My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

G34_M422.cpp 18KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../inc/MarlinConfig.h"
  23. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  24. #include "../../feature/z_stepper_align.h"
  25. #include "../gcode.h"
  26. #include "../../module/planner.h"
  27. #include "../../module/stepper.h"
  28. #include "../../module/motion.h"
  29. #include "../../module/probe.h"
  30. #if HAS_MULTI_HOTEND
  31. #include "../../module/tool_change.h"
  32. #endif
  33. #if HAS_LEVELING
  34. #include "../../feature/bedlevel/bedlevel.h"
  35. #endif
  36. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  37. #include "../../libs/least_squares_fit.h"
  38. #endif
  39. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  40. #include "../../core/debug_out.h"
  41. inline void set_all_z_lock(const bool lock) {
  42. stepper.set_z_lock(lock);
  43. stepper.set_z2_lock(lock);
  44. #if NUM_Z_STEPPER_DRIVERS >= 3
  45. stepper.set_z3_lock(lock);
  46. #if NUM_Z_STEPPER_DRIVERS >= 4
  47. stepper.set_z4_lock(lock);
  48. #endif
  49. #endif
  50. }
  51. /**
  52. * G34: Z-Stepper automatic alignment
  53. *
  54. * I<iterations>
  55. * T<accuracy>
  56. * A<amplification>
  57. * R<recalculate> points based on current probe offsets
  58. */
  59. void GcodeSuite::G34() {
  60. if (DEBUGGING(LEVELING)) {
  61. DEBUG_ECHOLNPGM(">>> G34");
  62. log_machine_info();
  63. }
  64. do { // break out on error
  65. #if NUM_Z_STEPPER_DRIVERS == 4
  66. SERIAL_ECHOLNPGM("Alignment for 4 steppers is Experimental!");
  67. #elif NUM_Z_STEPPER_DRIVERS > 4
  68. SERIAL_ECHOLNPGM("Alignment not supported for over 4 steppers");
  69. break;
  70. #endif
  71. const int8_t z_auto_align_iterations = parser.intval('I', Z_STEPPER_ALIGN_ITERATIONS);
  72. if (!WITHIN(z_auto_align_iterations, 1, 30)) {
  73. SERIAL_ECHOLNPGM("?(I)teration out of bounds (1-30).");
  74. break;
  75. }
  76. const float z_auto_align_accuracy = parser.floatval('T', Z_STEPPER_ALIGN_ACC);
  77. if (!WITHIN(z_auto_align_accuracy, 0.01f, 1.0f)) {
  78. SERIAL_ECHOLNPGM("?(T)arget accuracy out of bounds (0.01-1.0).");
  79. break;
  80. }
  81. const float z_auto_align_amplification =
  82. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  83. Z_STEPPER_ALIGN_AMP;
  84. #else
  85. parser.floatval('A', Z_STEPPER_ALIGN_AMP);
  86. if (!WITHIN(ABS(z_auto_align_amplification), 0.5f, 2.0f)) {
  87. SERIAL_ECHOLNPGM("?(A)mplification out of bounds (0.5-2.0).");
  88. break;
  89. }
  90. #endif
  91. if (parser.seen('R')) z_stepper_align.reset_to_default();
  92. const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
  93. // Wait for planner moves to finish!
  94. planner.synchronize();
  95. // Disable the leveling matrix before auto-aligning
  96. #if HAS_LEVELING
  97. TERN_(RESTORE_LEVELING_AFTER_G34, const bool leveling_was_active = planner.leveling_active);
  98. set_bed_leveling_enabled(false);
  99. #endif
  100. TERN_(CNC_WORKSPACE_PLANES, workspace_plane = PLANE_XY);
  101. // Always home with tool 0 active
  102. #if HAS_MULTI_HOTEND
  103. const uint8_t old_tool_index = active_extruder;
  104. tool_change(0, true);
  105. #endif
  106. TERN_(HAS_DUPLICATION_MODE, extruder_duplication_enabled = false);
  107. // In BLTOUCH HS mode, the probe travels in a deployed state.
