordinate_system;
  3197. active_coordinate_system = -1;
  3198. process_parsed_command();
  3199. active_coordinate_system = _system;
  3200. }
  3201. }
  3202. /**
  3203. * G54-G59.3: Select a new workspace
  3204. *
  3205. * A workspace is an XYZ offset to the machine native space.
  3206. * All workspaces default to 0,0,0 at start, or with EEPROM
  3207. * support they may be restored from a previous session.
  3208. *
  3209. * G92 is used to set the current workspace's offset.
  3210. */
  3211. inline void gcode_G54_59(uint8_t subcode=0) {
  3212. const int8_t _space = parser.codenum - 54 + subcode;
  3213. if (select_coordinate_system(_space)) {
  3214. SERIAL_PROTOCOLLNPAIR("Select workspace ", _space);
  3215. report_current_position();
  3216. }
  3217. }
  3218. FORCE_INLINE void gcode_G54() { gcode_G54_59(); }
  3219. FORCE_INLINE void gcode_G55() { gcode_G54_59(); }
  3220. FORCE_INLINE void gcode_G56() { gcode_G54_59(); }
  3221. FORCE_INLINE void gcode_G57() { gcode_G54_59(); }
  3222. FORCE_INLINE void gcode_G58() { gcode_G54_59(); }
  3223. FORCE_INLINE void gcode_G59() { gcode_G54_59(parser.subcode); }
  3224. #endif
  3225. #if ENABLED(INCH_MODE_SUPPORT)
  3226. /**
  3227. * G20: Set input mode to inches
  3228. */
  3229. inline void gcode_G20() { parser.set_input_linear_units(LINEARUNIT_INCH); }
  3230. /**
  3231. * G21: Set input mode to millimeters
  3232. */
  3233. inline void gcode_G21() { parser.set_input_linear_units(LINEARUNIT_MM); }
  3234. #endif
  3235. #if ENABLED(NOZZLE_PARK_FEATURE)
  3236. /**
  3237. * G27: Park the nozzle
  3238. */
  3239. inline void gcode_G27() {
  3240. // Don't allow nozzle parking without homing first
  3241. if (axis_unhomed_error()) return;
  3242. Nozzle::park(parser.ushortval('P'));
  3243. }
  3244. #endif // NOZZLE_PARK_FEATURE
  3245. #if ENABLED(QUICK_HOME)
  3246. static void quick_home_xy() {
  3247. // Pretend the current position is 0,0
  3248. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3249. sync_plan_position();
  3250. const int x_axis_home_dir =
  3251. #if ENABLED(DUAL_X_CARRIAGE)
  3252. x_home_dir(active_extruder)
  3253. #else
  3254. home_dir(X_AXIS)
  3255. #endif
  3256. ;
  3257. const float mlx = max_length(X_AXIS),
  3258. mly = max_length(Y_AXIS),
  3259. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  3260. fr_mm_s = min(homing_feedrate(X_AXIS), homing_feedrate(Y_AXIS)) * SQRT(sq(mlratio) + 1.0);
  3261. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  3262. endstops.hit_on_purpose(); // clear endstop hit flags
  3263. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  3264. }
  3265. #endif // QUICK_HOME
  3266. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3267. void log_machine_info() {
  3268. SERIAL_ECHOPGM("Machine Type: ");
  3269. #if ENABLED(DELTA)
  3270. SERIAL_ECHOLNPGM("Delta");
  3271. #elif IS_SCARA
  3272. SERIAL_ECHOLNPGM("SCARA");
  3273. #elif IS_CORE
  3274. SERIAL_ECHOLNPGM("Core");
  3275. #else
  3276. SERIAL_ECHOLNPGM("Cartesian");
  3277. #endif
  3278. SERIAL_ECHOPGM("Probe: ");
  3279. #if ENABLED(PROBE_MANUALLY)
  3280. SERIAL_ECHOLNPGM("PROBE_MANUALLY");
  3281. #elif ENABLED(FIX_MOUNTED_PROBE)
  3282. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  3283. #elif ENABLED(BLTOUCH)
  3284. SERIAL_ECHOLNPGM("BLTOUCH");
  3285. #elif HAS_Z_SERVO_ENDSTOP
  3286. SERIAL_ECHOLNPGM("SERVO PROBE");
  3287. #elif ENABLED(Z_PROBE_SLED)
  3288. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  3289. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  3290. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  3291. #else
  3292. SERIAL_ECHOLNPGM("NONE");
  3293. #endif
  3294. #if HAS_BED_PROBE
  3295. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  3296. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  3297. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  3298. #if X_PROBE_OFFSET_FROM_EXTRUDER > 0
  3299. SERIAL_ECHOPGM(" (Right");
  3300. #elif X_PROBE_OFFSET_FROM_EXTRUDER < 0
  3301. SERIAL_ECHOPGM(" (Left");
  3302. #elif Y_PROBE_OFFSET_FROM_EXTRUDER != 0
  3303. SERIAL_ECHOPGM(" (Middle");
  3304. #else
  3305. SERIAL_ECHOPGM(" (Aligned With");
  3306. #endif
  3307. #if Y_PROBE_OFFSET_FROM_EXTRUDER > 0
  3308. SERIAL_ECHOPGM("-Back");
  3309. #elif Y_PROBE_OFFSET_FROM_EXTRUDER < 0
  3310. SERIAL_ECHOPGM("-Front");
  3311. #elif X_PROBE_OFFSET_FROM_EXTRUDER != 0
  3312. SERIAL_ECHOPGM("-Center");
  3313. #endif
  3314. if (zprobe_zoffset < 0)
  3315. SERIAL_ECHOPGM(" & Below");
  3316. else if (zprobe_zoffset > 0)
  3317. SERIAL_ECHOPGM(" & Above");
  3318. else
  3319. SERIAL_ECHOPGM(" & Same Z as");
  3320. SERIAL_ECHOLNPGM(" Nozzle)");
  3321. #endif
  3322. #if HAS_ABL
  3323. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  3324. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3325. SERIAL_ECHOPGM("LINEAR");
  3326. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3327. SERIAL_ECHOPGM("BILINEAR");
  3328. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3329. SERIAL_ECHOPGM("3POINT");
  3330. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3331. SERIAL_ECHOPGM("UBL");
  3332. #endif
  3333. if (planner.leveling_active) {
  3334. SERIAL_ECHOLNPGM(" (enabled)");
  3335. #if ABL_PLANAR
  3336. const float diff[XYZ] = {
  3337. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  3338. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  3339. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  3340. };
  3341. SERIAL_ECHOPGM("ABL Adjustment X");
  3342. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  3343. SERIAL_ECHO(diff[X_AXIS]);
  3344. SERIAL_ECHOPGM(" Y");
  3345. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  3346. SERIAL_ECHO(diff[Y_AXIS]);
  3347. SERIAL_ECHOPGM(" Z");
  3348. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  3349. SERIAL_ECHO(diff[Z_AXIS]);
  3350. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  3351. SERIAL_ECHOPAIR("UBL Adjustment Z", stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]);
  3352. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3353. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  3354. #endif
  3355. }
  3356. else
  3357. SERIAL_ECHOLNPGM(" (disabled)");
  3358. SERIAL_EOL();
  3359. #elif ENABLED(MESH_BED_LEVELING)
  3360. SERIAL_ECHOPGM("Mesh Bed Leveling");
  3361. if (planner.leveling_active) {
  3362. float rz = current_position[Z_AXIS];
  3363. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], rz);
  3364. SERIAL_ECHOLNPGM(" (enabled)");
  3365. SERIAL_ECHOPAIR("MBL Adjustment Z", rz);
  3366. }
  3367. else
  3368. SERIAL_ECHOPGM(" (disabled)");
  3369. SERIAL_EOL();
  3370. #endif // MESH_BED_LEVELING
  3371. }
  3372. #endif // DEBUG_LEVELING_FEATURE
  3373. #if ENABLED(DELTA)
  3374. /**
  3375. * A delta can only safely home all axes at the same time
  3376. * This is like quick_home_xy() but for 3 towers.
  3377. */
  3378. inline bool home_delta() {
  3379. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3380. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  3381. #endif
  3382. // Init the current position of all carriages to 0,0,0
  3383. ZERO(current_position);
  3384. sync_plan_position();
  3385. // Move all carriages together linearly until an endstop is hit.
  3386. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (delta_height + 10);
  3387. feedrate_mm_s = homing_feedrate(X_AXIS);
  3388. buffer_line_to_current_position();
  3389. stepper.synchronize();
  3390. // If an endstop was not hit, then damage can occur if homing is continued.
  3391. // This can occur if the delta height not set correctly.
  3392. if (!(Endstops::endstop_hit_bits & (_BV(X_MAX) | _BV(Y_MAX) | _BV(Z_MAX)))) {
  3393. LCD_MESSAGEPGM(MSG_ERR_HOMING_FAILED);
  3394. SERIAL_ERROR_START();
  3395. SERIAL_ERRORLNPGM(MSG_ERR_HOMING_FAILED);
  3396. return false;
  3397. }
  3398. endstops.hit_on_purpose(); // clear endstop hit flags
  3399. // At least one carriage has reached the top.
  3400. // Now re-home each carriage separately.
  3401. HOMEAXIS(A);
  3402. HOMEAXIS(B);
  3403. HOMEAXIS(C);
  3404. // Set all carriages to their home positions
  3405. // Do this here all at once for Delta, because
  3406. // XYZ isn't ABC. Applying this per-tower would
  3407. // give the impression that they are the same.
  3408. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  3409. SYNC_PLAN_POSITION_KINEMATIC();
  3410. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3411. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  3412. #endif
  3413. return true;
  3414. }
  3415. #endif // DELTA
  3416. #if ENABLED(Z_SAFE_HOMING)
  3417. inline void home_z_safely() {
  3418. // Disallow Z homing if X or Y are unknown
  3419. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  3420. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  3421. SERIAL_ECHO_START();
  3422. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  3423. return;
  3424. }
  3425. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3426. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  3427. #endif
  3428. SYNC_PLAN_POSITION_KINEMATIC();
  3429. /**
  3430. * Move the Z probe (or just the nozzle) to the safe homing point
  3431. */
  3432. destination[X_AXIS] = Z_SAFE_HOMING_X_POINT;
  3433. destination[Y_AXIS] = Z_SAFE_HOMING_Y_POINT;
  3434. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  3435. #if HOMING_Z_WITH_PROBE
  3436. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  3437. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  3438. #endif
  3439. if (position_is_reachable(destination[X_AXIS], destination[Y_AXIS])) {
  3440. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3441. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  3442. #endif
  3443. // This causes the carriage on Dual X to unpark
  3444. #if ENABLED(DUAL_X_CARRIAGE)
  3445. active_extruder_parked = false;
  3446. #endif
  3447. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  3448. HOMEAXIS(Z);
  3449. }
  3450. else {
  3451. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  3452. SERIAL_ECHO_START();
  3453. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  3454. }
  3455. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3456. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  3457. #endif
  3458. }
  3459. #endif // Z_SAFE_HOMING
  3460. #if ENABLED(PROBE_MANUALLY)
  3461. bool g29_in_progress = false;
  3462. #else
  3463. constexpr bool g29_in_progress = false;
  3464. #endif
  3465. /**
  3466. * G28: Home all axes according to settings
  3467. *
  3468. * Parameters
  3469. *
  3470. * None Home to all axes with no parameters.
  3471. * With QUICK_HOME enabled XY will home together, then Z.
  3472. *
  3473. * Cartesian parameters
  3474. *
  3475. * X Home to the X endstop
  3476. * Y Home to the Y endstop
  3477. * Z Home to the Z endstop
  3478. *
  3479. */
  3480. inline void gcode_G28(const bool always_home_all) {
  3481. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3482. if (DEBUGGING(LEVELING)) {
  3483. SERIAL_ECHOLNPGM(">>> gcode_G28");
  3484. log_machine_info();
  3485. }
  3486. #endif
  3487. // Wait for planner moves to finish!
  3488. stepper.synchronize();
  3489. // Cancel the active G29 session
  3490. #if ENABLED(PROBE_MANUALLY)
  3491. g29_in_progress = false;
  3492. #endif
  3493. // Disable the leveling matrix before homing
  3494. #if HAS_LEVELING
  3495. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3496. const bool ubl_state_at_entry = planner.leveling_active;
  3497. #endif
  3498. set_bed_leveling_enabled(false);
  3499. #endif
  3500. #if ENABLED(CNC_WORKSPACE_PLANES)
  3501. workspace_plane = PLANE_XY;
  3502. #endif
  3503. // Always home with tool 0 active
  3504. #if HOTENDS > 1
  3505. const uint8_t old_tool_index = active_extruder;
  3506. tool_change(0, 0, true);
  3507. #endif
  3508. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  3509. extruder_duplication_enabled = false;
  3510. #endif
  3511. setup_for_endstop_or_probe_move();
  3512. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3513. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  3514. #endif
  3515. endstops.enable(true); // Enable endstops for next homing move
  3516. #if ENABLED(DELTA)
  3517. home_delta();
  3518. UNUSED(always_home_all);
  3519. #else // NOT DELTA
  3520. const bool homeX = always_home_all || parser.seen('X'),
  3521. homeY = always_home_all || parser.seen('Y'),
  3522. homeZ = always_home_all || parser.seen('Z'),
  3523. home_all = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  3524. set_destination_from_current();
  3525. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  3526. if (home_all || homeZ) {
  3527. HOMEAXIS(Z);
  3528. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3529. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  3530. #endif
  3531. }
  3532. #else
  3533. if (home_all || homeX || homeY) {
  3534. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  3535. destination[Z_AXIS] = Z_HOMING_HEIGHT;
  3536. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  3537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3538. if (DEBUGGING(LEVELING))
  3539. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  3540. #endif
  3541. do_blocking_move_to_z(destination[Z_AXIS]);
  3542. }
  3543. }
  3544. #endif
  3545. #if ENABLED(QUICK_HOME)
  3546. if (home_all || (homeX && homeY)) quick_home_xy();
  3547. #endif
  3548. #if ENABLED(HOME_Y_BEFORE_X)
  3549. // Home Y
  3550. if (home_all || homeY) {
  3551. HOMEAXIS(Y);
  3552. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3553. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3554. #endif
  3555. }
  3556. #endif
  3557. // Home X
  3558. if (home_all || homeX) {
  3559. #if ENABLED(DUAL_X_CARRIAGE)
  3560. // Always home the 2nd (right) extruder first
  3561. active_extruder = 1;
  3562. HOMEAXIS(X);
  3563. // Remember this extruder's position for later tool change
  3564. inactive_extruder_x_pos = current_position[X_AXIS];
  3565. // Home the 1st (left) extruder
  3566. active_extruder = 0;
  3567. HOMEAXIS(X);
  3568. // Consider the active extruder to be parked
  3569. COPY(raised_parked_position, current_position);
  3570. delayed_move_time = 0;
  3571. active_extruder_parked = true;
  3572. #else
  3573. HOMEAXIS(X);
  3574. #endif
  3575. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3576. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  3577. #endif
  3578. }
  3579. #if DISABLED(HOME_Y_BEFORE_X)
  3580. // Home Y
  3581. if (home_all || homeY) {
  3582. HOMEAXIS(Y);
  3583. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3584. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  3585. #endif
  3586. }
  3587. #endif
  3588. // Home Z last if homing towards the bed
  3589. #if Z_HOME_DIR < 0
  3590. if (home_all || homeZ) {
  3591. #if ENABLED(Z_SAFE_HOMING)
  3592. home_z_safely();
  3593. #else
  3594. HOMEAXIS(Z);
  3595. #endif
  3596. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3597. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all || homeZ) > final", current_position);
  3598. #endif
  3599. } // home_all || homeZ
  3600. #endif // Z_HOME_DIR < 0
  3601. SYNC_PLAN_POSITION_KINEMATIC();
  3602. #endif // !DELTA (gcode_G28)
  3603. endstops.not_homing();
  3604. #if ENABLED(DELTA) && ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  3605. // move to a height where we can use the full xy-area
  3606. do_blocking_move_to_z(delta_clip_start_height);
  3607. #endif
  3608. #if ENABLED(AUTO_BED_LEVELING_UBL)
  3609. set_bed_leveling_enabled(ubl_state_at_entry);
  3610. #endif
  3611. clean_up_after_endstop_or_probe_move();
  3612. // Restore the active tool after homing
  3613. #if HOTENDS > 1
  3614. #if ENABLED(PARKING_EXTRUDER)
  3615. #define NO_FETCH false // fetch the previous toolhead
  3616. #else
  3617. #define NO_FETCH true
  3618. #endif
  3619. tool_change(old_tool_index, 0, NO_FETCH);
  3620. #endif
  3621. lcd_refresh();
  3622. report_current_position();
  3623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3624. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  3625. #endif
  3626. } // G28
  3627. void home_all_axes() { gcode_G28(true); }
  3628. #if HAS_PROBING_PROCEDURE
  3629. void out_of_range_error(const char* p_edge) {
  3630. SERIAL_PROTOCOLPGM("?Probe ");
  3631. serialprintPGM(p_edge);
  3632. SERIAL_PROTOCOLLNPGM(" position out of range.");
  3633. }
  3634. #endif
  3635. #if ENABLED(MESH_BED_LEVELING) || ENABLED(PROBE_MANUALLY)
  3636. #if ENABLED(LCD_BED_LEVELING)
  3637. extern bool lcd_wait_for_move;
  3638. #else
  3639. constexpr bool lcd_wait_for_move = false;
  3640. #endif
  3641. inline void _manual_goto_xy(const float &rx, const float &ry) {
  3642. #if MANUAL_PROBE_HEIGHT > 0
  3643. const float prev_z = current_position[Z_AXIS];
  3644. do_blocking_move_to(rx, ry, MANUAL_PROBE_HEIGHT);
  3645. do_blocking_move_to_z(prev_z);
  3646. #else
  3647. do_blocking_move_to_xy(rx, ry);
  3648. #endif
  3649. current_position[X_AXIS] = rx;
  3650. current_position[Y_AXIS] = ry;
  3651. #if ENABLED(LCD_BED_LEVELING)
  3652. lcd_wait_for_move = false;
  3653. #endif
  3654. }
  3655. #endif
  3656. #if ENABLED(MESH_BED_LEVELING)
  3657. // Save 130 bytes with non-duplication of PSTR
  3658. void echo_not_entered() { SERIAL_PROTOCOLLNPGM(" not entered."); }
  3659. void mbl_mesh_report() {
  3660. SERIAL_PROTOCOLLNPGM("Num X,Y: " STRINGIFY(GRID_MAX_POINTS_X) "," STRINGIFY(GRID_MAX_POINTS_Y));
  3661. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3662. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3663. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 5,
  3664. [](const uint8_t ix, const uint8_t iy) { return mbl.z_values[ix][iy]; }
  3665. );
  3666. }
  3667. /**
  3668. * G29: Mesh-based Z probe, probes a grid and produces a
  3669. * mesh to compensate for variable bed height
  3670. *
  3671. * Parameters With MESH_BED_LEVELING:
  3672. *
  3673. * S0 Produce a mesh report
  3674. * S1 Start probing mesh points
  3675. * S2 Probe the next mesh point
  3676. * S3 Xn Yn Zn.nn Manually modify a single point
  3677. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3678. * S5 Reset and disable mesh
  3679. *
  3680. * The S0 report the points as below
  3681. *
  3682. * +----> X-axis 1-n
  3683. * |
  3684. * |
  3685. * v Y-axis 1-n
  3686. *
  3687. */
  3688. inline void gcode_G29() {
  3689. static int mbl_probe_index = -1;
  3690. #if HAS_SOFTWARE_ENDSTOPS
  3691. static bool enable_soft_endstops;
  3692. #endif
  3693. const MeshLevelingState state = (MeshLevelingState)parser.byteval('S', (int8_t)MeshReport);
  3694. if (!WITHIN(state, 0, 5)) {
  3695. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3696. return;
  3697. }
  3698. int8_t px, py;
  3699. switch (state) {
  3700. case MeshReport:
  3701. if (leveling_is_valid()) {
  3702. SERIAL_PROTOCOLLNPAIR("State: ", planner.leveling_active ? MSG_ON : MSG_OFF);
  3703. mbl_mesh_report();
  3704. }
  3705. else
  3706. SERIAL_PROTOCOLLNPGM("Mesh bed leveling has no data.");
  3707. break;
  3708. case MeshStart:
  3709. mbl.reset();
  3710. mbl_probe_index = 0;
  3711. enqueue_and_echo_commands_P(lcd_wait_for_move ? PSTR("G29 S2") : PSTR("G28\nG29 S2"));
  3712. break;
  3713. case MeshNext:
  3714. if (mbl_probe_index < 0) {
  3715. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3716. return;
  3717. }
  3718. // For each G29 S2...
  3719. if (mbl_probe_index == 0) {
  3720. #if HAS_SOFTWARE_ENDSTOPS
  3721. // For the initial G29 S2 save software endstop state
  3722. enable_soft_endstops = soft_endstops_enabled;
  3723. #endif
  3724. }
  3725. else {
  3726. // For G29 S2 after adjusting Z.
  3727. mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
  3728. #if HAS_SOFTWARE_ENDSTOPS
  3729. soft_endstops_enabled = enable_soft_endstops;
  3730. #endif
  3731. }
  3732. // If there's another point to sample, move there with optional lift.
  3733. if (mbl_probe_index < GRID_MAX_POINTS) {
  3734. mbl.zigzag(mbl_probe_index, px, py);
  3735. _manual_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
  3736. #if HAS_SOFTWARE_ENDSTOPS
  3737. // Disable software endstops to allow manual adjustment
  3738. // If G29 is not completed, they will not be re-enabled
  3739. soft_endstops_enabled = false;
  3740. #endif
  3741. mbl_probe_index++;
  3742. }
  3743. else {
  3744. // One last "return to the bed" (as originally coded) at completion
  3745. current_position[Z_AXIS] = Z_MIN_POS + MANUAL_PROBE_HEIGHT;
  3746. buffer_line_to_current_position();
  3747. stepper.synchronize();
  3748. // After recording the last point, activate home and activate
  3749. mbl_probe_index = -1;
  3750. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3751. BUZZ(100, 659);
  3752. BUZZ(100, 698);
  3753. mbl.has_mesh = true;
  3754. home_all_axes();
  3755. set_bed_leveling_enabled(true);
  3756. #if ENABLED(MESH_G28_REST_ORIGIN)
  3757. current_position[Z_AXIS] = Z_MIN_POS;
  3758. set_destination_from_current();
  3759. buffer_line_to_destination(homing_feedrate(Z_AXIS));
  3760. stepper.synchronize();
  3761. #endif
  3762. #if ENABLED(LCD_BED_LEVELING)
  3763. lcd_wait_for_move = false;
  3764. #endif
  3765. }
  3766. break;
  3767. case MeshSet:
  3768. if (parser.seenval('X')) {
  3769. px = parser.value_int() - 1;
  3770. if (!WITHIN(px, 0, GRID_MAX_POINTS_X - 1)) {
  3771. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  3772. return;
  3773. }
  3774. }
  3775. else {
  3776. SERIAL_CHAR('X'); echo_not_entered();
  3777. return;
  3778. }
  3779. if (parser.seenval('Y')) {
  3780. py = parser.value_int() - 1;
  3781. if (!WITHIN(py, 0, GRID_MAX_POINTS_Y - 1)) {
  3782. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  3783. return;
  3784. }
  3785. }
  3786. else {
  3787. SERIAL_CHAR('Y'); echo_not_entered();
  3788. return;
  3789. }
  3790. if (parser.seenval('Z'))
  3791. mbl.z_values[px][py] = parser.value_linear_units();
  3792. else {
  3793. SERIAL_CHAR('Z'); echo_not_entered();
  3794. return;
  3795. }
  3796. break;
  3797. case MeshSetZOffset:
  3798. if (parser.seenval('Z'))
  3799. mbl.z_offset = parser.value_linear_units();
  3800. else {
  3801. SERIAL_CHAR('Z'); echo_not_entered();
  3802. return;
  3803. }
  3804. break;
  3805. case MeshReset:
  3806. reset_bed_level();
  3807. break;
  3808. } // switch(state)
  3809. if (state == MeshStart || state == MeshNext) {
  3810. SERIAL_PROTOCOLPAIR("MBL G29 point ", min(mbl_probe_index, GRID_MAX_POINTS));
  3811. SERIAL_PROTOCOLLNPAIR(" of ", int(GRID_MAX_POINTS));
  3812. }
  3813. report_current_position();
  3814. }
  3815. #elif OLDSCHOOL_ABL
  3816. #if ABL_GRID
  3817. #if ENABLED(PROBE_Y_FIRST)
  3818. #define PR_OUTER_VAR xCount
  3819. #define PR_OUTER_END abl_grid_points_x
  3820. #define PR_INNER_VAR yCount
  3821. #define PR_INNER_END abl_grid_points_y
  3822. #else
  3823. #define PR_OUTER_VAR yCount
  3824. #define PR_OUTER_END abl_grid_points_y
  3825. #define PR_INNER_VAR xCount
  3826. #define PR_INNER_END abl_grid_points_x
  3827. #endif
  3828. #endif
  3829. /**
  3830. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3831. * Will fail if the printer has not been homed with G28.
  3832. *
  3833. * Enhanced G29 Auto Bed Leveling Probe Routine
  3834. *
  3835. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3836. * or alter the bed level data. Useful to check the topology
  3837. * after a first run of G29.
  3838. *
  3839. * J Jettison current bed leveling data
  3840. *
  3841. * V Set the verbose level (0-4). Example: "G29 V3"
  3842. *
  3843. * Parameters With LINEAR leveling only:
  3844. *
  3845. * P Set the size of the grid that will be probed (P x P points).
  3846. * Example: "G29 P4"
  3847. *
  3848. * X Set the X size of the grid that will be probed (X x Y points).
  3849. * Example: "G29 X7 Y5"
  3850. *
  3851. * Y Set the Y size of the grid that will be probed (X x Y points).
  3852. *
  3853. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3854. * This is useful for manual bed leveling and finding flaws in the bed (to
  3855. * assist with part placement).
  3856. * Not supported by non-linear delta printer bed leveling.
  3857. *
  3858. * Parameters With LINEAR and BILINEAR leveling only:
  3859. *
  3860. * S Set the XY travel speed between probe points (in units/min)
  3861. *
  3862. * F Set the Front limit of the probing grid
  3863. * B Set the Back limit of the probing grid
  3864. * L Set the Left limit of the probing grid
  3865. * R Set the Right limit of the probing grid
  3866. *
  3867. * Parameters with DEBUG_LEVELING_FEATURE only:
  3868. *
  3869. * C Make a totally fake grid with no actual probing.
  3870. * For use in testing when no probing is possible.
  3871. *
  3872. * Parameters with BILINEAR leveling only:
  3873. *
  3874. * Z Supply an additional Z probe offset
  3875. *
  3876. * Extra parameters with PROBE_MANUALLY:
  3877. *
  3878. * To do manual probing simply repeat G29 until the procedure is complete.
  3879. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  3880. *
  3881. * Q Query leveling and G29 state
  3882. *
  3883. * A Abort current leveling procedure
  3884. *
  3885. * Extra parameters with BILINEAR only:
  3886. *
  3887. * W Write a mesh point. (If G29 is idle.)
  3888. * I X index for mesh point
  3889. * J Y index for mesh point
  3890. * X X for mesh point, overrides I
  3891. * Y Y for mesh point, overrides J
  3892. * Z Z for mesh point. Otherwise, raw current Z.
  3893. *
  3894. * Without PROBE_MANUALLY:
  3895. *
  3896. * E By default G29 will engage the Z probe, test the bed, then disengage.
  3897. * Include "E" to engage/disengage the Z probe for each sample.
  3898. * There's no extra effect if you have a fixed Z probe.
  3899. *
  3900. */
  3901. inline void gcode_G29() {
  3902. // G29 Q is also available if debugging
  3903. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3904. const bool query = parser.seen('Q');
  3905. const uint8_t old_debug_flags = marlin_debug_flags;
  3906. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3907. if (DEBUGGING(LEVELING)) {
  3908. DEBUG_POS(">>> gcode_G29", current_position);
  3909. log_machine_info();
  3910. }
  3911. marlin_debug_flags = old_debug_flags;
  3912. #if DISABLED(PROBE_MANUALLY)
  3913. if (query) return;
  3914. #endif
  3915. #endif
  3916. #if ENABLED(PROBE_MANUALLY)
  3917. const bool seenA = parser.seen('A'), seenQ = parser.seen('Q'), no_action = seenA || seenQ;
  3918. #endif
  3919. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  3920. const bool faux = parser.boolval('C');
  3921. #elif ENABLED(PROBE_MANUALLY)
  3922. const bool faux = no_action;
  3923. #else
  3924. bool constexpr faux = false;
  3925. #endif
  3926. // Don't allow auto-leveling without homing first
  3927. if (axis_unhomed_error()) return;
  3928. // Define local vars 'static' for manual probing, 'auto' otherwise
  3929. #if ENABLED(PROBE_MANUALLY)
  3930. #define ABL_VAR static
  3931. #else
  3932. #define ABL_VAR
  3933. #endif
  3934. ABL_VAR int verbose_level;
  3935. ABL_VAR float xProbe, yProbe, measured_z;
  3936. ABL_VAR bool dryrun, abl_should_enable;
  3937. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3938. ABL_VAR int abl_probe_index;
  3939. #endif
  3940. #if HAS_SOFTWARE_ENDSTOPS && ENABLED(PROBE_MANUALLY)
  3941. ABL_VAR bool enable_soft_endstops = true;
  3942. #endif
  3943. #if ABL_GRID
  3944. #if ENABLED(PROBE_MANUALLY)
  3945. ABL_VAR uint8_t PR_OUTER_VAR;
  3946. ABL_VAR int8_t PR_INNER_VAR;
  3947. #endif
  3948. ABL_VAR int left_probe_bed_position, right_probe_bed_position, front_probe_bed_position, back_probe_bed_position;
  3949. ABL_VAR float xGridSpacing = 0, yGridSpacing = 0;
  3950. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3951. ABL_VAR uint8_t abl_grid_points_x = GRID_MAX_POINTS_X,
  3952. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3953. ABL_VAR bool do_topography_map;
  3954. #else // Bilinear
  3955. uint8_t constexpr abl_grid_points_x = GRID_MAX_POINTS_X,
  3956. abl_grid_points_y = GRID_MAX_POINTS_Y;
  3957. #endif
  3958. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(PROBE_MANUALLY)
  3959. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3960. ABL_VAR int abl2;
  3961. #else // Bilinear
  3962. int constexpr abl2 = GRID_MAX_POINTS;
  3963. #endif
  3964. #endif
  3965. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3966. ABL_VAR float zoffset;
  3967. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3968. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  3969. ABL_VAR float eqnAMatrix[GRID_MAX_POINTS * 3], // "A" matrix of the linear system of equations
  3970. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  3971. mean;
  3972. #endif
  3973. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3974. int constexpr abl2 = 3;
  3975. // Probe at 3 arbitrary points
  3976. ABL_VAR vector_3 points[3] = {
  3977. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3978. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3979. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3980. };
  3981. #endif // AUTO_BED_LEVELING_3POINT
  3982. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3983. struct linear_fit_data lsf_results;
  3984. incremental_LSF_reset(&lsf_results);
  3985. #endif
  3986. /**
  3987. * On the initial G29 fetch command parameters.
  3988. */
  3989. if (!g29_in_progress) {
  3990. #if ENABLED(PROBE_MANUALLY) || ENABLED(AUTO_BED_LEVELING_LINEAR)
  3991. abl_probe_index = -1;
  3992. #endif
  3993. abl_should_enable = planner.leveling_active;
  3994. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3995. if (parser.seen('W')) {
  3996. if (!leveling_is_valid()) {
  3997. SERIAL_ERROR_START();
  3998. SERIAL_ERRORLNPGM("No bilinear grid");
  3999. return;
  4000. }
  4001. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position[Z_AXIS];
  4002. if (!WITHIN(rz, -10, 10)) {
  4003. SERIAL_ERROR_START();
  4004. SERIAL_ERRORLNPGM("Bad Z value");
  4005. return;
  4006. }
  4007. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  4008. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  4009. int8_t i = parser.byteval('I', -1),
  4010. j = parser.byteval('J', -1);
  4011. if (!isnan(rx) && !isnan(ry)) {
  4012. // Get nearest i / j from x / y
  4013. i = (rx - bilinear_start[X_AXIS] + 0.5 * xGridSpacing) / xGridSpacing;
  4014. j = (ry - bilinear_start[Y_AXIS] + 0.5 * yGridSpacing) / yGridSpacing;
  4015. i = constrain(i, 0, GRID_MAX_POINTS_X - 1);
  4016. j = constrain(j, 0, GRID_MAX_POINTS_Y - 1);
  4017. }
  4018. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  4019. set_bed_leveling_enabled(false);
  4020. z_values[i][j] = rz;
  4021. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4022. bed_level_virt_interpolate();
  4023. #endif
  4024. set_bed_leveling_enabled(abl_should_enable);
  4025. }
  4026. return;
  4027. } // parser.seen('W')
  4028. #endif
  4029. #if HAS_LEVELING
  4030. // Jettison bed leveling data
  4031. if (parser.seen('J')) {
  4032. reset_bed_level();
  4033. return;
  4034. }
  4035. #endif
  4036. verbose_level = parser.intval('V');
  4037. if (!WITHIN(verbose_level, 0, 4)) {
  4038. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  4039. return;
  4040. }
  4041. dryrun = parser.boolval('D')
  4042. #if ENABLED(PROBE_MANUALLY)
  4043. || no_action
  4044. #endif
  4045. ;
  4046. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4047. do_topography_map = verbose_level > 2 || parser.boolval('T');
  4048. // X and Y specify points in each direction, overriding the default
  4049. // These values may be saved with the completed mesh
  4050. abl_grid_points_x = parser.intval('X', GRID_MAX_POINTS_X);
  4051. abl_grid_points_y = parser.intval('Y', GRID_MAX_POINTS_Y);
  4052. if (parser.seenval('P')) abl_grid_points_x = abl_grid_points_y = parser.value_int();
  4053. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  4054. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  4055. return;
  4056. }
  4057. abl2 = abl_grid_points_x * abl_grid_points_y;
  4058. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4059. zoffset = parser.linearval('Z');
  4060. #endif
  4061. #if ABL_GRID
  4062. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  4063. left_probe_bed_position = parser.seenval('L') ? (int)RAW_X_POSITION(parser.value_linear_units()) : LEFT_PROBE_BED_POSITION;
  4064. right_probe_bed_position = parser.seenval('R') ? (int)RAW_X_POSITION(parser.value_linear_units()) : RIGHT_PROBE_BED_POSITION;
  4065. front_probe_bed_position = parser.seenval('F') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : FRONT_PROBE_BED_POSITION;
  4066. back_probe_bed_position = parser.seenval('B') ? (int)RAW_Y_POSITION(parser.value_linear_units()) : BACK_PROBE_BED_POSITION;
  4067. const bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  4068. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  4069. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  4070. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  4071. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  4072. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  4073. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  4074. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  4075. if (left_out || right_out || front_out || back_out) {
  4076. if (left_out) {
  4077. out_of_range_error(PSTR("(L)eft"));
  4078. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  4079. }
  4080. if (right_out) {
  4081. out_of_range_error(PSTR("(R)ight"));
  4082. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  4083. }
  4084. if (front_out) {
  4085. out_of_range_error(PSTR("(F)ront"));
  4086. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  4087. }
  4088. if (back_out) {
  4089. out_of_range_error(PSTR("(B)ack"));
  4090. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  4091. }
  4092. return;
  4093. }
  4094. // probe at the points of a lattice grid
  4095. xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1);
  4096. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  4097. #endif // ABL_GRID
  4098. if (verbose_level > 0) {
  4099. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  4100. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  4101. }
  4102. stepper.synchronize();
  4103. // Disable auto bed leveling during G29
  4104. planner.leveling_active = false;
  4105. if (!dryrun) {
  4106. // Re-orient the current position without leveling
  4107. // based on where the steppers are positioned.
  4108. set_current_from_steppers_for_axis(ALL_AXES);
  4109. // Sync the planner to where the steppers stopped
  4110. SYNC_PLAN_POSITION_KINEMATIC();
  4111. }
  4112. #if HAS_BED_PROBE
  4113. // Deploy the probe. Probe will raise if needed.
  4114. if (DEPLOY_PROBE()) {
  4115. planner.leveling_active = abl_should_enable;
  4116. return;
  4117. }
  4118. #endif
  4119. if (!faux) setup_for_endstop_or_probe_move();
  4120. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4121. #if ENABLED(PROBE_MANUALLY)
  4122. if (!no_action)
  4123. #endif
  4124. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  4125. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  4126. || left_probe_bed_position != bilinear_start[X_AXIS]
  4127. || front_probe_bed_position != bilinear_start[Y_AXIS]
  4128. ) {
  4129. if (dryrun) {
  4130. // Before reset bed level, re-enable to correct the position
  4131. planner.leveling_active = abl_should_enable;
  4132. }
  4133. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  4134. reset_bed_level();
  4135. // Initialize a grid with the given dimensions
  4136. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  4137. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  4138. bilinear_start[X_AXIS] = left_probe_bed_position;
  4139. bilinear_start[Y_AXIS] = front_probe_bed_position;
  4140. // Can't re-enable (on error) until the new grid is written
  4141. abl_should_enable = false;
  4142. }
  4143. #endif // AUTO_BED_LEVELING_BILINEAR
  4144. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  4145. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4146. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  4147. #endif
  4148. // Probe at 3 arbitrary points
  4149. points[0].z = points[1].z = points[2].z = 0;
  4150. #endif // AUTO_BED_LEVELING_3POINT
  4151. } // !g29_in_progress
  4152. #if ENABLED(PROBE_MANUALLY)
  4153. // For manual probing, get the next index to probe now.
  4154. // On the first probe this will be incremented to 0.
  4155. if (!no_action) {
  4156. ++abl_probe_index;
  4157. g29_in_progress = true;
  4158. }
  4159. // Abort current G29 procedure, go back to idle state
  4160. if (seenA && g29_in_progress) {
  4161. SERIAL_PROTOCOLLNPGM("Manual G29 aborted");
  4162. #if HAS_SOFTWARE_ENDSTOPS
  4163. soft_endstops_enabled = enable_soft_endstops;
  4164. #endif
  4165. planner.leveling_active = abl_should_enable;
  4166. g29_in_progress = false;
  4167. #if ENABLED(LCD_BED_LEVELING)
  4168. lcd_wait_for_move = false;
  4169. #endif
  4170. }
  4171. // Query G29 status
  4172. if (verbose_level || seenQ) {
  4173. SERIAL_PROTOCOLPGM("Manual G29 ");
  4174. if (g29_in_progress) {
  4175. SERIAL_PROTOCOLPAIR("point ", min(abl_probe_index + 1, abl2));
  4176. SERIAL_PROTOCOLLNPAIR(" of ", abl2);
  4177. }
  4178. else
  4179. SERIAL_PROTOCOLLNPGM("idle");
  4180. }
  4181. if (no_action) return;
  4182. if (abl_probe_index == 0) {
  4183. // For the initial G29 save software endstop state
  4184. #if HAS_SOFTWARE_ENDSTOPS
  4185. enable_soft_endstops = soft_endstops_enabled;
  4186. #endif
  4187. }
  4188. else {
  4189. // For G29 after adjusting Z.
  4190. // Save the previous Z before going to the next point
  4191. measured_z = current_position[Z_AXIS];
  4192. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4193. mean += measured_z;
  4194. eqnBVector[abl_probe_index] = measured_z;
  4195. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4196. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4197. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4198. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4199. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4200. z_values[xCount][yCount] = measured_z + zoffset;
  4201. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4202. if (DEBUGGING(LEVELING)) {
  4203. SERIAL_PROTOCOLPAIR("Save X", xCount);
  4204. SERIAL_PROTOCOLPAIR(" Y", yCount);
  4205. SERIAL_PROTOCOLLNPAIR(" Z", measured_z + zoffset);
  4206. }
  4207. #endif
  4208. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4209. points[abl_probe_index].z = measured_z;
  4210. #endif
  4211. }
  4212. //
  4213. // If there's another point to sample, move there with optional lift.
  4214. //
  4215. #if ABL_GRID
  4216. // Skip any unreachable points
  4217. while (abl_probe_index < abl2) {
  4218. // Set xCount, yCount based on abl_probe_index, with zig-zag
  4219. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  4220. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  4221. // Probe in reverse order for every other row/column
  4222. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  4223. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  4224. const float xBase = xCount * xGridSpacing + left_probe_bed_position,
  4225. yBase = yCount * yGridSpacing + front_probe_bed_position;
  4226. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4227. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4228. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4229. indexIntoAB[xCount][yCount] = abl_probe_index;
  4230. #endif
  4231. // Keep looping till a reachable point is found
  4232. if (position_is_reachable(xProbe, yProbe)) break;
  4233. ++abl_probe_index;
  4234. }
  4235. // Is there a next point to move to?
  4236. if (abl_probe_index < abl2) {
  4237. _manual_goto_xy(xProbe, yProbe); // Can be used here too!
  4238. #if HAS_SOFTWARE_ENDSTOPS
  4239. // Disable software endstops to allow manual adjustment
  4240. // If G29 is not completed, they will not be re-enabled
  4241. soft_endstops_enabled = false;
  4242. #endif
  4243. return;
  4244. }
  4245. else {
  4246. // Leveling done! Fall through to G29 finishing code below
  4247. SERIAL_PROTOCOLLNPGM("Grid probing done.");
  4248. // Re-enable software endstops, if needed
  4249. #if HAS_SOFTWARE_ENDSTOPS
  4250. soft_endstops_enabled = enable_soft_endstops;
  4251. #endif
  4252. }
  4253. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4254. // Probe at 3 arbitrary points
  4255. if (abl_probe_index < 3) {
  4256. xProbe = points[abl_probe_index].x;
  4257. yProbe = points[abl_probe_index].y;
  4258. #if HAS_SOFTWARE_ENDSTOPS
  4259. // Disable software endstops to allow manual adjustment
  4260. // If G29 is not completed, they will not be re-enabled
  4261. soft_endstops_enabled = false;
  4262. #endif
  4263. return;
  4264. }
  4265. else {
  4266. SERIAL_PROTOCOLLNPGM("3-point probing done.");
  4267. // Re-enable software endstops, if needed
  4268. #if HAS_SOFTWARE_ENDSTOPS
  4269. soft_endstops_enabled = enable_soft_endstops;
  4270. #endif
  4271. if (!dryrun) {
  4272. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4273. if (planeNormal.z < 0) {
  4274. planeNormal.x *= -1;
  4275. planeNormal.y *= -1;
  4276. planeNormal.z *= -1;
  4277. }
  4278. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4279. // Can't re-enable (on error) until the new grid is written
  4280. abl_should_enable = false;
  4281. }
  4282. }
  4283. #endif // AUTO_BED_LEVELING_3POINT
  4284. #else // !PROBE_MANUALLY
  4285. {
  4286. const bool stow_probe_after_each = parser.boolval('E');
  4287. #if ABL_GRID
  4288. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  4289. measured_z = 0;
  4290. // Outer loop is Y with PROBE_Y_FIRST disabled
  4291. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  4292. int8_t inStart, inStop, inInc;
  4293. if (zig) { // away from origin
  4294. inStart = 0;
  4295. inStop = PR_INNER_END;
  4296. inInc = 1;
  4297. }
  4298. else { // towards origin
  4299. inStart = PR_INNER_END - 1;
  4300. inStop = -1;
  4301. inInc = -1;
  4302. }
  4303. zig ^= true; // zag
  4304. // Inner loop is Y with PROBE_Y_FIRST enabled
  4305. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  4306. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  4307. yBase = front_probe_bed_position + yGridSpacing * yCount;
  4308. xProbe = FLOOR(xBase + (xBase < 0 ? 0 : 0.5));
  4309. yProbe = FLOOR(yBase + (yBase < 0 ? 0 : 0.5));
  4310. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4311. indexIntoAB[xCount][yCount] = ++abl_probe_index; // 0...
  4312. #endif
  4313. #if IS_KINEMATIC
  4314. // Avoid probing outside the round or hexagonal area
  4315. if (!position_is_reachable_by_probe(xProbe, yProbe)) continue;
  4316. #endif
  4317. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4318. if (isnan(measured_z)) {
  4319. planner.leveling_active = abl_should_enable;
  4320. break;
  4321. }
  4322. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  4323. mean += measured_z;
  4324. eqnBVector[abl_probe_index] = measured_z;
  4325. eqnAMatrix[abl_probe_index + 0 * abl2] = xProbe;
  4326. eqnAMatrix[abl_probe_index + 1 * abl2] = yProbe;
  4327. eqnAMatrix[abl_probe_index + 2 * abl2] = 1;
  4328. incremental_LSF(&lsf_results, xProbe, yProbe, measured_z);
  4329. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4330. z_values[xCount][yCount] = measured_z + zoffset;
  4331. #endif
  4332. abl_should_enable = false;
  4333. idle();
  4334. } // inner
  4335. } // outer
  4336. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  4337. // Probe at 3 arbitrary points
  4338. for (uint8_t i = 0; i < 3; ++i) {
  4339. // Retain the last probe position
  4340. xProbe = points[i].x;
  4341. yProbe = points[i].y;
  4342. measured_z = faux ? 0.001 * random(-100, 101) : probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  4343. if (isnan(measured_z)) {
  4344. planner.leveling_active = abl_should_enable;
  4345. break;
  4346. }
  4347. points[i].z = measured_z;
  4348. }
  4349. if (!dryrun && !isnan(measured_z)) {
  4350. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  4351. if (planeNormal.z < 0) {
  4352. planeNormal.x *= -1;
  4353. planeNormal.y *= -1;
  4354. planeNormal.z *= -1;
  4355. }
  4356. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  4357. // Can't re-enable (on error) until the new grid is written
  4358. abl_should_enable = false;
  4359. }
  4360. #endif // AUTO_BED_LEVELING_3POINT
  4361. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  4362. if (STOW_PROBE()) {
  4363. planner.leveling_active = abl_should_enable;
  4364. measured_z = NAN;
  4365. }
  4366. }
  4367. #endif // !PROBE_MANUALLY
  4368. //
  4369. // G29 Finishing Code
  4370. //
  4371. // Unless this is a dry run, auto bed leveling will
  4372. // definitely be enabled after this point.
