My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

configuration_store.cpp 56KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * configuration_store.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. #define EEPROM_VERSION "V38"
  38. // Change EEPROM version if these are changed:
  39. #define EEPROM_OFFSET 100
  40. /**
  41. * V38 EEPROM Layout:
  42. *
  43. * 100 Version (char x4)
  44. * 104 EEPROM CRC16 (uint16_t)
  45. *
  46. * 106 E_STEPPERS (uint8_t)
  47. * 107 M92 XYZE planner.axis_steps_per_mm (float x4 ... x8)
  48. * 123 M203 XYZE planner.max_feedrate_mm_s (float x4 ... x8)
  49. * 139 M201 XYZE planner.max_acceleration_mm_per_s2 (uint32_t x4 ... x8)
  50. * 155 M204 P planner.acceleration (float)
  51. * 159 M204 R planner.retract_acceleration (float)
  52. * 163 M204 T planner.travel_acceleration (float)
  53. * 167 M205 S planner.min_feedrate_mm_s (float)
  54. * 171 M205 T planner.min_travel_feedrate_mm_s (float)
  55. * 175 M205 B planner.min_segment_time (ulong)
  56. * 179 M205 X planner.max_jerk[X_AXIS] (float)
  57. * 183 M205 Y planner.max_jerk[Y_AXIS] (float)
  58. * 187 M205 Z planner.max_jerk[Z_AXIS] (float)
  59. * 191 M205 E planner.max_jerk[E_AXIS] (float)
  60. * 195 M206 XYZ home_offset (float x3)
  61. * 207 M218 XYZ hotend_offset (float x3 per additional hotend)
  62. *
  63. * Global Leveling:
  64. * 219 z_fade_height (float)
  65. *
  66. * MESH_BED_LEVELING: 43 bytes
  67. * 223 M420 S from mbl.status (bool)
  68. * 224 mbl.z_offset (float)
  69. * 228 GRID_MAX_POINTS_X (uint8_t)
  70. * 229 GRID_MAX_POINTS_Y (uint8_t)
  71. * 230 G29 S3 XYZ z_values[][] (float x9, up to float x81) +288
  72. *
  73. * HAS_BED_PROBE: 4 bytes
  74. * 266 M851 zprobe_zoffset (float)
  75. *
  76. * ABL_PLANAR: 36 bytes
  77. * 270 planner.bed_level_matrix (matrix_3x3 = float x9)
  78. *
  79. * AUTO_BED_LEVELING_BILINEAR: 47 bytes
  80. * 306 GRID_MAX_POINTS_X (uint8_t)
  81. * 307 GRID_MAX_POINTS_Y (uint8_t)
  82. * 308 bilinear_grid_spacing (int x2)
  83. * 312 G29 L F bilinear_start (int x2)
  84. * 316 z_values[][] (float x9, up to float x256) +988
  85. *
  86. * AUTO_BED_LEVELING_UBL: 6 bytes
  87. * 324 G29 A ubl.state.active (bool)
  88. * 325 G29 Z ubl.state.z_offset (float)
  89. * 329 G29 S ubl.state.storage_slot (int8_t)
  90. *
  91. * DELTA: 48 bytes
  92. * 348 M666 XYZ endstop_adj (float x3)
  93. * 360 M665 R delta_radius (float)
  94. * 364 M665 L delta_diagonal_rod (float)
  95. * 368 M665 S delta_segments_per_second (float)
  96. * 372 M665 B delta_calibration_radius (float)
  97. * 376 M665 X delta_tower_angle_trim[A] (float)
  98. * 380 M665 Y delta_tower_angle_trim[B] (float)
  99. * --- M665 Z delta_tower_angle_trim[C] (float) is always 0.0
  100. *
  101. * Z_DUAL_ENDSTOPS: 48 bytes
  102. * 348 M666 Z z_endstop_adj (float)
  103. * --- dummy data (float x11)
  104. *
  105. * ULTIPANEL: 6 bytes
  106. * 396 M145 S0 H lcd_preheat_hotend_temp (int x2)
  107. * 400 M145 S0 B lcd_preheat_bed_temp (int x2)
  108. * 404 M145 S0 F lcd_preheat_fan_speed (int x2)
  109. *
  110. * PIDTEMP: 66 bytes
  111. * 408 M301 E0 PIDC Kp[0], Ki[0], Kd[0], Kc[0] (float x4)
  112. * 424 M301 E1 PIDC Kp[1], Ki[1], Kd[1], Kc[1] (float x4)
  113. * 440 M301 E2 PIDC Kp[2], Ki[2], Kd[2], Kc[2] (float x4)
  114. * 456 M301 E3 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  115. * 472 M301 E4 PIDC Kp[3], Ki[3], Kd[3], Kc[3] (float x4)
  116. * 488 M301 L lpq_len (int)
  117. *
  118. * PIDTEMPBED: 12 bytes
  119. * 490 M304 PID thermalManager.bedKp, .bedKi, .bedKd (float x3)
  120. *
  121. * DOGLCD: 2 bytes
  122. * 502 M250 C lcd_contrast (uint16_t)
  123. *
  124. * FWRETRACT: 29 bytes
  125. * 504 M209 S autoretract_enabled (bool)
  126. * 505 M207 S retract_length (float)
  127. * 509 M207 W retract_length_swap (float)
  128. * 513 M207 F retract_feedrate_mm_s (float)
  129. * 517 M207 Z retract_zlift (float)
  130. * 521 M208 S retract_recover_length (float)
  131. * 525 M208 W retract_recover_length_swap (float)
  132. * 529 M208 F retract_recover_feedrate_mm_s (float)
  133. *
  134. * Volumetric Extrusion: 21 bytes
  135. * 533 M200 D volumetric_enabled (bool)
  136. * 534 M200 T D filament_size (float x5) (T0..3)
  137. *
  138. * HAVE_TMC2130: 20 bytes
  139. * 554 M906 X stepperX current (uint16_t)
  140. * 556 M906 Y stepperY current (uint16_t)
  141. * 558 M906 Z stepperZ current (uint16_t)
  142. * 560 M906 X2 stepperX2 current (uint16_t)
  143. * 562 M906 Y2 stepperY2 current (uint16_t)
  144. * 564 M906 Z2 stepperZ2 current (uint16_t)
  145. * 566 M906 E0 stepperE0 current (uint16_t)
  146. * 568 M906 E1 stepperE1 current (uint16_t)
  147. * 570 M906 E2 stepperE2 current (uint16_t)
  148. * 572 M906 E3 stepperE3 current (uint16_t)
  149. * 576 M906 E4 stepperE4 current (uint16_t)
  150. *
  151. * LIN_ADVANCE: 8 bytes
  152. * 580 M900 K extruder_advance_k (float)
  153. * 584 M900 WHD advance_ed_ratio (float)
  154. *
  155. * 588 Minimum end-point
  156. * 1909 (588 + 36 + 9 + 288 + 988) Maximum end-point
  157. *
  158. * ========================================================================
  159. * meshes_begin (between max and min end-point, directly above)
  160. * -- MESHES --
  161. * meshes_end
  162. * -- MAT (Mesh Allocation Table) -- 128 bytes (placeholder size)
  163. * mat_end = E2END (0xFFF)
  164. *
  165. */
  166. #include "configuration_store.h"
  167. MarlinSettings settings;
  168. #include "Marlin.h"
  169. #include "language.h"
  170. #include "endstops.h"
  171. #include "planner.h"
  172. #include "temperature.h"
  173. #include "ultralcd.h"
  174. #if ENABLED(MESH_BED_LEVELING)
  175. #include "mesh_bed_leveling.h"
  176. #endif
  177. #if ENABLED(HAVE_TMC2130)
  178. #include "stepper_indirection.h"
  179. #endif
  180. #if ENABLED(AUTO_BED_LEVELING_UBL)
  181. #include "ubl.h"
  182. #endif
  183. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  184. extern void refresh_bed_level();
  185. #endif
  186. /**
  187. * Post-process after Retrieve or Reset
  188. */
  189. void MarlinSettings::postprocess() {
  190. // steps per s2 needs to be updated to agree with units per s2
  191. planner.reset_acceleration_rates();
  192. // Make sure delta kinematics are updated before refreshing the
  193. // planner position so the stepper counts will be set correctly.
