My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G29.cpp 30KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * G29.cpp - Auto Bed Leveling
  24. */
  25. #include "../../../inc/MarlinConfig.h"
  26. #if HAS_ABL_NOT_UBL
  27. #include "../../gcode.h"
  28. #include "../../../feature/bedlevel/bedlevel.h"
  29. #include "../../../module/motion.h"
  30. #include "../../../module/planner.h"
  31. #include "../../../module/stepper.h"
  32. #include "../../../module/probe.h"
  33. #include "../../queue.h"
  34. #if ENABLED(PROBE_TEMP_COMPENSATION)
  35. #include "../../../feature/probe_temp_comp.h"
  36. #include "../../../module/temperature.h"
  37. #endif
  38. #if HAS_DISPLAY
  39. #include "../../../lcd/ultralcd.h"
  40. #endif
  41. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  42. #include "../../../libs/least_squares_fit.h"
  43. #endif
  44. #if ABL_PLANAR
  45. #include "../../../libs/vector_3.h"
  46. #endif
  47. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  48. #include "../../../core/debug_out.h"
  49. #if ENABLED(EXTENSIBLE_UI)
  50. #include "../../../lcd/extui/ui_api.h"
  51. #endif
  52. #if HAS_MULTI_HOTEND
  53. #include "../../../module/tool_change.h"
  54. #endif
  55. #if ABL_GRID
  56. #if ENABLED(PROBE_Y_FIRST)
  57. #define PR_OUTER_VAR meshCount.x
  58. #define PR_OUTER_END abl_grid_points.x
  59. #define PR_INNER_VAR meshCount.y
  60. #define PR_INNER_END abl_grid_points.y
  61. #else
  62. #define PR_OUTER_VAR meshCount.y
  63. #define PR_OUTER_END abl_grid_points.y
  64. #define PR_INNER_VAR meshCount.x
  65. #define PR_INNER_END abl_grid_points.x
  66. #endif
  67. #endif
  68. #if ENABLED(G29_RETRY_AND_RECOVER)
  69. #define G29_RETURN(b) return b;
  70. #else
  71. #define G29_RETURN(b) return;
  72. #endif
  73. /**
  74. * G29: Detailed Z probe, probes the bed at 3 or more points.
  75. * Will fail if the printer has not been homed with G28.
  76. *
  77. * Enhanced G29 Auto Bed Leveling Probe Routine
  78. *
  79. * O Auto-level only if needed
  80. *
  81. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  82. * or alter the bed level data. Useful to check the topology
  83. * after a first run of G29.
  84. *
  85. * J Jettison current bed leveling data
  86. *
  87. * V Set the verbose level (0-4). Example: "G29 V3"
  88. *
  89. * Parameters With LINEAR leveling only:
  90. *
  91. * P Set the size of the grid that will be probed (P x P points).
  92. * Example: "G29 P4"
  93. *
  94. * X Set the X size of the grid that will be probed (X x Y points).
  95. * Example: "G29 X7 Y5"
  96. *
  97. * Y Set the Y size of the grid that will be probed (X x Y points).
  98. *
  99. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  100. * This is useful for manual bed leveling and finding flaws in the bed (to
  101. * assist with part placement).
  102. * Not supported by non-linear delta printer bed leveling.
  103. *
  104. * Parameters With LINEAR and BILINEAR leveling only:
  105. *
  106. * S Set the XY travel speed between probe points (in units/min)
  107. *
  108. * H Set bounds to a centered square H x H units in size
  109. *
  110. * -or-
  111. *
  112. * F Set the Front limit of the probing grid
  113. * B Set the Back limit of the probing grid
  114. * L Set the Left limit of the probing grid
  115. * R Set the Right limit of the probing grid
  116. *
  117. * Parameters with DEBUG_LEVELING_FEATURE only:
  118. *
  119. * C Make a totally fake grid with no actual probing.
  120. * For use in testing when no probing is possible.
  121. *
  122. * Parameters with BILINEAR leveling only:
  123. *
  124. * Z Supply an additional Z probe offset
  125. *
  126. * Extra parameters with PROBE_MANUALLY:
  127. *
  128. * To do manual probing simply repeat G29 until the procedure is complete.