  4373. //
  4374. // If code above wants to continue leveling, it should
  4375. // return or loop before this point.
  4376. //
  4377. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4378. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  4379. #endif
  4380. #if ENABLED(PROBE_MANUALLY)
  4381. g29_in_progress = false;
  4382. #if ENABLED(LCD_BED_LEVELING)
  4383. lcd_wait_for_move = false;
  4384. #endif
  4385. #endif
  4386. // Calculate leveling, print reports, correct the position
  4387. if (!isnan(measured_z)) {
  4388. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4389. if (!dryrun) extrapolate_unprobed_bed_level();
  4390. print_bilinear_leveling_grid();
  4391. refresh_bed_level();
  4392. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  4393. print_bilinear_leveling_grid_virt();
  4394. #endif
  4395. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  4396. // For LINEAR leveling calculate matrix, print reports, correct the position
  4397. /**
  4398. * solve the plane equation ax + by + d = z
  4399. * A is the matrix with rows [x y 1] for all the probed points
  4400. * B is the vector of the Z positions
  4401. * the normal vector to the plane is formed by the coefficients of the
  4402. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  4403. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  4404. */
  4405. float plane_equation_coefficients[3];
  4406. finish_incremental_LSF(&lsf_results);
  4407. plane_equation_coefficients[0] = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  4408. plane_equation_coefficients[1] = -lsf_results.B; // but that is not yet tested.
  4409. plane_equation_coefficients[2] = -lsf_results.D;
  4410. mean /= abl2;
  4411. if (verbose_level) {
  4412. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  4413. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  4414. SERIAL_PROTOCOLPGM(" b: ");
  4415. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  4416. SERIAL_PROTOCOLPGM(" d: ");
  4417. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  4418. SERIAL_EOL();
  4419. if (verbose_level > 2) {
  4420. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  4421. SERIAL_PROTOCOL_F(mean, 8);
  4422. SERIAL_EOL();
  4423. }
  4424. }
  4425. // Create the matrix but don't correct the position yet
  4426. if (!dryrun)
  4427. planner.bed_level_matrix = matrix_3x3::create_look_at(
  4428. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1) // We can eliminate the '-' here and up above
  4429. );
  4430. // Show the Topography map if enabled
  4431. if (do_topography_map) {
  4432. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  4433. " +--- BACK --+\n"
  4434. " | |\n"
  4435. " L | (+) | R\n"
  4436. " E | | I\n"
  4437. " F | (-) N (+) | G\n"
  4438. " T | | H\n"
  4439. " | (-) | T\n"
  4440. " | |\n"
  4441. " O-- FRONT --+\n"
  4442. " (0,0)");
  4443. float min_diff = 999;
  4444. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4445. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4446. int ind = indexIntoAB[xx][yy];
  4447. float diff = eqnBVector[ind] - mean,
  4448. x_tmp = eqnAMatrix[ind + 0 * abl2],
  4449. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4450. z_tmp = 0;
  4451. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4452. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  4453. if (diff >= 0.0)
  4454. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  4455. else
  4456. SERIAL_PROTOCOLCHAR(' ');
  4457. SERIAL_PROTOCOL_F(diff, 5);
  4458. } // xx
  4459. SERIAL_EOL();
  4460. } // yy
  4461. SERIAL_EOL();
  4462. if (verbose_level > 3) {
  4463. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  4464. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  4465. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  4466. int ind = indexIntoAB[xx][yy];
  4467. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  4468. y_tmp = eqnAMatrix[ind + 1 * abl2],
  4469. z_tmp = 0;
  4470. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  4471. float diff = eqnBVector[ind] - z_tmp - min_diff;
  4472. if (diff >= 0.0)
  4473. SERIAL_PROTOCOLPGM(" +");
  4474. // Include + for column alignment
  4475. else
  4476. SERIAL_PROTOCOLCHAR(' ');
  4477. SERIAL_PROTOCOL_F(diff, 5);
  4478. } // xx
  4479. SERIAL_EOL();
  4480. } // yy
  4481. SERIAL_EOL();
  4482. }
  4483. } //do_topography_map
  4484. #endif // AUTO_BED_LEVELING_LINEAR
  4485. #if ABL_PLANAR
  4486. // For LINEAR and 3POINT leveling correct the current position
  4487. if (verbose_level > 0)
  4488. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  4489. if (!dryrun) {
  4490. //
  4491. // Correct the current XYZ position based on the tilted plane.
  4492. //
  4493. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4494. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  4495. #endif
  4496. float converted[XYZ];
  4497. COPY(converted, current_position);
  4498. planner.leveling_active = true;
  4499. planner.unapply_leveling(converted); // use conversion machinery
  4500. planner.leveling_active = false;
  4501. // Use the last measured distance to the bed, if possible
  4502. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  4503. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  4504. ) {
  4505. const float simple_z = current_position[Z_AXIS] - measured_z;
  4506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4507. if (DEBUGGING(LEVELING)) {
  4508. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  4509. SERIAL_ECHOPAIR(" Matrix:", converted[Z_AXIS]);
  4510. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - converted[Z_AXIS]);
  4511. }
  4512. #endif
  4513. converted[Z_AXIS] = simple_z;
  4514. }
  4515. // The rotated XY and corrected Z are now current_position
  4516. COPY(current_position, converted);
  4517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4518. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  4519. #endif
  4520. }
  4521. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  4522. if (!dryrun) {
  4523. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4524. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  4525. #endif
  4526. // Unapply the offset because it is going to be immediately applied
  4527. // and cause compensation movement in Z
  4528. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  4529. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4530. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  4531. #endif
  4532. }
  4533. #endif // ABL_PLANAR
  4534. #ifdef Z_PROBE_END_SCRIPT
  4535. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4536. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  4537. #endif
  4538. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  4539. stepper.synchronize();
  4540. #endif
  4541. // Auto Bed Leveling is complete! Enable if possible.
  4542. planner.leveling_active = dryrun ? abl_should_enable : true;
  4543. } // !isnan(measured_z)
  4544. // Restore state after probing
  4545. if (!faux) clean_up_after_endstop_or_probe_move();
  4546. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4547. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  4548. #endif
  4549. report_current_position();
  4550. KEEPALIVE_STATE(IN_HANDLER);
  4551. if (planner.leveling_active)
  4552. SYNC_PLAN_POSITION_KINEMATIC();
  4553. }
  4554. #endif // OLDSCHOOL_ABL
  4555. #if HAS_BED_PROBE
  4556. /**
  4557. * G30: Do a single Z probe at the current XY
  4558. *
  4559. * Parameters:
  4560. *
  4561. * X Probe X position (default current X)
  4562. * Y Probe Y position (default current Y)
  4563. * E Engage the probe for each probe
  4564. */
  4565. inline void gcode_G30() {
  4566. const float xpos = parser.linearval('X', current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER),
  4567. ypos = parser.linearval('Y', current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER);
  4568. if (!position_is_reachable_by_probe(xpos, ypos)) return;
  4569. // Disable leveling so the planner won't mess with us
  4570. #if HAS_LEVELING
  4571. set_bed_leveling_enabled(false);
  4572. #endif
  4573. setup_for_endstop_or_probe_move();
  4574. const float measured_z = probe_pt(xpos, ypos, parser.boolval('E'), 1);
  4575. if (!isnan(measured_z)) {
  4576. SERIAL_PROTOCOLPAIR("Bed X: ", FIXFLOAT(xpos));
  4577. SERIAL_PROTOCOLPAIR(" Y: ", FIXFLOAT(ypos));
  4578. SERIAL_PROTOCOLLNPAIR(" Z: ", FIXFLOAT(measured_z));
  4579. }
  4580. clean_up_after_endstop_or_probe_move();
  4581. report_current_position();
  4582. }
  4583. #if ENABLED(Z_PROBE_SLED)
  4584. /**
  4585. * G31: Deploy the Z probe
  4586. */
  4587. inline void gcode_G31() { DEPLOY_PROBE(); }
  4588. /**
  4589. * G32: Stow the Z probe
  4590. */
  4591. inline void gcode_G32() { STOW_PROBE(); }
  4592. #endif // Z_PROBE_SLED
  4593. #endif // HAS_BED_PROBE
  4594. #if ENABLED(DELTA_AUTO_CALIBRATION)
  4595. constexpr uint8_t _7P_STEP = 1, // 7-point step - to change number of calibration points
  4596. _4P_STEP = _7P_STEP * 2, // 4-point step
  4597. NPP = _7P_STEP * 6; // number of calibration points on the radius
  4598. enum CalEnum { // the 7 main calibration points - add definitions if needed
  4599. CEN = 0,
  4600. __A = 1,
  4601. _AB = __A + _7P_STEP,
  4602. __B = _AB + _7P_STEP,
  4603. _BC = __B + _7P_STEP,
  4604. __C = _BC + _7P_STEP,
  4605. _CA = __C + _7P_STEP,
  4606. };
  4607. #define LOOP_CAL_PT(VAR, S, N) for (uint8_t VAR=S; VAR<=NPP; VAR+=N)
  4608. #define F_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR<NPP+0.9999; VAR+=N)
  4609. #define I_LOOP_CAL_PT(VAR, S, N) for (float VAR=S; VAR>CEN+0.9999; VAR-=N)
  4610. #define LOOP_CAL_ALL(VAR) LOOP_CAL_PT(VAR, CEN, 1)
  4611. #define LOOP_CAL_RAD(VAR) LOOP_CAL_PT(VAR, __A, _7P_STEP)
  4612. #define LOOP_CAL_ACT(VAR, _4P, _OP) LOOP_CAL_PT(VAR, _OP ? _AB : __A, _4P ? _4P_STEP : _7P_STEP)
  4613. static void print_signed_float(const char * const prefix, const float &f) {
  4614. SERIAL_PROTOCOLPGM(" ");
  4615. serialprintPGM(prefix);
  4616. SERIAL_PROTOCOLCHAR(':');
  4617. if (f >= 0) SERIAL_CHAR('+');
  4618. SERIAL_PROTOCOL_F(f, 2);
  4619. }
  4620. static void print_G33_settings(const bool end_stops, const bool tower_angles) {
  4621. SERIAL_PROTOCOLPAIR(".Height:", delta_height);
  4622. if (end_stops) {
  4623. print_signed_float(PSTR("Ex"), delta_endstop_adj[A_AXIS]);
  4624. print_signed_float(PSTR("Ey"), delta_endstop_adj[B_AXIS]);
  4625. print_signed_float(PSTR("Ez"), delta_endstop_adj[C_AXIS]);
  4626. }
  4627. if (end_stops && tower_angles) {
  4628. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4629. SERIAL_EOL();
  4630. SERIAL_CHAR('.');
  4631. SERIAL_PROTOCOL_SP(13);
  4632. }
  4633. if (tower_angles) {
  4634. print_signed_float(PSTR("Tx"), delta_tower_angle_trim[A_AXIS]);
  4635. print_signed_float(PSTR("Ty"), delta_tower_angle_trim[B_AXIS]);
  4636. print_signed_float(PSTR("Tz"), delta_tower_angle_trim[C_AXIS]);
  4637. }
  4638. if ((!end_stops && tower_angles) || (end_stops && !tower_angles)) { // XOR
  4639. SERIAL_PROTOCOLPAIR(" Radius:", delta_radius);
  4640. }
  4641. SERIAL_EOL();
  4642. }
  4643. static void print_G33_results(const float z_at_pt[NPP + 1], const bool tower_points, const bool opposite_points) {
  4644. SERIAL_PROTOCOLPGM(". ");
  4645. print_signed_float(PSTR("c"), z_at_pt[CEN]);
  4646. if (tower_points) {
  4647. print_signed_float(PSTR(" x"), z_at_pt[__A]);
  4648. print_signed_float(PSTR(" y"), z_at_pt[__B]);
  4649. print_signed_float(PSTR(" z"), z_at_pt[__C]);
  4650. }
  4651. if (tower_points && opposite_points) {
  4652. SERIAL_EOL();
  4653. SERIAL_CHAR('.');
  4654. SERIAL_PROTOCOL_SP(13);
  4655. }
  4656. if (opposite_points) {
  4657. print_signed_float(PSTR("yz"), z_at_pt[_BC]);
  4658. print_signed_float(PSTR("zx"), z_at_pt[_CA]);
  4659. print_signed_float(PSTR("xy"), z_at_pt[_AB]);
  4660. }
  4661. SERIAL_EOL();
  4662. }
  4663. /**
  4664. * After G33:
  4665. * - Move to the print ceiling (DELTA_HOME_TO_SAFE_ZONE only)
  4666. * - Stow the probe
  4667. * - Restore endstops state
  4668. * - Select the old tool, if needed
  4669. */
  4670. static void G33_cleanup(
  4671. #if HOTENDS > 1
  4672. const uint8_t old_tool_index
  4673. #endif
  4674. ) {
  4675. #if ENABLED(DELTA_HOME_TO_SAFE_ZONE)
  4676. do_blocking_move_to_z(delta_clip_start_height);
  4677. #endif
  4678. STOW_PROBE();
  4679. clean_up_after_endstop_or_probe_move();
  4680. #if HOTENDS > 1
  4681. tool_change(old_tool_index, 0, true);
  4682. #endif
  4683. }
  4684. inline float calibration_probe(const float nx, const float ny, const bool stow) {
  4685. #if HAS_BED_PROBE
  4686. return probe_pt(nx, ny, stow, 0, false);
  4687. #else
  4688. UNUSED(stow);
  4689. return lcd_probe_pt(nx, ny);
  4690. #endif
  4691. }
  4692. static float probe_G33_points(float z_at_pt[NPP + 1], const int8_t probe_points, const bool towers_set, const bool stow_after_each) {
  4693. const bool _0p_calibration = probe_points == 0,
  4694. _1p_calibration = probe_points == 1,
  4695. _4p_calibration = probe_points == 2,
  4696. _4p_opposite_points = _4p_calibration && !towers_set,
  4697. _7p_calibration = probe_points >= 3 || probe_points == 0,
  4698. _7p_no_intermediates = probe_points == 3,
  4699. _7p_1_intermediates = probe_points == 4,
  4700. _7p_2_intermediates = probe_points == 5,
  4701. _7p_4_intermediates = probe_points == 6,
  4702. _7p_6_intermediates = probe_points == 7,
  4703. _7p_8_intermediates = probe_points == 8,
  4704. _7p_11_intermediates = probe_points == 9,
  4705. _7p_14_intermediates = probe_points == 10,
  4706. _7p_intermed_points = probe_points >= 4,
  4707. _7p_6_centre = probe_points >= 5 && probe_points <= 7,
  4708. _7p_9_centre = probe_points >= 8;
  4709. LOOP_CAL_ALL(axis) z_at_pt[axis] = 0.0;
  4710. if (!_0p_calibration) {
  4711. if (!_7p_no_intermediates && !_7p_4_intermediates && !_7p_11_intermediates) { // probe the center
  4712. z_at_pt[CEN] += calibration_probe(0, 0, stow_after_each);
  4713. if (isnan(z_at_pt[CEN])) return NAN;
  4714. }
  4715. if (_7p_calibration) { // probe extra center points
  4716. const float start = _7p_9_centre ? _CA + _7P_STEP / 3.0 : _7p_6_centre ? _CA : __C,
  4717. steps = _7p_9_centre ? _4P_STEP / 3.0 : _7p_6_centre ? _7P_STEP : _4P_STEP;
  4718. I_LOOP_CAL_PT(axis, start, steps) {
  4719. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4720. r = delta_calibration_radius * 0.1;
  4721. z_at_pt[CEN] += calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4722. if (isnan(z_at_pt[CEN])) return NAN;
  4723. }
  4724. z_at_pt[CEN] /= float(_7p_2_intermediates ? 7 : probe_points);
  4725. }
  4726. if (!_1p_calibration) { // probe the radius
  4727. const CalEnum start = _4p_opposite_points ? _AB : __A;
  4728. const float steps = _7p_14_intermediates ? _7P_STEP / 15.0 : // 15r * 6 + 10c = 100
  4729. _7p_11_intermediates ? _7P_STEP / 12.0 : // 12r * 6 + 9c = 81
  4730. _7p_8_intermediates ? _7P_STEP / 9.0 : // 9r * 6 + 10c = 64
  4731. _7p_6_intermediates ? _7P_STEP / 7.0 : // 7r * 6 + 7c = 49
  4732. _7p_4_intermediates ? _7P_STEP / 5.0 : // 5r * 6 + 6c = 36
  4733. _7p_2_intermediates ? _7P_STEP / 3.0 : // 3r * 6 + 7c = 25
  4734. _7p_1_intermediates ? _7P_STEP / 2.0 : // 2r * 6 + 4c = 16
  4735. _7p_no_intermediates ? _7P_STEP : // 1r * 6 + 3c = 9
  4736. _4P_STEP; // .5r * 6 + 1c = 4
  4737. bool zig_zag = true;
  4738. F_LOOP_CAL_PT(axis, start, _7p_9_centre ? steps * 3 : steps) {
  4739. const int8_t offset = _7p_9_centre ? 1 : 0;
  4740. for (int8_t circle = -offset; circle <= offset; circle++) {
  4741. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4742. r = delta_calibration_radius * (1 + 0.1 * (zig_zag ? circle : - circle)),
  4743. interpol = fmod(axis, 1);
  4744. const float z_temp = calibration_probe(cos(a) * r, sin(a) * r, stow_after_each);
  4745. if (isnan(z_temp)) return NAN;
  4746. // split probe point to neighbouring calibration points
  4747. z_at_pt[uint8_t(round(axis - interpol + NPP - 1)) % NPP + 1] += z_temp * sq(cos(RADIANS(interpol * 90)));
  4748. z_at_pt[uint8_t(round(axis - interpol)) % NPP + 1] += z_temp * sq(sin(RADIANS(interpol * 90)));
  4749. }
  4750. zig_zag = !zig_zag;
  4751. }
  4752. if (_7p_intermed_points)
  4753. LOOP_CAL_RAD(axis)
  4754. z_at_pt[axis] /= _7P_STEP / steps;
  4755. }
  4756. float S1 = z_at_pt[CEN],
  4757. S2 = sq(z_at_pt[CEN]);
  4758. int16_t N = 1;
  4759. if (!_1p_calibration) { // std dev from zero plane
  4760. LOOP_CAL_ACT(axis, _4p_calibration, _4p_opposite_points) {
  4761. S1 += z_at_pt[axis];
  4762. S2 += sq(z_at_pt[axis]);
  4763. N++;
  4764. }
  4765. return round(SQRT(S2 / N) * 1000.0) / 1000.0 + 0.00001;
  4766. }
  4767. }
  4768. return 0.00001;
  4769. }
  4770. #if HAS_BED_PROBE
  4771. static bool G33_auto_tune() {
  4772. float z_at_pt[NPP + 1] = { 0.0 },
  4773. z_at_pt_base[NPP + 1] = { 0.0 },
  4774. z_temp, h_fac = 0.0, r_fac = 0.0, a_fac = 0.0, norm = 0.8;
  4775. #define ZP(N,I) ((N) * z_at_pt[I])
  4776. #define Z06(I) ZP(6, I)
  4777. #define Z03(I) ZP(3, I)
  4778. #define Z02(I) ZP(2, I)
  4779. #define Z01(I) ZP(1, I)
  4780. #define Z32(I) ZP(3/2, I)
  4781. SERIAL_PROTOCOLPGM("AUTO TUNE baseline");
  4782. SERIAL_EOL();
  4783. if (isnan(probe_G33_points(z_at_pt_base, 3, true, false))) return false;
  4784. print_G33_results(z_at_pt_base, true, true);
  4785. LOOP_XYZ(axis) {
  4786. delta_endstop_adj[axis] -= 1.0;
  4787. recalc_delta_settings();
  4788. endstops.enable(true);
  4789. if (!home_delta()) return;
  4790. endstops.not_homing();
  4791. SERIAL_PROTOCOLPGM("Tuning E");
  4792. SERIAL_CHAR(tolower(axis_codes[axis]));
  4793. SERIAL_EOL();
  4794. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4795. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4796. print_G33_results(z_at_pt, true, true);
  4797. delta_endstop_adj[axis] += 1.0;
  4798. recalc_delta_settings();
  4799. switch (axis) {
  4800. case A_AXIS :
  4801. h_fac += 4.0 / (Z03(CEN) +Z01(__A) +Z32(_CA) +Z32(_AB)); // Offset by X-tower end-stop
  4802. break;
  4803. case B_AXIS :
  4804. h_fac += 4.0 / (Z03(CEN) +Z01(__B) +Z32(_BC) +Z32(_AB)); // Offset by Y-tower end-stop
  4805. break;
  4806. case C_AXIS :
  4807. h_fac += 4.0 / (Z03(CEN) +Z01(__C) +Z32(_BC) +Z32(_CA) ); // Offset by Z-tower end-stop
  4808. break;
  4809. }
  4810. }
  4811. h_fac /= 3.0;
  4812. h_fac *= norm; // Normalize to 1.02 for Kossel mini
  4813. for (int8_t zig_zag = -1; zig_zag < 2; zig_zag += 2) {
  4814. delta_radius += 1.0 * zig_zag;
  4815. recalc_delta_settings();
  4816. endstops.enable(true);
  4817. if (!home_delta()) return;
  4818. endstops.not_homing();
  4819. SERIAL_PROTOCOLPGM("Tuning R");
  4820. SERIAL_PROTOCOL(zig_zag == -1 ? "-" : "+");
  4821. SERIAL_EOL();
  4822. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4823. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4824. print_G33_results(z_at_pt, true, true);
  4825. delta_radius -= 1.0 * zig_zag;
  4826. recalc_delta_settings();
  4827. r_fac -= zig_zag * 6.0 / (Z03(__A) +Z03(__B) +Z03(__C) +Z03(_BC) +Z03(_CA) +Z03(_AB)); // Offset by delta radius
  4828. }
  4829. r_fac /= 2.0;
  4830. r_fac *= 3 * norm; // Normalize to 2.25 for Kossel mini
  4831. LOOP_XYZ(axis) {
  4832. delta_tower_angle_trim[axis] += 1.0;
  4833. delta_endstop_adj[(axis + 1) % 3] -= 1.0 / 4.5;
  4834. delta_endstop_adj[(axis + 2) % 3] += 1.0 / 4.5;
  4835. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4836. delta_height -= z_temp;
  4837. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4838. recalc_delta_settings();
  4839. endstops.enable(true);
  4840. if (!home_delta()) return;
  4841. endstops.not_homing();
  4842. SERIAL_PROTOCOLPGM("Tuning T");
  4843. SERIAL_CHAR(tolower(axis_codes[axis]));
  4844. SERIAL_EOL();
  4845. if (isnan(probe_G33_points(z_at_pt, 3, true, false))) return false;
  4846. LOOP_CAL_ALL(axis) z_at_pt[axis] -= z_at_pt_base[axis];
  4847. print_G33_results(z_at_pt, true, true);
  4848. delta_tower_angle_trim[axis] -= 1.0;
  4849. delta_endstop_adj[(axis+1) % 3] += 1.0/4.5;
  4850. delta_endstop_adj[(axis+2) % 3] -= 1.0/4.5;
  4851. z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  4852. delta_height -= z_temp;
  4853. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  4854. recalc_delta_settings();
  4855. switch (axis) {
  4856. case A_AXIS :
  4857. a_fac += 4.0 / ( Z06(__B) -Z06(__C) +Z06(_CA) -Z06(_AB)); // Offset by alpha tower angle
  4858. break;
  4859. case B_AXIS :
  4860. a_fac += 4.0 / (-Z06(__A) +Z06(__C) -Z06(_BC) +Z06(_AB)); // Offset by beta tower angle
  4861. break;
  4862. case C_AXIS :
  4863. a_fac += 4.0 / (Z06(__A) -Z06(__B) +Z06(_BC) -Z06(_CA) ); // Offset by gamma tower angle
  4864. break;
  4865. }
  4866. }
  4867. a_fac /= 3.0;
  4868. a_fac *= norm; // Normalize to 0.83 for Kossel mini
  4869. endstops.enable(true);
  4870. if (!home_delta()) return;
  4871. endstops.not_homing();
  4872. print_signed_float(PSTR( "H_FACTOR: "), h_fac);
  4873. print_signed_float(PSTR(" R_FACTOR: "), r_fac);
  4874. print_signed_float(PSTR(" A_FACTOR: "), a_fac);
  4875. SERIAL_EOL();
  4876. SERIAL_PROTOCOLPGM("Copy these values to Configuration.h");
  4877. SERIAL_EOL();
  4878. return true;
  4879. }
  4880. #endif // HAS_BED_PROBE
  4881. /**
  4882. * G33 - Delta '1-4-7-point' Auto-Calibration
  4883. * Calibrate height, endstops, delta radius, and tower angles.
  4884. *
  4885. * Parameters:
  4886. *
  4887. * Pn Number of probe points:
  4888. * P0 No probe. Normalize only.
  4889. * P1 Probe center and set height only.
  4890. * P2 Probe center and towers. Set height, endstops and delta radius.
  4891. * P3 Probe all positions: center, towers and opposite towers. Set all.
  4892. * P4-P10 Probe all positions + at different itermediate locations and average them.
  4893. *
  4894. * T Don't calibrate tower angle corrections
  4895. *
  4896. * Cn.nn Calibration precision; when omitted calibrates to maximum precision
  4897. *
  4898. * Fn Force to run at least n iterations and takes the best result
  4899. *
  4900. * A Auto tune calibartion factors (set in Configuration.h)
  4901. *
  4902. * Vn Verbose level:
  4903. * V0 Dry-run mode. Report settings and probe results. No calibration.
  4904. * V1 Report start and end settings only
  4905. * V2 Report settings at each iteration
  4906. * V3 Report settings and probe results
  4907. *
  4908. * E Engage the probe for each point
  4909. */
  4910. inline void gcode_G33() {
  4911. const int8_t probe_points = parser.intval('P', DELTA_CALIBRATION_DEFAULT_POINTS);
  4912. if (!WITHIN(probe_points, 0, 10)) {
  4913. SERIAL_PROTOCOLLNPGM("?(P)oints is implausible (0-10).");
  4914. return;
  4915. }
  4916. const int8_t verbose_level = parser.byteval('V', 1);
  4917. if (!WITHIN(verbose_level, 0, 3)) {
  4918. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-3).");
  4919. return;
  4920. }
  4921. const float calibration_precision = parser.floatval('C', 0.0);
  4922. if (calibration_precision < 0) {
  4923. SERIAL_PROTOCOLLNPGM("?(C)alibration precision is implausible (>=0).");
  4924. return;
  4925. }
  4926. const int8_t force_iterations = parser.intval('F', 0);
  4927. if (!WITHIN(force_iterations, 0, 30)) {
  4928. SERIAL_PROTOCOLLNPGM("?(F)orce iteration is implausible (0-30).");
  4929. return;
  4930. }
  4931. const bool towers_set = !parser.boolval('T'),
  4932. auto_tune = parser.boolval('A'),
  4933. stow_after_each = parser.boolval('E'),
  4934. _0p_calibration = probe_points == 0,
  4935. _1p_calibration = probe_points == 1,
  4936. _4p_calibration = probe_points == 2,
  4937. _7p_9_centre = probe_points >= 8,
  4938. _tower_results = (_4p_calibration && towers_set)
  4939. || probe_points >= 3 || probe_points == 0,
  4940. _opposite_results = (_4p_calibration && !towers_set)
  4941. || probe_points >= 3 || probe_points == 0,
  4942. _endstop_results = probe_points != 1,
  4943. _angle_results = (probe_points >= 3 || probe_points == 0) && towers_set;
  4944. const static char save_message[] PROGMEM = "Save with M500 and/or copy to Configuration.h";
  4945. int8_t iterations = 0;
  4946. float test_precision,
  4947. zero_std_dev = (verbose_level ? 999.0 : 0.0), // 0.0 in dry-run mode : forced end
  4948. zero_std_dev_min = zero_std_dev,
  4949. e_old[ABC] = {
  4950. delta_endstop_adj[A_AXIS],
  4951. delta_endstop_adj[B_AXIS],
  4952. delta_endstop_adj[C_AXIS]
  4953. },
  4954. dr_old = delta_radius,
  4955. zh_old = delta_height,
  4956. ta_old[ABC] = {
  4957. delta_tower_angle_trim[A_AXIS],
  4958. delta_tower_angle_trim[B_AXIS],
  4959. delta_tower_angle_trim[C_AXIS]
  4960. };
  4961. SERIAL_PROTOCOLLNPGM("G33 Auto Calibrate");
  4962. if (!_1p_calibration && !_0p_calibration) { // test if the outer radius is reachable
  4963. LOOP_CAL_RAD(axis) {
  4964. const float a = RADIANS(210 + (360 / NPP) * (axis - 1)),
  4965. r = delta_calibration_radius * (1 + (_7p_9_centre ? 0.1 : 0.0));
  4966. if (!position_is_reachable(cos(a) * r, sin(a) * r)) {
  4967. SERIAL_PROTOCOLLNPGM("?(M665 B)ed radius is implausible.");
  4968. return;
  4969. }
  4970. }
  4971. }
  4972. stepper.synchronize();
  4973. #if HAS_LEVELING
  4974. reset_bed_level(); // After calibration bed-level data is no longer valid
  4975. #endif
  4976. #if HOTENDS > 1
  4977. const uint8_t old_tool_index = active_extruder;
  4978. tool_change(0, 0, true);
  4979. #define G33_CLEANUP() G33_cleanup(old_tool_index)
  4980. #else
  4981. #define G33_CLEANUP() G33_cleanup()
  4982. #endif
  4983. setup_for_endstop_or_probe_move();
  4984. endstops.enable(true);
  4985. if (!_0p_calibration) {
  4986. if (!home_delta())
  4987. return;
  4988. endstops.not_homing();
  4989. }
  4990. if (auto_tune) {
  4991. #if HAS_BED_PROBE
  4992. G33_auto_tune();
  4993. #else
  4994. SERIAL_PROTOCOLLNPGM("A probe is needed for auto-tune");
  4995. #endif
  4996. G33_CLEANUP();
  4997. return;
  4998. }
  4999. // Report settings
  5000. const char *checkingac = PSTR("Checking... AC"); // TODO: Make translatable string
  5001. serialprintPGM(checkingac);
  5002. if (verbose_level == 0) SERIAL_PROTOCOLPGM(" (DRY-RUN)");
  5003. SERIAL_EOL();
  5004. lcd_setstatusPGM(checkingac);
  5005. print_G33_settings(_endstop_results, _angle_results);
  5006. do {
  5007. float z_at_pt[NPP + 1] = { 0.0 };
  5008. test_precision = zero_std_dev;
  5009. iterations++;
  5010. // Probe the points
  5011. zero_std_dev = probe_G33_points(z_at_pt, probe_points, towers_set, stow_after_each);
  5012. if (isnan(zero_std_dev)) {
  5013. SERIAL_PROTOCOLPGM("Correct delta_radius with M665 R or end-stops with M666 X Y Z");
  5014. SERIAL_EOL();
  5015. return G33_CLEANUP();
  5016. }
  5017. // Solve matrices
  5018. if ((zero_std_dev < test_precision || iterations <= force_iterations) && zero_std_dev > calibration_precision) {
  5019. if (zero_std_dev < zero_std_dev_min) {
  5020. COPY(e_old, delta_endstop_adj);
  5021. dr_old = delta_radius;
  5022. zh_old = delta_height;
  5023. COPY(ta_old, delta_tower_angle_trim);
  5024. }
  5025. float e_delta[ABC] = { 0.0 }, r_delta = 0.0, t_delta[ABC] = { 0.0 };
  5026. const float r_diff = delta_radius - delta_calibration_radius,
  5027. h_factor = 1 / 6.0 *
  5028. #ifdef H_FACTOR
  5029. (H_FACTOR), // Set in Configuration.h
  5030. #else
  5031. (1.00 + r_diff * 0.001), // 1.02 for r_diff = 20mm
  5032. #endif
  5033. r_factor = 1 / 6.0 *
  5034. #ifdef R_FACTOR
  5035. -(R_FACTOR), // Set in Configuration.h
  5036. #else
  5037. -(1.75 + 0.005 * r_diff + 0.001 * sq(r_diff)), // 2.25 for r_diff = 20mm
  5038. #endif
  5039. a_factor = 1 / 6.0 *
  5040. #ifdef A_FACTOR
  5041. (A_FACTOR); // Set in Configuration.h
  5042. #else
  5043. (66.66 / delta_calibration_radius); // 0.83 for cal_rd = 80mm
  5044. #endif
  5045. #define ZP(N,I) ((N) * z_at_pt[I])
  5046. #define Z6(I) ZP(6, I)
  5047. #define Z4(I) ZP(4, I)
  5048. #define Z2(I) ZP(2, I)
  5049. #define Z1(I) ZP(1, I)
  5050. #if !HAS_BED_PROBE
  5051. test_precision = 0.00; // forced end
  5052. #endif
  5053. switch (probe_points) {
  5054. case 0:
  5055. test_precision = 0.00; // forced end
  5056. break;
  5057. case 1:
  5058. test_precision = 0.00; // forced end
  5059. LOOP_XYZ(axis) e_delta[axis] = Z1(CEN);
  5060. break;
  5061. case 2:
  5062. if (towers_set) {
  5063. e_delta[A_AXIS] = (Z6(CEN) +Z4(__A) -Z2(__B) -Z2(__C)) * h_factor;
  5064. e_delta[B_AXIS] = (Z6(CEN) -Z2(__A) +Z4(__B) -Z2(__C)) * h_factor;
  5065. e_delta[C_AXIS] = (Z6(CEN) -Z2(__A) -Z2(__B) +Z4(__C)) * h_factor;
  5066. r_delta = (Z6(CEN) -Z2(__A) -Z2(__B) -Z2(__C)) * r_factor;
  5067. }
  5068. else {
  5069. e_delta[A_AXIS] = (Z6(CEN) -Z4(_BC) +Z2(_CA) +Z2(_AB)) * h_factor;
  5070. e_delta[B_AXIS] = (Z6(CEN) +Z2(_BC) -Z4(_CA) +Z2(_AB)) * h_factor;
  5071. e_delta[C_AXIS] = (Z6(CEN) +Z2(_BC) +Z2(_CA) -Z4(_AB)) * h_factor;
  5072. r_delta = (Z6(CEN) -Z2(_BC) -Z2(_CA) -Z2(_AB)) * r_factor;
  5073. }
  5074. break;
  5075. default:
  5076. e_delta[A_AXIS] = (Z6(CEN) +Z2(__A) -Z1(__B) -Z1(__C) -Z2(_BC) +Z1(_CA) +Z1(_AB)) * h_factor;
  5077. e_delta[B_AXIS] = (Z6(CEN) -Z1(__A) +Z2(__B) -Z1(__C) +Z1(_BC) -Z2(_CA) +Z1(_AB)) * h_factor;
  5078. e_delta[C_AXIS] = (Z6(CEN) -Z1(__A) -Z1(__B) +Z2(__C) +Z1(_BC) +Z1(_CA) -Z2(_AB)) * h_factor;
  5079. r_delta = (Z6(CEN) -Z1(__A) -Z1(__B) -Z1(__C) -Z1(_BC) -Z1(_CA) -Z1(_AB)) * r_factor;
  5080. if (towers_set) {
  5081. t_delta[A_AXIS] = ( -Z4(__B) +Z4(__C) -Z4(_CA) +Z4(_AB)) * a_factor;
  5082. t_delta[B_AXIS] = ( Z4(__A) -Z4(__C) +Z4(_BC) -Z4(_AB)) * a_factor;
  5083. t_delta[C_AXIS] = (-Z4(__A) +Z4(__B) -Z4(_BC) +Z4(_CA) ) * a_factor;
  5084. e_delta[A_AXIS] += (t_delta[B_AXIS] - t_delta[C_AXIS]) / 4.5;
  5085. e_delta[B_AXIS] += (t_delta[C_AXIS] - t_delta[A_AXIS]) / 4.5;
  5086. e_delta[C_AXIS] += (t_delta[A_AXIS] - t_delta[B_AXIS]) / 4.5;
  5087. }
  5088. break;
  5089. }
  5090. LOOP_XYZ(axis) delta_endstop_adj[axis] += e_delta[axis];
  5091. delta_radius += r_delta;
  5092. LOOP_XYZ(axis) delta_tower_angle_trim[axis] += t_delta[axis];
  5093. }
  5094. else if (zero_std_dev >= test_precision) { // step one back
  5095. COPY(delta_endstop_adj, e_old);
  5096. delta_radius = dr_old;
  5097. delta_height = zh_old;
  5098. COPY(delta_tower_angle_trim, ta_old);
  5099. }
  5100. if (verbose_level != 0) { // !dry run
  5101. // normalise angles to least squares
  5102. if (_angle_results) {
  5103. float a_sum = 0.0;
  5104. LOOP_XYZ(axis) a_sum += delta_tower_angle_trim[axis];
  5105. LOOP_XYZ(axis) delta_tower_angle_trim[axis] -= a_sum / 3.0;
  5106. }
  5107. // adjust delta_height and endstops by the max amount
  5108. const float z_temp = MAX3(delta_endstop_adj[A_AXIS], delta_endstop_adj[B_AXIS], delta_endstop_adj[C_AXIS]);
  5109. delta_height -= z_temp;
  5110. LOOP_XYZ(axis) delta_endstop_adj[axis] -= z_temp;
  5111. }
  5112. recalc_delta_settings();
  5113. NOMORE(zero_std_dev_min, zero_std_dev);
  5114. // print report
  5115. if (verbose_level > 2)
  5116. print_G33_results(z_at_pt, _tower_results, _opposite_results);
  5117. if (verbose_level != 0) { // !dry run
  5118. if ((zero_std_dev >= test_precision && iterations > force_iterations) || zero_std_dev <= calibration_precision) { // end iterations
  5119. SERIAL_PROTOCOLPGM("Calibration OK");
  5120. SERIAL_PROTOCOL_SP(32);
  5121. #if HAS_BED_PROBE
  5122. if (zero_std_dev >= test_precision && !_1p_calibration)
  5123. SERIAL_PROTOCOLPGM("rolling back.");
  5124. else
  5125. #endif
  5126. {
  5127. SERIAL_PROTOCOLPGM("std dev:");
  5128. SERIAL_PROTOCOL_F(zero_std_dev_min, 3);
  5129. }
  5130. SERIAL_EOL();
  5131. char mess[21];
  5132. strcpy_P(mess, PSTR("Calibration sd:"));
  5133. if (zero_std_dev_min < 1)
  5134. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev_min * 1000.0));
  5135. else
  5136. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev_min));
  5137. lcd_setstatus(mess);
  5138. print_G33_settings(_endstop_results, _angle_results);
  5139. serialprintPGM(save_message);
  5140. SERIAL_EOL();
  5141. }
  5142. else { // !end iterations
  5143. char mess[15];
  5144. if (iterations < 31)
  5145. sprintf_P(mess, PSTR("Iteration : %02i"), (int)iterations);
  5146. else
  5147. strcpy_P(mess, PSTR("No convergence"));
  5148. SERIAL_PROTOCOL(mess);
  5149. SERIAL_PROTOCOL_SP(32);
  5150. SERIAL_PROTOCOLPGM("std dev:");
  5151. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5152. SERIAL_EOL();
  5153. lcd_setstatus(mess);
  5154. if (verbose_level > 1)
  5155. print_G33_settings(_endstop_results, _angle_results);
  5156. }
  5157. }
  5158. else { // dry run
  5159. const char *enddryrun = PSTR("End DRY-RUN");
  5160. serialprintPGM(enddryrun);
  5161. SERIAL_PROTOCOL_SP(35);
  5162. SERIAL_PROTOCOLPGM("std dev:");
  5163. SERIAL_PROTOCOL_F(zero_std_dev, 3);
  5164. SERIAL_EOL();
  5165. char mess[21];
  5166. strcpy_P(mess, enddryrun);
  5167. strcpy_P(&mess[11], PSTR(" sd:"));
  5168. if (zero_std_dev < 1)
  5169. sprintf_P(&mess[15], PSTR("0.%03i"), (int)round(zero_std_dev * 1000.0));
  5170. else
  5171. sprintf_P(&mess[15], PSTR("%03i.x"), (int)round(zero_std_dev));
  5172. lcd_setstatus(mess);
  5173. }
  5174. endstops.enable(true);
  5175. if (!home_delta())
  5176. return;
  5177. endstops.not_homing();
  5178. }
  5179. while (((zero_std_dev < test_precision && iterations < 31) || iterations <= force_iterations) && zero_std_dev > calibration_precision);
  5180. G33_CLEANUP();
  5181. }
  5182. #endif // DELTA_AUTO_CALIBRATION
  5183. #if ENABLED(G38_PROBE_TARGET)
  5184. static bool G38_run_probe() {
  5185. bool G38_pass_fail = false;
  5186. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5187. // Get direction of move and retract
  5188. float retract_mm[XYZ];
  5189. LOOP_XYZ(i) {
  5190. float dist = destination[i] - current_position[i];
  5191. retract_mm[i] = FABS(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  5192. }
  5193. #endif
  5194. stepper.synchronize(); // wait until the machine is idle
  5195. // Move until destination reached or target hit
  5196. endstops.enable(true);
  5197. G38_move = true;
  5198. G38_endstop_hit = false;
  5199. prepare_move_to_destination();
  5200. stepper.synchronize();
  5201. G38_move = false;
  5202. endstops.hit_on_purpose();
  5203. set_current_from_steppers_for_axis(ALL_AXES);
  5204. SYNC_PLAN_POSITION_KINEMATIC();
  5205. if (G38_endstop_hit) {
  5206. G38_pass_fail = true;
  5207. #if ENABLED(PROBE_DOUBLE_TOUCH)
  5208. // Move away by the retract distance
  5209. set_destination_from_current();
  5210. LOOP_XYZ(i) destination[i] += retract_mm[i];
  5211. endstops.enable(false);
  5212. prepare_move_to_destination();
  5213. stepper.synchronize();
  5214. feedrate_mm_s /= 4;
  5215. // Bump the target more slowly
  5216. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  5217. endstops.enable(true);
  5218. G38_move = true;
  5219. prepare_move_to_destination();
  5220. stepper.synchronize();
  5221. G38_move = false;
  5222. set_current_from_steppers_for_axis(ALL_AXES);
  5223. SYNC_PLAN_POSITION_KINEMATIC();
  5224. #endif
  5225. }
  5226. endstops.hit_on_purpose();
  5227. endstops.not_homing();
  5228. return G38_pass_fail;
  5229. }
  5230. /**
  5231. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  5232. * G38.3 - probe toward workpiece, stop on contact
  5233. *
  5234. * Like G28 except uses Z min probe for all axes
  5235. */
  5236. inline void gcode_G38(bool is_38_2) {
  5237. // Get X Y Z E F
  5238. gcode_get_destination();
  5239. setup_for_endstop_or_probe_move();
  5240. // If any axis has enough movement, do the move
  5241. LOOP_XYZ(i)
  5242. if (FABS(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  5243. if (!parser.seenval('F')) feedrate_mm_s = homing_feedrate((AxisEnum)i);
  5244. // If G38.2 fails throw an error
  5245. if (!G38_run_probe() && is_38_2) {
  5246. SERIAL_ERROR_START();
  5247. SERIAL_ERRORLNPGM("Failed to reach target");
  5248. }
  5249. break;
  5250. }
  5251. clean_up_after_endstop_or_probe_move();
  5252. }
  5253. #endif // G38_PROBE_TARGET
  5254. #if HAS_MESH
  5255. /**
  5256. * G42: Move X & Y axes to mesh coordinates (I & J)
  5257. */
  5258. inline void gcode_G42() {
  5259. #if ENABLED(NO_MOTION_BEFORE_HOMING)
  5260. if (axis_unhomed_error()) return;
  5261. #endif
  5262. if (IsRunning()) {
  5263. const bool hasI = parser.seenval('I');
  5264. const int8_t ix = hasI ? parser.value_int() : 0;
  5265. const bool hasJ = parser.seenval('J');
  5266. const int8_t iy = hasJ ? parser.value_int() : 0;
  5267. if ((hasI && !WITHIN(ix, 0, GRID_MAX_POINTS_X - 1)) || (hasJ && !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1))) {
  5268. SERIAL_ECHOLNPGM(MSG_ERR_MESH_XY);
  5269. return;
  5270. }
  5271. set_destination_from_current();
  5272. if (hasI) destination[X_AXIS] = _GET_MESH_X(ix);
  5273. if (hasJ) destination[Y_AXIS] = _GET_MESH_Y(iy);
  5274. if (parser.boolval('P')) {
  5275. if (hasI) destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  5276. if (hasJ) destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  5277. }
  5278. const float fval = parser.linearval('F');
  5279. if (fval > 0.0) feedrate_mm_s = MMM_TO_MMS(fval);
  5280. // SCARA kinematic has "safe" XY raw moves
  5281. #if IS_SCARA
  5282. prepare_uninterpolated_move_to_destination();
  5283. #else
  5284. prepare_move_to_destination();
  5285. #endif
  5286. }
  5287. }
  5288. #endif // HAS_MESH
  5289. /**
  5290. * G92: Set current position to given X Y Z E
  5291. */
  5292. inline void gcode_G92() {
  5293. stepper.synchronize();
  5294. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5295. switch (parser.subcode) {
  5296. case 1:
  5297. // Zero the G92 values and restore current position
  5298. #if !IS_SCARA
  5299. LOOP_XYZ(i) {
  5300. const float v = position_shift[i];
  5301. if (v) {
  5302. position_shift[i] = 0;
  5303. update_software_endstops((AxisEnum)i);
  5304. }
  5305. }
  5306. #endif // Not SCARA
  5307. return;
  5308. }
  5309. #endif
  5310. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5311. #define IS_G92_0 (parser.subcode == 0)
  5312. #else
  5313. #define IS_G92_0 true
  5314. #endif
  5315. bool didE = false;
  5316. #if IS_SCARA || !HAS_POSITION_SHIFT
  5317. bool didXYZ = false;
  5318. #else
  5319. constexpr bool didXYZ = false;
  5320. #endif
  5321. if (IS_G92_0) LOOP_XYZE(i) {
  5322. if (parser.seenval(axis_codes[i])) {
  5323. const float l = parser.value_axis_units((AxisEnum)i),
  5324. v = i == E_AXIS ? l : LOGICAL_TO_NATIVE(l, i),
  5325. d = v - current_position[i];
  5326. if (!NEAR_ZERO(d)) {
  5327. #if IS_SCARA || !HAS_POSITION_SHIFT
  5328. if (i == E_AXIS) didE = true; else didXYZ = true;
  5329. current_position[i] = v; // Without workspaces revert to Marlin 1.0 behavior
  5330. #elif HAS_POSITION_SHIFT
  5331. if (i == E_AXIS) {
  5332. didE = true;
  5333. current_position[E_AXIS] = v; // When using coordinate spaces, only E is set directly
  5334. }
  5335. else {
  5336. position_shift[i] += d; // Other axes simply offset the coordinate space
  5337. update_software_endstops((AxisEnum)i);
  5338. }
  5339. #endif
  5340. }
  5341. }
  5342. }
  5343. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  5344. // Apply workspace offset to the active coordinate system
  5345. if (WITHIN(active_coordinate_system, 0, MAX_COORDINATE_SYSTEMS - 1))
  5346. COPY(coordinate_system[active_coordinate_system], position_shift);
  5347. #endif
  5348. if (didXYZ)
  5349. SYNC_PLAN_POSITION_KINEMATIC();
  5350. else if (didE)
  5351. sync_plan_position_e();
  5352. report_current_position();
  5353. }
  5354. #if HAS_RESUME_CONTINUE
  5355. /**
  5356. * M0: Unconditional stop - Wait for user button press on LCD
  5357. * M1: Conditional stop - Wait for user button press on LCD
  5358. */
  5359. inline void gcode_M0_M1() {
  5360. const char * const args = parser.string_arg;
  5361. millis_t ms = 0;
  5362. bool hasP = false, hasS = false;
  5363. if (parser.seenval('P')) {
  5364. ms = parser.value_millis(); // milliseconds to wait
  5365. hasP = ms > 0;
  5366. }
  5367. if (parser.seenval('S')) {
  5368. ms = parser.value_millis_from_seconds(); // seconds to wait
  5369. hasS = ms > 0;
  5370. }
  5371. #if ENABLED(ULTIPANEL)
  5372. if (!hasP && !hasS && args && *args)
  5373. lcd_setstatus(args, true);
  5374. else {
  5375. LCD_MESSAGEPGM(MSG_USERWAIT);
  5376. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  5377. dontExpireStatus();
  5378. #endif
  5379. }
  5380. #else
  5381. if (!hasP && !hasS && args && *args) {
  5382. SERIAL_ECHO_START();
  5383. SERIAL_ECHOLN(args);
  5384. }
  5385. #endif
  5386. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5387. wait_for_user = true;
  5388. stepper.synchronize();
  5389. refresh_cmd_timeout();
  5390. if (ms > 0) {
  5391. ms += previous_cmd_ms; // wait until this time for a click
  5392. while (PENDING(millis(), ms) && wait_for_user) idle();
  5393. }
  5394. else {
  5395. #if ENABLED(ULTIPANEL)
  5396. if (lcd_detected()) {
  5397. while (wait_for_user) idle();
  5398. print_job_timer.isPaused() ? LCD_MESSAGEPGM(WELCOME_MSG) : LCD_MESSAGEPGM(MSG_RESUMING);
  5399. }
  5400. #else
  5401. while (wait_for_user) idle();
  5402. #endif
  5403. }
  5404. wait_for_user = false;
  5405. KEEPALIVE_STATE(IN_HANDLER);
  5406. }
  5407. #endif // HAS_RESUME_CONTINUE
  5408. #if ENABLED(SPINDLE_LASER_ENABLE)
  5409. /**
  5410. * M3: Spindle Clockwise
  5411. * M4: Spindle Counter-clockwise
  5412. *
  5413. * S0 turns off spindle.