  194. #if ENABLED(DELTA)
  195. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  196. #endif
  197. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  198. // and init stepper.count[], planner.position[] with current_position
  199. planner.refresh_positioning();
  200. #if ENABLED(PIDTEMP)
  201. thermalManager.updatePID();
  202. #endif
  203. calculate_volumetric_multipliers();
  204. #if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
  205. // Software endstops depend on home_offset
  206. LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
  207. #endif
  208. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  209. set_z_fade_height(planner.z_fade_height);
  210. #endif
  211. #if HAS_BED_PROBE
  212. refresh_zprobe_zoffset();
  213. #endif
  214. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  215. refresh_bed_level();
  216. //set_bed_leveling_enabled(leveling_is_on);
  217. #endif
  218. }
  219. #if ENABLED(EEPROM_SETTINGS)
  220. #define DUMMY_PID_VALUE 3000.0f
  221. #define EEPROM_START() int eeprom_index = EEPROM_OFFSET
  222. #define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
  223. #define EEPROM_WRITE(VAR) write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  224. #define EEPROM_READ(VAR) read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
  225. #define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START; SERIAL_ERRORLNPGM(ERR); eeprom_read_error = true; }while(0)
  226. const char version[4] = EEPROM_VERSION;
  227. bool MarlinSettings::eeprom_error;
  228. #if ENABLED(AUTO_BED_LEVELING_UBL)
  229. int MarlinSettings::meshes_begin;
  230. #endif
  231. void MarlinSettings::write_data(int &pos, const uint8_t *value, uint16_t size, uint16_t *crc) {
  232. if (eeprom_error) return;
  233. while (size--) {
  234. uint8_t * const p = (uint8_t * const)pos;
  235. uint8_t v = *value;
  236. // EEPROM has only ~100,000 write cycles,
  237. // so only write bytes that have changed!
  238. if (v != eeprom_read_byte(p)) {
  239. eeprom_write_byte(p, v);
  240. if (eeprom_read_byte(p) != v) {
  241. SERIAL_ECHO_START;
  242. SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
  243. eeprom_error = true;
  244. return;
  245. }
  246. }
  247. crc16(crc, &v, 1);
  248. pos++;
  249. value++;
  250. };
  251. }
  252. void MarlinSettings::read_data(int &pos, uint8_t* value, uint16_t size, uint16_t *crc) {
  253. if (eeprom_error) return;
  254. do {
  255. uint8_t c = eeprom_read_byte((unsigned char*)pos);
  256. *value = c;
  257. crc16(crc, &c, 1);
  258. pos++;
  259. value++;
  260. } while (--size);
  261. }
  262. /**
  263. * M500 - Store Configuration
  264. */
  265. bool MarlinSettings::save() {
  266. float dummy = 0.0f;
  267. char ver[4] = "000";
  268. uint16_t working_crc = 0;
  269. EEPROM_START();
  270. eeprom_error = false;
  271. EEPROM_WRITE(ver); // invalidate data first
  272. EEPROM_SKIP(working_crc); // Skip the checksum slot
  273. working_crc = 0; // clear before first "real data"
  274. const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
  275. EEPROM_WRITE(esteppers);
  276. EEPROM_WRITE(planner.axis_steps_per_mm);
  277. EEPROM_WRITE(planner.max_feedrate_mm_s);
  278. EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
  279. EEPROM_WRITE(planner.acceleration);
  280. EEPROM_WRITE(planner.retract_acceleration);
  281. EEPROM_WRITE(planner.travel_acceleration);
  282. EEPROM_WRITE(planner.min_feedrate_mm_s);
  283. EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
  284. EEPROM_WRITE(planner.min_segment_time);
  285. EEPROM_WRITE(planner.max_jerk);
  286. #if !HAS_HOME_OFFSET
  287. const float home_offset[XYZ] = { 0 };
  288. #endif
  289. #if ENABLED(DELTA)
  290. dummy = 0.0;
  291. EEPROM_WRITE(dummy);
  292. EEPROM_WRITE(dummy);
  293. dummy = DELTA_HEIGHT + home_offset[Z_AXIS];
  294. EEPROM_WRITE(dummy);
  295. #else
  296. EEPROM_WRITE(home_offset);
  297. #endif
  298. #if HOTENDS > 1
  299. // Skip hotend 0 which must be 0
  300. for (uint8_t e = 1; e < HOTENDS; e++)
  301. LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
  302. #endif
  303. //
  304. // Global Leveling
  305. //
  306. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  307. const float zfh = planner.z_fade_height;
  308. #else
  309. const float zfh = 10.0;
  310. #endif
  311. EEPROM_WRITE(zfh);
  312. //
  313. // Mesh Bed Leveling
  314. //
  315. #if ENABLED(MESH_BED_LEVELING)
  316. // Compile time test that sizeof(mbl.z_values) is as expected
  317. static_assert(
  318. sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
  319. "MBL Z array is the wrong size."
  320. );
  321. const bool leveling_is_on = TEST(mbl.status, MBL_STATUS_HAS_MESH_BIT);
  322. const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
  323. EEPROM_WRITE(leveling_is_on);
  324. EEPROM_WRITE(mbl.z_offset);
  325. EEPROM_WRITE(mesh_num_x);
  326. EEPROM_WRITE(mesh_num_y);
  327. EEPROM_WRITE(mbl.z_values);
  328. #else // For disabled MBL write a default mesh
  329. const bool leveling_is_on = false;
  330. dummy = 0.0f;
  331. const uint8_t mesh_num_x = 3, mesh_num_y = 3;
  332. EEPROM_WRITE(leveling_is_on);
  333. EEPROM_WRITE(dummy); // z_offset
  334. EEPROM_WRITE(mesh_num_x);
  335. EEPROM_WRITE(mesh_num_y);
  336. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
  337. #endif // MESH_BED_LEVELING
  338. #if !HAS_BED_PROBE
  339. const float zprobe_zoffset = 0;
  340. #endif
  341. EEPROM_WRITE(zprobe_zoffset);
  342. //
  343. // Planar Bed Leveling matrix
  344. //
  345. #if ABL_PLANAR
  346. EEPROM_WRITE(planner.bed_level_matrix);
  347. #else
  348. dummy = 0.0;
  349. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
  350. #endif
  351. //
  352. // Bilinear Auto Bed Leveling
  353. //
  354. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  355. // Compile time test that sizeof(z_values) is as expected
  356. static_assert(
  357. sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
  358. "Bilinear Z array is the wrong size."