  129. * The first G29 accepts parameters. 'G29 Q' for status, 'G29 A' to abort.
  130. *
  131. * Q Query leveling and G29 state
  132. *
  133. * A Abort current leveling procedure
  134. *
  135. * Extra parameters with BILINEAR only:
  136. *
  137. * W Write a mesh point. (If G29 is idle.)
  138. * I X index for mesh point
  139. * J Y index for mesh point
  140. * X X for mesh point, overrides I
  141. * Y Y for mesh point, overrides J
  142. * Z Z for mesh point. Otherwise, raw current Z.
  143. *
  144. * Without PROBE_MANUALLY:
  145. *
  146. * E By default G29 will engage the Z probe, test the bed, then disengage.
  147. * Include "E" to engage/disengage the Z probe for each sample.
  148. * There's no extra effect if you have a fixed Z probe.
  149. *
  150. */
  151. G29_TYPE GcodeSuite::G29() {
  152. #if EITHER(DEBUG_LEVELING_FEATURE, PROBE_MANUALLY)
  153. const bool seenQ = parser.seen('Q');
  154. #else
  155. constexpr bool seenQ = false;
  156. #endif
  157. // G29 Q is also available if debugging
  158. #if ENABLED(DEBUG_LEVELING_FEATURE)
  159. const uint8_t old_debug_flags = marlin_debug_flags;
  160. if (seenQ) marlin_debug_flags |= MARLIN_DEBUG_LEVELING;
  161. if (DEBUGGING(LEVELING)) {
  162. DEBUG_POS(">>> G29", current_position);
  163. log_machine_info();
  164. }
  165. marlin_debug_flags = old_debug_flags;
  166. #if DISABLED(PROBE_MANUALLY)
  167. if (seenQ) G29_RETURN(false);
  168. #endif
  169. #endif
  170. #if ENABLED(PROBE_MANUALLY)
  171. const bool seenA = parser.seen('A');
  172. #else
  173. constexpr bool seenA = false;
  174. #endif
  175. const bool no_action = seenA || seenQ,
  176. faux =
  177. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(PROBE_MANUALLY)
  178. parser.boolval('C')
  179. #else
  180. no_action
  181. #endif
  182. ;
  183. // Don't allow auto-leveling without homing first
  184. if (axis_unhomed_error()) G29_RETURN(false);
  185. if (!no_action && planner.leveling_active && parser.boolval('O')) { // Auto-level only if needed
  186. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> Auto-level not needed, skip\n<<< G29");
  187. G29_RETURN(false);
  188. }
  189. // Define local vars 'static' for manual probing, 'auto' otherwise
  190. #if ENABLED(PROBE_MANUALLY)
  191. #define ABL_VAR static
  192. #else
  193. #define ABL_VAR
  194. #endif
  195. ABL_VAR int verbose_level;
  196. ABL_VAR xy_pos_t probePos;
  197. ABL_VAR float measured_z;
  198. ABL_VAR bool dryrun, abl_should_enable;
  199. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  200. ABL_VAR int abl_probe_index;
  201. #endif
  202. #if BOTH(HAS_SOFTWARE_ENDSTOPS, PROBE_MANUALLY)
  203. ABL_VAR bool saved_soft_endstops_state = true;
  204. #endif
  205. #if ABL_GRID
  206. #if ENABLED(PROBE_MANUALLY)
  207. ABL_VAR xy_int8_t meshCount;
  208. #endif
  209. ABL_VAR xy_pos_t probe_position_lf, probe_position_rb;
  210. ABL_VAR xy_float_t gridSpacing = { 0, 0 };
  211. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  212. ABL_VAR bool do_topography_map;
  213. ABL_VAR xy_uint8_t abl_grid_points;
  214. #else // Bilinear
  215. constexpr xy_uint8_t abl_grid_points = { GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y };
  216. #endif
  217. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  218. ABL_VAR int abl_points;
  219. #elif ENABLED(PROBE_MANUALLY) // Bilinear
  220. int constexpr abl_points = GRID_MAX_POINTS;
  221. #endif
  222. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  223. ABL_VAR float zoffset;
  224. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  225. ABL_VAR int indexIntoAB[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];
  226. ABL_VAR float eqnAMatrix[(GRID_MAX_POINTS) * 3], // "A" matrix of the linear system of equations
  227. eqnBVector[GRID_MAX_POINTS], // "B" vector of Z points
  228. mean;
  229. #endif
  230. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  231. #if ENABLED(PROBE_MANUALLY)
  232. int constexpr abl_points = 3; // used to show total points
  233. #endif
  234. vector_3 points[3];
  235. probe.get_three_points(points);
  236. #endif // AUTO_BED_LEVELING_3POINT
  237. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  238. struct linear_fit_data lsf_results;
  239. incremental_LSF_reset(&lsf_results);
  240. #endif
  241. /**
  242. * On the initial G29 fetch command parameters.