  108. // Users of G34 might have a badly misaligned bed, so raise Z by the
  109. // length of the deployed pin (BLTOUCH stroke < 7mm)
  110. #define Z_BASIC_CLEARANCE Z_CLEARANCE_BETWEEN_PROBES + 7.0f * BOTH(BLTOUCH, BLTOUCH_HS_MODE)
  111. // Compute a worst-case clearance height to probe from. After the first
  112. // iteration this will be re-calculated based on the actual bed position
  113. auto magnitude2 = [&](const uint8_t i, const uint8_t j) {
  114. const xy_pos_t diff = z_stepper_align.xy[i] - z_stepper_align.xy[j];
  115. return HYPOT2(diff.x, diff.y);
  116. };
  117. float z_probe = Z_BASIC_CLEARANCE + (G34_MAX_GRADE) * 0.01f * SQRT(
  118. #if NUM_Z_STEPPER_DRIVERS == 3
  119. _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 0))
  120. #elif NUM_Z_STEPPER_DRIVERS == 4
  121. _MAX(magnitude2(0, 1), magnitude2(1, 2), magnitude2(2, 3),
  122. magnitude2(3, 0), magnitude2(0, 2), magnitude2(1, 3))
  123. #else
  124. magnitude2(0, 1)
  125. #endif
  126. );
  127. // Home before the alignment procedure
  128. if (!all_axes_known()) home_all_axes();
  129. // Move the Z coordinate realm towards the positive - dirty trick
  130. current_position.z += z_probe * 0.5f;
  131. sync_plan_position();
  132. // Now, the Z origin lies below the build plate. That allows to probe deeper, before run_z_probe throws an error.
  133. // This hack is un-done at the end of G34 - either by re-homing, or by using the probed heights of the last iteration.
  134. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  135. float last_z_align_move[NUM_Z_STEPPER_DRIVERS] = ARRAY_N(NUM_Z_STEPPER_DRIVERS, 10000.0f, 10000.0f, 10000.0f, 10000.0f);
  136. #else
  137. float last_z_align_level_indicator = 10000.0f;
  138. #endif
  139. float z_measured[NUM_Z_STEPPER_DRIVERS] = { 0 },
  140. z_maxdiff = 0.0f,
  141. amplification = z_auto_align_amplification;
  142. // These are needed after the for-loop
  143. uint8_t iteration;
  144. bool err_break = false;
  145. float z_measured_min;
  146. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  147. bool adjustment_reverse = false;
  148. #endif
  149. // 'iteration' is declared above and is also used after the for-loop.
  150. // *not* the same as LOOP_L_N(iteration, z_auto_align_iterations)
  151. for (iteration = 0; iteration < z_auto_align_iterations; ++iteration) {
  152. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("> probing all positions.");
  153. SERIAL_ECHOLNPAIR("\nITERATION: ", int(iteration + 1));
  154. // Initialize minimum value
  155. z_measured_min = 100000.0f;
  156. float z_measured_max = -100000.0f;
  157. // Probe all positions (one per Z-Stepper)
  158. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
  159. // iteration odd/even --> downward / upward stepper sequence
  160. const uint8_t iprobe = (iteration & 1) ? NUM_Z_STEPPER_DRIVERS - 1 - i : i;
  161. // Safe clearance even on an incline
  162. if ((iteration == 0 || i > 0) && z_probe > current_position.z) do_blocking_move_to_z(z_probe);
  163. if (DEBUGGING(LEVELING))
  164. DEBUG_ECHOLNPAIR_P(PSTR("Probing X"), z_stepper_align.xy[iprobe].x, SP_Y_STR, z_stepper_align.xy[iprobe].y);
  165. // Probe a Z height for each stepper.
  166. // Probing sanity check is disabled, as it would trigger even in normal cases because
  167. // current_position.z has been manually altered in the "dirty trick" above.
