My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

configuration_store.cpp 106KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130313131323133313431353136313731383139314031413142314331443145314631473148314931503151315231533154315531563157315831593160316131623163316431653166316731683169317031713172317331743175317631773178317931803181318231833184318531863187318831893190319131923193319431953196319731983199320032013202320332043205320632073208320932103211321232133214321532163217321832193220322132223223322432253226322732283229323032313232323332343235323632373238323932403241324232433244324532463247324832493250325132523253325432553256325732583259326032613262326332643265326632673268326932703271327232733274327532763277327832793280328132823283328432853286328732883289329032913292329332943295329632973298329933003301330233033304330533063307330833093310331133123313331433153316331733183319332033213322332333243325332633273328332933303331333233333334333533363337333833393340334133423343334433453346334733483349335033513352335333543355335633573358335933603361336233633364336533663367336833693370337133723373337433753376337733783379338033813382338333843385338633873388338933903391339233933394339533963397339833993400340134023403340434053406340734083409341034113412341334143415341634173418341934203421342234233424342534263427342834293430343134323433343434353436343734383439344034413442344334443445344634473448344934503451345234533454345534563457345834593460346134623463346434653466346734683469347034713472347334743475347634773478347934803481348234833484348534863487348834893490349134923493349434953496349734983499350035013502350335043505350635073508350935103511351235133514351535163517351835193520352135223523352435253526352735283529353035313532353335343535353635373538353935403541354235433544354535463547354835493550355135523553355435553556355735583559356035613562356335643565356635673568356935703571357235733574357535763577357835793580358135823583358435853586358735883589359035913592
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V77"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "configuration_store.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #include "../lcd/ultralcd.h"
  49. #include "../libs/vector_3.h" // for matrix_3x3
  50. #include "../gcode/gcode.h"
  51. #include "../MarlinCore.h"
  52. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  53. #include "../HAL/shared/eeprom_api.h"
  54. #endif
  55. #include "probe.h"
  56. #if HAS_LEVELING
  57. #include "../feature/bedlevel/bedlevel.h"
  58. #endif
  59. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  60. #include "../feature/z_stepper_align.h"
  61. #endif
  62. #if ENABLED(EXTENSIBLE_UI)
  63. #include "../lcd/extui/ui_api.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_SERVOS && HAS_SERVO_ANGLES
  69. #define EEPROM_NUM_SERVOS NUM_SERVOS
  70. #else
  71. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  72. #endif
  73. #include "../feature/fwretract.h"
  74. #if ENABLED(POWER_LOSS_RECOVERY)
  75. #include "../feature/powerloss.h"
  76. #endif
  77. #include "../feature/pause.h"
  78. #if ENABLED(BACKLASH_COMPENSATION)
  79. #include "../feature/backlash.h"
  80. #endif
  81. #if HAS_FILAMENT_SENSOR
  82. #include "../feature/runout.h"
  83. #endif
  84. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  85. extern float other_extruder_advance_K[EXTRUDERS];
  86. #endif
  87. #if EXTRUDERS > 1
  88. #include "tool_change.h"
  89. void M217_report(const bool eeprom);
  90. #endif
  91. #if ENABLED(BLTOUCH)
  92. #include "../feature/bltouch.h"
  93. #endif
  94. #if HAS_TRINAMIC_CONFIG
  95. #include "stepper/indirection.h"
  96. #include "../feature/tmc_util.h"
  97. #endif
  98. #if ENABLED(PROBE_TEMP_COMPENSATION)
  99. #include "../feature/probe_temp_comp.h"
  100. #endif
  101. #include "../feature/controllerfan.h"
  102. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  103. void M710_report(const bool forReplay);
  104. #endif
  105. #if ENABLED(CASE_LIGHT_MENU) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
  106. #include "../feature/caselight.h"
  107. #define HAS_CASE_LIGHT_BRIGHTNESS 1
  108. #endif
  109. #pragma pack(push, 1) // No padding between variables
  110. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  111. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  112. typedef struct { int16_t X, Y, Z, X2; } tmc_sgt_t;
  113. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  114. // Limit an index to an array size
  115. #define ALIM(I,ARR) _MIN(I, COUNT(ARR) - 1)
  116. // Defaults for reset / fill in on load
  117. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  118. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  119. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  120. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  121. /**
  122. * Current EEPROM Layout
  123. *
  124. * Keep this data structure up to date so
  125. * EEPROM size is known at compile time!
  126. */
  127. typedef struct SettingsDataStruct {
  128. char version[4]; // Vnn\0
  129. uint16_t crc; // Data Checksum
  130. //
  131. // DISTINCT_E_FACTORS
  132. //
  133. uint8_t esteppers; // XYZE_N - XYZ
  134. planner_settings_t planner_settings;
  135. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  136. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  137. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  138. #if HAS_HOTEND_OFFSET
  139. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  140. #endif
  141. //
  142. // FILAMENT_RUNOUT_SENSOR
  143. //
  144. bool runout_sensor_enabled; // M412 S
  145. float runout_distance_mm; // M412 D
  146. //
  147. // ENABLE_LEVELING_FADE_HEIGHT
  148. //
  149. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  150. //
  151. // MESH_BED_LEVELING
  152. //
  153. float mbl_z_offset; // mbl.z_offset
  154. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  155. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  156. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  157. //
  158. // HAS_BED_PROBE
  159. //
  160. xyz_pos_t probe_offset;
  161. //
  162. // ABL_PLANAR
  163. //
  164. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  165. //
  166. // AUTO_BED_LEVELING_BILINEAR
  167. //
  168. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  169. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  170. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  171. bed_mesh_t z_values; // G29
  172. #else
  173. float z_values[3][3];
  174. #endif
  175. //
  176. // AUTO_BED_LEVELING_UBL
  177. //
  178. bool planner_leveling_active; // M420 S planner.leveling_active
  179. int8_t ubl_storage_slot; // ubl.storage_slot
  180. //
  181. // SERVO_ANGLES
  182. //
  183. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  184. //
  185. // Temperature first layer compensation values
  186. //
  187. #if ENABLED(PROBE_TEMP_COMPENSATION)
  188. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  189. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  190. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  191. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  192. #endif
  193. ;
  194. #endif
  195. //
  196. // BLTOUCH
  197. //
  198. bool bltouch_last_written_mode;
  199. //
  200. // DELTA / [XYZ]_DUAL_ENDSTOPS
  201. //
  202. #if ENABLED(DELTA)
  203. float delta_height; // M666 H
  204. abc_float_t delta_endstop_adj; // M666 XYZ
  205. float delta_radius, // M665 R
  206. delta_diagonal_rod, // M665 L
  207. delta_segments_per_second; // M665 S
  208. abc_float_t delta_tower_angle_trim; // M665 XYZ
  209. #elif HAS_EXTRA_ENDSTOPS
  210. float x2_endstop_adj, // M666 X
  211. y2_endstop_adj, // M666 Y
  212. z2_endstop_adj, // M666 (S2) Z
  213. z3_endstop_adj, // M666 (S3) Z
  214. z4_endstop_adj; // M666 (S4) Z
  215. #endif
  216. //
  217. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  218. //
  219. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  220. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  221. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  222. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  223. #endif
  224. #endif
  225. //
  226. // ULTIPANEL
  227. //
  228. int16_t ui_preheat_hotend_temp[2], // M145 S0 H
  229. ui_preheat_bed_temp[2]; // M145 S0 B
  230. uint8_t ui_preheat_fan_speed[2]; // M145 S0 F
  231. //
  232. // PIDTEMP
  233. //
  234. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  235. int16_t lpq_len; // M301 L
  236. //
  237. // PIDTEMPBED
  238. //
  239. PID_t bedPID; // M304 PID / M303 E-1 U
  240. //
  241. // User-defined Thermistors
  242. //
  243. #if HAS_USER_THERMISTORS
  244. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  245. #endif
  246. //
  247. // HAS_LCD_CONTRAST
  248. //
  249. int16_t lcd_contrast; // M250 C
  250. //
  251. // Controller fan settings
  252. //
  253. controllerFan_settings_t controllerFan_settings; // M710
  254. //
  255. // POWER_LOSS_RECOVERY
  256. //
  257. bool recovery_enabled; // M413 S
  258. //
  259. // FWRETRACT
  260. //
  261. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  262. bool autoretract_enabled; // M209 S
  263. //
  264. // !NO_VOLUMETRIC
  265. //
  266. bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
  267. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  268. //
  269. // HAS_TRINAMIC_CONFIG
  270. //
  271. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  272. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  273. tmc_sgt_t tmc_sgt; // M914 X Y Z X2
  274. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  275. //
  276. // LIN_ADVANCE
  277. //
  278. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  279. //
  280. // HAS_MOTOR_CURRENT_PWM
  281. //
  282. uint32_t motor_current_setting[3]; // M907 X Z E
  283. //
  284. // CNC_COORDINATE_SYSTEMS
  285. //
  286. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  287. //
  288. // SKEW_CORRECTION
  289. //
  290. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  291. //
  292. // ADVANCED_PAUSE_FEATURE
  293. //
  294. #if EXTRUDERS
  295. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  296. #endif
  297. //
  298. // Tool-change settings
  299. //
  300. #if EXTRUDERS > 1
  301. toolchange_settings_t toolchange_settings; // M217 S P R
  302. #endif
  303. //
  304. // BACKLASH_COMPENSATION
  305. //
  306. xyz_float_t backlash_distance_mm; // M425 X Y Z
  307. uint8_t backlash_correction; // M425 F
  308. float backlash_smoothing_mm; // M425 S
  309. //
  310. // EXTENSIBLE_UI
  311. //
  312. #if ENABLED(EXTENSIBLE_UI)
  313. // This is a significant hardware change; don't reserve space when not present
  314. uint8_t extui_data[ExtUI::eeprom_data_size];
  315. #endif
  316. //
  317. // HAS_CASE_LIGHT_BRIGHTNESS
  318. //
  319. #if HAS_CASE_LIGHT_BRIGHTNESS
  320. uint8_t case_light_brightness;
  321. #endif
  322. } SettingsData;
  323. //static_assert(sizeof(SettingsData) <= E2END + 1, "EEPROM too small to contain SettingsData!");
  324. MarlinSettings settings;
  325. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  326. /**
  327. * Post-process after Retrieve or Reset
  328. */
  329. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  330. float new_z_fade_height;
  331. #endif
  332. void MarlinSettings::postprocess() {
  333. xyze_pos_t oldpos = current_position;
  334. // steps per s2 needs to be updated to agree with units per s2
  335. planner.reset_acceleration_rates();
  336. // Make sure delta kinematics are updated before refreshing the
  337. // planner position so the stepper counts will be set correctly.