  243. */
  244. if (!g29_in_progress) {
  245. TERN_(HAS_MULTI_HOTEND, if (active_extruder) tool_change(0));
  246. #if EITHER(PROBE_MANUALLY, AUTO_BED_LEVELING_LINEAR)
  247. abl_probe_index = -1;
  248. #endif
  249. abl_should_enable = planner.leveling_active;
  250. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  251. const bool seen_w = parser.seen('W');
  252. if (seen_w) {
  253. if (!leveling_is_valid()) {
  254. SERIAL_ERROR_MSG("No bilinear grid");
  255. G29_RETURN(false);
  256. }
  257. const float rz = parser.seenval('Z') ? RAW_Z_POSITION(parser.value_linear_units()) : current_position.z;
  258. if (!WITHIN(rz, -10, 10)) {
  259. SERIAL_ERROR_MSG("Bad Z value");
  260. G29_RETURN(false);
  261. }
  262. const float rx = RAW_X_POSITION(parser.linearval('X', NAN)),
  263. ry = RAW_Y_POSITION(parser.linearval('Y', NAN));
  264. int8_t i = parser.byteval('I', -1), j = parser.byteval('J', -1);
  265. if (!isnan(rx) && !isnan(ry)) {
  266. // Get nearest i / j from rx / ry
  267. i = (rx - bilinear_start.x + 0.5 * gridSpacing.x) / gridSpacing.x;
  268. j = (ry - bilinear_start.y + 0.5 * gridSpacing.y) / gridSpacing.y;
  269. LIMIT(i, 0, GRID_MAX_POINTS_X - 1);
  270. LIMIT(j, 0, GRID_MAX_POINTS_Y - 1);
  271. }
  272. if (WITHIN(i, 0, GRID_MAX_POINTS_X - 1) && WITHIN(j, 0, GRID_MAX_POINTS_Y)) {
  273. set_bed_leveling_enabled(false);
  274. z_values[i][j] = rz;
  275. TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
  276. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(i, j, rz));
  277. set_bed_leveling_enabled(abl_should_enable);
  278. if (abl_should_enable) report_current_position();
  279. }
  280. G29_RETURN(false);
  281. } // parser.seen('W')
  282. #else
  283. constexpr bool seen_w = false;
  284. #endif
  285. // Jettison bed leveling data
  286. if (!seen_w && parser.seen('J')) {
  287. reset_bed_level();
  288. G29_RETURN(false);
  289. }
  290. verbose_level = parser.intval('V');
  291. if (!WITHIN(verbose_level, 0, 4)) {
  292. SERIAL_ECHOLNPGM("?(V)erbose level implausible (0-4).");
  293. G29_RETURN(false);
  294. }
  295. dryrun = parser.boolval('D')
  296. #if ENABLED(PROBE_MANUALLY)
  297. || no_action
  298. #endif
  299. ;
  300. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  301. do_topography_map = verbose_level > 2 || parser.boolval('T');
  302. // X and Y specify points in each direction, overriding the default
  303. // These values may be saved with the completed mesh
  304. abl_grid_points.set(
  305. parser.byteval('X', GRID_MAX_POINTS_X),
  306. parser.byteval('Y', GRID_MAX_POINTS_Y)
  307. );
  308. if (parser.seenval('P')) abl_grid_points.x = abl_grid_points.y = parser.value_int();
  309. if (!WITHIN(abl_grid_points.x, 2, GRID_MAX_POINTS_X)) {
  310. SERIAL_ECHOLNPGM("?Probe points (X) implausible (2-" STRINGIFY(GRID_MAX_POINTS_X) ").");
  311. G29_RETURN(false);
  312. }
  313. if (!WITHIN(abl_grid_points.y, 2, GRID_MAX_POINTS_Y)) {
  314. SERIAL_ECHOLNPGM("?Probe points (Y) implausible (2-" STRINGIFY(GRID_MAX_POINTS_Y) ").");
  315. G29_RETURN(false);
  316. }
  317. abl_points = abl_grid_points.x * abl_grid_points.y;
  318. mean = 0;