  168. const float z_probed_height = probe.probe_at_point(z_stepper_align.xy[iprobe], raise_after, 0, true, false);
  169. if (isnan(z_probed_height)) {
  170. SERIAL_ECHOLNPGM("Probing failed.");
  171. err_break = true;
  172. break;
  173. }
  174. // Add height to each value, to provide a more useful target height for
  175. // the next iteration of probing. This allows adjustments to be made away from the bed.
  176. z_measured[iprobe] = z_probed_height + Z_CLEARANCE_BETWEEN_PROBES;
  177. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(iprobe + 1), " measured position is ", z_measured[iprobe]);
  178. // Remember the minimum measurement to calculate the correction later on
  179. z_measured_min = _MIN(z_measured_min, z_measured[iprobe]);
  180. z_measured_max = _MAX(z_measured_max, z_measured[iprobe]);
  181. } // for (i)
  182. if (err_break) break;
  183. // Adapt the next probe clearance height based on the new measurements.
  184. // Safe_height = lowest distance to bed (= highest measurement) plus highest measured misalignment.
  185. z_maxdiff = z_measured_max - z_measured_min;
  186. z_probe = Z_BASIC_CLEARANCE + z_measured_max + z_maxdiff;
  187. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  188. // Replace the initial values in z_measured with calculated heights at
  189. // each stepper position. This allows the adjustment algorithm to be
  190. // shared between both possible probing mechanisms.
  191. // This must be done after the next z_probe height is calculated, so that
  192. // the height is calculated from actual print area positions, and not
  193. // extrapolated motor movements.
  194. // Compute the least-squares fit for all probed points.
  195. // Calculate the Z position of each stepper and store it in z_measured.
  196. // This allows the actual adjustment logic to be shared by both algorithms.
  197. linear_fit_data lfd;
  198. incremental_LSF_reset(&lfd);
  199. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
  200. SERIAL_ECHOLNPAIR("PROBEPT_", int(i), ": ", z_measured[i]);
  201. incremental_LSF(&lfd, z_stepper_align.xy[i], z_measured[i]);
  202. }
  203. finish_incremental_LSF(&lfd);
  204. z_measured_min = 100000.0f;
  205. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS) {
  206. z_measured[i] = -(lfd.A * z_stepper_align.stepper_xy[i].x + lfd.B * z_stepper_align.stepper_xy[i].y + lfd.D);
  207. z_measured_min = _MIN(z_measured_min, z_measured[i]);
  208. }
  209. SERIAL_ECHOLNPAIR("CALCULATED STEPPER POSITIONS: Z1=", z_measured[0], " Z2=", z_measured[1], " Z3=", z_measured[2]);
  210. #endif
  211. SERIAL_ECHOLNPAIR("\n"
  212. "DIFFERENCE Z1-Z2=", ABS(z_measured[0] - z_measured[1])
  213. #if NUM_Z_STEPPER_DRIVERS == 3
  214. , " Z2-Z3=", ABS(z_measured[1] - z_measured[2])
  215. , " Z3-Z1=", ABS(z_measured[2] - z_measured[0])
  216. #endif
  217. );
  218. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  219. // Check if the applied corrections go in the correct direction.
  220. // Calculate the sum of the absolute deviations from the mean of the probe measurements.
  221. // Compare to the last iteration to ensure it's getting better.
