My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

temperature.cpp 56KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "Sd2PinMap.h"
  28. //===========================================================================
  29. //============================= public variables ============================
  30. //===========================================================================
  31. // Sampling period of the temperature routine
  32. #ifdef PID_dT
  33. #undef PID_dT
  34. #endif
  35. #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
  36. int target_temperature[EXTRUDERS] = { 0 };
  37. int target_temperature_bed = 0;
  38. int current_temperature_raw[EXTRUDERS] = { 0 };
  39. float current_temperature[EXTRUDERS] = { 0.0 };
  40. int current_temperature_bed_raw = 0;
  41. float current_temperature_bed = 0.0;
  42. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  43. int redundant_temperature_raw = 0;
  44. float redundant_temperature = 0.0;
  45. #endif
  46. #ifdef PIDTEMPBED
  47. float bedKp=DEFAULT_bedKp;
  48. float bedKi=(DEFAULT_bedKi*PID_dT);
  49. float bedKd=(DEFAULT_bedKd/PID_dT);
  50. #endif //PIDTEMPBED
  51. #ifdef FAN_SOFT_PWM
  52. unsigned char fanSpeedSoftPwm;
  53. #endif
  54. unsigned char soft_pwm_bed;
  55. #ifdef BABYSTEPPING
  56. volatile int babystepsTodo[3]={0,0,0};
  57. #endif
  58. #ifdef FILAMENT_SENSOR
  59. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  60. #endif
  61. //===========================================================================
  62. //=============================private variables============================
  63. //===========================================================================
  64. static volatile bool temp_meas_ready = false;
  65. #ifdef PIDTEMP
  66. //static cannot be external:
  67. static float temp_iState[EXTRUDERS] = { 0 };
  68. static float temp_dState[EXTRUDERS] = { 0 };
  69. static float pTerm[EXTRUDERS];
  70. static float iTerm[EXTRUDERS];
  71. static float dTerm[EXTRUDERS];
  72. //int output;
  73. static float pid_error[EXTRUDERS];
  74. static float temp_iState_min[EXTRUDERS];
  75. static float temp_iState_max[EXTRUDERS];
  76. // static float pid_input[EXTRUDERS];
  77. // static float pid_output[EXTRUDERS];
  78. static bool pid_reset[EXTRUDERS];
  79. #endif //PIDTEMP
  80. #ifdef PIDTEMPBED
  81. //static cannot be external:
  82. static float temp_iState_bed = { 0 };
  83. static float temp_dState_bed = { 0 };
  84. static float pTerm_bed;
  85. static float iTerm_bed;
  86. static float dTerm_bed;
  87. //int output;
  88. static float pid_error_bed;
  89. static float temp_iState_min_bed;
  90. static float temp_iState_max_bed;
  91. #else //PIDTEMPBED
  92. static unsigned long previous_millis_bed_heater;
  93. #endif //PIDTEMPBED
  94. static unsigned char soft_pwm[EXTRUDERS];
  95. #ifdef FAN_SOFT_PWM
  96. static unsigned char soft_pwm_fan;
  97. #endif
  98. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  99. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  100. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  101. static unsigned long extruder_autofan_last_check;
  102. #endif
  103. #if EXTRUDERS > 4
  104. # error Unsupported number of extruders
  105. #elif EXTRUDERS > 3
  106. # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3, v4 }
  107. #elif EXTRUDERS > 2
  108. # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2, v3 }
  109. #elif EXTRUDERS > 1
  110. # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1, v2 }
  111. #else
  112. # define ARRAY_BY_EXTRUDERS(v1, v2, v3, v4) { v1 }
  113. #endif
  114. #ifdef PIDTEMP
  115. #ifdef PID_PARAMS_PER_EXTRUDER
  116. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  117. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  118. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  119. #ifdef PID_ADD_EXTRUSION_RATE
  120. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  121. #endif // PID_ADD_EXTRUSION_RATE
  122. #else //PID_PARAMS_PER_EXTRUDER
  123. float Kp = DEFAULT_Kp;
  124. float Ki = DEFAULT_Ki * PID_dT;
  125. float Kd = DEFAULT_Kd / PID_dT;
  126. #ifdef PID_ADD_EXTRUSION_RATE
  127. float Kc = DEFAULT_Kc;
  128. #endif // PID_ADD_EXTRUSION_RATE
  129. #endif // PID_PARAMS_PER_EXTRUDER
  130. #endif //PIDTEMP
  131. // Init min and max temp with extreme values to prevent false errors during startup
  132. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  133. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  134. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
  135. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  136. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  137. #ifdef BED_MAXTEMP
  138. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  139. #endif
  140. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  141. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  142. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  143. #else
  144. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  145. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  146. #endif
  147. static float analog2temp(int raw, uint8_t e);
  148. static float analog2tempBed(int raw);
  149. static void updateTemperaturesFromRawValues();
  150. #ifdef WATCH_TEMP_PERIOD
  151. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
  152. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
  153. #endif //WATCH_TEMP_PERIOD
  154. #ifndef SOFT_PWM_SCALE
  155. #define SOFT_PWM_SCALE 0
  156. #endif
  157. #ifdef FILAMENT_SENSOR
  158. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  159. #endif
  160. #ifdef HEATER_0_USES_MAX6675
  161. static int read_max6675();
  162. #endif
  163. //===========================================================================
  164. //============================= functions ============================
  165. //===========================================================================
  166. void PID_autotune(float temp, int extruder, int ncycles)
  167. {
  168. float input = 0.0;
  169. int cycles=0;
  170. bool heating = true;
  171. unsigned long temp_millis = millis();
  172. unsigned long t1=temp_millis;
  173. unsigned long t2=temp_millis;
  174. long t_high = 0;
  175. long t_low = 0;
  176. long bias, d;
  177. float Ku, Tu;
  178. float Kp, Ki, Kd;
  179. float max = 0, min = 10000;
  180. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  181. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  182. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
  183. (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
  184. unsigned long extruder_autofan_last_check = millis();
  185. #endif
  186. if ((extruder >= EXTRUDERS)
  187. #if (TEMP_BED_PIN <= -1)
  188. ||(extruder < 0)
  189. #endif
  190. ){
  191. SERIAL_ECHOLN("PID Autotune failed. Bad extruder number.");
  192. return;
  193. }
  194. SERIAL_ECHOLN("PID Autotune start");
  195. disable_heater(); // switch off all heaters.