  319. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  320. zoffset = parser.linearval('Z');
  321. #endif
  322. #if ABL_GRID
  323. xy_probe_feedrate_mm_s = MMM_TO_MMS(parser.linearval('S', XY_PROBE_SPEED));
  324. const float x_min = probe.min_x(), x_max = probe.max_x(),
  325. y_min = probe.min_y(), y_max = probe.max_y();
  326. if (parser.seen('H')) {
  327. const int16_t size = (int16_t)parser.value_linear_units();
  328. probe_position_lf.set(
  329. _MAX(X_CENTER - size / 2, x_min),
  330. _MAX(Y_CENTER - size / 2, y_min)
  331. );
  332. probe_position_rb.set(
  333. _MIN(probe_position_lf.x + size, x_max),
  334. _MIN(probe_position_lf.y + size, y_max)
  335. );
  336. }
  337. else {
  338. probe_position_lf.set(
  339. parser.seenval('L') ? RAW_X_POSITION(parser.value_linear_units()) : x_min,
  340. parser.seenval('F') ? RAW_Y_POSITION(parser.value_linear_units()) : y_min
  341. );
  342. probe_position_rb.set(
  343. parser.seenval('R') ? RAW_X_POSITION(parser.value_linear_units()) : x_max,
  344. parser.seenval('B') ? RAW_Y_POSITION(parser.value_linear_units()) : y_max
  345. );
  346. }
  347. if (!probe.good_bounds(probe_position_lf, probe_position_rb)) {
  348. SERIAL_ECHOLNPGM("? (L,R,F,B) out of bounds.");
  349. G29_RETURN(false);
  350. }
  351. // probe at the points of a lattice grid
  352. gridSpacing.set((probe_position_rb.x - probe_position_lf.x) / (abl_grid_points.x - 1),
  353. (probe_position_rb.y - probe_position_lf.y) / (abl_grid_points.y - 1));
  354. #endif // ABL_GRID
  355. if (verbose_level > 0) {
  356. SERIAL_ECHOPGM("G29 Auto Bed Leveling");
  357. if (dryrun) SERIAL_ECHOPGM(" (DRYRUN)");
  358. SERIAL_EOL();
  359. }
  360. planner.synchronize();
  361. // Disable auto bed leveling during G29.
  362. // Be formal so G29 can be done successively without G28.
  363. if (!no_action) set_bed_leveling_enabled(false);
  364. #if HAS_BED_PROBE
  365. // Deploy the probe. Probe will raise if needed.
  366. if (probe.deploy()) {
  367. set_bed_leveling_enabled(abl_should_enable);
  368. G29_RETURN(false);
  369. }
  370. #endif
  371. if (!faux) remember_feedrate_scaling_off();
  372. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  373. #if ENABLED(PROBE_MANUALLY)
  374. if (!no_action)
  375. #endif
  376. if (gridSpacing != bilinear_grid_spacing || probe_position_lf != bilinear_start) {
  377. // Reset grid to 0.0 or "not probed". (Also disables ABL)
  378. reset_bed_level();
  379. // Initialize a grid with the given dimensions
  380. bilinear_grid_spacing = gridSpacing;
  381. bilinear_start = probe_position_lf;
  382. // Can't re-enable (on error) until the new grid is written
  383. abl_should_enable = false;
  384. }
  385. #endif // AUTO_BED_LEVELING_BILINEAR
  386. #if ENABLED(AUTO_BED_LEVELING_3POINT)
  387. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> 3-point Leveling");
  388. // Probe at 3 arbitrary points
  389. points[0].z = points[1].z = points[2].z = 0;
  390. #endif // AUTO_BED_LEVELING_3POINT
  391. } // !g29_in_progress
  392. #if ENABLED(PROBE_MANUALLY)
  393. // For manual probing, get the next index to probe now.