  359. );
  360. const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
  361. EEPROM_WRITE(grid_max_x); // 1 byte
  362. EEPROM_WRITE(grid_max_y); // 1 byte
  363. EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
  364. EEPROM_WRITE(bilinear_start); // 2 ints
  365. EEPROM_WRITE(z_values); // 9-256 floats
  366. #else
  367. // For disabled Bilinear Grid write an empty 3x3 grid
  368. const uint8_t grid_max_x = 3, grid_max_y = 3;
  369. const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
  370. dummy = 0.0f;
  371. EEPROM_WRITE(grid_max_x);
  372. EEPROM_WRITE(grid_max_y);
  373. EEPROM_WRITE(bilinear_grid_spacing);
  374. EEPROM_WRITE(bilinear_start);
  375. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
  376. #endif // AUTO_BED_LEVELING_BILINEAR
  377. #if ENABLED(AUTO_BED_LEVELING_UBL)
  378. EEPROM_WRITE(ubl.state.active);
  379. EEPROM_WRITE(ubl.state.z_offset);
  380. EEPROM_WRITE(ubl.state.storage_slot);
  381. #else
  382. const bool ubl_active = false;
  383. dummy = 0.0f;
  384. const int8_t storage_slot = -1;
  385. EEPROM_WRITE(ubl_active);
  386. EEPROM_WRITE(dummy);
  387. EEPROM_WRITE(storage_slot);
  388. #endif // AUTO_BED_LEVELING_UBL
  389. // 9 floats for DELTA / Z_DUAL_ENDSTOPS
  390. #if ENABLED(DELTA)
  391. EEPROM_WRITE(endstop_adj); // 3 floats
  392. EEPROM_WRITE(delta_radius); // 1 float
  393. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  394. EEPROM_WRITE(delta_segments_per_second); // 1 float
  395. EEPROM_WRITE(delta_calibration_radius); // 1 float
  396. EEPROM_WRITE(delta_tower_angle_trim); // 2 floats
  397. dummy = 0.0f;
  398. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  399. #elif ENABLED(Z_DUAL_ENDSTOPS)
  400. EEPROM_WRITE(z_endstop_adj); // 1 float
  401. dummy = 0.0f;
  402. for (uint8_t q = 11; q--;) EEPROM_WRITE(dummy);
  403. #else
  404. dummy = 0.0f;
  405. for (uint8_t q = 12; q--;) EEPROM_WRITE(dummy);
  406. #endif
  407. #if DISABLED(ULTIPANEL)
  408. const int lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
  409. lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
  410. lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
  411. #endif // !ULTIPANEL
  412. EEPROM_WRITE(lcd_preheat_hotend_temp);
  413. EEPROM_WRITE(lcd_preheat_bed_temp);
  414. EEPROM_WRITE(lcd_preheat_fan_speed);
  415. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  416. #if ENABLED(PIDTEMP)
  417. if (e < HOTENDS) {
  418. EEPROM_WRITE(PID_PARAM(Kp, e));
  419. EEPROM_WRITE(PID_PARAM(Ki, e));
  420. EEPROM_WRITE(PID_PARAM(Kd, e));
  421. #if ENABLED(PID_EXTRUSION_SCALING)
  422. EEPROM_WRITE(PID_PARAM(Kc, e));
  423. #else
  424. dummy = 1.0f; // 1.0 = default kc
  425. EEPROM_WRITE(dummy);
  426. #endif
  427. }
  428. else
  429. #endif // !PIDTEMP
  430. {
  431. dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
  432. EEPROM_WRITE(dummy); // Kp
  433. dummy = 0.0f;
  434. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
  435. }
  436. } // Hotends Loop
  437. #if DISABLED(PID_EXTRUSION_SCALING)
  438. int lpq_len = 20;
  439. #endif
  440. EEPROM_WRITE(lpq_len);
  441. #if DISABLED(PIDTEMPBED)
  442. dummy = DUMMY_PID_VALUE;
  443. for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
  444. #else
  445. EEPROM_WRITE(thermalManager.bedKp);
  446. EEPROM_WRITE(thermalManager.bedKi);
  447. EEPROM_WRITE(thermalManager.bedKd);
  448. #endif
  449. #if !HAS_LCD_CONTRAST
  450. const uint16_t lcd_contrast = 32;
  451. #endif
  452. EEPROM_WRITE(lcd_contrast);
  453. #if ENABLED(FWRETRACT)
  454. EEPROM_WRITE(autoretract_enabled);
  455. EEPROM_WRITE(retract_length);
  456. #if EXTRUDERS > 1
  457. EEPROM_WRITE(retract_length_swap);
  458. #else
  459. dummy = 0.0f;
  460. EEPROM_WRITE(dummy);
  461. #endif
  462. EEPROM_WRITE(retract_feedrate_mm_s);
  463. EEPROM_WRITE(retract_zlift);
  464. EEPROM_WRITE(retract_recover_length);
  465. #if EXTRUDERS > 1
  466. EEPROM_WRITE(retract_recover_length_swap);
  467. #else
  468. dummy = 0.0f;
  469. EEPROM_WRITE(dummy);
  470. #endif
  471. EEPROM_WRITE(retract_recover_feedrate_mm_s);
  472. #endif // FWRETRACT
  473. EEPROM_WRITE(volumetric_enabled);
  474. // Save filament sizes
  475. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  476. if (q < COUNT(filament_size)) dummy = filament_size[q];
  477. EEPROM_WRITE(dummy);
  478. }
  479. // Save TMC2130 Configuration, and placeholder values
  480. uint16_t val;
  481. #if ENABLED(HAVE_TMC2130)
  482. #if ENABLED(X_IS_TMC2130)
  483. val = stepperX.getCurrent();
  484. #else
  485. val = 0;
  486. #endif
  487. EEPROM_WRITE(val);
  488. #if ENABLED(Y_IS_TMC2130)
  489. val = stepperY.getCurrent();
  490. #else
  491. val = 0;
  492. #endif
  493. EEPROM_WRITE(val);
  494. #if ENABLED(Z_IS_TMC2130)
  495. val = stepperZ.getCurrent();
  496. #else
  497. val = 0;
  498. #endif
  499. EEPROM_WRITE(val);
  500. #if ENABLED(X2_IS_TMC2130)
  501. val = stepperX2.getCurrent();
  502. #else
  503. val = 0;
  504. #endif
  505. EEPROM_WRITE(val);
  506. #if ENABLED(Y2_IS_TMC2130)
  507. val = stepperY2.getCurrent();
  508. #else
  509. val = 0;
  510. #endif
  511. EEPROM_WRITE(val);
  512. #if ENABLED(Z2_IS_TMC2130)
  513. val = stepperZ2.getCurrent();
  514. #else
  515. val = 0;
  516. #endif
  517. EEPROM_WRITE(val);
  518. #if ENABLED(E0_IS_TMC2130)
  519. val = stepperE0.getCurrent();
  520. #else
  521. val = 0;
  522. #endif
  523. EEPROM_WRITE(val);
  524. #if ENABLED(E1_IS_TMC2130)
  525. val = stepperE1.getCurrent();
  526. #else
  527. val = 0;
  528. #endif
  529. EEPROM_WRITE(val);
  530. #if ENABLED(E2_IS_TMC2130)
  531. val = stepperE2.getCurrent();
  532. #else
  533. val = 0;
  534. #endif
  535. EEPROM_WRITE(val);
  536. #if ENABLED(E3_IS_TMC2130)
  537. val = stepperE3.getCurrent();
  538. #else
  539. val = 0;
  540. #endif
  541. EEPROM_WRITE(val);
  542. #if ENABLED(E4_IS_TMC2130)
  543. val = stepperE4.getCurrent();
  544. #else
  545. val = 0;
  546. #endif
  547. EEPROM_WRITE(val);
  548. #else
  549. val = 0;
  550. for (uint8_t q = 0; q < 11; ++q) EEPROM_WRITE(val);
  551. #endif
  552. //
  553. // Linear Advance
  554. //
  555. #if ENABLED(LIN_ADVANCE)
  556. EEPROM_WRITE(planner.extruder_advance_k);
  557. EEPROM_WRITE(planner.advance_ed_ratio);
  558. #else
  559. dummy = 0.0f;
  560. EEPROM_WRITE(dummy);
  561. EEPROM_WRITE(dummy);
  562. #endif
  563. if (!eeprom_error) {
  564. const int eeprom_size = eeprom_index;
  565. const uint16_t final_crc = working_crc;
  566. // Write the EEPROM header
  567. eeprom_index = EEPROM_OFFSET;
  568. EEPROM_WRITE(version);
  569. EEPROM_WRITE(final_crc);
  570. // Report storage size
  571. SERIAL_ECHO_START;
  572. SERIAL_ECHOPAIR("Settings Stored (", eeprom_size - (EEPROM_OFFSET));