  196. if (extruder<0)
  197. {
  198. soft_pwm_bed = (MAX_BED_POWER)/2;
  199. bias = d = (MAX_BED_POWER)/2;
  200. }
  201. else
  202. {
  203. soft_pwm[extruder] = (PID_MAX)/2;
  204. bias = d = (PID_MAX)/2;
  205. }
  206. for(;;) {
  207. if(temp_meas_ready == true) { // temp sample ready
  208. updateTemperaturesFromRawValues();
  209. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  210. max=max(max,input);
  211. min=min(min,input);
  212. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  213. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  214. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1) || \
  215. (defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1)
  216. if(millis() - extruder_autofan_last_check > 2500) {
  217. checkExtruderAutoFans();
  218. extruder_autofan_last_check = millis();
  219. }
  220. #endif
  221. if(heating == true && input > temp) {
  222. if(millis() - t2 > 5000) {
  223. heating=false;
  224. if (extruder<0)
  225. soft_pwm_bed = (bias - d) >> 1;
  226. else
  227. soft_pwm[extruder] = (bias - d) >> 1;
  228. t1=millis();
  229. t_high=t1 - t2;
  230. max=temp;
  231. }
  232. }
  233. if(heating == false && input < temp) {
  234. if(millis() - t1 > 5000) {
  235. heating=true;
  236. t2=millis();
  237. t_low=t2 - t1;
  238. if(cycles > 0) {
  239. bias += (d*(t_high - t_low))/(t_low + t_high);
  240. bias = constrain(bias, 20 ,(extruder<0?(MAX_BED_POWER):(PID_MAX))-20);
  241. if(bias > (extruder<0?(MAX_BED_POWER):(PID_MAX))/2) d = (extruder<0?(MAX_BED_POWER):(PID_MAX)) - 1 - bias;
  242. else d = bias;
  243. SERIAL_PROTOCOLPGM(" bias: "); SERIAL_PROTOCOL(bias);
  244. SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL(d);
  245. SERIAL_PROTOCOLPGM(" min: "); SERIAL_PROTOCOL(min);
  246. SERIAL_PROTOCOLPGM(" max: "); SERIAL_PROTOCOLLN(max);
  247. if(cycles > 2) {
  248. Ku = (4.0*d)/(3.14159*(max-min)/2.0);
  249. Tu = ((float)(t_low + t_high)/1000.0);
  250. SERIAL_PROTOCOLPGM(" Ku: "); SERIAL_PROTOCOL(Ku);
  251. SERIAL_PROTOCOLPGM(" Tu: "); SERIAL_PROTOCOLLN(Tu);
  252. Kp = 0.6*Ku;
  253. Ki = 2*Kp/Tu;
  254. Kd = Kp*Tu/8;
  255. SERIAL_PROTOCOLLNPGM(" Classic PID ");
  256. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  257. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  258. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  259. /*
  260. Kp = 0.33*Ku;
  261. Ki = Kp/Tu;
  262. Kd = Kp*Tu/3;
  263. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  264. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  265. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  266. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  267. Kp = 0.2*Ku;
  268. Ki = 2*Kp/Tu;
  269. Kd = Kp*Tu/3;
  270. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  271. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  272. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  273. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  274. */
  275. }
  276. }
  277. if (extruder<0)
  278. soft_pwm_bed = (bias + d) >> 1;
  279. else
  280. soft_pwm[extruder] = (bias + d) >> 1;
  281. cycles++;
  282. min=temp;
  283. }
  284. }
  285. }
  286. if(input > (temp + 20)) {
  287. SERIAL_PROTOCOLLNPGM("PID Autotune failed! Temperature too high");
  288. return;
  289. }
  290. if(millis() - temp_millis > 2000) {
  291. int p;
  292. if (extruder<0){
  293. p=soft_pwm_bed;
  294. SERIAL_PROTOCOLPGM("ok B:");
  295. }else{
  296. p=soft_pwm[extruder];
  297. SERIAL_PROTOCOLPGM("ok T:");
  298. }
  299. SERIAL_PROTOCOL(input);
  300. SERIAL_PROTOCOLPGM(" @:");
  301. SERIAL_PROTOCOLLN(p);
  302. temp_millis = millis();
  303. }
  304. if(((millis() - t1) + (millis() - t2)) > (10L*60L*1000L*2L)) {
  305. SERIAL_PROTOCOLLNPGM("PID Autotune failed! timeout");
  306. return;
  307. }
  308. if(cycles > ncycles) {
  309. SERIAL_PROTOCOLLNPGM("PID Autotune finished! Put the last Kp, Ki and Kd constants from above into Configuration.h");
  310. return;
  311. }
  312. lcd_update();
  313. }
  314. }
  315. void updatePID()
  316. {
  317. #ifdef PIDTEMP
  318. for(int e = 0; e < EXTRUDERS; e++) {
  319. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  320. }
  321. #endif
  322. #ifdef PIDTEMPBED
  323. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  324. #endif
  325. }
  326. int getHeaterPower(int heater) {
  327. if (heater<0)
  328. return soft_pwm_bed;
  329. return soft_pwm[heater];
  330. }
  331. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  332. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  333. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  334. #if defined(FAN_PIN) && FAN_PIN > -1
  335. #if EXTRUDER_0_AUTO_FAN_PIN == FAN_PIN
  336. #error "You cannot set EXTRUDER_0_AUTO_FAN_PIN equal to FAN_PIN"
  337. #endif
  338. #if EXTRUDER_1_AUTO_FAN_PIN == FAN_PIN
  339. #error "You cannot set EXTRUDER_1_AUTO_FAN_PIN equal to FAN_PIN"
  340. #endif
  341. #if EXTRUDER_2_AUTO_FAN_PIN == FAN_PIN
  342. #error "You cannot set EXTRUDER_2_AUTO_FAN_PIN equal to FAN_PIN"
  343. #endif
  344. #endif
  345. void setExtruderAutoFanState(int pin, bool state)
  346. {
  347. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  348. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  349. pinMode(pin, OUTPUT);
  350. digitalWrite(pin, newFanSpeed);
  351. analogWrite(pin, newFanSpeed);
  352. }
  353. void checkExtruderAutoFans()
  354. {
  355. uint8_t fanState = 0;
  356. // which fan pins need to be turned on?
  357. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  358. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  359. fanState |= 1;
  360. #endif
  361. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  362. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  363. {
  364. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  365. fanState |= 1;
  366. else
  367. fanState |= 2;
  368. }
  369. #endif
  370. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  371. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  372. {
  373. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  374. fanState |= 1;
  375. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  376. fanState |= 2;
  377. else
  378. fanState |= 4;
  379. }
  380. #endif
  381. #if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1
  382. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  383. {
  384. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  385. fanState |= 1;
  386. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  387. fanState |= 2;
  388. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  389. fanState |= 4;
  390. else
  391. fanState |= 8;
  392. }
  393. #endif
  394. // update extruder auto fan states
  395. #if defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1
  396. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  397. #endif
  398. #if defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1
  399. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  400. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  401. #endif
  402. #if defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1
  403. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  404. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  405. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  406. #endif
  407. #if defined(EXTRUDER_3_AUTO_FAN_PIN) && EXTRUDER_3_AUTO_FAN_PIN > -1
  408. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  409. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  410. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  411. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  412. #endif
  413. }
  414. #endif // any extruder auto fan pins set
  415. void manage_heater()
  416. {
  417. float pid_input;
  418. float pid_output;
  419. if(temp_meas_ready != true) //better readability
  420. return;
  421. updateTemperaturesFromRawValues();
  422. #ifdef HEATER_0_USES_MAX6675
  423. if (current_temperature[0] > 1023 || current_temperature[0] > HEATER_0_MAXTEMP) {
  424. max_temp_error(0);
  425. }
  426. if (current_temperature[0] == 0 || current_temperature[0] < HEATER_0_MINTEMP) {
  427. min_temp_error(0);
  428. }
  429. #endif //HEATER_0_USES_MAX6675
  430. for(int e = 0; e < EXTRUDERS; e++)
  431. {
  432. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  433. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
  434. #endif
  435. #ifdef PIDTEMP
  436. pid_input = current_temperature[e];
  437. #ifndef PID_OPENLOOP
  438. pid_error[e] = target_temperature[e] - pid_input;
  439. if(pid_error[e] > PID_FUNCTIONAL_RANGE) {
  440. pid_output = BANG_MAX;
  441. pid_reset[e] = true;
  442. }
  443. else if(pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  444. pid_output = 0;
  445. pid_reset[e] = true;
  446. }
  447. else {
  448. if(pid_reset[e] == true) {
  449. temp_iState[e] = 0.0;
  450. pid_reset[e] = false;
  451. }
  452. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  453. temp_iState[e] += pid_error[e];
  454. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  455. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  456. //K1 defined in Configuration.h in the PID settings
  457. #define K2 (1.0-K1)
  458. dTerm[e] = (PID_PARAM(Kd,e) * (pid_input - temp_dState[e]))*K2 + (K1 * dTerm[e]);