  222. // Calculate mean value as a reference
  223. float z_measured_mean = 0.0f;
  224. LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) z_measured_mean += z_measured[zstepper];
  225. z_measured_mean /= NUM_Z_STEPPER_DRIVERS;
  226. // Calculate the sum of the absolute deviations from the mean value
  227. float z_align_level_indicator = 0.0f;
  228. LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS)
  229. z_align_level_indicator += ABS(z_measured[zstepper] - z_measured_mean);
  230. // If it's getting worse, stop and throw an error
  231. if (last_z_align_level_indicator < z_align_level_indicator * 0.7f) {
  232. SERIAL_ECHOLNPGM("Decreasing accuracy detected.");
  233. err_break = true;
  234. break;
  235. }
  236. last_z_align_level_indicator = z_align_level_indicator;
  237. #endif
  238. // The following correction actions are to be enabled for select Z-steppers only
  239. stepper.set_separate_multi_axis(true);
  240. bool success_break = true;
  241. // Correct the individual stepper offsets
  242. LOOP_L_N(zstepper, NUM_Z_STEPPER_DRIVERS) {
  243. // Calculate current stepper move
  244. float z_align_move = z_measured[zstepper] - z_measured_min;
  245. const float z_align_abs = ABS(z_align_move);
  246. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  247. // Optimize one iteration's correction based on the first measurements
  248. if (z_align_abs) amplification = (iteration == 1) ? _MIN(last_z_align_move[zstepper] / z_align_abs, 2.0f) : z_auto_align_amplification;
  249. // Check for less accuracy compared to last move
  250. if (last_z_align_move[zstepper] < z_align_abs * 0.7f) {
  251. SERIAL_ECHOLNPGM("Decreasing accuracy detected.");
  252. adjustment_reverse = !adjustment_reverse;
  253. }
  254. // Remember the alignment for the next iteration
  255. last_z_align_move[zstepper] = z_align_abs;
  256. #endif
  257. // Stop early if all measured points achieve accuracy target
  258. if (z_align_abs > z_auto_align_accuracy) success_break = false;
  259. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPAIR("> Z", int(zstepper + 1), " corrected by ", z_align_move);
  260. // Lock all steppers except one
  261. set_all_z_lock(true);
  262. switch (zstepper) {
  263. case 0: stepper.set_z_lock(false); break;
  264. case 1: stepper.set_z2_lock(false); break;
  265. #if NUM_Z_STEPPER_DRIVERS >= 3
  266. case 2: stepper.set_z3_lock(false); break;
  267. #endif
  268. #if NUM_Z_STEPPER_DRIVERS == 4
  269. case 3: stepper.set_z4_lock(false); break;
  270. #endif
  271. }
  272. #if DISABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  273. // Decreasing accuracy was detected so move was inverted.
  274. // Will match reversed Z steppers on dual steppers. Triple will need more work to map.
  275. if (adjustment_reverse)
  276. z_align_move = -z_align_move;
  277. #endif
  278. // Do a move to correct part of the misalignment for the current stepper
  279. do_blocking_move_to_z(amplification * z_align_move + current_position.z);
  280. } // for (zstepper)
  281. // Back to normal stepper operations
  282. set_all_z_lock(false);
  283. stepper.set_separate_multi_axis(false);
  284. if (err_break) break;
  285. if (success_break) { SERIAL_ECHOLNPGM("Target accuracy achieved."); break; }
  286. } // for (iteration)
  287. if (err_break)
  288. SERIAL_ECHOLNPGM("G34 aborted.");
  289. else {
  290. SERIAL_ECHOLNPAIR("Did ", int(iteration + (iteration != z_auto_align_iterations)), " of ", int(z_auto_align_iterations));
  291. SERIAL_ECHOLNPAIR_F("Accuracy: ", z_maxdiff);
  292. }
  293. // Stow the probe, as the last call to probe.probe_at_point(...) left
  294. // the probe deployed if it was successful.
  295. probe.stow();
  296. #if ENABLED(HOME_AFTER_G34)
  297. // After this operation the z position needs correction
  298. set_axis_not_trusted(Z_AXIS);
  299. // Home Z after the alignment procedure
  300. process_subcommands_now_P(PSTR("G28Z"));
  301. #else
  302. // Use the probed height from the last iteration to determine the Z height.
  303. // z_measured_min is used, because all steppers are aligned to z_measured_min.
  304. // Ideally, this would be equal to the 'z_probe * 0.5f' which was added earlier.