  338. TERN_(DELTA, recalc_delta_settings());
  339. TERN_(PIDTEMP, thermalManager.updatePID());
  340. #if DISABLED(NO_VOLUMETRICS)
  341. planner.calculate_volumetric_multipliers();
  342. #elif EXTRUDERS
  343. for (uint8_t i = COUNT(planner.e_factor); i--;)
  344. planner.refresh_e_factor(i);
  345. #endif
  346. // Software endstops depend on home_offset
  347. LOOP_XYZ(i) {
  348. update_workspace_offset((AxisEnum)i);
  349. update_software_endstops((AxisEnum)i);
  350. }
  351. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  352. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  353. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  354. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  355. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  356. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, update_case_light());
  357. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  358. // and init stepper.count[], planner.position[] with current_position
  359. planner.refresh_positioning();
  360. // Various factors can change the current position
  361. if (oldpos != current_position)
  362. report_current_position();
  363. }
  364. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  365. #include "printcounter.h"
  366. static_assert(
  367. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  368. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  369. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  370. );
  371. #endif
  372. #if ENABLED(SD_FIRMWARE_UPDATE)
  373. #if ENABLED(EEPROM_SETTINGS)
  374. static_assert(
  375. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  376. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  377. );
  378. #endif
  379. bool MarlinSettings::sd_update_status() {
  380. uint8_t val;
  381. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  382. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  383. }
  384. bool MarlinSettings::set_sd_update_status(const bool enable) {
  385. if (enable != sd_update_status())
  386. persistentStore.write_data(
  387. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  388. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  389. );
  390. return true;
  391. }
  392. #endif // SD_FIRMWARE_UPDATE
  393. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  394. static_assert(
  395. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  396. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  397. );
  398. #endif
  399. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  400. #include "../core/debug_out.h"
  401. #if ENABLED(EEPROM_SETTINGS)
  402. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  403. int eeprom_index = EEPROM_OFFSET
  404. #define EEPROM_FINISH() persistentStore.access_finish()
  405. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  406. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  407. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  408. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  409. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  410. #if ENABLED(DEBUG_EEPROM_READWRITE)
  411. #define _FIELD_TEST(FIELD) \
  412. EEPROM_ASSERT( \
  413. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  414. "Field " STRINGIFY(FIELD) " mismatch." \
  415. )
  416. #else
  417. #define _FIELD_TEST(FIELD) NOOP
  418. #endif
  419. const char version[4] = EEPROM_VERSION;
  420. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  421. bool MarlinSettings::size_error(const uint16_t size) {
  422. if (size != datasize()) {
  423. DEBUG_ERROR_MSG("EEPROM datasize error.");
  424. return true;
  425. }
  426. return false;
  427. }
  428. /**
  429. * M500 - Store Configuration
  430. */
  431. bool MarlinSettings::save() {
  432. float dummyf = 0;
  433. char ver[4] = "ERR";
  434. uint16_t working_crc = 0;
  435. EEPROM_START();
  436. eeprom_error = false;
  437. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  438. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  439. EEPROM_SKIP(working_crc); // Skip the checksum slot
  440. working_crc = 0; // clear before first "real data"
  441. _FIELD_TEST(esteppers);
  442. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  443. EEPROM_WRITE(esteppers);
  444. //
  445. // Planner Motion
  446. //
  447. {
  448. EEPROM_WRITE(planner.settings);
  449. #if HAS_CLASSIC_JERK
  450. EEPROM_WRITE(planner.max_jerk);
  451. #if HAS_LINEAR_E_JERK
  452. dummyf = float(DEFAULT_EJERK);
  453. EEPROM_WRITE(dummyf);
  454. #endif
  455. #else
  456. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  457. EEPROM_WRITE(planner_max_jerk);
  458. #endif
  459. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  460. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  461. }
  462. //
  463. // Home Offset
  464. //
  465. {
  466. _FIELD_TEST(home_offset);
  467. #if HAS_SCARA_OFFSET
  468. EEPROM_WRITE(scara_home_offset);
  469. #else
  470. #if !HAS_HOME_OFFSET
  471. const xyz_pos_t home_offset{0};
  472. #endif
  473. EEPROM_WRITE(home_offset);
  474. #endif
  475. #if HAS_HOTEND_OFFSET
  476. // Skip hotend 0 which must be 0
  477. LOOP_S_L_N(e, 1, HOTENDS)
  478. EEPROM_WRITE(hotend_offset[e]);
  479. #endif
  480. }
  481. //
  482. // Filament Runout Sensor
  483. //
  484. {
  485. #if HAS_FILAMENT_SENSOR
  486. const bool &runout_sensor_enabled = runout.enabled;
  487. #else
  488. constexpr bool runout_sensor_enabled = true;
  489. #endif
  490. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  491. const float &runout_distance_mm = runout.runout_distance();
  492. #else
  493. constexpr float runout_distance_mm = 0;
  494. #endif
  495. _FIELD_TEST(runout_sensor_enabled);
  496. EEPROM_WRITE(runout_sensor_enabled);
  497. EEPROM_WRITE(runout_distance_mm);
  498. }
  499. //
  500. // Global Leveling
  501. //
  502. {
  503. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  504. EEPROM_WRITE(zfh);
  505. }
  506. //
  507. // Mesh Bed Leveling
  508. //
  509. {
  510. #if ENABLED(MESH_BED_LEVELING)
  511. static_assert(
  512. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  513. "MBL Z array is the wrong size."
  514. );
  515. #else
  516. dummyf = 0;
  517. #endif
  518. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  519. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  520. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  521. EEPROM_WRITE(mesh_num_x);
  522. EEPROM_WRITE(mesh_num_y);
  523. #if ENABLED(MESH_BED_LEVELING)
  524. EEPROM_WRITE(mbl.z_values);
  525. #else
  526. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  527. #endif
  528. }
  529. //
  530. // Probe XYZ Offsets
  531. //
  532. {
  533. _FIELD_TEST(probe_offset);
  534. #if HAS_BED_PROBE
  535. const xyz_pos_t &zpo = probe.offset;
  536. #else
  537. constexpr xyz_pos_t zpo{0};
  538. #endif
  539. EEPROM_WRITE(zpo);
  540. }
  541. //
  542. // Planar Bed Leveling matrix
  543. //
  544. {
  545. #if ABL_PLANAR
  546. EEPROM_WRITE(planner.bed_level_matrix);
  547. #else
  548. dummyf = 0;
  549. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  550. #endif
  551. }
  552. //
  553. // Bilinear Auto Bed Leveling
  554. //
  555. {
  556. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  557. static_assert(
  558. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  559. "Bilinear Z array is the wrong size."
  560. );
  561. #else
  562. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  563. #endif
  564. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  565. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  566. EEPROM_WRITE(grid_max_x);
  567. EEPROM_WRITE(grid_max_y);
  568. EEPROM_WRITE(bilinear_grid_spacing);
  569. EEPROM_WRITE(bilinear_start);
  570. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  571. EEPROM_WRITE(z_values); // 9-256 floats
  572. #else
  573. dummyf = 0;
  574. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  575. #endif
  576. }
  577. //
  578. // Unified Bed Leveling
  579. //
  580. {
  581. _FIELD_TEST(planner_leveling_active);
  582. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  583. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  584. EEPROM_WRITE(ubl_active);
  585. EEPROM_WRITE(storage_slot);
  586. }
  587. //
  588. // Servo Angles
  589. //
  590. {
  591. _FIELD_TEST(servo_angles);
  592. #if !HAS_SERVO_ANGLES
  593. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  594. #endif
  595. EEPROM_WRITE(servo_angles);
  596. }
  597. //
  598. // Thermal first layer compensation values
  599. //
  600. #if ENABLED(PROBE_TEMP_COMPENSATION)
  601. EEPROM_WRITE(temp_comp.z_offsets_probe);
  602. EEPROM_WRITE(temp_comp.z_offsets_bed);
  603. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  604. EEPROM_WRITE(temp_comp.z_offsets_ext);
  605. #endif
  606. #else
  607. // No placeholder data for this feature
  608. #endif
  609. //
  610. // BLTOUCH
  611. //
  612. {
  613. _FIELD_TEST(bltouch_last_written_mode);
  614. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  615. EEPROM_WRITE(bltouch_last_written_mode);
  616. }
  617. //
  618. // DELTA Geometry or Dual Endstops offsets
  619. //
  620. {
  621. #if ENABLED(DELTA)
  622. _FIELD_TEST(delta_height);
  623. EEPROM_WRITE(delta_height); // 1 float
  624. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  625. EEPROM_WRITE(delta_radius); // 1 float
  626. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  627. EEPROM_WRITE(delta_segments_per_second); // 1 float
  628. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  629. #elif HAS_EXTRA_ENDSTOPS
  630. _FIELD_TEST(x2_endstop_adj);
  631. // Write dual endstops in X, Y, Z order. Unused = 0.0
  632. dummyf = 0;
  633. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  634. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  635. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  636. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  637. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  638. #else
  639. EEPROM_WRITE(dummyf);
  640. #endif
  641. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  642. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  643. #else
  644. EEPROM_WRITE(dummyf);
  645. #endif
  646. #endif
  647. }
  648. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  649. EEPROM_WRITE(z_stepper_align.xy);
  650. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  651. EEPROM_WRITE(z_stepper_align.stepper_xy);
  652. #endif
  653. #endif
  654. //
  655. // LCD Preheat settings
  656. //
  657. {
  658. _FIELD_TEST(ui_preheat_hotend_temp);
  659. #if HOTENDS && HAS_LCD_MENU
  660. const int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  661. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  662. const uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  663. #else
  664. constexpr int16_t ui_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  665. ui_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED };
  666. constexpr uint8_t ui_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  667. #endif
  668. EEPROM_WRITE(ui_preheat_hotend_temp);
  669. EEPROM_WRITE(ui_preheat_bed_temp);
  670. EEPROM_WRITE(ui_preheat_fan_speed);
  671. }
  672. //
  673. // PIDTEMP
  674. //
  675. {
  676. _FIELD_TEST(hotendPID);
  677. HOTEND_LOOP() {
  678. PIDCF_t pidcf = {
  679. #if DISABLED(PIDTEMP)
  680. NAN, NAN, NAN,
  681. NAN, NAN
  682. #else
  683. PID_PARAM(Kp, e),
  684. unscalePID_i(PID_PARAM(Ki, e)),
  685. unscalePID_d(PID_PARAM(Kd, e)),
  686. PID_PARAM(Kc, e),
  687. PID_PARAM(Kf, e)
  688. #endif
  689. };
  690. EEPROM_WRITE(pidcf);
  691. }
  692. _FIELD_TEST(lpq_len);
  693. #if DISABLED(PID_EXTRUSION_SCALING)
  694. const int16_t lpq_len = 20;
  695. #endif
  696. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  697. }
  698. //
  699. // PIDTEMPBED
  700. //
  701. {
  702. _FIELD_TEST(bedPID);
  703. const PID_t bed_pid = {
  704. #if DISABLED(PIDTEMPBED)
  705. NAN, NAN, NAN
  706. #else
  707. // Store the unscaled PID values
  708. thermalManager.temp_bed.pid.Kp,
  709. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  710. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  711. #endif
  712. };
  713. EEPROM_WRITE(bed_pid);
  714. }
  715. //
  716. // User-defined Thermistors
  717. //
  718. #if HAS_USER_THERMISTORS
  719. {
  720. _FIELD_TEST(user_thermistor);
  721. EEPROM_WRITE(thermalManager.user_thermistor);
  722. }
  723. #endif
  724. //
  725. // LCD Contrast
  726. //
  727. {
  728. _FIELD_TEST(lcd_contrast);
  729. const int16_t lcd_contrast =
  730. #if HAS_LCD_CONTRAST
  731. ui.contrast
  732. #else
  733. 127
  734. #endif
  735. ;
  736. EEPROM_WRITE(lcd_contrast);
  737. }
  738. //
  739. // Controller Fan
  740. //
  741. {
  742. _FIELD_TEST(controllerFan_settings);
  743. #if ENABLED(USE_CONTROLLER_FAN)
  744. const controllerFan_settings_t &cfs = controllerFan.settings;
  745. #else
  746. controllerFan_settings_t cfs = controllerFan_defaults;
  747. #endif
  748. EEPROM_WRITE(cfs);
  749. }
  750. //
  751. // Power-Loss Recovery
  752. //
  753. {
  754. _FIELD_TEST(recovery_enabled);
  755. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  756. EEPROM_WRITE(recovery_enabled);
  757. }
  758. //
  759. // Firmware Retraction
  760. //
  761. {
  762. _FIELD_TEST(fwretract_settings);
  763. #if DISABLED(FWRETRACT)
  764. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  765. #endif
  766. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  767. #if DISABLED(FWRETRACT_AUTORETRACT)
  768. const bool autoretract_enabled = false;
  769. #endif
  770. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  771. }
  772. //
  773. // Volumetric & Filament Size
  774. //
  775. {
  776. _FIELD_TEST(parser_volumetric_enabled);
  777. #if DISABLED(NO_VOLUMETRICS)
  778. EEPROM_WRITE(parser.volumetric_enabled);
  779. EEPROM_WRITE(planner.filament_size);
  780. #else
  781. const bool volumetric_enabled = false;
  782. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  783. EEPROM_WRITE(volumetric_enabled);