  459. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  460. if (pid_output > PID_MAX) {
  461. if (pid_error[e] > 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  462. pid_output=PID_MAX;
  463. } else if (pid_output < 0){
  464. if (pid_error[e] < 0 ) temp_iState[e] -= pid_error[e]; // conditional un-integration
  465. pid_output=0;
  466. }
  467. }
  468. temp_dState[e] = pid_input;
  469. #else
  470. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  471. #endif //PID_OPENLOOP
  472. #ifdef PID_DEBUG
  473. SERIAL_ECHO_START;
  474. SERIAL_ECHO(" PID_DEBUG ");
  475. SERIAL_ECHO(e);
  476. SERIAL_ECHO(": Input ");
  477. SERIAL_ECHO(pid_input);
  478. SERIAL_ECHO(" Output ");
  479. SERIAL_ECHO(pid_output);
  480. SERIAL_ECHO(" pTerm ");
  481. SERIAL_ECHO(pTerm[e]);
  482. SERIAL_ECHO(" iTerm ");
  483. SERIAL_ECHO(iTerm[e]);
  484. SERIAL_ECHO(" dTerm ");
  485. SERIAL_ECHOLN(dTerm[e]);
  486. #endif //PID_DEBUG
  487. #else /* PID off */
  488. pid_output = 0;
  489. if(current_temperature[e] < target_temperature[e]) {
  490. pid_output = PID_MAX;
  491. }
  492. #endif
  493. // Check if temperature is within the correct range
  494. if((current_temperature[e] > minttemp[e]) && (current_temperature[e] < maxttemp[e]))
  495. {
  496. soft_pwm[e] = (int)pid_output >> 1;
  497. }
  498. else {
  499. soft_pwm[e] = 0;
  500. }
  501. #ifdef WATCH_TEMP_PERIOD
  502. if(watchmillis[e] && millis() - watchmillis[e] > WATCH_TEMP_PERIOD)
  503. {
  504. if(degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE)
  505. {
  506. setTargetHotend(0, e);
  507. LCD_MESSAGEPGM("Heating failed");
  508. SERIAL_ECHO_START;
  509. SERIAL_ECHOLN("Heating failed");
  510. }else{
  511. watchmillis[e] = 0;
  512. }
  513. }
  514. #endif
  515. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  516. if(fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  517. disable_heater();
  518. if(IsStopped() == false) {
  519. SERIAL_ERROR_START;
  520. SERIAL_ERRORLNPGM("Extruder switched off. Temperature difference between temp sensors is too high !");
  521. LCD_ALERTMESSAGEPGM("Err: REDUNDANT TEMP ERROR");
  522. }
  523. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  524. Stop();
  525. #endif
  526. }
  527. #endif
  528. } // End extruder for loop
  529. #if (defined(EXTRUDER_0_AUTO_FAN_PIN) && EXTRUDER_0_AUTO_FAN_PIN > -1) || \
  530. (defined(EXTRUDER_1_AUTO_FAN_PIN) && EXTRUDER_1_AUTO_FAN_PIN > -1) || \
  531. (defined(EXTRUDER_2_AUTO_FAN_PIN) && EXTRUDER_2_AUTO_FAN_PIN > -1)
  532. if(millis() - extruder_autofan_last_check > 2500) // only need to check fan state very infrequently
  533. {
  534. checkExtruderAutoFans();
  535. extruder_autofan_last_check = millis();
  536. }
  537. #endif
  538. #ifndef PIDTEMPBED
  539. if(millis() - previous_millis_bed_heater < BED_CHECK_INTERVAL)
  540. return;
  541. previous_millis_bed_heater = millis();
  542. #endif
  543. #if TEMP_SENSOR_BED != 0
  544. #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
  545. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
  546. #endif
  547. #ifdef PIDTEMPBED
  548. pid_input = current_temperature_bed;
  549. #ifndef PID_OPENLOOP
  550. pid_error_bed = target_temperature_bed - pid_input;
  551. pTerm_bed = bedKp * pid_error_bed;
  552. temp_iState_bed += pid_error_bed;
  553. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  554. iTerm_bed = bedKi * temp_iState_bed;
  555. //K1 defined in Configuration.h in the PID settings
  556. #define K2 (1.0-K1)
  557. dTerm_bed= (bedKd * (pid_input - temp_dState_bed))*K2 + (K1 * dTerm_bed);
  558. temp_dState_bed = pid_input;
  559. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  560. if (pid_output > MAX_BED_POWER) {
  561. if (pid_error_bed > 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  562. pid_output=MAX_BED_POWER;
  563. } else if (pid_output < 0){
  564. if (pid_error_bed < 0 ) temp_iState_bed -= pid_error_bed; // conditional un-integration
  565. pid_output=0;
  566. }
  567. #else
  568. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  569. #endif //PID_OPENLOOP
  570. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  571. {
  572. soft_pwm_bed = (int)pid_output >> 1;
  573. }
  574. else {
  575. soft_pwm_bed = 0;
  576. }
  577. #elif !defined(BED_LIMIT_SWITCHING)
  578. // Check if temperature is within the correct range
  579. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  580. {
  581. if(current_temperature_bed >= target_temperature_bed)
  582. {
  583. soft_pwm_bed = 0;
  584. }
  585. else
  586. {
  587. soft_pwm_bed = MAX_BED_POWER>>1;
  588. }
  589. }
  590. else
  591. {
  592. soft_pwm_bed = 0;
  593. WRITE(HEATER_BED_PIN,LOW);
  594. }
  595. #else //#ifdef BED_LIMIT_SWITCHING
  596. // Check if temperature is within the correct band
  597. if((current_temperature_bed > BED_MINTEMP) && (current_temperature_bed < BED_MAXTEMP))
  598. {
  599. if(current_temperature_bed > target_temperature_bed + BED_HYSTERESIS)
  600. {
  601. soft_pwm_bed = 0;
  602. }
  603. else if(current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  604. {
  605. soft_pwm_bed = MAX_BED_POWER>>1;
  606. }
  607. }
  608. else
  609. {
  610. soft_pwm_bed = 0;
  611. WRITE(HEATER_BED_PIN,LOW);
  612. }
  613. #endif
  614. #endif
  615. //code for controlling the extruder rate based on the width sensor
  616. #ifdef FILAMENT_SENSOR
  617. if(filament_sensor)
  618. {
  619. meas_shift_index=delay_index1-meas_delay_cm;
  620. if(meas_shift_index<0)
  621. meas_shift_index = meas_shift_index + (MAX_MEASUREMENT_DELAY+1); //loop around buffer if needed
  622. //get the delayed info and add 100 to reconstitute to a percent of the nominal filament diameter
  623. //then square it to get an area
  624. if(meas_shift_index<0)
  625. meas_shift_index=0;
  626. else if (meas_shift_index>MAX_MEASUREMENT_DELAY)
  627. meas_shift_index=MAX_MEASUREMENT_DELAY;
  628. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = pow((float)(100+measurement_delay[meas_shift_index])/100.0,2);
  629. if (volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] <0.01)
  630. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]=0.01;
  631. }
  632. #endif
  633. }
  634. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  635. // Derived from RepRap FiveD extruder::getTemperature()
  636. // For hot end temperature measurement.
  637. static float analog2temp(int raw, uint8_t e) {
  638. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  639. if(e > EXTRUDERS)
  640. #else
  641. if(e >= EXTRUDERS)
  642. #endif
  643. {
  644. SERIAL_ERROR_START;
  645. SERIAL_ERROR((int)e);
  646. SERIAL_ERRORLNPGM(" - Invalid extruder number !");
  647. kill();
  648. return 0.0;
  649. }
  650. #ifdef HEATER_0_USES_MAX6675
  651. if (e == 0)
  652. {
  653. return 0.25 * raw;
  654. }
  655. #endif
  656. if(heater_ttbl_map[e] != NULL)
  657. {
  658. float celsius = 0;
  659. uint8_t i;
  660. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  661. for (i=1; i<heater_ttbllen_map[e]; i++)
  662. {
  663. if (PGM_RD_W((*tt)[i][0]) > raw)
  664. {
  665. celsius = PGM_RD_W((*tt)[i-1][1]) +
  666. (raw - PGM_RD_W((*tt)[i-1][0])) *
  667. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  668. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  669. break;
  670. }
  671. }
  672. // Overflow: Set to last value in the table
  673. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  674. return celsius;
  675. }
  676. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  677. }
  678. // Derived from RepRap FiveD extruder::getTemperature()
  679. // For bed temperature measurement.
  680. static float analog2tempBed(int raw) {
  681. #ifdef BED_USES_THERMISTOR
  682. float celsius = 0;
  683. byte i;
  684. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  685. {
  686. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  687. {
  688. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  689. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  690. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  691. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  692. break;
  693. }
  694. }
  695. // Overflow: Set to last value in the table
  696. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  697. return celsius;
  698. #elif defined BED_USES_AD595
  699. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  700. #else
  701. return 0;
  702. #endif
  703. }
  704. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  705. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  706. static void updateTemperaturesFromRawValues()
  707. {
  708. #ifdef HEATER_0_USES_MAX6675
  709. current_temperature_raw[0] = read_max6675();
  710. #endif
  711. for(uint8_t e=0;e<EXTRUDERS;e++)
  712. {
  713. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  714. }
  715. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  716. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  717. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  718. #endif
  719. #if defined (FILAMENT_SENSOR) && (FILWIDTH_PIN > -1) //check if a sensor is supported
  720. filament_width_meas = analog2widthFil();
  721. #endif
  722. //Reset the watchdog after we know we have a temperature measurement.
