My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

planner.cpp 36KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. //===========================================================================
  43. //=============================public variables ============================
  44. //===========================================================================
  45. unsigned long minsegmenttime;
  46. float max_feedrate[4]; // set the max speeds
  47. float axis_steps_per_unit[4];
  48. unsigned long max_acceleration_units_per_sq_second[4]; // Use M201 to override by software
  49. float minimumfeedrate;
  50. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
  51. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  52. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  53. float max_z_jerk;
  54. float max_e_jerk;
  55. float mintravelfeedrate;
  56. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  57. // The current position of the tool in absolute steps
  58. long position[4]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  59. static float previous_speed[4]; // Speed of previous path line segment
  60. static float previous_nominal_speed; // Nominal speed of previous path line segment
  61. #ifdef AUTOTEMP
  62. float autotemp_max=250;
  63. float autotemp_min=210;
  64. float autotemp_factor=0.1;
  65. bool autotemp_enabled=false;
  66. #endif
  67. //===========================================================================
  68. //=================semi-private variables, used in inline functions =====
  69. //===========================================================================
  70. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  71. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  72. volatile unsigned char block_buffer_tail; // Index of the block to process now
  73. //===========================================================================
  74. //=============================private variables ============================
  75. //===========================================================================
  76. #ifdef PREVENT_DANGEROUS_EXTRUDE
  77. float extrude_min_temp=EXTRUDE_MINTEMP;
  78. #endif
  79. #ifdef XY_FREQUENCY_LIMIT
  80. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  81. // Used for the frequency limit
  82. static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
  83. static long x_segment_time[3]={MAX_FREQ_TIME + 1,0,0}; // Segment times (in us). Used for speed calculations
  84. static long y_segment_time[3]={MAX_FREQ_TIME + 1,0,0};
  85. #endif
  86. // Returns the index of the next block in the ring buffer
  87. // NOTE: Removed modulo (%) operator, which uses an expensive divide and multiplication.
  88. static int8_t next_block_index(int8_t block_index) {
  89. block_index++;
  90. if (block_index == BLOCK_BUFFER_SIZE) {
  91. block_index = 0;
  92. }
  93. return(block_index);
  94. }
  95. // Returns the index of the previous block in the ring buffer
  96. static int8_t prev_block_index(int8_t block_index) {
  97. if (block_index == 0) {
  98. block_index = BLOCK_BUFFER_SIZE;
  99. }
  100. block_index--;
  101. return(block_index);
  102. }
  103. //===========================================================================
  104. //=============================functions ============================
  105. //===========================================================================
  106. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  107. // given acceleration:
  108. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
  109. {
  110. if (acceleration!=0) {
  111. return((target_rate*target_rate-initial_rate*initial_rate)/
  112. (2.0*acceleration));
  113. }
  114. else {
  115. return 0.0; // acceleration was 0, set acceleration distance to 0
  116. }
  117. }
  118. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  119. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  120. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  121. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  122. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
  123. {
  124. if (acceleration!=0) {
  125. return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
  126. (4.0*acceleration) );
  127. }
  128. else {
  129. return 0.0; // acceleration was 0, set intersection distance to 0
  130. }
  131. }
  132. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  133. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  134. unsigned long initial_rate = ceil(block->nominal_rate*entry_factor); // (step/min)
  135. unsigned long final_rate = ceil(block->nominal_rate*exit_factor); // (step/min)
  136. // Limit minimal step rate (Otherwise the timer will overflow.)
  137. if(initial_rate <120) {
  138. initial_rate=120;
  139. }
  140. if(final_rate < 120) {
  141. final_rate=120;
  142. }
  143. long acceleration = block->acceleration_st;
  144. int32_t accelerate_steps =
  145. ceil(estimate_acceleration_distance(block->initial_rate, block->nominal_rate, acceleration));
  146. int32_t decelerate_steps =
  147. floor(estimate_acceleration_distance(block->nominal_rate, block->final_rate, -acceleration));
  148. // Calculate the size of Plateau of Nominal Rate.