  784. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  785. #endif
  786. }
  787. //
  788. // TMC Configuration
  789. //
  790. {
  791. _FIELD_TEST(tmc_stepper_current);
  792. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  793. #if HAS_TRINAMIC_CONFIG
  794. #if AXIS_IS_TMC(X)
  795. tmc_stepper_current.X = stepperX.getMilliamps();
  796. #endif
  797. #if AXIS_IS_TMC(Y)
  798. tmc_stepper_current.Y = stepperY.getMilliamps();
  799. #endif
  800. #if AXIS_IS_TMC(Z)
  801. tmc_stepper_current.Z = stepperZ.getMilliamps();
  802. #endif
  803. #if AXIS_IS_TMC(X2)
  804. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  805. #endif
  806. #if AXIS_IS_TMC(Y2)
  807. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  808. #endif
  809. #if AXIS_IS_TMC(Z2)
  810. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  811. #endif
  812. #if AXIS_IS_TMC(Z3)
  813. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  814. #endif
  815. #if AXIS_IS_TMC(Z4)
  816. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  817. #endif
  818. #if MAX_EXTRUDERS
  819. #if AXIS_IS_TMC(E0)
  820. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  821. #endif
  822. #if MAX_EXTRUDERS > 1
  823. #if AXIS_IS_TMC(E1)
  824. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  825. #endif
  826. #if MAX_EXTRUDERS > 2
  827. #if AXIS_IS_TMC(E2)
  828. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  829. #endif
  830. #if MAX_EXTRUDERS > 3
  831. #if AXIS_IS_TMC(E3)
  832. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  833. #endif
  834. #if MAX_EXTRUDERS > 4
  835. #if AXIS_IS_TMC(E4)
  836. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  837. #endif
  838. #if MAX_EXTRUDERS > 5
  839. #if AXIS_IS_TMC(E5)
  840. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  841. #endif
  842. #if MAX_EXTRUDERS > 6
  843. #if AXIS_IS_TMC(E6)
  844. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  845. #endif
  846. #if MAX_EXTRUDERS > 7
  847. #if AXIS_IS_TMC(E7)
  848. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  849. #endif
  850. #endif // MAX_EXTRUDERS > 7
  851. #endif // MAX_EXTRUDERS > 6
  852. #endif // MAX_EXTRUDERS > 5
  853. #endif // MAX_EXTRUDERS > 4
  854. #endif // MAX_EXTRUDERS > 3
  855. #endif // MAX_EXTRUDERS > 2
  856. #endif // MAX_EXTRUDERS > 1
  857. #endif // MAX_EXTRUDERS
  858. #endif
  859. EEPROM_WRITE(tmc_stepper_current);
  860. }
  861. //
  862. // TMC Hybrid Threshold, and placeholder values
  863. //
  864. {
  865. _FIELD_TEST(tmc_hybrid_threshold);
  866. #if ENABLED(HYBRID_THRESHOLD)
  867. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  868. #if AXIS_HAS_STEALTHCHOP(X)
  869. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  870. #endif
  871. #if AXIS_HAS_STEALTHCHOP(Y)
  872. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  873. #endif
  874. #if AXIS_HAS_STEALTHCHOP(Z)
  875. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  876. #endif
  877. #if AXIS_HAS_STEALTHCHOP(X2)
  878. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  879. #endif
  880. #if AXIS_HAS_STEALTHCHOP(Y2)
  881. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  882. #endif
  883. #if AXIS_HAS_STEALTHCHOP(Z2)
  884. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  885. #endif
  886. #if AXIS_HAS_STEALTHCHOP(Z3)
  887. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  888. #endif
  889. #if AXIS_HAS_STEALTHCHOP(Z4)
  890. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  891. #endif
  892. #if MAX_EXTRUDERS
  893. #if AXIS_HAS_STEALTHCHOP(E0)
  894. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  895. #endif
  896. #if MAX_EXTRUDERS > 1
  897. #if AXIS_HAS_STEALTHCHOP(E1)
  898. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  899. #endif
  900. #if MAX_EXTRUDERS > 2
  901. #if AXIS_HAS_STEALTHCHOP(E2)
  902. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  903. #endif
  904. #if MAX_EXTRUDERS > 3
  905. #if AXIS_HAS_STEALTHCHOP(E3)
  906. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  907. #endif
  908. #if MAX_EXTRUDERS > 4
  909. #if AXIS_HAS_STEALTHCHOP(E4)
  910. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  911. #endif
  912. #if MAX_EXTRUDERS > 5
  913. #if AXIS_HAS_STEALTHCHOP(E5)
  914. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  915. #endif
  916. #if MAX_EXTRUDERS > 6
  917. #if AXIS_HAS_STEALTHCHOP(E6)
  918. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  919. #endif
  920. #if MAX_EXTRUDERS > 7
  921. #if AXIS_HAS_STEALTHCHOP(E7)
  922. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  923. #endif
  924. #endif // MAX_EXTRUDERS > 7
  925. #endif // MAX_EXTRUDERS > 6
  926. #endif // MAX_EXTRUDERS > 5
  927. #endif // MAX_EXTRUDERS > 4
  928. #endif // MAX_EXTRUDERS > 3
  929. #endif // MAX_EXTRUDERS > 2
  930. #endif // MAX_EXTRUDERS > 1
  931. #endif // MAX_EXTRUDERS
  932. #else
  933. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  934. .X = 100, .Y = 100, .Z = 3,
  935. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  936. .E0 = 30, .E1 = 30, .E2 = 30,
  937. .E3 = 30, .E4 = 30, .E5 = 30
  938. };
  939. #endif
  940. EEPROM_WRITE(tmc_hybrid_threshold);
  941. }
  942. //
  943. // TMC StallGuard threshold
  944. //
  945. {
  946. tmc_sgt_t tmc_sgt{0};
  947. #if USE_SENSORLESS
  948. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  949. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  950. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  951. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  952. #endif
  953. EEPROM_WRITE(tmc_sgt);
  954. }
  955. //
  956. // TMC stepping mode
  957. //
  958. {
  959. _FIELD_TEST(tmc_stealth_enabled);
  960. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  961. #if HAS_STEALTHCHOP
  962. #if AXIS_HAS_STEALTHCHOP(X)
  963. tmc_stealth_enabled.X = stepperX.get_stealthChop_status();
  964. #endif
  965. #if AXIS_HAS_STEALTHCHOP(Y)
  966. tmc_stealth_enabled.Y = stepperY.get_stealthChop_status();
  967. #endif
  968. #if AXIS_HAS_STEALTHCHOP(Z)
  969. tmc_stealth_enabled.Z = stepperZ.get_stealthChop_status();
  970. #endif
  971. #if AXIS_HAS_STEALTHCHOP(X2)
  972. tmc_stealth_enabled.X2 = stepperX2.get_stealthChop_status();
  973. #endif
  974. #if AXIS_HAS_STEALTHCHOP(Y2)
  975. tmc_stealth_enabled.Y2 = stepperY2.get_stealthChop_status();
  976. #endif
  977. #if AXIS_HAS_STEALTHCHOP(Z2)
  978. tmc_stealth_enabled.Z2 = stepperZ2.get_stealthChop_status();
  979. #endif
  980. #if AXIS_HAS_STEALTHCHOP(Z3)
  981. tmc_stealth_enabled.Z3 = stepperZ3.get_stealthChop_status();
  982. #endif
  983. #if AXIS_HAS_STEALTHCHOP(Z4)
  984. tmc_stealth_enabled.Z4 = stepperZ4.get_stealthChop_status();
  985. #endif
  986. #if MAX_EXTRUDERS
  987. #if AXIS_HAS_STEALTHCHOP(E0)
  988. tmc_stealth_enabled.E0 = stepperE0.get_stealthChop_status();
  989. #endif
  990. #if MAX_EXTRUDERS > 1
  991. #if AXIS_HAS_STEALTHCHOP(E1)
  992. tmc_stealth_enabled.E1 = stepperE1.get_stealthChop_status();
  993. #endif
  994. #if MAX_EXTRUDERS > 2
  995. #if AXIS_HAS_STEALTHCHOP(E2)
  996. tmc_stealth_enabled.E2 = stepperE2.get_stealthChop_status();
  997. #endif
  998. #if MAX_EXTRUDERS > 3
  999. #if AXIS_HAS_STEALTHCHOP(E3)
  1000. tmc_stealth_enabled.E3 = stepperE3.get_stealthChop_status();
  1001. #endif
  1002. #if MAX_EXTRUDERS > 4
  1003. #if AXIS_HAS_STEALTHCHOP(E4)
  1004. tmc_stealth_enabled.E4 = stepperE4.get_stealthChop_status();
  1005. #endif
  1006. #if MAX_EXTRUDERS > 5
  1007. #if AXIS_HAS_STEALTHCHOP(E5)
  1008. tmc_stealth_enabled.E5 = stepperE5.get_stealthChop_status();
  1009. #endif
  1010. #if MAX_EXTRUDERS > 6
  1011. #if AXIS_HAS_STEALTHCHOP(E6)
  1012. tmc_stealth_enabled.E6 = stepperE6.get_stealthChop_status();
  1013. #endif
  1014. #if MAX_EXTRUDERS > 7
  1015. #if AXIS_HAS_STEALTHCHOP(E7)
  1016. tmc_stealth_enabled.E7 = stepperE7.get_stealthChop_status();
  1017. #endif
  1018. #endif // MAX_EXTRUDERS > 7
  1019. #endif // MAX_EXTRUDERS > 6
  1020. #endif // MAX_EXTRUDERS > 5
  1021. #endif // MAX_EXTRUDERS > 4
  1022. #endif // MAX_EXTRUDERS > 3
  1023. #endif // MAX_EXTRUDERS > 2
  1024. #endif // MAX_EXTRUDERS > 1
  1025. #endif // MAX_EXTRUDERS
  1026. #endif
  1027. EEPROM_WRITE(tmc_stealth_enabled);
  1028. }
  1029. //
  1030. // Linear Advance
  1031. //
  1032. {
  1033. _FIELD_TEST(planner_extruder_advance_K);
  1034. #if ENABLED(LIN_ADVANCE)
  1035. EEPROM_WRITE(planner.extruder_advance_K);
  1036. #else
  1037. dummyf = 0;
  1038. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1039. #endif
  1040. }
  1041. //
  1042. // Motor Current PWM
  1043. //
  1044. {
  1045. _FIELD_TEST(motor_current_setting);
  1046. #if HAS_MOTOR_CURRENT_PWM
  1047. EEPROM_WRITE(stepper.motor_current_setting);
  1048. #else
  1049. const uint32_t no_current[3] = { 0 };
  1050. EEPROM_WRITE(no_current);
  1051. #endif
  1052. }
  1053. //
  1054. // CNC Coordinate Systems
  1055. //
  1056. _FIELD_TEST(coordinate_system);
  1057. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1058. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1059. #endif
  1060. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1061. //
  1062. // Skew correction factors
  1063. //
  1064. _FIELD_TEST(planner_skew_factor);
  1065. EEPROM_WRITE(planner.skew_factor);
  1066. //
  1067. // Advanced Pause filament load & unload lengths
  1068. //
  1069. #if EXTRUDERS
  1070. {
  1071. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1072. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1073. #endif
  1074. _FIELD_TEST(fc_settings);
  1075. EEPROM_WRITE(fc_settings);
  1076. }
  1077. #endif
  1078. //
  1079. // Multiple Extruders
  1080. //
  1081. #if EXTRUDERS > 1
  1082. _FIELD_TEST(toolchange_settings);
  1083. EEPROM_WRITE(toolchange_settings);
  1084. #endif
  1085. //
  1086. // Backlash Compensation
  1087. //
  1088. {
  1089. #if ENABLED(BACKLASH_GCODE)
  1090. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1091. const uint8_t &backlash_correction = backlash.correction;
  1092. #else
  1093. const xyz_float_t backlash_distance_mm{0};
  1094. const uint8_t backlash_correction = 0;
  1095. #endif
  1096. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1097. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1098. #else
  1099. const float backlash_smoothing_mm = 3;
  1100. #endif
  1101. _FIELD_TEST(backlash_distance_mm);
  1102. EEPROM_WRITE(backlash_distance_mm);
  1103. EEPROM_WRITE(backlash_correction);
  1104. EEPROM_WRITE(backlash_smoothing_mm);
  1105. }
  1106. //
  1107. // Extensible UI User Data
  1108. //
  1109. #if ENABLED(EXTENSIBLE_UI)
  1110. {
  1111. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1112. ExtUI::onStoreSettings(extui_data);
  1113. _FIELD_TEST(extui_data);
  1114. EEPROM_WRITE(extui_data);
  1115. }
  1116. #endif
  1117. //
  1118. // Case Light Brightness
  1119. //
  1120. #if HAS_CASE_LIGHT_BRIGHTNESS
  1121. EEPROM_WRITE(case_light_brightness);
  1122. #endif
  1123. //
  1124. // Validate CRC and Data Size
  1125. //
  1126. if (!eeprom_error) {
  1127. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1128. final_crc = working_crc;
  1129. // Write the EEPROM header
  1130. eeprom_index = EEPROM_OFFSET;
  1131. EEPROM_WRITE(version);
  1132. EEPROM_WRITE(final_crc);
  1133. // Report storage size
  1134. DEBUG_ECHO_START();
  1135. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1136. eeprom_error |= size_error(eeprom_size);
  1137. }
  1138. EEPROM_FINISH();
  1139. //
  1140. // UBL Mesh
  1141. //
  1142. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1143. if (ubl.storage_slot >= 0)
  1144. store_mesh(ubl.storage_slot);
  1145. #endif
  1146. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1147. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1148. return !eeprom_error;
  1149. }
  1150. /**
  1151. * M501 - Retrieve Configuration
  1152. */
  1153. bool MarlinSettings::_load() {
  1154. uint16_t working_crc = 0;
  1155. EEPROM_START();
  1156. char stored_ver[4];
  1157. EEPROM_READ_ALWAYS(stored_ver);
  1158. uint16_t stored_crc;
  1159. EEPROM_READ_ALWAYS(stored_crc);
  1160. // Version has to match or defaults are used
  1161. if (strncmp(version, stored_ver, 3) != 0) {
  1162. if (stored_ver[3] != '\0') {
  1163. stored_ver[0] = '?';
  1164. stored_ver[1] = '\0';
  1165. }
  1166. DEBUG_ECHO_START();
  1167. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1168. #if HAS_LCD_MENU && DISABLED(EEPROM_AUTO_INIT)
  1169. LCD_MESSAGEPGM(MSG_ERR_EEPROM_VERSION);
  1170. #endif
  1171. eeprom_error = true;
  1172. }
  1173. else {
  1174. float dummyf = 0;
  1175. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1176. _FIELD_TEST(esteppers);
  1177. // Number of esteppers may change
  1178. uint8_t esteppers;
  1179. EEPROM_READ_ALWAYS(esteppers);
  1180. //
  1181. // Planner Motion
  1182. //
  1183. {
  1184. // Get only the number of E stepper parameters previously stored
  1185. // Any steppers added later are set to their defaults
  1186. uint32_t tmp1[XYZ + esteppers];
  1187. float tmp2[XYZ + esteppers];
  1188. feedRate_t tmp3[XYZ + esteppers];
  1189. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1190. EEPROM_READ(planner.settings.min_segment_time_us);
  1191. EEPROM_READ(tmp2); // axis_steps_per_mm
  1192. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1193. if (!validating) LOOP_XYZE_N(i) {
  1194. const bool in = (i < esteppers + XYZ);
  1195. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1196. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1197. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1198. }
  1199. EEPROM_READ(planner.settings.acceleration);
  1200. EEPROM_READ(planner.settings.retract_acceleration);
  1201. EEPROM_READ(planner.settings.travel_acceleration);
  1202. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1203. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1204. #if HAS_CLASSIC_JERK
  1205. EEPROM_READ(planner.max_jerk);