  723. watchdog_reset();
  724. CRITICAL_SECTION_START;
  725. temp_meas_ready = false;
  726. CRITICAL_SECTION_END;
  727. }
  728. // For converting raw Filament Width to milimeters
  729. #ifdef FILAMENT_SENSOR
  730. float analog2widthFil() {
  731. return current_raw_filwidth/16383.0*5.0;
  732. //return current_raw_filwidth;
  733. }
  734. // For converting raw Filament Width to a ratio
  735. int widthFil_to_size_ratio() {
  736. float temp;
  737. temp=filament_width_meas;
  738. if(filament_width_meas<MEASURED_LOWER_LIMIT)
  739. temp=filament_width_nominal; //assume sensor cut out
  740. else if (filament_width_meas>MEASURED_UPPER_LIMIT)
  741. temp= MEASURED_UPPER_LIMIT;
  742. return(filament_width_nominal/temp*100);
  743. }
  744. #endif
  745. void tp_init()
  746. {
  747. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  748. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  749. MCUCR=(1<<JTD);
  750. MCUCR=(1<<JTD);
  751. #endif
  752. // Finish init of mult extruder arrays
  753. for(int e = 0; e < EXTRUDERS; e++) {
  754. // populate with the first value
  755. maxttemp[e] = maxttemp[0];
  756. #ifdef PIDTEMP
  757. temp_iState_min[e] = 0.0;
  758. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  759. #endif //PIDTEMP
  760. #ifdef PIDTEMPBED
  761. temp_iState_min_bed = 0.0;
  762. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  763. #endif //PIDTEMPBED
  764. }
  765. #if defined(HEATER_0_PIN) && (HEATER_0_PIN > -1)
  766. SET_OUTPUT(HEATER_0_PIN);
  767. #endif
  768. #if defined(HEATER_1_PIN) && (HEATER_1_PIN > -1)
  769. SET_OUTPUT(HEATER_1_PIN);
  770. #endif
  771. #if defined(HEATER_2_PIN) && (HEATER_2_PIN > -1)
  772. SET_OUTPUT(HEATER_2_PIN);
  773. #endif
  774. #if defined(HEATER_3_PIN) && (HEATER_3_PIN > -1)
  775. SET_OUTPUT(HEATER_3_PIN);
  776. #endif
  777. #if defined(HEATER_BED_PIN) && (HEATER_BED_PIN > -1)
  778. SET_OUTPUT(HEATER_BED_PIN);
  779. #endif
  780. #if defined(FAN_PIN) && (FAN_PIN > -1)
  781. SET_OUTPUT(FAN_PIN);
  782. #ifdef FAST_PWM_FAN
  783. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  784. #endif
  785. #ifdef FAN_SOFT_PWM
  786. soft_pwm_fan = fanSpeedSoftPwm / 2;
  787. #endif
  788. #endif
  789. #ifdef HEATER_0_USES_MAX6675
  790. #ifndef SDSUPPORT
  791. SET_OUTPUT(SCK_PIN);
  792. WRITE(SCK_PIN,0);
  793. SET_OUTPUT(MOSI_PIN);
  794. WRITE(MOSI_PIN,1);
  795. SET_INPUT(MISO_PIN);
  796. WRITE(MISO_PIN,1);
  797. #else
  798. pinMode(SS_PIN, OUTPUT);
  799. digitalWrite(SS_PIN, HIGH);
  800. #endif
  801. SET_OUTPUT(MAX6675_SS);
  802. WRITE(MAX6675_SS,1);
  803. #endif //HEATER_0_USES_MAX6675
  804. // Set analog inputs
  805. ADCSRA = 1<<ADEN | 1<<ADSC | 1<<ADIF | 0x07;
  806. DIDR0 = 0;
  807. #ifdef DIDR2
  808. DIDR2 = 0;
  809. #endif
  810. #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
  811. #if TEMP_0_PIN < 8
  812. DIDR0 |= 1 << TEMP_0_PIN;
  813. #else
  814. DIDR2 |= 1<<(TEMP_0_PIN - 8);
  815. #endif
  816. #endif
  817. #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
  818. #if TEMP_1_PIN < 8
  819. DIDR0 |= 1<<TEMP_1_PIN;
  820. #else
  821. DIDR2 |= 1<<(TEMP_1_PIN - 8);
  822. #endif
  823. #endif
  824. #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
  825. #if TEMP_2_PIN < 8
  826. DIDR0 |= 1 << TEMP_2_PIN;
  827. #else
  828. DIDR2 |= 1<<(TEMP_2_PIN - 8);
  829. #endif
  830. #endif
  831. #if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
  832. #if TEMP_3_PIN < 8
  833. DIDR0 |= 1 << TEMP_3_PIN;
  834. #else
  835. DIDR2 |= 1<<(TEMP_3_PIN - 8);
  836. #endif
  837. #endif
  838. #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
  839. #if TEMP_BED_PIN < 8
  840. DIDR0 |= 1<<TEMP_BED_PIN;
  841. #else
  842. DIDR2 |= 1<<(TEMP_BED_PIN - 8);
  843. #endif
  844. #endif
  845. //Added for Filament Sensor
  846. #ifdef FILAMENT_SENSOR
  847. #if defined(FILWIDTH_PIN) && (FILWIDTH_PIN > -1)
  848. #if FILWIDTH_PIN < 8
  849. DIDR0 |= 1<<FILWIDTH_PIN;
  850. #else
  851. DIDR2 |= 1<<(FILWIDTH_PIN - 8);
  852. #endif
  853. #endif
  854. #endif
  855. // Use timer0 for temperature measurement
  856. // Interleave temperature interrupt with millies interrupt
  857. OCR0B = 128;
  858. TIMSK0 |= (1<<OCIE0B);
  859. // Wait for temperature measurement to settle
  860. delay(250);
  861. #ifdef HEATER_0_MINTEMP
  862. minttemp[0] = HEATER_0_MINTEMP;
  863. while(analog2temp(minttemp_raw[0], 0) < HEATER_0_MINTEMP) {
  864. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  865. minttemp_raw[0] += OVERSAMPLENR;
  866. #else
  867. minttemp_raw[0] -= OVERSAMPLENR;
  868. #endif
  869. }
  870. #endif //MINTEMP
  871. #ifdef HEATER_0_MAXTEMP
  872. maxttemp[0] = HEATER_0_MAXTEMP;
  873. while(analog2temp(maxttemp_raw[0], 0) > HEATER_0_MAXTEMP) {
  874. #if HEATER_0_RAW_LO_TEMP < HEATER_0_RAW_HI_TEMP
  875. maxttemp_raw[0] -= OVERSAMPLENR;
  876. #else
  877. maxttemp_raw[0] += OVERSAMPLENR;
  878. #endif
  879. }
  880. #endif //MAXTEMP
  881. #if (EXTRUDERS > 1) && defined(HEATER_1_MINTEMP)
  882. minttemp[1] = HEATER_1_MINTEMP;
  883. while(analog2temp(minttemp_raw[1], 1) < HEATER_1_MINTEMP) {
  884. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  885. minttemp_raw[1] += OVERSAMPLENR;
  886. #else
  887. minttemp_raw[1] -= OVERSAMPLENR;
  888. #endif
  889. }
  890. #endif // MINTEMP 1
  891. #if (EXTRUDERS > 1) && defined(HEATER_1_MAXTEMP)
  892. maxttemp[1] = HEATER_1_MAXTEMP;
  893. while(analog2temp(maxttemp_raw[1], 1) > HEATER_1_MAXTEMP) {
  894. #if HEATER_1_RAW_LO_TEMP < HEATER_1_RAW_HI_TEMP
  895. maxttemp_raw[1] -= OVERSAMPLENR;
  896. #else
  897. maxttemp_raw[1] += OVERSAMPLENR;
  898. #endif
  899. }
  900. #endif //MAXTEMP 1
  901. #if (EXTRUDERS > 2) && defined(HEATER_2_MINTEMP)
  902. minttemp[2] = HEATER_2_MINTEMP;
  903. while(analog2temp(minttemp_raw[2], 2) < HEATER_2_MINTEMP) {
  904. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  905. minttemp_raw[2] += OVERSAMPLENR;
  906. #else
  907. minttemp_raw[2] -= OVERSAMPLENR;
  908. #endif
  909. }
  910. #endif //MINTEMP 2
  911. #if (EXTRUDERS > 2) && defined(HEATER_2_MAXTEMP)
  912. maxttemp[2] = HEATER_2_MAXTEMP;
  913. while(analog2temp(maxttemp_raw[2], 2) > HEATER_2_MAXTEMP) {
  914. #if HEATER_2_RAW_LO_TEMP < HEATER_2_RAW_HI_TEMP
  915. maxttemp_raw[2] -= OVERSAMPLENR;
  916. #else
  917. maxttemp_raw[2] += OVERSAMPLENR;
  918. #endif
  919. }
  920. #endif //MAXTEMP 2
  921. #if (EXTRUDERS > 3) && defined(HEATER_3_MINTEMP)
  922. minttemp[3] = HEATER_3_MINTEMP;
  923. while(analog2temp(minttemp_raw[3], 3) < HEATER_3_MINTEMP) {
  924. #if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
  925. minttemp_raw[3] += OVERSAMPLENR;
  926. #else
  927. minttemp_raw[3] -= OVERSAMPLENR;
  928. #endif
  929. }
  930. #endif //MINTEMP 3
  931. #if (EXTRUDERS > 3) && defined(HEATER_3_MAXTEMP)