  305. current_position.z -= z_measured_min - (float)Z_CLEARANCE_BETWEEN_PROBES;
  306. sync_plan_position();
  307. #endif
  308. // Restore the active tool after homing
  309. TERN_(HAS_MULTI_HOTEND, tool_change(old_tool_index, DISABLED(PARKING_EXTRUDER))); // Fetch previous tool for parking extruder
  310. #if BOTH(HAS_LEVELING, RESTORE_LEVELING_AFTER_G34)
  311. set_bed_leveling_enabled(leveling_was_active);
  312. #endif
  313. }while(0);
  314. if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G34");
  315. }
  316. /**
  317. * M422: Set a Z-Stepper automatic alignment XY point.
  318. * Use repeatedly to set multiple points.
  319. *
  320. * S<index> : Index of the probe point to set
  321. *
  322. * With Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS:
  323. * W<index> : Index of the Z stepper position to set
  324. * The W and S parameters may not be combined.
  325. *
  326. * S and W require an X and/or Y parameter
  327. * X<pos> : X position to set (Unchanged if omitted)
  328. * Y<pos> : Y position to set (Unchanged if omitted)
  329. *
  330. * R : Recalculate points based on current probe offsets
  331. */
  332. void GcodeSuite::M422() {
  333. if (parser.seen('R')) {
  334. z_stepper_align.reset_to_default();
  335. return;
  336. }
  337. if (!parser.seen_any()) {
  338. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
  339. SERIAL_ECHOLNPAIR_P(PSTR("M422 S"), int(i + 1), SP_X_STR, z_stepper_align.xy[i].x, SP_Y_STR, z_stepper_align.xy[i].y);
  340. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  341. LOOP_L_N(i, NUM_Z_STEPPER_DRIVERS)
  342. SERIAL_ECHOLNPAIR_P(PSTR("M422 W"), int(i + 1), SP_X_STR, z_stepper_align.stepper_xy[i].x, SP_Y_STR, z_stepper_align.stepper_xy[i].y);
  343. #endif
  344. return;
  345. }
  346. const bool is_probe_point = parser.seen('S');
  347. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  348. if (is_probe_point && parser.seen('W')) {
  349. SERIAL_ECHOLNPGM("?(S) and (W) may not be combined.");
  350. return;
  351. }
  352. #endif
  353. xy_pos_t *pos_dest = (
  354. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  355. !is_probe_point ? z_stepper_align.stepper_xy :
  356. #endif
  357. z_stepper_align.xy
  358. );
  359. if (!is_probe_point
  360. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  361. && !parser.seen('W')
  362. #endif
  363. ) {
  364. SERIAL_ECHOLNPGM(
  365. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  366. "?(S) or (W) is required."
  367. #else
  368. "?(S) is required."
  369. #endif
  370. );
  371. return;
  372. }
  373. // Get the Probe Position Index or Z Stepper Index
  374. int8_t position_index;
  375. if (is_probe_point) {
  376. position_index = parser.intval('S') - 1;
  377. if (!WITHIN(position_index, 0, int8_t(NUM_Z_STEPPER_DRIVERS) - 1)) {
  378. SERIAL_ECHOLNPGM("?(S) Z-ProbePosition index invalid.");
  379. return;
  380. }
  381. }
  382. else {
  383. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  384. position_index = parser.intval('W') - 1;
  385. if (!WITHIN(position_index, 0, NUM_Z_STEPPER_DRIVERS - 1)) {
  386. SERIAL_ECHOLNPGM("?(W) Z-Stepper index invalid.");
  387. return;
  388. }
  389. #endif
  390. }
  391. const xy_pos_t pos = {
  392. parser.floatval('X', pos_dest[position_index].x),
  393. parser.floatval('Y', pos_dest[position_index].y)
  394. };
  395. if (is_probe_point) {
  396. if (!probe.can_reach(pos.x, Y_CENTER)) {
  397. SERIAL_ECHOLNPGM("?(X) out of bounds.");
  398. return;
  399. }
  400. if (!probe.can_reach(pos)) {
  401. SERIAL_ECHOLNPGM("?(Y) out of bounds.");
  402. return;
  403. }
  404. }
  405. pos_dest[position_index] = pos;
  406. }
  407. #endif // Z_STEPPER_AUTO_ALIGN