  1206. #if HAS_LINEAR_E_JERK
  1207. EEPROM_READ(dummyf);
  1208. #endif
  1209. #else
  1210. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1211. #endif
  1212. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1213. }
  1214. //
  1215. // Home Offset (M206 / M665)
  1216. //
  1217. {
  1218. _FIELD_TEST(home_offset);
  1219. #if HAS_SCARA_OFFSET
  1220. EEPROM_READ(scara_home_offset);
  1221. #else
  1222. #if !HAS_HOME_OFFSET
  1223. xyz_pos_t home_offset;
  1224. #endif
  1225. EEPROM_READ(home_offset);
  1226. #endif
  1227. }
  1228. //
  1229. // Hotend Offsets, if any
  1230. //
  1231. {
  1232. #if HAS_HOTEND_OFFSET
  1233. // Skip hotend 0 which must be 0
  1234. LOOP_S_L_N(e, 1, HOTENDS)
  1235. EEPROM_READ(hotend_offset[e]);
  1236. #endif
  1237. }
  1238. //
  1239. // Filament Runout Sensor
  1240. //
  1241. {
  1242. #if HAS_FILAMENT_SENSOR
  1243. const bool &runout_sensor_enabled = runout.enabled;
  1244. #else
  1245. bool runout_sensor_enabled;
  1246. #endif
  1247. _FIELD_TEST(runout_sensor_enabled);
  1248. EEPROM_READ(runout_sensor_enabled);
  1249. float runout_distance_mm;
  1250. EEPROM_READ(runout_distance_mm);
  1251. #if HAS_FILAMENT_SENSOR && defined(FILAMENT_RUNOUT_DISTANCE_MM)
  1252. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1253. #endif
  1254. }
  1255. //
  1256. // Global Leveling
  1257. //
  1258. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1259. //
  1260. // Mesh (Manual) Bed Leveling
  1261. //
  1262. {
  1263. uint8_t mesh_num_x, mesh_num_y;
  1264. EEPROM_READ(dummyf);
  1265. EEPROM_READ_ALWAYS(mesh_num_x);
  1266. EEPROM_READ_ALWAYS(mesh_num_y);
  1267. #if ENABLED(MESH_BED_LEVELING)
  1268. if (!validating) mbl.z_offset = dummyf;
  1269. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1270. // EEPROM data fits the current mesh
  1271. EEPROM_READ(mbl.z_values);
  1272. }
  1273. else {
  1274. // EEPROM data is stale
  1275. if (!validating) mbl.reset();
  1276. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1277. }
  1278. #else
  1279. // MBL is disabled - skip the stored data
  1280. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1281. #endif // MESH_BED_LEVELING
  1282. }
  1283. //
  1284. // Probe Z Offset
  1285. //
  1286. {
  1287. _FIELD_TEST(probe_offset);
  1288. #if HAS_BED_PROBE
  1289. const xyz_pos_t &zpo = probe.offset;
  1290. #else
  1291. xyz_pos_t zpo;
  1292. #endif
  1293. EEPROM_READ(zpo);
  1294. }
  1295. //
  1296. // Planar Bed Leveling matrix
  1297. //
  1298. {
  1299. #if ABL_PLANAR
  1300. EEPROM_READ(planner.bed_level_matrix);
  1301. #else
  1302. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1303. #endif
  1304. }
  1305. //
  1306. // Bilinear Auto Bed Leveling
  1307. //
  1308. {
  1309. uint8_t grid_max_x, grid_max_y;
  1310. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1311. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1312. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1313. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1314. if (!validating) set_bed_leveling_enabled(false);
  1315. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1316. EEPROM_READ(bilinear_start); // 2 ints
  1317. EEPROM_READ(z_values); // 9 to 256 floats
  1318. }
  1319. else // EEPROM data is stale
  1320. #endif // AUTO_BED_LEVELING_BILINEAR
  1321. {
  1322. // Skip past disabled (or stale) Bilinear Grid data
  1323. xy_pos_t bgs, bs;
  1324. EEPROM_READ(bgs);
  1325. EEPROM_READ(bs);
  1326. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1327. }
  1328. }
  1329. //
  1330. // Unified Bed Leveling active state
  1331. //
  1332. {
  1333. _FIELD_TEST(planner_leveling_active);
  1334. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1335. const bool &planner_leveling_active = planner.leveling_active;
  1336. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1337. #else
  1338. bool planner_leveling_active;
  1339. int8_t ubl_storage_slot;
  1340. #endif
  1341. EEPROM_READ(planner_leveling_active);
  1342. EEPROM_READ(ubl_storage_slot);
  1343. }
  1344. //
  1345. // SERVO_ANGLES
  1346. //
  1347. {
  1348. _FIELD_TEST(servo_angles);
  1349. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1350. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1351. #else
  1352. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1353. #endif
  1354. EEPROM_READ(servo_angles_arr);
  1355. }
  1356. //
  1357. // Thermal first layer compensation values
  1358. //
  1359. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1360. EEPROM_READ(temp_comp.z_offsets_probe);
  1361. EEPROM_READ(temp_comp.z_offsets_bed);
  1362. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1363. EEPROM_READ(temp_comp.z_offsets_ext);
  1364. #endif
  1365. temp_comp.reset_index();
  1366. #else
  1367. // No placeholder data for this feature
  1368. #endif
  1369. //
  1370. // BLTOUCH
  1371. //
  1372. {
  1373. _FIELD_TEST(bltouch_last_written_mode);
  1374. #if ENABLED(BLTOUCH)
  1375. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1376. #else
  1377. bool bltouch_last_written_mode;
  1378. #endif
  1379. EEPROM_READ(bltouch_last_written_mode);
  1380. }
  1381. //
  1382. // DELTA Geometry or Dual Endstops offsets
  1383. //
  1384. {
  1385. #if ENABLED(DELTA)
  1386. _FIELD_TEST(delta_height);
  1387. EEPROM_READ(delta_height); // 1 float
  1388. EEPROM_READ(delta_endstop_adj); // 3 floats
  1389. EEPROM_READ(delta_radius); // 1 float
  1390. EEPROM_READ(delta_diagonal_rod); // 1 float
  1391. EEPROM_READ(delta_segments_per_second); // 1 float
  1392. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1393. #elif HAS_EXTRA_ENDSTOPS
  1394. _FIELD_TEST(x2_endstop_adj);
  1395. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1396. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1397. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1398. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1399. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1400. #else
  1401. EEPROM_READ(dummyf);
  1402. #endif
  1403. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1404. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1405. #else
  1406. EEPROM_READ(dummyf);
  1407. #endif
  1408. #endif
  1409. }
  1410. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1411. EEPROM_READ(z_stepper_align.xy);
  1412. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1413. EEPROM_READ(z_stepper_align.stepper_xy);
  1414. #endif
  1415. #endif
  1416. //
  1417. // LCD Preheat settings
  1418. //
  1419. {
  1420. _FIELD_TEST(ui_preheat_hotend_temp);
  1421. #if HOTENDS && HAS_LCD_MENU
  1422. int16_t (&ui_preheat_hotend_temp)[2] = ui.preheat_hotend_temp,
  1423. (&ui_preheat_bed_temp)[2] = ui.preheat_bed_temp;
  1424. uint8_t (&ui_preheat_fan_speed)[2] = ui.preheat_fan_speed;
  1425. #else
  1426. int16_t ui_preheat_hotend_temp[2], ui_preheat_bed_temp[2];
  1427. uint8_t ui_preheat_fan_speed[2];
  1428. #endif
  1429. EEPROM_READ(ui_preheat_hotend_temp); // 2 floats
  1430. EEPROM_READ(ui_preheat_bed_temp); // 2 floats
  1431. EEPROM_READ(ui_preheat_fan_speed); // 2 floats
  1432. }
  1433. //
  1434. // Hotend PID
  1435. //
  1436. {
  1437. HOTEND_LOOP() {
  1438. PIDCF_t pidcf;
  1439. EEPROM_READ(pidcf);
  1440. #if ENABLED(PIDTEMP)
  1441. if (!validating && !isnan(pidcf.Kp)) {
  1442. // Scale PID values since EEPROM values are unscaled
  1443. PID_PARAM(Kp, e) = pidcf.Kp;
  1444. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1445. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1446. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1447. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1448. }
  1449. #endif
  1450. }
  1451. }
  1452. //
  1453. // PID Extrusion Scaling
  1454. //
  1455. {
  1456. _FIELD_TEST(lpq_len);
  1457. #if ENABLED(PID_EXTRUSION_SCALING)
  1458. const int16_t &lpq_len = thermalManager.lpq_len;
  1459. #else
  1460. int16_t lpq_len;
  1461. #endif
  1462. EEPROM_READ(lpq_len);
  1463. }
  1464. //
  1465. // Heated Bed PID
  1466. //
  1467. {
  1468. PID_t pid;
  1469. EEPROM_READ(pid);
  1470. #if ENABLED(PIDTEMPBED)
  1471. if (!validating && !isnan(pid.Kp)) {
  1472. // Scale PID values since EEPROM values are unscaled
  1473. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1474. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1475. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1476. }
  1477. #endif
  1478. }
  1479. //
  1480. // User-defined Thermistors
  1481. //
  1482. #if HAS_USER_THERMISTORS
  1483. {
  1484. _FIELD_TEST(user_thermistor);
  1485. EEPROM_READ(thermalManager.user_thermistor);
  1486. }
  1487. #endif
  1488. //
  1489. // LCD Contrast
  1490. //
  1491. {
  1492. _FIELD_TEST(lcd_contrast);
  1493. int16_t lcd_contrast;
  1494. EEPROM_READ(lcd_contrast);
  1495. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1496. }
  1497. //
  1498. // Controller Fan
  1499. //
  1500. {
  1501. _FIELD_TEST(controllerFan_settings);
  1502. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1503. const controllerFan_settings_t &cfs = controllerFan.settings;
  1504. #else
  1505. controllerFan_settings_t cfs = { 0 };
  1506. #endif
  1507. EEPROM_READ(cfs);
  1508. }
  1509. //
  1510. // Power-Loss Recovery
  1511. //
  1512. {
  1513. _FIELD_TEST(recovery_enabled);
  1514. #if ENABLED(POWER_LOSS_RECOVERY)
  1515. const bool &recovery_enabled = recovery.enabled;
  1516. #else
  1517. bool recovery_enabled;
  1518. #endif
  1519. EEPROM_READ(recovery_enabled);
  1520. }
  1521. //
  1522. // Firmware Retraction
  1523. //
  1524. {
  1525. _FIELD_TEST(fwretract_settings);
  1526. #if ENABLED(FWRETRACT)
  1527. EEPROM_READ(fwretract.settings);
  1528. #else
  1529. fwretract_settings_t fwretract_settings;
  1530. EEPROM_READ(fwretract_settings);
  1531. #endif
  1532. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1533. EEPROM_READ(fwretract.autoretract_enabled);
  1534. #else
  1535. bool autoretract_enabled;
  1536. EEPROM_READ(autoretract_enabled);
  1537. #endif
  1538. }
  1539. //
  1540. // Volumetric & Filament Size
  1541. //
  1542. {
  1543. struct {
  1544. bool volumetric_enabled;
  1545. float filament_size[EXTRUDERS];
  1546. } storage;
  1547. _FIELD_TEST(parser_volumetric_enabled);
  1548. EEPROM_READ(storage);
  1549. #if DISABLED(NO_VOLUMETRICS)
  1550. if (!validating) {
  1551. parser.volumetric_enabled = storage.volumetric_enabled;
  1552. COPY(planner.filament_size, storage.filament_size);
  1553. }
  1554. #endif
  1555. }
  1556. //
  1557. // TMC Stepper Settings
  1558. //
  1559. if (!validating) reset_stepper_drivers();
  1560. // TMC Stepper Current
  1561. {
  1562. _FIELD_TEST(tmc_stepper_current);
  1563. tmc_stepper_current_t currents;
  1564. EEPROM_READ(currents);
  1565. #if HAS_TRINAMIC_CONFIG
  1566. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1567. if (!validating) {
  1568. #if AXIS_IS_TMC(X)
  1569. SET_CURR(X);
  1570. #endif
  1571. #if AXIS_IS_TMC(Y)
  1572. SET_CURR(Y);
  1573. #endif
  1574. #if AXIS_IS_TMC(Z)
  1575. SET_CURR(Z);
  1576. #endif
  1577. #if AXIS_IS_TMC(X2)
  1578. SET_CURR(X2);
  1579. #endif
  1580. #if AXIS_IS_TMC(Y2)
  1581. SET_CURR(Y2);
  1582. #endif
  1583. #if AXIS_IS_TMC(Z2)
  1584. SET_CURR(Z2);
  1585. #endif
  1586. #if AXIS_IS_TMC(Z3)
  1587. SET_CURR(Z3);
  1588. #endif
  1589. #if AXIS_IS_TMC(Z4)
  1590. SET_CURR(Z4);
  1591. #endif
  1592. #if AXIS_IS_TMC(E0)
  1593. SET_CURR(E0);
  1594. #endif
  1595. #if AXIS_IS_TMC(E1)
  1596. SET_CURR(E1);
  1597. #endif
  1598. #if AXIS_IS_TMC(E2)
  1599. SET_CURR(E2);
  1600. #endif
  1601. #if AXIS_IS_TMC(E3)
  1602. SET_CURR(E3);
  1603. #endif
  1604. #if AXIS_IS_TMC(E4)
  1605. SET_CURR(E4);
  1606. #endif
  1607. #if AXIS_IS_TMC(E5)
  1608. SET_CURR(E5);
  1609. #endif
  1610. #if AXIS_IS_TMC(E6)
  1611. SET_CURR(E6);
  1612. #endif
  1613. #if AXIS_IS_TMC(E7)
  1614. SET_CURR(E7);
  1615. #endif
  1616. }
  1617. #endif
  1618. }
  1619. // TMC Hybrid Threshold
  1620. {
  1621. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1622. _FIELD_TEST(tmc_hybrid_threshold);
  1623. EEPROM_READ(tmc_hybrid_threshold);
  1624. #if ENABLED(HYBRID_THRESHOLD)
  1625. if (!validating) {
  1626. #if AXIS_HAS_STEALTHCHOP(X)
  1627. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1628. #endif
  1629. #if AXIS_HAS_STEALTHCHOP(Y)
  1630. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1631. #endif
  1632. #if AXIS_HAS_STEALTHCHOP(Z)
  1633. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1634. #endif
  1635. #if AXIS_HAS_STEALTHCHOP(X2)
  1636. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1637. #endif
  1638. #if AXIS_HAS_STEALTHCHOP(Y2)
  1639. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1640. #endif
  1641. #if AXIS_HAS_STEALTHCHOP(Z2)
  1642. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1643. #endif
  1644. #if AXIS_HAS_STEALTHCHOP(Z3)
  1645. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1646. #endif
  1647. #if AXIS_HAS_STEALTHCHOP(Z4)
  1648. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1649. #endif
  1650. #if AXIS_HAS_STEALTHCHOP(E0)
  1651. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1652. #endif
  1653. #if AXIS_HAS_STEALTHCHOP(E1)
  1654. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1655. #endif
  1656. #if AXIS_HAS_STEALTHCHOP(E2)
  1657. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1658. #endif
  1659. #if AXIS_HAS_STEALTHCHOP(E3)
  1660. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1661. #endif
  1662. #if AXIS_HAS_STEALTHCHOP(E4)
  1663. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1664. #endif
  1665. #if AXIS_HAS_STEALTHCHOP(E5)
  1666. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1667. #endif
  1668. #if AXIS_HAS_STEALTHCHOP(E6)
  1669. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1670. #endif
  1671. #if AXIS_HAS_STEALTHCHOP(E7)
  1672. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1673. #endif
  1674. }
  1675. #endif
  1676. }
  1677. //
  1678. // TMC StallGuard threshold.