  932. maxttemp[3] = HEATER_3_MAXTEMP;
  933. while(analog2temp(maxttemp_raw[3], 3) > HEATER_3_MAXTEMP) {
  934. #if HEATER_3_RAW_LO_TEMP < HEATER_3_RAW_HI_TEMP
  935. maxttemp_raw[3] -= OVERSAMPLENR;
  936. #else
  937. maxttemp_raw[3] += OVERSAMPLENR;
  938. #endif
  939. }
  940. #endif // MAXTEMP 3
  941. #ifdef BED_MINTEMP
  942. /* No bed MINTEMP error implemented?!? */ /*
  943. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  944. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  945. bed_minttemp_raw += OVERSAMPLENR;
  946. #else
  947. bed_minttemp_raw -= OVERSAMPLENR;
  948. #endif
  949. }
  950. */
  951. #endif //BED_MINTEMP
  952. #ifdef BED_MAXTEMP
  953. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  954. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  955. bed_maxttemp_raw -= OVERSAMPLENR;
  956. #else
  957. bed_maxttemp_raw += OVERSAMPLENR;
  958. #endif
  959. }
  960. #endif //BED_MAXTEMP
  961. }
  962. void setWatch()
  963. {
  964. #ifdef WATCH_TEMP_PERIOD
  965. for (int e = 0; e < EXTRUDERS; e++)
  966. {
  967. if(degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2))
  968. {
  969. watch_start_temp[e] = degHotend(e);
  970. watchmillis[e] = millis();
  971. }
  972. }
  973. #endif
  974. }
  975. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  976. void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
  977. {
  978. /*
  979. SERIAL_ECHO_START;
  980. SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
  981. SERIAL_ECHO(heater_id);
  982. SERIAL_ECHO(" ; State:");
  983. SERIAL_ECHO(*state);
  984. SERIAL_ECHO(" ; Timer:");
  985. SERIAL_ECHO(*timer);
  986. SERIAL_ECHO(" ; Temperature:");
  987. SERIAL_ECHO(temperature);
  988. SERIAL_ECHO(" ; Target Temp:");
  989. SERIAL_ECHO(target_temperature);
  990. SERIAL_ECHOLN("");
  991. */
  992. if ((target_temperature == 0) || thermal_runaway)
  993. {
  994. *state = 0;
  995. *timer = 0;
  996. return;
  997. }
  998. switch (*state)
  999. {
  1000. case 0: // "Heater Inactive" state
  1001. if (target_temperature > 0) *state = 1;
  1002. break;
  1003. case 1: // "First Heating" state
  1004. if (temperature >= target_temperature) *state = 2;
  1005. break;
  1006. case 2: // "Temperature Stable" state
  1007. if (temperature >= (target_temperature - hysteresis_degc))
  1008. {
  1009. *timer = millis();
  1010. }
  1011. else if ( (millis() - *timer) > ((unsigned long) period_seconds) * 1000)
  1012. {
  1013. SERIAL_ERROR_START;
  1014. SERIAL_ERRORLNPGM("Thermal Runaway, system stopped! Heater_ID: ");
  1015. SERIAL_ERRORLN((int)heater_id);
  1016. LCD_ALERTMESSAGEPGM("THERMAL RUNAWAY");
  1017. thermal_runaway = true;
  1018. while(1)
  1019. {
  1020. disable_heater();
  1021. disable_x();
  1022. disable_y();
  1023. disable_z();
  1024. disable_e0();
  1025. disable_e1();
  1026. disable_e2();
  1027. disable_e3();
  1028. manage_heater();
  1029. lcd_update();
  1030. }
  1031. }
  1032. break;
  1033. }
  1034. }
  1035. #endif
  1036. void disable_heater()
  1037. {
  1038. for(int i=0;i<EXTRUDERS;i++)
  1039. setTargetHotend(0,i);
  1040. setTargetBed(0);
  1041. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1042. target_temperature[0]=0;
  1043. soft_pwm[0]=0;
  1044. #if defined(HEATER_0_PIN) && HEATER_0_PIN > -1
  1045. WRITE(HEATER_0_PIN,LOW);
  1046. #endif
  1047. #endif
  1048. #if defined(TEMP_1_PIN) && TEMP_1_PIN > -1 && EXTRUDERS > 1
  1049. target_temperature[1]=0;
  1050. soft_pwm[1]=0;
  1051. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1052. WRITE(HEATER_1_PIN,LOW);
  1053. #endif
  1054. #endif
  1055. #if defined(TEMP_2_PIN) && TEMP_2_PIN > -1 && EXTRUDERS > 2
  1056. target_temperature[2]=0;
  1057. soft_pwm[2]=0;
  1058. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1059. WRITE(HEATER_2_PIN,LOW);
  1060. #endif
  1061. #endif
  1062. #if defined(TEMP_3_PIN) && TEMP_3_PIN > -1 && EXTRUDERS > 3
  1063. target_temperature[3]=0;
  1064. soft_pwm[3]=0;
  1065. #if defined(HEATER_3_PIN) && HEATER_3_PIN > -1
  1066. WRITE(HEATER_3_PIN,LOW);
  1067. #endif
  1068. #endif
  1069. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1070. target_temperature_bed=0;
  1071. soft_pwm_bed=0;
  1072. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1073. WRITE(HEATER_BED_PIN,LOW);
  1074. #endif
  1075. #endif
  1076. }
  1077. void max_temp_error(uint8_t e) {
  1078. disable_heater();
  1079. if(IsStopped() == false) {
  1080. SERIAL_ERROR_START;
  1081. SERIAL_ERRORLN((int)e);
  1082. SERIAL_ERRORLNPGM(": Extruder switched off. MAXTEMP triggered !");
  1083. LCD_ALERTMESSAGEPGM("Err: MAXTEMP");
  1084. }
  1085. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1086. Stop();
  1087. #endif
  1088. }
  1089. void min_temp_error(uint8_t e) {
  1090. disable_heater();
  1091. if(IsStopped() == false) {
  1092. SERIAL_ERROR_START;
  1093. SERIAL_ERRORLN((int)e);
  1094. SERIAL_ERRORLNPGM(": Extruder switched off. MINTEMP triggered !");
  1095. LCD_ALERTMESSAGEPGM("Err: MINTEMP");
  1096. }
  1097. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1098. Stop();
  1099. #endif
  1100. }
  1101. void bed_max_temp_error(void) {
  1102. #if HEATER_BED_PIN > -1
  1103. WRITE(HEATER_BED_PIN, 0);
  1104. #endif
  1105. if(IsStopped() == false) {
  1106. SERIAL_ERROR_START;
  1107. SERIAL_ERRORLNPGM("Temperature heated bed switched off. MAXTEMP triggered !!");
  1108. LCD_ALERTMESSAGEPGM("Err: MAXTEMP BED");
  1109. }
  1110. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  1111. Stop();
  1112. #endif
  1113. }
  1114. #ifdef HEATER_0_USES_MAX6675
  1115. #define MAX6675_HEAT_INTERVAL 250
  1116. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  1117. int max6675_temp = 2000;
  1118. static int read_max6675()
  1119. {
  1120. if (millis() - max6675_previous_millis < MAX6675_HEAT_INTERVAL)
  1121. return max6675_temp;
  1122. max6675_previous_millis = millis();
  1123. max6675_temp = 0;
  1124. #ifdef PRR
  1125. PRR &= ~(1<<PRSPI);
  1126. #elif defined(PRR0)
  1127. PRR0 &= ~(1<<PRSPI);
  1128. #endif
  1129. SPCR = (1<<MSTR) | (1<<SPE) | (1<<SPR0);
  1130. // enable TT_MAX6675
  1131. WRITE(MAX6675_SS, 0);
  1132. // ensure 100ns delay - a bit extra is fine
  1133. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1134. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  1135. // read MSB
  1136. SPDR = 0;
  1137. for (;(SPSR & (1<<SPIF)) == 0;);
  1138. max6675_temp = SPDR;
  1139. max6675_temp <<= 8;
  1140. // read LSB
  1141. SPDR = 0;
  1142. for (;(SPSR & (1<<SPIF)) == 0;);
  1143. max6675_temp |= SPDR;
  1144. // disable TT_MAX6675
  1145. WRITE(MAX6675_SS, 1);
  1146. if (max6675_temp & 4)
  1147. {
  1148. // thermocouple open
  1149. max6675_temp = 4000;
  1150. }
  1151. else
  1152. {