  149. int32_t plateau_steps = block->step_event_count-accelerate_steps-decelerate_steps;
  150. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  151. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  152. // in order to reach the final_rate exactly at the end of this block.
  153. if (plateau_steps < 0) {
  154. accelerate_steps = ceil(intersection_distance(block->initial_rate, block->final_rate, acceleration, block->step_event_count));
  155. accelerate_steps = max(accelerate_steps,0); // Check limits due to numerical round-off
  156. accelerate_steps = min((uint32_t)accelerate_steps,block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  157. plateau_steps = 0;
  158. }
  159. #ifdef ADVANCE
  160. volatile long initial_advance = block->advance*entry_factor*entry_factor;
  161. volatile long final_advance = block->advance*exit_factor*exit_factor;
  162. #endif // ADVANCE
  163. // block->accelerate_until = accelerate_steps;
  164. // block->decelerate_after = accelerate_steps+plateau_steps;
  165. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  166. if(block->busy == false) { // Don't update variables if block is busy.
  167. block->accelerate_until = accelerate_steps;
  168. block->decelerate_after = accelerate_steps+plateau_steps;
  169. block->initial_rate = initial_rate;
  170. block->final_rate = final_rate;
  171. #ifdef ADVANCE
  172. block->initial_advance = initial_advance;
  173. block->final_advance = final_advance;
  174. #endif //ADVANCE
  175. }
  176. CRITICAL_SECTION_END;
  177. }
  178. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  179. // acceleration within the allotted distance.
  180. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  181. return sqrt(target_velocity*target_velocity-2*acceleration*distance);
  182. }
  183. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  184. // This method will calculate the junction jerk as the euclidean distance between the nominal
  185. // velocities of the respective blocks.
  186. //inline float junction_jerk(block_t *before, block_t *after) {
  187. // return sqrt(
  188. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  189. //}
  190. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  191. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  192. if(!current) {
  193. return;
  194. }
  195. if (next) {
  196. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  197. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  198. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  199. if (current->entry_speed != current->max_entry_speed) {
  200. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  201. // for max allowable speed if block is decelerating and nominal length is false.
  202. if ((!current->nominal_length_flag) && (current->max_entry_speed > next->entry_speed)) {
  203. current->entry_speed = min( current->max_entry_speed,
  204. max_allowable_speed(-current->acceleration,next->entry_speed,current->millimeters));
  205. }
  206. else {
  207. current->entry_speed = current->max_entry_speed;
  208. }
  209. current->recalculate_flag = true;
  210. }
  211. } // Skip last block. Already initialized and set for recalculation.
  212. }
  213. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  214. // implements the reverse pass.
  215. void planner_reverse_pass() {
  216. uint8_t block_index = block_buffer_head;
  217. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  218. CRITICAL_SECTION_START;
  219. unsigned char tail = block_buffer_tail;
  220. CRITICAL_SECTION_END
  221. if(((block_buffer_head-tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1)) > 3) {
  222. block_index = (block_buffer_head - 3) & (BLOCK_BUFFER_SIZE - 1);
  223. block_t *block[3] = {
  224. NULL, NULL, NULL };
  225. while(block_index != tail) {
  226. block_index = prev_block_index(block_index);
  227. block[2]= block[1];
  228. block[1]= block[0];
  229. block[0] = &block_buffer[block_index];
  230. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  231. }
  232. }
  233. }
  234. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  235. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  236. if(!previous) {
  237. return;
  238. }
  239. // If the previous block is an acceleration block, but it is not long enough to complete the
  240. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  241. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  242. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  243. if (!previous->nominal_length_flag) {
  244. if (previous->entry_speed < current->entry_speed) {
  245. double entry_speed = min( current->entry_speed,
  246. max_allowable_speed(-previous->acceleration,previous->entry_speed,previous->millimeters) );
  247. // Check for junction speed change
  248. if (current->entry_speed != entry_speed) {
  249. current->entry_speed = entry_speed;
  250. current->recalculate_flag = true;
  251. }
  252. }
  253. }
  254. }
  255. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  256. // implements the forward pass.