  1679. // X and X2 use the same value
  1680. // Y and Y2 use the same value
  1681. // Z, Z2, Z3 and Z4 use the same value
  1682. //
  1683. {
  1684. tmc_sgt_t tmc_sgt;
  1685. _FIELD_TEST(tmc_sgt);
  1686. EEPROM_READ(tmc_sgt);
  1687. #if USE_SENSORLESS
  1688. if (!validating) {
  1689. #ifdef X_STALL_SENSITIVITY
  1690. #if AXIS_HAS_STALLGUARD(X)
  1691. stepperX.homing_threshold(tmc_sgt.X);
  1692. #endif
  1693. #if AXIS_HAS_STALLGUARD(X2) && !X2_SENSORLESS
  1694. stepperX2.homing_threshold(tmc_sgt.X);
  1695. #endif
  1696. #endif
  1697. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1698. #ifdef Y_STALL_SENSITIVITY
  1699. #if AXIS_HAS_STALLGUARD(Y)
  1700. stepperY.homing_threshold(tmc_sgt.Y);
  1701. #endif
  1702. #if AXIS_HAS_STALLGUARD(Y2)
  1703. stepperY2.homing_threshold(tmc_sgt.Y);
  1704. #endif
  1705. #endif
  1706. #ifdef Z_STALL_SENSITIVITY
  1707. #if AXIS_HAS_STALLGUARD(Z)
  1708. stepperZ.homing_threshold(tmc_sgt.Z);
  1709. #endif
  1710. #if AXIS_HAS_STALLGUARD(Z2)
  1711. stepperZ2.homing_threshold(tmc_sgt.Z);
  1712. #endif
  1713. #if AXIS_HAS_STALLGUARD(Z3)
  1714. stepperZ3.homing_threshold(tmc_sgt.Z);
  1715. #endif
  1716. #if AXIS_HAS_STALLGUARD(Z4)
  1717. stepperZ4.homing_threshold(tmc_sgt.Z);
  1718. #endif
  1719. #endif
  1720. }
  1721. #endif
  1722. }
  1723. // TMC stepping mode
  1724. {
  1725. _FIELD_TEST(tmc_stealth_enabled);
  1726. tmc_stealth_enabled_t tmc_stealth_enabled;
  1727. EEPROM_READ(tmc_stealth_enabled);
  1728. #if HAS_TRINAMIC_CONFIG
  1729. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1730. if (!validating) {
  1731. #if AXIS_HAS_STEALTHCHOP(X)
  1732. SET_STEPPING_MODE(X);
  1733. #endif
  1734. #if AXIS_HAS_STEALTHCHOP(Y)
  1735. SET_STEPPING_MODE(Y);
  1736. #endif
  1737. #if AXIS_HAS_STEALTHCHOP(Z)
  1738. SET_STEPPING_MODE(Z);
  1739. #endif
  1740. #if AXIS_HAS_STEALTHCHOP(X2)
  1741. SET_STEPPING_MODE(X2);
  1742. #endif
  1743. #if AXIS_HAS_STEALTHCHOP(Y2)
  1744. SET_STEPPING_MODE(Y2);
  1745. #endif
  1746. #if AXIS_HAS_STEALTHCHOP(Z2)
  1747. SET_STEPPING_MODE(Z2);
  1748. #endif
  1749. #if AXIS_HAS_STEALTHCHOP(Z3)
  1750. SET_STEPPING_MODE(Z3);
  1751. #endif
  1752. #if AXIS_HAS_STEALTHCHOP(Z4)
  1753. SET_STEPPING_MODE(Z4);
  1754. #endif
  1755. #if AXIS_HAS_STEALTHCHOP(E0)
  1756. SET_STEPPING_MODE(E0);
  1757. #endif
  1758. #if AXIS_HAS_STEALTHCHOP(E1)
  1759. SET_STEPPING_MODE(E1);
  1760. #endif
  1761. #if AXIS_HAS_STEALTHCHOP(E2)
  1762. SET_STEPPING_MODE(E2);
  1763. #endif
  1764. #if AXIS_HAS_STEALTHCHOP(E3)
  1765. SET_STEPPING_MODE(E3);
  1766. #endif
  1767. #if AXIS_HAS_STEALTHCHOP(E4)
  1768. SET_STEPPING_MODE(E4);
  1769. #endif
  1770. #if AXIS_HAS_STEALTHCHOP(E5)
  1771. SET_STEPPING_MODE(E5);
  1772. #endif
  1773. #if AXIS_HAS_STEALTHCHOP(E6)
  1774. SET_STEPPING_MODE(E6);
  1775. #endif
  1776. #if AXIS_HAS_STEALTHCHOP(E7)
  1777. SET_STEPPING_MODE(E7);
  1778. #endif
  1779. }
  1780. #endif
  1781. }
  1782. //
  1783. // Linear Advance
  1784. //
  1785. {
  1786. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1787. _FIELD_TEST(planner_extruder_advance_K);
  1788. EEPROM_READ(extruder_advance_K);
  1789. #if ENABLED(LIN_ADVANCE)
  1790. if (!validating)
  1791. COPY(planner.extruder_advance_K, extruder_advance_K);
  1792. #endif
  1793. }
  1794. //
  1795. // Motor Current PWM
  1796. //
  1797. {
  1798. uint32_t motor_current_setting[3];
  1799. _FIELD_TEST(motor_current_setting);
  1800. EEPROM_READ(motor_current_setting);
  1801. #if HAS_MOTOR_CURRENT_PWM
  1802. if (!validating)
  1803. COPY(stepper.motor_current_setting, motor_current_setting);
  1804. #endif
  1805. }
  1806. //
  1807. // CNC Coordinate System
  1808. //
  1809. {
  1810. _FIELD_TEST(coordinate_system);
  1811. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1812. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1813. EEPROM_READ(gcode.coordinate_system);
  1814. #else
  1815. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1816. EEPROM_READ(coordinate_system);
  1817. #endif
  1818. }
  1819. //
  1820. // Skew correction factors
  1821. //
  1822. {
  1823. skew_factor_t skew_factor;
  1824. _FIELD_TEST(planner_skew_factor);
  1825. EEPROM_READ(skew_factor);
  1826. #if ENABLED(SKEW_CORRECTION_GCODE)
  1827. if (!validating) {
  1828. planner.skew_factor.xy = skew_factor.xy;
  1829. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1830. planner.skew_factor.xz = skew_factor.xz;
  1831. planner.skew_factor.yz = skew_factor.yz;
  1832. #endif
  1833. }
  1834. #endif
  1835. }
  1836. //
  1837. // Advanced Pause filament load & unload lengths
  1838. //
  1839. #if EXTRUDERS
  1840. {
  1841. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1842. fil_change_settings_t fc_settings[EXTRUDERS];
  1843. #endif
  1844. _FIELD_TEST(fc_settings);
  1845. EEPROM_READ(fc_settings);
  1846. }
  1847. #endif
  1848. //
  1849. // Tool-change settings
  1850. //
  1851. #if EXTRUDERS > 1
  1852. _FIELD_TEST(toolchange_settings);
  1853. EEPROM_READ(toolchange_settings);
  1854. #endif
  1855. //
  1856. // Backlash Compensation
  1857. //
  1858. {
  1859. #if ENABLED(BACKLASH_GCODE)
  1860. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1861. const uint8_t &backlash_correction = backlash.correction;
  1862. #else
  1863. float backlash_distance_mm[XYZ];
  1864. uint8_t backlash_correction;
  1865. #endif
  1866. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1867. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1868. #else
  1869. float backlash_smoothing_mm;
  1870. #endif
  1871. _FIELD_TEST(backlash_distance_mm);
  1872. EEPROM_READ(backlash_distance_mm);
  1873. EEPROM_READ(backlash_correction);
  1874. EEPROM_READ(backlash_smoothing_mm);
  1875. }
  1876. //
  1877. // Extensible UI User Data
  1878. //
  1879. #if ENABLED(EXTENSIBLE_UI)
  1880. // This is a significant hardware change; don't reserve EEPROM space when not present
  1881. {
  1882. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1883. _FIELD_TEST(extui_data);
  1884. EEPROM_READ(extui_data);
  1885. if (!validating) ExtUI::onLoadSettings(extui_data);
  1886. }
  1887. #endif
  1888. //
  1889. // Case Light Brightness
  1890. //
  1891. #if HAS_CASE_LIGHT_BRIGHTNESS
  1892. _FIELD_TEST(case_light_brightness);
  1893. EEPROM_READ(case_light_brightness);
  1894. #endif
  1895. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1896. if (eeprom_error) {
  1897. DEBUG_ECHO_START();
  1898. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1899. #if HAS_LCD_MENU && DISABLED(EEPROM_AUTO_INIT)
  1900. LCD_MESSAGEPGM(MSG_ERR_EEPROM_INDEX);
  1901. #endif
  1902. }
  1903. else if (working_crc != stored_crc) {
  1904. eeprom_error = true;
  1905. DEBUG_ERROR_START();
  1906. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1907. #if HAS_LCD_MENU && DISABLED(EEPROM_AUTO_INIT)
  1908. LCD_MESSAGEPGM(MSG_ERR_EEPROM_CRC);
  1909. #endif
  1910. }
  1911. else if (!validating) {
  1912. DEBUG_ECHO_START();
  1913. DEBUG_ECHO(version);
  1914. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1915. }
  1916. if (!validating && !eeprom_error) postprocess();
  1917. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1918. if (!validating) {
  1919. ubl.report_state();
  1920. if (!ubl.sanity_check()) {
  1921. SERIAL_EOL();
  1922. #if ENABLED(EEPROM_CHITCHAT)
  1923. ubl.echo_name();
  1924. DEBUG_ECHOLNPGM(" initialized.\n");
  1925. #endif
  1926. }
  1927. else {
  1928. eeprom_error = true;
  1929. #if ENABLED(EEPROM_CHITCHAT)
  1930. DEBUG_ECHOPGM("?Can't enable ");
  1931. ubl.echo_name();
  1932. DEBUG_ECHOLNPGM(".");
  1933. #endif
  1934. ubl.reset();
  1935. }
  1936. if (ubl.storage_slot >= 0) {
  1937. load_mesh(ubl.storage_slot);
  1938. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1939. }
  1940. else {
  1941. ubl.reset();
  1942. DEBUG_ECHOLNPGM("UBL reset");
  1943. }
  1944. }
  1945. #endif
  1946. }
  1947. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  1948. // Report the EEPROM settings
  1949. if (!validating && (DISABLED(EEPROM_BOOT_SILENT) || IsRunning())) report();
  1950. #endif
  1951. EEPROM_FINISH();
  1952. return !eeprom_error;
  1953. }
  1954. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1955. extern bool restoreEEPROM();
  1956. #endif
  1957. bool MarlinSettings::validate() {
  1958. validating = true;
  1959. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  1960. bool success = _load();
  1961. if (!success && restoreEEPROM()) {
  1962. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  1963. success = _load();
  1964. }
  1965. #else
  1966. const bool success = _load();
  1967. #endif
  1968. validating = false;
  1969. return success;
  1970. }
  1971. bool MarlinSettings::load() {
  1972. if (validate()) {
  1973. const bool success = _load();
  1974. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  1975. return success;
  1976. }
  1977. reset();
  1978. #if ENABLED(EEPROM_AUTO_INIT)
  1979. (void)save();
  1980. SERIAL_ECHO_MSG("EEPROM Initialized");
  1981. #endif
  1982. return false;
  1983. }
  1984. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1985. inline void ubl_invalid_slot(const int s) {
  1986. #if ENABLED(EEPROM_CHITCHAT)
  1987. DEBUG_ECHOLNPGM("?Invalid slot.");
  1988. DEBUG_ECHO(s);
  1989. DEBUG_ECHOLNPGM(" mesh slots available.");
  1990. #else
  1991. UNUSED(s);
  1992. #endif
  1993. }
  1994. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  1995. // is a placeholder for the size of the MAT; the MAT will always
  1996. // live at the very end of the eeprom
  1997. uint16_t MarlinSettings::meshes_start_index() {
  1998. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  1999. // or down a little bit without disrupting the mesh data
  2000. }
  2001. uint16_t MarlinSettings::calc_num_meshes() {
  2002. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2003. }
  2004. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2005. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2006. }
  2007. void MarlinSettings::store_mesh(const int8_t slot) {
  2008. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2009. const int16_t a = calc_num_meshes();
  2010. if (!WITHIN(slot, 0, a - 1)) {
  2011. ubl_invalid_slot(a);
  2012. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2013. DEBUG_EOL();
  2014. return;
  2015. }
  2016. int pos = mesh_slot_offset(slot);
  2017. uint16_t crc = 0;
  2018. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2019. persistentStore.access_start();
  2020. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2021. persistentStore.access_finish();
  2022. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2023. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2024. #else
  2025. // Other mesh types
  2026. #endif
  2027. }
  2028. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2029. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2030. const int16_t a = settings.calc_num_meshes();
  2031. if (!WITHIN(slot, 0, a - 1)) {
  2032. ubl_invalid_slot(a);
  2033. return;
  2034. }
  2035. int pos = mesh_slot_offset(slot);
  2036. uint16_t crc = 0;
  2037. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2038. persistentStore.access_start();
  2039. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2040. persistentStore.access_finish();
  2041. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2042. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2043. EEPROM_FINISH();
  2044. #else
  2045. // Other mesh types
  2046. #endif
  2047. }
  2048. //void MarlinSettings::delete_mesh() { return; }
  2049. //void MarlinSettings::defrag_meshes() { return; }
  2050. #endif // AUTO_BED_LEVELING_UBL
  2051. #else // !EEPROM_SETTINGS
  2052. bool MarlinSettings::save() {
  2053. DEBUG_ERROR_MSG("EEPROM disabled");
  2054. return false;
  2055. }
  2056. #endif // !EEPROM_SETTINGS
  2057. /**
  2058. * M502 - Reset Configuration
  2059. */
  2060. void MarlinSettings::reset() {
  2061. LOOP_XYZE_N(i) {
  2062. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2063. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2064. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2065. }