  1153. max6675_temp = max6675_temp >> 3;
  1154. }
  1155. return max6675_temp;
  1156. }
  1157. #endif //HEATER_0_USES_MAX6675
  1158. // Timer 0 is shared with millies
  1159. ISR(TIMER0_COMPB_vect)
  1160. {
  1161. //these variables are only accesible from the ISR, but static, so they don't lose their value
  1162. static unsigned char temp_count = 0;
  1163. static unsigned long raw_temp_0_value = 0;
  1164. static unsigned long raw_temp_1_value = 0;
  1165. static unsigned long raw_temp_2_value = 0;
  1166. static unsigned long raw_temp_3_value = 0;
  1167. static unsigned long raw_temp_bed_value = 0;
  1168. static unsigned char temp_state = 12;
  1169. static unsigned char pwm_count = (1 << SOFT_PWM_SCALE);
  1170. static unsigned char soft_pwm_0;
  1171. #ifdef SLOW_PWM_HEATERS
  1172. static unsigned char slow_pwm_count = 0;
  1173. static unsigned char state_heater_0 = 0;
  1174. static unsigned char state_timer_heater_0 = 0;
  1175. #endif
  1176. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1177. static unsigned char soft_pwm_1;
  1178. #ifdef SLOW_PWM_HEATERS
  1179. static unsigned char state_heater_1 = 0;
  1180. static unsigned char state_timer_heater_1 = 0;
  1181. #endif
  1182. #endif
  1183. #if EXTRUDERS > 2
  1184. static unsigned char soft_pwm_2;
  1185. #ifdef SLOW_PWM_HEATERS
  1186. static unsigned char state_heater_2 = 0;
  1187. static unsigned char state_timer_heater_2 = 0;
  1188. #endif
  1189. #endif
  1190. #if EXTRUDERS > 3
  1191. static unsigned char soft_pwm_3;
  1192. #ifdef SLOW_PWM_HEATERS
  1193. static unsigned char state_heater_3 = 0;
  1194. static unsigned char state_timer_heater_3 = 0;
  1195. #endif
  1196. #endif
  1197. #if HEATER_BED_PIN > -1
  1198. static unsigned char soft_pwm_b;
  1199. #ifdef SLOW_PWM_HEATERS
  1200. static unsigned char state_heater_b = 0;
  1201. static unsigned char state_timer_heater_b = 0;
  1202. #endif
  1203. #endif
  1204. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1205. static unsigned long raw_filwidth_value = 0; //added for filament width sensor
  1206. #endif
  1207. #ifndef SLOW_PWM_HEATERS
  1208. /*
  1209. * standard PWM modulation
  1210. */
  1211. if(pwm_count == 0){
  1212. soft_pwm_0 = soft_pwm[0];
  1213. if(soft_pwm_0 > 0) {
  1214. WRITE(HEATER_0_PIN,1);
  1215. #ifdef HEATERS_PARALLEL
  1216. WRITE(HEATER_1_PIN,1);
  1217. #endif
  1218. } else WRITE(HEATER_0_PIN,0);
  1219. #if EXTRUDERS > 1
  1220. soft_pwm_1 = soft_pwm[1];
  1221. if(soft_pwm_1 > 0) WRITE(HEATER_1_PIN,1); else WRITE(HEATER_1_PIN,0);
  1222. #endif
  1223. #if EXTRUDERS > 2
  1224. soft_pwm_2 = soft_pwm[2];
  1225. if(soft_pwm_2 > 0) WRITE(HEATER_2_PIN,1); else WRITE(HEATER_2_PIN,0);
  1226. #endif
  1227. #if EXTRUDERS > 3
  1228. soft_pwm_3 = soft_pwm[3];
  1229. if(soft_pwm_3 > 0) WRITE(HEATER_3_PIN,1); else WRITE(HEATER_3_PIN,0);
  1230. #endif
  1231. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1232. soft_pwm_b = soft_pwm_bed;
  1233. if(soft_pwm_b > 0) WRITE(HEATER_BED_PIN,1); else WRITE(HEATER_BED_PIN,0);
  1234. #endif
  1235. #ifdef FAN_SOFT_PWM
  1236. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1237. if(soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1238. #endif
  1239. }
  1240. if(soft_pwm_0 < pwm_count) {
  1241. WRITE(HEATER_0_PIN,0);
  1242. #ifdef HEATERS_PARALLEL
  1243. WRITE(HEATER_1_PIN,0);
  1244. #endif
  1245. }
  1246. #if EXTRUDERS > 1
  1247. if(soft_pwm_1 < pwm_count) WRITE(HEATER_1_PIN,0);
  1248. #endif
  1249. #if EXTRUDERS > 2
  1250. if(soft_pwm_2 < pwm_count) WRITE(HEATER_2_PIN,0);
  1251. #endif
  1252. #if EXTRUDERS > 3
  1253. if(soft_pwm_3 < pwm_count) WRITE(HEATER_3_PIN,0);
  1254. #endif
  1255. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1256. if(soft_pwm_b < pwm_count) WRITE(HEATER_BED_PIN,0);
  1257. #endif
  1258. #ifdef FAN_SOFT_PWM
  1259. if(soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1260. #endif
  1261. pwm_count += (1 << SOFT_PWM_SCALE);
  1262. pwm_count &= 0x7f;
  1263. #else //ifndef SLOW_PWM_HEATERS
  1264. /*
  1265. * SLOW PWM HEATERS
  1266. *
  1267. * for heaters drived by relay
  1268. */
  1269. #ifndef MIN_STATE_TIME
  1270. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1271. #endif
  1272. if (slow_pwm_count == 0) {
  1273. // EXTRUDER 0
  1274. soft_pwm_0 = soft_pwm[0];
  1275. if (soft_pwm_0 > 0) {
  1276. // turn ON heather only if the minimum time is up
  1277. if (state_timer_heater_0 == 0) {
  1278. // if change state set timer
  1279. if (state_heater_0 == 0) {
  1280. state_timer_heater_0 = MIN_STATE_TIME;
  1281. }
  1282. state_heater_0 = 1;
  1283. WRITE(HEATER_0_PIN, 1);
  1284. #ifdef HEATERS_PARALLEL
  1285. WRITE(HEATER_1_PIN, 1);
  1286. #endif
  1287. }
  1288. } else {
  1289. // turn OFF heather only if the minimum time is up
  1290. if (state_timer_heater_0 == 0) {
  1291. // if change state set timer
  1292. if (state_heater_0 == 1) {
  1293. state_timer_heater_0 = MIN_STATE_TIME;
  1294. }
  1295. state_heater_0 = 0;
  1296. WRITE(HEATER_0_PIN, 0);
  1297. #ifdef HEATERS_PARALLEL
  1298. WRITE(HEATER_1_PIN, 0);
  1299. #endif
  1300. }
  1301. }
  1302. #if EXTRUDERS > 1
  1303. // EXTRUDER 1
  1304. soft_pwm_1 = soft_pwm[1];
  1305. if (soft_pwm_1 > 0) {
  1306. // turn ON heather only if the minimum time is up
  1307. if (state_timer_heater_1 == 0) {
  1308. // if change state set timer
  1309. if (state_heater_1 == 0) {
  1310. state_timer_heater_1 = MIN_STATE_TIME;
  1311. }
  1312. state_heater_1 = 1;
  1313. WRITE(HEATER_1_PIN, 1);
  1314. }
  1315. } else {
  1316. // turn OFF heather only if the minimum time is up
  1317. if (state_timer_heater_1 == 0) {
  1318. // if change state set timer
  1319. if (state_heater_1 == 1) {
  1320. state_timer_heater_1 = MIN_STATE_TIME;
  1321. }
  1322. state_heater_1 = 0;
  1323. WRITE(HEATER_1_PIN, 0);
  1324. }
  1325. }
  1326. #endif
  1327. #if EXTRUDERS > 2
  1328. // EXTRUDER 2
  1329. soft_pwm_2 = soft_pwm[2];
  1330. if (soft_pwm_2 > 0) {
  1331. // turn ON heather only if the minimum time is up
  1332. if (state_timer_heater_2 == 0) {
  1333. // if change state set timer
  1334. if (state_heater_2 == 0) {
  1335. state_timer_heater_2 = MIN_STATE_TIME;
  1336. }
  1337. state_heater_2 = 1;
  1338. WRITE(HEATER_2_PIN, 1);
  1339. }
  1340. } else {
  1341. // turn OFF heather only if the minimum time is up
  1342. if (state_timer_heater_2 == 0) {
  1343. // if change state set timer
  1344. if (state_heater_2 == 1) {
  1345. state_timer_heater_2 = MIN_STATE_TIME;
  1346. }
  1347. state_heater_2 = 0;
  1348. WRITE(HEATER_2_PIN, 0);
  1349. }
  1350. }
  1351. #endif
  1352. #if EXTRUDERS > 3
  1353. // EXTRUDER 3
  1354. soft_pwm_3 = soft_pwm[3];
  1355. if (soft_pwm_3 > 0) {
  1356. // turn ON heather only if the minimum time is up