  5414. *
  5415. * If no speed PWM output is defined then M3/M4 just turns it on.
  5416. *
  5417. * At least 12.8KHz (50Hz * 256) is needed for spindle PWM.
  5418. * Hardware PWM is required. ISRs are too slow.
  5419. *
  5420. * NOTE: WGM for timers 3, 4, and 5 must be either Mode 1 or Mode 5.
  5421. * No other settings give a PWM signal that goes from 0 to 5 volts.
  5422. *
  5423. * The system automatically sets WGM to Mode 1, so no special
  5424. * initialization is needed.
  5425. *
  5426. * WGM bits for timer 2 are automatically set by the system to
  5427. * Mode 1. This produces an acceptable 0 to 5 volt signal.
  5428. * No special initialization is needed.
  5429. *
  5430. * NOTE: A minimum PWM frequency of 50 Hz is needed. All prescaler
  5431. * factors for timers 2, 3, 4, and 5 are acceptable.
  5432. *
  5433. * SPINDLE_LASER_ENABLE_PIN needs an external pullup or it may power on
  5434. * the spindle/laser during power-up or when connecting to the host
  5435. * (usually goes through a reset which sets all I/O pins to tri-state)
  5436. *
  5437. * PWM duty cycle goes from 0 (off) to 255 (always on).
  5438. */
  5439. // Wait for spindle to come up to speed
  5440. inline void delay_for_power_up() { dwell(SPINDLE_LASER_POWERUP_DELAY); }
  5441. // Wait for spindle to stop turning
  5442. inline void delay_for_power_down() { dwell(SPINDLE_LASER_POWERDOWN_DELAY); }
  5443. /**
  5444. * ocr_val_mode() is used for debugging and to get the points needed to compute the RPM vs ocr_val line
  5445. *
  5446. * it accepts inputs of 0-255
  5447. */
  5448. inline void ocr_val_mode() {
  5449. uint8_t spindle_laser_power = parser.value_byte();
  5450. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5451. if (SPINDLE_LASER_PWM_INVERT) spindle_laser_power = 255 - spindle_laser_power;
  5452. analogWrite(SPINDLE_LASER_PWM_PIN, spindle_laser_power);
  5453. }
  5454. inline void gcode_M3_M4(bool is_M3) {
  5455. stepper.synchronize(); // wait until previous movement commands (G0/G0/G2/G3) have completed before playing with the spindle
  5456. #if SPINDLE_DIR_CHANGE
  5457. const bool rotation_dir = (is_M3 && !SPINDLE_INVERT_DIR || !is_M3 && SPINDLE_INVERT_DIR) ? HIGH : LOW;
  5458. if (SPINDLE_STOP_ON_DIR_CHANGE \
  5459. && READ(SPINDLE_LASER_ENABLE_PIN) == SPINDLE_LASER_ENABLE_INVERT \
  5460. && READ(SPINDLE_DIR_PIN) != rotation_dir
  5461. ) {
  5462. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off
  5463. delay_for_power_down();
  5464. }
  5465. WRITE(SPINDLE_DIR_PIN, rotation_dir);
  5466. #endif
  5467. /**
  5468. * Our final value for ocr_val is an unsigned 8 bit value between 0 and 255 which usually means uint8_t.
  5469. * Went to uint16_t because some of the uint8_t calculations would sometimes give 1000 0000 rather than 1111 1111.
  5470. * Then needed to AND the uint16_t result with 0x00FF to make sure we only wrote the byte of interest.
  5471. */
  5472. #if ENABLED(SPINDLE_LASER_PWM)
  5473. if (parser.seen('O')) ocr_val_mode();
  5474. else {
  5475. const float spindle_laser_power = parser.floatval('S');
  5476. if (spindle_laser_power == 0) {
  5477. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // turn spindle off (active low)
  5478. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // only write low byte
  5479. delay_for_power_down();
  5480. }
  5481. else {
  5482. int16_t ocr_val = (spindle_laser_power - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // convert RPM to PWM duty cycle
  5483. NOMORE(ocr_val, 255); // limit to max the Atmel PWM will support
  5484. if (spindle_laser_power <= SPEED_POWER_MIN)
  5485. ocr_val = (SPEED_POWER_MIN - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // minimum setting
  5486. if (spindle_laser_power >= SPEED_POWER_MAX)
  5487. ocr_val = (SPEED_POWER_MAX - (SPEED_POWER_INTERCEPT)) * (1.0 / (SPEED_POWER_SLOPE)); // limit to max RPM
  5488. if (SPINDLE_LASER_PWM_INVERT) ocr_val = 255 - ocr_val;
  5489. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low)
  5490. analogWrite(SPINDLE_LASER_PWM_PIN, ocr_val & 0xFF); // only write low byte
  5491. delay_for_power_up();
  5492. }
  5493. }
  5494. #else
  5495. WRITE(SPINDLE_LASER_ENABLE_PIN, SPINDLE_LASER_ENABLE_INVERT); // turn spindle on (active low) if spindle speed option not enabled
  5496. delay_for_power_up();
  5497. #endif
  5498. }
  5499. /**
  5500. * M5 turn off spindle
  5501. */
  5502. inline void gcode_M5() {
  5503. stepper.synchronize();
  5504. WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT);
  5505. delay_for_power_down();
  5506. }
  5507. #endif // SPINDLE_LASER_ENABLE
  5508. /**
  5509. * M17: Enable power on all stepper motors
  5510. */
  5511. inline void gcode_M17() {
  5512. LCD_MESSAGEPGM(MSG_NO_MOVE);
  5513. enable_all_steppers();
  5514. }
  5515. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  5516. static float resume_position[XYZE];
  5517. static bool move_away_flag = false;
  5518. #if ENABLED(SDSUPPORT)
  5519. static bool sd_print_paused = false;
  5520. #endif
  5521. static void filament_change_beep(const int8_t max_beep_count, const bool init=false) {
  5522. static millis_t next_buzz = 0;
  5523. static int8_t runout_beep = 0;
  5524. if (init) next_buzz = runout_beep = 0;
  5525. const millis_t ms = millis();
  5526. if (ELAPSED(ms, next_buzz)) {
  5527. if (max_beep_count < 0 || runout_beep < max_beep_count + 5) { // Only beep as long as we're supposed to
  5528. next_buzz = ms + ((max_beep_count < 0 || runout_beep < max_beep_count) ? 2500 : 400);
  5529. BUZZ(300, 2000);
  5530. runout_beep++;
  5531. }
  5532. }
  5533. }
  5534. static void ensure_safe_temperature() {
  5535. bool heaters_heating = true;
  5536. wait_for_heatup = true; // M108 will clear this
  5537. while (wait_for_heatup && heaters_heating) {
  5538. idle();
  5539. heaters_heating = false;
  5540. HOTEND_LOOP() {
  5541. if (thermalManager.degTargetHotend(e) && abs(thermalManager.degHotend(e) - thermalManager.degTargetHotend(e)) > TEMP_HYSTERESIS) {
  5542. heaters_heating = true;
  5543. #if ENABLED(ULTIPANEL)
  5544. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_WAIT_FOR_NOZZLES_TO_HEAT);
  5545. #endif
  5546. break;
  5547. }
  5548. }
  5549. }
  5550. }
  5551. #if IS_KINEMATIC
  5552. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder)
  5553. #else
  5554. #define RUNPLAN(RATE_MM_S) buffer_line_to_destination(RATE_MM_S)
  5555. #endif
  5556. void do_pause_e_move(const float &length, const float fr) {
  5557. current_position[E_AXIS] += length / planner.e_factor[active_extruder];
  5558. set_destination_from_current();
  5559. RUNPLAN(fr);
  5560. stepper.synchronize();
  5561. }
  5562. static bool pause_print(const float &retract, const float &z_lift, const float &x_pos, const float &y_pos,
  5563. const float &unload_length = 0 , const int8_t max_beep_count = 0, const bool show_lcd = false
  5564. ) {
  5565. if (move_away_flag) return false; // already paused
  5566. if (!DEBUGGING(DRYRUN) && (unload_length != 0 || retract != 0)) {
  5567. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5568. if (!thermalManager.allow_cold_extrude &&
  5569. thermalManager.degTargetHotend(active_extruder) < thermalManager.extrude_min_temp) {
  5570. SERIAL_ERROR_START();
  5571. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5572. return false;
  5573. }
  5574. #endif
  5575. ensure_safe_temperature(); // wait for extruder to heat up before unloading
  5576. }
  5577. // Indicate that the printer is paused
  5578. move_away_flag = true;
  5579. // Pause the print job and timer
  5580. #if ENABLED(SDSUPPORT)
  5581. if (card.sdprinting) {
  5582. card.pauseSDPrint();
  5583. sd_print_paused = true;
  5584. }
  5585. #endif
  5586. print_job_timer.pause();
  5587. // Show initial message and wait for synchronize steppers
  5588. if (show_lcd) {
  5589. #if ENABLED(ULTIPANEL)
  5590. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INIT);
  5591. #endif
  5592. }
  5593. // Save current position
  5594. stepper.synchronize();
  5595. COPY(resume_position, current_position);
  5596. // Initial retract before move to filament change position
  5597. if (retract) do_pause_e_move(retract, PAUSE_PARK_RETRACT_FEEDRATE);
  5598. // Lift Z axis
  5599. if (z_lift > 0)
  5600. do_blocking_move_to_z(current_position[Z_AXIS] + z_lift, PAUSE_PARK_Z_FEEDRATE);
  5601. // Move XY axes to filament exchange position
  5602. do_blocking_move_to_xy(x_pos, y_pos, PAUSE_PARK_XY_FEEDRATE);
  5603. if (unload_length != 0) {
  5604. if (show_lcd) {
  5605. #if ENABLED(ULTIPANEL)
  5606. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_UNLOAD);
  5607. idle();
  5608. #endif
  5609. }
  5610. // Unload filament
  5611. do_pause_e_move(unload_length, FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5612. }
  5613. if (show_lcd) {
  5614. #if ENABLED(ULTIPANEL)
  5615. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5616. #endif
  5617. }
  5618. #if HAS_BUZZER
  5619. filament_change_beep(max_beep_count, true);
  5620. #endif
  5621. idle();
  5622. // Disable extruders steppers for manual filament changing (only on boards that have separate ENABLE_PINS)
  5623. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN
  5624. disable_e_steppers();
  5625. safe_delay(100);
  5626. #endif
  5627. // Start the heater idle timers
  5628. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5629. HOTEND_LOOP()
  5630. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5631. return true;
  5632. }
  5633. static void wait_for_filament_reload(const int8_t max_beep_count = 0) {
  5634. bool nozzle_timed_out = false;
  5635. // Wait for filament insert by user and press button
  5636. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5637. wait_for_user = true; // LCD click or M108 will clear this
  5638. while (wait_for_user) {
  5639. #if HAS_BUZZER
  5640. filament_change_beep(max_beep_count);
  5641. #endif
  5642. // If the nozzle has timed out, wait for the user to press the button to re-heat the nozzle, then
  5643. // re-heat the nozzle, re-show the insert screen, restart the idle timers, and start over
  5644. if (!nozzle_timed_out)
  5645. HOTEND_LOOP()
  5646. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5647. if (nozzle_timed_out) {
  5648. #if ENABLED(ULTIPANEL)
  5649. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_CLICK_TO_HEAT_NOZZLE);
  5650. #endif
  5651. // Wait for LCD click or M108
  5652. while (wait_for_user) idle(true);
  5653. // Re-enable the heaters if they timed out
  5654. HOTEND_LOOP() thermalManager.reset_heater_idle_timer(e);
  5655. // Wait for the heaters to reach the target temperatures
  5656. ensure_safe_temperature();
  5657. #if ENABLED(ULTIPANEL)
  5658. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5659. #endif
  5660. // Start the heater idle timers
  5661. const millis_t nozzle_timeout = (millis_t)(PAUSE_PARK_NOZZLE_TIMEOUT) * 1000UL;
  5662. HOTEND_LOOP()
  5663. thermalManager.start_heater_idle_timer(e, nozzle_timeout);
  5664. wait_for_user = true; /* Wait for user to load filament */
  5665. nozzle_timed_out = false;
  5666. #if HAS_BUZZER
  5667. filament_change_beep(max_beep_count, true);
  5668. #endif
  5669. }
  5670. idle(true);
  5671. }
  5672. KEEPALIVE_STATE(IN_HANDLER);
  5673. }
  5674. static void resume_print(const float &load_length = 0, const float &initial_extrude_length = 0, const int8_t max_beep_count = 0) {
  5675. bool nozzle_timed_out = false;
  5676. if (!move_away_flag) return;
  5677. // Re-enable the heaters if they timed out
  5678. HOTEND_LOOP() {
  5679. nozzle_timed_out |= thermalManager.is_heater_idle(e);
  5680. thermalManager.reset_heater_idle_timer(e);
  5681. }
  5682. if (nozzle_timed_out) ensure_safe_temperature();
  5683. #if HAS_BUZZER
  5684. filament_change_beep(max_beep_count, true);
  5685. #endif
  5686. set_destination_from_current();
  5687. if (load_length != 0) {
  5688. #if ENABLED(ULTIPANEL)
  5689. // Show "insert filament"
  5690. if (nozzle_timed_out)
  5691. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_INSERT);
  5692. #endif
  5693. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5694. wait_for_user = true; // LCD click or M108 will clear this
  5695. while (wait_for_user && nozzle_timed_out) {
  5696. #if HAS_BUZZER
  5697. filament_change_beep(max_beep_count);
  5698. #endif
  5699. idle(true);
  5700. }
  5701. KEEPALIVE_STATE(IN_HANDLER);
  5702. #if ENABLED(ULTIPANEL)
  5703. // Show "load" message
  5704. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_LOAD);
  5705. #endif
  5706. // Load filament
  5707. do_pause_e_move(load_length, FILAMENT_CHANGE_LOAD_FEEDRATE);
  5708. }
  5709. #if ENABLED(ULTIPANEL) && ADVANCED_PAUSE_EXTRUDE_LENGTH > 0
  5710. float extrude_length = initial_extrude_length;
  5711. do {
  5712. if (extrude_length > 0) {
  5713. // "Wait for filament extrude"
  5714. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_EXTRUDE);
  5715. // Extrude filament to get into hotend
  5716. do_pause_e_move(extrude_length, ADVANCED_PAUSE_EXTRUDE_FEEDRATE);
  5717. }
  5718. // Show "Extrude More" / "Resume" menu and wait for reply
  5719. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5720. wait_for_user = false;
  5721. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_OPTION);
  5722. while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_WAIT_FOR) idle(true);
  5723. KEEPALIVE_STATE(IN_HANDLER);
  5724. extrude_length = ADVANCED_PAUSE_EXTRUDE_LENGTH;
  5725. // Keep looping if "Extrude More" was selected
  5726. } while (advanced_pause_menu_response == ADVANCED_PAUSE_RESPONSE_EXTRUDE_MORE);
  5727. #endif
  5728. #if ENABLED(ULTIPANEL)
  5729. // "Wait for print to resume"
  5730. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_RESUME);
  5731. #endif
  5732. // Set extruder to saved position
  5733. destination[E_AXIS] = current_position[E_AXIS] = resume_position[E_AXIS];
  5734. planner.set_e_position_mm(current_position[E_AXIS]);
  5735. // Move XY to starting position, then Z
  5736. do_blocking_move_to_xy(resume_position[X_AXIS], resume_position[Y_AXIS], PAUSE_PARK_XY_FEEDRATE);
  5737. do_blocking_move_to_z(resume_position[Z_AXIS], PAUSE_PARK_Z_FEEDRATE);
  5738. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5739. filament_ran_out = false;
  5740. #endif
  5741. #if ENABLED(ULTIPANEL)
  5742. // Show status screen
  5743. lcd_advanced_pause_show_message(ADVANCED_PAUSE_MESSAGE_STATUS);
  5744. #endif
  5745. #if ENABLED(SDSUPPORT)
  5746. if (sd_print_paused) {
  5747. card.startFileprint();
  5748. sd_print_paused = false;
  5749. }
  5750. #endif
  5751. move_away_flag = false;
  5752. }
  5753. #endif // ADVANCED_PAUSE_FEATURE
  5754. #if ENABLED(SDSUPPORT)
  5755. /**
  5756. * M20: List SD card to serial output
  5757. */
  5758. inline void gcode_M20() {
  5759. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  5760. card.ls();
  5761. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  5762. }
  5763. /**
  5764. * M21: Init SD Card
  5765. */
  5766. inline void gcode_M21() { card.initsd(); }
  5767. /**
  5768. * M22: Release SD Card
  5769. */
  5770. inline void gcode_M22() { card.release(); }
  5771. /**
  5772. * M23: Open a file
  5773. */
  5774. inline void gcode_M23() {
  5775. // Simplify3D includes the size, so zero out all spaces (#7227)
  5776. for (char *fn = parser.string_arg; *fn; ++fn) if (*fn == ' ') *fn = '\0';
  5777. card.openFile(parser.string_arg, true);
  5778. }
  5779. /**
  5780. * M24: Start or Resume SD Print
  5781. */
  5782. inline void gcode_M24() {
  5783. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5784. resume_print();
  5785. #endif
  5786. card.startFileprint();
  5787. print_job_timer.start();
  5788. }
  5789. /**
  5790. * M25: Pause SD Print
  5791. */
  5792. inline void gcode_M25() {
  5793. card.pauseSDPrint();
  5794. print_job_timer.pause();
  5795. #if ENABLED(PARK_HEAD_ON_PAUSE)
  5796. enqueue_and_echo_commands_P(PSTR("M125")); // Must be enqueued with pauseSDPrint set to be last in the buffer
  5797. #endif
  5798. }
  5799. /**
  5800. * M26: Set SD Card file index
  5801. */
  5802. inline void gcode_M26() {
  5803. if (card.cardOK && parser.seenval('S'))
  5804. card.setIndex(parser.value_long());
  5805. }
  5806. /**
  5807. * M27: Get SD Card status
  5808. */
  5809. inline void gcode_M27() { card.getStatus(); }
  5810. /**
  5811. * M28: Start SD Write
  5812. */
  5813. inline void gcode_M28() { card.openFile(parser.string_arg, false); }
  5814. /**
  5815. * M29: Stop SD Write
  5816. * Processed in write to file routine above
  5817. */
  5818. inline void gcode_M29() {
  5819. // card.saving = false;
  5820. }
  5821. /**
  5822. * M30 <filename>: Delete SD Card file
  5823. */
  5824. inline void gcode_M30() {
  5825. if (card.cardOK) {
  5826. card.closefile();
  5827. card.removeFile(parser.string_arg);
  5828. }
  5829. }
  5830. #endif // SDSUPPORT
  5831. /**
  5832. * M31: Get the time since the start of SD Print (or last M109)
  5833. */
  5834. inline void gcode_M31() {
  5835. char buffer[21];
  5836. duration_t elapsed = print_job_timer.duration();
  5837. elapsed.toString(buffer);
  5838. lcd_setstatus(buffer);
  5839. SERIAL_ECHO_START();
  5840. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  5841. }
  5842. #if ENABLED(SDSUPPORT)
  5843. /**
  5844. * M32: Select file and start SD Print
  5845. *
  5846. * Examples:
  5847. *
  5848. * M32 !PATH/TO/FILE.GCO# ; Start FILE.GCO
  5849. * M32 P !PATH/TO/FILE.GCO# ; Start FILE.GCO as a procedure
  5850. * M32 S60 !PATH/TO/FILE.GCO# ; Start FILE.GCO at byte 60
  5851. *
  5852. */
  5853. inline void gcode_M32() {
  5854. if (card.sdprinting) stepper.synchronize();
  5855. if (card.cardOK) {
  5856. const bool call_procedure = parser.boolval('P');
  5857. card.openFile(parser.string_arg, true, call_procedure);
  5858. if (parser.seenval('S')) card.setIndex(parser.value_long());
  5859. card.startFileprint();
  5860. // Procedure calls count as normal print time.
  5861. if (!call_procedure) print_job_timer.start();
  5862. }
  5863. }
  5864. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5865. /**
  5866. * M33: Get the long full path of a file or folder
  5867. *
  5868. * Parameters:
  5869. * <dospath> Case-insensitive DOS-style path to a file or folder
  5870. *
  5871. * Example:
  5872. * M33 miscel~1/armchair/armcha~1.gco
  5873. *
  5874. * Output:
  5875. * /Miscellaneous/Armchair/Armchair.gcode
  5876. */
  5877. inline void gcode_M33() {
  5878. card.printLongPath(parser.string_arg);
  5879. }
  5880. #endif
  5881. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  5882. /**
  5883. * M34: Set SD Card Sorting Options
  5884. */
  5885. inline void gcode_M34() {
  5886. if (parser.seen('S')) card.setSortOn(parser.value_bool());
  5887. if (parser.seenval('F')) {
  5888. const int v = parser.value_long();
  5889. card.setSortFolders(v < 0 ? -1 : v > 0 ? 1 : 0);
  5890. }
  5891. //if (parser.seen('R')) card.setSortReverse(parser.value_bool());
  5892. }
  5893. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  5894. /**
  5895. * M928: Start SD Write
  5896. */
  5897. inline void gcode_M928() {
  5898. card.openLogFile(parser.string_arg);
  5899. }
  5900. #endif // SDSUPPORT
  5901. /**
  5902. * Sensitive pin test for M42, M226
  5903. */
  5904. static bool pin_is_protected(const int8_t pin) {
  5905. static const int8_t sensitive_pins[] PROGMEM = SENSITIVE_PINS;
  5906. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  5907. if (pin == (int8_t)pgm_read_byte(&sensitive_pins[i])) return true;
  5908. return false;
  5909. }
  5910. /**
  5911. * M42: Change pin status via GCode
  5912. *
  5913. * P<pin> Pin number (LED if omitted)
  5914. * S<byte> Pin status from 0 - 255
  5915. */
  5916. inline void gcode_M42() {
  5917. if (!parser.seenval('S')) return;
  5918. const byte pin_status = parser.value_byte();
  5919. const int pin_number = parser.intval('P', LED_PIN);
  5920. if (pin_number < 0) return;
  5921. if (pin_is_protected(pin_number)) {
  5922. SERIAL_ERROR_START();
  5923. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  5924. return;
  5925. }
  5926. pinMode(pin_number, OUTPUT);
  5927. digitalWrite(pin_number, pin_status);
  5928. analogWrite(pin_number, pin_status);
  5929. #if FAN_COUNT > 0
  5930. switch (pin_number) {
  5931. #if HAS_FAN0
  5932. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  5933. #endif
  5934. #if HAS_FAN1
  5935. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  5936. #endif
  5937. #if HAS_FAN2
  5938. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  5939. #endif
  5940. }
  5941. #endif
  5942. }
  5943. #if ENABLED(PINS_DEBUGGING)
  5944. #include "pinsDebug.h"
  5945. inline void toggle_pins() {
  5946. const bool I_flag = parser.boolval('I');
  5947. const int repeat = parser.intval('R', 1),
  5948. start = parser.intval('S'),
  5949. end = parser.intval('L', NUM_DIGITAL_PINS - 1),
  5950. wait = parser.intval('W', 500);
  5951. for (uint8_t pin = start; pin <= end; pin++) {
  5952. //report_pin_state_extended(pin, I_flag, false);
  5953. if (!I_flag && pin_is_protected(pin)) {
  5954. report_pin_state_extended(pin, I_flag, true, "Untouched ");
  5955. SERIAL_EOL();
  5956. }
  5957. else {
  5958. report_pin_state_extended(pin, I_flag, true, "Pulsing ");
  5959. #if AVR_AT90USB1286_FAMILY // Teensy IDEs don't know about these pins so must use FASTIO
  5960. if (pin == TEENSY_E2) {
  5961. SET_OUTPUT(TEENSY_E2);
  5962. for (int16_t j = 0; j < repeat; j++) {
  5963. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5964. WRITE(TEENSY_E2, HIGH); safe_delay(wait);
  5965. WRITE(TEENSY_E2, LOW); safe_delay(wait);
  5966. }
  5967. }
  5968. else if (pin == TEENSY_E3) {
  5969. SET_OUTPUT(TEENSY_E3);
  5970. for (int16_t j = 0; j < repeat; j++) {
  5971. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5972. WRITE(TEENSY_E3, HIGH); safe_delay(wait);
  5973. WRITE(TEENSY_E3, LOW); safe_delay(wait);
  5974. }
  5975. }
  5976. else
  5977. #endif
  5978. {
  5979. pinMode(pin, OUTPUT);
  5980. for (int16_t j = 0; j < repeat; j++) {
  5981. digitalWrite(pin, 0); safe_delay(wait);
  5982. digitalWrite(pin, 1); safe_delay(wait);
  5983. digitalWrite(pin, 0); safe_delay(wait);
  5984. }
  5985. }
  5986. }
  5987. SERIAL_EOL();
  5988. }
  5989. SERIAL_ECHOLNPGM("Done.");
  5990. } // toggle_pins
  5991. inline void servo_probe_test() {
  5992. #if !(NUM_SERVOS > 0 && HAS_SERVO_0)
  5993. SERIAL_ERROR_START();
  5994. SERIAL_ERRORLNPGM("SERVO not setup");
  5995. #elif !HAS_Z_SERVO_ENDSTOP
  5996. SERIAL_ERROR_START();
  5997. SERIAL_ERRORLNPGM("Z_ENDSTOP_SERVO_NR not setup");
  5998. #else // HAS_Z_SERVO_ENDSTOP
  5999. const uint8_t probe_index = parser.byteval('P', Z_ENDSTOP_SERVO_NR);
  6000. SERIAL_PROTOCOLLNPGM("Servo probe test");
  6001. SERIAL_PROTOCOLLNPAIR(". using index: ", probe_index);
  6002. SERIAL_PROTOCOLLNPAIR(". deploy angle: ", z_servo_angle[0]);
  6003. SERIAL_PROTOCOLLNPAIR(". stow angle: ", z_servo_angle[1]);
  6004. bool probe_inverting;
  6005. #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN)
  6006. #define PROBE_TEST_PIN Z_MIN_PIN
  6007. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN pin: ", PROBE_TEST_PIN);
  6008. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_ENDSTOP_INVERTING (ignores Z_MIN_PROBE_ENDSTOP_INVERTING)");
  6009. SERIAL_PROTOCOLPGM(". Z_MIN_ENDSTOP_INVERTING: ");
  6010. #if Z_MIN_ENDSTOP_INVERTING
  6011. SERIAL_PROTOCOLLNPGM("true");
  6012. #else
  6013. SERIAL_PROTOCOLLNPGM("false");
  6014. #endif
  6015. probe_inverting = Z_MIN_ENDSTOP_INVERTING;
  6016. #elif ENABLED(Z_MIN_PROBE_ENDSTOP)
  6017. #define PROBE_TEST_PIN Z_MIN_PROBE_PIN
  6018. SERIAL_PROTOCOLLNPAIR(". probe uses Z_MIN_PROBE_PIN: ", PROBE_TEST_PIN);
  6019. SERIAL_PROTOCOLLNPGM(". uses Z_MIN_PROBE_ENDSTOP_INVERTING (ignores Z_MIN_ENDSTOP_INVERTING)");
  6020. SERIAL_PROTOCOLPGM(". Z_MIN_PROBE_ENDSTOP_INVERTING: ");
  6021. #if Z_MIN_PROBE_ENDSTOP_INVERTING
  6022. SERIAL_PROTOCOLLNPGM("true");
  6023. #else
  6024. SERIAL_PROTOCOLLNPGM("false");
  6025. #endif
  6026. probe_inverting = Z_MIN_PROBE_ENDSTOP_INVERTING;
  6027. #endif
  6028. SERIAL_PROTOCOLLNPGM(". deploy & stow 4 times");
  6029. SET_INPUT_PULLUP(PROBE_TEST_PIN);
  6030. bool deploy_state, stow_state;
  6031. for (uint8_t i = 0; i < 4; i++) {
  6032. MOVE_SERVO(probe_index, z_servo_angle[0]); //deploy
  6033. safe_delay(500);
  6034. deploy_state = READ(PROBE_TEST_PIN);
  6035. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6036. safe_delay(500);
  6037. stow_state = READ(PROBE_TEST_PIN);
  6038. }
  6039. if (probe_inverting != deploy_state) SERIAL_PROTOCOLLNPGM("WARNING - INVERTING setting probably backwards");
  6040. refresh_cmd_timeout();
  6041. if (deploy_state != stow_state) {
  6042. SERIAL_PROTOCOLLNPGM("BLTouch clone detected");
  6043. if (deploy_state) {
  6044. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: HIGH (logic 1)");
  6045. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: LOW (logic 0)");
  6046. }
  6047. else {
  6048. SERIAL_PROTOCOLLNPGM(". DEPLOYED state: LOW (logic 0)");
  6049. SERIAL_PROTOCOLLNPGM(". STOWED (triggered) state: HIGH (logic 1)");
  6050. }
  6051. #if ENABLED(BLTOUCH)
  6052. SERIAL_PROTOCOLLNPGM("ERROR: BLTOUCH enabled - set this device up as a Z Servo Probe with inverting as true.");
  6053. #endif
  6054. }
  6055. else { // measure active signal length
  6056. MOVE_SERVO(probe_index, z_servo_angle[0]); // deploy
  6057. safe_delay(500);
  6058. SERIAL_PROTOCOLLNPGM("please trigger probe");
  6059. uint16_t probe_counter = 0;
  6060. // Allow 30 seconds max for operator to trigger probe
  6061. for (uint16_t j = 0; j < 500 * 30 && probe_counter == 0 ; j++) {
  6062. safe_delay(2);
  6063. if (0 == j % (500 * 1)) // keep cmd_timeout happy
  6064. refresh_cmd_timeout();
  6065. if (deploy_state != READ(PROBE_TEST_PIN)) { // probe triggered
  6066. for (probe_counter = 1; probe_counter < 50 && deploy_state != READ(PROBE_TEST_PIN); ++probe_counter)
  6067. safe_delay(2);
  6068. if (probe_counter == 50)
  6069. SERIAL_PROTOCOLLNPGM("Z Servo Probe detected"); // >= 100mS active time
  6070. else if (probe_counter >= 2)
  6071. SERIAL_PROTOCOLLNPAIR("BLTouch compatible probe detected - pulse width (+/- 4mS): ", probe_counter * 2); // allow 4 - 100mS pulse
  6072. else
  6073. SERIAL_PROTOCOLLNPGM("noise detected - please re-run test"); // less than 2mS pulse
  6074. MOVE_SERVO(probe_index, z_servo_angle[1]); //stow
  6075. } // pulse detected
  6076. } // for loop waiting for trigger
  6077. if (probe_counter == 0) SERIAL_PROTOCOLLNPGM("trigger not detected");
  6078. } // measure active signal length
  6079. #endif
  6080. } // servo_probe_test
  6081. /**
  6082. * M43: Pin debug - report pin state, watch pins, toggle pins and servo probe test/report
  6083. *
  6084. * M43 - report name and state of pin(s)
  6085. * P<pin> Pin to read or watch. If omitted, reads all pins.
  6086. * I Flag to ignore Marlin's pin protection.
  6087. *
  6088. * M43 W - Watch pins -reporting changes- until reset, click, or M108.
  6089. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  6090. * I Flag to ignore Marlin's pin protection.
  6091. *
  6092. * M43 E<bool> - Enable / disable background endstop monitoring
  6093. * - Machine continues to operate
  6094. * - Reports changes to endstops
  6095. * - Toggles LED_PIN when an endstop changes
  6096. * - Can not reliably catch the 5mS pulse from BLTouch type probes
  6097. *
  6098. * M43 T - Toggle pin(s) and report which pin is being toggled
  6099. * S<pin> - Start Pin number. If not given, will default to 0
  6100. * L<pin> - End Pin number. If not given, will default to last pin defined for this board
  6101. * I<bool> - Flag to ignore Marlin's pin protection. Use with caution!!!!
  6102. * R - Repeat pulses on each pin this number of times before continueing to next pin
  6103. * W - Wait time (in miliseconds) between pulses. If not given will default to 500
  6104. *
  6105. * M43 S - Servo probe test
  6106. * P<index> - Probe index (optional - defaults to 0
  6107. */
  6108. inline void gcode_M43() {
  6109. if (parser.seen('T')) { // must be first or else its "S" and "E" parameters will execute endstop or servo test
  6110. toggle_pins();
  6111. return;
  6112. }
  6113. // Enable or disable endstop monitoring
  6114. if (parser.seen('E')) {
  6115. endstop_monitor_flag = parser.value_bool();
  6116. SERIAL_PROTOCOLPGM("endstop monitor ");
  6117. serialprintPGM(endstop_monitor_flag ? PSTR("en") : PSTR("dis"));
  6118. SERIAL_PROTOCOLLNPGM("abled");
  6119. return;
  6120. }
  6121. if (parser.seen('S')) {
  6122. servo_probe_test();
  6123. return;
  6124. }
  6125. // Get the range of pins to test or watch
  6126. const uint8_t first_pin = parser.byteval('P'),
  6127. last_pin = parser.seenval('P') ? first_pin : NUM_DIGITAL_PINS - 1;
  6128. if (first_pin > last_pin) return;
  6129. const bool ignore_protection = parser.boolval('I');
  6130. // Watch until click, M108, or reset
  6131. if (parser.boolval('W')) {
  6132. SERIAL_PROTOCOLLNPGM("Watching pins");
  6133. byte pin_state[last_pin - first_pin + 1];
  6134. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6135. if (pin_is_protected(pin) && !ignore_protection) continue;
  6136. pinMode(pin, INPUT_PULLUP);
  6137. delay(1);
  6138. /*
  6139. if (IS_ANALOG(pin))
  6140. pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  6141. else
  6142. //*/
  6143. pin_state[pin - first_pin] = digitalRead(pin);
  6144. }
  6145. #if HAS_RESUME_CONTINUE
  6146. wait_for_user = true;
  6147. KEEPALIVE_STATE(PAUSED_FOR_USER);
  6148. #endif
  6149. for (;;) {
  6150. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  6151. if (pin_is_protected(pin) && !ignore_protection) continue;
  6152. const byte val =
  6153. /*
  6154. IS_ANALOG(pin)
  6155. ? analogRead(pin - analogInputToDigitalPin(0)) : // int16_t val
  6156. :
  6157. //*/
  6158. digitalRead(pin);
  6159. if (val != pin_state[pin - first_pin]) {
  6160. report_pin_state_extended(pin, ignore_protection, false);
  6161. pin_state[pin - first_pin] = val;
  6162. }
  6163. }
  6164. #if HAS_RESUME_CONTINUE
  6165. if (!wait_for_user) {
  6166. KEEPALIVE_STATE(IN_HANDLER);
  6167. break;
  6168. }
  6169. #endif
  6170. safe_delay(200);
  6171. }
  6172. return;
  6173. }
  6174. // Report current state of selected pin(s)
  6175. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  6176. report_pin_state_extended(pin, ignore_protection, true);
  6177. }
  6178. #endif // PINS_DEBUGGING
  6179. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6180. /**
  6181. * M48: Z probe repeatability measurement function.
  6182. *
  6183. * Usage:
  6184. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  6185. * P = Number of sampled points (4-50, default 10)
  6186. * X = Sample X position
  6187. * Y = Sample Y position
  6188. * V = Verbose level (0-4, default=1)
  6189. * E = Engage Z probe for each reading
  6190. * L = Number of legs of movement before probe
  6191. * S = Schizoid (Or Star if you prefer)
  6192. *
  6193. * This function assumes the bed has been homed. Specifically, that a G28 command
  6194. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  6195. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  6196. * regenerated.
  6197. */
  6198. inline void gcode_M48() {
  6199. if (axis_unhomed_error()) return;
  6200. const int8_t verbose_level = parser.byteval('V', 1);
  6201. if (!WITHIN(verbose_level, 0, 4)) {
  6202. SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
  6203. return;
  6204. }
  6205. if (verbose_level > 0)
  6206. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  6207. const int8_t n_samples = parser.byteval('P', 10);
  6208. if (!WITHIN(n_samples, 4, 50)) {
  6209. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  6210. return;
  6211. }
  6212. const bool stow_probe_after_each = parser.boolval('E');
  6213. float X_current = current_position[X_AXIS],
  6214. Y_current = current_position[Y_AXIS];
  6215. const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
  6216. Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
  6217. #if DISABLED(DELTA)
  6218. if (!WITHIN(X_probe_location, MIN_PROBE_X, MAX_PROBE_X)) {
  6219. out_of_range_error(PSTR("X"));
  6220. return;
  6221. }
  6222. if (!WITHIN(Y_probe_location, MIN_PROBE_Y, MAX_PROBE_Y)) {
  6223. out_of_range_error(PSTR("Y"));
  6224. return;
  6225. }
  6226. #else
  6227. if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
  6228. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  6229. return;
  6230. }
  6231. #endif
  6232. bool seen_L = parser.seen('L');
  6233. uint8_t n_legs = seen_L ? parser.value_byte() : 0;
  6234. if (n_legs > 15) {
  6235. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  6236. return;
  6237. }
  6238. if (n_legs == 1) n_legs = 2;
  6239. const bool schizoid_flag = parser.boolval('S');
  6240. if (schizoid_flag && !seen_L) n_legs = 7;
  6241. /**
  6242. * Now get everything to the specified probe point So we can safely do a
  6243. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  6244. * we don't want to use that as a starting point for each probe.
  6245. */
  6246. if (verbose_level > 2)
  6247. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  6248. // Disable bed level correction in M48 because we want the raw data when we probe
  6249. #if HAS_LEVELING
  6250. const bool was_enabled = planner.leveling_active;
  6251. set_bed_leveling_enabled(false);
  6252. #endif
  6253. setup_for_endstop_or_probe_move();
  6254. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  6255. // Move to the first point, deploy, and probe
  6256. const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  6257. bool probing_good = !isnan(t);
  6258. if (probing_good) {
  6259. randomSeed(millis());
  6260. for (uint8_t n = 0; n < n_samples; n++) {
  6261. if (n_legs) {
  6262. const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  6263. float angle = random(0.0, 360.0);
  6264. const float radius = random(
  6265. #if ENABLED(DELTA)
  6266. 0.1250000000 * (DELTA_PROBEABLE_RADIUS),
  6267. 0.3333333333 * (DELTA_PROBEABLE_RADIUS)
  6268. #else
  6269. 5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
  6270. #endif
  6271. );
  6272. if (verbose_level > 3) {
  6273. SERIAL_ECHOPAIR("Starting radius: ", radius);
  6274. SERIAL_ECHOPAIR(" angle: ", angle);
  6275. SERIAL_ECHOPGM(" Direction: ");
  6276. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  6277. SERIAL_ECHOLNPGM("Clockwise");
  6278. }
  6279. for (uint8_t l = 0; l < n_legs - 1; l++) {
  6280. double delta_angle;
  6281. if (schizoid_flag)
  6282. // The points of a 5 point star are 72 degrees apart. We need to
  6283. // skip a point and go to the next one on the star.
  6284. delta_angle = dir * 2.0 * 72.0;
  6285. else
  6286. // If we do this line, we are just trying to move further
  6287. // around the circle.
  6288. delta_angle = dir * (float) random(25, 45);
  6289. angle += delta_angle;
  6290. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  6291. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  6292. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  6293. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  6294. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  6295. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  6296. #if DISABLED(DELTA)
  6297. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  6298. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  6299. #else
  6300. // If we have gone out too far, we can do a simple fix and scale the numbers
  6301. // back in closer to the origin.