  2066. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2067. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2068. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2069. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2070. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2071. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2072. #if HAS_CLASSIC_JERK
  2073. #ifndef DEFAULT_XJERK
  2074. #define DEFAULT_XJERK 0
  2075. #endif
  2076. #ifndef DEFAULT_YJERK
  2077. #define DEFAULT_YJERK 0
  2078. #endif
  2079. #ifndef DEFAULT_ZJERK
  2080. #define DEFAULT_ZJERK 0
  2081. #endif
  2082. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2083. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2084. #endif
  2085. #if HAS_JUNCTION_DEVIATION
  2086. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2087. #endif
  2088. #if HAS_SCARA_OFFSET
  2089. scara_home_offset.reset();
  2090. #elif HAS_HOME_OFFSET
  2091. home_offset.reset();
  2092. #endif
  2093. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2094. //
  2095. // Filament Runout Sensor
  2096. //
  2097. #if HAS_FILAMENT_SENSOR
  2098. runout.enabled = true;
  2099. runout.reset();
  2100. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  2101. runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM);
  2102. #endif
  2103. #endif
  2104. //
  2105. // Tool-change Settings
  2106. //
  2107. #if EXTRUDERS > 1
  2108. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2109. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2110. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2111. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2112. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2113. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2114. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2115. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2116. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2117. #endif
  2118. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2119. enable_first_prime = false;
  2120. #endif
  2121. #if ENABLED(TOOLCHANGE_PARK)
  2122. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2123. toolchange_settings.enable_park = true;
  2124. toolchange_settings.change_point = tpxy;
  2125. #endif
  2126. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2127. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2128. migration = migration_defaults;
  2129. #endif
  2130. #endif
  2131. #if ENABLED(BACKLASH_GCODE)
  2132. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2133. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2134. backlash.distance_mm = tmp;
  2135. #ifdef BACKLASH_SMOOTHING_MM
  2136. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2137. #endif
  2138. #endif
  2139. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2140. //
  2141. // Case Light Brightness
  2142. //
  2143. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, case_light_brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2144. //
  2145. // Magnetic Parking Extruder
  2146. //
  2147. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2148. //
  2149. // Global Leveling
  2150. //
  2151. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2152. TERN_(HAS_LEVELING, reset_bed_level());
  2153. #if HAS_BED_PROBE
  2154. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2155. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2156. #if HAS_PROBE_XY_OFFSET
  2157. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2158. #else
  2159. probe.offset.x = probe.offset.y = 0;
  2160. probe.offset.z = dpo[Z_AXIS];
  2161. #endif
  2162. #endif
  2163. //
  2164. // Z Stepper Auto-alignment points
  2165. //
  2166. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2167. //
  2168. // Servo Angles
  2169. //
  2170. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2171. //
  2172. // BLTOUCH
  2173. //
  2174. //#if ENABLED(BLTOUCH)
  2175. // bltouch.last_written_mode;
  2176. //#endif
  2177. //
  2178. // Endstop Adjustments
  2179. //
  2180. #if ENABLED(DELTA)
  2181. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM;
  2182. delta_height = DELTA_HEIGHT;
  2183. delta_endstop_adj = adj;
  2184. delta_radius = DELTA_RADIUS;
  2185. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2186. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2187. delta_tower_angle_trim = dta;
  2188. #endif
  2189. #if ENABLED(X_DUAL_ENDSTOPS)
  2190. #ifndef X2_ENDSTOP_ADJUSTMENT
  2191. #define X2_ENDSTOP_ADJUSTMENT 0
  2192. #endif
  2193. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2194. #endif
  2195. #if ENABLED(Y_DUAL_ENDSTOPS)
  2196. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2197. #define Y2_ENDSTOP_ADJUSTMENT 0
  2198. #endif
  2199. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2200. #endif
  2201. #if ENABLED(Z_MULTI_ENDSTOPS)
  2202. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2203. #define Z2_ENDSTOP_ADJUSTMENT 0
  2204. #endif
  2205. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2206. #if NUM_Z_STEPPER_DRIVERS >= 3
  2207. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2208. #define Z3_ENDSTOP_ADJUSTMENT 0
  2209. #endif
  2210. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2211. #endif
  2212. #if NUM_Z_STEPPER_DRIVERS >= 4
  2213. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2214. #define Z4_ENDSTOP_ADJUSTMENT 0
  2215. #endif
  2216. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2217. #endif
  2218. #endif
  2219. //
  2220. // Preheat parameters
  2221. //
  2222. #if HOTENDS && HAS_LCD_MENU
  2223. ui.preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  2224. ui.preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  2225. ui.preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  2226. ui.preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  2227. ui.preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  2228. ui.preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  2229. #endif
  2230. //
  2231. // Hotend PID
  2232. //
  2233. #if ENABLED(PIDTEMP)
  2234. HOTEND_LOOP() {
  2235. PID_PARAM(Kp, e) = float(DEFAULT_Kp);
  2236. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  2237. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  2238. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = DEFAULT_Kc);
  2239. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = DEFAULT_Kf);
  2240. }
  2241. #endif
  2242. //
  2243. // PID Extrusion Scaling
  2244. //
  2245. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2246. //
  2247. // Heated Bed PID
  2248. //
  2249. #if ENABLED(PIDTEMPBED)
  2250. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2251. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2252. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2253. #endif
  2254. //
  2255. // User-Defined Thermistors
  2256. //
  2257. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2258. //
  2259. // LCD Contrast
  2260. //
  2261. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2262. //
  2263. // Controller Fan
  2264. //
  2265. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2266. //
  2267. // Power-Loss Recovery
  2268. //
  2269. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2270. //
  2271. // Firmware Retraction
  2272. //
  2273. TERN_(FWRETRACT, fwretract.reset());
  2274. //
  2275. // Volumetric & Filament Size
  2276. //
  2277. #if DISABLED(NO_VOLUMETRICS)
  2278. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2279. LOOP_L_N(q, COUNT(planner.filament_size))
  2280. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2281. #endif
  2282. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2283. reset_stepper_drivers();
  2284. //
  2285. // Linear Advance
  2286. //
  2287. #if ENABLED(LIN_ADVANCE)
  2288. LOOP_L_N(i, EXTRUDERS) {
  2289. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2290. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2291. }
  2292. #endif
  2293. //
  2294. // Motor Current PWM
  2295. //
  2296. #if HAS_MOTOR_CURRENT_PWM
  2297. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2298. LOOP_L_N(q, 3)
  2299. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2300. #endif
  2301. //
  2302. // CNC Coordinate System
  2303. //
  2304. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2305. //
  2306. // Skew Correction
  2307. //
  2308. #if ENABLED(SKEW_CORRECTION_GCODE)
  2309. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2310. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2311. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2312. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2313. #endif
  2314. #endif
  2315. //
  2316. // Advanced Pause filament load & unload lengths
  2317. //
  2318. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2319. LOOP_L_N(e, EXTRUDERS) {
  2320. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2321. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2322. }
  2323. #endif
  2324. postprocess();
  2325. DEBUG_ECHO_START();
  2326. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2327. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2328. }
  2329. #if DISABLED(DISABLE_M503)
  2330. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2331. if (!repl) {
  2332. SERIAL_ECHO_START();
  2333. SERIAL_ECHOPGM("; ");
  2334. serialprintPGM(pstr);
  2335. if (eol) SERIAL_EOL();
  2336. }
  2337. }
  2338. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2339. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2340. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2341. #if HAS_TRINAMIC_CONFIG
  2342. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2343. #if HAS_STEALTHCHOP
  2344. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2345. CONFIG_ECHO_START();
  2346. SERIAL_ECHOPGM(" M569 S1");
  2347. if (etc) {
  2348. SERIAL_CHAR(' ');
  2349. serialprintPGM(etc);
  2350. }
  2351. if (newLine) SERIAL_EOL();
  2352. }
  2353. #endif
  2354. #if ENABLED(HYBRID_THRESHOLD)
  2355. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2356. #endif
  2357. #if USE_SENSORLESS
  2358. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2359. #endif
  2360. #endif
  2361. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2362. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2363. #endif
  2364. inline void say_units(const bool colon) {
  2365. serialprintPGM(
  2366. #if ENABLED(INCH_MODE_SUPPORT)
  2367. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2368. #endif
  2369. PSTR(" (mm)")
  2370. );
  2371. if (colon) SERIAL_ECHOLNPGM(":");
  2372. }
  2373. void report_M92(const bool echo=true, const int8_t e=-1);
  2374. /**
  2375. * M503 - Report current settings in RAM
  2376. *
  2377. * Unless specifically disabled, M503 is available even without EEPROM
  2378. */
  2379. void MarlinSettings::report(const bool forReplay) {
  2380. /**
  2381. * Announce current units, in case inches are being displayed
  2382. */
  2383. CONFIG_ECHO_START();
  2384. #if ENABLED(INCH_MODE_SUPPORT)
  2385. SERIAL_ECHOPGM(" G2");
  2386. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2387. SERIAL_ECHOPGM(" ;");
  2388. say_units(false);
  2389. #else
  2390. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2391. say_units(false);
  2392. #endif
  2393. SERIAL_EOL();
  2394. #if HAS_LCD_MENU
  2395. // Temperature units - for Ultipanel temperature options
  2396. CONFIG_ECHO_START();
  2397. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2398. SERIAL_ECHOPGM(" M149 ");
  2399. SERIAL_CHAR(parser.temp_units_code());
  2400. SERIAL_ECHOPGM(" ; Units in ");
  2401. serialprintPGM(parser.temp_units_name());
  2402. #else
  2403. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2404. #endif
  2405. #endif
  2406. SERIAL_EOL();
  2407. #if DISABLED(NO_VOLUMETRICS)
  2408. /**
  2409. * Volumetric extrusion M200
  2410. */
  2411. if (!forReplay) {
  2412. config_heading(forReplay, PSTR("Filament settings:"), false);
  2413. if (parser.volumetric_enabled)
  2414. SERIAL_EOL();
  2415. else
  2416. SERIAL_ECHOLNPGM(" Disabled");
  2417. }
  2418. #if EXTRUDERS == 1
  2419. CONFIG_ECHO_START();
  2420. SERIAL_ECHOLNPAIR(" M200 D", LINEAR_UNIT(planner.filament_size[0]));
  2421. #elif EXTRUDERS
  2422. LOOP_L_N(i, EXTRUDERS) {
  2423. CONFIG_ECHO_START();
  2424. SERIAL_ECHOPGM(" M200");