  573. SERIAL_ECHOPAIR(" bytes; crc ", final_crc);
  574. SERIAL_ECHOLNPGM(")");
  575. }
  576. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  577. if (ubl.state.storage_slot >= 0)
  578. store_mesh(ubl.state.storage_slot);
  579. #endif
  580. return !eeprom_error;
  581. }
  582. /**
  583. * M501 - Retrieve Configuration
  584. */
  585. bool MarlinSettings::load() {
  586. uint16_t working_crc = 0;
  587. EEPROM_START();
  588. char stored_ver[4];
  589. EEPROM_READ(stored_ver);
  590. uint16_t stored_crc;
  591. EEPROM_READ(stored_crc);
  592. // Version has to match or defaults are used
  593. if (strncmp(version, stored_ver, 3) != 0) {
  594. if (stored_ver[0] != 'V') {
  595. stored_ver[0] = '?';
  596. stored_ver[1] = '\0';
  597. }
  598. SERIAL_ECHO_START;
  599. SERIAL_ECHOPGM("EEPROM version mismatch ");
  600. SERIAL_ECHOPAIR("(EEPROM=", stored_ver);
  601. SERIAL_ECHOLNPGM(" Marlin=" EEPROM_VERSION ")");
  602. reset();
  603. }
  604. else {
  605. float dummy = 0;
  606. working_crc = 0; //clear before reading first "real data"
  607. // Number of esteppers may change
  608. uint8_t esteppers;
  609. EEPROM_READ(esteppers);
  610. // Get only the number of E stepper parameters previously stored
  611. // Any steppers added later are set to their defaults
  612. const float def1[] = DEFAULT_AXIS_STEPS_PER_UNIT, def2[] = DEFAULT_MAX_FEEDRATE;
  613. const uint32_t def3[] = DEFAULT_MAX_ACCELERATION;
  614. float tmp1[XYZ + esteppers], tmp2[XYZ + esteppers];
  615. uint32_t tmp3[XYZ + esteppers];
  616. EEPROM_READ(tmp1);
  617. EEPROM_READ(tmp2);
  618. EEPROM_READ(tmp3);
  619. LOOP_XYZE_N(i) {
  620. planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
  621. planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
  622. planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
  623. }
  624. EEPROM_READ(planner.acceleration);
  625. EEPROM_READ(planner.retract_acceleration);
  626. EEPROM_READ(planner.travel_acceleration);
  627. EEPROM_READ(planner.min_feedrate_mm_s);
  628. EEPROM_READ(planner.min_travel_feedrate_mm_s);
  629. EEPROM_READ(planner.min_segment_time);
  630. EEPROM_READ(planner.max_jerk);
  631. #if !HAS_HOME_OFFSET
  632. float home_offset[XYZ];
  633. #endif
  634. EEPROM_READ(home_offset);
  635. #if ENABLED(DELTA)
  636. home_offset[X_AXIS] = 0.0;
  637. home_offset[Y_AXIS] = 0.0;
  638. home_offset[Z_AXIS] -= DELTA_HEIGHT;
  639. #endif
  640. #if HOTENDS > 1
  641. // Skip hotend 0 which must be 0
  642. for (uint8_t e = 1; e < HOTENDS; e++)
  643. LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
  644. #endif
  645. //
  646. // Global Leveling
  647. //
  648. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  649. EEPROM_READ(planner.z_fade_height);
  650. #else
  651. EEPROM_READ(dummy);
  652. #endif
  653. //
  654. // Mesh (Manual) Bed Leveling
  655. //
  656. bool leveling_is_on;
  657. uint8_t mesh_num_x, mesh_num_y;
  658. EEPROM_READ(leveling_is_on);
  659. EEPROM_READ(dummy);
  660. EEPROM_READ(mesh_num_x);
  661. EEPROM_READ(mesh_num_y);
  662. #if ENABLED(MESH_BED_LEVELING)
  663. mbl.status = leveling_is_on ? _BV(MBL_STATUS_HAS_MESH_BIT) : 0;
  664. mbl.z_offset = dummy;
  665. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  666. // EEPROM data fits the current mesh
  667. EEPROM_READ(mbl.z_values);
  668. }
  669. else {
  670. // EEPROM data is stale
  671. mbl.reset();
  672. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  673. }
  674. #else
  675. // MBL is disabled - skip the stored data
  676. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
  677. #endif // MESH_BED_LEVELING
  678. #if !HAS_BED_PROBE
  679. float zprobe_zoffset;
  680. #endif
  681. EEPROM_READ(zprobe_zoffset);
  682. //
  683. // Planar Bed Leveling matrix
  684. //
  685. #if ABL_PLANAR
  686. EEPROM_READ(planner.bed_level_matrix);
  687. #else
  688. for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
  689. #endif
  690. //
  691. // Bilinear Auto Bed Leveling
  692. //
  693. uint8_t grid_max_x, grid_max_y;
  694. EEPROM_READ(grid_max_x); // 1 byte
  695. EEPROM_READ(grid_max_y); // 1 byte
  696. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  697. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  698. set_bed_leveling_enabled(false);
  699. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  700. EEPROM_READ(bilinear_start); // 2 ints
  701. EEPROM_READ(z_values); // 9 to 256 floats
  702. }
  703. else // EEPROM data is stale
  704. #endif // AUTO_BED_LEVELING_BILINEAR
  705. {
  706. // Skip past disabled (or stale) Bilinear Grid data
  707. int bgs[2], bs[2];
  708. EEPROM_READ(bgs);
  709. EEPROM_READ(bs);
  710. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
  711. }
  712. #if ENABLED(AUTO_BED_LEVELING_UBL)
  713. EEPROM_READ(ubl.state.active);
  714. EEPROM_READ(ubl.state.z_offset);
  715. EEPROM_READ(ubl.state.storage_slot);
  716. #else
  717. bool dummyb;
  718. uint8_t dummyui8;
  719. EEPROM_READ(dummyb);
  720. EEPROM_READ(dummy);
  721. EEPROM_READ(dummyui8);
  722. #endif // AUTO_BED_LEVELING_UBL
  723. #if ENABLED(DELTA)
  724. EEPROM_READ(endstop_adj); // 3 floats
  725. EEPROM_READ(delta_radius); // 1 float
  726. EEPROM_READ(delta_diagonal_rod); // 1 float
  727. EEPROM_READ(delta_segments_per_second); // 1 float
  728. EEPROM_READ(delta_calibration_radius); // 1 float
  729. EEPROM_READ(delta_tower_angle_trim); // 2 floats
  730. dummy = 0.0f;
  731. for (uint8_t q=3; q--;) EEPROM_READ(dummy);
  732. #elif ENABLED(Z_DUAL_ENDSTOPS)
  733. EEPROM_READ(z_endstop_adj);
  734. dummy = 0.0f;
  735. for (uint8_t q=11; q--;) EEPROM_READ(dummy);
  736. #else
  737. dummy = 0.0f;
  738. for (uint8_t q=12; q--;) EEPROM_READ(dummy);
  739. #endif
  740. #if DISABLED(ULTIPANEL)
  741. int lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
  742. #endif
  743. EEPROM_READ(lcd_preheat_hotend_temp);
  744. EEPROM_READ(lcd_preheat_bed_temp);
  745. EEPROM_READ(lcd_preheat_fan_speed);
  746. //EEPROM_ASSERT(
  747. // WITHIN(lcd_preheat_fan_speed, 0, 255),
  748. // "lcd_preheat_fan_speed out of range"
  749. //);
  750. #if ENABLED(PIDTEMP)
  751. for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
  752. EEPROM_READ(dummy); // Kp
  753. if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
  754. // do not need to scale PID values as the values in EEPROM are already scaled
  755. PID_PARAM(Kp, e) = dummy;
  756. EEPROM_READ(PID_PARAM(Ki, e));
  757. EEPROM_READ(PID_PARAM(Kd, e));
  758. #if ENABLED(PID_EXTRUSION_SCALING)
  759. EEPROM_READ(PID_PARAM(Kc, e));
  760. #else
  761. EEPROM_READ(dummy);
  762. #endif
  763. }
  764. else {
  765. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
  766. }
  767. }
  768. #else // !PIDTEMP