  257. void planner_forward_pass() {
  258. uint8_t block_index = block_buffer_tail;
  259. block_t *block[3] = {
  260. NULL, NULL, NULL };
  261. while(block_index != block_buffer_head) {
  262. block[0] = block[1];
  263. block[1] = block[2];
  264. block[2] = &block_buffer[block_index];
  265. planner_forward_pass_kernel(block[0],block[1],block[2]);
  266. block_index = next_block_index(block_index);
  267. }
  268. planner_forward_pass_kernel(block[1], block[2], NULL);
  269. }
  270. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  271. // entry_factor for each junction. Must be called by planner_recalculate() after
  272. // updating the blocks.
  273. void planner_recalculate_trapezoids() {
  274. int8_t block_index = block_buffer_tail;
  275. block_t *current;
  276. block_t *next = NULL;
  277. while(block_index != block_buffer_head) {
  278. current = next;
  279. next = &block_buffer[block_index];
  280. if (current) {
  281. // Recalculate if current block entry or exit junction speed has changed.
  282. if (current->recalculate_flag || next->recalculate_flag) {
  283. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  284. calculate_trapezoid_for_block(current, current->entry_speed/current->nominal_speed,
  285. next->entry_speed/current->nominal_speed);
  286. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  287. }
  288. }
  289. block_index = next_block_index( block_index );
  290. }
  291. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  292. if(next != NULL) {
  293. calculate_trapezoid_for_block(next, next->entry_speed/next->nominal_speed,
  294. MINIMUM_PLANNER_SPEED/next->nominal_speed);
  295. next->recalculate_flag = false;
  296. }
  297. }
  298. // Recalculates the motion plan according to the following algorithm:
  299. //
  300. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  301. // so that:
  302. // a. The junction jerk is within the set limit
  303. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  304. // acceleration.
  305. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  306. // a. The speed increase within one block would require faster accelleration than the one, true
  307. // constant acceleration.
  308. //
  309. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  310. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  311. // the set limit. Finally it will:
  312. //
  313. // 3. Recalculate trapezoids for all blocks.
  314. void planner_recalculate() {
  315. planner_reverse_pass();
  316. planner_forward_pass();
  317. planner_recalculate_trapezoids();
  318. }
  319. void plan_init() {
  320. block_buffer_head = 0;
  321. block_buffer_tail = 0;
  322. memset(position, 0, sizeof(position)); // clear position
  323. previous_speed[0] = 0.0;
  324. previous_speed[1] = 0.0;
  325. previous_speed[2] = 0.0;
  326. previous_speed[3] = 0.0;
  327. previous_nominal_speed = 0.0;
  328. }
  329. #ifdef AUTOTEMP
  330. void getHighESpeed()
  331. {
  332. static float oldt=0;
  333. if(!autotemp_enabled){
  334. return;
  335. }
  336. if(degTargetHotend0()+2<autotemp_min) { //probably temperature set to zero.
  337. return; //do nothing
  338. }
  339. float high=0.0;
  340. uint8_t block_index = block_buffer_tail;
  341. while(block_index != block_buffer_head) {
  342. if((block_buffer[block_index].steps_x != 0) ||
  343. (block_buffer[block_index].steps_y != 0) ||
  344. (block_buffer[block_index].steps_z != 0)) {
  345. float se=(float(block_buffer[block_index].steps_e)/float(block_buffer[block_index].step_event_count))*block_buffer[block_index].nominal_speed;