  6302. while (!position_is_reachable_by_probe(X_current, Y_current)) {
  6303. X_current *= 0.8;
  6304. Y_current *= 0.8;
  6305. if (verbose_level > 3) {
  6306. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  6307. SERIAL_ECHOLNPAIR(", ", Y_current);
  6308. }
  6309. }
  6310. #endif
  6311. if (verbose_level > 3) {
  6312. SERIAL_PROTOCOLPGM("Going to:");
  6313. SERIAL_ECHOPAIR(" X", X_current);
  6314. SERIAL_ECHOPAIR(" Y", Y_current);
  6315. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  6316. }
  6317. do_blocking_move_to_xy(X_current, Y_current);
  6318. } // n_legs loop
  6319. } // n_legs
  6320. // Probe a single point
  6321. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  6322. // Break the loop if the probe fails
  6323. probing_good = !isnan(sample_set[n]);
  6324. if (!probing_good) break;
  6325. /**
  6326. * Get the current mean for the data points we have so far
  6327. */
  6328. double sum = 0.0;
  6329. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  6330. mean = sum / (n + 1);
  6331. NOMORE(min, sample_set[n]);
  6332. NOLESS(max, sample_set[n]);
  6333. /**
  6334. * Now, use that mean to calculate the standard deviation for the
  6335. * data points we have so far
  6336. */
  6337. sum = 0.0;
  6338. for (uint8_t j = 0; j <= n; j++)
  6339. sum += sq(sample_set[j] - mean);
  6340. sigma = SQRT(sum / (n + 1));
  6341. if (verbose_level > 0) {
  6342. if (verbose_level > 1) {
  6343. SERIAL_PROTOCOL(n + 1);
  6344. SERIAL_PROTOCOLPGM(" of ");
  6345. SERIAL_PROTOCOL((int)n_samples);
  6346. SERIAL_PROTOCOLPGM(": z: ");
  6347. SERIAL_PROTOCOL_F(sample_set[n], 3);
  6348. if (verbose_level > 2) {
  6349. SERIAL_PROTOCOLPGM(" mean: ");
  6350. SERIAL_PROTOCOL_F(mean, 4);
  6351. SERIAL_PROTOCOLPGM(" sigma: ");
  6352. SERIAL_PROTOCOL_F(sigma, 6);
  6353. SERIAL_PROTOCOLPGM(" min: ");
  6354. SERIAL_PROTOCOL_F(min, 3);
  6355. SERIAL_PROTOCOLPGM(" max: ");
  6356. SERIAL_PROTOCOL_F(max, 3);
  6357. SERIAL_PROTOCOLPGM(" range: ");
  6358. SERIAL_PROTOCOL_F(max-min, 3);
  6359. }
  6360. SERIAL_EOL();
  6361. }
  6362. }
  6363. } // n_samples loop
  6364. }
  6365. STOW_PROBE();
  6366. if (probing_good) {
  6367. SERIAL_PROTOCOLLNPGM("Finished!");
  6368. if (verbose_level > 0) {
  6369. SERIAL_PROTOCOLPGM("Mean: ");
  6370. SERIAL_PROTOCOL_F(mean, 6);
  6371. SERIAL_PROTOCOLPGM(" Min: ");
  6372. SERIAL_PROTOCOL_F(min, 3);
  6373. SERIAL_PROTOCOLPGM(" Max: ");
  6374. SERIAL_PROTOCOL_F(max, 3);
  6375. SERIAL_PROTOCOLPGM(" Range: ");
  6376. SERIAL_PROTOCOL_F(max-min, 3);
  6377. SERIAL_EOL();
  6378. }
  6379. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  6380. SERIAL_PROTOCOL_F(sigma, 6);
  6381. SERIAL_EOL();
  6382. SERIAL_EOL();
  6383. }
  6384. clean_up_after_endstop_or_probe_move();
  6385. // Re-enable bed level correction if it had been on
  6386. #if HAS_LEVELING
  6387. set_bed_leveling_enabled(was_enabled);
  6388. #endif
  6389. report_current_position();
  6390. }
  6391. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6392. #if ENABLED(G26_MESH_VALIDATION)
  6393. inline void gcode_M49() {
  6394. g26_debug_flag ^= true;
  6395. SERIAL_PROTOCOLPGM("G26 Debug ");
  6396. serialprintPGM(g26_debug_flag ? PSTR("on.") : PSTR("off."));
  6397. }
  6398. #endif // G26_MESH_VALIDATION
  6399. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  6400. /**
  6401. * M73: Set percentage complete (for display on LCD)
  6402. *
  6403. * Example:
  6404. * M73 P25 ; Set progress to 25%
  6405. *
  6406. * Notes:
  6407. * This has no effect during an SD print job
  6408. */
  6409. inline void gcode_M73() {
  6410. if (!IS_SD_PRINTING && parser.seen('P')) {
  6411. progress_bar_percent = parser.value_byte();
  6412. NOMORE(progress_bar_percent, 100);
  6413. }
  6414. }
  6415. #endif // ULTRA_LCD && LCD_SET_PROGRESS_MANUALLY
  6416. /**
  6417. * M75: Start print timer
  6418. */
  6419. inline void gcode_M75() { print_job_timer.start(); }
  6420. /**
  6421. * M76: Pause print timer
  6422. */
  6423. inline void gcode_M76() { print_job_timer.pause(); }
  6424. /**
  6425. * M77: Stop print timer
  6426. */
  6427. inline void gcode_M77() { print_job_timer.stop(); }
  6428. #if ENABLED(PRINTCOUNTER)
  6429. /**
  6430. * M78: Show print statistics
  6431. */
  6432. inline void gcode_M78() {
  6433. // "M78 S78" will reset the statistics
  6434. if (parser.intval('S') == 78)
  6435. print_job_timer.initStats();
  6436. else
  6437. print_job_timer.showStats();
  6438. }
  6439. #endif
  6440. /**
  6441. * M104: Set hot end temperature
  6442. */
  6443. inline void gcode_M104() {
  6444. if (get_target_extruder_from_command(104)) return;
  6445. if (DEBUGGING(DRYRUN)) return;
  6446. #if ENABLED(SINGLENOZZLE)
  6447. if (target_extruder != active_extruder) return;
  6448. #endif
  6449. if (parser.seenval('S')) {
  6450. const int16_t temp = parser.value_celsius();
  6451. thermalManager.setTargetHotend(temp, target_extruder);
  6452. #if ENABLED(DUAL_X_CARRIAGE)
  6453. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6454. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6455. #endif
  6456. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6457. /**
  6458. * Stop the timer at the end of print. Start is managed by 'heat and wait' M109.
  6459. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  6460. * standby mode, for instance in a dual extruder setup, without affecting
  6461. * the running print timer.
  6462. */
  6463. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6464. print_job_timer.stop();
  6465. LCD_MESSAGEPGM(WELCOME_MSG);
  6466. }
  6467. #endif
  6468. if (parser.value_celsius() > thermalManager.degHotend(target_extruder))
  6469. lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6470. }
  6471. #if ENABLED(AUTOTEMP)
  6472. planner.autotemp_M104_M109();
  6473. #endif
  6474. }
  6475. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6476. void print_heater_state(const float &c, const float &t,
  6477. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6478. const float r,
  6479. #endif
  6480. const int8_t e=-2
  6481. ) {
  6482. #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1
  6483. UNUSED(e);
  6484. #endif
  6485. SERIAL_PROTOCOLCHAR(' ');
  6486. SERIAL_PROTOCOLCHAR(
  6487. #if HAS_TEMP_BED && HAS_TEMP_HOTEND
  6488. e == -1 ? 'B' : 'T'
  6489. #elif HAS_TEMP_HOTEND
  6490. 'T'
  6491. #else
  6492. 'B'
  6493. #endif
  6494. );
  6495. #if HOTENDS > 1
  6496. if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e);
  6497. #endif
  6498. SERIAL_PROTOCOLCHAR(':');
  6499. SERIAL_PROTOCOL(c);
  6500. SERIAL_PROTOCOLPAIR(" /" , t);
  6501. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6502. SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR);
  6503. SERIAL_PROTOCOLCHAR(')');
  6504. #endif
  6505. }
  6506. void print_heaterstates() {
  6507. #if HAS_TEMP_HOTEND
  6508. print_heater_state(thermalManager.degHotend(target_extruder), thermalManager.degTargetHotend(target_extruder)
  6509. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6510. , thermalManager.rawHotendTemp(target_extruder)
  6511. #endif
  6512. );
  6513. #endif
  6514. #if HAS_TEMP_BED
  6515. print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(),
  6516. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6517. thermalManager.rawBedTemp(),
  6518. #endif
  6519. -1 // BED
  6520. );
  6521. #endif
  6522. #if HOTENDS > 1
  6523. HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e),
  6524. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  6525. thermalManager.rawHotendTemp(e),
  6526. #endif
  6527. e
  6528. );
  6529. #endif
  6530. SERIAL_PROTOCOLPGM(" @:");
  6531. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  6532. #if HAS_TEMP_BED
  6533. SERIAL_PROTOCOLPGM(" B@:");
  6534. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  6535. #endif
  6536. #if HOTENDS > 1
  6537. HOTEND_LOOP() {
  6538. SERIAL_PROTOCOLPAIR(" @", e);
  6539. SERIAL_PROTOCOLCHAR(':');
  6540. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  6541. }
  6542. #endif
  6543. }
  6544. #endif
  6545. /**
  6546. * M105: Read hot end and bed temperature
  6547. */
  6548. inline void gcode_M105() {
  6549. if (get_target_extruder_from_command(105)) return;
  6550. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  6551. SERIAL_PROTOCOLPGM(MSG_OK);
  6552. print_heaterstates();
  6553. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  6554. SERIAL_ERROR_START();
  6555. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  6556. #endif
  6557. SERIAL_EOL();
  6558. }
  6559. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6560. static uint8_t auto_report_temp_interval;
  6561. static millis_t next_temp_report_ms;
  6562. /**
  6563. * M155: Set temperature auto-report interval. M155 S<seconds>
  6564. */
  6565. inline void gcode_M155() {
  6566. if (parser.seenval('S')) {
  6567. auto_report_temp_interval = parser.value_byte();
  6568. NOMORE(auto_report_temp_interval, 60);
  6569. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6570. }
  6571. }
  6572. inline void auto_report_temperatures() {
  6573. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  6574. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  6575. print_heaterstates();
  6576. SERIAL_EOL();
  6577. }
  6578. }
  6579. #endif // AUTO_REPORT_TEMPERATURES
  6580. #if FAN_COUNT > 0
  6581. /**
  6582. * M106: Set Fan Speed
  6583. *
  6584. * S<int> Speed between 0-255
  6585. * P<index> Fan index, if more than one fan
  6586. *
  6587. * With EXTRA_FAN_SPEED enabled:
  6588. *
  6589. * T<int> Restore/Use/Set Temporary Speed:
  6590. * 1 = Restore previous speed after T2
  6591. * 2 = Use temporary speed set with T3-255
  6592. * 3-255 = Set the speed for use with T2
  6593. */
  6594. inline void gcode_M106() {
  6595. const uint8_t p = parser.byteval('P');
  6596. if (p < FAN_COUNT) {
  6597. #if ENABLED(EXTRA_FAN_SPEED)
  6598. const int16_t t = parser.intval('T');
  6599. if (t > 0) {
  6600. switch (t) {
  6601. case 1:
  6602. fanSpeeds[p] = old_fanSpeeds[p];
  6603. break;
  6604. case 2:
  6605. old_fanSpeeds[p] = fanSpeeds[p];
  6606. fanSpeeds[p] = new_fanSpeeds[p];
  6607. break;
  6608. default:
  6609. new_fanSpeeds[p] = min(t, 255);
  6610. break;
  6611. }
  6612. return;
  6613. }
  6614. #endif // EXTRA_FAN_SPEED
  6615. const uint16_t s = parser.ushortval('S', 255);
  6616. fanSpeeds[p] = min(s, 255);
  6617. }
  6618. }
  6619. /**
  6620. * M107: Fan Off
  6621. */
  6622. inline void gcode_M107() {
  6623. const uint16_t p = parser.ushortval('P');
  6624. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  6625. }
  6626. #endif // FAN_COUNT > 0
  6627. #if DISABLED(EMERGENCY_PARSER)
  6628. /**
  6629. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  6630. */
  6631. inline void gcode_M108() { wait_for_heatup = false; }
  6632. /**
  6633. * M112: Emergency Stop
  6634. */
  6635. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  6636. /**
  6637. * M410: Quickstop - Abort all planned moves
  6638. *
  6639. * This will stop the carriages mid-move, so most likely they
  6640. * will be out of sync with the stepper position after this.
  6641. */
  6642. inline void gcode_M410() { quickstop_stepper(); }
  6643. #endif
  6644. /**
  6645. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  6646. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  6647. */
  6648. #ifndef MIN_COOLING_SLOPE_DEG
  6649. #define MIN_COOLING_SLOPE_DEG 1.50
  6650. #endif
  6651. #ifndef MIN_COOLING_SLOPE_TIME
  6652. #define MIN_COOLING_SLOPE_TIME 60
  6653. #endif
  6654. inline void gcode_M109() {
  6655. if (get_target_extruder_from_command(109)) return;
  6656. if (DEBUGGING(DRYRUN)) return;
  6657. #if ENABLED(SINGLENOZZLE)
  6658. if (target_extruder != active_extruder) return;
  6659. #endif
  6660. const bool no_wait_for_cooling = parser.seenval('S');
  6661. if (no_wait_for_cooling || parser.seenval('R')) {
  6662. const int16_t temp = parser.value_celsius();
  6663. thermalManager.setTargetHotend(temp, target_extruder);
  6664. #if ENABLED(DUAL_X_CARRIAGE)
  6665. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  6666. thermalManager.setTargetHotend(temp ? temp + duplicate_extruder_temp_offset : 0, 1);
  6667. #endif
  6668. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6669. /**
  6670. * Use half EXTRUDE_MINTEMP to allow nozzles to be put into hot
  6671. * standby mode, (e.g., in a dual extruder setup) without affecting
  6672. * the running print timer.
  6673. */
  6674. if (parser.value_celsius() <= (EXTRUDE_MINTEMP) / 2) {
  6675. print_job_timer.stop();
  6676. LCD_MESSAGEPGM(WELCOME_MSG);
  6677. }
  6678. else
  6679. print_job_timer.start();
  6680. #endif
  6681. if (thermalManager.isHeatingHotend(target_extruder)) lcd_status_printf_P(0, PSTR("E%i %s"), target_extruder + 1, MSG_HEATING);
  6682. }
  6683. else return;
  6684. #if ENABLED(AUTOTEMP)
  6685. planner.autotemp_M104_M109();
  6686. #endif
  6687. #if TEMP_RESIDENCY_TIME > 0
  6688. millis_t residency_start_ms = 0;
  6689. // Loop until the temperature has stabilized
  6690. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  6691. #else
  6692. // Loop until the temperature is very close target
  6693. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  6694. #endif
  6695. float target_temp = -1.0, old_temp = 9999.0;
  6696. bool wants_to_cool = false;
  6697. wait_for_heatup = true;
  6698. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6699. #if DISABLED(BUSY_WHILE_HEATING)
  6700. KEEPALIVE_STATE(NOT_BUSY);
  6701. #endif
  6702. #if ENABLED(PRINTER_EVENT_LEDS)
  6703. const float start_temp = thermalManager.degHotend(target_extruder);
  6704. uint8_t old_blue = 0;
  6705. #endif
  6706. do {
  6707. // Target temperature might be changed during the loop
  6708. if (target_temp != thermalManager.degTargetHotend(target_extruder)) {
  6709. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  6710. target_temp = thermalManager.degTargetHotend(target_extruder);
  6711. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6712. if (no_wait_for_cooling && wants_to_cool) break;
  6713. }
  6714. now = millis();
  6715. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  6716. next_temp_ms = now + 1000UL;
  6717. print_heaterstates();
  6718. #if TEMP_RESIDENCY_TIME > 0
  6719. SERIAL_PROTOCOLPGM(" W:");
  6720. if (residency_start_ms)
  6721. SERIAL_PROTOCOL(long((((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6722. else
  6723. SERIAL_PROTOCOLCHAR('?');
  6724. #endif
  6725. SERIAL_EOL();
  6726. }
  6727. idle();
  6728. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6729. const float temp = thermalManager.degHotend(target_extruder);
  6730. #if ENABLED(PRINTER_EVENT_LEDS)
  6731. // Gradually change LED strip from violet to red as nozzle heats up
  6732. if (!wants_to_cool) {
  6733. const uint8_t blue = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 255, 0);
  6734. if (blue != old_blue) {
  6735. old_blue = blue;
  6736. set_led_color(255, 0, blue
  6737. #if ENABLED(NEOPIXEL_LED)
  6738. , 0
  6739. , pixels.getBrightness()
  6740. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6741. , true
  6742. #endif
  6743. #endif
  6744. );
  6745. }
  6746. }
  6747. #endif
  6748. #if TEMP_RESIDENCY_TIME > 0
  6749. const float temp_diff = FABS(target_temp - temp);
  6750. if (!residency_start_ms) {
  6751. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  6752. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  6753. }
  6754. else if (temp_diff > TEMP_HYSTERESIS) {
  6755. // Restart the timer whenever the temperature falls outside the hysteresis.
  6756. residency_start_ms = now;
  6757. }
  6758. #endif
  6759. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  6760. if (wants_to_cool) {
  6761. // break after MIN_COOLING_SLOPE_TIME seconds
  6762. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  6763. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6764. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  6765. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  6766. old_temp = temp;
  6767. }
  6768. }
  6769. } while (wait_for_heatup && TEMP_CONDITIONS);
  6770. if (wait_for_heatup) {
  6771. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  6772. #if ENABLED(PRINTER_EVENT_LEDS)
  6773. #if ENABLED(RGB_LED) || ENABLED(BLINKM) || ENABLED(PCA9632) || ENABLED(RGBW_LED)
  6774. set_led_color(LED_WHITE);
  6775. #endif
  6776. #if ENABLED(NEOPIXEL_LED)
  6777. set_neopixel_color(pixels.Color(NEO_WHITE));
  6778. #endif
  6779. #endif
  6780. }
  6781. #if DISABLED(BUSY_WHILE_HEATING)
  6782. KEEPALIVE_STATE(IN_HANDLER);
  6783. #endif
  6784. }
  6785. #if HAS_TEMP_BED
  6786. #ifndef MIN_COOLING_SLOPE_DEG_BED
  6787. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  6788. #endif
  6789. #ifndef MIN_COOLING_SLOPE_TIME_BED
  6790. #define MIN_COOLING_SLOPE_TIME_BED 60
  6791. #endif
  6792. /**
  6793. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  6794. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  6795. */
  6796. inline void gcode_M190() {
  6797. if (DEBUGGING(DRYRUN)) return;
  6798. LCD_MESSAGEPGM(MSG_BED_HEATING);
  6799. const bool no_wait_for_cooling = parser.seenval('S');
  6800. if (no_wait_for_cooling || parser.seenval('R')) {
  6801. thermalManager.setTargetBed(parser.value_celsius());
  6802. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  6803. if (parser.value_celsius() > BED_MINTEMP)
  6804. print_job_timer.start();
  6805. #endif
  6806. }
  6807. else return;
  6808. #if TEMP_BED_RESIDENCY_TIME > 0
  6809. millis_t residency_start_ms = 0;
  6810. // Loop until the temperature has stabilized
  6811. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  6812. #else
  6813. // Loop until the temperature is very close target
  6814. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  6815. #endif
  6816. float target_temp = -1.0, old_temp = 9999.0;
  6817. bool wants_to_cool = false;
  6818. wait_for_heatup = true;
  6819. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  6820. #if DISABLED(BUSY_WHILE_HEATING)
  6821. KEEPALIVE_STATE(NOT_BUSY);
  6822. #endif
  6823. target_extruder = active_extruder; // for print_heaterstates
  6824. #if ENABLED(PRINTER_EVENT_LEDS)
  6825. const float start_temp = thermalManager.degBed();
  6826. uint8_t old_red = 255;
  6827. #endif
  6828. do {
  6829. // Target temperature might be changed during the loop
  6830. if (target_temp != thermalManager.degTargetBed()) {
  6831. wants_to_cool = thermalManager.isCoolingBed();
  6832. target_temp = thermalManager.degTargetBed();
  6833. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  6834. if (no_wait_for_cooling && wants_to_cool) break;
  6835. }
  6836. now = millis();
  6837. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  6838. next_temp_ms = now + 1000UL;
  6839. print_heaterstates();
  6840. #if TEMP_BED_RESIDENCY_TIME > 0
  6841. SERIAL_PROTOCOLPGM(" W:");
  6842. if (residency_start_ms)
  6843. SERIAL_PROTOCOL(long((((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL));
  6844. else
  6845. SERIAL_PROTOCOLCHAR('?');
  6846. #endif
  6847. SERIAL_EOL();
  6848. }
  6849. idle();
  6850. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  6851. const float temp = thermalManager.degBed();
  6852. #if ENABLED(PRINTER_EVENT_LEDS)
  6853. // Gradually change LED strip from blue to violet as bed heats up
  6854. if (!wants_to_cool) {
  6855. const uint8_t red = map(constrain(temp, start_temp, target_temp), start_temp, target_temp, 0, 255);
  6856. if (red != old_red) {
  6857. old_red = red;
  6858. set_led_color(red, 0, 255
  6859. #if ENABLED(NEOPIXEL_LED)
  6860. , 0, pixels.getBrightness()
  6861. #if ENABLED(NEOPIXEL_IS_SEQUENTIAL)
  6862. , true
  6863. #endif
  6864. #endif
  6865. );
  6866. }
  6867. }
  6868. #endif
  6869. #if TEMP_BED_RESIDENCY_TIME > 0
  6870. const float temp_diff = FABS(target_temp - temp);
  6871. if (!residency_start_ms) {
  6872. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  6873. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  6874. }
  6875. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  6876. // Restart the timer whenever the temperature falls outside the hysteresis.
  6877. residency_start_ms = now;
  6878. }
  6879. #endif // TEMP_BED_RESIDENCY_TIME > 0
  6880. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  6881. if (wants_to_cool) {
  6882. // Break after MIN_COOLING_SLOPE_TIME_BED seconds
  6883. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  6884. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  6885. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  6886. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  6887. old_temp = temp;
  6888. }
  6889. }
  6890. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  6891. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  6892. #if DISABLED(BUSY_WHILE_HEATING)
  6893. KEEPALIVE_STATE(IN_HANDLER);
  6894. #endif
  6895. }
  6896. #endif // HAS_TEMP_BED
  6897. /**
  6898. * M110: Set Current Line Number
  6899. */
  6900. inline void gcode_M110() {
  6901. if (parser.seenval('N')) gcode_LastN = parser.value_long();
  6902. }
  6903. /**
  6904. * M111: Set the debug level
  6905. */
  6906. inline void gcode_M111() {
  6907. if (parser.seen('S')) marlin_debug_flags = parser.byteval('S');
  6908. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO,
  6909. str_debug_2[] PROGMEM = MSG_DEBUG_INFO,
  6910. str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS,
  6911. str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN,
  6912. str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION
  6913. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6914. , str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING
  6915. #endif
  6916. ;
  6917. const static char* const debug_strings[] PROGMEM = {
  6918. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16
  6919. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6920. , str_debug_32
  6921. #endif
  6922. };
  6923. SERIAL_ECHO_START();
  6924. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  6925. if (marlin_debug_flags) {
  6926. uint8_t comma = 0;
  6927. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  6928. if (TEST(marlin_debug_flags, i)) {
  6929. if (comma++) SERIAL_CHAR(',');
  6930. serialprintPGM((char*)pgm_read_word(&debug_strings[i]));
  6931. }
  6932. }
  6933. }
  6934. else {
  6935. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  6936. }
  6937. SERIAL_EOL();
  6938. }
  6939. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6940. /**
  6941. * M113: Get or set Host Keepalive interval (0 to disable)
  6942. *
  6943. * S<seconds> Optional. Set the keepalive interval.
  6944. */
  6945. inline void gcode_M113() {
  6946. if (parser.seenval('S')) {
  6947. host_keepalive_interval = parser.value_byte();
  6948. NOMORE(host_keepalive_interval, 60);
  6949. }
  6950. else {
  6951. SERIAL_ECHO_START();
  6952. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  6953. }
  6954. }
  6955. #endif
  6956. #if ENABLED(BARICUDA)
  6957. #if HAS_HEATER_1
  6958. /**
  6959. * M126: Heater 1 valve open
  6960. */
  6961. inline void gcode_M126() { baricuda_valve_pressure = parser.byteval('S', 255); }
  6962. /**
  6963. * M127: Heater 1 valve close
  6964. */
  6965. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  6966. #endif
  6967. #if HAS_HEATER_2
  6968. /**
  6969. * M128: Heater 2 valve open
  6970. */
  6971. inline void gcode_M128() { baricuda_e_to_p_pressure = parser.byteval('S', 255); }
  6972. /**
  6973. * M129: Heater 2 valve close
  6974. */
  6975. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  6976. #endif
  6977. #endif // BARICUDA
  6978. /**
  6979. * M140: Set bed temperature
  6980. */
  6981. inline void gcode_M140() {
  6982. if (DEBUGGING(DRYRUN)) return;
  6983. if (parser.seenval('S')) thermalManager.setTargetBed(parser.value_celsius());
  6984. }
  6985. #if ENABLED(ULTIPANEL)
  6986. /**
  6987. * M145: Set the heatup state for a material in the LCD menu
  6988. *
  6989. * S<material> (0=PLA, 1=ABS)
  6990. * H<hotend temp>
  6991. * B<bed temp>
  6992. * F<fan speed>
  6993. */
  6994. inline void gcode_M145() {
  6995. const uint8_t material = (uint8_t)parser.intval('S');
  6996. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  6997. SERIAL_ERROR_START();
  6998. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  6999. }
  7000. else {
  7001. int v;
  7002. if (parser.seenval('H')) {
  7003. v = parser.value_int();
  7004. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  7005. }
  7006. if (parser.seenval('F')) {
  7007. v = parser.value_int();
  7008. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  7009. }
  7010. #if TEMP_SENSOR_BED != 0
  7011. if (parser.seenval('B')) {
  7012. v = parser.value_int();
  7013. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  7014. }
  7015. #endif
  7016. }
  7017. }
  7018. #endif // ULTIPANEL
  7019. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  7020. /**
  7021. * M149: Set temperature units
  7022. */
  7023. inline void gcode_M149() {
  7024. if (parser.seenval('C')) parser.set_input_temp_units(TEMPUNIT_C);
  7025. else if (parser.seenval('K')) parser.set_input_temp_units(TEMPUNIT_K);
  7026. else if (parser.seenval('F')) parser.set_input_temp_units(TEMPUNIT_F);
  7027. }
  7028. #endif
  7029. #if HAS_POWER_SWITCH
  7030. /**
  7031. * M80 : Turn on the Power Supply
  7032. * M80 S : Report the current state and exit
  7033. */
  7034. inline void gcode_M80() {
  7035. // S: Report the current power supply state and exit
  7036. if (parser.seen('S')) {
  7037. serialprintPGM(powersupply_on ? PSTR("PS:1\n") : PSTR("PS:0\n"));
  7038. return;
  7039. }
  7040. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); // GND
  7041. /**
  7042. * If you have a switch on suicide pin, this is useful
  7043. * if you want to start another print with suicide feature after
  7044. * a print without suicide...
  7045. */
  7046. #if HAS_SUICIDE
  7047. OUT_WRITE(SUICIDE_PIN, HIGH);
  7048. #endif
  7049. #if ENABLED(HAVE_TMC2130)
  7050. delay(100);
  7051. tmc2130_init(); // Settings only stick when the driver has power
  7052. #endif
  7053. powersupply_on = true;
  7054. #if ENABLED(ULTIPANEL)
  7055. LCD_MESSAGEPGM(WELCOME_MSG);
  7056. #endif
  7057. }
  7058. #endif // HAS_POWER_SWITCH
  7059. /**
  7060. * M81: Turn off Power, including Power Supply, if there is one.
  7061. *
  7062. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  7063. */
  7064. inline void gcode_M81() {
  7065. thermalManager.disable_all_heaters();
  7066. stepper.finish_and_disable();
  7067. #if FAN_COUNT > 0
  7068. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  7069. #if ENABLED(PROBING_FANS_OFF)
  7070. fans_paused = false;
  7071. ZERO(paused_fanSpeeds);
  7072. #endif
  7073. #endif
  7074. safe_delay(1000); // Wait 1 second before switching off
  7075. #if HAS_SUICIDE
  7076. stepper.synchronize();
  7077. suicide();
  7078. #elif HAS_POWER_SWITCH
  7079. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  7080. powersupply_on = false;
  7081. #endif
  7082. #if ENABLED(ULTIPANEL)
  7083. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  7084. #endif
  7085. }
  7086. /**
  7087. * M82: Set E codes absolute (default)
  7088. */
  7089. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  7090. /**
  7091. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  7092. */
  7093. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  7094. /**
  7095. * M18, M84: Disable stepper motors
  7096. */
  7097. inline void gcode_M18_M84() {
  7098. if (parser.seenval('S')) {
  7099. stepper_inactive_time = parser.value_millis_from_seconds();
  7100. }
  7101. else {
  7102. bool all_axis = !((parser.seen('X')) || (parser.seen('Y')) || (parser.seen('Z')) || (parser.seen('E')));
  7103. if (all_axis) {
  7104. stepper.finish_and_disable();
  7105. }
  7106. else {
  7107. stepper.synchronize();
  7108. if (parser.seen('X')) disable_X();
  7109. if (parser.seen('Y')) disable_Y();
  7110. if (parser.seen('Z')) disable_Z();
  7111. #if E0_ENABLE_PIN != X_ENABLE_PIN && E1_ENABLE_PIN != Y_ENABLE_PIN // Only enable on boards that have separate ENABLE_PINS
  7112. if (parser.seen('E')) disable_e_steppers();
  7113. #endif
  7114. }
  7115. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  7116. ubl.lcd_map_control = defer_return_to_status = false;
  7117. #endif
  7118. }
  7119. }
  7120. /**
  7121. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  7122. */
  7123. inline void gcode_M85() {
  7124. if (parser.seen('S')) max_inactive_time = parser.value_millis_from_seconds();
  7125. }
  7126. /**
  7127. * Multi-stepper support for M92, M201, M203
  7128. */
  7129. #if ENABLED(DISTINCT_E_FACTORS)
  7130. #define GET_TARGET_EXTRUDER(CMD) if (get_target_extruder_from_command(CMD)) return
  7131. #define TARGET_EXTRUDER target_extruder
  7132. #else
  7133. #define GET_TARGET_EXTRUDER(CMD) NOOP
  7134. #define TARGET_EXTRUDER 0
  7135. #endif
  7136. /**
  7137. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  7138. * (Follows the same syntax as G92)
  7139. *
  7140. * With multiple extruders use T to specify which one.
  7141. */
  7142. inline void gcode_M92() {
  7143. GET_TARGET_EXTRUDER(92);
  7144. LOOP_XYZE(i) {
  7145. if (parser.seen(axis_codes[i])) {
  7146. if (i == E_AXIS) {
  7147. const float value = parser.value_per_axis_unit((AxisEnum)(E_AXIS + TARGET_EXTRUDER));
  7148. if (value < 20.0) {
  7149. float factor = planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] / value; // increase e constants if M92 E14 is given for netfab.
  7150. planner.max_jerk[E_AXIS] *= factor;
  7151. planner.max_feedrate_mm_s[E_AXIS + TARGET_EXTRUDER] *= factor;
  7152. planner.max_acceleration_steps_per_s2[E_AXIS + TARGET_EXTRUDER] *= factor;
  7153. }
  7154. planner.axis_steps_per_mm[E_AXIS + TARGET_EXTRUDER] = value;
  7155. }
  7156. else {
  7157. planner.axis_steps_per_mm[i] = parser.value_per_axis_unit((AxisEnum)i);
  7158. }
  7159. }
  7160. }
  7161. planner.refresh_positioning();
  7162. }
  7163. /**
  7164. * Output the current position to serial
  7165. */
  7166. void report_current_position() {
  7167. SERIAL_PROTOCOLPGM("X:");
  7168. SERIAL_PROTOCOL(LOGICAL_X_POSITION(current_position[X_AXIS]));
  7169. SERIAL_PROTOCOLPGM(" Y:");
  7170. SERIAL_PROTOCOL(LOGICAL_Y_POSITION(current_position[Y_AXIS]));
  7171. SERIAL_PROTOCOLPGM(" Z:");
  7172. SERIAL_PROTOCOL(LOGICAL_Z_POSITION(current_position[Z_AXIS]));
  7173. SERIAL_PROTOCOLPGM(" E:");
  7174. SERIAL_PROTOCOL(current_position[E_AXIS]);
  7175. stepper.report_positions();
  7176. #if IS_SCARA
  7177. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  7178. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  7179. SERIAL_EOL();
  7180. #endif
  7181. }
  7182. #ifdef M114_DETAIL
  7183. void report_xyze(const float pos[XYZE], const uint8_t n = 4, const uint8_t precision = 3) {
  7184. char str[12];
  7185. for (uint8_t i = 0; i < n; i++) {
  7186. SERIAL_CHAR(' ');
  7187. SERIAL_CHAR(axis_codes[i]);
  7188. SERIAL_CHAR(':');
  7189. SERIAL_PROTOCOL(dtostrf(pos[i], 8, precision, str));
  7190. }
  7191. SERIAL_EOL();
  7192. }
  7193. inline void report_xyz(const float pos[XYZ]) { report_xyze(pos, 3); }
  7194. void report_current_position_detail() {
  7195. stepper.synchronize();
  7196. SERIAL_PROTOCOLPGM("\nLogical:");
  7197. const float logical[XYZ] = {
  7198. LOGICAL_X_POSITION(current_position[X_AXIS]),
  7199. LOGICAL_Y_POSITION(current_position[Y_AXIS]),
  7200. LOGICAL_Z_POSITION(current_position[Z_AXIS])
  7201. };
  7202. report_xyze(logical);
  7203. SERIAL_PROTOCOLPGM("Raw: ");
  7204. report_xyz(current_position);
  7205. float leveled[XYZ] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
  7206. #if PLANNER_LEVELING
  7207. SERIAL_PROTOCOLPGM("Leveled:");
  7208. planner.apply_leveling(leveled);
  7209. report_xyz(leveled);
  7210. SERIAL_PROTOCOLPGM("UnLevel:");
  7211. float unleveled[XYZ] = { leveled[X_AXIS], leveled[Y_AXIS], leveled[Z_AXIS] };
  7212. planner.unapply_leveling(unleveled);
  7213. report_xyz(unleveled);
  7214. #endif
  7215. #if IS_KINEMATIC
  7216. #if IS_SCARA
  7217. SERIAL_PROTOCOLPGM("ScaraK: ");
  7218. #else
  7219. SERIAL_PROTOCOLPGM("DeltaK: ");
  7220. #endif
  7221. inverse_kinematics(leveled); // writes delta[]
  7222. report_xyz(delta);
  7223. #endif
  7224. SERIAL_PROTOCOLPGM("Stepper:");
  7225. const float step_count[XYZE] = { stepper.position(X_AXIS), stepper.position(Y_AXIS), stepper.position(Z_AXIS), stepper.position(E_AXIS) };
  7226. report_xyze(step_count, 4, 0);
  7227. #if IS_SCARA
  7228. const float deg[XYZ] = {
  7229. stepper.get_axis_position_degrees(A_AXIS),
  7230. stepper.get_axis_position_degrees(B_AXIS)
  7231. };
  7232. SERIAL_PROTOCOLPGM("Degrees:");
  7233. report_xyze(deg, 2);
  7234. #endif
  7235. SERIAL_PROTOCOLPGM("FromStp:");
  7236. get_cartesian_from_steppers(); // writes cartes[XYZ] (with forward kinematics)
  7237. const float from_steppers[XYZE] = { cartes[X_AXIS], cartes[Y_AXIS], cartes[Z_AXIS], stepper.get_axis_position_mm(E_AXIS) };
  7238. report_xyze(from_steppers);
  7239. const float diff[XYZE] = {
  7240. from_steppers[X_AXIS] - leveled[X_AXIS],
  7241. from_steppers[Y_AXIS] - leveled[Y_AXIS],
  7242. from_steppers[Z_AXIS] - leveled[Z_AXIS],
  7243. from_steppers[E_AXIS] - current_position[E_AXIS]
  7244. };
  7245. SERIAL_PROTOCOLPGM("Differ: ");
  7246. report_xyze(diff);
  7247. }
  7248. #endif // M114_DETAIL
  7249. /**
  7250. * M114: Report current position to host
  7251. */
  7252. inline void gcode_M114() {
  7253. #ifdef M114_DETAIL
  7254. if (parser.seen('D')) {
  7255. report_current_position_detail();
  7256. return;
  7257. }
  7258. #endif
  7259. stepper.synchronize();
  7260. report_current_position();
  7261. }
  7262. /**
  7263. * M115: Capabilities string
  7264. */
  7265. inline void gcode_M115() {
  7266. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  7267. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  7268. // EEPROM (M500, M501)
  7269. #if ENABLED(EEPROM_SETTINGS)
  7270. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:1");
  7271. #else
  7272. SERIAL_PROTOCOLLNPGM("Cap:EEPROM:0");
  7273. #endif
  7274. // AUTOREPORT_TEMP (M155)
  7275. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  7276. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:1");
  7277. #else
  7278. SERIAL_PROTOCOLLNPGM("Cap:AUTOREPORT_TEMP:0");
  7279. #endif
  7280. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  7281. SERIAL_PROTOCOLLNPGM("Cap:PROGRESS:0");
  7282. // Print Job timer M75, M76, M77
  7283. SERIAL_PROTOCOLLNPGM("Cap:PRINT_JOB:1");
  7284. // AUTOLEVEL (G29)
  7285. #if HAS_ABL
  7286. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:1");
  7287. #else
  7288. SERIAL_PROTOCOLLNPGM("Cap:AUTOLEVEL:0");
  7289. #endif
  7290. // Z_PROBE (G30)
  7291. #if HAS_BED_PROBE
  7292. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:1");
  7293. #else
  7294. SERIAL_PROTOCOLLNPGM("Cap:Z_PROBE:0");
  7295. #endif
  7296. // MESH_REPORT (M420 V)
  7297. #if HAS_LEVELING
  7298. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:1");
  7299. #else
  7300. SERIAL_PROTOCOLLNPGM("Cap:LEVELING_DATA:0");
  7301. #endif
  7302. // BUILD_PERCENT (M73)
  7303. #if ENABLED(LCD_SET_PROGRESS_MANUALLY)
  7304. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:1");
  7305. #else
  7306. SERIAL_PROTOCOLLNPGM("Cap:BUILD_PERCENT:0");
  7307. #endif
  7308. // SOFTWARE_POWER (M80, M81)
  7309. #if HAS_POWER_SWITCH
  7310. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:1");
  7311. #else
  7312. SERIAL_PROTOCOLLNPGM("Cap:SOFTWARE_POWER:0");
  7313. #endif
  7314. // CASE LIGHTS (M355)
  7315. #if HAS_CASE_LIGHT
  7316. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:1");
  7317. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) {
  7318. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:1");
  7319. }
  7320. else
  7321. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7322. #else
  7323. SERIAL_PROTOCOLLNPGM("Cap:TOGGLE_LIGHTS:0");
  7324. SERIAL_PROTOCOLLNPGM("Cap:CASE_LIGHT_BRIGHTNESS:0");
  7325. #endif
  7326. // EMERGENCY_PARSER (M108, M112, M410)
  7327. #if ENABLED(EMERGENCY_PARSER)
  7328. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:1");
  7329. #else
  7330. SERIAL_PROTOCOLLNPGM("Cap:EMERGENCY_PARSER:0");
  7331. #endif
  7332. #endif // EXTENDED_CAPABILITIES_REPORT
  7333. }
  7334. /**
  7335. * M117: Set LCD Status Message
  7336. */
  7337. inline void gcode_M117() { lcd_setstatus(parser.string_arg); }
  7338. /**
  7339. * M118: Display a message in the host console.
  7340. *
  7341. * A1 Append '// ' for an action command, as in OctoPrint
  7342. * E1 Have the host 'echo:' the text
  7343. */
  7344. inline void gcode_M118() {
  7345. if (parser.boolval('E')) SERIAL_ECHO_START();
  7346. if (parser.boolval('A')) SERIAL_ECHOPGM("// ");
  7347. SERIAL_ECHOLN(parser.string_arg);
  7348. }
  7349. /**
  7350. * M119: Output endstop states to serial output
  7351. */
  7352. inline void gcode_M119() { endstops.M119(); }
  7353. /**
  7354. * M120: Enable endstops and set non-homing endstop state to "enabled"
  7355. */
  7356. inline void gcode_M120() { endstops.enable_globally(true); }
  7357. /**
  7358. * M121: Disable endstops and set non-homing endstop state to "disabled"
  7359. */
  7360. inline void gcode_M121() { endstops.enable_globally(false); }
  7361. #if ENABLED(PARK_HEAD_ON_PAUSE)
  7362. /**
  7363. * M125: Store current position and move to filament change position.
  7364. * Called on pause (by M25) to prevent material leaking onto the
  7365. * object. On resume (M24) the head will be moved back and the
  7366. * print will resume.
  7367. *
  7368. * If Marlin is compiled without SD Card support, M125 can be
  7369. * used directly to pause the print and move to park position,
  7370. * resuming with a button click or M108.
  7371. *
  7372. * L = override retract length
  7373. * X = override X
  7374. * Y = override Y
  7375. * Z = override Z raise
  7376. */
  7377. inline void gcode_M125() {
  7378. // Initial retract before move to filament change position
  7379. const float retract = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  7380. #ifdef PAUSE_PARK_RETRACT_LENGTH
  7381. - (PAUSE_PARK_RETRACT_LENGTH)
  7382. #endif
  7383. ;
  7384. // Lift Z axis
  7385. const float z_lift = parser.linearval('Z')
  7386. #ifdef PAUSE_PARK_Z_ADD
  7387. + PAUSE_PARK_Z_ADD
  7388. #endif
  7389. ;
  7390. // Move XY axes to filament change position or given position
  7391. const float x_pos = parser.linearval('X')
  7392. #ifdef PAUSE_PARK_X_POS
  7393. + PAUSE_PARK_X_POS
  7394. #endif
  7395. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7396. + (active_extruder ? hotend_offset[X_AXIS][active_extruder] : 0)
  7397. #endif
  7398. ;
  7399. const float y_pos = parser.linearval('Y')
  7400. #ifdef PAUSE_PARK_Y_POS
  7401. + PAUSE_PARK_Y_POS
  7402. #endif
  7403. #if HOTENDS > 1 && DISABLED(DUAL_X_CARRIAGE)
  7404. + (active_extruder ? hotend_offset[Y_AXIS][active_extruder] : 0)
  7405. #endif
  7406. ;
  7407. #if DISABLED(SDSUPPORT)
  7408. const bool job_running = print_job_timer.isRunning();
  7409. #endif
  7410. if (pause_print(retract, z_lift, x_pos, y_pos)) {
  7411. #if DISABLED(SDSUPPORT)
  7412. // Wait for lcd click or M108
  7413. wait_for_filament_reload();
  7414. // Return to print position and continue
  7415. resume_print();
  7416. if (job_running) print_job_timer.start();
  7417. #endif
  7418. }
  7419. }
  7420. #endif // PARK_HEAD_ON_PAUSE
  7421. #if HAS_COLOR_LEDS
  7422. /**
  7423. * M150: Set Status LED Color - Use R-U-B-W for R-G-B-W
  7424. * and Brightness - Use P (for NEOPIXEL only)
  7425. *
  7426. * Always sets all 3 or 4 components. If a component is left out, set to 0.
  7427. * If brightness is left out, no value changed
  7428. *
  7429. * Examples:
  7430. *
  7431. * M150 R255 ; Turn LED red
  7432. * M150 R255 U127 ; Turn LED orange (PWM only)
  7433. * M150 ; Turn LED off
  7434. * M150 R U B ; Turn LED white
  7435. * M150 W ; Turn LED white using a white LED
  7436. * M150 P127 ; Set LED 50% brightness
  7437. * M150 P ; Set LED full brightness
  7438. */
  7439. inline void gcode_M150() {
  7440. set_led_color(
  7441. parser.seen('R') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7442. parser.seen('U') ? (parser.has_value() ? parser.value_byte() : 255) : 0,
  7443. parser.seen('B') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7444. #if ENABLED(RGBW_LED) || ENABLED(NEOPIXEL_LED)
  7445. , parser.seen('W') ? (parser.has_value() ? parser.value_byte() : 255) : 0
  7446. #if ENABLED(NEOPIXEL_LED)
  7447. , parser.seen('P') ? (parser.has_value() ? parser.value_byte() : 255) : pixels.getBrightness()
  7448. #endif
  7449. #endif
  7450. );
  7451. }
  7452. #endif // HAS_COLOR_LEDS
  7453. /**
  7454. * M200: Set filament diameter and set E axis units to cubic units
  7455. *
  7456. * T<extruder> - Optional extruder number. Current extruder if omitted.
  7457. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  7458. */
  7459. inline void gcode_M200() {
  7460. if (get_target_extruder_from_command(200)) return;
  7461. if (parser.seen('D')) {
  7462. // setting any extruder filament size disables volumetric on the assumption that
  7463. // slicers either generate in extruder values as cubic mm or as as filament feeds
  7464. // for all extruders
  7465. if ( (parser.volumetric_enabled = (parser.value_linear_units() != 0.0)) ) {
  7466. planner.filament_size[target_extruder] = parser.value_linear_units();
  7467. // make sure all extruders have some sane value for the filament size
  7468. for (uint8_t i = 0; i < COUNT(planner.filament_size); i++)
  7469. if (!planner.filament_size[i]) planner.filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  7470. }
  7471. }
  7472. planner.calculate_volumetric_multipliers();
  7473. }
  7474. /**
  7475. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  7476. *
  7477. * With multiple extruders use T to specify which one.
  7478. */
  7479. inline void gcode_M201() {
  7480. GET_TARGET_EXTRUDER(201);
  7481. LOOP_XYZE(i) {
  7482. if (parser.seen(axis_codes[i])) {
  7483. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7484. planner.max_acceleration_mm_per_s2[a] = parser.value_axis_units((AxisEnum)a);
  7485. }
  7486. }
  7487. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  7488. planner.reset_acceleration_rates();
  7489. }
  7490. #if 0 // Not used for Sprinter/grbl gen6
  7491. inline void gcode_M202() {
  7492. LOOP_XYZE(i) {
  7493. if (parser.seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = parser.value_axis_units((AxisEnum)i) * planner.axis_steps_per_mm[i];
  7494. }
  7495. }
  7496. #endif
  7497. /**
  7498. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  7499. *
  7500. * With multiple extruders use T to specify which one.
  7501. */
  7502. inline void gcode_M203() {
  7503. GET_TARGET_EXTRUDER(203);
  7504. LOOP_XYZE(i)
  7505. if (parser.seen(axis_codes[i])) {
  7506. const uint8_t a = i + (i == E_AXIS ? TARGET_EXTRUDER : 0);
  7507. planner.max_feedrate_mm_s[a] = parser.value_axis_units((AxisEnum)a);
  7508. }
  7509. }
  7510. /**
  7511. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  7512. *
  7513. * P = Printing moves
  7514. * R = Retract only (no X, Y, Z) moves
  7515. * T = Travel (non printing) moves
  7516. *
  7517. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  7518. */
  7519. inline void gcode_M204() {
  7520. if (parser.seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  7521. planner.travel_acceleration = planner.acceleration = parser.value_linear_units();
  7522. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  7523. }
  7524. if (parser.seen('P')) {
  7525. planner.acceleration = parser.value_linear_units();
  7526. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  7527. }
  7528. if (parser.seen('R')) {
  7529. planner.retract_acceleration = parser.value_linear_units();
  7530. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  7531. }
  7532. if (parser.seen('T')) {
  7533. planner.travel_acceleration = parser.value_linear_units();
  7534. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  7535. }
  7536. }
  7537. /**
  7538. * M205: Set Advanced Settings
  7539. *
  7540. * S = Min Feed Rate (units/s)
  7541. * T = Min Travel Feed Rate (units/s)
  7542. * B = Min Segment Time (µs)
  7543. * X = Max X Jerk (units/sec^2)
  7544. * Y = Max Y Jerk (units/sec^2)
  7545. * Z = Max Z Jerk (units/sec^2)
  7546. * E = Max E Jerk (units/sec^2)
  7547. */
  7548. inline void gcode_M205() {
  7549. if (parser.seen('S')) planner.min_feedrate_mm_s = parser.value_linear_units();
  7550. if (parser.seen('T')) planner.min_travel_feedrate_mm_s = parser.value_linear_units();
  7551. if (parser.seen('B')) planner.min_segment_time_us = parser.value_ulong();
  7552. if (parser.seen('X')) planner.max_jerk[X_AXIS] = parser.value_linear_units();
  7553. if (parser.seen('Y')) planner.max_jerk[Y_AXIS] = parser.value_linear_units();
  7554. if (parser.seen('Z')) planner.max_jerk[Z_AXIS] = parser.value_linear_units();
  7555. if (parser.seen('E')) planner.max_jerk[E_AXIS] = parser.value_linear_units();
  7556. }
  7557. #if HAS_M206_COMMAND
  7558. /**
  7559. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  7560. *
  7561. * *** @thinkyhead: I recommend deprecating M206 for SCARA in favor of M665.