  769. // 4 x 4 = 16 slots for PID parameters
  770. for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
  771. #endif // !PIDTEMP
  772. #if DISABLED(PID_EXTRUSION_SCALING)
  773. int lpq_len;
  774. #endif
  775. EEPROM_READ(lpq_len);
  776. #if ENABLED(PIDTEMPBED)
  777. EEPROM_READ(dummy); // bedKp
  778. if (dummy != DUMMY_PID_VALUE) {
  779. thermalManager.bedKp = dummy;
  780. EEPROM_READ(thermalManager.bedKi);
  781. EEPROM_READ(thermalManager.bedKd);
  782. }
  783. #else
  784. for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
  785. #endif
  786. #if !HAS_LCD_CONTRAST
  787. uint16_t lcd_contrast;
  788. #endif
  789. EEPROM_READ(lcd_contrast);
  790. #if ENABLED(FWRETRACT)
  791. EEPROM_READ(autoretract_enabled);
  792. EEPROM_READ(retract_length);
  793. #if EXTRUDERS > 1
  794. EEPROM_READ(retract_length_swap);
  795. #else
  796. EEPROM_READ(dummy);
  797. #endif
  798. EEPROM_READ(retract_feedrate_mm_s);
  799. EEPROM_READ(retract_zlift);
  800. EEPROM_READ(retract_recover_length);
  801. #if EXTRUDERS > 1
  802. EEPROM_READ(retract_recover_length_swap);
  803. #else
  804. EEPROM_READ(dummy);
  805. #endif
  806. EEPROM_READ(retract_recover_feedrate_mm_s);
  807. #endif // FWRETRACT
  808. EEPROM_READ(volumetric_enabled);
  809. for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
  810. EEPROM_READ(dummy);
  811. if (q < COUNT(filament_size)) filament_size[q] = dummy;
  812. }
  813. uint16_t val;
  814. #if ENABLED(HAVE_TMC2130)
  815. EEPROM_READ(val);
  816. #if ENABLED(X_IS_TMC2130)
  817. stepperX.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  818. #endif
  819. EEPROM_READ(val);
  820. #if ENABLED(Y_IS_TMC2130)
  821. stepperY.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  822. #endif
  823. EEPROM_READ(val);
  824. #if ENABLED(Z_IS_TMC2130)
  825. stepperZ.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  826. #endif
  827. EEPROM_READ(val);
  828. #if ENABLED(X2_IS_TMC2130)
  829. stepperX2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  830. #endif
  831. EEPROM_READ(val);
  832. #if ENABLED(Y2_IS_TMC2130)
  833. stepperY2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  834. #endif
  835. EEPROM_READ(val);
  836. #if ENABLED(Z2_IS_TMC2130)
  837. stepperZ2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  838. #endif
  839. EEPROM_READ(val);
  840. #if ENABLED(E0_IS_TMC2130)
  841. stepperE0.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  842. #endif
  843. EEPROM_READ(val);
  844. #if ENABLED(E1_IS_TMC2130)
  845. stepperE1.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  846. #endif
  847. EEPROM_READ(val);
  848. #if ENABLED(E2_IS_TMC2130)
  849. stepperE2.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  850. #endif
  851. EEPROM_READ(val);
  852. #if ENABLED(E3_IS_TMC2130)
  853. stepperE3.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  854. #endif
  855. EEPROM_READ(val);
  856. #if ENABLED(E4_IS_TMC2130)
  857. stepperE4.setCurrent(val, R_SENSE, HOLD_MULTIPLIER);
  858. #endif
  859. #else
  860. for (uint8_t q = 0; q < 11; q++) EEPROM_READ(val);
  861. #endif
  862. //
  863. // Linear Advance
  864. //
  865. #if ENABLED(LIN_ADVANCE)
  866. EEPROM_READ(planner.extruder_advance_k);
  867. EEPROM_READ(planner.advance_ed_ratio);
  868. #else
  869. EEPROM_READ(dummy);
  870. EEPROM_READ(dummy);
  871. #endif
  872. if (working_crc == stored_crc) {
  873. postprocess();
  874. SERIAL_ECHO_START;
  875. SERIAL_ECHO(version);
  876. SERIAL_ECHOPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
  877. SERIAL_ECHOPAIR(" bytes; crc ", working_crc);
  878. SERIAL_ECHOLNPGM(")");
  879. }
  880. else {
  881. SERIAL_ERROR_START;
  882. SERIAL_ERRORPGM("EEPROM CRC mismatch - (stored) ");
  883. SERIAL_ERROR(stored_crc);
  884. SERIAL_ERRORPGM(" != ");
  885. SERIAL_ERROR(working_crc);
  886. SERIAL_ERRORLNPGM(" (calculated)!");
  887. reset();
  888. }
  889. #if ENABLED(AUTO_BED_LEVELING_UBL)
  890. meshes_begin = (eeprom_index + 32) & 0xFFF8; // Pad the end of configuration data so it
  891. // can float up or down a little bit without
  892. // disrupting the mesh data
  893. ubl.report_state();
  894. if (!ubl.sanity_check()) {
  895. SERIAL_EOL;
  896. ubl.echo_name();
  897. SERIAL_ECHOLNPGM(" initialized.\n");
  898. }
  899. else {
  900. SERIAL_PROTOCOLPGM("?Can't enable ");
  901. ubl.echo_name();
  902. SERIAL_PROTOCOLLNPGM(".");
  903. ubl.reset();
  904. }
  905. if (ubl.state.storage_slot >= 0) {
  906. load_mesh(ubl.state.storage_slot);
  907. SERIAL_ECHOPAIR("Mesh ", ubl.state.storage_slot);
  908. SERIAL_ECHOLNPGM(" loaded from storage.");
  909. }
  910. else {
  911. ubl.reset();
  912. SERIAL_ECHOLNPGM("UBL System reset()");
  913. }
  914. #endif
  915. }
  916. #if ENABLED(EEPROM_CHITCHAT)
  917. report();
  918. #endif
  919. return !eeprom_error;
  920. }
  921. #if ENABLED(AUTO_BED_LEVELING_UBL)
  922. void ubl_invalid_slot(const int s) {
  923. SERIAL_PROTOCOLLNPGM("?Invalid slot.");
  924. SERIAL_PROTOCOL(s);
  925. SERIAL_PROTOCOLLNPGM(" mesh slots available.");
  926. }
  927. int MarlinSettings::calc_num_meshes() {
  928. //obviously this will get more sophisticated once we've added an actual MAT
  929. if (meshes_begin <= 0) return 0;
  930. return (meshes_end - meshes_begin) / sizeof(ubl.z_values);
  931. }
  932. void MarlinSettings::store_mesh(int8_t slot) {
  933. #if ENABLED(AUTO_BED_LEVELING_UBL)
  934. const int a = calc_num_meshes();
  935. if (!WITHIN(slot, 0, a - 1)) {
  936. ubl_invalid_slot(a);
  937. SERIAL_PROTOCOLPAIR("E2END=", E2END);
  938. SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
  939. SERIAL_PROTOCOLLNPAIR(" slot=", slot);
  940. SERIAL_EOL;
  941. return;
  942. }
  943. uint16_t crc = 0;
  944. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  945. write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  946. // Write crc to MAT along with other data, or just tack on to the beginning or end
  947. SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
  948. #else
  949. // Other mesh types
  950. #endif
  951. }
  952. void MarlinSettings::load_mesh(int8_t slot, void *into /* = 0 */) {
  953. #if ENABLED(AUTO_BED_LEVELING_UBL)
  954. const int16_t a = settings.calc_num_meshes();
  955. if (!WITHIN(slot, 0, a - 1)) {
  956. ubl_invalid_slot(a);
  957. return;
  958. }
  959. uint16_t crc = 0;
  960. int pos = meshes_end - (slot + 1) * sizeof(ubl.z_values);
  961. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  962. read_data(pos, dest, sizeof(ubl.z_values), &crc);
  963. // Compare crc with crc from MAT, or read from end
  964. SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
  965. #else
  966. // Other mesh types
  967. #endif
  968. }