  346. //se; mm/sec;
  347. if(se>high)
  348. {
  349. high=se;
  350. }
  351. }
  352. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  353. }
  354. float g=autotemp_min+high*autotemp_factor;
  355. float t=g;
  356. if(t<autotemp_min)
  357. t=autotemp_min;
  358. if(t>autotemp_max)
  359. t=autotemp_max;
  360. if(oldt>t)
  361. {
  362. t=AUTOTEMP_OLDWEIGHT*oldt+(1-AUTOTEMP_OLDWEIGHT)*t;
  363. }
  364. oldt=t;
  365. setTargetHotend0(t);
  366. }
  367. #endif
  368. void check_axes_activity()
  369. {
  370. unsigned char x_active = 0;
  371. unsigned char y_active = 0;
  372. unsigned char z_active = 0;
  373. unsigned char e_active = 0;
  374. unsigned char tail_fan_speed = fanSpeed;
  375. #ifdef BARICUDA
  376. unsigned char tail_valve_pressure = ValvePressure;
  377. unsigned char tail_e_to_p_pressure = EtoPPressure;
  378. #endif
  379. block_t *block;
  380. if(block_buffer_tail != block_buffer_head)
  381. {
  382. uint8_t block_index = block_buffer_tail;
  383. tail_fan_speed = block_buffer[block_index].fan_speed;
  384. #ifdef BARICUDA
  385. tail_valve_pressure = block_buffer[block_index].valve_pressure;
  386. tail_e_to_p_pressure = block_buffer[block_index].e_to_p_pressure;
  387. #endif
  388. while(block_index != block_buffer_head)
  389. {
  390. block = &block_buffer[block_index];
  391. if(block->steps_x != 0) x_active++;
  392. if(block->steps_y != 0) y_active++;
  393. if(block->steps_z != 0) z_active++;
  394. if(block->steps_e != 0) e_active++;
  395. block_index = (block_index+1) & (BLOCK_BUFFER_SIZE - 1);
  396. }
  397. }
  398. if((DISABLE_X) && (x_active == 0)) disable_x();
  399. if((DISABLE_Y) && (y_active == 0)) disable_y();
  400. if((DISABLE_Z) && (z_active == 0)) disable_z();
  401. if((DISABLE_E) && (e_active == 0))
  402. {
  403. disable_e0();
  404. disable_e1();
  405. disable_e2();
  406. }
  407. #if defined(FAN_PIN) && FAN_PIN > -1
  408. #ifdef FAN_KICKSTART_TIME
  409. static unsigned long fan_kick_end;
  410. if (tail_fan_speed) {
  411. if (fan_kick_end == 0) {
  412. // Just starting up fan - run at full power.
  413. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  414. tail_fan_speed = 255;
  415. } else if (fan_kick_end > millis())
  416. // Fan still spinning up.
  417. tail_fan_speed = 255;
  418. } else {
  419. fan_kick_end = 0;
  420. }
  421. #endif//FAN_KICKSTART_TIME
  422. #ifdef FAN_SOFT_PWM
  423. fanSpeedSoftPwm = tail_fan_speed;
  424. #else
  425. analogWrite(FAN_PIN,tail_fan_speed);
  426. #endif//!FAN_SOFT_PWM
  427. #endif//FAN_PIN > -1
  428. #ifdef AUTOTEMP
  429. getHighESpeed();
  430. #endif
  431. #ifdef BARICUDA
  432. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  433. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  434. #endif
  435. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  436. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  437. #endif
  438. #endif
  439. }
  440. float junction_deviation = 0.1;
  441. // Add a new linear movement to the buffer. steps_x, _y and _z is the absolute position in
  442. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  443. // calculation the caller must also provide the physical length of the line in millimeters.
  444. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  445. {
  446. // Calculate the buffer head after we push this byte
  447. int next_buffer_head = next_block_index(block_buffer_head);
  448. // If the buffer is full: good! That means we are well ahead of the robot.
  449. // Rest here until there is room in the buffer.