  1357. if (state_timer_heater_3 == 0) {
  1358. // if change state set timer
  1359. if (state_heater_3 == 0) {
  1360. state_timer_heater_3 = MIN_STATE_TIME;
  1361. }
  1362. state_heater_3 = 1;
  1363. WRITE(HEATER_3_PIN, 1);
  1364. }
  1365. } else {
  1366. // turn OFF heather only if the minimum time is up
  1367. if (state_timer_heater_3 == 0) {
  1368. // if change state set timer
  1369. if (state_heater_3 == 1) {
  1370. state_timer_heater_3 = MIN_STATE_TIME;
  1371. }
  1372. state_heater_3 = 0;
  1373. WRITE(HEATER_3_PIN, 0);
  1374. }
  1375. }
  1376. #endif
  1377. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1378. // BED
  1379. soft_pwm_b = soft_pwm_bed;
  1380. if (soft_pwm_b > 0) {
  1381. // turn ON heather only if the minimum time is up
  1382. if (state_timer_heater_b == 0) {
  1383. // if change state set timer
  1384. if (state_heater_b == 0) {
  1385. state_timer_heater_b = MIN_STATE_TIME;
  1386. }
  1387. state_heater_b = 1;
  1388. WRITE(HEATER_BED_PIN, 1);
  1389. }
  1390. } else {
  1391. // turn OFF heather only if the minimum time is up
  1392. if (state_timer_heater_b == 0) {
  1393. // if change state set timer
  1394. if (state_heater_b == 1) {
  1395. state_timer_heater_b = MIN_STATE_TIME;
  1396. }
  1397. state_heater_b = 0;
  1398. WRITE(HEATER_BED_PIN, 0);
  1399. }
  1400. }
  1401. #endif
  1402. } // if (slow_pwm_count == 0)
  1403. // EXTRUDER 0
  1404. if (soft_pwm_0 < slow_pwm_count) {
  1405. // turn OFF heather only if the minimum time is up
  1406. if (state_timer_heater_0 == 0) {
  1407. // if change state set timer
  1408. if (state_heater_0 == 1) {
  1409. state_timer_heater_0 = MIN_STATE_TIME;
  1410. }
  1411. state_heater_0 = 0;
  1412. WRITE(HEATER_0_PIN, 0);
  1413. #ifdef HEATERS_PARALLEL
  1414. WRITE(HEATER_1_PIN, 0);
  1415. #endif
  1416. }
  1417. }
  1418. #if EXTRUDERS > 1
  1419. // EXTRUDER 1
  1420. if (soft_pwm_1 < slow_pwm_count) {
  1421. // turn OFF heather only if the minimum time is up
  1422. if (state_timer_heater_1 == 0) {
  1423. // if change state set timer
  1424. if (state_heater_1 == 1) {
  1425. state_timer_heater_1 = MIN_STATE_TIME;
  1426. }
  1427. state_heater_1 = 0;
  1428. WRITE(HEATER_1_PIN, 0);
  1429. }
  1430. }
  1431. #endif
  1432. #if EXTRUDERS > 2
  1433. // EXTRUDER 2
  1434. if (soft_pwm_2 < slow_pwm_count) {
  1435. // turn OFF heather only if the minimum time is up
  1436. if (state_timer_heater_2 == 0) {
  1437. // if change state set timer
  1438. if (state_heater_2 == 1) {
  1439. state_timer_heater_2 = MIN_STATE_TIME;
  1440. }
  1441. state_heater_2 = 0;
  1442. WRITE(HEATER_2_PIN, 0);
  1443. }
  1444. }
  1445. #endif
  1446. #if EXTRUDERS > 3
  1447. // EXTRUDER 3
  1448. if (soft_pwm_3 < slow_pwm_count) {
  1449. // turn OFF heather only if the minimum time is up
  1450. if (state_timer_heater_3 == 0) {
  1451. // if change state set timer
  1452. if (state_heater_3 == 1) {
  1453. state_timer_heater_3 = MIN_STATE_TIME;
  1454. }
  1455. state_heater_3 = 0;
  1456. WRITE(HEATER_3_PIN, 0);
  1457. }
  1458. }
  1459. #endif
  1460. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1461. // BED
  1462. if (soft_pwm_b < slow_pwm_count) {
  1463. // turn OFF heather only if the minimum time is up
  1464. if (state_timer_heater_b == 0) {
  1465. // if change state set timer
  1466. if (state_heater_b == 1) {
  1467. state_timer_heater_b = MIN_STATE_TIME;
  1468. }
  1469. state_heater_b = 0;
  1470. WRITE(HEATER_BED_PIN, 0);
  1471. }
  1472. }
  1473. #endif
  1474. #ifdef FAN_SOFT_PWM
  1475. if (pwm_count == 0){
  1476. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1477. if (soft_pwm_fan > 0) WRITE(FAN_PIN,1); else WRITE(FAN_PIN,0);
  1478. }
  1479. if (soft_pwm_fan < pwm_count) WRITE(FAN_PIN,0);
  1480. #endif
  1481. pwm_count += (1 << SOFT_PWM_SCALE);
  1482. pwm_count &= 0x7f;
  1483. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1484. if ((pwm_count % 64) == 0) {
  1485. slow_pwm_count++;
  1486. slow_pwm_count &= 0x7f;
  1487. // Extruder 0
  1488. if (state_timer_heater_0 > 0) {
  1489. state_timer_heater_0--;
  1490. }
  1491. #if EXTRUDERS > 1
  1492. // Extruder 1
  1493. if (state_timer_heater_1 > 0)
  1494. state_timer_heater_1--;
  1495. #endif
  1496. #if EXTRUDERS > 2
  1497. // Extruder 2
  1498. if (state_timer_heater_2 > 0)
  1499. state_timer_heater_2--;
  1500. #endif
  1501. #if EXTRUDERS > 3
  1502. // Extruder 3
  1503. if (state_timer_heater_3 > 0)
  1504. state_timer_heater_3--;
  1505. #endif
  1506. #if defined(HEATER_BED_PIN) && HEATER_BED_PIN > -1
  1507. // Bed
  1508. if (state_timer_heater_b > 0)
  1509. state_timer_heater_b--;
  1510. #endif
  1511. } //if ((pwm_count % 64) == 0) {
  1512. #endif //ifndef SLOW_PWM_HEATERS
  1513. switch(temp_state) {
  1514. case 0: // Prepare TEMP_0
  1515. #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
  1516. #if TEMP_0_PIN > 7
  1517. ADCSRB = 1<<MUX5;
  1518. #else
  1519. ADCSRB = 0;
  1520. #endif
  1521. ADMUX = ((1 << REFS0) | (TEMP_0_PIN & 0x07));
  1522. ADCSRA |= 1<<ADSC; // Start conversion
  1523. #endif
  1524. lcd_buttons_update();
  1525. temp_state = 1;
  1526. break;
  1527. case 1: // Measure TEMP_0
  1528. #if defined(TEMP_0_PIN) && (TEMP_0_PIN > -1)
  1529. raw_temp_0_value += ADC;
  1530. #endif
  1531. temp_state = 2;
  1532. break;
  1533. case 2: // Prepare TEMP_BED
  1534. #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
  1535. #if TEMP_BED_PIN > 7
  1536. ADCSRB = 1<<MUX5;
  1537. #else
  1538. ADCSRB = 0;
  1539. #endif
  1540. ADMUX = ((1 << REFS0) | (TEMP_BED_PIN & 0x07));
  1541. ADCSRA |= 1<<ADSC; // Start conversion
  1542. #endif
  1543. lcd_buttons_update();
  1544. temp_state = 3;
  1545. break;
  1546. case 3: // Measure TEMP_BED
  1547. #if defined(TEMP_BED_PIN) && (TEMP_BED_PIN > -1)
  1548. raw_temp_bed_value += ADC;
  1549. #endif
  1550. temp_state = 4;
  1551. break;
  1552. case 4: // Prepare TEMP_1
  1553. #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
  1554. #if TEMP_1_PIN > 7
  1555. ADCSRB = 1<<MUX5;
  1556. #else
  1557. ADCSRB = 0;
  1558. #endif
  1559. ADMUX = ((1 << REFS0) | (TEMP_1_PIN & 0x07));
  1560. ADCSRA |= 1<<ADSC; // Start conversion
  1561. #endif
  1562. lcd_buttons_update();
  1563. temp_state = 5;
  1564. break;
  1565. case 5: // Measure TEMP_1
  1566. #if defined(TEMP_1_PIN) && (TEMP_1_PIN > -1)
  1567. raw_temp_1_value += ADC;
  1568. #endif
  1569. temp_state = 6;
  1570. break;
  1571. case 6: // Prepare TEMP_2
  1572. #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
  1573. #if TEMP_2_PIN > 7
  1574. ADCSRB = 1<<MUX5;
  1575. #else
  1576. ADCSRB = 0;
  1577. #endif
  1578. ADMUX = ((1 << REFS0) | (TEMP_2_PIN & 0x07));
  1579. ADCSRA |= 1<<ADSC; // Start conversion
  1580. #endif
  1581. lcd_buttons_update();