  969. //void MarlinSettings::delete_mesh() { return; }
  970. //void MarlinSettings::defrag_meshes() { return; }
  971. #endif // AUTO_BED_LEVELING_UBL
  972. #else // !EEPROM_SETTINGS
  973. bool MarlinSettings::save() {
  974. SERIAL_ERROR_START;
  975. SERIAL_ERRORLNPGM("EEPROM disabled");
  976. return false;
  977. }
  978. #endif // !EEPROM_SETTINGS
  979. /**
  980. * M502 - Reset Configuration
  981. */
  982. void MarlinSettings::reset() {
  983. const float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] = DEFAULT_MAX_FEEDRATE;
  984. const uint32_t tmp3[] = DEFAULT_MAX_ACCELERATION;
  985. LOOP_XYZE_N(i) {
  986. planner.axis_steps_per_mm[i] = tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1];
  987. planner.max_feedrate_mm_s[i] = tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1];
  988. planner.max_acceleration_mm_per_s2[i] = tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1];
  989. }
  990. planner.acceleration = DEFAULT_ACCELERATION;
  991. planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  992. planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  993. planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
  994. planner.min_segment_time = DEFAULT_MINSEGMENTTIME;
  995. planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
  996. planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
  997. planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
  998. planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
  999. planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
  1000. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1001. planner.z_fade_height = 0.0;
  1002. #endif
  1003. #if HAS_HOME_OFFSET
  1004. ZERO(home_offset);
  1005. #endif
  1006. #if HOTENDS > 1
  1007. constexpr float tmp4[XYZ][HOTENDS] = {
  1008. HOTEND_OFFSET_X,
  1009. HOTEND_OFFSET_Y
  1010. #ifdef HOTEND_OFFSET_Z
  1011. , HOTEND_OFFSET_Z
  1012. #else
  1013. , { 0 }
  1014. #endif
  1015. };
  1016. static_assert(
  1017. tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
  1018. "Offsets for the first hotend must be 0.0."
  1019. );
  1020. LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
  1021. #endif
  1022. // Applies to all MBL and ABL
  1023. #if HAS_LEVELING
  1024. reset_bed_level();
  1025. #endif
  1026. #if HAS_BED_PROBE
  1027. zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1028. #endif
  1029. #if ENABLED(DELTA)
  1030. const float adj[ABC] = DELTA_ENDSTOP_ADJ,
  1031. dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
  1032. COPY(endstop_adj, adj);
  1033. delta_radius = DELTA_RADIUS;
  1034. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  1035. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  1036. delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
  1037. delta_tower_angle_trim[A_AXIS] = dta[A_AXIS] - dta[C_AXIS];
  1038. delta_tower_angle_trim[B_AXIS] = dta[B_AXIS] - dta[C_AXIS];
  1039. home_offset[Z_AXIS] = 0;
  1040. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1041. float z_endstop_adj =
  1042. #ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
  1043. Z_DUAL_ENDSTOPS_ADJUSTMENT
  1044. #else
  1045. 0
  1046. #endif
  1047. ;
  1048. #endif
  1049. #if ENABLED(ULTIPANEL)
  1050. lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
  1051. lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
  1052. lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
  1053. lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
  1054. lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
  1055. lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
  1056. #endif
  1057. #if HAS_LCD_CONTRAST
  1058. lcd_contrast = DEFAULT_LCD_CONTRAST;
  1059. #endif
  1060. #if ENABLED(PIDTEMP)
  1061. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  1062. HOTEND_LOOP()
  1063. #endif
  1064. {
  1065. PID_PARAM(Kp, e) = DEFAULT_Kp;
  1066. PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
  1067. PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
  1068. #if ENABLED(PID_EXTRUSION_SCALING)
  1069. PID_PARAM(Kc, e) = DEFAULT_Kc;
  1070. #endif
  1071. }
  1072. #if ENABLED(PID_EXTRUSION_SCALING)
  1073. lpq_len = 20; // default last-position-queue size
  1074. #endif
  1075. #endif // PIDTEMP
  1076. #if ENABLED(PIDTEMPBED)
  1077. thermalManager.bedKp = DEFAULT_bedKp;
  1078. thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
  1079. thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
  1080. #endif
  1081. #if ENABLED(FWRETRACT)
  1082. autoretract_enabled = false;
  1083. retract_length = RETRACT_LENGTH;
  1084. #if EXTRUDERS > 1
  1085. retract_length_swap = RETRACT_LENGTH_SWAP;
  1086. #endif
  1087. retract_feedrate_mm_s = RETRACT_FEEDRATE;
  1088. retract_zlift = RETRACT_ZLIFT;
  1089. retract_recover_length = RETRACT_RECOVER_LENGTH;
  1090. #if EXTRUDERS > 1
  1091. retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  1092. #endif
  1093. retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  1094. #endif
  1095. volumetric_enabled =
  1096. #if ENABLED(VOLUMETRIC_DEFAULT_ON)
  1097. true
  1098. #else
  1099. false
  1100. #endif
  1101. ;
  1102. for (uint8_t q = 0; q < COUNT(filament_size); q++)
  1103. filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  1104. endstops.enable_globally(
  1105. #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
  1106. (true)
  1107. #else
  1108. (false)
  1109. #endif
  1110. );
  1111. #if ENABLED(HAVE_TMC2130)
  1112. #if ENABLED(X_IS_TMC2130)
  1113. stepperX.setCurrent(X_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1114. #endif
  1115. #if ENABLED(Y_IS_TMC2130)
  1116. stepperY.setCurrent(Y_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1117. #endif
  1118. #if ENABLED(Z_IS_TMC2130)
  1119. stepperZ.setCurrent(Z_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1120. #endif
  1121. #if ENABLED(X2_IS_TMC2130)
  1122. stepperX2.setCurrent(X2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1123. #endif
  1124. #if ENABLED(Y2_IS_TMC2130)
  1125. stepperY2.setCurrent(Y2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1126. #endif
  1127. #if ENABLED(Z2_IS_TMC2130)
  1128. stepperZ2.setCurrent(Z2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1129. #endif
  1130. #if ENABLED(E0_IS_TMC2130)
  1131. stepperE0.setCurrent(E0_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1132. #endif
  1133. #if ENABLED(E1_IS_TMC2130)
  1134. stepperE1.setCurrent(E1_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1135. #endif
  1136. #if ENABLED(E2_IS_TMC2130)
  1137. stepperE2.setCurrent(E2_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1138. #endif
  1139. #if ENABLED(E3_IS_TMC2130)
  1140. stepperE3.setCurrent(E3_CURRENT, R_SENSE, HOLD_MULTIPLIER);