  450. while(block_buffer_tail == next_buffer_head)
  451. {
  452. manage_heater();
  453. manage_inactivity();
  454. lcd_update();
  455. }
  456. // The target position of the tool in absolute steps
  457. // Calculate target position in absolute steps
  458. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  459. long target[4];
  460. target[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  461. target[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  462. target[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  463. target[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  464. #ifdef PREVENT_DANGEROUS_EXTRUDE
  465. if(target[E_AXIS]!=position[E_AXIS])
  466. {
  467. if(degHotend(active_extruder)<extrude_min_temp)
  468. {
  469. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  470. SERIAL_ECHO_START;
  471. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  472. }
  473. #ifdef PREVENT_LENGTHY_EXTRUDE
  474. if(labs(target[E_AXIS]-position[E_AXIS])>axis_steps_per_unit[E_AXIS]*EXTRUDE_MAXLENGTH)
  475. {
  476. position[E_AXIS]=target[E_AXIS]; //behave as if the move really took place, but ignore E part
  477. SERIAL_ECHO_START;
  478. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  479. }
  480. #endif
  481. }
  482. #endif
  483. // Prepare to set up new block
  484. block_t *block = &block_buffer[block_buffer_head];
  485. // Mark block as not busy (Not executed by the stepper interrupt)
  486. block->busy = false;
  487. // Number of steps for each axis
  488. #ifndef COREXY
  489. // default non-h-bot planning
  490. block->steps_x = labs(target[X_AXIS]-position[X_AXIS]);
  491. block->steps_y = labs(target[Y_AXIS]-position[Y_AXIS]);
  492. #else
  493. // corexy planning
  494. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  495. block->steps_x = labs((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]));
  496. block->steps_y = labs((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]));
  497. #endif
  498. block->steps_z = labs(target[Z_AXIS]-position[Z_AXIS]);
  499. block->steps_e = labs(target[E_AXIS]-position[E_AXIS]);
  500. block->steps_e *= extrudemultiply;
  501. block->steps_e /= 100;
  502. block->step_event_count = max(block->steps_x, max(block->steps_y, max(block->steps_z, block->steps_e)));
  503. // Bail if this is a zero-length block
  504. if (block->step_event_count <= dropsegments)
  505. {
  506. return;
  507. }
  508. block->fan_speed = fanSpeed;
  509. #ifdef BARICUDA
  510. block->valve_pressure = ValvePressure;
  511. block->e_to_p_pressure = EtoPPressure;
  512. #endif
  513. // Compute direction bits for this block
  514. block->direction_bits = 0;
  515. #ifndef COREXY
  516. if (target[X_AXIS] < position[X_AXIS])
  517. {
  518. block->direction_bits |= (1<<X_AXIS);
  519. }
  520. if (target[Y_AXIS] < position[Y_AXIS])
  521. {
  522. block->direction_bits |= (1<<Y_AXIS);
  523. }
  524. #else
  525. if ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]) < 0)
  526. {
  527. block->direction_bits |= (1<<X_AXIS);
  528. }
  529. if ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]) < 0)
  530. {
  531. block->direction_bits |= (1<<Y_AXIS);
  532. }
  533. #endif
  534. if (target[Z_AXIS] < position[Z_AXIS])
  535. {
  536. block->direction_bits |= (1<<Z_AXIS);
  537. }
  538. if (target[E_AXIS] < position[E_AXIS])
  539. {
  540. block->direction_bits |= (1<<E_AXIS);
  541. }
  542. block->active_extruder = extruder;
  543. //enable active axes
  544. #ifdef COREXY
  545. if((block->steps_x != 0) || (block->steps_y != 0))
  546. {
  547. enable_x();
  548. enable_y();
  549. }
  550. #else
  551. if(block->steps_x != 0) enable_x();
  552. if(block->steps_y != 0) enable_y();
  553. #endif
  554. #ifndef Z_LATE_ENABLE
  555. if(block->steps_z != 0) enable_z();
  556. #endif
  557. // Enable all
  558. if(block->steps_e != 0)
  559. {
  560. enable_e0();
  561. enable_e1();
  562. enable_e2();
  563. }
  564. if (block->steps_e == 0)
  565. {
  566. if(feed_rate<mintravelfeedrate) feed_rate=mintravelfeedrate;
  567. }
  568. else
  569. {
  570. if(feed_rate<minimumfeedrate) feed_rate=minimumfeedrate;
  571. }
  572. float delta_mm[4];
  573. #ifndef COREXY
  574. delta_mm[X_AXIS] = (target[X_AXIS]-position[X_AXIS])/axis_steps_per_unit[X_AXIS];