  394. // On the first probe this will be incremented to 0.
  395. if (!no_action) {
  396. ++abl_probe_index;
  397. g29_in_progress = true;
  398. }
  399. // Abort current G29 procedure, go back to idle state
  400. if (seenA && g29_in_progress) {
  401. SERIAL_ECHOLNPGM("Manual G29 aborted");
  402. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = saved_soft_endstops_state);
  403. set_bed_leveling_enabled(abl_should_enable);
  404. g29_in_progress = false;
  405. TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
  406. }
  407. // Query G29 status
  408. if (verbose_level || seenQ) {
  409. SERIAL_ECHOPGM("Manual G29 ");
  410. if (g29_in_progress) {
  411. SERIAL_ECHOPAIR("point ", _MIN(abl_probe_index + 1, abl_points));
  412. SERIAL_ECHOLNPAIR(" of ", abl_points);
  413. }
  414. else
  415. SERIAL_ECHOLNPGM("idle");
  416. }
  417. if (no_action) G29_RETURN(false);
  418. if (abl_probe_index == 0) {
  419. // For the initial G29 S2 save software endstop state
  420. TERN_(HAS_SOFTWARE_ENDSTOPS, saved_soft_endstops_state = soft_endstops_enabled);
  421. // Move close to the bed before the first point
  422. do_blocking_move_to_z(0);
  423. }
  424. else {
  425. #if EITHER(AUTO_BED_LEVELING_LINEAR, AUTO_BED_LEVELING_3POINT)
  426. const uint16_t index = abl_probe_index - 1;
  427. #endif
  428. // For G29 after adjusting Z.
  429. // Save the previous Z before going to the next point
  430. measured_z = current_position.z;
  431. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  432. mean += measured_z;
  433. eqnBVector[index] = measured_z;
  434. eqnAMatrix[index + 0 * abl_points] = probePos.x;
  435. eqnAMatrix[index + 1 * abl_points] = probePos.y;
  436. eqnAMatrix[index + 2 * abl_points] = 1;
  437. incremental_LSF(&lsf_results, probePos, measured_z);
  438. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  439. points[index].z = measured_z;
  440. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  441. const float newz = measured_z + zoffset;
  442. z_values[meshCount.x][meshCount.y] = newz;
  443. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, newz));
  444. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR_P(PSTR("Save X"), meshCount.x, SP_Y_STR, meshCount.y, SP_Z_STR, measured_z + zoffset);
  445. #endif
  446. }
  447. //
  448. // If there's another point to sample, move there with optional lift.
  449. //
  450. #if ABL_GRID
  451. // Skip any unreachable points
  452. while (abl_probe_index < abl_points) {
  453. // Set meshCount.x, meshCount.y based on abl_probe_index, with zig-zag
  454. PR_OUTER_VAR = abl_probe_index / PR_INNER_END;
  455. PR_INNER_VAR = abl_probe_index - (PR_OUTER_VAR * PR_INNER_END);
  456. // Probe in reverse order for every other row/column
  457. bool zig = (PR_OUTER_VAR & 1); // != ((PR_OUTER_END) & 1);
  458. if (zig) PR_INNER_VAR = (PR_INNER_END - 1) - PR_INNER_VAR;
  459. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  460. TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = abl_probe_index);
  461. // Keep looping till a reachable point is found
  462. if (position_is_reachable(probePos)) break;
  463. ++abl_probe_index;
  464. }
  465. // Is there a next point to move to?
  466. if (abl_probe_index < abl_points) {
  467. _manual_goto_xy(probePos); // Can be used here too!