  1141. #endif
  1142. #endif
  1143. #if ENABLED(LIN_ADVANCE)
  1144. planner.extruder_advance_k = LIN_ADVANCE_K;
  1145. planner.advance_ed_ratio = LIN_ADVANCE_E_D_RATIO;
  1146. #endif
  1147. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1148. ubl.reset();
  1149. #endif
  1150. postprocess();
  1151. SERIAL_ECHO_START;
  1152. SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
  1153. }
  1154. #if DISABLED(DISABLE_M503)
  1155. #define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START; }while(0)
  1156. /**
  1157. * M503 - Report current settings in RAM
  1158. *
  1159. * Unless specifically disabled, M503 is available even without EEPROM
  1160. */
  1161. void MarlinSettings::report(bool forReplay) {
  1162. /**
  1163. * Announce current units, in case inches are being displayed
  1164. */
  1165. CONFIG_ECHO_START;
  1166. #if ENABLED(INCH_MODE_SUPPORT)
  1167. extern float linear_unit_factor, volumetric_unit_factor;
  1168. #define LINEAR_UNIT(N) ((N) / linear_unit_factor)
  1169. #define VOLUMETRIC_UNIT(N) ((N) / (volumetric_enabled ? volumetric_unit_factor : linear_unit_factor))
  1170. SERIAL_ECHOPGM(" G2");
  1171. SERIAL_CHAR(linear_unit_factor == 1.0 ? '1' : '0');
  1172. SERIAL_ECHOPGM(" ; Units in ");
  1173. serialprintPGM(linear_unit_factor == 1.0 ? PSTR("mm\n") : PSTR("inches\n"));
  1174. #else
  1175. #define LINEAR_UNIT(N) N
  1176. #define VOLUMETRIC_UNIT(N) N
  1177. SERIAL_ECHOLNPGM(" G21 ; Units in mm\n");
  1178. #endif
  1179. SERIAL_EOL;
  1180. #if ENABLED(ULTIPANEL)
  1181. // Temperature units - for Ultipanel temperature options
  1182. CONFIG_ECHO_START;
  1183. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1184. extern TempUnit input_temp_units;
  1185. extern float to_temp_units(const float &f);
  1186. #define TEMP_UNIT(N) to_temp_units(N)
  1187. SERIAL_ECHOPGM(" M149 ");
  1188. SERIAL_CHAR(input_temp_units == TEMPUNIT_K ? 'K' : input_temp_units == TEMPUNIT_F ? 'F' : 'C');
  1189. SERIAL_ECHOPGM(" ; Units in ");
  1190. serialprintPGM(input_temp_units == TEMPUNIT_K ? PSTR("Kelvin\n") : input_temp_units == TEMPUNIT_F ? PSTR("Fahrenheit\n") : PSTR("Celsius\n"));
  1191. #else
  1192. #define TEMP_UNIT(N) N
  1193. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius\n");
  1194. #endif
  1195. SERIAL_EOL;
  1196. #endif
  1197. /**
  1198. * Volumetric extrusion M200
  1199. */
  1200. if (!forReplay) {
  1201. CONFIG_ECHO_START;
  1202. SERIAL_ECHOPGM("Filament settings:");
  1203. if (volumetric_enabled)
  1204. SERIAL_EOL;
  1205. else
  1206. SERIAL_ECHOLNPGM(" Disabled");
  1207. }
  1208. CONFIG_ECHO_START;
  1209. SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
  1210. SERIAL_EOL;
  1211. #if EXTRUDERS > 1
  1212. CONFIG_ECHO_START;
  1213. SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
  1214. SERIAL_EOL;
  1215. #if EXTRUDERS > 2
  1216. CONFIG_ECHO_START;
  1217. SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
  1218. SERIAL_EOL;
  1219. #if EXTRUDERS > 3
  1220. CONFIG_ECHO_START;
  1221. SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
  1222. SERIAL_EOL;
  1223. #if EXTRUDERS > 4
  1224. CONFIG_ECHO_START;
  1225. SERIAL_ECHOPAIR(" M200 T4 D", filament_size[4]);
  1226. SERIAL_EOL;
  1227. #endif // EXTRUDERS > 4
  1228. #endif // EXTRUDERS > 3
  1229. #endif // EXTRUDERS > 2
  1230. #endif // EXTRUDERS > 1
  1231. if (!volumetric_enabled) {
  1232. CONFIG_ECHO_START;
  1233. SERIAL_ECHOLNPGM(" M200 D0");
  1234. }
  1235. if (!forReplay) {
  1236. CONFIG_ECHO_START;
  1237. SERIAL_ECHOLNPGM("Steps per unit:");
  1238. }
  1239. CONFIG_ECHO_START;
  1240. SERIAL_ECHOPAIR(" M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
  1241. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
  1242. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
  1243. #if DISABLED(DISTINCT_E_FACTORS)
  1244. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
  1245. #endif
  1246. SERIAL_EOL;
  1247. #if ENABLED(DISTINCT_E_FACTORS)
  1248. CONFIG_ECHO_START;
  1249. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1250. SERIAL_ECHOPAIR(" M92 T", (int)i);
  1251. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
  1252. }
  1253. #endif
  1254. if (!forReplay) {
  1255. CONFIG_ECHO_START;
  1256. SERIAL_ECHOLNPGM("Maximum feedrates (units/s):");
  1257. }
  1258. CONFIG_ECHO_START;
  1259. SERIAL_ECHOPAIR(" M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
  1260. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
  1261. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
  1262. #if DISABLED(DISTINCT_E_FACTORS)
  1263. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
  1264. #endif
  1265. SERIAL_EOL;
  1266. #if ENABLED(DISTINCT_E_FACTORS)
  1267. CONFIG_ECHO_START;
  1268. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1269. SERIAL_ECHOPAIR(" M203 T", (int)i);
  1270. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
  1271. }
  1272. #endif
  1273. if (!forReplay) {
  1274. CONFIG_ECHO_START;
  1275. SERIAL_ECHOLNPGM("Maximum Acceleration (units/s2):");
  1276. }
  1277. CONFIG_ECHO_START;
  1278. SERIAL_ECHOPAIR(" M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
  1279. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
  1280. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
  1281. #if DISABLED(DISTINCT_E_FACTORS)
  1282. SERIAL_ECHOPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
  1283. #endif
  1284. SERIAL_EOL;
  1285. #if ENABLED(DISTINCT_E_FACTORS)
  1286. SERIAL_ECHO_START;
  1287. for (uint8_t i = 0; i < E_STEPPERS; i++) {
  1288. SERIAL_ECHOPAIR(" M201 T", (int)i);
  1289. SERIAL_ECHOLNPAIR(" E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
  1290. }
  1291. #endif
  1292. if (!forReplay) {
  1293. CONFIG_ECHO_START;
  1294. SERIAL_ECHOLNPGM("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  1295. }
  1296. CONFIG_ECHO_START;
  1297. SERIAL_ECHOPAIR(" M204 P", LINEAR_UNIT(planner.acceleration));
  1298. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(planner.retract_acceleration));
  1299. SERIAL_ECHOLNPAIR(" T", LINEAR_UNIT(planner.travel_acceleration));
  1300. if (!forReplay) {
  1301. CONFIG_ECHO_START;
  1302. SERIAL_ECHOLNPGM("Advanced: S<min_feedrate> T<min_travel_feedrate> B<min_segment_time_ms> X<max_xy_jerk> Z<max_z_jerk> E<max_e_jerk>");
  1303. }
  1304. CONFIG_ECHO_START;
  1305. SERIAL_ECHOPAIR(" M205 S", LINEAR_UNIT(planner.min_feedrate_mm_s));
  1306. SERIAL_ECHOPAIR(" T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
  1307. SERIAL_ECHOPAIR(" B", planner.min_segment_time);
  1308. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
  1309. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
  1310. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