  575. delta_mm[Y_AXIS] = (target[Y_AXIS]-position[Y_AXIS])/axis_steps_per_unit[Y_AXIS];
  576. #else
  577. delta_mm[X_AXIS] = ((target[X_AXIS]-position[X_AXIS]) + (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[X_AXIS];
  578. delta_mm[Y_AXIS] = ((target[X_AXIS]-position[X_AXIS]) - (target[Y_AXIS]-position[Y_AXIS]))/axis_steps_per_unit[Y_AXIS];
  579. #endif
  580. delta_mm[Z_AXIS] = (target[Z_AXIS]-position[Z_AXIS])/axis_steps_per_unit[Z_AXIS];
  581. delta_mm[E_AXIS] = ((target[E_AXIS]-position[E_AXIS])/axis_steps_per_unit[E_AXIS])*extrudemultiply/100.0;
  582. if ( block->steps_x <=dropsegments && block->steps_y <=dropsegments && block->steps_z <=dropsegments )
  583. {
  584. block->millimeters = fabs(delta_mm[E_AXIS]);
  585. }
  586. else
  587. {
  588. block->millimeters = sqrt(square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]));
  589. }
  590. float inverse_millimeters = 1.0/block->millimeters; // Inverse millimeters to remove multiple divides
  591. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  592. float inverse_second = feed_rate * inverse_millimeters;
  593. int moves_queued=(block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  594. // slow down when de buffer starts to empty, rather than wait at the corner for a buffer refill
  595. #ifdef OLD_SLOWDOWN
  596. if(moves_queued < (BLOCK_BUFFER_SIZE * 0.5) && moves_queued > 1)
  597. feed_rate = feed_rate*moves_queued / (BLOCK_BUFFER_SIZE * 0.5);
  598. #endif
  599. #ifdef SLOWDOWN
  600. // segment time im micro seconds
  601. unsigned long segment_time = lround(1000000.0/inverse_second);
  602. if ((moves_queued > 1) && (moves_queued < (BLOCK_BUFFER_SIZE * 0.5)))
  603. {
  604. if (segment_time < minsegmenttime)
  605. { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  606. inverse_second=1000000.0/(segment_time+lround(2*(minsegmenttime-segment_time)/moves_queued));
  607. #ifdef XY_FREQUENCY_LIMIT
  608. segment_time = lround(1000000.0/inverse_second);
  609. #endif
  610. }
  611. }
  612. #endif
  613. // END OF SLOW DOWN SECTION
  614. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  615. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  616. // Calculate and limit speed in mm/sec for each axis
  617. float current_speed[4];
  618. float speed_factor = 1.0; //factor <=1 do decrease speed
  619. for(int i=0; i < 4; i++)
  620. {
  621. current_speed[i] = delta_mm[i] * inverse_second;
  622. if(fabs(current_speed[i]) > max_feedrate[i])
  623. speed_factor = min(speed_factor, max_feedrate[i] / fabs(current_speed[i]));
  624. }
  625. // Max segement time in us.
  626. #ifdef XY_FREQUENCY_LIMIT
  627. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  628. // Check and limit the xy direction change frequency
  629. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  630. old_direction_bits = block->direction_bits;
  631. segment_time = lround((float)segment_time / speed_factor);
  632. if((direction_change & (1<<X_AXIS)) == 0)
  633. {
  634. x_segment_time[0] += segment_time;
  635. }
  636. else
  637. {
  638. x_segment_time[2] = x_segment_time[1];
  639. x_segment_time[1] = x_segment_time[0];
  640. x_segment_time[0] = segment_time;
  641. }
  642. if((direction_change & (1<<Y_AXIS)) == 0)
  643. {
  644. y_segment_time[0] += segment_time;
  645. }
  646. else
  647. {
  648. y_segment_time[2] = y_segment_time[1];
  649. y_segment_time[1] = y_segment_time[0];
  650. y_segment_time[0] = segment_time;
  651. }
  652. long max_x_segment_time = max(x_segment_time[0], max(x_segment_time[1], x_segment_time[2]));
  653. long max_y_segment_time = max(y_segment_time[0], max(y_segment_time[1], y_segment_time[2]));
  654. long min_xy_segment_time =min(max_x_segment_time, max_y_segment_time);
  655. if(min_xy_segment_time < MAX_FREQ_TIME)
  656. speed_factor = min(speed_factor, speed_factor * (float)min_xy_segment_time / (float)MAX_FREQ_TIME);
  657. #endif
  658. // Correct the speed
  659. if( speed_factor < 1.0)
  660. {
  661. for(unsigned char i=0; i < 4; i++)
  662. {
  663. current_speed[i] *= speed_factor;
  664. }
  665. block->nominal_speed *= speed_factor;
  666. block->nominal_rate *= speed_factor;
  667. }
  668. // Compute and limit the acceleration rate for the trapezoid generator.