  2425. if (i) SERIAL_ECHOPAIR_P(SP_T_STR, int(i));
  2426. SERIAL_ECHOLNPAIR(" D", LINEAR_UNIT(planner.filament_size[i]));
  2427. }
  2428. #endif
  2429. if (!parser.volumetric_enabled)
  2430. CONFIG_ECHO_MSG(" M200 D0");
  2431. #endif // !NO_VOLUMETRICS
  2432. CONFIG_ECHO_HEADING("Steps per unit:");
  2433. report_M92(!forReplay);
  2434. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2435. CONFIG_ECHO_START();
  2436. SERIAL_ECHOLNPAIR_P(
  2437. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2438. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2439. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2440. #if DISABLED(DISTINCT_E_FACTORS)
  2441. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2442. #endif
  2443. );
  2444. #if ENABLED(DISTINCT_E_FACTORS)
  2445. CONFIG_ECHO_START();
  2446. LOOP_L_N(i, E_STEPPERS) {
  2447. SERIAL_ECHOLNPAIR_P(
  2448. PSTR(" M203 T"), (int)i
  2449. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2450. );
  2451. }
  2452. #endif
  2453. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2454. CONFIG_ECHO_START();
  2455. SERIAL_ECHOLNPAIR_P(
  2456. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2457. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2458. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2459. #if DISABLED(DISTINCT_E_FACTORS)
  2460. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2461. #endif
  2462. );
  2463. #if ENABLED(DISTINCT_E_FACTORS)
  2464. CONFIG_ECHO_START();
  2465. LOOP_L_N(i, E_STEPPERS)
  2466. SERIAL_ECHOLNPAIR_P(
  2467. PSTR(" M201 T"), (int)i
  2468. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2469. );
  2470. #endif
  2471. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2472. CONFIG_ECHO_START();
  2473. SERIAL_ECHOLNPAIR_P(
  2474. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2475. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2476. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2477. );
  2478. CONFIG_ECHO_HEADING(
  2479. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2480. #if HAS_JUNCTION_DEVIATION
  2481. " J<junc_dev>"
  2482. #endif
  2483. #if HAS_CLASSIC_JERK
  2484. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2485. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2486. #endif
  2487. );
  2488. CONFIG_ECHO_START();
  2489. SERIAL_ECHOLNPAIR_P(
  2490. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2491. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2492. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2493. #if HAS_JUNCTION_DEVIATION
  2494. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2495. #endif
  2496. #if HAS_CLASSIC_JERK
  2497. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2498. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2499. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2500. #if HAS_CLASSIC_E_JERK
  2501. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2502. #endif
  2503. #endif
  2504. );
  2505. #if HAS_M206_COMMAND
  2506. CONFIG_ECHO_HEADING("Home offset:");
  2507. CONFIG_ECHO_START();
  2508. SERIAL_ECHOLNPAIR_P(
  2509. #if IS_CARTESIAN
  2510. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2511. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2512. , SP_Z_STR
  2513. #else
  2514. PSTR(" M206 Z")
  2515. #endif
  2516. , LINEAR_UNIT(home_offset.z)
  2517. );
  2518. #endif
  2519. #if HAS_HOTEND_OFFSET
  2520. CONFIG_ECHO_HEADING("Hotend offsets:");
  2521. CONFIG_ECHO_START();
  2522. LOOP_S_L_N(e, 1, HOTENDS) {
  2523. SERIAL_ECHOPAIR_P(
  2524. PSTR(" M218 T"), (int)e,
  2525. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2526. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2527. );
  2528. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2529. }
  2530. #endif
  2531. /**
  2532. * Bed Leveling
  2533. */
  2534. #if HAS_LEVELING
  2535. #if ENABLED(MESH_BED_LEVELING)
  2536. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2537. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2538. config_heading(forReplay, PSTR(""), false);
  2539. if (!forReplay) {
  2540. ubl.echo_name();
  2541. SERIAL_CHAR(':');
  2542. SERIAL_EOL();
  2543. }
  2544. #elif HAS_ABL_OR_UBL
  2545. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2546. #endif
  2547. CONFIG_ECHO_START();
  2548. SERIAL_ECHOLNPAIR_P(
  2549. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2550. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2551. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2552. #endif
  2553. );
  2554. #if ENABLED(MESH_BED_LEVELING)
  2555. if (leveling_is_valid()) {
  2556. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2557. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2558. CONFIG_ECHO_START();
  2559. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2560. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2561. }
  2562. }
  2563. CONFIG_ECHO_START();
  2564. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2565. }
  2566. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2567. if (!forReplay) {
  2568. SERIAL_EOL();
  2569. ubl.report_state();
  2570. SERIAL_EOL();
  2571. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2572. SERIAL_ECHOLN(ubl.storage_slot);
  2573. config_heading(false, PSTR("EEPROM can hold "), false);
  2574. SERIAL_ECHO(calc_num_meshes());
  2575. SERIAL_ECHOLNPGM(" meshes.\n");
  2576. }
  2577. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2578. // solution needs to be found.
  2579. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2580. if (leveling_is_valid()) {
  2581. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2582. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2583. CONFIG_ECHO_START();
  2584. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2585. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2586. }
  2587. }
  2588. }
  2589. #endif
  2590. #endif // HAS_LEVELING
  2591. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2592. CONFIG_ECHO_HEADING("Servo Angles:");
  2593. LOOP_L_N(i, NUM_SERVOS) {
  2594. switch (i) {
  2595. #if ENABLED(SWITCHING_EXTRUDER)
  2596. case SWITCHING_EXTRUDER_SERVO_NR:
  2597. #if EXTRUDERS > 3
  2598. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2599. #endif
  2600. #elif ENABLED(SWITCHING_NOZZLE)
  2601. case SWITCHING_NOZZLE_SERVO_NR:
  2602. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2603. case Z_PROBE_SERVO_NR:
  2604. #endif
  2605. CONFIG_ECHO_START();
  2606. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2607. default: break;
  2608. }
  2609. }
  2610. #endif // EDITABLE_SERVO_ANGLES
  2611. #if HAS_SCARA_OFFSET
  2612. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2613. CONFIG_ECHO_START();
  2614. SERIAL_ECHOLNPAIR_P(
  2615. PSTR(" M665 S"), delta_segments_per_second
  2616. , SP_P_STR, scara_home_offset.a
  2617. , SP_T_STR, scara_home_offset.b
  2618. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2619. );
  2620. #elif ENABLED(DELTA)
  2621. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2622. CONFIG_ECHO_START();
  2623. SERIAL_ECHOLNPAIR_P(
  2624. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2625. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2626. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2627. );
  2628. CONFIG_ECHO_HEADING("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> XYZ<tower angle corrections>");
  2629. CONFIG_ECHO_START();
  2630. SERIAL_ECHOLNPAIR_P(
  2631. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2632. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2633. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2634. , PSTR(" S"), delta_segments_per_second
  2635. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2636. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2637. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2638. );
  2639. #elif HAS_EXTRA_ENDSTOPS
  2640. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2641. CONFIG_ECHO_START();
  2642. SERIAL_ECHOPGM(" M666");
  2643. #if ENABLED(X_DUAL_ENDSTOPS)
  2644. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2645. #endif
  2646. #if ENABLED(Y_DUAL_ENDSTOPS)
  2647. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2648. #endif
  2649. #if ENABLED(Z_MULTI_ENDSTOPS)
  2650. #if NUM_Z_STEPPER_DRIVERS >= 3
  2651. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2652. CONFIG_ECHO_START();
  2653. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2654. #if NUM_Z_STEPPER_DRIVERS >= 4
  2655. CONFIG_ECHO_START();
  2656. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2657. #endif
  2658. #else
  2659. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2660. #endif
  2661. #endif
  2662. #endif // [XYZ]_DUAL_ENDSTOPS
  2663. #if HOTENDS && HAS_LCD_MENU
  2664. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2665. LOOP_L_N(i, COUNT(ui.preheat_hotend_temp)) {
  2666. CONFIG_ECHO_START();
  2667. SERIAL_ECHOLNPAIR(
  2668. " M145 S", (int)i
  2669. , " H", TEMP_UNIT(ui.preheat_hotend_temp[i])
  2670. , " B", TEMP_UNIT(ui.preheat_bed_temp[i])
  2671. , " F", int(ui.preheat_fan_speed[i])
  2672. );
  2673. }
  2674. #endif
  2675. #if HAS_PID_HEATING
  2676. CONFIG_ECHO_HEADING("PID settings:");
  2677. #if ENABLED(PIDTEMP)
  2678. HOTEND_LOOP() {
  2679. CONFIG_ECHO_START();
  2680. SERIAL_ECHOPAIR_P(
  2681. #if BOTH(HAS_MULTI_HOTEND, PID_PARAMS_PER_HOTEND)
  2682. PSTR(" M301 E"), e,
  2683. SP_P_STR
  2684. #else
  2685. PSTR(" M301 P")
  2686. #endif
  2687. , PID_PARAM(Kp, e)
  2688. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2689. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2690. );
  2691. #if ENABLED(PID_EXTRUSION_SCALING)
  2692. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  2693. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2694. #endif
  2695. #if ENABLED(PID_FAN_SCALING)
  2696. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2697. #endif
  2698. SERIAL_EOL();
  2699. }
  2700. #endif // PIDTEMP
  2701. #if ENABLED(PIDTEMPBED)
  2702. CONFIG_ECHO_START();
  2703. SERIAL_ECHOLNPAIR(
  2704. " M304 P", thermalManager.temp_bed.pid.Kp
  2705. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2706. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2707. );
  2708. #endif
  2709. #endif // PIDTEMP || PIDTEMPBED
  2710. #if HAS_USER_THERMISTORS
  2711. CONFIG_ECHO_HEADING("User thermistors:");
  2712. LOOP_L_N(i, USER_THERMISTORS)
  2713. thermalManager.log_user_thermistor(i, true);
  2714. #endif
  2715. #if HAS_LCD_CONTRAST
  2716. CONFIG_ECHO_HEADING("LCD Contrast:");
  2717. CONFIG_ECHO_START();
  2718. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2719. #endif
  2720. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2721. #if ENABLED(POWER_LOSS_RECOVERY)
  2722. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2723. CONFIG_ECHO_START();
  2724. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2725. #endif
  2726. #if ENABLED(FWRETRACT)
  2727. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2728. CONFIG_ECHO_START();
  2729. SERIAL_ECHOLNPAIR_P(
  2730. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2731. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2732. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2733. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2734. );
  2735. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2736. CONFIG_ECHO_START();
  2737. SERIAL_ECHOLNPAIR(
  2738. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2739. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2740. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2741. );
  2742. #if ENABLED(FWRETRACT_AUTORETRACT)
  2743. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2744. CONFIG_ECHO_START();
  2745. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2746. #endif // FWRETRACT_AUTORETRACT
  2747. #endif // FWRETRACT
  2748. /**
  2749. * Probe Offset
  2750. */
  2751. #if HAS_BED_PROBE
  2752. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2753. if (!forReplay) say_units(true);
  2754. CONFIG_ECHO_START();
  2755. SERIAL_ECHOLNPAIR_P(
  2756. #if HAS_PROBE_XY_OFFSET
  2757. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2758. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2759. SP_Z_STR