  7562. * *** M206 for SCARA will remain enabled in 1.1.x for compatibility.
  7563. * *** In the next 1.2 release, it will simply be disabled by default.
  7564. */
  7565. inline void gcode_M206() {
  7566. LOOP_XYZ(i)
  7567. if (parser.seen(axis_codes[i]))
  7568. set_home_offset((AxisEnum)i, parser.value_linear_units());
  7569. #if ENABLED(MORGAN_SCARA)
  7570. if (parser.seen('T')) set_home_offset(A_AXIS, parser.value_float()); // Theta
  7571. if (parser.seen('P')) set_home_offset(B_AXIS, parser.value_float()); // Psi
  7572. #endif
  7573. report_current_position();
  7574. }
  7575. #endif // HAS_M206_COMMAND
  7576. #if ENABLED(DELTA)
  7577. /**
  7578. * M665: Set delta configurations
  7579. *
  7580. * H = delta height
  7581. * L = diagonal rod
  7582. * R = delta radius
  7583. * S = segments per second
  7584. * B = delta calibration radius
  7585. * X = Alpha (Tower 1) angle trim
  7586. * Y = Beta (Tower 2) angle trim
  7587. * Z = Rotate A and B by this angle
  7588. */
  7589. inline void gcode_M665() {
  7590. if (parser.seen('H')) delta_height = parser.value_linear_units();
  7591. if (parser.seen('L')) delta_diagonal_rod = parser.value_linear_units();
  7592. if (parser.seen('R')) delta_radius = parser.value_linear_units();
  7593. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7594. if (parser.seen('B')) delta_calibration_radius = parser.value_float();
  7595. if (parser.seen('X')) delta_tower_angle_trim[A_AXIS] = parser.value_float();
  7596. if (parser.seen('Y')) delta_tower_angle_trim[B_AXIS] = parser.value_float();
  7597. if (parser.seen('Z')) delta_tower_angle_trim[C_AXIS] = parser.value_float();
  7598. recalc_delta_settings();
  7599. }
  7600. /**
  7601. * M666: Set delta endstop adjustment
  7602. */
  7603. inline void gcode_M666() {
  7604. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7605. if (DEBUGGING(LEVELING)) {
  7606. SERIAL_ECHOLNPGM(">>> gcode_M666");
  7607. }
  7608. #endif
  7609. LOOP_XYZ(i) {
  7610. if (parser.seen(axis_codes[i])) {
  7611. if (parser.value_linear_units() * Z_HOME_DIR <= 0)
  7612. delta_endstop_adj[i] = parser.value_linear_units();
  7613. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7614. if (DEBUGGING(LEVELING)) {
  7615. SERIAL_ECHOPAIR("delta_endstop_adj[", axis_codes[i]);
  7616. SERIAL_ECHOLNPAIR("] = ", delta_endstop_adj[i]);
  7617. }
  7618. #endif
  7619. }
  7620. }
  7621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  7622. if (DEBUGGING(LEVELING)) {
  7623. SERIAL_ECHOLNPGM("<<< gcode_M666");
  7624. }
  7625. #endif
  7626. }
  7627. #elif IS_SCARA
  7628. /**
  7629. * M665: Set SCARA settings
  7630. *
  7631. * Parameters:
  7632. *
  7633. * S[segments-per-second] - Segments-per-second
  7634. * P[theta-psi-offset] - Theta-Psi offset, added to the shoulder (A/X) angle
  7635. * T[theta-offset] - Theta offset, added to the elbow (B/Y) angle
  7636. *
  7637. * A, P, and X are all aliases for the shoulder angle
  7638. * B, T, and Y are all aliases for the elbow angle
  7639. */
  7640. inline void gcode_M665() {
  7641. if (parser.seen('S')) delta_segments_per_second = parser.value_float();
  7642. const bool hasA = parser.seen('A'), hasP = parser.seen('P'), hasX = parser.seen('X');
  7643. const uint8_t sumAPX = hasA + hasP + hasX;
  7644. if (sumAPX == 1)
  7645. home_offset[A_AXIS] = parser.value_float();
  7646. else if (sumAPX > 1) {
  7647. SERIAL_ERROR_START();
  7648. SERIAL_ERRORLNPGM("Only one of A, P, or X is allowed.");
  7649. return;
  7650. }
  7651. const bool hasB = parser.seen('B'), hasT = parser.seen('T'), hasY = parser.seen('Y');
  7652. const uint8_t sumBTY = hasB + hasT + hasY;
  7653. if (sumBTY == 1)
  7654. home_offset[B_AXIS] = parser.value_float();
  7655. else if (sumBTY > 1) {
  7656. SERIAL_ERROR_START();
  7657. SERIAL_ERRORLNPGM("Only one of B, T, or Y is allowed.");
  7658. return;
  7659. }
  7660. }
  7661. #elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  7662. /**
  7663. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  7664. */
  7665. inline void gcode_M666() {
  7666. SERIAL_ECHOPGM("Dual Endstop Adjustment (mm): ");
  7667. #if ENABLED(X_DUAL_ENDSTOPS)
  7668. if (parser.seen('X')) x_endstop_adj = parser.value_linear_units();
  7669. SERIAL_ECHOPAIR(" X", x_endstop_adj);
  7670. #endif
  7671. #if ENABLED(Y_DUAL_ENDSTOPS)
  7672. if (parser.seen('Y')) y_endstop_adj = parser.value_linear_units();
  7673. SERIAL_ECHOPAIR(" Y", y_endstop_adj);
  7674. #endif
  7675. #if ENABLED(Z_DUAL_ENDSTOPS)
  7676. if (parser.seen('Z')) z_endstop_adj = parser.value_linear_units();
  7677. SERIAL_ECHOPAIR(" Z", z_endstop_adj);
  7678. #endif
  7679. SERIAL_EOL();
  7680. }
  7681. #endif // !DELTA && Z_DUAL_ENDSTOPS
  7682. #if ENABLED(FWRETRACT)
  7683. /**
  7684. * M207: Set firmware retraction values
  7685. *
  7686. * S[+units] retract_length
  7687. * W[+units] swap_retract_length (multi-extruder)
  7688. * F[units/min] retract_feedrate_mm_s
  7689. * Z[units] retract_zlift
  7690. */
  7691. inline void gcode_M207() {
  7692. if (parser.seen('S')) retract_length = parser.value_axis_units(E_AXIS);
  7693. if (parser.seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7694. if (parser.seen('Z')) retract_zlift = parser.value_linear_units();
  7695. if (parser.seen('W')) swap_retract_length = parser.value_axis_units(E_AXIS);
  7696. }
  7697. /**
  7698. * M208: Set firmware un-retraction values
  7699. *
  7700. * S[+units] retract_recover_length (in addition to M207 S*)
  7701. * W[+units] swap_retract_recover_length (multi-extruder)
  7702. * F[units/min] retract_recover_feedrate_mm_s
  7703. * R[units/min] swap_retract_recover_feedrate_mm_s
  7704. */
  7705. inline void gcode_M208() {
  7706. if (parser.seen('S')) retract_recover_length = parser.value_axis_units(E_AXIS);
  7707. if (parser.seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7708. if (parser.seen('R')) swap_retract_recover_feedrate_mm_s = MMM_TO_MMS(parser.value_axis_units(E_AXIS));
  7709. if (parser.seen('W')) swap_retract_recover_length = parser.value_axis_units(E_AXIS);
  7710. }
  7711. /**
  7712. * M209: Enable automatic retract (M209 S1)
  7713. * For slicers that don't support G10/11, reversed extrude-only
  7714. * moves will be classified as retraction.
  7715. */
  7716. inline void gcode_M209() {
  7717. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) {
  7718. if (parser.seen('S')) {
  7719. autoretract_enabled = parser.value_bool();
  7720. for (uint8_t i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  7721. }
  7722. }
  7723. }
  7724. #endif // FWRETRACT
  7725. /**
  7726. * M211: Enable, Disable, and/or Report software endstops
  7727. *
  7728. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  7729. */
  7730. inline void gcode_M211() {
  7731. SERIAL_ECHO_START();
  7732. #if HAS_SOFTWARE_ENDSTOPS
  7733. if (parser.seen('S')) soft_endstops_enabled = parser.value_bool();
  7734. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7735. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  7736. #else
  7737. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  7738. SERIAL_ECHOPGM(MSG_OFF);
  7739. #endif
  7740. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  7741. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_min[X_AXIS]));
  7742. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_min[Y_AXIS]));
  7743. SERIAL_ECHOPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_min[Z_AXIS]));
  7744. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  7745. SERIAL_ECHOPAIR( MSG_X, LOGICAL_X_POSITION(soft_endstop_max[X_AXIS]));
  7746. SERIAL_ECHOPAIR(" " MSG_Y, LOGICAL_Y_POSITION(soft_endstop_max[Y_AXIS]));
  7747. SERIAL_ECHOLNPAIR(" " MSG_Z, LOGICAL_Z_POSITION(soft_endstop_max[Z_AXIS]));
  7748. }
  7749. #if HOTENDS > 1
  7750. /**
  7751. * M218 - set hotend offset (in linear units)
  7752. *
  7753. * T<tool>
  7754. * X<xoffset>
  7755. * Y<yoffset>
  7756. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_NOZZLE
  7757. */
  7758. inline void gcode_M218() {
  7759. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  7760. if (parser.seenval('X')) hotend_offset[X_AXIS][target_extruder] = parser.value_linear_units();
  7761. if (parser.seenval('Y')) hotend_offset[Y_AXIS][target_extruder] = parser.value_linear_units();
  7762. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7763. if (parser.seenval('Z')) hotend_offset[Z_AXIS][target_extruder] = parser.value_linear_units();
  7764. #endif
  7765. SERIAL_ECHO_START();
  7766. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  7767. HOTEND_LOOP() {
  7768. SERIAL_CHAR(' ');
  7769. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  7770. SERIAL_CHAR(',');
  7771. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  7772. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE) || ENABLED(PARKING_EXTRUDER)
  7773. SERIAL_CHAR(',');
  7774. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  7775. #endif
  7776. }
  7777. SERIAL_EOL();
  7778. }
  7779. #endif // HOTENDS > 1
  7780. /**
  7781. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  7782. */
  7783. inline void gcode_M220() {
  7784. if (parser.seenval('S')) feedrate_percentage = parser.value_int();
  7785. }
  7786. /**
  7787. * M221: Set extrusion percentage (M221 T0 S95)
  7788. */
  7789. inline void gcode_M221() {
  7790. if (get_target_extruder_from_command(221)) return;
  7791. if (parser.seenval('S')) {
  7792. planner.flow_percentage[target_extruder] = parser.value_int();
  7793. planner.refresh_e_factor(target_extruder);
  7794. }
  7795. }
  7796. /**
  7797. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  7798. */
  7799. inline void gcode_M226() {
  7800. if (parser.seen('P')) {
  7801. const int pin_number = parser.value_int(),
  7802. pin_state = parser.intval('S', -1); // required pin state - default is inverted
  7803. if (WITHIN(pin_state, -1, 1) && pin_number > -1 && !pin_is_protected(pin_number)) {
  7804. int target = LOW;
  7805. stepper.synchronize();
  7806. pinMode(pin_number, INPUT);
  7807. switch (pin_state) {
  7808. case 1:
  7809. target = HIGH;
  7810. break;
  7811. case 0:
  7812. target = LOW;
  7813. break;
  7814. case -1:
  7815. target = !digitalRead(pin_number);
  7816. break;
  7817. }
  7818. while (digitalRead(pin_number) != target) idle();
  7819. } // pin_state -1 0 1 && pin_number > -1
  7820. } // parser.seen('P')
  7821. }
  7822. #if ENABLED(EXPERIMENTAL_I2CBUS)
  7823. /**
  7824. * M260: Send data to a I2C slave device
  7825. *
  7826. * This is a PoC, the formating and arguments for the GCODE will
  7827. * change to be more compatible, the current proposal is:
  7828. *
  7829. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  7830. *
  7831. * M260 B<byte-1 value in base 10>
  7832. * M260 B<byte-2 value in base 10>
  7833. * M260 B<byte-3 value in base 10>
  7834. *
  7835. * M260 S1 ; Send the buffered data and reset the buffer
  7836. * M260 R1 ; Reset the buffer without sending data
  7837. *
  7838. */
  7839. inline void gcode_M260() {
  7840. // Set the target address
  7841. if (parser.seen('A')) i2c.address(parser.value_byte());
  7842. // Add a new byte to the buffer
  7843. if (parser.seen('B')) i2c.addbyte(parser.value_byte());
  7844. // Flush the buffer to the bus
  7845. if (parser.seen('S')) i2c.send();
  7846. // Reset and rewind the buffer
  7847. else if (parser.seen('R')) i2c.reset();
  7848. }
  7849. /**
  7850. * M261: Request X bytes from I2C slave device
  7851. *
  7852. * Usage: M261 A<slave device address base 10> B<number of bytes>
  7853. */
  7854. inline void gcode_M261() {
  7855. if (parser.seen('A')) i2c.address(parser.value_byte());
  7856. uint8_t bytes = parser.byteval('B', 1);
  7857. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  7858. i2c.relay(bytes);
  7859. }
  7860. else {
  7861. SERIAL_ERROR_START();
  7862. SERIAL_ERRORLN("Bad i2c request");
  7863. }
  7864. }
  7865. #endif // EXPERIMENTAL_I2CBUS
  7866. #if HAS_SERVOS
  7867. /**
  7868. * M280: Get or set servo position. P<index> [S<angle>]
  7869. */
  7870. inline void gcode_M280() {
  7871. if (!parser.seen('P')) return;
  7872. const int servo_index = parser.value_int();
  7873. if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
  7874. if (parser.seen('S'))
  7875. MOVE_SERVO(servo_index, parser.value_int());
  7876. else {
  7877. SERIAL_ECHO_START();
  7878. SERIAL_ECHOPAIR(" Servo ", servo_index);
  7879. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  7880. }
  7881. }
  7882. else {
  7883. SERIAL_ERROR_START();
  7884. SERIAL_ECHOPAIR("Servo ", servo_index);
  7885. SERIAL_ECHOLNPGM(" out of range");
  7886. }
  7887. }
  7888. #endif // HAS_SERVOS
  7889. #if ENABLED(BABYSTEPPING)
  7890. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7891. FORCE_INLINE void mod_zprobe_zoffset(const float &offs) {
  7892. zprobe_zoffset += offs;
  7893. SERIAL_ECHO_START();
  7894. SERIAL_ECHOLNPAIR(MSG_PROBE_Z_OFFSET ": ", zprobe_zoffset);
  7895. }
  7896. #endif
  7897. /**
  7898. * M290: Babystepping
  7899. */
  7900. inline void gcode_M290() {
  7901. #if ENABLED(BABYSTEP_XY)
  7902. for (uint8_t a = X_AXIS; a <= Z_AXIS; a++)
  7903. if (parser.seenval(axis_codes[a]) || (a == Z_AXIS && parser.seenval('S'))) {
  7904. const float offs = constrain(parser.value_axis_units((AxisEnum)a), -2, 2);
  7905. thermalManager.babystep_axis((AxisEnum)a, offs * planner.axis_steps_per_mm[a]);
  7906. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7907. if (a == Z_AXIS && (!parser.seen('P') || parser.value_bool())) mod_zprobe_zoffset(offs);
  7908. #endif
  7909. }
  7910. #else
  7911. if (parser.seenval('Z') || parser.seenval('S')) {
  7912. const float offs = constrain(parser.value_axis_units(Z_AXIS), -2, 2);
  7913. thermalManager.babystep_axis(Z_AXIS, offs * planner.axis_steps_per_mm[Z_AXIS]);
  7914. #if ENABLED(BABYSTEP_ZPROBE_OFFSET)
  7915. if (!parser.seen('P') || parser.value_bool()) mod_zprobe_zoffset(offs);
  7916. #endif
  7917. }
  7918. #endif
  7919. }
  7920. #endif // BABYSTEPPING
  7921. #if HAS_BUZZER
  7922. /**
  7923. * M300: Play beep sound S<frequency Hz> P<duration ms>
  7924. */
  7925. inline void gcode_M300() {
  7926. uint16_t const frequency = parser.ushortval('S', 260);
  7927. uint16_t duration = parser.ushortval('P', 1000);
  7928. // Limits the tone duration to 0-5 seconds.
  7929. NOMORE(duration, 5000);
  7930. BUZZ(duration, frequency);
  7931. }
  7932. #endif // HAS_BUZZER
  7933. #if ENABLED(PIDTEMP)
  7934. /**
  7935. * M301: Set PID parameters P I D (and optionally C, L)
  7936. *
  7937. * P[float] Kp term
  7938. * I[float] Ki term (unscaled)
  7939. * D[float] Kd term (unscaled)
  7940. *
  7941. * With PID_EXTRUSION_SCALING:
  7942. *
  7943. * C[float] Kc term
  7944. * L[float] LPQ length
  7945. */
  7946. inline void gcode_M301() {
  7947. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  7948. // default behaviour (omitting E parameter) is to update for extruder 0 only
  7949. const uint8_t e = parser.byteval('E'); // extruder being updated
  7950. if (e < HOTENDS) { // catch bad input value
  7951. if (parser.seen('P')) PID_PARAM(Kp, e) = parser.value_float();
  7952. if (parser.seen('I')) PID_PARAM(Ki, e) = scalePID_i(parser.value_float());
  7953. if (parser.seen('D')) PID_PARAM(Kd, e) = scalePID_d(parser.value_float());
  7954. #if ENABLED(PID_EXTRUSION_SCALING)
  7955. if (parser.seen('C')) PID_PARAM(Kc, e) = parser.value_float();
  7956. if (parser.seen('L')) lpq_len = parser.value_float();
  7957. NOMORE(lpq_len, LPQ_MAX_LEN);
  7958. #endif
  7959. thermalManager.updatePID();
  7960. SERIAL_ECHO_START();
  7961. #if ENABLED(PID_PARAMS_PER_HOTEND)
  7962. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  7963. #endif // PID_PARAMS_PER_HOTEND
  7964. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  7965. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  7966. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  7967. #if ENABLED(PID_EXTRUSION_SCALING)
  7968. //Kc does not have scaling applied above, or in resetting defaults
  7969. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  7970. #endif
  7971. SERIAL_EOL();
  7972. }
  7973. else {
  7974. SERIAL_ERROR_START();
  7975. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  7976. }
  7977. }
  7978. #endif // PIDTEMP
  7979. #if ENABLED(PIDTEMPBED)
  7980. inline void gcode_M304() {
  7981. if (parser.seen('P')) thermalManager.bedKp = parser.value_float();
  7982. if (parser.seen('I')) thermalManager.bedKi = scalePID_i(parser.value_float());
  7983. if (parser.seen('D')) thermalManager.bedKd = scalePID_d(parser.value_float());
  7984. SERIAL_ECHO_START();
  7985. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  7986. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  7987. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  7988. }
  7989. #endif // PIDTEMPBED
  7990. #if defined(CHDK) || HAS_PHOTOGRAPH
  7991. /**
  7992. * M240: Trigger a camera by emulating a Canon RC-1
  7993. * See http://www.doc-diy.net/photo/rc-1_hacked/
  7994. */
  7995. inline void gcode_M240() {
  7996. #ifdef CHDK
  7997. OUT_WRITE(CHDK, HIGH);
  7998. chdkHigh = millis();
  7999. chdkActive = true;
  8000. #elif HAS_PHOTOGRAPH
  8001. const uint8_t NUM_PULSES = 16;
  8002. const float PULSE_LENGTH = 0.01524;
  8003. for (int i = 0; i < NUM_PULSES; i++) {
  8004. WRITE(PHOTOGRAPH_PIN, HIGH);
  8005. _delay_ms(PULSE_LENGTH);
  8006. WRITE(PHOTOGRAPH_PIN, LOW);
  8007. _delay_ms(PULSE_LENGTH);
  8008. }
  8009. delay(7.33);
  8010. for (int i = 0; i < NUM_PULSES; i++) {
  8011. WRITE(PHOTOGRAPH_PIN, HIGH);
  8012. _delay_ms(PULSE_LENGTH);
  8013. WRITE(PHOTOGRAPH_PIN, LOW);
  8014. _delay_ms(PULSE_LENGTH);
  8015. }
  8016. #endif // !CHDK && HAS_PHOTOGRAPH
  8017. }
  8018. #endif // CHDK || PHOTOGRAPH_PIN
  8019. #if HAS_LCD_CONTRAST
  8020. /**
  8021. * M250: Read and optionally set the LCD contrast
  8022. */
  8023. inline void gcode_M250() {
  8024. if (parser.seen('C')) set_lcd_contrast(parser.value_int());
  8025. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  8026. SERIAL_PROTOCOL(lcd_contrast);
  8027. SERIAL_EOL();
  8028. }
  8029. #endif // HAS_LCD_CONTRAST
  8030. #if ENABLED(PREVENT_COLD_EXTRUSION)
  8031. /**
  8032. * M302: Allow cold extrudes, or set the minimum extrude temperature
  8033. *
  8034. * S<temperature> sets the minimum extrude temperature
  8035. * P<bool> enables (1) or disables (0) cold extrusion
  8036. *
  8037. * Examples:
  8038. *
  8039. * M302 ; report current cold extrusion state
  8040. * M302 P0 ; enable cold extrusion checking
  8041. * M302 P1 ; disables cold extrusion checking
  8042. * M302 S0 ; always allow extrusion (disables checking)
  8043. * M302 S170 ; only allow extrusion above 170
  8044. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  8045. */
  8046. inline void gcode_M302() {
  8047. const bool seen_S = parser.seen('S');
  8048. if (seen_S) {
  8049. thermalManager.extrude_min_temp = parser.value_celsius();
  8050. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  8051. }
  8052. if (parser.seen('P'))
  8053. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || parser.value_bool();
  8054. else if (!seen_S) {
  8055. // Report current state
  8056. SERIAL_ECHO_START();
  8057. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  8058. SERIAL_ECHOPAIR("abled (min temp ", thermalManager.extrude_min_temp);
  8059. SERIAL_ECHOLNPGM("C)");
  8060. }
  8061. }
  8062. #endif // PREVENT_COLD_EXTRUSION
  8063. /**
  8064. * M303: PID relay autotune
  8065. *
  8066. * S<temperature> sets the target temperature. (default 150C)
  8067. * E<extruder> (-1 for the bed) (default 0)
  8068. * C<cycles>
  8069. * U<bool> with a non-zero value will apply the result to current settings
  8070. */
  8071. inline void gcode_M303() {
  8072. #if HAS_PID_HEATING
  8073. const int e = parser.intval('E'), c = parser.intval('C', 5);
  8074. const bool u = parser.boolval('U');
  8075. int16_t temp = parser.celsiusval('S', e < 0 ? 70 : 150);
  8076. if (WITHIN(e, 0, HOTENDS - 1))
  8077. target_extruder = e;
  8078. #if DISABLED(BUSY_WHILE_HEATING)
  8079. KEEPALIVE_STATE(NOT_BUSY);
  8080. #endif
  8081. thermalManager.PID_autotune(temp, e, c, u);
  8082. #if DISABLED(BUSY_WHILE_HEATING)
  8083. KEEPALIVE_STATE(IN_HANDLER);
  8084. #endif
  8085. #else
  8086. SERIAL_ERROR_START();
  8087. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  8088. #endif
  8089. }
  8090. #if ENABLED(MORGAN_SCARA)
  8091. bool SCARA_move_to_cal(const uint8_t delta_a, const uint8_t delta_b) {
  8092. if (IsRunning()) {
  8093. forward_kinematics_SCARA(delta_a, delta_b);
  8094. destination[X_AXIS] = cartes[X_AXIS];
  8095. destination[Y_AXIS] = cartes[Y_AXIS];
  8096. destination[Z_AXIS] = current_position[Z_AXIS];
  8097. prepare_move_to_destination();
  8098. return true;
  8099. }
  8100. return false;
  8101. }
  8102. /**
  8103. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  8104. */
  8105. inline bool gcode_M360() {
  8106. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  8107. return SCARA_move_to_cal(0, 120);
  8108. }
  8109. /**
  8110. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  8111. */
  8112. inline bool gcode_M361() {
  8113. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  8114. return SCARA_move_to_cal(90, 130);
  8115. }
  8116. /**
  8117. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  8118. */
  8119. inline bool gcode_M362() {
  8120. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  8121. return SCARA_move_to_cal(60, 180);
  8122. }
  8123. /**
  8124. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  8125. */
  8126. inline bool gcode_M363() {
  8127. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  8128. return SCARA_move_to_cal(50, 90);
  8129. }
  8130. /**
  8131. * M364: SCARA calibration: Move to cal-position PsiC (90 deg to Theta calibration position)
  8132. */
  8133. inline bool gcode_M364() {
  8134. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  8135. return SCARA_move_to_cal(45, 135);
  8136. }
  8137. #endif // SCARA
  8138. #if ENABLED(EXT_SOLENOID)
  8139. void enable_solenoid(const uint8_t num) {
  8140. switch (num) {
  8141. case 0:
  8142. OUT_WRITE(SOL0_PIN, HIGH);
  8143. break;
  8144. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8145. case 1:
  8146. OUT_WRITE(SOL1_PIN, HIGH);
  8147. break;
  8148. #endif
  8149. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8150. case 2:
  8151. OUT_WRITE(SOL2_PIN, HIGH);
  8152. break;
  8153. #endif
  8154. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8155. case 3:
  8156. OUT_WRITE(SOL3_PIN, HIGH);
  8157. break;
  8158. #endif
  8159. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8160. case 4:
  8161. OUT_WRITE(SOL4_PIN, HIGH);
  8162. break;
  8163. #endif
  8164. default:
  8165. SERIAL_ECHO_START();
  8166. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  8167. break;
  8168. }
  8169. }
  8170. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  8171. void disable_all_solenoids() {
  8172. OUT_WRITE(SOL0_PIN, LOW);
  8173. #if HAS_SOLENOID_1 && EXTRUDERS > 1
  8174. OUT_WRITE(SOL1_PIN, LOW);
  8175. #endif
  8176. #if HAS_SOLENOID_2 && EXTRUDERS > 2
  8177. OUT_WRITE(SOL2_PIN, LOW);
  8178. #endif
  8179. #if HAS_SOLENOID_3 && EXTRUDERS > 3
  8180. OUT_WRITE(SOL3_PIN, LOW);
  8181. #endif
  8182. #if HAS_SOLENOID_4 && EXTRUDERS > 4
  8183. OUT_WRITE(SOL4_PIN, LOW);
  8184. #endif
  8185. }
  8186. /**
  8187. * M380: Enable solenoid on the active extruder
  8188. */
  8189. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  8190. /**
  8191. * M381: Disable all solenoids
  8192. */
  8193. inline void gcode_M381() { disable_all_solenoids(); }
  8194. #endif // EXT_SOLENOID
  8195. /**
  8196. * M400: Finish all moves
  8197. */
  8198. inline void gcode_M400() { stepper.synchronize(); }
  8199. #if HAS_BED_PROBE
  8200. /**
  8201. * M401: Engage Z Servo endstop if available
  8202. */
  8203. inline void gcode_M401() { DEPLOY_PROBE(); }
  8204. /**
  8205. * M402: Retract Z Servo endstop if enabled
  8206. */
  8207. inline void gcode_M402() { STOW_PROBE(); }
  8208. #endif // HAS_BED_PROBE
  8209. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  8210. /**
  8211. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  8212. */
  8213. inline void gcode_M404() {
  8214. if (parser.seen('W')) {
  8215. filament_width_nominal = parser.value_linear_units();
  8216. planner.volumetric_area_nominal = CIRCLE_AREA(filament_width_nominal * 0.5);
  8217. }
  8218. else {
  8219. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  8220. SERIAL_PROTOCOLLN(filament_width_nominal);
  8221. }
  8222. }
  8223. /**
  8224. * M405: Turn on filament sensor for control
  8225. */
  8226. inline void gcode_M405() {
  8227. // This is technically a linear measurement, but since it's quantized to centimeters and is a different
  8228. // unit than everything else, it uses parser.value_byte() instead of parser.value_linear_units().
  8229. if (parser.seen('D')) {
  8230. meas_delay_cm = parser.value_byte();
  8231. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  8232. }
  8233. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  8234. const uint8_t temp_ratio = thermalManager.widthFil_to_size_ratio() - 100; // -100 to scale within a signed byte
  8235. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  8236. measurement_delay[i] = temp_ratio;
  8237. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  8238. }
  8239. filament_sensor = true;
  8240. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8241. //SERIAL_PROTOCOL(filament_width_meas);
  8242. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  8243. //SERIAL_PROTOCOL(planner.flow_percentage[active_extruder]);
  8244. }
  8245. /**
  8246. * M406: Turn off filament sensor for control
  8247. */
  8248. inline void gcode_M406() {
  8249. filament_sensor = false;
  8250. planner.calculate_volumetric_multipliers(); // Restore correct 'volumetric_multiplier' value
  8251. }
  8252. /**
  8253. * M407: Get measured filament diameter on serial output
  8254. */
  8255. inline void gcode_M407() {
  8256. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  8257. SERIAL_PROTOCOLLN(filament_width_meas);
  8258. }
  8259. #endif // FILAMENT_WIDTH_SENSOR
  8260. void quickstop_stepper() {
  8261. stepper.quick_stop();
  8262. stepper.synchronize();
  8263. set_current_from_steppers_for_axis(ALL_AXES);
  8264. SYNC_PLAN_POSITION_KINEMATIC();
  8265. }
  8266. #if HAS_LEVELING
  8267. /**
  8268. * M420: Enable/Disable Bed Leveling and/or set the Z fade height.
  8269. *
  8270. * S[bool] Turns leveling on or off
  8271. * Z[height] Sets the Z fade height (0 or none to disable)
  8272. * V[bool] Verbose - Print the leveling grid
  8273. *
  8274. * With AUTO_BED_LEVELING_UBL only:
  8275. *
  8276. * L[index] Load UBL mesh from index (0 is default)
  8277. */
  8278. inline void gcode_M420() {
  8279. #if ENABLED(AUTO_BED_LEVELING_UBL)
  8280. // L to load a mesh from the EEPROM
  8281. if (parser.seen('L')) {
  8282. #if ENABLED(EEPROM_SETTINGS)
  8283. const int8_t storage_slot = parser.has_value() ? parser.value_int() : ubl.storage_slot;
  8284. const int16_t a = settings.calc_num_meshes();
  8285. if (!a) {
  8286. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8287. return;
  8288. }
  8289. if (!WITHIN(storage_slot, 0, a - 1)) {
  8290. SERIAL_PROTOCOLLNPGM("?Invalid storage slot.");
  8291. SERIAL_PROTOCOLLNPAIR("?Use 0 to ", a - 1);
  8292. return;
  8293. }
  8294. settings.load_mesh(storage_slot);
  8295. ubl.storage_slot = storage_slot;
  8296. #else
  8297. SERIAL_PROTOCOLLNPGM("?EEPROM storage not available.");
  8298. return;
  8299. #endif
  8300. }
  8301. // L to load a mesh from the EEPROM
  8302. if (parser.seen('L') || parser.seen('V')) {
  8303. ubl.display_map(0); // Currently only supports one map type
  8304. SERIAL_ECHOLNPAIR("UBL_MESH_VALID = ", UBL_MESH_VALID);
  8305. SERIAL_ECHOLNPAIR("ubl.storage_slot = ", ubl.storage_slot);
  8306. }
  8307. #endif // AUTO_BED_LEVELING_UBL
  8308. // V to print the matrix or mesh
  8309. if (parser.seen('V')) {
  8310. #if ABL_PLANAR
  8311. planner.bed_level_matrix.debug(PSTR("Bed Level Correction Matrix:"));
  8312. #else
  8313. if (leveling_is_valid()) {
  8314. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8315. print_bilinear_leveling_grid();
  8316. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8317. print_bilinear_leveling_grid_virt();
  8318. #endif
  8319. #elif ENABLED(MESH_BED_LEVELING)
  8320. SERIAL_ECHOLNPGM("Mesh Bed Level data:");
  8321. mbl_mesh_report();
  8322. #endif
  8323. }
  8324. #endif
  8325. }
  8326. const bool to_enable = parser.boolval('S');
  8327. if (parser.seen('S'))
  8328. set_bed_leveling_enabled(to_enable);
  8329. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8330. if (parser.seen('Z')) set_z_fade_height(parser.value_linear_units());
  8331. #endif
  8332. const bool new_status = planner.leveling_active;
  8333. if (to_enable && !new_status) {
  8334. SERIAL_ERROR_START();
  8335. SERIAL_ERRORLNPGM(MSG_ERR_M420_FAILED);
  8336. }
  8337. SERIAL_ECHO_START();
  8338. SERIAL_ECHOLNPAIR("Bed Leveling ", new_status ? MSG_ON : MSG_OFF);
  8339. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  8340. SERIAL_ECHO_START();
  8341. SERIAL_ECHOPGM("Fade Height ");
  8342. if (planner.z_fade_height > 0.0)
  8343. SERIAL_ECHOLN(planner.z_fade_height);
  8344. else
  8345. SERIAL_ECHOLNPGM(MSG_OFF);
  8346. #endif
  8347. }
  8348. #endif
  8349. #if ENABLED(MESH_BED_LEVELING)
  8350. /**
  8351. * M421: Set a single Mesh Bed Leveling Z coordinate
  8352. *
  8353. * Usage:
  8354. * M421 X<linear> Y<linear> Z<linear>
  8355. * M421 X<linear> Y<linear> Q<offset>
  8356. * M421 I<xindex> J<yindex> Z<linear>
  8357. * M421 I<xindex> J<yindex> Q<offset>
  8358. */
  8359. inline void gcode_M421() {
  8360. const bool hasX = parser.seen('X'), hasI = parser.seen('I');
  8361. const int8_t ix = hasI ? parser.value_int() : hasX ? mbl.probe_index_x(parser.value_linear_units()) : -1;
  8362. const bool hasY = parser.seen('Y'), hasJ = parser.seen('J');
  8363. const int8_t iy = hasJ ? parser.value_int() : hasY ? mbl.probe_index_y(parser.value_linear_units()) : -1;
  8364. const bool hasZ = parser.seen('Z'), hasQ = !hasZ && parser.seen('Q');
  8365. if (int(hasI && hasJ) + int(hasX && hasY) != 1 || !(hasZ || hasQ)) {
  8366. SERIAL_ERROR_START();
  8367. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8368. }
  8369. else if (ix < 0 || iy < 0) {
  8370. SERIAL_ERROR_START();
  8371. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8372. }
  8373. else
  8374. mbl.set_z(ix, iy, parser.value_linear_units() + (hasQ ? mbl.z_values[ix][iy] : 0));
  8375. }
  8376. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  8377. /**
  8378. * M421: Set a single Mesh Bed Leveling Z coordinate
  8379. *
  8380. * Usage:
  8381. * M421 I<xindex> J<yindex> Z<linear>
  8382. * M421 I<xindex> J<yindex> Q<offset>
  8383. */
  8384. inline void gcode_M421() {
  8385. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8386. const bool hasI = ix >= 0,
  8387. hasJ = iy >= 0,
  8388. hasZ = parser.seen('Z'),
  8389. hasQ = !hasZ && parser.seen('Q');
  8390. if (!hasI || !hasJ || !(hasZ || hasQ)) {
  8391. SERIAL_ERROR_START();
  8392. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8393. }
  8394. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8395. SERIAL_ERROR_START();
  8396. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8397. }
  8398. else {
  8399. z_values[ix][iy] = parser.value_linear_units() + (hasQ ? z_values[ix][iy] : 0);
  8400. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  8401. bed_level_virt_interpolate();
  8402. #endif
  8403. }
  8404. }
  8405. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  8406. /**
  8407. * M421: Set a single Mesh Bed Leveling Z coordinate
  8408. *
  8409. * Usage:
  8410. * M421 I<xindex> J<yindex> Z<linear>
  8411. * M421 I<xindex> J<yindex> Q<offset>
  8412. * M421 C Z<linear>
  8413. * M421 C Q<offset>
  8414. */
  8415. inline void gcode_M421() {
  8416. int8_t ix = parser.intval('I', -1), iy = parser.intval('J', -1);
  8417. const bool hasI = ix >= 0,
  8418. hasJ = iy >= 0,
  8419. hasC = parser.seen('C'),
  8420. hasZ = parser.seen('Z'),
  8421. hasQ = !hasZ && parser.seen('Q');
  8422. if (hasC) {
  8423. const mesh_index_pair location = ubl.find_closest_mesh_point_of_type(REAL, current_position[X_AXIS], current_position[Y_AXIS], USE_NOZZLE_AS_REFERENCE, NULL);
  8424. ix = location.x_index;
  8425. iy = location.y_index;
  8426. }
  8427. if (int(hasC) + int(hasI && hasJ) != 1 || !(hasZ || hasQ)) {
  8428. SERIAL_ERROR_START();
  8429. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  8430. }
  8431. else if (!WITHIN(ix, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(iy, 0, GRID_MAX_POINTS_Y - 1)) {
  8432. SERIAL_ERROR_START();
  8433. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  8434. }
  8435. else
  8436. ubl.z_values[ix][iy] = parser.value_linear_units() + (hasQ ? ubl.z_values[ix][iy] : 0);
  8437. }
  8438. #endif // AUTO_BED_LEVELING_UBL
  8439. #if HAS_M206_COMMAND
  8440. /**
  8441. * M428: Set home_offset based on the distance between the
  8442. * current_position and the nearest "reference point."
  8443. * If an axis is past center its endstop position
  8444. * is the reference-point. Otherwise it uses 0. This allows
  8445. * the Z offset to be set near the bed when using a max endstop.
  8446. *
  8447. * M428 can't be used more than 2cm away from 0 or an endstop.
  8448. *
  8449. * Use M206 to set these values directly.
  8450. */
  8451. inline void gcode_M428() {
  8452. if (axis_unhomed_error()) return;
  8453. float diff[XYZ];
  8454. LOOP_XYZ(i) {
  8455. diff[i] = base_home_pos((AxisEnum)i) - current_position[i];
  8456. if (!WITHIN(diff[i], -20, 20) && home_dir((AxisEnum)i) > 0)
  8457. diff[i] = -current_position[i];
  8458. if (!WITHIN(diff[i], -20, 20)) {
  8459. SERIAL_ERROR_START();
  8460. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  8461. LCD_ALERTMESSAGEPGM("Err: Too far!");
  8462. BUZZ(200, 40);
  8463. return;
  8464. }
  8465. }
  8466. LOOP_XYZ(i) set_home_offset((AxisEnum)i, diff[i]);
  8467. report_current_position();
  8468. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  8469. BUZZ(100, 659);
  8470. BUZZ(100, 698);
  8471. }
  8472. #endif // HAS_M206_COMMAND
  8473. /**
  8474. * M500: Store settings in EEPROM
  8475. */
  8476. inline void gcode_M500() {
  8477. (void)settings.save();
  8478. }
  8479. /**
  8480. * M501: Read settings from EEPROM
  8481. */
  8482. inline void gcode_M501() {
  8483. (void)settings.load();
  8484. }
  8485. /**
  8486. * M502: Revert to default settings
  8487. */
  8488. inline void gcode_M502() {
  8489. (void)settings.reset();
  8490. }
  8491. #if DISABLED(DISABLE_M503)
  8492. /**
  8493. * M503: print settings currently in memory
  8494. */
  8495. inline void gcode_M503() {
  8496. (void)settings.report(parser.boolval('S'));
  8497. }
  8498. #endif
  8499. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  8500. /**
  8501. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  8502. */
  8503. inline void gcode_M540() {
  8504. if (parser.seen('S')) stepper.abort_on_endstop_hit = parser.value_bool();
  8505. }
  8506. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  8507. #if HAS_BED_PROBE
  8508. inline void gcode_M851() {
  8509. SERIAL_ECHO_START();
  8510. SERIAL_ECHOPGM(MSG_PROBE_Z_OFFSET);
  8511. if (parser.seen('Z')) {
  8512. const float value = parser.value_linear_units();
  8513. if (!WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
  8514. SERIAL_ECHOLNPGM(" " MSG_Z_MIN " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MIN) " " MSG_Z_MAX " " STRINGIFY(Z_PROBE_OFFSET_RANGE_MAX));
  8515. return;
  8516. }
  8517. zprobe_zoffset = value;
  8518. }
  8519. SERIAL_ECHOLNPAIR(": ", zprobe_zoffset);
  8520. }
  8521. #endif // HAS_BED_PROBE
  8522. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  8523. /**
  8524. * M600: Pause for filament change
  8525. *
  8526. * E[distance] - Retract the filament this far (negative value)
  8527. * Z[distance] - Move the Z axis by this distance
  8528. * X[position] - Move to this X position, with Y
  8529. * Y[position] - Move to this Y position, with X
  8530. * U[distance] - Retract distance for removal (negative value) (manual reload)
  8531. * L[distance] - Extrude distance for insertion (positive value) (manual reload)
  8532. * B[count] - Number of times to beep, -1 for indefinite (if equipped with a buzzer)
  8533. *
  8534. * Default values are used for omitted arguments.
  8535. *
  8536. */
  8537. inline void gcode_M600() {
  8538. #if ENABLED(HOME_BEFORE_FILAMENT_CHANGE)
  8539. // Don't allow filament change without homing first
  8540. if (axis_unhomed_error()) home_all_axes();
  8541. #endif
  8542. // Initial retract before move to filament change position
  8543. const float retract = parser.seen('E') ? parser.value_axis_units(E_AXIS) : 0
  8544. #ifdef PAUSE_PARK_RETRACT_LENGTH
  8545. - (PAUSE_PARK_RETRACT_LENGTH)
  8546. #endif
  8547. ;
  8548. // Lift Z axis
  8549. const float z_lift = parser.linearval('Z', 0
  8550. #ifdef PAUSE_PARK_Z_ADD
  8551. + PAUSE_PARK_Z_ADD
  8552. #endif
  8553. );
  8554. // Move XY axes to filament exchange position
  8555. const float x_pos = parser.linearval('X', 0
  8556. #ifdef PAUSE_PARK_X_POS
  8557. + PAUSE_PARK_X_POS
  8558. #endif
  8559. );
  8560. const float y_pos = parser.linearval('Y', 0
  8561. #ifdef PAUSE_PARK_Y_POS
  8562. + PAUSE_PARK_Y_POS
  8563. #endif
  8564. );
  8565. // Unload filament
  8566. const float unload_length = parser.seen('U') ? parser.value_axis_units(E_AXIS) : 0
  8567. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  8568. - (FILAMENT_CHANGE_UNLOAD_LENGTH)
  8569. #endif
  8570. ;
  8571. // Load filament
  8572. const float load_length = parser.seen('L') ? parser.value_axis_units(E_AXIS) : 0
  8573. #ifdef FILAMENT_CHANGE_LOAD_LENGTH
  8574. + FILAMENT_CHANGE_LOAD_LENGTH
  8575. #endif
  8576. ;
  8577. const int beep_count = parser.intval('B',
  8578. #ifdef FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8579. FILAMENT_CHANGE_NUMBER_OF_ALERT_BEEPS
  8580. #else
  8581. -1
  8582. #endif
  8583. );
  8584. const bool job_running = print_job_timer.isRunning();
  8585. if (pause_print(retract, z_lift, x_pos, y_pos, unload_length, beep_count, true)) {
  8586. wait_for_filament_reload(beep_count);
  8587. resume_print(load_length, ADVANCED_PAUSE_EXTRUDE_LENGTH, beep_count);
  8588. }
  8589. // Resume the print job timer if it was running
  8590. if (job_running) print_job_timer.start();
  8591. }
  8592. #endif // ADVANCED_PAUSE_FEATURE
  8593. #if ENABLED(MK2_MULTIPLEXER)
  8594. inline void select_multiplexed_stepper(const uint8_t e) {
  8595. stepper.synchronize();
  8596. disable_e_steppers();
  8597. WRITE(E_MUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  8598. WRITE(E_MUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  8599. WRITE(E_MUX2_PIN, TEST(e, 2) ? HIGH : LOW);
  8600. safe_delay(100);
  8601. }
  8602. /**
  8603. * M702: Unload all extruders
  8604. */
  8605. inline void gcode_M702() {
  8606. for (uint8_t s = 0; s < E_STEPPERS; s++) {
  8607. select_multiplexed_stepper(e);
  8608. // TODO: standard unload filament function
  8609. // MK2 firmware behavior:
  8610. // - Make sure temperature is high enough
  8611. // - Raise Z to at least 15 to make room
  8612. // - Extrude 1cm of filament in 1 second
  8613. // - Under 230C quickly purge ~12mm, over 230C purge ~10mm
  8614. // - Change E max feedrate to 80, eject the filament from the tube. Sync.