  669. float steps_per_mm = block->step_event_count/block->millimeters;
  670. if(block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)
  671. {
  672. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  673. }
  674. else
  675. {
  676. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  677. // Limit acceleration per axis
  678. if(((float)block->acceleration_st * (float)block->steps_x / (float)block->step_event_count) > axis_steps_per_sqr_second[X_AXIS])
  679. block->acceleration_st = axis_steps_per_sqr_second[X_AXIS];
  680. if(((float)block->acceleration_st * (float)block->steps_y / (float)block->step_event_count) > axis_steps_per_sqr_second[Y_AXIS])
  681. block->acceleration_st = axis_steps_per_sqr_second[Y_AXIS];
  682. if(((float)block->acceleration_st * (float)block->steps_e / (float)block->step_event_count) > axis_steps_per_sqr_second[E_AXIS])
  683. block->acceleration_st = axis_steps_per_sqr_second[E_AXIS];
  684. if(((float)block->acceleration_st * (float)block->steps_z / (float)block->step_event_count ) > axis_steps_per_sqr_second[Z_AXIS])
  685. block->acceleration_st = axis_steps_per_sqr_second[Z_AXIS];
  686. }
  687. block->acceleration = block->acceleration_st / steps_per_mm;
  688. block->acceleration_rate = (long)((float)block->acceleration_st * (16777216.0 / (F_CPU / 8.0)));
  689. #if 0 // Use old jerk for now
  690. // Compute path unit vector
  691. double unit_vec[3];
  692. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  693. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  694. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  695. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  696. // Let a circle be tangent to both previous and current path line segments, where the junction
  697. // deviation is defined as the distance from the junction to the closest edge of the circle,
  698. // colinear with the circle center. The circular segment joining the two paths represents the
  699. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  700. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  701. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  702. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  703. // nonlinearities of both the junction angle and junction velocity.
  704. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  705. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  706. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  707. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  708. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  709. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  710. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  711. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  712. // Skip and use default max junction speed for 0 degree acute junction.
  713. if (cos_theta < 0.95) {
  714. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  715. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  716. if (cos_theta > -0.95) {
  717. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  718. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  719. vmax_junction = min(vmax_junction,
  720. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  721. }
  722. }
  723. }
  724. #endif
  725. // Start with a safe speed
  726. float vmax_junction = max_xy_jerk/2;
  727. float vmax_junction_factor = 1.0;
  728. if(fabs(current_speed[Z_AXIS]) > max_z_jerk/2)
  729. vmax_junction = min(vmax_junction, max_z_jerk/2);
  730. if(fabs(current_speed[E_AXIS]) > max_e_jerk/2)
  731. vmax_junction = min(vmax_junction, max_e_jerk/2);
  732. vmax_junction = min(vmax_junction, block->nominal_speed);
  733. float safe_speed = vmax_junction;
  734. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  735. float jerk = sqrt(pow((current_speed[X_AXIS]-previous_speed[X_AXIS]), 2)+pow((current_speed[Y_AXIS]-previous_speed[Y_AXIS]), 2));
  736. // if((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  737. vmax_junction = block->nominal_speed;
  738. // }
  739. if (jerk > max_xy_jerk) {
  740. vmax_junction_factor = (max_xy_jerk/jerk);
  741. }
  742. if(fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS]) > max_z_jerk) {
  743. vmax_junction_factor= min(vmax_junction_factor, (max_z_jerk/fabs(current_speed[Z_AXIS] - previous_speed[Z_AXIS])));
  744. }
  745. if(fabs(current_speed[E_AXIS] - previous_speed[E_AXIS]) > max_e_jerk) {
  746. vmax_junction_factor = min(vmax_junction_factor, (max_e_jerk/fabs(current_speed[E_AXIS] - previous_speed[E_AXIS])));
  747. }
  748. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  749. }
  750. block->max_entry_speed = vmax_junction;
  751. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  752. double v_allowable = max_allowable_speed(-block->acceleration,MINIMUM_PLANNER_SPEED,block->millimeters);
  753. block->entry_speed = min(vmax_junction, v_allowable);
  754. // Initialize planner efficiency flags
  755. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  756. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  757. // the current block and next block junction speeds are guaranteed to always be at their maximum
  758. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  759. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  760. // the reverse and forward planners, the corresponding block junction speed will always be at the
  761. // the maximum junction speed and may always be ignored for any speed reduction checks.