  1582. temp_state = 7;
  1583. break;
  1584. case 7: // Measure TEMP_2
  1585. #if defined(TEMP_2_PIN) && (TEMP_2_PIN > -1)
  1586. raw_temp_2_value += ADC;
  1587. #endif
  1588. temp_state = 8;
  1589. break;
  1590. case 8: // Prepare TEMP_3
  1591. #if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
  1592. #if TEMP_3_PIN > 7
  1593. ADCSRB = 1<<MUX5;
  1594. #else
  1595. ADCSRB = 0;
  1596. #endif
  1597. ADMUX = ((1 << REFS0) | (TEMP_3_PIN & 0x07));
  1598. ADCSRA |= 1<<ADSC; // Start conversion
  1599. #endif
  1600. lcd_buttons_update();
  1601. temp_state = 9;
  1602. break;
  1603. case 9: // Measure TEMP_3
  1604. #if defined(TEMP_3_PIN) && (TEMP_3_PIN > -1)
  1605. raw_temp_3_value += ADC;
  1606. #endif
  1607. temp_state = 10; //change so that Filament Width is also measured
  1608. break;
  1609. case 10: //Prepare FILWIDTH
  1610. #if defined(FILWIDTH_PIN) && (FILWIDTH_PIN> -1)
  1611. #if FILWIDTH_PIN>7
  1612. ADCSRB = 1<<MUX5;
  1613. #else
  1614. ADCSRB = 0;
  1615. #endif
  1616. ADMUX = ((1 << REFS0) | (FILWIDTH_PIN & 0x07));
  1617. ADCSRA |= 1<<ADSC; // Start conversion
  1618. #endif
  1619. lcd_buttons_update();
  1620. temp_state = 11;
  1621. break;
  1622. case 11: //Measure FILWIDTH
  1623. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1624. //raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1625. if(ADC>102) //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1626. {
  1627. raw_filwidth_value= raw_filwidth_value-(raw_filwidth_value>>7); //multipliy raw_filwidth_value by 127/128
  1628. raw_filwidth_value= raw_filwidth_value + ((unsigned long)ADC<<7); //add new ADC reading
  1629. }
  1630. #endif
  1631. temp_state = 0;
  1632. temp_count++;
  1633. break;
  1634. case 12: //Startup, delay initial temp reading a tiny bit so the hardware can settle.
  1635. temp_state = 0;
  1636. break;
  1637. // default:
  1638. // SERIAL_ERROR_START;
  1639. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1640. // break;
  1641. }
  1642. if(temp_count >= OVERSAMPLENR) // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1643. {
  1644. if (!temp_meas_ready) //Only update the raw values if they have been read. Else we could be updating them during reading.
  1645. {
  1646. #ifndef HEATER_0_USES_MAX6675
  1647. current_temperature_raw[0] = raw_temp_0_value;
  1648. #endif
  1649. #if EXTRUDERS > 1
  1650. current_temperature_raw[1] = raw_temp_1_value;
  1651. #endif
  1652. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1653. redundant_temperature_raw = raw_temp_1_value;
  1654. #endif
  1655. #if EXTRUDERS > 2
  1656. current_temperature_raw[2] = raw_temp_2_value;
  1657. #endif
  1658. #if EXTRUDERS > 3
  1659. current_temperature_raw[3] = raw_temp_3_value;
  1660. #endif
  1661. current_temperature_bed_raw = raw_temp_bed_value;
  1662. }
  1663. //Add similar code for Filament Sensor - can be read any time since IIR filtering is used
  1664. #if defined(FILWIDTH_PIN) &&(FILWIDTH_PIN > -1)
  1665. current_raw_filwidth = raw_filwidth_value>>10; //need to divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1666. #endif
  1667. temp_meas_ready = true;
  1668. temp_count = 0;
  1669. raw_temp_0_value = 0;
  1670. raw_temp_1_value = 0;
  1671. raw_temp_2_value = 0;
  1672. raw_temp_3_value = 0;
  1673. raw_temp_bed_value = 0;
  1674. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1675. if(current_temperature_raw[0] <= maxttemp_raw[0]) {
  1676. #else
  1677. if(current_temperature_raw[0] >= maxttemp_raw[0]) {
  1678. #endif
  1679. #ifndef HEATER_0_USES_MAX6675
  1680. max_temp_error(0);
  1681. #endif
  1682. }
  1683. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1684. if(current_temperature_raw[0] >= minttemp_raw[0]) {
  1685. #else
  1686. if(current_temperature_raw[0] <= minttemp_raw[0]) {
  1687. #endif
  1688. #ifndef HEATER_0_USES_MAX6675
  1689. min_temp_error(0);
  1690. #endif
  1691. }
  1692. #if EXTRUDERS > 1
  1693. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1694. if(current_temperature_raw[1] <= maxttemp_raw[1]) {
  1695. #else
  1696. if(current_temperature_raw[1] >= maxttemp_raw[1]) {
  1697. #endif
  1698. max_temp_error(1);
  1699. }
  1700. #if HEATER_1_RAW_LO_TEMP > HEATER_1_RAW_HI_TEMP
  1701. if(current_temperature_raw[1] >= minttemp_raw[1]) {
  1702. #else
  1703. if(current_temperature_raw[1] <= minttemp_raw[1]) {
  1704. #endif
  1705. min_temp_error(1);
  1706. }
  1707. #endif
  1708. #if EXTRUDERS > 2
  1709. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1710. if(current_temperature_raw[2] <= maxttemp_raw[2]) {
  1711. #else
  1712. if(current_temperature_raw[2] >= maxttemp_raw[2]) {
  1713. #endif
  1714. max_temp_error(2);
  1715. }
  1716. #if HEATER_2_RAW_LO_TEMP > HEATER_2_RAW_HI_TEMP
  1717. if(current_temperature_raw[2] >= minttemp_raw[2]) {
  1718. #else
  1719. if(current_temperature_raw[2] <= minttemp_raw[2]) {
  1720. #endif
  1721. min_temp_error(2);
  1722. }
  1723. #endif
  1724. #if EXTRUDERS > 3
  1725. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1726. if(current_temperature_raw[3] <= maxttemp_raw[3]) {
  1727. #else
  1728. if(current_temperature_raw[3] >= maxttemp_raw[3]) {
  1729. #endif
  1730. max_temp_error(3);
  1731. }
  1732. #if HEATER_3_RAW_LO_TEMP > HEATER_3_RAW_HI_TEMP
  1733. if(current_temperature_raw[3] >= minttemp_raw[3]) {
  1734. #else
  1735. if(current_temperature_raw[3] <= minttemp_raw[3]) {
  1736. #endif
  1737. min_temp_error(3);
  1738. }
  1739. #endif
  1740. /* No bed MINTEMP error? */
  1741. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1742. # if HEATER_BED_RAW_LO_TEMP > HEATER_BED_RAW_HI_TEMP
  1743. if(current_temperature_bed_raw <= bed_maxttemp_raw) {
  1744. #else
  1745. if(current_temperature_bed_raw >= bed_maxttemp_raw) {
  1746. #endif
  1747. target_temperature_bed = 0;
  1748. bed_max_temp_error();
  1749. }
  1750. #endif
  1751. }
  1752. #ifdef BABYSTEPPING
  1753. for(uint8_t axis=0;axis<3;axis++)
  1754. {
  1755. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1756. if(curTodo>0)
  1757. {
  1758. babystep(axis,/*fwd*/true);
  1759. babystepsTodo[axis]--; //less to do next time
  1760. }
  1761. else
  1762. if(curTodo<0)
  1763. {
  1764. babystep(axis,/*fwd*/false);
  1765. babystepsTodo[axis]++; //less to do next time
  1766. }
  1767. }
  1768. #endif //BABYSTEPPING
  1769. }
  1770. #ifdef PIDTEMP
  1771. // Apply the scale factors to the PID values
  1772. float scalePID_i(float i)
  1773. {
  1774. return i*PID_dT;
  1775. }
  1776. float unscalePID_i(float i)
  1777. {
  1778. return i/PID_dT;
  1779. }
  1780. float scalePID_d(float d)
  1781. {
  1782. return d/PID_dT;
  1783. }
  1784. float unscalePID_d(float d)
  1785. {
  1786. return d*PID_dT;
  1787. }
  1788. #endif //PIDTEMP