  8615. // - Restore E max feedrate to 50
  8616. }
  8617. // Go back to the last active extruder
  8618. select_multiplexed_stepper(active_extruder);
  8619. disable_e_steppers();
  8620. }
  8621. #endif // MK2_MULTIPLEXER
  8622. #if ENABLED(DUAL_X_CARRIAGE)
  8623. /**
  8624. * M605: Set dual x-carriage movement mode
  8625. *
  8626. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  8627. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  8628. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  8629. * units x-offset and an optional differential hotend temperature of
  8630. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  8631. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  8632. *
  8633. * Note: the X axis should be homed after changing dual x-carriage mode.
  8634. */
  8635. inline void gcode_M605() {
  8636. stepper.synchronize();
  8637. if (parser.seen('S')) dual_x_carriage_mode = (DualXMode)parser.value_byte();
  8638. switch (dual_x_carriage_mode) {
  8639. case DXC_FULL_CONTROL_MODE:
  8640. case DXC_AUTO_PARK_MODE:
  8641. break;
  8642. case DXC_DUPLICATION_MODE:
  8643. if (parser.seen('X')) duplicate_extruder_x_offset = max(parser.value_linear_units(), X2_MIN_POS - x_home_pos(0));
  8644. if (parser.seen('R')) duplicate_extruder_temp_offset = parser.value_celsius_diff();
  8645. SERIAL_ECHO_START();
  8646. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  8647. SERIAL_CHAR(' ');
  8648. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  8649. SERIAL_CHAR(',');
  8650. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  8651. SERIAL_CHAR(' ');
  8652. SERIAL_ECHO(duplicate_extruder_x_offset);
  8653. SERIAL_CHAR(',');
  8654. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  8655. break;
  8656. default:
  8657. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  8658. break;
  8659. }
  8660. active_extruder_parked = false;
  8661. extruder_duplication_enabled = false;
  8662. delayed_move_time = 0;
  8663. }
  8664. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  8665. inline void gcode_M605() {
  8666. stepper.synchronize();
  8667. extruder_duplication_enabled = parser.intval('S') == (int)DXC_DUPLICATION_MODE;
  8668. SERIAL_ECHO_START();
  8669. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  8670. }
  8671. #endif // DUAL_NOZZLE_DUPLICATION_MODE
  8672. #if ENABLED(LIN_ADVANCE)
  8673. /**
  8674. * M900: Set and/or Get advance K factor and WH/D ratio
  8675. *
  8676. * K<factor> Set advance K factor
  8677. * R<ratio> Set ratio directly (overrides WH/D)
  8678. * W<width> H<height> D<diam> Set ratio from WH/D
  8679. */
  8680. inline void gcode_M900() {
  8681. stepper.synchronize();
  8682. const float newK = parser.floatval('K', -1);
  8683. if (newK >= 0) planner.extruder_advance_k = newK;
  8684. float newR = parser.floatval('R', -1);
  8685. if (newR < 0) {
  8686. const float newD = parser.floatval('D', -1),
  8687. newW = parser.floatval('W', -1),
  8688. newH = parser.floatval('H', -1);
  8689. if (newD >= 0 && newW >= 0 && newH >= 0)
  8690. newR = newD ? (newW * newH) / (sq(newD * 0.5) * M_PI) : 0;
  8691. }
  8692. if (newR >= 0) planner.advance_ed_ratio = newR;
  8693. SERIAL_ECHO_START();
  8694. SERIAL_ECHOPAIR("Advance K=", planner.extruder_advance_k);
  8695. SERIAL_ECHOPGM(" E/D=");
  8696. const float ratio = planner.advance_ed_ratio;
  8697. if (ratio) SERIAL_ECHO(ratio); else SERIAL_ECHOPGM("Auto");
  8698. SERIAL_EOL();
  8699. }
  8700. #endif // LIN_ADVANCE
  8701. #if ENABLED(HAVE_TMC2130)
  8702. static void tmc2130_get_current(TMC2130Stepper &st, const char name) {
  8703. SERIAL_CHAR(name);
  8704. SERIAL_ECHOPGM(" axis driver current: ");
  8705. SERIAL_ECHOLN(st.getCurrent());
  8706. }
  8707. static void tmc2130_set_current(TMC2130Stepper &st, const char name, const int mA) {
  8708. st.setCurrent(mA, R_SENSE, HOLD_MULTIPLIER);
  8709. tmc2130_get_current(st, name);
  8710. }
  8711. static void tmc2130_report_otpw(TMC2130Stepper &st, const char name) {
  8712. SERIAL_CHAR(name);
  8713. SERIAL_ECHOPGM(" axis temperature prewarn triggered: ");
  8714. serialprintPGM(st.getOTPW() ? PSTR("true") : PSTR("false"));
  8715. SERIAL_EOL();
  8716. }
  8717. static void tmc2130_clear_otpw(TMC2130Stepper &st, const char name) {
  8718. st.clear_otpw();
  8719. SERIAL_CHAR(name);
  8720. SERIAL_ECHOLNPGM(" prewarn flag cleared");
  8721. }
  8722. #if ENABLED(HYBRID_THRESHOLD)
  8723. static void tmc2130_get_pwmthrs(TMC2130Stepper &st, const char name, const uint16_t spmm) {
  8724. SERIAL_CHAR(name);
  8725. SERIAL_ECHOPGM(" stealthChop max speed set to ");
  8726. SERIAL_ECHOLN(12650000UL * st.microsteps() / (256 * st.stealth_max_speed() * spmm));
  8727. }
  8728. static void tmc2130_set_pwmthrs(TMC2130Stepper &st, const char name, const int32_t thrs, const uint32_t spmm) {
  8729. st.stealth_max_speed(12650000UL * st.microsteps() / (256 * thrs * spmm));
  8730. tmc2130_get_pwmthrs(st, name, spmm);
  8731. }
  8732. #endif
  8733. #if ENABLED(SENSORLESS_HOMING)
  8734. static void tmc2130_get_sgt(TMC2130Stepper &st, const char name) {
  8735. SERIAL_CHAR(name);
  8736. SERIAL_ECHOPGM(" driver homing sensitivity set to ");
  8737. SERIAL_ECHOLN(st.sgt());
  8738. }
  8739. static void tmc2130_set_sgt(TMC2130Stepper &st, const char name, const int8_t sgt_val) {
  8740. st.sgt(sgt_val);
  8741. tmc2130_get_sgt(st, name);
  8742. }
  8743. #endif
  8744. /**
  8745. * M906: Set motor current in milliamps using axis codes X, Y, Z, E
  8746. * Report driver currents when no axis specified
  8747. *
  8748. * S1: Enable automatic current control
  8749. * S0: Disable
  8750. */
  8751. inline void gcode_M906() {
  8752. uint16_t values[XYZE];
  8753. LOOP_XYZE(i)
  8754. values[i] = parser.intval(axis_codes[i]);
  8755. #if ENABLED(X_IS_TMC2130)
  8756. if (values[X_AXIS]) tmc2130_set_current(stepperX, 'X', values[X_AXIS]);
  8757. else tmc2130_get_current(stepperX, 'X');
  8758. #endif
  8759. #if ENABLED(Y_IS_TMC2130)
  8760. if (values[Y_AXIS]) tmc2130_set_current(stepperY, 'Y', values[Y_AXIS]);
  8761. else tmc2130_get_current(stepperY, 'Y');
  8762. #endif
  8763. #if ENABLED(Z_IS_TMC2130)
  8764. if (values[Z_AXIS]) tmc2130_set_current(stepperZ, 'Z', values[Z_AXIS]);
  8765. else tmc2130_get_current(stepperZ, 'Z');
  8766. #endif
  8767. #if ENABLED(E0_IS_TMC2130)
  8768. if (values[E_AXIS]) tmc2130_set_current(stepperE0, 'E', values[E_AXIS]);
  8769. else tmc2130_get_current(stepperE0, 'E');
  8770. #endif
  8771. #if ENABLED(AUTOMATIC_CURRENT_CONTROL)
  8772. if (parser.seen('S')) auto_current_control = parser.value_bool();
  8773. #endif
  8774. }
  8775. /**
  8776. * M911: Report TMC2130 stepper driver overtemperature pre-warn flag
  8777. * The flag is held by the library and persist until manually cleared by M912
  8778. */
  8779. inline void gcode_M911() {
  8780. const bool reportX = parser.seen('X'), reportY = parser.seen('Y'), reportZ = parser.seen('Z'), reportE = parser.seen('E'),
  8781. reportAll = (!reportX && !reportY && !reportZ && !reportE) || (reportX && reportY && reportZ && reportE);
  8782. #if ENABLED(X_IS_TMC2130)
  8783. if (reportX || reportAll) tmc2130_report_otpw(stepperX, 'X');
  8784. #endif
  8785. #if ENABLED(Y_IS_TMC2130)
  8786. if (reportY || reportAll) tmc2130_report_otpw(stepperY, 'Y');
  8787. #endif
  8788. #if ENABLED(Z_IS_TMC2130)
  8789. if (reportZ || reportAll) tmc2130_report_otpw(stepperZ, 'Z');
  8790. #endif
  8791. #if ENABLED(E0_IS_TMC2130)
  8792. if (reportE || reportAll) tmc2130_report_otpw(stepperE0, 'E');
  8793. #endif
  8794. }
  8795. /**
  8796. * M912: Clear TMC2130 stepper driver overtemperature pre-warn flag held by the library
  8797. */
  8798. inline void gcode_M912() {
  8799. const bool clearX = parser.seen('X'), clearY = parser.seen('Y'), clearZ = parser.seen('Z'), clearE = parser.seen('E'),
  8800. clearAll = (!clearX && !clearY && !clearZ && !clearE) || (clearX && clearY && clearZ && clearE);
  8801. #if ENABLED(X_IS_TMC2130)
  8802. if (clearX || clearAll) tmc2130_clear_otpw(stepperX, 'X');
  8803. #endif
  8804. #if ENABLED(Y_IS_TMC2130)
  8805. if (clearY || clearAll) tmc2130_clear_otpw(stepperY, 'Y');
  8806. #endif
  8807. #if ENABLED(Z_IS_TMC2130)
  8808. if (clearZ || clearAll) tmc2130_clear_otpw(stepperZ, 'Z');
  8809. #endif
  8810. #if ENABLED(E0_IS_TMC2130)
  8811. if (clearE || clearAll) tmc2130_clear_otpw(stepperE0, 'E');
  8812. #endif
  8813. }
  8814. /**
  8815. * M913: Set HYBRID_THRESHOLD speed.
  8816. */
  8817. #if ENABLED(HYBRID_THRESHOLD)
  8818. inline void gcode_M913() {
  8819. uint16_t values[XYZE];
  8820. LOOP_XYZE(i)
  8821. values[i] = parser.intval(axis_codes[i]);
  8822. #if ENABLED(X_IS_TMC2130)
  8823. if (values[X_AXIS]) tmc2130_set_pwmthrs(stepperX, 'X', values[X_AXIS], planner.axis_steps_per_mm[X_AXIS]);
  8824. else tmc2130_get_pwmthrs(stepperX, 'X', planner.axis_steps_per_mm[X_AXIS]);
  8825. #endif
  8826. #if ENABLED(Y_IS_TMC2130)
  8827. if (values[Y_AXIS]) tmc2130_set_pwmthrs(stepperY, 'Y', values[Y_AXIS], planner.axis_steps_per_mm[Y_AXIS]);
  8828. else tmc2130_get_pwmthrs(stepperY, 'Y', planner.axis_steps_per_mm[Y_AXIS]);
  8829. #endif
  8830. #if ENABLED(Z_IS_TMC2130)
  8831. if (values[Z_AXIS]) tmc2130_set_pwmthrs(stepperZ, 'Z', values[Z_AXIS], planner.axis_steps_per_mm[Z_AXIS]);
  8832. else tmc2130_get_pwmthrs(stepperZ, 'Z', planner.axis_steps_per_mm[Z_AXIS]);
  8833. #endif
  8834. #if ENABLED(E0_IS_TMC2130)
  8835. if (values[E_AXIS]) tmc2130_set_pwmthrs(stepperE0, 'E', values[E_AXIS], planner.axis_steps_per_mm[E_AXIS]);
  8836. else tmc2130_get_pwmthrs(stepperE0, 'E', planner.axis_steps_per_mm[E_AXIS]);
  8837. #endif
  8838. }
  8839. #endif // HYBRID_THRESHOLD
  8840. /**
  8841. * M914: Set SENSORLESS_HOMING sensitivity.
  8842. */
  8843. #if ENABLED(SENSORLESS_HOMING)
  8844. inline void gcode_M914() {
  8845. #if ENABLED(X_IS_TMC2130)
  8846. if (parser.seen(axis_codes[X_AXIS])) tmc2130_set_sgt(stepperX, 'X', parser.value_int());
  8847. else tmc2130_get_sgt(stepperX, 'X');
  8848. #endif
  8849. #if ENABLED(Y_IS_TMC2130)
  8850. if (parser.seen(axis_codes[Y_AXIS])) tmc2130_set_sgt(stepperY, 'Y', parser.value_int());
  8851. else tmc2130_get_sgt(stepperY, 'Y');
  8852. #endif
  8853. }
  8854. #endif // SENSORLESS_HOMING
  8855. #endif // HAVE_TMC2130
  8856. /**
  8857. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  8858. */
  8859. inline void gcode_M907() {
  8860. #if HAS_DIGIPOTSS
  8861. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.digipot_current(i, parser.value_int());
  8862. if (parser.seen('B')) stepper.digipot_current(4, parser.value_int());
  8863. if (parser.seen('S')) for (uint8_t i = 0; i <= 4; i++) stepper.digipot_current(i, parser.value_int());
  8864. #elif HAS_MOTOR_CURRENT_PWM
  8865. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  8866. if (parser.seen('X')) stepper.digipot_current(0, parser.value_int());
  8867. #endif
  8868. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  8869. if (parser.seen('Z')) stepper.digipot_current(1, parser.value_int());
  8870. #endif
  8871. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  8872. if (parser.seen('E')) stepper.digipot_current(2, parser.value_int());
  8873. #endif
  8874. #endif
  8875. #if ENABLED(DIGIPOT_I2C)
  8876. // this one uses actual amps in floating point
  8877. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) digipot_i2c_set_current(i, parser.value_float());
  8878. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  8879. for (uint8_t i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (parser.seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, parser.value_float());
  8880. #endif
  8881. #if ENABLED(DAC_STEPPER_CURRENT)
  8882. if (parser.seen('S')) {
  8883. const float dac_percent = parser.value_float();
  8884. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  8885. }
  8886. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) dac_current_percent(i, parser.value_float());
  8887. #endif
  8888. }
  8889. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  8890. /**
  8891. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  8892. */
  8893. inline void gcode_M908() {
  8894. #if HAS_DIGIPOTSS
  8895. stepper.digitalPotWrite(
  8896. parser.intval('P'),
  8897. parser.intval('S')
  8898. );
  8899. #endif
  8900. #ifdef DAC_STEPPER_CURRENT
  8901. dac_current_raw(
  8902. parser.byteval('P', -1),
  8903. parser.ushortval('S', 0)
  8904. );
  8905. #endif
  8906. }
  8907. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  8908. inline void gcode_M909() { dac_print_values(); }
  8909. inline void gcode_M910() { dac_commit_eeprom(); }
  8910. #endif
  8911. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  8912. #if HAS_MICROSTEPS
  8913. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  8914. inline void gcode_M350() {
  8915. if (parser.seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, parser.value_byte());
  8916. LOOP_XYZE(i) if (parser.seen(axis_codes[i])) stepper.microstep_mode(i, parser.value_byte());
  8917. if (parser.seen('B')) stepper.microstep_mode(4, parser.value_byte());
  8918. stepper.microstep_readings();
  8919. }
  8920. /**
  8921. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  8922. * S# determines MS1 or MS2, X# sets the pin high/low.
  8923. */
  8924. inline void gcode_M351() {
  8925. if (parser.seenval('S')) switch (parser.value_byte()) {
  8926. case 1:
  8927. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, parser.value_byte(), -1);
  8928. if (parser.seenval('B')) stepper.microstep_ms(4, parser.value_byte(), -1);
  8929. break;
  8930. case 2:
  8931. LOOP_XYZE(i) if (parser.seenval(axis_codes[i])) stepper.microstep_ms(i, -1, parser.value_byte());
  8932. if (parser.seenval('B')) stepper.microstep_ms(4, -1, parser.value_byte());
  8933. break;
  8934. }
  8935. stepper.microstep_readings();
  8936. }
  8937. #endif // HAS_MICROSTEPS
  8938. #if HAS_CASE_LIGHT
  8939. #ifndef INVERT_CASE_LIGHT
  8940. #define INVERT_CASE_LIGHT false
  8941. #endif
  8942. uint8_t case_light_brightness; // LCD routine wants INT
  8943. bool case_light_on;
  8944. void update_case_light() {
  8945. pinMode(CASE_LIGHT_PIN, OUTPUT); // digitalWrite doesn't set the port mode
  8946. if (case_light_on) {
  8947. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8948. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 - case_light_brightness : case_light_brightness);
  8949. else
  8950. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? LOW : HIGH);
  8951. }
  8952. else {
  8953. if (USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN))
  8954. analogWrite(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? 255 : 0);
  8955. else
  8956. WRITE(CASE_LIGHT_PIN, INVERT_CASE_LIGHT ? HIGH : LOW);
  8957. }
  8958. }
  8959. #endif // HAS_CASE_LIGHT
  8960. /**
  8961. * M355: Turn case light on/off and set brightness
  8962. *
  8963. * P<byte> Set case light brightness (PWM pin required - ignored otherwise)
  8964. *
  8965. * S<bool> Set case light on/off
  8966. *
  8967. * When S turns on the light on a PWM pin then the current brightness level is used/restored
  8968. *
  8969. * M355 P200 S0 turns off the light & sets the brightness level
  8970. * M355 S1 turns on the light with a brightness of 200 (assuming a PWM pin)
  8971. */
  8972. inline void gcode_M355() {
  8973. #if HAS_CASE_LIGHT
  8974. uint8_t args = 0;
  8975. if (parser.seenval('P')) ++args, case_light_brightness = parser.value_byte();
  8976. if (parser.seenval('S')) ++args, case_light_on = parser.value_bool();
  8977. if (args) update_case_light();
  8978. // always report case light status
  8979. SERIAL_ECHO_START();
  8980. if (!case_light_on) {
  8981. SERIAL_ECHOLN("Case light: off");
  8982. }
  8983. else {
  8984. if (!USEABLE_HARDWARE_PWM(CASE_LIGHT_PIN)) SERIAL_ECHOLN("Case light: on");
  8985. else SERIAL_ECHOLNPAIR("Case light: ", (int)case_light_brightness);
  8986. }
  8987. #else
  8988. SERIAL_ERROR_START();
  8989. SERIAL_ERRORLNPGM(MSG_ERR_M355_NONE);
  8990. #endif // HAS_CASE_LIGHT
  8991. }
  8992. #if ENABLED(MIXING_EXTRUDER)
  8993. /**
  8994. * M163: Set a single mix factor for a mixing extruder
  8995. * This is called "weight" by some systems.
  8996. *
  8997. * S[index] The channel index to set
  8998. * P[float] The mix value
  8999. *
  9000. */
  9001. inline void gcode_M163() {
  9002. const int mix_index = parser.intval('S');
  9003. if (mix_index < MIXING_STEPPERS) {
  9004. float mix_value = parser.floatval('P');
  9005. NOLESS(mix_value, 0.0);
  9006. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  9007. }
  9008. }
  9009. #if MIXING_VIRTUAL_TOOLS > 1
  9010. /**
  9011. * M164: Store the current mix factors as a virtual tool.
  9012. *
  9013. * S[index] The virtual tool to store
  9014. *
  9015. */
  9016. inline void gcode_M164() {
  9017. const int tool_index = parser.intval('S');
  9018. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  9019. normalize_mix();
  9020. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  9021. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  9022. }
  9023. }
  9024. #endif
  9025. #if ENABLED(DIRECT_MIXING_IN_G1)
  9026. /**
  9027. * M165: Set multiple mix factors for a mixing extruder.
  9028. * Factors that are left out will be set to 0.
  9029. * All factors together must add up to 1.0.
  9030. *
  9031. * A[factor] Mix factor for extruder stepper 1
  9032. * B[factor] Mix factor for extruder stepper 2
  9033. * C[factor] Mix factor for extruder stepper 3
  9034. * D[factor] Mix factor for extruder stepper 4
  9035. * H[factor] Mix factor for extruder stepper 5
  9036. * I[factor] Mix factor for extruder stepper 6
  9037. *
  9038. */
  9039. inline void gcode_M165() { gcode_get_mix(); }
  9040. #endif
  9041. #endif // MIXING_EXTRUDER
  9042. /**
  9043. * M999: Restart after being stopped
  9044. *
  9045. * Default behaviour is to flush the serial buffer and request
  9046. * a resend to the host starting on the last N line received.
  9047. *
  9048. * Sending "M999 S1" will resume printing without flushing the
  9049. * existing command buffer.
  9050. *
  9051. */
  9052. inline void gcode_M999() {
  9053. Running = true;
  9054. lcd_reset_alert_level();
  9055. if (parser.boolval('S')) return;
  9056. // gcode_LastN = Stopped_gcode_LastN;
  9057. FlushSerialRequestResend();
  9058. }
  9059. #if ENABLED(SWITCHING_EXTRUDER)
  9060. #if EXTRUDERS > 3
  9061. #define REQ_ANGLES 4
  9062. #define _SERVO_NR (e < 2 ? SWITCHING_EXTRUDER_SERVO_NR : SWITCHING_EXTRUDER_E23_SERVO_NR)
  9063. #else
  9064. #define REQ_ANGLES 2
  9065. #define _SERVO_NR SWITCHING_EXTRUDER_SERVO_NR
  9066. #endif
  9067. inline void move_extruder_servo(const uint8_t e) {
  9068. constexpr int16_t angles[] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  9069. static_assert(COUNT(angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
  9070. stepper.synchronize();
  9071. #if EXTRUDERS & 1
  9072. if (e < EXTRUDERS - 1)
  9073. #endif
  9074. {
  9075. MOVE_SERVO(_SERVO_NR, angles[e]);
  9076. safe_delay(500);
  9077. }
  9078. }
  9079. #endif // SWITCHING_EXTRUDER
  9080. #if ENABLED(SWITCHING_NOZZLE)
  9081. inline void move_nozzle_servo(const uint8_t e) {
  9082. const int16_t angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
  9083. stepper.synchronize();
  9084. MOVE_SERVO(SWITCHING_NOZZLE_SERVO_NR, angles[e]);
  9085. safe_delay(500);
  9086. }
  9087. #endif
  9088. inline void invalid_extruder_error(const uint8_t e) {
  9089. SERIAL_ECHO_START();
  9090. SERIAL_CHAR('T');
  9091. SERIAL_ECHO_F(e, DEC);
  9092. SERIAL_CHAR(' ');
  9093. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  9094. }
  9095. #if ENABLED(PARKING_EXTRUDER)
  9096. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9097. #define PE_MAGNET_ON_STATE !PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9098. #else
  9099. #define PE_MAGNET_ON_STATE PARKING_EXTRUDER_SOLENOIDS_PINS_ACTIVE
  9100. #endif
  9101. void pe_set_magnet(const uint8_t extruder_num, const uint8_t state) {
  9102. switch (extruder_num) {
  9103. case 1: OUT_WRITE(SOL1_PIN, state); break;
  9104. default: OUT_WRITE(SOL0_PIN, state); break;
  9105. }
  9106. #if PARKING_EXTRUDER_SOLENOIDS_DELAY > 0
  9107. dwell(PARKING_EXTRUDER_SOLENOIDS_DELAY);
  9108. #endif
  9109. }
  9110. inline void pe_activate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, PE_MAGNET_ON_STATE); }
  9111. inline void pe_deactivate_magnet(const uint8_t extruder_num) { pe_set_magnet(extruder_num, !PE_MAGNET_ON_STATE); }
  9112. #endif // PARKING_EXTRUDER
  9113. #if HAS_FANMUX
  9114. void fanmux_switch(const uint8_t e) {
  9115. WRITE(FANMUX0_PIN, TEST(e, 0) ? HIGH : LOW);
  9116. #if PIN_EXISTS(FANMUX1)
  9117. WRITE(FANMUX1_PIN, TEST(e, 1) ? HIGH : LOW);
  9118. #if PIN_EXISTS(FANMUX2)
  9119. WRITE(FANMUX2, TEST(e, 2) ? HIGH : LOW);
  9120. #endif
  9121. #endif
  9122. }
  9123. FORCE_INLINE void fanmux_init(void) {
  9124. SET_OUTPUT(FANMUX0_PIN);
  9125. #if PIN_EXISTS(FANMUX1)
  9126. SET_OUTPUT(FANMUX1_PIN);
  9127. #if PIN_EXISTS(FANMUX2)
  9128. SET_OUTPUT(FANMUX2_PIN);
  9129. #endif
  9130. #endif
  9131. fanmux_switch(0);
  9132. }
  9133. #endif // HAS_FANMUX
  9134. /**
  9135. * Perform a tool-change, which may result in moving the
  9136. * previous tool out of the way and the new tool into place.
  9137. */
  9138. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  9139. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  9140. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS)
  9141. return invalid_extruder_error(tmp_extruder);
  9142. // T0-Tnnn: Switch virtual tool by changing the mix
  9143. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  9144. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  9145. #else // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9146. if (tmp_extruder >= EXTRUDERS)
  9147. return invalid_extruder_error(tmp_extruder);
  9148. #if HOTENDS > 1
  9149. const float old_feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : feedrate_mm_s;
  9150. feedrate_mm_s = fr_mm_s > 0.0 ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  9151. if (tmp_extruder != active_extruder) {
  9152. if (!no_move && axis_unhomed_error()) {
  9153. no_move = true;
  9154. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9155. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("No move on toolchange");
  9156. #endif
  9157. }
  9158. // Save current position to destination, for use later
  9159. set_destination_from_current();
  9160. #if ENABLED(DUAL_X_CARRIAGE)
  9161. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9162. if (DEBUGGING(LEVELING)) {
  9163. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  9164. switch (dual_x_carriage_mode) {
  9165. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  9166. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  9167. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  9168. }
  9169. }
  9170. #endif
  9171. const float xhome = x_home_pos(active_extruder);
  9172. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE
  9173. && IsRunning()
  9174. && (delayed_move_time || current_position[X_AXIS] != xhome)
  9175. ) {
  9176. float raised_z = current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT;
  9177. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9178. NOMORE(raised_z, soft_endstop_max[Z_AXIS]);
  9179. #endif
  9180. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9181. if (DEBUGGING(LEVELING)) {
  9182. SERIAL_ECHOLNPAIR("Raise to ", raised_z);
  9183. SERIAL_ECHOLNPAIR("MoveX to ", xhome);
  9184. SERIAL_ECHOLNPAIR("Lower to ", current_position[Z_AXIS]);
  9185. }
  9186. #endif
  9187. // Park old head: 1) raise 2) move to park position 3) lower
  9188. for (uint8_t i = 0; i < 3; i++)
  9189. planner.buffer_line(
  9190. i == 0 ? current_position[X_AXIS] : xhome,
  9191. current_position[Y_AXIS],
  9192. i == 2 ? current_position[Z_AXIS] : raised_z,
  9193. current_position[E_AXIS],
  9194. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  9195. active_extruder
  9196. );
  9197. stepper.synchronize();
  9198. }
  9199. // Apply Y & Z extruder offset (X offset is used as home pos with Dual X)
  9200. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  9201. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9202. // Activate the new extruder ahead of calling set_axis_is_at_home!
  9203. active_extruder = tmp_extruder;
  9204. // This function resets the max/min values - the current position may be overwritten below.
  9205. set_axis_is_at_home(X_AXIS);
  9206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9207. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  9208. #endif
  9209. // Only when auto-parking are carriages safe to move
  9210. if (dual_x_carriage_mode != DXC_AUTO_PARK_MODE) no_move = true;
  9211. switch (dual_x_carriage_mode) {
  9212. case DXC_FULL_CONTROL_MODE:
  9213. // New current position is the position of the activated extruder
  9214. current_position[X_AXIS] = inactive_extruder_x_pos;
  9215. // Save the inactive extruder's position (from the old current_position)
  9216. inactive_extruder_x_pos = destination[X_AXIS];
  9217. break;
  9218. case DXC_AUTO_PARK_MODE:
  9219. // record raised toolhead position for use by unpark
  9220. COPY(raised_parked_position, current_position);
  9221. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  9222. #if ENABLED(MAX_SOFTWARE_ENDSTOPS)
  9223. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  9224. #endif
  9225. active_extruder_parked = true;
  9226. delayed_move_time = 0;
  9227. break;
  9228. case DXC_DUPLICATION_MODE:
  9229. // If the new extruder is the left one, set it "parked"
  9230. // This triggers the second extruder to move into the duplication position
  9231. active_extruder_parked = (active_extruder == 0);
  9232. if (active_extruder_parked)
  9233. current_position[X_AXIS] = inactive_extruder_x_pos;
  9234. else
  9235. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  9236. inactive_extruder_x_pos = destination[X_AXIS];
  9237. extruder_duplication_enabled = false;
  9238. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9239. if (DEBUGGING(LEVELING)) {
  9240. SERIAL_ECHOLNPAIR("Set inactive_extruder_x_pos=", inactive_extruder_x_pos);
  9241. SERIAL_ECHOLNPGM("Clear extruder_duplication_enabled");
  9242. }
  9243. #endif
  9244. break;
  9245. }
  9246. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9247. if (DEBUGGING(LEVELING)) {
  9248. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  9249. DEBUG_POS("New extruder (parked)", current_position);
  9250. }
  9251. #endif
  9252. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  9253. #else // !DUAL_X_CARRIAGE
  9254. #if ENABLED(PARKING_EXTRUDER) // Dual Parking extruder
  9255. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  9256. float z_raise = PARKING_EXTRUDER_SECURITY_RAISE;
  9257. if (!no_move) {
  9258. const float parkingposx[] = PARKING_EXTRUDER_PARKING_X,
  9259. midpos = (parkingposx[0] + parkingposx[1]) * 0.5 + hotend_offset[X_AXIS][active_extruder],
  9260. grabpos = parkingposx[tmp_extruder] + hotend_offset[X_AXIS][active_extruder]
  9261. + (tmp_extruder == 0 ? -(PARKING_EXTRUDER_GRAB_DISTANCE) : PARKING_EXTRUDER_GRAB_DISTANCE);
  9262. /**
  9263. * Steps:
  9264. * 1. Raise Z-Axis to give enough clearance
  9265. * 2. Move to park position of old extruder
  9266. * 3. Disengage magnetic field, wait for delay
  9267. * 4. Move near new extruder
  9268. * 5. Engage magnetic field for new extruder
  9269. * 6. Move to parking incl. offset of new extruder
  9270. * 7. Lower Z-Axis
  9271. */
  9272. // STEP 1
  9273. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9274. SERIAL_ECHOLNPGM("Starting Autopark");
  9275. if (DEBUGGING(LEVELING)) DEBUG_POS("current position:", current_position);
  9276. #endif
  9277. current_position[Z_AXIS] += z_raise;
  9278. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9279. SERIAL_ECHOLNPGM("(1) Raise Z-Axis ");
  9280. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving to Raised Z-Position", current_position);
  9281. #endif
  9282. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9283. stepper.synchronize();
  9284. // STEP 2
  9285. current_position[X_AXIS] = parkingposx[active_extruder] + hotend_offset[X_AXIS][active_extruder];
  9286. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9287. SERIAL_ECHOLNPAIR("(2) Park extruder ", active_extruder);
  9288. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving ParkPos", current_position);
  9289. #endif
  9290. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9291. stepper.synchronize();
  9292. // STEP 3
  9293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9294. SERIAL_ECHOLNPGM("(3) Disengage magnet ");
  9295. #endif
  9296. pe_deactivate_magnet(active_extruder);
  9297. // STEP 4
  9298. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9299. SERIAL_ECHOLNPGM("(4) Move to position near new extruder");
  9300. #endif
  9301. current_position[X_AXIS] += (active_extruder == 0 ? 10 : -10); // move 10mm away from parked extruder
  9302. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9303. if (DEBUGGING(LEVELING)) DEBUG_POS("Moving away from parked extruder", current_position);
  9304. #endif
  9305. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9306. stepper.synchronize();
  9307. // STEP 5
  9308. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9309. SERIAL_ECHOLNPGM("(5) Engage magnetic field");
  9310. #endif
  9311. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9312. pe_activate_magnet(active_extruder); //just save power for inverted magnets
  9313. #endif
  9314. pe_activate_magnet(tmp_extruder);
  9315. // STEP 6
  9316. current_position[X_AXIS] = grabpos + (tmp_extruder == 0 ? (+10) : (-10));
  9317. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9318. current_position[X_AXIS] = grabpos;
  9319. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9320. SERIAL_ECHOLNPAIR("(6) Unpark extruder ", tmp_extruder);
  9321. if (DEBUGGING(LEVELING)) DEBUG_POS("Move UnparkPos", current_position);
  9322. #endif
  9323. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS]/2, active_extruder);
  9324. stepper.synchronize();
  9325. // Step 7
  9326. current_position[X_AXIS] = midpos - hotend_offset[X_AXIS][tmp_extruder];
  9327. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9328. SERIAL_ECHOLNPGM("(7) Move midway between hotends");
  9329. if (DEBUGGING(LEVELING)) DEBUG_POS("Move midway to new extruder", current_position);
  9330. #endif
  9331. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[X_AXIS], active_extruder);
  9332. stepper.synchronize();
  9333. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9334. SERIAL_ECHOLNPGM("Autopark done.");
  9335. #endif
  9336. }
  9337. else { // nomove == true
  9338. // Only engage magnetic field for new extruder
  9339. pe_activate_magnet(tmp_extruder);
  9340. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  9341. pe_activate_magnet(active_extruder); // Just save power for inverted magnets
  9342. #endif
  9343. }
  9344. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][tmp_extruder] - hotend_offset[Z_AXIS][active_extruder]; // Apply Zoffset
  9345. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9346. if (DEBUGGING(LEVELING)) DEBUG_POS("Applying Z-offset", current_position);
  9347. #endif
  9348. #endif // dualParking extruder
  9349. #if ENABLED(SWITCHING_NOZZLE)
  9350. #define DONT_SWITCH (SWITCHING_EXTRUDER_SERVO_NR == SWITCHING_NOZZLE_SERVO_NR)
  9351. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  9352. const float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  9353. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  9354. // Always raise by some amount (destination copied from current_position earlier)
  9355. current_position[Z_AXIS] += z_raise;
  9356. planner.buffer_line_kinematic(current_position, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  9357. move_nozzle_servo(tmp_extruder);
  9358. #endif
  9359. /**
  9360. * Set current_position to the position of the new nozzle.
  9361. * Offsets are based on linear distance, so we need to get
  9362. * the resulting position in coordinate space.
  9363. *
  9364. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  9365. * - With mesh leveling, update Z for the new position
  9366. * - Otherwise, just use the raw linear distance
  9367. *
  9368. * Software endstops are altered here too. Consider a case where:
  9369. * E0 at X=0 ... E1 at X=10
  9370. * When we switch to E1 now X=10, but E1 can't move left.
  9371. * To express this we apply the change in XY to the software endstops.
  9372. * E1 can move farther right than E0, so the right limit is extended.
  9373. *
  9374. * Note that we don't adjust the Z software endstops. Why not?
  9375. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  9376. * because the bed is 1mm lower at the new position. As long as
  9377. * the first nozzle is out of the way, the carriage should be
  9378. * allowed to move 1mm lower. This technically "breaks" the
  9379. * Z software endstop. But this is technically correct (and
  9380. * there is no viable alternative).
  9381. */
  9382. #if ABL_PLANAR
  9383. // Offset extruder, make sure to apply the bed level rotation matrix
  9384. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  9385. hotend_offset[Y_AXIS][tmp_extruder],
  9386. 0),
  9387. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  9388. hotend_offset[Y_AXIS][active_extruder],
  9389. 0),
  9390. offset_vec = tmp_offset_vec - act_offset_vec;
  9391. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9392. if (DEBUGGING(LEVELING)) {
  9393. tmp_offset_vec.debug(PSTR("tmp_offset_vec"));
  9394. act_offset_vec.debug(PSTR("act_offset_vec"));
  9395. offset_vec.debug(PSTR("offset_vec (BEFORE)"));
  9396. }
  9397. #endif
  9398. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  9399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9400. if (DEBUGGING(LEVELING)) offset_vec.debug(PSTR("offset_vec (AFTER)"));
  9401. #endif
  9402. // Adjustments to the current position
  9403. const float xydiff[2] = { offset_vec.x, offset_vec.y };
  9404. current_position[Z_AXIS] += offset_vec.z;
  9405. #else // !ABL_PLANAR
  9406. const float xydiff[2] = {
  9407. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  9408. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  9409. };
  9410. #if ENABLED(MESH_BED_LEVELING)
  9411. if (planner.leveling_active) {
  9412. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9413. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  9414. #endif
  9415. float x2 = current_position[X_AXIS] + xydiff[X_AXIS],
  9416. y2 = current_position[Y_AXIS] + xydiff[Y_AXIS],
  9417. z1 = current_position[Z_AXIS], z2 = z1;
  9418. planner.apply_leveling(current_position[X_AXIS], current_position[Y_AXIS], z1);
  9419. planner.apply_leveling(x2, y2, z2);
  9420. current_position[Z_AXIS] += z2 - z1;
  9421. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9422. if (DEBUGGING(LEVELING))
  9423. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  9424. #endif
  9425. }
  9426. #endif // MESH_BED_LEVELING
  9427. #endif // !HAS_ABL
  9428. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9429. if (DEBUGGING(LEVELING)) {
  9430. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  9431. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  9432. SERIAL_ECHOLNPGM(" }");
  9433. }
  9434. #endif
  9435. // The newly-selected extruder XY is actually at...
  9436. current_position[X_AXIS] += xydiff[X_AXIS];
  9437. current_position[Y_AXIS] += xydiff[Y_AXIS];
  9438. // Set the new active extruder
  9439. active_extruder = tmp_extruder;
  9440. #endif // !DUAL_X_CARRIAGE
  9441. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9442. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  9443. #endif
  9444. // Tell the planner the new "current position"
  9445. SYNC_PLAN_POSITION_KINEMATIC();
  9446. // Move to the "old position" (move the extruder into place)
  9447. #if ENABLED(SWITCHING_NOZZLE)
  9448. destination[Z_AXIS] += z_diff; // Include the Z restore with the "move back"
  9449. #endif
  9450. if (!no_move && IsRunning()) {
  9451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9452. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  9453. #endif
  9454. // Move back to the original (or tweaked) position
  9455. do_blocking_move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS]);
  9456. }
  9457. #if ENABLED(SWITCHING_NOZZLE)
  9458. else {
  9459. // Move back down. (Including when the new tool is higher.)
  9460. do_blocking_move_to_z(destination[Z_AXIS], planner.max_feedrate_mm_s[Z_AXIS]);
  9461. }
  9462. #endif
  9463. } // (tmp_extruder != active_extruder)
  9464. stepper.synchronize();
  9465. #if ENABLED(EXT_SOLENOID) && !ENABLED(PARKING_EXTRUDER)
  9466. disable_all_solenoids();
  9467. enable_solenoid_on_active_extruder();
  9468. #endif // EXT_SOLENOID
  9469. feedrate_mm_s = old_feedrate_mm_s;
  9470. #else // HOTENDS <= 1
  9471. UNUSED(fr_mm_s);
  9472. UNUSED(no_move);
  9473. #if ENABLED(MK2_MULTIPLEXER)
  9474. if (tmp_extruder >= E_STEPPERS)
  9475. return invalid_extruder_error(tmp_extruder);
  9476. select_multiplexed_stepper(tmp_extruder);
  9477. #endif
  9478. // Set the new active extruder
  9479. active_extruder = tmp_extruder;
  9480. #endif // HOTENDS <= 1
  9481. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  9482. stepper.synchronize();
  9483. move_extruder_servo(active_extruder);
  9484. #endif
  9485. #if HAS_FANMUX
  9486. fanmux_switch(active_extruder);
  9487. #endif
  9488. SERIAL_ECHO_START();
  9489. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  9490. #endif // !MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  9491. }
  9492. /**
  9493. * T0-T3: Switch tool, usually switching extruders
  9494. *
  9495. * F[units/min] Set the movement feedrate
  9496. * S1 Don't move the tool in XY after change
  9497. */
  9498. inline void gcode_T(const uint8_t tmp_extruder) {
  9499. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9500. if (DEBUGGING(LEVELING)) {
  9501. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  9502. SERIAL_CHAR(')');
  9503. SERIAL_EOL();
  9504. DEBUG_POS("BEFORE", current_position);
  9505. }
  9506. #endif
  9507. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  9508. tool_change(tmp_extruder);
  9509. #elif HOTENDS > 1
  9510. tool_change(
  9511. tmp_extruder,
  9512. MMM_TO_MMS(parser.linearval('F')),
  9513. (tmp_extruder == active_extruder) || parser.boolval('S')
  9514. );
  9515. #endif
  9516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  9517. if (DEBUGGING(LEVELING)) {
  9518. DEBUG_POS("AFTER", current_position);
  9519. SERIAL_ECHOLNPGM("<<< gcode_T");
  9520. }
  9521. #endif
  9522. }
  9523. /**
  9524. * Process the parsed command and dispatch it to its handler
  9525. */
  9526. void process_parsed_command() {
  9527. KEEPALIVE_STATE(IN_HANDLER);
  9528. // Handle a known G, M, or T
  9529. switch (parser.command_letter) {
  9530. case 'G': switch (parser.codenum) {
  9531. // G0, G1
  9532. case 0:
  9533. case 1:
  9534. #if IS_SCARA
  9535. gcode_G0_G1(parser.codenum == 0);
  9536. #else
  9537. gcode_G0_G1();
  9538. #endif
  9539. break;
  9540. // G2, G3
  9541. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  9542. case 2: // G2: CW ARC
  9543. case 3: // G3: CCW ARC
  9544. gcode_G2_G3(parser.codenum == 2);
  9545. break;
  9546. #endif
  9547. // G4 Dwell
  9548. case 4:
  9549. gcode_G4();
  9550. break;
  9551. #if ENABLED(BEZIER_CURVE_SUPPORT)
  9552. case 5: // G5: Cubic B_spline
  9553. gcode_G5();
  9554. break;
  9555. #endif // BEZIER_CURVE_SUPPORT
  9556. #if ENABLED(FWRETRACT)
  9557. case 10: // G10: retract
  9558. gcode_G10();
  9559. break;
  9560. case 11: // G11: retract_recover
  9561. gcode_G11();
  9562. break;
  9563. #endif // FWRETRACT
  9564. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  9565. case 12:
  9566. gcode_G12(); // G12: Nozzle Clean
  9567. break;
  9568. #endif // NOZZLE_CLEAN_FEATURE
  9569. #if ENABLED(CNC_WORKSPACE_PLANES)
  9570. case 17: // G17: Select Plane XY
  9571. gcode_G17();
  9572. break;
  9573. case 18: // G18: Select Plane ZX
  9574. gcode_G18();
  9575. break;
  9576. case 19: // G19: Select Plane YZ
  9577. gcode_G19();
  9578. break;
  9579. #endif // CNC_WORKSPACE_PLANES
  9580. #if ENABLED(INCH_MODE_SUPPORT)
  9581. case 20: // G20: Inch Mode
  9582. gcode_G20();
  9583. break;
  9584. case 21: // G21: MM Mode
  9585. gcode_G21();
  9586. break;
  9587. #endif // INCH_MODE_SUPPORT
  9588. #if ENABLED(G26_MESH_VALIDATION)
  9589. case 26: // G26: Mesh Validation Pattern generation
  9590. gcode_G26();
  9591. break;
  9592. #endif // G26_MESH_VALIDATION
  9593. #if ENABLED(NOZZLE_PARK_FEATURE)
  9594. case 27: // G27: Nozzle Park
  9595. gcode_G27();
  9596. break;
  9597. #endif // NOZZLE_PARK_FEATURE
  9598. case 28: // G28: Home all axes, one at a time
  9599. gcode_G28(false);
  9600. break;
  9601. #if HAS_LEVELING
  9602. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points,
  9603. // or provides access to the UBL System if enabled.