  762. if (block->nominal_speed <= v_allowable) {
  763. block->nominal_length_flag = true;
  764. }
  765. else {
  766. block->nominal_length_flag = false;
  767. }
  768. block->recalculate_flag = true; // Always calculate trapezoid for new block
  769. // Update previous path unit_vector and nominal speed
  770. memcpy(previous_speed, current_speed, sizeof(previous_speed)); // previous_speed[] = current_speed[]
  771. previous_nominal_speed = block->nominal_speed;
  772. #ifdef ADVANCE
  773. // Calculate advance rate
  774. if((block->steps_e == 0) || (block->steps_x == 0 && block->steps_y == 0 && block->steps_z == 0)) {
  775. block->advance_rate = 0;
  776. block->advance = 0;
  777. }
  778. else {
  779. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  780. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) *
  781. (current_speed[E_AXIS] * current_speed[E_AXIS] * EXTRUTION_AREA * EXTRUTION_AREA)*256;
  782. block->advance = advance;
  783. if(acc_dist == 0) {
  784. block->advance_rate = 0;
  785. }
  786. else {
  787. block->advance_rate = advance / (float)acc_dist;
  788. }
  789. }
  790. /*
  791. SERIAL_ECHO_START;
  792. SERIAL_ECHOPGM("advance :");
  793. SERIAL_ECHO(block->advance/256.0);
  794. SERIAL_ECHOPGM("advance rate :");
  795. SERIAL_ECHOLN(block->advance_rate/256.0);
  796. */
  797. #endif // ADVANCE
  798. calculate_trapezoid_for_block(block, block->entry_speed/block->nominal_speed,
  799. safe_speed/block->nominal_speed);
  800. // Move buffer head
  801. block_buffer_head = next_buffer_head;
  802. // Update position
  803. memcpy(position, target, sizeof(target)); // position[] = target[]
  804. planner_recalculate();
  805. st_wake_up();
  806. }
  807. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  808. {
  809. position[X_AXIS] = lround(x*axis_steps_per_unit[X_AXIS]);
  810. position[Y_AXIS] = lround(y*axis_steps_per_unit[Y_AXIS]);
  811. position[Z_AXIS] = lround(z*axis_steps_per_unit[Z_AXIS]);
  812. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  813. st_set_position(position[X_AXIS], position[Y_AXIS], position[Z_AXIS], position[E_AXIS]);
  814. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  815. previous_speed[0] = 0.0;
  816. previous_speed[1] = 0.0;
  817. previous_speed[2] = 0.0;
  818. previous_speed[3] = 0.0;
  819. }
  820. void plan_set_e_position(const float &e)
  821. {
  822. position[E_AXIS] = lround(e*axis_steps_per_unit[E_AXIS]);
  823. st_set_e_position(position[E_AXIS]);
  824. }
  825. uint8_t movesplanned()
  826. {
  827. return (block_buffer_head-block_buffer_tail + BLOCK_BUFFER_SIZE) & (BLOCK_BUFFER_SIZE - 1);
  828. }
  829. #ifdef PREVENT_DANGEROUS_EXTRUDE
  830. void set_extrude_min_temp(float temp)
  831. {
  832. extrude_min_temp=temp;
  833. }
  834. #endif
  835. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  836. void reset_acceleration_rates()
  837. {
  838. for(int8_t i=0; i < NUM_AXIS; i++)
  839. {
  840. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  841. }
  842. }