  2760. #else
  2761. PSTR(" M851 X0 Y0 Z")
  2762. #endif
  2763. , LINEAR_UNIT(probe.offset.z)
  2764. );
  2765. #endif
  2766. /**
  2767. * Bed Skew Correction
  2768. */
  2769. #if ENABLED(SKEW_CORRECTION_GCODE)
  2770. CONFIG_ECHO_HEADING("Skew Factor: ");
  2771. CONFIG_ECHO_START();
  2772. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2773. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2774. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2775. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2776. #else
  2777. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2778. #endif
  2779. #endif
  2780. #if HAS_TRINAMIC_CONFIG
  2781. /**
  2782. * TMC stepper driver current
  2783. */
  2784. CONFIG_ECHO_HEADING("Stepper driver current:");
  2785. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2786. say_M906(forReplay);
  2787. #if AXIS_IS_TMC(X)
  2788. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2789. #endif
  2790. #if AXIS_IS_TMC(Y)
  2791. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2792. #endif
  2793. #if AXIS_IS_TMC(Z)
  2794. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2795. #endif
  2796. SERIAL_EOL();
  2797. #endif
  2798. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2799. say_M906(forReplay);
  2800. SERIAL_ECHOPGM(" I1");
  2801. #if AXIS_IS_TMC(X2)
  2802. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2803. #endif
  2804. #if AXIS_IS_TMC(Y2)
  2805. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2806. #endif
  2807. #if AXIS_IS_TMC(Z2)
  2808. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2809. #endif
  2810. SERIAL_EOL();
  2811. #endif
  2812. #if AXIS_IS_TMC(Z3)
  2813. say_M906(forReplay);
  2814. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2815. #endif
  2816. #if AXIS_IS_TMC(Z4)
  2817. say_M906(forReplay);
  2818. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2819. #endif
  2820. #if AXIS_IS_TMC(E0)
  2821. say_M906(forReplay);
  2822. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2823. #endif
  2824. #if AXIS_IS_TMC(E1)
  2825. say_M906(forReplay);
  2826. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2827. #endif
  2828. #if AXIS_IS_TMC(E2)
  2829. say_M906(forReplay);
  2830. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2831. #endif
  2832. #if AXIS_IS_TMC(E3)
  2833. say_M906(forReplay);
  2834. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2835. #endif
  2836. #if AXIS_IS_TMC(E4)
  2837. say_M906(forReplay);
  2838. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2839. #endif
  2840. #if AXIS_IS_TMC(E5)
  2841. say_M906(forReplay);
  2842. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2843. #endif
  2844. #if AXIS_IS_TMC(E6)
  2845. say_M906(forReplay);
  2846. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  2847. #endif
  2848. #if AXIS_IS_TMC(E7)
  2849. say_M906(forReplay);
  2850. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  2851. #endif
  2852. SERIAL_EOL();
  2853. /**
  2854. * TMC Hybrid Threshold
  2855. */
  2856. #if ENABLED(HYBRID_THRESHOLD)
  2857. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  2858. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2859. say_M913(forReplay);
  2860. #endif
  2861. #if AXIS_HAS_STEALTHCHOP(X)
  2862. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  2863. #endif
  2864. #if AXIS_HAS_STEALTHCHOP(Y)
  2865. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  2866. #endif
  2867. #if AXIS_HAS_STEALTHCHOP(Z)
  2868. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  2869. #endif
  2870. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  2871. SERIAL_EOL();
  2872. #endif
  2873. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2874. say_M913(forReplay);
  2875. SERIAL_ECHOPGM(" I1");
  2876. #endif
  2877. #if AXIS_HAS_STEALTHCHOP(X2)
  2878. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  2879. #endif
  2880. #if AXIS_HAS_STEALTHCHOP(Y2)
  2881. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  2882. #endif
  2883. #if AXIS_HAS_STEALTHCHOP(Z2)
  2884. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  2885. #endif
  2886. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  2887. SERIAL_EOL();
  2888. #endif
  2889. #if AXIS_HAS_STEALTHCHOP(Z3)
  2890. say_M913(forReplay);
  2891. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  2892. #endif
  2893. #if AXIS_HAS_STEALTHCHOP(Z4)
  2894. say_M913(forReplay);
  2895. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  2896. #endif
  2897. #if AXIS_HAS_STEALTHCHOP(E0)
  2898. say_M913(forReplay);
  2899. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  2900. #endif
  2901. #if AXIS_HAS_STEALTHCHOP(E1)
  2902. say_M913(forReplay);
  2903. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  2904. #endif
  2905. #if AXIS_HAS_STEALTHCHOP(E2)
  2906. say_M913(forReplay);
  2907. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  2908. #endif
  2909. #if AXIS_HAS_STEALTHCHOP(E3)
  2910. say_M913(forReplay);
  2911. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  2912. #endif
  2913. #if AXIS_HAS_STEALTHCHOP(E4)
  2914. say_M913(forReplay);
  2915. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  2916. #endif
  2917. #if AXIS_HAS_STEALTHCHOP(E5)
  2918. say_M913(forReplay);
  2919. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  2920. #endif
  2921. #if AXIS_HAS_STEALTHCHOP(E6)
  2922. say_M913(forReplay);
  2923. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  2924. #endif
  2925. #if AXIS_HAS_STEALTHCHOP(E7)
  2926. say_M913(forReplay);
  2927. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  2928. #endif
  2929. SERIAL_EOL();
  2930. #endif // HYBRID_THRESHOLD
  2931. /**
  2932. * TMC Sensorless homing thresholds
  2933. */
  2934. #if USE_SENSORLESS
  2935. CONFIG_ECHO_HEADING("StallGuard threshold:");
  2936. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  2937. CONFIG_ECHO_START();
  2938. say_M914();
  2939. #if X_SENSORLESS
  2940. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  2941. #endif
  2942. #if Y_SENSORLESS
  2943. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  2944. #endif
  2945. #if Z_SENSORLESS
  2946. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  2947. #endif
  2948. SERIAL_EOL();
  2949. #endif
  2950. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  2951. CONFIG_ECHO_START();
  2952. say_M914();
  2953. SERIAL_ECHOPGM(" I1");
  2954. #if X2_SENSORLESS
  2955. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  2956. #endif
  2957. #if Y2_SENSORLESS
  2958. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  2959. #endif
  2960. #if Z2_SENSORLESS
  2961. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  2962. #endif
  2963. SERIAL_EOL();
  2964. #endif
  2965. #if Z3_SENSORLESS
  2966. CONFIG_ECHO_START();
  2967. say_M914();
  2968. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  2969. #endif
  2970. #if Z4_SENSORLESS
  2971. CONFIG_ECHO_START();
  2972. say_M914();
  2973. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  2974. #endif
  2975. #endif // USE_SENSORLESS
  2976. /**
  2977. * TMC stepping mode
  2978. */
  2979. #if HAS_STEALTHCHOP
  2980. CONFIG_ECHO_HEADING("Driver stepping mode:");
  2981. #if AXIS_HAS_STEALTHCHOP(X)
  2982. const bool chop_x = stepperX.get_stealthChop_status();
  2983. #else
  2984. constexpr bool chop_x = false;
  2985. #endif
  2986. #if AXIS_HAS_STEALTHCHOP(Y)
  2987. const bool chop_y = stepperY.get_stealthChop_status();
  2988. #else
  2989. constexpr bool chop_y = false;
  2990. #endif
  2991. #if AXIS_HAS_STEALTHCHOP(Z)
  2992. const bool chop_z = stepperZ.get_stealthChop_status();
  2993. #else
  2994. constexpr bool chop_z = false;
  2995. #endif
  2996. if (chop_x || chop_y || chop_z) {
  2997. say_M569(forReplay);
  2998. if (chop_x) SERIAL_ECHO_P(SP_X_STR);
  2999. if (chop_y) SERIAL_ECHO_P(SP_Y_STR);
  3000. if (chop_z) SERIAL_ECHO_P(SP_Z_STR);
  3001. SERIAL_EOL();
  3002. }
  3003. #if AXIS_HAS_STEALTHCHOP(X2)
  3004. const bool chop_x2 = stepperX2.get_stealthChop_status();
  3005. #else
  3006. constexpr bool chop_x2 = false;
  3007. #endif
  3008. #if AXIS_HAS_STEALTHCHOP(Y2)
  3009. const bool chop_y2 = stepperY2.get_stealthChop_status();
  3010. #else
  3011. constexpr bool chop_y2 = false;
  3012. #endif
  3013. #if AXIS_HAS_STEALTHCHOP(Z2)
  3014. const bool chop_z2 = stepperZ2.get_stealthChop_status();
  3015. #else
  3016. constexpr bool chop_z2 = false;
  3017. #endif
  3018. if (chop_x2 || chop_y2 || chop_z2) {
  3019. say_M569(forReplay, PSTR("I1"));
  3020. if (chop_x2) SERIAL_ECHO_P(SP_X_STR);
  3021. if (chop_y2) SERIAL_ECHO_P(SP_Y_STR);
  3022. if (chop_z2) SERIAL_ECHO_P(SP_Z_STR);
  3023. SERIAL_EOL();
  3024. }
  3025. #if AXIS_HAS_STEALTHCHOP(Z3)
  3026. if (stepperZ3.get_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3027. #endif
  3028. #if AXIS_HAS_STEALTHCHOP(Z4)
  3029. if (stepperZ4.get_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3030. #endif
  3031. #if AXIS_HAS_STEALTHCHOP(E0)
  3032. if (stepperE0.get_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3033. #endif
  3034. #if AXIS_HAS_STEALTHCHOP(E1)
  3035. if (stepperE1.get_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3036. #endif
  3037. #if AXIS_HAS_STEALTHCHOP(E2)
  3038. if (stepperE2.get_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3039. #endif
  3040. #if AXIS_HAS_STEALTHCHOP(E3)
  3041. if (stepperE3.get_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3042. #endif
  3043. #if AXIS_HAS_STEALTHCHOP(E4)
  3044. if (stepperE4.get_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3045. #endif
  3046. #if AXIS_HAS_STEALTHCHOP(E5)
  3047. if (stepperE5.get_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3048. #endif
  3049. #if AXIS_HAS_STEALTHCHOP(E6)
  3050. if (stepperE6.get_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3051. #endif
  3052. #if AXIS_HAS_STEALTHCHOP(E7)
  3053. if (stepperE7.get_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3054. #endif
  3055. #endif // HAS_STEALTHCHOP
  3056. #endif // HAS_TRINAMIC_CONFIG
  3057. /**
  3058. * Linear Advance
  3059. */
  3060. #if ENABLED(LIN_ADVANCE)
  3061. CONFIG_ECHO_HEADING("Linear Advance:");
  3062. CONFIG_ECHO_START();
  3063. #if EXTRUDERS < 2
  3064. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3065. #else
  3066. LOOP_L_N(i, EXTRUDERS)
  3067. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3068. #endif
  3069. #endif
  3070. #if HAS_MOTOR_CURRENT_PWM
  3071. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3072. CONFIG_ECHO_START();
  3073. SERIAL_ECHOLNPAIR_P(
  3074. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3075. , SP_Z_STR, stepper.motor_current_setting[1]
  3076. , SP_E_STR, stepper.motor_current_setting[2]
  3077. );
  3078. #endif
  3079. /**
  3080. * Advanced Pause filament load & unload lengths
  3081. */
  3082. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3083. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3084. #if EXTRUDERS == 1
  3085. say_M603(forReplay);
  3086. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3087. #else
  3088. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3089. REPEAT(EXTRUDERS, _ECHO_603)
  3090. #endif
  3091. #endif
  3092. #if EXTRUDERS > 1
  3093. CONFIG_ECHO_HEADING("Tool-changing:");
  3094. CONFIG_ECHO_START();
  3095. M217_report(true);
  3096. #endif
  3097. #if ENABLED(BACKLASH_GCODE)
  3098. CONFIG_ECHO_HEADING("Backlash compensation:");
  3099. CONFIG_ECHO_START();
  3100. SERIAL_ECHOLNPAIR_P(
  3101. PSTR(" M425 F"), backlash.get_correction()
  3102. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3103. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3104. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3105. #ifdef BACKLASH_SMOOTHING_MM
  3106. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3107. #endif
  3108. );
  3109. #endif
  3110. #if HAS_FILAMENT_SENSOR
  3111. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3112. CONFIG_ECHO_START();
  3113. SERIAL_ECHOLNPAIR(
  3114. " M412 S", int(runout.enabled)
  3115. #ifdef FILAMENT_RUNOUT_DISTANCE_MM
  3116. , " D", LINEAR_UNIT(runout.runout_distance())
  3117. #endif
  3118. );
  3119. #endif
  3120. }
  3121. #endif // !DISABLE_M503
  3122. #pragma pack(pop)