  9604. gcode_G29();
  9605. break;
  9606. #endif // HAS_LEVELING
  9607. #if HAS_BED_PROBE
  9608. case 30: // G30 Single Z probe
  9609. gcode_G30();
  9610. break;
  9611. #if ENABLED(Z_PROBE_SLED)
  9612. case 31: // G31: dock the sled
  9613. gcode_G31();
  9614. break;
  9615. case 32: // G32: undock the sled
  9616. gcode_G32();
  9617. break;
  9618. #endif // Z_PROBE_SLED
  9619. #endif // HAS_BED_PROBE
  9620. #if ENABLED(DELTA_AUTO_CALIBRATION)
  9621. case 33: // G33: Delta Auto-Calibration
  9622. gcode_G33();
  9623. break;
  9624. #endif // DELTA_AUTO_CALIBRATION
  9625. #if ENABLED(G38_PROBE_TARGET)
  9626. case 38: // G38.2 & G38.3
  9627. if (parser.subcode == 2 || parser.subcode == 3)
  9628. gcode_G38(parser.subcode == 2);
  9629. break;
  9630. #endif
  9631. case 90: // G90
  9632. relative_mode = false;
  9633. break;
  9634. case 91: // G91
  9635. relative_mode = true;
  9636. break;
  9637. case 92: // G92
  9638. gcode_G92();
  9639. break;
  9640. #if HAS_MESH
  9641. case 42:
  9642. gcode_G42();
  9643. break;
  9644. #endif
  9645. #if ENABLED(DEBUG_GCODE_PARSER)
  9646. case 800:
  9647. parser.debug(); // GCode Parser Test for G
  9648. break;
  9649. #endif
  9650. }
  9651. break;
  9652. case 'M': switch (parser.codenum) {
  9653. #if HAS_RESUME_CONTINUE
  9654. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  9655. case 1: // M1: Conditional stop - Wait for user button press on LCD
  9656. gcode_M0_M1();
  9657. break;
  9658. #endif // ULTIPANEL
  9659. #if ENABLED(SPINDLE_LASER_ENABLE)
  9660. case 3:
  9661. gcode_M3_M4(true); // M3: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CW
  9662. break; // synchronizes with movement commands
  9663. case 4:
  9664. gcode_M3_M4(false); // M4: turn spindle/laser on, set laser/spindle power/speed, set rotation direction CCW
  9665. break; // synchronizes with movement commands
  9666. case 5:
  9667. gcode_M5(); // M5 - turn spindle/laser off
  9668. break; // synchronizes with movement commands
  9669. #endif
  9670. case 17: // M17: Enable all stepper motors
  9671. gcode_M17();
  9672. break;
  9673. #if ENABLED(SDSUPPORT)
  9674. case 20: // M20: list SD card
  9675. gcode_M20(); break;
  9676. case 21: // M21: init SD card
  9677. gcode_M21(); break;
  9678. case 22: // M22: release SD card
  9679. gcode_M22(); break;
  9680. case 23: // M23: Select file
  9681. gcode_M23(); break;
  9682. case 24: // M24: Start SD print
  9683. gcode_M24(); break;
  9684. case 25: // M25: Pause SD print
  9685. gcode_M25(); break;
  9686. case 26: // M26: Set SD index
  9687. gcode_M26(); break;
  9688. case 27: // M27: Get SD status
  9689. gcode_M27(); break;
  9690. case 28: // M28: Start SD write
  9691. gcode_M28(); break;
  9692. case 29: // M29: Stop SD write
  9693. gcode_M29(); break;
  9694. case 30: // M30 <filename> Delete File
  9695. gcode_M30(); break;
  9696. case 32: // M32: Select file and start SD print
  9697. gcode_M32(); break;
  9698. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  9699. case 33: // M33: Get the long full path to a file or folder
  9700. gcode_M33(); break;
  9701. #endif
  9702. #if ENABLED(SDCARD_SORT_ALPHA) && ENABLED(SDSORT_GCODE)
  9703. case 34: // M34: Set SD card sorting options
  9704. gcode_M34(); break;
  9705. #endif // SDCARD_SORT_ALPHA && SDSORT_GCODE
  9706. case 928: // M928: Start SD write
  9707. gcode_M928(); break;
  9708. #endif // SDSUPPORT
  9709. case 31: // M31: Report time since the start of SD print or last M109
  9710. gcode_M31(); break;
  9711. case 42: // M42: Change pin state
  9712. gcode_M42(); break;
  9713. #if ENABLED(PINS_DEBUGGING)
  9714. case 43: // M43: Read pin state
  9715. gcode_M43(); break;
  9716. #endif
  9717. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  9718. case 48: // M48: Z probe repeatability test
  9719. gcode_M48();
  9720. break;
  9721. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  9722. #if ENABLED(G26_MESH_VALIDATION)
  9723. case 49: // M49: Turn on or off G26 debug flag for verbose output
  9724. gcode_M49();
  9725. break;
  9726. #endif // G26_MESH_VALIDATION
  9727. #if ENABLED(ULTRA_LCD) && ENABLED(LCD_SET_PROGRESS_MANUALLY)
  9728. case 73: // M73: Set print progress percentage
  9729. gcode_M73(); break;
  9730. #endif
  9731. case 75: // M75: Start print timer
  9732. gcode_M75(); break;
  9733. case 76: // M76: Pause print timer
  9734. gcode_M76(); break;
  9735. case 77: // M77: Stop print timer
  9736. gcode_M77(); break;
  9737. #if ENABLED(PRINTCOUNTER)
  9738. case 78: // M78: Show print statistics
  9739. gcode_M78(); break;
  9740. #endif
  9741. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  9742. case 100: // M100: Free Memory Report
  9743. gcode_M100();
  9744. break;
  9745. #endif
  9746. case 104: // M104: Set hot end temperature
  9747. gcode_M104();
  9748. break;
  9749. case 110: // M110: Set Current Line Number
  9750. gcode_M110();
  9751. break;
  9752. case 111: // M111: Set debug level
  9753. gcode_M111();
  9754. break;
  9755. #if DISABLED(EMERGENCY_PARSER)
  9756. case 108: // M108: Cancel Waiting
  9757. gcode_M108();
  9758. break;
  9759. case 112: // M112: Emergency Stop
  9760. gcode_M112();
  9761. break;
  9762. case 410: // M410 quickstop - Abort all the planned moves.
  9763. gcode_M410();
  9764. break;
  9765. #endif
  9766. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  9767. case 113: // M113: Set Host Keepalive interval
  9768. gcode_M113();
  9769. break;
  9770. #endif
  9771. case 140: // M140: Set bed temperature
  9772. gcode_M140();
  9773. break;
  9774. case 105: // M105: Report current temperature
  9775. gcode_M105();
  9776. KEEPALIVE_STATE(NOT_BUSY);
  9777. return; // "ok" already printed
  9778. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  9779. case 155: // M155: Set temperature auto-report interval
  9780. gcode_M155();
  9781. break;
  9782. #endif
  9783. case 109: // M109: Wait for hotend temperature to reach target
  9784. gcode_M109();
  9785. break;
  9786. #if HAS_TEMP_BED
  9787. case 190: // M190: Wait for bed temperature to reach target
  9788. gcode_M190();
  9789. break;
  9790. #endif // HAS_TEMP_BED
  9791. #if FAN_COUNT > 0
  9792. case 106: // M106: Fan On
  9793. gcode_M106();
  9794. break;
  9795. case 107: // M107: Fan Off
  9796. gcode_M107();
  9797. break;
  9798. #endif // FAN_COUNT > 0
  9799. #if ENABLED(PARK_HEAD_ON_PAUSE)
  9800. case 125: // M125: Store current position and move to filament change position
  9801. gcode_M125(); break;
  9802. #endif
  9803. #if ENABLED(BARICUDA)
  9804. // PWM for HEATER_1_PIN
  9805. #if HAS_HEATER_1
  9806. case 126: // M126: valve open
  9807. gcode_M126();
  9808. break;
  9809. case 127: // M127: valve closed
  9810. gcode_M127();
  9811. break;
  9812. #endif // HAS_HEATER_1
  9813. // PWM for HEATER_2_PIN
  9814. #if HAS_HEATER_2
  9815. case 128: // M128: valve open
  9816. gcode_M128();
  9817. break;
  9818. case 129: // M129: valve closed
  9819. gcode_M129();
  9820. break;
  9821. #endif // HAS_HEATER_2
  9822. #endif // BARICUDA
  9823. #if HAS_POWER_SWITCH
  9824. case 80: // M80: Turn on Power Supply
  9825. gcode_M80();
  9826. break;
  9827. #endif // HAS_POWER_SWITCH
  9828. case 81: // M81: Turn off Power, including Power Supply, if possible
  9829. gcode_M81();
  9830. break;
  9831. case 82: // M82: Set E axis normal mode (same as other axes)
  9832. gcode_M82();
  9833. break;
  9834. case 83: // M83: Set E axis relative mode
  9835. gcode_M83();
  9836. break;
  9837. case 18: // M18 => M84
  9838. case 84: // M84: Disable all steppers or set timeout
  9839. gcode_M18_M84();
  9840. break;
  9841. case 85: // M85: Set inactivity stepper shutdown timeout
  9842. gcode_M85();
  9843. break;
  9844. case 92: // M92: Set the steps-per-unit for one or more axes
  9845. gcode_M92();
  9846. break;
  9847. case 114: // M114: Report current position
  9848. gcode_M114();
  9849. break;
  9850. case 115: // M115: Report capabilities
  9851. gcode_M115();
  9852. break;
  9853. case 117: // M117: Set LCD message text, if possible
  9854. gcode_M117();
  9855. break;
  9856. case 118: // M118: Display a message in the host console
  9857. gcode_M118();
  9858. break;
  9859. case 119: // M119: Report endstop states
  9860. gcode_M119();
  9861. break;
  9862. case 120: // M120: Enable endstops
  9863. gcode_M120();
  9864. break;
  9865. case 121: // M121: Disable endstops
  9866. gcode_M121();
  9867. break;
  9868. #if ENABLED(ULTIPANEL)
  9869. case 145: // M145: Set material heatup parameters
  9870. gcode_M145();
  9871. break;
  9872. #endif
  9873. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  9874. case 149: // M149: Set temperature units
  9875. gcode_M149();
  9876. break;
  9877. #endif
  9878. #if HAS_COLOR_LEDS
  9879. case 150: // M150: Set Status LED Color
  9880. gcode_M150();
  9881. break;
  9882. #endif // HAS_COLOR_LEDS
  9883. #if ENABLED(MIXING_EXTRUDER)
  9884. case 163: // M163: Set a component weight for mixing extruder
  9885. gcode_M163();
  9886. break;
  9887. #if MIXING_VIRTUAL_TOOLS > 1
  9888. case 164: // M164: Save current mix as a virtual extruder
  9889. gcode_M164();
  9890. break;
  9891. #endif
  9892. #if ENABLED(DIRECT_MIXING_IN_G1)
  9893. case 165: // M165: Set multiple mix weights
  9894. gcode_M165();
  9895. break;
  9896. #endif
  9897. #endif
  9898. case 200: // M200: Set filament diameter, E to cubic units
  9899. gcode_M200();
  9900. break;
  9901. case 201: // M201: Set max acceleration for print moves (units/s^2)
  9902. gcode_M201();
  9903. break;
  9904. #if 0 // Not used for Sprinter/grbl gen6
  9905. case 202: // M202
  9906. gcode_M202();
  9907. break;
  9908. #endif
  9909. case 203: // M203: Set max feedrate (units/sec)
  9910. gcode_M203();
  9911. break;
  9912. case 204: // M204: Set acceleration
  9913. gcode_M204();
  9914. break;
  9915. case 205: // M205: Set advanced settings
  9916. gcode_M205();
  9917. break;
  9918. #if HAS_M206_COMMAND
  9919. case 206: // M206: Set home offsets
  9920. gcode_M206();
  9921. break;
  9922. #endif
  9923. #if ENABLED(DELTA)
  9924. case 665: // M665: Set delta configurations
  9925. gcode_M665();
  9926. break;
  9927. #endif
  9928. #if ENABLED(DELTA) || ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
  9929. case 666: // M666: Set delta or dual endstop adjustment
  9930. gcode_M666();
  9931. break;
  9932. #endif
  9933. #if ENABLED(FWRETRACT)
  9934. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  9935. gcode_M207();
  9936. break;
  9937. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  9938. gcode_M208();
  9939. break;
  9940. case 209: // M209: Turn Automatic Retract Detection on/off
  9941. if (MIN_AUTORETRACT <= MAX_AUTORETRACT) gcode_M209();
  9942. break;
  9943. #endif // FWRETRACT
  9944. case 211: // M211: Enable, Disable, and/or Report software endstops
  9945. gcode_M211();
  9946. break;
  9947. #if HOTENDS > 1
  9948. case 218: // M218: Set a tool offset
  9949. gcode_M218();
  9950. break;
  9951. #endif // HOTENDS > 1
  9952. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  9953. gcode_M220();
  9954. break;
  9955. case 221: // M221: Set Flow Percentage
  9956. gcode_M221();
  9957. break;
  9958. case 226: // M226: Wait until a pin reaches a state
  9959. gcode_M226();
  9960. break;
  9961. #if HAS_SERVOS
  9962. case 280: // M280: Set servo position absolute
  9963. gcode_M280();
  9964. break;
  9965. #endif // HAS_SERVOS
  9966. #if ENABLED(BABYSTEPPING)
  9967. case 290: // M290: Babystepping
  9968. gcode_M290();
  9969. break;
  9970. #endif // BABYSTEPPING
  9971. #if HAS_BUZZER
  9972. case 300: // M300: Play beep tone
  9973. gcode_M300();
  9974. break;
  9975. #endif // HAS_BUZZER
  9976. #if ENABLED(PIDTEMP)
  9977. case 301: // M301: Set hotend PID parameters
  9978. gcode_M301();
  9979. break;
  9980. #endif // PIDTEMP
  9981. #if ENABLED(PIDTEMPBED)
  9982. case 304: // M304: Set bed PID parameters
  9983. gcode_M304();
  9984. break;
  9985. #endif // PIDTEMPBED
  9986. #if defined(CHDK) || HAS_PHOTOGRAPH
  9987. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  9988. gcode_M240();
  9989. break;
  9990. #endif // CHDK || PHOTOGRAPH_PIN
  9991. #if HAS_LCD_CONTRAST
  9992. case 250: // M250: Set LCD contrast
  9993. gcode_M250();
  9994. break;
  9995. #endif // HAS_LCD_CONTRAST
  9996. #if ENABLED(EXPERIMENTAL_I2CBUS)
  9997. case 260: // M260: Send data to an i2c slave
  9998. gcode_M260();
  9999. break;
  10000. case 261: // M261: Request data from an i2c slave
  10001. gcode_M261();
  10002. break;
  10003. #endif // EXPERIMENTAL_I2CBUS
  10004. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10005. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  10006. gcode_M302();
  10007. break;
  10008. #endif // PREVENT_COLD_EXTRUSION
  10009. case 303: // M303: PID autotune
  10010. gcode_M303();
  10011. break;
  10012. #if ENABLED(MORGAN_SCARA)
  10013. case 360: // M360: SCARA Theta pos1
  10014. if (gcode_M360()) return;
  10015. break;
  10016. case 361: // M361: SCARA Theta pos2
  10017. if (gcode_M361()) return;
  10018. break;
  10019. case 362: // M362: SCARA Psi pos1
  10020. if (gcode_M362()) return;
  10021. break;
  10022. case 363: // M363: SCARA Psi pos2
  10023. if (gcode_M363()) return;
  10024. break;
  10025. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  10026. if (gcode_M364()) return;
  10027. break;
  10028. #endif // SCARA
  10029. case 400: // M400: Finish all moves
  10030. gcode_M400();
  10031. break;
  10032. #if HAS_BED_PROBE
  10033. case 401: // M401: Deploy probe
  10034. gcode_M401();
  10035. break;
  10036. case 402: // M402: Stow probe
  10037. gcode_M402();
  10038. break;
  10039. #endif // HAS_BED_PROBE
  10040. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  10041. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  10042. gcode_M404();
  10043. break;
  10044. case 405: // M405: Turn on filament sensor for control
  10045. gcode_M405();
  10046. break;
  10047. case 406: // M406: Turn off filament sensor for control
  10048. gcode_M406();
  10049. break;
  10050. case 407: // M407: Display measured filament diameter
  10051. gcode_M407();
  10052. break;
  10053. #endif // FILAMENT_WIDTH_SENSOR
  10054. #if HAS_LEVELING
  10055. case 420: // M420: Enable/Disable Bed Leveling
  10056. gcode_M420();
  10057. break;
  10058. #endif
  10059. #if HAS_MESH
  10060. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  10061. gcode_M421();
  10062. break;
  10063. #endif
  10064. #if HAS_M206_COMMAND
  10065. case 428: // M428: Apply current_position to home_offset
  10066. gcode_M428();
  10067. break;
  10068. #endif
  10069. case 500: // M500: Store settings in EEPROM
  10070. gcode_M500();
  10071. break;
  10072. case 501: // M501: Read settings from EEPROM
  10073. gcode_M501();
  10074. break;
  10075. case 502: // M502: Revert to default settings
  10076. gcode_M502();
  10077. break;
  10078. #if DISABLED(DISABLE_M503)
  10079. case 503: // M503: print settings currently in memory
  10080. gcode_M503();
  10081. break;
  10082. #endif
  10083. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  10084. case 540: // M540: Set abort on endstop hit for SD printing
  10085. gcode_M540();
  10086. break;
  10087. #endif
  10088. #if HAS_BED_PROBE
  10089. case 851: // M851: Set Z Probe Z Offset
  10090. gcode_M851();
  10091. break;
  10092. #endif // HAS_BED_PROBE
  10093. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  10094. case 600: // M600: Pause for filament change
  10095. gcode_M600();
  10096. break;
  10097. #endif // ADVANCED_PAUSE_FEATURE
  10098. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  10099. case 605: // M605: Set Dual X Carriage movement mode
  10100. gcode_M605();
  10101. break;
  10102. #endif // DUAL_X_CARRIAGE
  10103. #if ENABLED(MK2_MULTIPLEXER)
  10104. case 702: // M702: Unload all extruders
  10105. gcode_M702();
  10106. break;
  10107. #endif
  10108. #if ENABLED(LIN_ADVANCE)
  10109. case 900: // M900: Set advance K factor.
  10110. gcode_M900();
  10111. break;
  10112. #endif
  10113. #if ENABLED(HAVE_TMC2130)
  10114. case 906: // M906: Set motor current in milliamps using axis codes X, Y, Z, E
  10115. gcode_M906();
  10116. break;
  10117. #endif
  10118. case 907: // M907: Set digital trimpot motor current using axis codes.
  10119. gcode_M907();
  10120. break;
  10121. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  10122. case 908: // M908: Control digital trimpot directly.
  10123. gcode_M908();
  10124. break;
  10125. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  10126. case 909: // M909: Print digipot/DAC current value
  10127. gcode_M909();
  10128. break;
  10129. case 910: // M910: Commit digipot/DAC value to external EEPROM
  10130. gcode_M910();
  10131. break;
  10132. #endif
  10133. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  10134. #if ENABLED(HAVE_TMC2130)
  10135. case 911: // M911: Report TMC2130 prewarn triggered flags
  10136. gcode_M911();
  10137. break;
  10138. case 912: // M911: Clear TMC2130 prewarn triggered flags
  10139. gcode_M912();
  10140. break;
  10141. #if ENABLED(HYBRID_THRESHOLD)
  10142. case 913: // M913: Set HYBRID_THRESHOLD speed.
  10143. gcode_M913();
  10144. break;
  10145. #endif
  10146. #if ENABLED(SENSORLESS_HOMING)
  10147. case 914: // M914: Set SENSORLESS_HOMING sensitivity.
  10148. gcode_M914();
  10149. break;
  10150. #endif
  10151. #endif
  10152. #if HAS_MICROSTEPS
  10153. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  10154. gcode_M350();
  10155. break;
  10156. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  10157. gcode_M351();
  10158. break;
  10159. #endif // HAS_MICROSTEPS
  10160. case 355: // M355 set case light brightness
  10161. gcode_M355();
  10162. break;
  10163. #if ENABLED(DEBUG_GCODE_PARSER)
  10164. case 800:
  10165. parser.debug(); // GCode Parser Test for M
  10166. break;
  10167. #endif
  10168. #if ENABLED(I2C_POSITION_ENCODERS)
  10169. case 860: // M860 Report encoder module position
  10170. gcode_M860();
  10171. break;
  10172. case 861: // M861 Report encoder module status
  10173. gcode_M861();
  10174. break;
  10175. case 862: // M862 Perform axis test
  10176. gcode_M862();
  10177. break;
  10178. case 863: // M863 Calibrate steps/mm
  10179. gcode_M863();
  10180. break;
  10181. case 864: // M864 Change module address
  10182. gcode_M864();
  10183. break;
  10184. case 865: // M865 Check module firmware version
  10185. gcode_M865();
  10186. break;
  10187. case 866: // M866 Report axis error count
  10188. gcode_M866();
  10189. break;
  10190. case 867: // M867 Toggle error correction
  10191. gcode_M867();
  10192. break;
  10193. case 868: // M868 Set error correction threshold
  10194. gcode_M868();
  10195. break;
  10196. case 869: // M869 Report axis error
  10197. gcode_M869();
  10198. break;
  10199. #endif // I2C_POSITION_ENCODERS
  10200. case 999: // M999: Restart after being Stopped
  10201. gcode_M999();
  10202. break;
  10203. }
  10204. break;
  10205. case 'T':
  10206. gcode_T(parser.codenum);
  10207. break;
  10208. default: parser.unknown_command_error();
  10209. }
  10210. KEEPALIVE_STATE(NOT_BUSY);
  10211. ok_to_send();
  10212. }
  10213. void process_next_command() {
  10214. char * const current_command = command_queue[cmd_queue_index_r];
  10215. if (DEBUGGING(ECHO)) {
  10216. SERIAL_ECHO_START();
  10217. SERIAL_ECHOLN(current_command);
  10218. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  10219. SERIAL_ECHOPAIR("slot:", cmd_queue_index_r);
  10220. M100_dump_routine(" Command Queue:", (const char*)command_queue, (const char*)(command_queue + sizeof(command_queue)));
  10221. #endif
  10222. }
  10223. // Parse the next command in the queue
  10224. parser.parse(current_command);
  10225. process_parsed_command();
  10226. }
  10227. /**
  10228. * Send a "Resend: nnn" message to the host to
  10229. * indicate that a command needs to be re-sent.
  10230. */
  10231. void FlushSerialRequestResend() {
  10232. //char command_queue[cmd_queue_index_r][100]="Resend:";
  10233. MYSERIAL.flush();
  10234. SERIAL_PROTOCOLPGM(MSG_RESEND);
  10235. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  10236. ok_to_send();
  10237. }
  10238. /**
  10239. * Send an "ok" message to the host, indicating
  10240. * that a command was successfully processed.
  10241. *
  10242. * If ADVANCED_OK is enabled also include:
  10243. * N<int> Line number of the command, if any
  10244. * P<int> Planner space remaining
  10245. * B<int> Block queue space remaining
  10246. */
  10247. void ok_to_send() {
  10248. refresh_cmd_timeout();
  10249. if (!send_ok[cmd_queue_index_r]) return;
  10250. SERIAL_PROTOCOLPGM(MSG_OK);
  10251. #if ENABLED(ADVANCED_OK)
  10252. char* p = command_queue[cmd_queue_index_r];
  10253. if (*p == 'N') {
  10254. SERIAL_PROTOCOL(' ');
  10255. SERIAL_ECHO(*p++);
  10256. while (NUMERIC_SIGNED(*p))
  10257. SERIAL_ECHO(*p++);
  10258. }
  10259. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  10260. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  10261. #endif
  10262. SERIAL_EOL();
  10263. }
  10264. #if HAS_SOFTWARE_ENDSTOPS
  10265. /**
  10266. * Constrain the given coordinates to the software endstops.
  10267. *
  10268. * For DELTA/SCARA the XY constraint is based on the smallest
  10269. * radius within the set software endstops.
  10270. */
  10271. void clamp_to_software_endstops(float target[XYZ]) {
  10272. if (!soft_endstops_enabled) return;
  10273. #if IS_KINEMATIC
  10274. const float dist_2 = HYPOT2(target[X_AXIS], target[Y_AXIS]);
  10275. if (dist_2 > soft_endstop_radius_2) {
  10276. const float ratio = soft_endstop_radius / SQRT(dist_2); // 200 / 300 = 0.66
  10277. target[X_AXIS] *= ratio;
  10278. target[Y_AXIS] *= ratio;
  10279. }
  10280. #else
  10281. #if ENABLED(MIN_SOFTWARE_ENDSTOP_X)
  10282. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  10283. #endif
  10284. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Y)
  10285. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  10286. #endif
  10287. #if ENABLED(MAX_SOFTWARE_ENDSTOP_X)
  10288. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  10289. #endif
  10290. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Y)
  10291. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  10292. #endif
  10293. #endif
  10294. #if ENABLED(MIN_SOFTWARE_ENDSTOP_Z)
  10295. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  10296. #endif
  10297. #if ENABLED(MAX_SOFTWARE_ENDSTOP_Z)
  10298. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  10299. #endif
  10300. }
  10301. #endif
  10302. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10303. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  10304. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt[A]
  10305. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt[A]
  10306. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  10307. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  10308. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  10309. #else
  10310. #define ABL_BG_SPACING(A) bilinear_grid_spacing[A]
  10311. #define ABL_BG_FACTOR(A) bilinear_grid_factor[A]
  10312. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  10313. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  10314. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  10315. #endif
  10316. // Get the Z adjustment for non-linear bed leveling
  10317. float bilinear_z_offset(const float raw[XYZ]) {
  10318. static float z1, d2, z3, d4, L, D, ratio_x, ratio_y,
  10319. last_x = -999.999, last_y = -999.999;
  10320. // Whole units for the grid line indices. Constrained within bounds.
  10321. static int8_t gridx, gridy, nextx, nexty,
  10322. last_gridx = -99, last_gridy = -99;
  10323. // XY relative to the probed area
  10324. const float rx = raw[X_AXIS] - bilinear_start[X_AXIS],
  10325. ry = raw[Y_AXIS] - bilinear_start[Y_AXIS];
  10326. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  10327. // Keep using the last grid box
  10328. #define FAR_EDGE_OR_BOX 2
  10329. #else
  10330. // Just use the grid far edge
  10331. #define FAR_EDGE_OR_BOX 1
  10332. #endif
  10333. if (last_x != rx) {
  10334. last_x = rx;
  10335. ratio_x = rx * ABL_BG_FACTOR(X_AXIS);
  10336. const float gx = constrain(FLOOR(ratio_x), 0, ABL_BG_POINTS_X - FAR_EDGE_OR_BOX);
  10337. ratio_x -= gx; // Subtract whole to get the ratio within the grid box
  10338. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10339. // Beyond the grid maintain height at grid edges
  10340. NOLESS(ratio_x, 0); // Never < 0.0. (> 1.0 is ok when nextx==gridx.)
  10341. #endif
  10342. gridx = gx;
  10343. nextx = min(gridx + 1, ABL_BG_POINTS_X - 1);
  10344. }
  10345. if (last_y != ry || last_gridx != gridx) {
  10346. if (last_y != ry) {
  10347. last_y = ry;
  10348. ratio_y = ry * ABL_BG_FACTOR(Y_AXIS);
  10349. const float gy = constrain(FLOOR(ratio_y), 0, ABL_BG_POINTS_Y - FAR_EDGE_OR_BOX);
  10350. ratio_y -= gy;
  10351. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  10352. // Beyond the grid maintain height at grid edges
  10353. NOLESS(ratio_y, 0); // Never < 0.0. (> 1.0 is ok when nexty==gridy.)
  10354. #endif
  10355. gridy = gy;
  10356. nexty = min(gridy + 1, ABL_BG_POINTS_Y - 1);
  10357. }
  10358. if (last_gridx != gridx || last_gridy != gridy) {
  10359. last_gridx = gridx;
  10360. last_gridy = gridy;
  10361. // Z at the box corners
  10362. z1 = ABL_BG_GRID(gridx, gridy); // left-front
  10363. d2 = ABL_BG_GRID(gridx, nexty) - z1; // left-back (delta)
  10364. z3 = ABL_BG_GRID(nextx, gridy); // right-front
  10365. d4 = ABL_BG_GRID(nextx, nexty) - z3; // right-back (delta)
  10366. }
  10367. // Bilinear interpolate. Needed since ry or gridx has changed.
  10368. L = z1 + d2 * ratio_y; // Linear interp. LF -> LB
  10369. const float R = z3 + d4 * ratio_y; // Linear interp. RF -> RB
  10370. D = R - L;
  10371. }
  10372. const float offset = L + ratio_x * D; // the offset almost always changes
  10373. /*
  10374. static float last_offset = 0;
  10375. if (FABS(last_offset - offset) > 0.2) {
  10376. SERIAL_ECHOPGM("Sudden Shift at ");
  10377. SERIAL_ECHOPAIR("x=", rx);
  10378. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  10379. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  10380. SERIAL_ECHOPAIR(" y=", ry);
  10381. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  10382. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  10383. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  10384. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  10385. SERIAL_ECHOPAIR(" z1=", z1);
  10386. SERIAL_ECHOPAIR(" z2=", z2);
  10387. SERIAL_ECHOPAIR(" z3=", z3);
  10388. SERIAL_ECHOLNPAIR(" z4=", z4);
  10389. SERIAL_ECHOPAIR(" L=", L);
  10390. SERIAL_ECHOPAIR(" R=", R);
  10391. SERIAL_ECHOLNPAIR(" offset=", offset);
  10392. }
  10393. last_offset = offset;
  10394. //*/
  10395. return offset;
  10396. }
  10397. #endif // AUTO_BED_LEVELING_BILINEAR
  10398. #if ENABLED(DELTA)
  10399. /**
  10400. * Recalculate factors used for delta kinematics whenever
  10401. * settings have been changed (e.g., by M665).
  10402. */
  10403. void recalc_delta_settings() {
  10404. const float trt[ABC] = DELTA_RADIUS_TRIM_TOWER,
  10405. drt[ABC] = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  10406. delta_tower[A_AXIS][X_AXIS] = cos(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]); // front left tower
  10407. delta_tower[A_AXIS][Y_AXIS] = sin(RADIANS(210 + delta_tower_angle_trim[A_AXIS])) * (delta_radius + trt[A_AXIS]);
  10408. delta_tower[B_AXIS][X_AXIS] = cos(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]); // front right tower
  10409. delta_tower[B_AXIS][Y_AXIS] = sin(RADIANS(330 + delta_tower_angle_trim[B_AXIS])) * (delta_radius + trt[B_AXIS]);
  10410. delta_tower[C_AXIS][X_AXIS] = cos(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]); // back middle tower
  10411. delta_tower[C_AXIS][Y_AXIS] = sin(RADIANS( 90 + delta_tower_angle_trim[C_AXIS])) * (delta_radius + trt[C_AXIS]);
  10412. delta_diagonal_rod_2_tower[A_AXIS] = sq(delta_diagonal_rod + drt[A_AXIS]);
  10413. delta_diagonal_rod_2_tower[B_AXIS] = sq(delta_diagonal_rod + drt[B_AXIS]);
  10414. delta_diagonal_rod_2_tower[C_AXIS] = sq(delta_diagonal_rod + drt[C_AXIS]);
  10415. update_software_endstops(Z_AXIS);
  10416. axis_homed[X_AXIS] = axis_homed[Y_AXIS] = axis_homed[Z_AXIS] = false;
  10417. }
  10418. #if ENABLED(DELTA_FAST_SQRT)
  10419. /**
  10420. * Fast inverse sqrt from Quake III Arena
  10421. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  10422. */
  10423. float Q_rsqrt(float number) {
  10424. long i;
  10425. float x2, y;
  10426. const float threehalfs = 1.5f;
  10427. x2 = number * 0.5f;
  10428. y = number;
  10429. i = * ( long * ) &y; // evil floating point bit level hacking
  10430. i = 0x5F3759DF - ( i >> 1 ); // what the f***?
  10431. y = * ( float * ) &i;
  10432. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  10433. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  10434. return y;
  10435. }
  10436. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  10437. #else
  10438. #define _SQRT(n) SQRT(n)
  10439. #endif
  10440. /**
  10441. * Delta Inverse Kinematics
  10442. *
  10443. * Calculate the tower positions for a given machine
  10444. * position, storing the result in the delta[] array.
  10445. *
  10446. * This is an expensive calculation, requiring 3 square
  10447. * roots per segmented linear move, and strains the limits
  10448. * of a Mega2560 with a Graphical Display.
  10449. *
  10450. * Suggested optimizations include:
  10451. *
  10452. * - Disable the home_offset (M206) and/or position_shift (G92)
  10453. * features to remove up to 12 float additions.
  10454. *
  10455. * - Use a fast-inverse-sqrt function and add the reciprocal.
  10456. * (see above)
  10457. */
  10458. // Macro to obtain the Z position of an individual tower
  10459. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  10460. delta_diagonal_rod_2_tower[T] - HYPOT2( \
  10461. delta_tower[T][X_AXIS] - raw[X_AXIS], \
  10462. delta_tower[T][Y_AXIS] - raw[Y_AXIS] \
  10463. ) \
  10464. )
  10465. #define DELTA_RAW_IK() do { \
  10466. delta[A_AXIS] = DELTA_Z(A_AXIS); \
  10467. delta[B_AXIS] = DELTA_Z(B_AXIS); \
  10468. delta[C_AXIS] = DELTA_Z(C_AXIS); \
  10469. }while(0)
  10470. #define DELTA_DEBUG() do { \
  10471. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  10472. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  10473. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  10474. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  10475. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  10476. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  10477. }while(0)
  10478. void inverse_kinematics(const float raw[XYZ]) {
  10479. DELTA_RAW_IK();
  10480. // DELTA_DEBUG();
  10481. }
  10482. /**
  10483. * Calculate the highest Z position where the
  10484. * effector has the full range of XY motion.
  10485. */
  10486. float delta_safe_distance_from_top() {
  10487. float cartesian[XYZ] = { 0, 0, 0 };
  10488. inverse_kinematics(cartesian);
  10489. float distance = delta[A_AXIS];
  10490. cartesian[Y_AXIS] = DELTA_PRINTABLE_RADIUS;
  10491. inverse_kinematics(cartesian);
  10492. return FABS(distance - delta[A_AXIS]);
  10493. }
  10494. /**
  10495. * Delta Forward Kinematics
  10496. *
  10497. * See the Wikipedia article "Trilateration"
  10498. * https://en.wikipedia.org/wiki/Trilateration
  10499. *
  10500. * Establish a new coordinate system in the plane of the
  10501. * three carriage points. This system has its origin at
  10502. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  10503. * plane with a Z component of zero.
  10504. * We will define unit vectors in this coordinate system
  10505. * in our original coordinate system. Then when we calculate
  10506. * the Xnew, Ynew and Znew values, we can translate back into
  10507. * the original system by moving along those unit vectors
  10508. * by the corresponding values.
  10509. *
  10510. * Variable names matched to Marlin, c-version, and avoid the
  10511. * use of any vector library.
  10512. *
  10513. * by Andreas Hardtung 2016-06-07
  10514. * based on a Java function from "Delta Robot Kinematics V3"
  10515. * by Steve Graves
  10516. *
  10517. * The result is stored in the cartes[] array.
  10518. */
  10519. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  10520. // Create a vector in old coordinates along x axis of new coordinate
  10521. float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
  10522. // Get the Magnitude of vector.
  10523. float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  10524. // Create unit vector by dividing by magnitude.
  10525. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  10526. // Get the vector from the origin of the new system to the third point.
  10527. float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
  10528. // Use the dot product to find the component of this vector on the X axis.
  10529. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  10530. // Create a vector along the x axis that represents the x component of p13.
  10531. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  10532. // Subtract the X component from the original vector leaving only Y. We use the
  10533. // variable that will be the unit vector after we scale it.
  10534. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  10535. // The magnitude of Y component
  10536. float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  10537. // Convert to a unit vector
  10538. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  10539. // The cross product of the unit x and y is the unit z
  10540. // float[] ez = vectorCrossProd(ex, ey);
  10541. float ez[3] = {
  10542. ex[1] * ey[2] - ex[2] * ey[1],
  10543. ex[2] * ey[0] - ex[0] * ey[2],
  10544. ex[0] * ey[1] - ex[1] * ey[0]
  10545. };
  10546. // We now have the d, i and j values defined in Wikipedia.
  10547. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  10548. float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
  10549. Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  10550. Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
  10551. // Start from the origin of the old coordinates and add vectors in the
  10552. // old coords that represent the Xnew, Ynew and Znew to find the point
  10553. // in the old system.
  10554. cartes[X_AXIS] = delta_tower[A_AXIS][X_AXIS] + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  10555. cartes[Y_AXIS] = delta_tower[A_AXIS][Y_AXIS] + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  10556. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  10557. }
  10558. void forward_kinematics_DELTA(float point[ABC]) {
  10559. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  10560. }
  10561. #endif // DELTA
  10562. /**
  10563. * Get the stepper positions in the cartes[] array.
  10564. * Forward kinematics are applied for DELTA and SCARA.
  10565. *
  10566. * The result is in the current coordinate space with
  10567. * leveling applied. The coordinates need to be run through
  10568. * unapply_leveling to obtain machine coordinates suitable
  10569. * for current_position, etc.
  10570. */
  10571. void get_cartesian_from_steppers() {
  10572. #if ENABLED(DELTA)
  10573. forward_kinematics_DELTA(
  10574. stepper.get_axis_position_mm(A_AXIS),
  10575. stepper.get_axis_position_mm(B_AXIS),
  10576. stepper.get_axis_position_mm(C_AXIS)
  10577. );
  10578. #else
  10579. #if IS_SCARA
  10580. forward_kinematics_SCARA(
  10581. stepper.get_axis_position_degrees(A_AXIS),
  10582. stepper.get_axis_position_degrees(B_AXIS)
  10583. );
  10584. #else
  10585. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  10586. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  10587. #endif
  10588. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  10589. #endif
  10590. }
  10591. /**
  10592. * Set the current_position for an axis based on
  10593. * the stepper positions, removing any leveling that
  10594. * may have been applied.
  10595. */
  10596. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  10597. get_cartesian_from_steppers();
  10598. #if PLANNER_LEVELING
  10599. planner.unapply_leveling(cartes);
  10600. #endif
  10601. if (axis == ALL_AXES)
  10602. COPY(current_position, cartes);
  10603. else
  10604. current_position[axis] = cartes[axis];
  10605. }
  10606. #if ENABLED(MESH_BED_LEVELING)
  10607. /**
  10608. * Prepare a mesh-leveled linear move in a Cartesian setup,
  10609. * splitting the move where it crosses mesh borders.
  10610. */
  10611. void mesh_line_to_destination(const float fr_mm_s, uint8_t x_splits = 0xFF, uint8_t y_splits = 0xFF) {
  10612. int cx1 = mbl.cell_index_x(current_position[X_AXIS]),
  10613. cy1 = mbl.cell_index_y(current_position[Y_AXIS]),
  10614. cx2 = mbl.cell_index_x(destination[X_AXIS]),
  10615. cy2 = mbl.cell_index_y(destination[Y_AXIS]);
  10616. NOMORE(cx1, GRID_MAX_POINTS_X - 2);
  10617. NOMORE(cy1, GRID_MAX_POINTS_Y - 2);
  10618. NOMORE(cx2, GRID_MAX_POINTS_X - 2);
  10619. NOMORE(cy2, GRID_MAX_POINTS_Y - 2);
  10620. if (cx1 == cx2 && cy1 == cy2) {
  10621. // Start and end on same mesh square
  10622. buffer_line_to_destination(fr_mm_s);
  10623. set_current_from_destination();
  10624. return;
  10625. }
  10626. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10627. float normalized_dist, end[XYZE];
  10628. // Split at the left/front border of the right/top square
  10629. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10630. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10631. COPY(end, destination);
  10632. destination[X_AXIS] = mbl.index_to_xpos[gcx];
  10633. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10634. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  10635. CBI(x_splits, gcx);
  10636. }
  10637. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10638. COPY(end, destination);
  10639. destination[Y_AXIS] = mbl.index_to_ypos[gcy];
  10640. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10641. destination[X_AXIS] = MBL_SEGMENT_END(X);
  10642. CBI(y_splits, gcy);
  10643. }
  10644. else {
  10645. // Already split on a border
  10646. buffer_line_to_destination(fr_mm_s);
  10647. set_current_from_destination();
  10648. return;
  10649. }
  10650. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  10651. destination[E_AXIS] = MBL_SEGMENT_END(E);
  10652. // Do the split and look for more borders
  10653. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10654. // Restore destination from stack
  10655. COPY(destination, end);
  10656. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  10657. }
  10658. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  10659. #define CELL_INDEX(A,V) ((V - bilinear_start[A##_AXIS]) * ABL_BG_FACTOR(A##_AXIS))
  10660. /**
  10661. * Prepare a bilinear-leveled linear move on Cartesian,
  10662. * splitting the move where it crosses grid borders.
  10663. */
  10664. void bilinear_line_to_destination(const float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  10665. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  10666. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  10667. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  10668. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  10669. cx1 = constrain(cx1, 0, ABL_BG_POINTS_X - 2);
  10670. cy1 = constrain(cy1, 0, ABL_BG_POINTS_Y - 2);
  10671. cx2 = constrain(cx2, 0, ABL_BG_POINTS_X - 2);
  10672. cy2 = constrain(cy2, 0, ABL_BG_POINTS_Y - 2);
  10673. if (cx1 == cx2 && cy1 == cy2) {
  10674. // Start and end on same mesh square
  10675. buffer_line_to_destination(fr_mm_s);
  10676. set_current_from_destination();
  10677. return;
  10678. }
  10679. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  10680. float normalized_dist, end[XYZE];
  10681. // Split at the left/front border of the right/top square
  10682. const int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  10683. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  10684. COPY(end, destination);
  10685. destination[X_AXIS] = bilinear_start[X_AXIS] + ABL_BG_SPACING(X_AXIS) * gcx;
  10686. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  10687. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  10688. CBI(x_splits, gcx);
  10689. }
  10690. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  10691. COPY(end, destination);
  10692. destination[Y_AXIS] = bilinear_start[Y_AXIS] + ABL_BG_SPACING(Y_AXIS) * gcy;
  10693. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  10694. destination[X_AXIS] = LINE_SEGMENT_END(X);
  10695. CBI(y_splits, gcy);
  10696. }
  10697. else {
  10698. // Already split on a border
  10699. buffer_line_to_destination(fr_mm_s);
  10700. set_current_from_destination();
  10701. return;
  10702. }
  10703. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  10704. destination[E_AXIS] = LINE_SEGMENT_END(E);
  10705. // Do the split and look for more borders
  10706. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10707. // Restore destination from stack
  10708. COPY(destination, end);
  10709. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  10710. }
  10711. #endif // AUTO_BED_LEVELING_BILINEAR
  10712. #if !UBL_DELTA
  10713. #if IS_KINEMATIC
  10714. /**
  10715. * Prepare a linear move in a DELTA or SCARA setup.
  10716. *
  10717. * This calls planner.buffer_line several times, adding
  10718. * small incremental moves for DELTA or SCARA.
  10719. *
  10720. * For Unified Bed Leveling (Delta or Segmented Cartesian)
  10721. * the ubl.prepare_segmented_line_to method replaces this.
  10722. */
  10723. inline bool prepare_kinematic_move_to(float rtarget[XYZE]) {
  10724. // Get the top feedrate of the move in the XY plane
  10725. const float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  10726. // If the move is only in Z/E don't split up the move
  10727. if (rtarget[X_AXIS] == current_position[X_AXIS] && rtarget[Y_AXIS] == current_position[Y_AXIS]) {
  10728. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10729. return false;
  10730. }
  10731. // Fail if attempting move outside printable radius
  10732. if (!position_is_reachable(rtarget[X_AXIS], rtarget[Y_AXIS])) return true;
  10733. // Get the cartesian distances moved in XYZE
  10734. const float difference[XYZE] = {
  10735. rtarget[X_AXIS] - current_position[X_AXIS],
  10736. rtarget[Y_AXIS] - current_position[Y_AXIS],
  10737. rtarget[Z_AXIS] - current_position[Z_AXIS],
  10738. rtarget[E_AXIS] - current_position[E_AXIS]
  10739. };
  10740. // Get the linear distance in XYZ
  10741. float cartesian_mm = SQRT(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  10742. // If the move is very short, check the E move distance
  10743. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = FABS(difference[E_AXIS]);
  10744. // No E move either? Game over.
  10745. if (UNEAR_ZERO(cartesian_mm)) return true;
  10746. // Minimum number of seconds to move the given distance
  10747. const float seconds = cartesian_mm / _feedrate_mm_s;
  10748. // The number of segments-per-second times the duration
  10749. // gives the number of segments
  10750. uint16_t segments = delta_segments_per_second * seconds;
  10751. // For SCARA minimum segment size is 0.25mm
  10752. #if IS_SCARA
  10753. NOMORE(segments, cartesian_mm * 4);
  10754. #endif
  10755. // At least one segment is required
  10756. NOLESS(segments, 1);
  10757. // The approximate length of each segment
  10758. const float inv_segments = 1.0 / float(segments),
  10759. segment_distance[XYZE] = {
  10760. difference[X_AXIS] * inv_segments,
  10761. difference[Y_AXIS] * inv_segments,
  10762. difference[Z_AXIS] * inv_segments,
  10763. difference[E_AXIS] * inv_segments
  10764. };
  10765. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  10766. // SERIAL_ECHOPAIR(" seconds=", seconds);
  10767. // SERIAL_ECHOLNPAIR(" segments=", segments);
  10768. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10769. // SCARA needs to scale the feed rate from mm/s to degrees/s
  10770. const float inv_segment_length = min(10.0, float(segments) / cartesian_mm), // 1/mm/segs
  10771. feed_factor = inv_segment_length * _feedrate_mm_s;
  10772. float oldA = stepper.get_axis_position_degrees(A_AXIS),
  10773. oldB = stepper.get_axis_position_degrees(B_AXIS);
  10774. #endif
  10775. // Get the raw current position as starting point
  10776. float raw[XYZE];
  10777. COPY(raw, current_position);
  10778. // Drop one segment so the last move is to the exact target.
  10779. // If there's only 1 segment, loops will be skipped entirely.
  10780. --segments;
  10781. // Calculate and execute the segments
  10782. for (uint16_t s = segments + 1; --s;) {
  10783. static millis_t next_idle_ms = millis() + 200UL;
  10784. thermalManager.manage_heater(); // This returns immediately if not really needed.
  10785. if (ELAPSED(millis(), next_idle_ms)) {
  10786. next_idle_ms = millis() + 200UL;
  10787. idle();
  10788. }
  10789. LOOP_XYZE(i) raw[i] += segment_distance[i];
  10790. #if ENABLED(DELTA)
  10791. DELTA_RAW_IK(); // Delta can inline its kinematics
  10792. #else
  10793. inverse_kinematics(raw);
  10794. #endif
  10795. ADJUST_DELTA(raw); // Adjust Z if bed leveling is enabled
  10796. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10797. // For SCARA scale the feed rate from mm/s to degrees/s
  10798. // Use ratio between the length of the move and the larger angle change
  10799. const float adiff = abs(delta[A_AXIS] - oldA),
  10800. bdiff = abs(delta[B_AXIS] - oldB);
  10801. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10802. oldA = delta[A_AXIS];
  10803. oldB = delta[B_AXIS];
  10804. #else
  10805. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], _feedrate_mm_s, active_extruder);
  10806. #endif
  10807. }
  10808. // Since segment_distance is only approximate,
  10809. // the final move must be to the exact destination.