  468. #if HAS_SOFTWARE_ENDSTOPS
  469. // Disable software endstops to allow manual adjustment
  470. // If G29 is not completed, they will not be re-enabled
  471. soft_endstops_enabled = false;
  472. #endif
  473. G29_RETURN(false);
  474. }
  475. else {
  476. // Leveling done! Fall through to G29 finishing code below
  477. SERIAL_ECHOLNPGM("Grid probing done.");
  478. // Re-enable software endstops, if needed
  479. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = saved_soft_endstops_state);
  480. }
  481. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  482. // Probe at 3 arbitrary points
  483. if (abl_probe_index < abl_points) {
  484. probePos = points[abl_probe_index];
  485. _manual_goto_xy(probePos);
  486. #if HAS_SOFTWARE_ENDSTOPS
  487. // Disable software endstops to allow manual adjustment
  488. // If G29 is not completed, they will not be re-enabled
  489. soft_endstops_enabled = false;
  490. #endif
  491. G29_RETURN(false);
  492. }
  493. else {
  494. SERIAL_ECHOLNPGM("3-point probing done.");
  495. // Re-enable software endstops, if needed
  496. TERN_(HAS_SOFTWARE_ENDSTOPS, soft_endstops_enabled = saved_soft_endstops_state);
  497. if (!dryrun) {
  498. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  499. if (planeNormal.z < 0) planeNormal *= -1;
  500. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  501. // Can't re-enable (on error) until the new grid is written
  502. abl_should_enable = false;
  503. }
  504. }
  505. #endif // AUTO_BED_LEVELING_3POINT
  506. #else // !PROBE_MANUALLY
  507. {
  508. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  509. measured_z = 0;
  510. #if ABL_GRID
  511. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  512. measured_z = 0;
  513. xy_int8_t meshCount;
  514. // Outer loop is X with PROBE_Y_FIRST enabled
  515. // Outer loop is Y with PROBE_Y_FIRST disabled
  516. for (PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END && !isnan(measured_z); PR_OUTER_VAR++) {
  517. int8_t inStart, inStop, inInc;
  518. if (zig) { // Zig away from origin
  519. inStart = 0; // Left or front
  520. inStop = PR_INNER_END; // Right or back
  521. inInc = 1; // Zig right
  522. }
  523. else { // Zag towards origin
  524. inStart = PR_INNER_END - 1; // Right or back
  525. inStop = -1; // Left or front
  526. inInc = -1; // Zag left
  527. }
  528. zig ^= true; // zag
  529. // An index to print current state
  530. uint8_t pt_index = (PR_OUTER_VAR) * (PR_INNER_END) + 1;
  531. // Inner loop is Y with PROBE_Y_FIRST enabled
  532. // Inner loop is X with PROBE_Y_FIRST disabled
  533. for (PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; pt_index++, PR_INNER_VAR += inInc) {
  534. probePos = probe_position_lf + gridSpacing * meshCount.asFloat();
  535. TERN_(AUTO_BED_LEVELING_LINEAR, indexIntoAB[meshCount.x][meshCount.y] = ++abl_probe_index); // 0...
  536. #if IS_KINEMATIC
  537. // Avoid probing outside the round or hexagonal area
  538. if (!probe.can_reach(probePos)) continue;
  539. #endif
  540. if (verbose_level) SERIAL_ECHOLNPAIR("Probing mesh point ", int(pt_index), "/", int(GRID_MAX_POINTS), ".");
  541. TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/%i"), GET_TEXT(MSG_PROBING_MESH), int(pt_index), int(GRID_MAX_POINTS)));
  542. measured_z = faux ? 0.001f * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
  543. if (isnan(measured_z)) {
  544. set_bed_leveling_enabled(abl_should_enable);
  545. break; // Breaks out of both loops
  546. }
  547. #if ENABLED(PROBE_TEMP_COMPENSATION)
  548. temp_comp.compensate_measurement(TSI_BED, thermalManager.degBed(), measured_z);
  549. temp_comp.compensate_measurement(TSI_PROBE, thermalManager.degProbe(), measured_z);