  10810. #if IS_SCARA && ENABLED(SCARA_FEEDRATE_SCALING)
  10811. // For SCARA scale the feed rate from mm/s to degrees/s
  10812. // With segments > 1 length is 1 segment, otherwise total length
  10813. inverse_kinematics(rtarget);
  10814. ADJUST_DELTA(rtarget);
  10815. const float adiff = abs(delta[A_AXIS] - oldA),
  10816. bdiff = abs(delta[B_AXIS] - oldB);
  10817. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], raw[E_AXIS], max(adiff, bdiff) * feed_factor, active_extruder);
  10818. #else
  10819. planner.buffer_line_kinematic(rtarget, _feedrate_mm_s, active_extruder);
  10820. #endif
  10821. return false;
  10822. }
  10823. #else // !IS_KINEMATIC
  10824. /**
  10825. * Prepare a linear move in a Cartesian setup.
  10826. *
  10827. * When a mesh-based leveling system is active, moves are segmented
  10828. * according to the configuration of the leveling system.
  10829. *
  10830. * Returns true if current_position[] was set to destination[]
  10831. */
  10832. inline bool prepare_move_to_destination_cartesian() {
  10833. #if HAS_MESH
  10834. if (planner.leveling_active) {
  10835. #if ENABLED(AUTO_BED_LEVELING_UBL)
  10836. ubl.line_to_destination_cartesian(MMS_SCALED(feedrate_mm_s), active_extruder); // UBL's motion routine needs to know about
  10837. return true; // all moves, including Z-only moves.
  10838. #else
  10839. /**
  10840. * For MBL and ABL-BILINEAR only segment moves when X or Y are involved.
  10841. * Otherwise fall through to do a direct single move.
  10842. */
  10843. if (current_position[X_AXIS] != destination[X_AXIS] || current_position[Y_AXIS] != destination[Y_AXIS]) {
  10844. #if ENABLED(MESH_BED_LEVELING)
  10845. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10846. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  10847. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10848. #endif
  10849. return true;
  10850. }
  10851. #endif
  10852. }
  10853. #endif // HAS_MESH
  10854. buffer_line_to_destination(MMS_SCALED(feedrate_mm_s));
  10855. return false;
  10856. }
  10857. #endif // !IS_KINEMATIC
  10858. #endif // !UBL_DELTA
  10859. #if ENABLED(DUAL_X_CARRIAGE)
  10860. /**
  10861. * Prepare a linear move in a dual X axis setup
  10862. */
  10863. inline bool prepare_move_to_destination_dualx() {
  10864. if (active_extruder_parked) {
  10865. switch (dual_x_carriage_mode) {
  10866. case DXC_FULL_CONTROL_MODE:
  10867. break;
  10868. case DXC_AUTO_PARK_MODE:
  10869. if (current_position[E_AXIS] == destination[E_AXIS]) {
  10870. // This is a travel move (with no extrusion)
  10871. // Skip it, but keep track of the current position
  10872. // (so it can be used as the start of the next non-travel move)
  10873. if (delayed_move_time != 0xFFFFFFFFUL) {
  10874. set_current_from_destination();
  10875. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  10876. delayed_move_time = millis();
  10877. return true;
  10878. }
  10879. }
  10880. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  10881. for (uint8_t i = 0; i < 3; i++)
  10882. planner.buffer_line(
  10883. i == 0 ? raised_parked_position[X_AXIS] : current_position[X_AXIS],
  10884. i == 0 ? raised_parked_position[Y_AXIS] : current_position[Y_AXIS],
  10885. i == 2 ? current_position[Z_AXIS] : raised_parked_position[Z_AXIS],
  10886. current_position[E_AXIS],
  10887. i == 1 ? PLANNER_XY_FEEDRATE() : planner.max_feedrate_mm_s[Z_AXIS],
  10888. active_extruder
  10889. );
  10890. delayed_move_time = 0;
  10891. active_extruder_parked = false;
  10892. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10893. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Clear active_extruder_parked");
  10894. #endif
  10895. break;
  10896. case DXC_DUPLICATION_MODE:
  10897. if (active_extruder == 0) {
  10898. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10899. if (DEBUGGING(LEVELING)) {
  10900. SERIAL_ECHOPAIR("Set planner X", inactive_extruder_x_pos);
  10901. SERIAL_ECHOLNPAIR(" ... Line to X", current_position[X_AXIS] + duplicate_extruder_x_offset);
  10902. }
  10903. #endif
  10904. // move duplicate extruder into correct duplication position.
  10905. planner.set_position_mm(
  10906. inactive_extruder_x_pos,
  10907. current_position[Y_AXIS],
  10908. current_position[Z_AXIS],
  10909. current_position[E_AXIS]
  10910. );
  10911. planner.buffer_line(
  10912. current_position[X_AXIS] + duplicate_extruder_x_offset,
  10913. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS],
  10914. planner.max_feedrate_mm_s[X_AXIS], 1
  10915. );
  10916. SYNC_PLAN_POSITION_KINEMATIC();
  10917. stepper.synchronize();
  10918. extruder_duplication_enabled = true;
  10919. active_extruder_parked = false;
  10920. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10921. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Set extruder_duplication_enabled\nClear active_extruder_parked");
  10922. #endif
  10923. }
  10924. else {
  10925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  10926. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Active extruder not 0");
  10927. #endif
  10928. }
  10929. break;
  10930. }
  10931. }
  10932. return prepare_move_to_destination_cartesian();
  10933. }
  10934. #endif // DUAL_X_CARRIAGE
  10935. /**
  10936. * Prepare a single move and get ready for the next one
  10937. *
  10938. * This may result in several calls to planner.buffer_line to
  10939. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  10940. *
  10941. * Make sure current_position[E] and destination[E] are good
  10942. * before calling or cold/lengthy extrusion may get missed.
  10943. */
  10944. void prepare_move_to_destination() {
  10945. clamp_to_software_endstops(destination);
  10946. refresh_cmd_timeout();
  10947. #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10948. if (!DEBUGGING(DRYRUN)) {
  10949. if (destination[E_AXIS] != current_position[E_AXIS]) {
  10950. #if ENABLED(PREVENT_COLD_EXTRUSION)
  10951. if (thermalManager.tooColdToExtrude(active_extruder)) {
  10952. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10953. SERIAL_ECHO_START();
  10954. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  10955. }
  10956. #endif // PREVENT_COLD_EXTRUSION
  10957. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  10958. if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
  10959. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  10960. SERIAL_ECHO_START();
  10961. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  10962. }
  10963. #endif // PREVENT_LENGTHY_EXTRUDE
  10964. }
  10965. }
  10966. #endif
  10967. if (
  10968. #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)
  10969. ubl.prepare_segmented_line_to(destination, MMS_SCALED(feedrate_mm_s))
  10970. #elif IS_KINEMATIC
  10971. prepare_kinematic_move_to(destination)
  10972. #elif ENABLED(DUAL_X_CARRIAGE)
  10973. prepare_move_to_destination_dualx()
  10974. #else
  10975. prepare_move_to_destination_cartesian()
  10976. #endif
  10977. ) return;
  10978. set_current_from_destination();
  10979. }
  10980. #if ENABLED(ARC_SUPPORT)
  10981. #if N_ARC_CORRECTION < 1
  10982. #undef N_ARC_CORRECTION
  10983. #define N_ARC_CORRECTION 1
  10984. #endif
  10985. /**
  10986. * Plan an arc in 2 dimensions
  10987. *
  10988. * The arc is approximated by generating many small linear segments.
  10989. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  10990. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  10991. * larger segments will tend to be more efficient. Your slicer should have
  10992. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  10993. */
  10994. void plan_arc(
  10995. float raw[XYZE], // Destination position
  10996. float *offset, // Center of rotation relative to current_position
  10997. uint8_t clockwise // Clockwise?
  10998. ) {
  10999. #if ENABLED(CNC_WORKSPACE_PLANES)
  11000. AxisEnum p_axis, q_axis, l_axis;
  11001. switch (workspace_plane) {
  11002. default:
  11003. case PLANE_XY: p_axis = X_AXIS; q_axis = Y_AXIS; l_axis = Z_AXIS; break;
  11004. case PLANE_ZX: p_axis = Z_AXIS; q_axis = X_AXIS; l_axis = Y_AXIS; break;
  11005. case PLANE_YZ: p_axis = Y_AXIS; q_axis = Z_AXIS; l_axis = X_AXIS; break;
  11006. }
  11007. #else
  11008. constexpr AxisEnum p_axis = X_AXIS, q_axis = Y_AXIS, l_axis = Z_AXIS;
  11009. #endif
  11010. // Radius vector from center to current location
  11011. float r_P = -offset[0], r_Q = -offset[1];
  11012. const float radius = HYPOT(r_P, r_Q),
  11013. center_P = current_position[p_axis] - r_P,
  11014. center_Q = current_position[q_axis] - r_Q,
  11015. rt_X = raw[p_axis] - center_P,
  11016. rt_Y = raw[q_axis] - center_Q,
  11017. linear_travel = raw[l_axis] - current_position[l_axis],
  11018. extruder_travel = raw[E_AXIS] - current_position[E_AXIS];
  11019. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  11020. float angular_travel = ATAN2(r_P * rt_Y - r_Q * rt_X, r_P * rt_X + r_Q * rt_Y);
  11021. if (angular_travel < 0) angular_travel += RADIANS(360);
  11022. if (clockwise) angular_travel -= RADIANS(360);
  11023. // Make a circle if the angular rotation is 0 and the target is current position
  11024. if (angular_travel == 0 && current_position[p_axis] == raw[p_axis] && current_position[q_axis] == raw[q_axis])
  11025. angular_travel = RADIANS(360);
  11026. const float mm_of_travel = HYPOT(angular_travel * radius, FABS(linear_travel));
  11027. if (mm_of_travel < 0.001) return;
  11028. uint16_t segments = FLOOR(mm_of_travel / (MM_PER_ARC_SEGMENT));
  11029. if (segments == 0) segments = 1;
  11030. /**
  11031. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  11032. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  11033. * r_T = [cos(phi) -sin(phi);
  11034. * sin(phi) cos(phi)] * r ;
  11035. *
  11036. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  11037. * defined from the circle center to the initial position. Each line segment is formed by successive
  11038. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  11039. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  11040. * all double numbers are single precision on the Arduino. (True double precision will not have
  11041. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  11042. * tool precision in some cases. Therefore, arc path correction is implemented.
  11043. *
  11044. * Small angle approximation may be used to reduce computation overhead further. This approximation
  11045. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  11046. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  11047. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  11048. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  11049. * issue for CNC machines with the single precision Arduino calculations.
  11050. *
  11051. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  11052. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  11053. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  11054. * This is important when there are successive arc motions.
  11055. */
  11056. // Vector rotation matrix values
  11057. float arc_target[XYZE];
  11058. const float theta_per_segment = angular_travel / segments,
  11059. linear_per_segment = linear_travel / segments,
  11060. extruder_per_segment = extruder_travel / segments,
  11061. sin_T = theta_per_segment,
  11062. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  11063. // Initialize the linear axis
  11064. arc_target[l_axis] = current_position[l_axis];
  11065. // Initialize the extruder axis
  11066. arc_target[E_AXIS] = current_position[E_AXIS];
  11067. const float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  11068. millis_t next_idle_ms = millis() + 200UL;
  11069. #if N_ARC_CORRECTION > 1
  11070. int8_t arc_recalc_count = N_ARC_CORRECTION;
  11071. #endif
  11072. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  11073. thermalManager.manage_heater();
  11074. if (ELAPSED(millis(), next_idle_ms)) {
  11075. next_idle_ms = millis() + 200UL;
  11076. idle();
  11077. }
  11078. #if N_ARC_CORRECTION > 1
  11079. if (--arc_recalc_count) {
  11080. // Apply vector rotation matrix to previous r_P / 1
  11081. const float r_new_Y = r_P * sin_T + r_Q * cos_T;
  11082. r_P = r_P * cos_T - r_Q * sin_T;
  11083. r_Q = r_new_Y;
  11084. }
  11085. else
  11086. #endif
  11087. {
  11088. #if N_ARC_CORRECTION > 1
  11089. arc_recalc_count = N_ARC_CORRECTION;
  11090. #endif
  11091. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  11092. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  11093. // To reduce stuttering, the sin and cos could be computed at different times.
  11094. // For now, compute both at the same time.
  11095. const float cos_Ti = cos(i * theta_per_segment), sin_Ti = sin(i * theta_per_segment);
  11096. r_P = -offset[0] * cos_Ti + offset[1] * sin_Ti;
  11097. r_Q = -offset[0] * sin_Ti - offset[1] * cos_Ti;
  11098. }
  11099. // Update arc_target location
  11100. arc_target[p_axis] = center_P + r_P;
  11101. arc_target[q_axis] = center_Q + r_Q;
  11102. arc_target[l_axis] += linear_per_segment;
  11103. arc_target[E_AXIS] += extruder_per_segment;
  11104. clamp_to_software_endstops(arc_target);
  11105. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  11106. }
  11107. // Ensure last segment arrives at target location.
  11108. planner.buffer_line_kinematic(raw, fr_mm_s, active_extruder);
  11109. // As far as the parser is concerned, the position is now == target. In reality the
  11110. // motion control system might still be processing the action and the real tool position
  11111. // in any intermediate location.
  11112. set_current_from_destination();
  11113. } // plan_arc
  11114. #endif // ARC_SUPPORT
  11115. #if ENABLED(BEZIER_CURVE_SUPPORT)
  11116. void plan_cubic_move(const float offset[4]) {
  11117. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  11118. // As far as the parser is concerned, the position is now == destination. In reality the
  11119. // motion control system might still be processing the action and the real tool position
  11120. // in any intermediate location.
  11121. set_current_from_destination();
  11122. }
  11123. #endif // BEZIER_CURVE_SUPPORT
  11124. #if ENABLED(USE_CONTROLLER_FAN)
  11125. void controllerFan() {
  11126. static millis_t lastMotorOn = 0, // Last time a motor was turned on
  11127. nextMotorCheck = 0; // Last time the state was checked
  11128. const millis_t ms = millis();
  11129. if (ELAPSED(ms, nextMotorCheck)) {
  11130. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  11131. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_amount_bed > 0
  11132. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  11133. #if E_STEPPERS > 1
  11134. || E1_ENABLE_READ == E_ENABLE_ON
  11135. #if HAS_X2_ENABLE
  11136. || X2_ENABLE_READ == X_ENABLE_ON
  11137. #endif
  11138. #if E_STEPPERS > 2
  11139. || E2_ENABLE_READ == E_ENABLE_ON
  11140. #if E_STEPPERS > 3
  11141. || E3_ENABLE_READ == E_ENABLE_ON
  11142. #if E_STEPPERS > 4
  11143. || E4_ENABLE_READ == E_ENABLE_ON
  11144. #endif // E_STEPPERS > 4
  11145. #endif // E_STEPPERS > 3
  11146. #endif // E_STEPPERS > 2
  11147. #endif // E_STEPPERS > 1
  11148. ) {
  11149. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  11150. }
  11151. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  11152. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  11153. // allows digital or PWM fan output to be used (see M42 handling)
  11154. WRITE(CONTROLLER_FAN_PIN, speed);
  11155. analogWrite(CONTROLLER_FAN_PIN, speed);
  11156. }
  11157. }
  11158. #endif // USE_CONTROLLER_FAN
  11159. #if ENABLED(MORGAN_SCARA)
  11160. /**
  11161. * Morgan SCARA Forward Kinematics. Results in cartes[].
  11162. * Maths and first version by QHARLEY.
  11163. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11164. */
  11165. void forward_kinematics_SCARA(const float &a, const float &b) {
  11166. float a_sin = sin(RADIANS(a)) * L1,
  11167. a_cos = cos(RADIANS(a)) * L1,
  11168. b_sin = sin(RADIANS(b)) * L2,
  11169. b_cos = cos(RADIANS(b)) * L2;
  11170. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  11171. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  11172. /*
  11173. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  11174. SERIAL_ECHOPAIR(" b=", b);
  11175. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  11176. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  11177. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  11178. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  11179. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  11180. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  11181. //*/
  11182. }
  11183. /**
  11184. * Morgan SCARA Inverse Kinematics. Results in delta[].
  11185. *
  11186. * See http://forums.reprap.org/read.php?185,283327
  11187. *
  11188. * Maths and first version by QHARLEY.
  11189. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  11190. */
  11191. void inverse_kinematics(const float raw[XYZ]) {
  11192. static float C2, S2, SK1, SK2, THETA, PSI;
  11193. float sx = raw[X_AXIS] - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  11194. sy = raw[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  11195. if (L1 == L2)
  11196. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  11197. else
  11198. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  11199. S2 = SQRT(1 - sq(C2));
  11200. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  11201. SK1 = L1 + L2 * C2;
  11202. // Rotated Arm2 gives the distance from Arm1 to Arm2
  11203. SK2 = L2 * S2;
  11204. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  11205. THETA = ATAN2(SK1, SK2) - ATAN2(sx, sy);
  11206. // Angle of Arm2
  11207. PSI = ATAN2(S2, C2);
  11208. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  11209. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  11210. delta[C_AXIS] = raw[Z_AXIS];
  11211. /*
  11212. DEBUG_POS("SCARA IK", raw);
  11213. DEBUG_POS("SCARA IK", delta);
  11214. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  11215. SERIAL_ECHOPAIR(",", sy);
  11216. SERIAL_ECHOPAIR(" C2=", C2);
  11217. SERIAL_ECHOPAIR(" S2=", S2);
  11218. SERIAL_ECHOPAIR(" Theta=", THETA);
  11219. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  11220. //*/
  11221. }
  11222. #endif // MORGAN_SCARA
  11223. #if ENABLED(TEMP_STAT_LEDS)
  11224. static bool red_led = false;
  11225. static millis_t next_status_led_update_ms = 0;
  11226. void handle_status_leds(void) {
  11227. if (ELAPSED(millis(), next_status_led_update_ms)) {
  11228. next_status_led_update_ms += 500; // Update every 0.5s
  11229. float max_temp = 0.0;
  11230. #if HAS_TEMP_BED
  11231. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  11232. #endif
  11233. HOTEND_LOOP()
  11234. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  11235. const bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  11236. if (new_led != red_led) {
  11237. red_led = new_led;
  11238. #if PIN_EXISTS(STAT_LED_RED)
  11239. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  11240. #if PIN_EXISTS(STAT_LED_BLUE)
  11241. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  11242. #endif
  11243. #else
  11244. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  11245. #endif
  11246. }
  11247. }
  11248. }
  11249. #endif
  11250. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11251. void handle_filament_runout() {
  11252. if (!filament_ran_out) {
  11253. filament_ran_out = true;
  11254. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  11255. stepper.synchronize();
  11256. }
  11257. }
  11258. #endif // FILAMENT_RUNOUT_SENSOR
  11259. #if ENABLED(FAST_PWM_FAN)
  11260. void setPwmFrequency(uint8_t pin, int val) {
  11261. val &= 0x07;
  11262. switch (digitalPinToTimer(pin)) {
  11263. #ifdef TCCR0A
  11264. #if !AVR_AT90USB1286_FAMILY
  11265. case TIMER0A:
  11266. #endif
  11267. case TIMER0B: //_SET_CS(0, val);
  11268. break;
  11269. #endif
  11270. #ifdef TCCR1A
  11271. case TIMER1A: case TIMER1B: //_SET_CS(1, val);
  11272. break;
  11273. #endif
  11274. #if defined(TCCR2) || defined(TCCR2A)
  11275. #ifdef TCCR2
  11276. case TIMER2:
  11277. #endif
  11278. #ifdef TCCR2A
  11279. case TIMER2A: case TIMER2B:
  11280. #endif
  11281. _SET_CS(2, val); break;
  11282. #endif
  11283. #ifdef TCCR3A
  11284. case TIMER3A: case TIMER3B: case TIMER3C: _SET_CS(3, val); break;
  11285. #endif
  11286. #ifdef TCCR4A
  11287. case TIMER4A: case TIMER4B: case TIMER4C: _SET_CS(4, val); break;
  11288. #endif
  11289. #ifdef TCCR5A
  11290. case TIMER5A: case TIMER5B: case TIMER5C: _SET_CS(5, val); break;
  11291. #endif
  11292. }
  11293. }
  11294. #endif // FAST_PWM_FAN
  11295. void enable_all_steppers() {
  11296. enable_X();
  11297. enable_Y();
  11298. enable_Z();
  11299. enable_E0();
  11300. enable_E1();
  11301. enable_E2();
  11302. enable_E3();
  11303. enable_E4();
  11304. }
  11305. void disable_e_steppers() {
  11306. disable_E0();
  11307. disable_E1();
  11308. disable_E2();
  11309. disable_E3();
  11310. disable_E4();
  11311. }
  11312. void disable_all_steppers() {
  11313. disable_X();
  11314. disable_Y();
  11315. disable_Z();
  11316. disable_e_steppers();
  11317. }
  11318. #if ENABLED(HAVE_TMC2130)
  11319. void automatic_current_control(TMC2130Stepper &st, String axisID) {
  11320. // Check otpw even if we don't use automatic control. Allows for flag inspection.
  11321. const bool is_otpw = st.checkOT();
  11322. // Report if a warning was triggered
  11323. static bool previous_otpw = false;
  11324. if (is_otpw && !previous_otpw) {
  11325. char timestamp[10];
  11326. duration_t elapsed = print_job_timer.duration();
  11327. const bool has_days = (elapsed.value > 60*60*24L);
  11328. (void)elapsed.toDigital(timestamp, has_days);
  11329. SERIAL_ECHO(timestamp);
  11330. SERIAL_ECHOPGM(": ");
  11331. SERIAL_ECHO(axisID);
  11332. SERIAL_ECHOLNPGM(" driver overtemperature warning!");
  11333. }
  11334. previous_otpw = is_otpw;
  11335. #if CURRENT_STEP > 0 && ENABLED(AUTOMATIC_CURRENT_CONTROL)
  11336. // Return if user has not enabled current control start with M906 S1.
  11337. if (!auto_current_control) return;
  11338. /**
  11339. * Decrease current if is_otpw is true.
  11340. * Bail out if driver is disabled.
  11341. * Increase current if OTPW has not been triggered yet.
  11342. */
  11343. uint16_t current = st.getCurrent();
  11344. if (is_otpw) {
  11345. st.setCurrent(current - CURRENT_STEP, R_SENSE, HOLD_MULTIPLIER);
  11346. #if ENABLED(REPORT_CURRENT_CHANGE)
  11347. SERIAL_ECHO(axisID);
  11348. SERIAL_ECHOPAIR(" current decreased to ", st.getCurrent());
  11349. #endif
  11350. }
  11351. else if (!st.isEnabled())
  11352. return;
  11353. else if (!is_otpw && !st.getOTPW()) {
  11354. current += CURRENT_STEP;
  11355. if (current <= AUTO_ADJUST_MAX) {
  11356. st.setCurrent(current, R_SENSE, HOLD_MULTIPLIER);
  11357. #if ENABLED(REPORT_CURRENT_CHANGE)
  11358. SERIAL_ECHO(axisID);
  11359. SERIAL_ECHOPAIR(" current increased to ", st.getCurrent());
  11360. #endif
  11361. }
  11362. }
  11363. SERIAL_EOL();
  11364. #endif
  11365. }
  11366. void checkOverTemp() {
  11367. static millis_t next_cOT = 0;
  11368. if (ELAPSED(millis(), next_cOT)) {
  11369. next_cOT = millis() + 5000;
  11370. #if ENABLED(X_IS_TMC2130)
  11371. automatic_current_control(stepperX, "X");
  11372. #endif
  11373. #if ENABLED(Y_IS_TMC2130)
  11374. automatic_current_control(stepperY, "Y");
  11375. #endif
  11376. #if ENABLED(Z_IS_TMC2130)
  11377. automatic_current_control(stepperZ, "Z");
  11378. #endif
  11379. #if ENABLED(X2_IS_TMC2130)
  11380. automatic_current_control(stepperX2, "X2");
  11381. #endif
  11382. #if ENABLED(Y2_IS_TMC2130)
  11383. automatic_current_control(stepperY2, "Y2");
  11384. #endif
  11385. #if ENABLED(Z2_IS_TMC2130)
  11386. automatic_current_control(stepperZ2, "Z2");
  11387. #endif
  11388. #if ENABLED(E0_IS_TMC2130)
  11389. automatic_current_control(stepperE0, "E0");
  11390. #endif
  11391. #if ENABLED(E1_IS_TMC2130)
  11392. automatic_current_control(stepperE1, "E1");
  11393. #endif
  11394. #if ENABLED(E2_IS_TMC2130)
  11395. automatic_current_control(stepperE2, "E2");
  11396. #endif
  11397. #if ENABLED(E3_IS_TMC2130)
  11398. automatic_current_control(stepperE3, "E3");
  11399. #endif
  11400. #if ENABLED(E4_IS_TMC2130)
  11401. automatic_current_control(stepperE4, "E4");
  11402. #endif
  11403. }
  11404. }
  11405. #endif // HAVE_TMC2130
  11406. /**
  11407. * Manage several activities:
  11408. * - Check for Filament Runout
  11409. * - Keep the command buffer full
  11410. * - Check for maximum inactive time between commands
  11411. * - Check for maximum inactive time between stepper commands
  11412. * - Check if pin CHDK needs to go LOW
  11413. * - Check for KILL button held down
  11414. * - Check for HOME button held down
  11415. * - Check if cooling fan needs to be switched on
  11416. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  11417. */
  11418. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  11419. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11420. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && (READ(FIL_RUNOUT_PIN) == FIL_RUNOUT_INVERTING))
  11421. handle_filament_runout();
  11422. #endif
  11423. if (commands_in_queue < BUFSIZE) get_available_commands();
  11424. const millis_t ms = millis();
  11425. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) {
  11426. SERIAL_ERROR_START();
  11427. SERIAL_ECHOLNPAIR(MSG_KILL_INACTIVE_TIME, parser.command_ptr);
  11428. kill(PSTR(MSG_KILLED));
  11429. }
  11430. // Prevent steppers timing-out in the middle of M600
  11431. #if ENABLED(ADVANCED_PAUSE_FEATURE) && ENABLED(PAUSE_PARK_NO_STEPPER_TIMEOUT)
  11432. #define MOVE_AWAY_TEST !move_away_flag
  11433. #else
  11434. #define MOVE_AWAY_TEST true
  11435. #endif
  11436. if (MOVE_AWAY_TEST && stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  11437. && !ignore_stepper_queue && !planner.blocks_queued()) {
  11438. #if ENABLED(DISABLE_INACTIVE_X)
  11439. disable_X();
  11440. #endif
  11441. #if ENABLED(DISABLE_INACTIVE_Y)
  11442. disable_Y();
  11443. #endif
  11444. #if ENABLED(DISABLE_INACTIVE_Z)
  11445. disable_Z();
  11446. #endif
  11447. #if ENABLED(DISABLE_INACTIVE_E)
  11448. disable_e_steppers();
  11449. #endif
  11450. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTRA_LCD) // Only needed with an LCD
  11451. ubl.lcd_map_control = defer_return_to_status = false;
  11452. #endif
  11453. }
  11454. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  11455. if (chdkActive && ELAPSED(ms, chdkHigh + CHDK_DELAY)) {
  11456. chdkActive = false;
  11457. WRITE(CHDK, LOW);
  11458. }
  11459. #endif
  11460. #if HAS_KILL
  11461. // Check if the kill button was pressed and wait just in case it was an accidental
  11462. // key kill key press
  11463. // -------------------------------------------------------------------------------
  11464. static int killCount = 0; // make the inactivity button a bit less responsive
  11465. const int KILL_DELAY = 750;
  11466. if (!READ(KILL_PIN))
  11467. killCount++;
  11468. else if (killCount > 0)
  11469. killCount--;
  11470. // Exceeded threshold and we can confirm that it was not accidental
  11471. // KILL the machine
  11472. // ----------------------------------------------------------------
  11473. if (killCount >= KILL_DELAY) {
  11474. SERIAL_ERROR_START();
  11475. SERIAL_ERRORLNPGM(MSG_KILL_BUTTON);
  11476. kill(PSTR(MSG_KILLED));
  11477. }
  11478. #endif
  11479. #if HAS_HOME
  11480. // Check to see if we have to home, use poor man's debouncer
  11481. // ---------------------------------------------------------
  11482. static int homeDebounceCount = 0; // poor man's debouncing count
  11483. const int HOME_DEBOUNCE_DELAY = 2500;
  11484. if (!IS_SD_PRINTING && !READ(HOME_PIN)) {
  11485. if (!homeDebounceCount) {
  11486. enqueue_and_echo_commands_P(PSTR("G28"));
  11487. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  11488. }
  11489. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  11490. homeDebounceCount++;
  11491. else
  11492. homeDebounceCount = 0;
  11493. }
  11494. #endif
  11495. #if ENABLED(USE_CONTROLLER_FAN)
  11496. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  11497. #endif
  11498. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  11499. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  11500. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  11501. #if ENABLED(SWITCHING_EXTRUDER)
  11502. const bool oldstatus = E0_ENABLE_READ;
  11503. enable_E0();
  11504. #else // !SWITCHING_EXTRUDER
  11505. bool oldstatus;
  11506. switch (active_extruder) {
  11507. default: oldstatus = E0_ENABLE_READ; enable_E0(); break;
  11508. #if E_STEPPERS > 1
  11509. case 1: oldstatus = E1_ENABLE_READ; enable_E1(); break;
  11510. #if E_STEPPERS > 2
  11511. case 2: oldstatus = E2_ENABLE_READ; enable_E2(); break;
  11512. #if E_STEPPERS > 3
  11513. case 3: oldstatus = E3_ENABLE_READ; enable_E3(); break;
  11514. #if E_STEPPERS > 4
  11515. case 4: oldstatus = E4_ENABLE_READ; enable_E4(); break;
  11516. #endif // E_STEPPERS > 4
  11517. #endif // E_STEPPERS > 3
  11518. #endif // E_STEPPERS > 2
  11519. #endif // E_STEPPERS > 1
  11520. }
  11521. #endif // !SWITCHING_EXTRUDER
  11522. previous_cmd_ms = ms; // refresh_cmd_timeout()
  11523. const float olde = current_position[E_AXIS];
  11524. current_position[E_AXIS] += EXTRUDER_RUNOUT_EXTRUDE;
  11525. planner.buffer_line_kinematic(current_position, MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder);
  11526. current_position[E_AXIS] = olde;
  11527. planner.set_e_position_mm(olde);
  11528. stepper.synchronize();
  11529. #if ENABLED(SWITCHING_EXTRUDER)
  11530. E0_ENABLE_WRITE(oldstatus);
  11531. #else
  11532. switch (active_extruder) {
  11533. case 0: E0_ENABLE_WRITE(oldstatus); break;
  11534. #if E_STEPPERS > 1
  11535. case 1: E1_ENABLE_WRITE(oldstatus); break;
  11536. #if E_STEPPERS > 2
  11537. case 2: E2_ENABLE_WRITE(oldstatus); break;
  11538. #if E_STEPPERS > 3
  11539. case 3: E3_ENABLE_WRITE(oldstatus); break;
  11540. #if E_STEPPERS > 4
  11541. case 4: E4_ENABLE_WRITE(oldstatus); break;
  11542. #endif // E_STEPPERS > 4
  11543. #endif // E_STEPPERS > 3
  11544. #endif // E_STEPPERS > 2
  11545. #endif // E_STEPPERS > 1
  11546. }
  11547. #endif // !SWITCHING_EXTRUDER
  11548. }
  11549. #endif // EXTRUDER_RUNOUT_PREVENT
  11550. #if ENABLED(DUAL_X_CARRIAGE)
  11551. // handle delayed move timeout
  11552. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  11553. // travel moves have been received so enact them
  11554. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  11555. set_destination_from_current();
  11556. prepare_move_to_destination();
  11557. }
  11558. #endif
  11559. #if ENABLED(TEMP_STAT_LEDS)
  11560. handle_status_leds();
  11561. #endif
  11562. #if ENABLED(HAVE_TMC2130)
  11563. checkOverTemp();
  11564. #endif
  11565. planner.check_axes_activity();
  11566. }
  11567. /**
  11568. * Standard idle routine keeps the machine alive
  11569. */
  11570. void idle(
  11571. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11572. bool no_stepper_sleep/*=false*/
  11573. #endif
  11574. ) {
  11575. #if ENABLED(MAX7219_DEBUG)
  11576. Max7219_idle_tasks();
  11577. #endif // MAX7219_DEBUG
  11578. lcd_update();
  11579. host_keepalive();
  11580. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  11581. auto_report_temperatures();
  11582. #endif
  11583. manage_inactivity(
  11584. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  11585. no_stepper_sleep
  11586. #endif
  11587. );
  11588. thermalManager.manage_heater();
  11589. #if ENABLED(PRINTCOUNTER)
  11590. print_job_timer.tick();
  11591. #endif
  11592. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  11593. buzzer.tick();
  11594. #endif
  11595. #if ENABLED(I2C_POSITION_ENCODERS)
  11596. if (planner.blocks_queued() &&
  11597. ( (blockBufferIndexRef != planner.block_buffer_head) ||
  11598. ((lastUpdateMillis + I2CPE_MIN_UPD_TIME_MS) < millis())) ) {
  11599. blockBufferIndexRef = planner.block_buffer_head;
  11600. I2CPEM.update();
  11601. lastUpdateMillis = millis();
  11602. }
  11603. #endif
  11604. }
  11605. /**
  11606. * Kill all activity and lock the machine.
  11607. * After this the machine will need to be reset.
  11608. */
  11609. void kill(const char* lcd_msg) {
  11610. SERIAL_ERROR_START();
  11611. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  11612. thermalManager.disable_all_heaters();
  11613. disable_all_steppers();
  11614. #if ENABLED(ULTRA_LCD)
  11615. kill_screen(lcd_msg);
  11616. #else
  11617. UNUSED(lcd_msg);
  11618. #endif
  11619. _delay_ms(600); // Wait a short time (allows messages to get out before shutting down.
  11620. cli(); // Stop interrupts
  11621. _delay_ms(250); //Wait to ensure all interrupts routines stopped
  11622. thermalManager.disable_all_heaters(); //turn off heaters again
  11623. #ifdef ACTION_ON_KILL
  11624. SERIAL_ECHOLNPGM("//action:" ACTION_ON_KILL);
  11625. #endif
  11626. #if HAS_POWER_SWITCH
  11627. SET_INPUT(PS_ON_PIN);
  11628. #endif
  11629. suicide();
  11630. while (1) {
  11631. #if ENABLED(USE_WATCHDOG)
  11632. watchdog_reset();
  11633. #endif
  11634. } // Wait for reset
  11635. }
  11636. /**
  11637. * Turn off heaters and stop the print in progress
  11638. * After a stop the machine may be resumed with M999
  11639. */
  11640. void stop() {
  11641. thermalManager.disable_all_heaters(); // 'unpause' taken care of in here
  11642. #if ENABLED(PROBING_FANS_OFF)
  11643. if (fans_paused) fans_pause(false); // put things back the way they were
  11644. #endif
  11645. if (IsRunning()) {
  11646. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  11647. SERIAL_ERROR_START();
  11648. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  11649. LCD_MESSAGEPGM(MSG_STOPPED);
  11650. safe_delay(350); // allow enough time for messages to get out before stopping
  11651. Running = false;
  11652. }
  11653. }
  11654. /**
  11655. * Marlin entry-point: Set up before the program loop
  11656. * - Set up the kill pin, filament runout, power hold
  11657. * - Start the serial port
  11658. * - Print startup messages and diagnostics
  11659. * - Get EEPROM or default settings
  11660. * - Initialize managers for:
  11661. * • temperature
  11662. * • planner
  11663. * • watchdog
  11664. * • stepper
  11665. * • photo pin
  11666. * • servos
  11667. * • LCD controller
  11668. * • Digipot I2C
  11669. * • Z probe sled
  11670. * • status LEDs
  11671. */
  11672. void setup() {
  11673. #if ENABLED(MAX7219_DEBUG)
  11674. Max7219_init();
  11675. #endif
  11676. #if ENABLED(DISABLE_JTAG)
  11677. // Disable JTAG on AT90USB chips to free up pins for IO
  11678. MCUCR = 0x80;
  11679. MCUCR = 0x80;
  11680. #endif
  11681. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  11682. setup_filrunoutpin();
  11683. #endif
  11684. setup_killpin();
  11685. setup_powerhold();
  11686. #if HAS_STEPPER_RESET
  11687. disableStepperDrivers();
  11688. #endif
  11689. MYSERIAL.begin(BAUDRATE);
  11690. SERIAL_PROTOCOLLNPGM("start");
  11691. SERIAL_ECHO_START();
  11692. // Check startup - does nothing if bootloader sets MCUSR to 0
  11693. byte mcu = MCUSR;
  11694. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  11695. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  11696. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  11697. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  11698. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  11699. MCUSR = 0;
  11700. SERIAL_ECHOPGM(MSG_MARLIN);
  11701. SERIAL_CHAR(' ');
  11702. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  11703. SERIAL_EOL();
  11704. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  11705. SERIAL_ECHO_START();
  11706. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  11707. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  11708. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  11709. SERIAL_ECHO_START();
  11710. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  11711. #endif
  11712. SERIAL_ECHO_START();
  11713. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  11714. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  11715. // Send "ok" after commands by default
  11716. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  11717. // Load data from EEPROM if available (or use defaults)
  11718. // This also updates variables in the planner, elsewhere
  11719. (void)settings.load();
  11720. #if HAS_M206_COMMAND
  11721. // Initialize current position based on home_offset
  11722. COPY(current_position, home_offset);
  11723. #else
  11724. ZERO(current_position);
  11725. #endif
  11726. // Vital to init stepper/planner equivalent for current_position
  11727. SYNC_PLAN_POSITION_KINEMATIC();
  11728. thermalManager.init(); // Initialize temperature loop
  11729. #if ENABLED(USE_WATCHDOG)
  11730. watchdog_init();
  11731. #endif
  11732. stepper.init(); // Initialize stepper, this enables interrupts!
  11733. servo_init();
  11734. #if HAS_PHOTOGRAPH
  11735. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  11736. #endif
  11737. #if HAS_CASE_LIGHT
  11738. case_light_on = CASE_LIGHT_DEFAULT_ON;
  11739. case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS;
  11740. update_case_light();
  11741. #endif
  11742. #if ENABLED(SPINDLE_LASER_ENABLE)
  11743. OUT_WRITE(SPINDLE_LASER_ENABLE_PIN, !SPINDLE_LASER_ENABLE_INVERT); // init spindle to off
  11744. #if SPINDLE_DIR_CHANGE
  11745. OUT_WRITE(SPINDLE_DIR_PIN, SPINDLE_INVERT_DIR ? 255 : 0); // init rotation to clockwise (M3)
  11746. #endif
  11747. #if ENABLED(SPINDLE_LASER_PWM)
  11748. SET_OUTPUT(SPINDLE_LASER_PWM_PIN);
  11749. analogWrite(SPINDLE_LASER_PWM_PIN, SPINDLE_LASER_PWM_INVERT ? 255 : 0); // set to lowest speed
  11750. #endif
  11751. #endif
  11752. #if HAS_BED_PROBE
  11753. endstops.enable_z_probe(false);
  11754. #endif
  11755. #if ENABLED(USE_CONTROLLER_FAN)
  11756. SET_OUTPUT(CONTROLLER_FAN_PIN); //Set pin used for driver cooling fan
  11757. #endif
  11758. #if HAS_STEPPER_RESET
  11759. enableStepperDrivers();
  11760. #endif
  11761. #if ENABLED(DIGIPOT_I2C)
  11762. digipot_i2c_init();
  11763. #endif
  11764. #if ENABLED(DAC_STEPPER_CURRENT)
  11765. dac_init();
  11766. #endif
  11767. #if (ENABLED(Z_PROBE_SLED) || ENABLED(SOLENOID_PROBE)) && HAS_SOLENOID_1
  11768. OUT_WRITE(SOL1_PIN, LOW); // turn it off
  11769. #endif
  11770. #if HAS_HOME
  11771. SET_INPUT_PULLUP(HOME_PIN);
  11772. #endif
  11773. #if PIN_EXISTS(STAT_LED_RED)
  11774. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  11775. #endif
  11776. #if PIN_EXISTS(STAT_LED_BLUE)
  11777. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  11778. #endif
  11779. #if ENABLED(NEOPIXEL_LED)
  11780. SET_OUTPUT(NEOPIXEL_PIN);
  11781. setup_neopixel();
  11782. #endif
  11783. #if ENABLED(RGB_LED) || ENABLED(RGBW_LED)
  11784. SET_OUTPUT(RGB_LED_R_PIN);
  11785. SET_OUTPUT(RGB_LED_G_PIN);
  11786. SET_OUTPUT(RGB_LED_B_PIN);
  11787. #if ENABLED(RGBW_LED)
  11788. SET_OUTPUT(RGB_LED_W_PIN);
  11789. #endif
  11790. #endif
  11791. #if ENABLED(MK2_MULTIPLEXER)
  11792. SET_OUTPUT(E_MUX0_PIN);
  11793. SET_OUTPUT(E_MUX1_PIN);
  11794. SET_OUTPUT(E_MUX2_PIN);
  11795. #endif
  11796. #if HAS_FANMUX
  11797. fanmux_init();
  11798. #endif
  11799. lcd_init();
  11800. #if ENABLED(SHOW_BOOTSCREEN)
  11801. lcd_bootscreen();
  11802. #endif
  11803. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  11804. // Virtual Tools 0, 1, 2, 3 = Filament 1, 2, 3, 4, etc.
  11805. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS && t < MIXING_STEPPERS; t++)
  11806. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11807. mixing_virtual_tool_mix[t][i] = (t == i) ? 1.0 : 0.0;
  11808. // Remaining virtual tools are 100% filament 1
  11809. #if MIXING_STEPPERS < MIXING_VIRTUAL_TOOLS
  11810. for (uint8_t t = MIXING_STEPPERS; t < MIXING_VIRTUAL_TOOLS; t++)
  11811. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11812. mixing_virtual_tool_mix[t][i] = (i == 0) ? 1.0 : 0.0;
  11813. #endif
  11814. // Initialize mixing to tool 0 color
  11815. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  11816. mixing_factor[i] = mixing_virtual_tool_mix[0][i];
  11817. #endif
  11818. #if ENABLED(BLTOUCH)
  11819. // Make sure any BLTouch error condition is cleared
  11820. bltouch_command(BLTOUCH_RESET);
  11821. set_bltouch_deployed(true);
  11822. set_bltouch_deployed(false);
  11823. #endif
  11824. #if ENABLED(I2C_POSITION_ENCODERS)
  11825. I2CPEM.init();
  11826. #endif
  11827. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  11828. i2c.onReceive(i2c_on_receive);
  11829. i2c.onRequest(i2c_on_request);
  11830. #endif
  11831. #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
  11832. setup_endstop_interrupts();
  11833. #endif
  11834. #if ENABLED(SWITCHING_EXTRUDER) && !DONT_SWITCH
  11835. move_extruder_servo(0); // Initialize extruder servo
  11836. #endif
  11837. #if ENABLED(SWITCHING_NOZZLE)
  11838. move_nozzle_servo(0); // Initialize nozzle servo
  11839. #endif
  11840. #if ENABLED(PARKING_EXTRUDER)
  11841. #if ENABLED(PARKING_EXTRUDER_SOLENOIDS_INVERT)
  11842. pe_activate_magnet(0);
  11843. pe_activate_magnet(1);
  11844. #else
  11845. pe_deactivate_magnet(0);
  11846. pe_deactivate_magnet(1);
  11847. #endif
  11848. #endif
  11849. #if ENABLED(MKS_12864OLED)
  11850. SET_OUTPUT(LCD_PINS_DC);
  11851. OUT_WRITE(LCD_PINS_RS, LOW);
  11852. delay(1000);
  11853. WRITE(LCD_PINS_RS, HIGH);
  11854. #endif
  11855. }
  11856. /**
  11857. * The main Marlin program loop
  11858. *
  11859. * - Save or log commands to SD
  11860. * - Process available commands (if not saving)
  11861. * - Call heater manager
  11862. * - Call inactivity manager
  11863. * - Call endstop manager
  11864. * - Call LCD update
  11865. */
  11866. void loop() {
  11867. if (commands_in_queue < BUFSIZE) get_available_commands();
  11868. #if ENABLED(SDSUPPORT)
  11869. card.checkautostart(false);
  11870. #endif
  11871. if (commands_in_queue) {
  11872. #if ENABLED(SDSUPPORT)
  11873. if (card.saving) {
  11874. char* command = command_queue[cmd_queue_index_r];
  11875. if (strstr_P(command, PSTR("M29"))) {
  11876. // M29 closes the file
  11877. card.closefile();
  11878. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  11879. #if ENABLED(SERIAL_STATS_DROPPED_RX)
  11880. SERIAL_ECHOLNPAIR("Dropped bytes: ", customizedSerial.dropped());
  11881. #endif
  11882. #if ENABLED(SERIAL_STATS_MAX_RX_QUEUED)
  11883. SERIAL_ECHOLNPAIR("Max RX Queue Size: ", customizedSerial.rxMaxEnqueued());
  11884. #endif
  11885. ok_to_send();
  11886. }
  11887. else {
  11888. // Write the string from the read buffer to SD
  11889. card.write_command(command);
  11890. if (card.logging)
  11891. process_next_command(); // The card is saving because it's logging
  11892. else
  11893. ok_to_send();
  11894. }
  11895. }
  11896. else
  11897. process_next_command();
  11898. #else
  11899. process_next_command();
  11900. #endif // SDSUPPORT
  11901. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  11902. if (commands_in_queue) {
  11903. --commands_in_queue;
  11904. if (++cmd_queue_index_r >= BUFSIZE) cmd_queue_index_r = 0;
  11905. }
  11906. }
  11907. endstops.report_state();
  11908. idle();
  11909. }