  550. TERN_(USE_TEMP_EXT_COMPENSATION, temp_comp.compensate_measurement(TSI_EXT, thermalManager.degHotend(), measured_z));
  551. #endif
  552. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  553. mean += measured_z;
  554. eqnBVector[abl_probe_index] = measured_z;
  555. eqnAMatrix[abl_probe_index + 0 * abl_points] = probePos.x;
  556. eqnAMatrix[abl_probe_index + 1 * abl_points] = probePos.y;
  557. eqnAMatrix[abl_probe_index + 2 * abl_points] = 1;
  558. incremental_LSF(&lsf_results, probePos, measured_z);
  559. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  560. z_values[meshCount.x][meshCount.y] = measured_z + zoffset;
  561. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(meshCount, z_values[meshCount.x][meshCount.y]));
  562. #endif
  563. abl_should_enable = false;
  564. idle();
  565. } // inner
  566. } // outer
  567. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  568. // Probe at 3 arbitrary points
  569. LOOP_L_N(i, 3) {
  570. if (verbose_level) SERIAL_ECHOLNPAIR("Probing point ", int(i), "/3.");
  571. TERN_(HAS_DISPLAY, ui.status_printf_P(0, PSTR(S_FMT " %i/3"), GET_TEXT(MSG_PROBING_MESH), int(i)));
  572. // Retain the last probe position
  573. probePos = points[i];
  574. measured_z = faux ? 0.001 * random(-100, 101) : probe.probe_at_point(probePos, raise_after, verbose_level);
  575. if (isnan(measured_z)) {
  576. set_bed_leveling_enabled(abl_should_enable);
  577. break;
  578. }
  579. points[i].z = measured_z;
  580. }
  581. if (!dryrun && !isnan(measured_z)) {
  582. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  583. if (planeNormal.z < 0) planeNormal *= -1;
  584. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  585. // Can't re-enable (on error) until the new grid is written
  586. abl_should_enable = false;
  587. }
  588. #endif // AUTO_BED_LEVELING_3POINT
  589. TERN_(HAS_DISPLAY, ui.reset_status());
  590. // Stow the probe. No raise for FIX_MOUNTED_PROBE.
  591. if (probe.stow()) {
  592. set_bed_leveling_enabled(abl_should_enable);
  593. measured_z = NAN;
  594. }
  595. }
  596. #endif // !PROBE_MANUALLY
  597. //
  598. // G29 Finishing Code
  599. //
  600. // Unless this is a dry run, auto bed leveling will
  601. // definitely be enabled after this point.
  602. //
  603. // If code above wants to continue leveling, it should
  604. // return or loop before this point.
  605. //
  606. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  607. #if ENABLED(PROBE_MANUALLY)
  608. g29_in_progress = false;
  609. TERN_(LCD_BED_LEVELING, ui.wait_for_move = false);
  610. #endif
  611. // Calculate leveling, print reports, correct the position
  612. if (!isnan(measured_z)) {
  613. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  614. if (!dryrun) extrapolate_unprobed_bed_level();
  615. print_bilinear_leveling_grid();
  616. refresh_bed_level();
  617. TERN_(ABL_BILINEAR_SUBDIVISION, print_bilinear_leveling_grid_virt());
  618. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  619. // For LINEAR leveling calculate matrix, print reports, correct the position
  620. /**
  621. * solve the plane equation ax + by + d = z
  622. * A is the matrix with rows [x y 1] for all the probed points
  623. * B is the vector of the Z positions
  624. * the normal vector to the plane is formed by the coefficients of the
  625. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  626. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  627. */
  628. struct { float a, b, d; } plane_equation_coefficients;
  629. finish_incremental_LSF(&lsf_results);
  630. plane_equation_coefficients.a = -lsf_results.A; // We should be able to eliminate the '-' on these three lines and down below
  631. plane_equation_coefficients.b = -lsf_results.B; // but that is not yet tested.
  632. plane_equation_coefficients.d = -lsf_results.D;
  633. mean /= abl_points;
  634. if (verbose_level) {
  635. SERIAL_ECHOPAIR_F("Eqn coefficients: a: ", plane_equation_coefficients.a, 8);
  636. SERIAL_ECHOPAIR_F(" b: ", plane_equation_coefficients.b, 8);
  637. SERIAL_ECHOPAIR_F(" d: ", plane_equation_coefficients.d, 8);
  638. if (verbose_level > 2)
  639. SERIAL_ECHOPAIR_F("\nMean of sampled points: ", mean, 8);
  640. SERIAL_EOL();
  641. }
  642. // Create the matrix but don't correct the position yet
  643. if (!dryrun)
  644. planner.bed_level_matrix = matrix_3x3::create_look_at(
  645. vector_3(-plane_equation_coefficients.a, -plane_equation_coefficients.b, 1) // We can eliminate the '-' here and up above
  646. );
  647. // Show the Topography map if enabled
  648. if (do_topography_map) {
  649. float min_diff = 999;
  650. auto print_topo_map = [&](PGM_P const title, const bool get_min) {
  651. serialprintPGM(title);
  652. for (int8_t yy = abl_grid_points.y - 1; yy >= 0; yy--) {
  653. LOOP_L_N(xx, abl_grid_points.x) {
  654. const int ind = indexIntoAB[xx][yy];
  655. xyz_float_t tmp = { eqnAMatrix[ind + 0 * abl_points],
  656. eqnAMatrix[ind + 1 * abl_points], 0 };
  657. apply_rotation_xyz(planner.bed_level_matrix, tmp);
  658. if (get_min) NOMORE(min_diff, eqnBVector[ind] - tmp.z);
  659. const float subval = get_min ? mean : tmp.z + min_diff,
  660. diff = eqnBVector[ind] - subval;
  661. SERIAL_CHAR(' '); if (diff >= 0.0) SERIAL_CHAR('+'); // Include + for column alignment
  662. SERIAL_ECHO_F(diff, 5);
  663. } // xx
  664. SERIAL_EOL();
  665. } // yy
  666. SERIAL_EOL();
  667. };
  668. print_topo_map(PSTR("\nBed Height Topography:\n"
  669. " +--- BACK --+\n"
  670. " | |\n"
  671. " L | (+) | R\n"
  672. " E | | I\n"
  673. " F | (-) N (+) | G\n"
  674. " T | | H\n"
  675. " | (-) | T\n"
  676. " | |\n"
  677. " O-- FRONT --+\n"
  678. " (0,0)\n"), true);
  679. if (verbose_level > 3)
  680. print_topo_map(PSTR("\nCorrected Bed Height vs. Bed Topology:\n"), false);
  681. } //do_topography_map
  682. #endif // AUTO_BED_LEVELING_LINEAR
  683. #if ABL_PLANAR
  684. // For LINEAR and 3POINT leveling correct the current position
  685. if (verbose_level > 0)
  686. planner.bed_level_matrix.debug(PSTR("\n\nBed Level Correction Matrix:"));
  687. if (!dryrun) {
  688. //
  689. // Correct the current XYZ position based on the tilted plane.
  690. //
  691. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  692. xyze_pos_t converted = current_position;
  693. planner.force_unapply_leveling(converted); // use conversion machinery
  694. // Use the last measured distance to the bed, if possible
  695. if ( NEAR(current_position.x, probePos.x - probe.offset_xy.x)
  696. && NEAR(current_position.y, probePos.y - probe.offset_xy.y)
  697. ) {
  698. const float simple_z = current_position.z - measured_z;
  699. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Probed Z", simple_z, " Matrix Z", converted.z, " Discrepancy ", simple_z - converted.z);
  700. converted.z = simple_z;
  701. }
  702. // The rotated XY and corrected Z are now current_position
  703. current_position = converted;
  704. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  705. }
  706. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  707. if (!dryrun) {
  708. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("G29 uncorrected Z:", current_position.z);
  709. // Unapply the offset because it is going to be immediately applied
  710. // and cause compensation movement in Z
  711. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  712. const float fade_scaling_factor = planner.fade_scaling_factor_for_z(current_position.z);
  713. #else
  714. constexpr float fade_scaling_factor = 1.0f;
  715. #endif
  716. current_position.z -= fade_scaling_factor * bilinear_z_offset(current_position);
  717. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR(" corrected Z:", current_position.z);
  718. }
  719. #endif // ABL_PLANAR
  720. // Auto Bed Leveling is complete! Enable if possible.
  721. planner.leveling_active = dryrun ? abl_should_enable : true;
  722. } // !isnan(measured_z)
  723. // Restore state after probing
  724. if (!faux) restore_feedrate_and_scaling();
  725. // Sync the planner from the current_position
  726. if (planner.leveling_active) sync_plan_position();
  727. #if HAS_BED_PROBE && defined(Z_AFTER_PROBING)
  728. probe.move_z_after_probing();
  729. #endif
  730. #ifdef Z_PROBE_END_SCRIPT
  731. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  732. planner.synchronize();
  733. process_subcommands_now_P(PSTR(Z_PROBE_END_SCRIPT));
  734. #endif
  735. report_current_position();
  736. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G29");
  737. G29_RETURN(isnan(measured_z));
  738. }
  739. #endif // HAS_ABL_NOT_UBL