  1311. SERIAL_ECHOLNPAIR(" E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
  1312. #if HAS_M206_COMMAND
  1313. if (!forReplay) {
  1314. CONFIG_ECHO_START;
  1315. SERIAL_ECHOLNPGM("Home offset:");
  1316. }
  1317. CONFIG_ECHO_START;
  1318. SERIAL_ECHOPAIR(" M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
  1319. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(home_offset[Y_AXIS]));
  1320. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(home_offset[Z_AXIS]));
  1321. #endif
  1322. #if HOTENDS > 1
  1323. if (!forReplay) {
  1324. CONFIG_ECHO_START;
  1325. SERIAL_ECHOLNPGM("Hotend offsets:");
  1326. }
  1327. CONFIG_ECHO_START;
  1328. for (uint8_t e = 1; e < HOTENDS; e++) {
  1329. SERIAL_ECHOPAIR(" M218 T", (int)e);
  1330. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
  1331. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
  1332. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_NOZZLE)
  1333. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
  1334. #endif
  1335. SERIAL_EOL;
  1336. }
  1337. #endif
  1338. #if ENABLED(MESH_BED_LEVELING)
  1339. if (!forReplay) {
  1340. CONFIG_ECHO_START;
  1341. SERIAL_ECHOLNPGM("Mesh Bed Leveling:");
  1342. }
  1343. CONFIG_ECHO_START;
  1344. SERIAL_ECHOPAIR(" M420 S", mbl.has_mesh() ? 1 : 0);
  1345. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1346. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1347. #endif
  1348. SERIAL_EOL;
  1349. for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
  1350. for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
  1351. CONFIG_ECHO_START;
  1352. SERIAL_ECHOPAIR(" G29 S3 X", (int)px + 1);
  1353. SERIAL_ECHOPAIR(" Y", (int)py + 1);
  1354. SERIAL_ECHOPGM(" Z");
  1355. SERIAL_PROTOCOL_F(LINEAR_UNIT(mbl.z_values[px][py]), 5);
  1356. SERIAL_EOL;
  1357. }
  1358. }
  1359. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  1360. if (!forReplay) {
  1361. CONFIG_ECHO_START;
  1362. ubl.echo_name();
  1363. SERIAL_ECHOLNPGM(":");
  1364. }
  1365. CONFIG_ECHO_START;
  1366. SERIAL_ECHOPAIR(" M420 S", ubl.state.active ? 1 : 0);
  1367. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1368. SERIAL_ECHOPAIR(" Z", planner.z_fade_height);
  1369. #endif
  1370. SERIAL_EOL;
  1371. if (!forReplay) {
  1372. SERIAL_EOL;
  1373. ubl.report_state();
  1374. SERIAL_ECHOLNPAIR("\nActive Mesh Slot: ", ubl.state.storage_slot);
  1375. SERIAL_ECHOPGM("z_offset: ");
  1376. SERIAL_ECHO_F(ubl.state.z_offset, 6);
  1377. SERIAL_EOL;
  1378. SERIAL_ECHOPAIR("EEPROM can hold ", calc_num_meshes());
  1379. SERIAL_ECHOLNPGM(" meshes.\n");
  1380. }
  1381. #elif HAS_ABL
  1382. if (!forReplay) {
  1383. CONFIG_ECHO_START;
  1384. SERIAL_ECHOLNPGM("Auto Bed Leveling:");
  1385. }
  1386. CONFIG_ECHO_START;
  1387. SERIAL_ECHOPAIR(" M420 S", planner.abl_enabled ? 1 : 0);
  1388. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  1389. SERIAL_ECHOPAIR(" Z", LINEAR_UNIT(planner.z_fade_height));
  1390. #endif
  1391. SERIAL_EOL;
  1392. #endif
  1393. #if ENABLED(DELTA)
  1394. if (!forReplay) {
  1395. CONFIG_ECHO_START;
  1396. SERIAL_ECHOLNPGM("Endstop adjustment:");
  1397. }
  1398. CONFIG_ECHO_START;
  1399. SERIAL_ECHOPAIR(" M666 X", LINEAR_UNIT(endstop_adj[X_AXIS]));
  1400. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(endstop_adj[Y_AXIS]));
  1401. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(endstop_adj[Z_AXIS]));
  1402. if (!forReplay) {
  1403. CONFIG_ECHO_START;
  1404. SERIAL_ECHOLNPGM("Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
  1405. }
  1406. CONFIG_ECHO_START;
  1407. SERIAL_ECHOPAIR(" M665 L", LINEAR_UNIT(delta_diagonal_rod));
  1408. SERIAL_ECHOPAIR(" R", LINEAR_UNIT(delta_radius));
  1409. SERIAL_ECHOPAIR(" H", LINEAR_UNIT(DELTA_HEIGHT + home_offset[Z_AXIS]));
  1410. SERIAL_ECHOPAIR(" S", delta_segments_per_second);
  1411. SERIAL_ECHOPAIR(" B", LINEAR_UNIT(delta_calibration_radius));
  1412. SERIAL_ECHOPAIR(" X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
  1413. SERIAL_ECHOPAIR(" Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
  1414. SERIAL_ECHOPAIR(" Z", 0.00);
  1415. SERIAL_EOL;
  1416. #elif ENABLED(Z_DUAL_ENDSTOPS)
  1417. if (!forReplay) {
  1418. CONFIG_ECHO_START;
  1419. SERIAL_ECHOLNPGM("Z2 Endstop adjustment:");
  1420. }
  1421. CONFIG_ECHO_START;
  1422. SERIAL_ECHOLNPAIR(" M666 Z", LINEAR_UNIT(z_endstop_adj));
  1423. #endif // DELTA
  1424. #if ENABLED(ULTIPANEL)
  1425. if (!forReplay) {
  1426. CONFIG_ECHO_START;
  1427. SERIAL_ECHOLNPGM("Material heatup parameters:");
  1428. }
  1429. CONFIG_ECHO_START;
  1430. for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
  1431. SERIAL_ECHOPAIR(" M145 S", (int)i);
  1432. SERIAL_ECHOPAIR(" H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
  1433. SERIAL_ECHOPAIR(" B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
  1434. SERIAL_ECHOLNPAIR(" F", lcd_preheat_fan_speed[i]);
  1435. }
  1436. #endif // ULTIPANEL
  1437. #if HAS_PID_HEATING
  1438. if (!forReplay) {
  1439. CONFIG_ECHO_START;
  1440. SERIAL_ECHOLNPGM("PID settings:");
  1441. }
  1442. #if ENABLED(PIDTEMP)
  1443. #if HOTENDS > 1
  1444. if (forReplay) {
  1445. HOTEND_LOOP() {
  1446. CONFIG_ECHO_START;
  1447. SERIAL_ECHOPAIR(" M301 E", e);
  1448. SERIAL_ECHOPAIR(" P", PID_PARAM(Kp, e));
  1449. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, e)));
  1450. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, e)));
  1451. #if ENABLED(PID_EXTRUSION_SCALING)
  1452. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, e));
  1453. if (e == 0) SERIAL_ECHOPAIR(" L", lpq_len);
  1454. #endif
  1455. SERIAL_EOL;
  1456. }
  1457. }
  1458. else
  1459. #endif // HOTENDS > 1
  1460. // !forReplay || HOTENDS == 1
  1461. {
  1462. CONFIG_ECHO_START;
  1463. SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
  1464. SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
  1465. SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
  1466. #if ENABLED(PID_EXTRUSION_SCALING)
  1467. SERIAL_ECHOPAIR(" C", PID_PARAM(Kc, 0));
  1468. SERIAL_ECHOPAIR(" L", lpq_len);
  1469. #endif
  1470. SERIAL_EOL;
  1471. }
  1472. #endif // PIDTEMP
  1473. #if ENABLED(PIDTEMPBED)
  1474. CONFIG_ECHO_START;
  1475. SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
  1476. SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
  1477. SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
  1478. SERIAL_EOL;
  1479. #endif
  1480. #endif // PIDTEMP || PIDTEMPBED
  1481. #if HAS_LCD_CONTRAST
  1482. if (!forReplay) {
  1483. CONFIG_ECHO_START;
  1484. SERIAL_ECHOLNPGM("LCD Contrast:");
  1485. }
  1486. CONFIG_ECHO_START;
  1487. SERIAL_ECHOLNPAIR(" M250 C", lcd_contrast);
  1488. #endif
  1489. #if ENABLED(FWRETRACT)
  1490. if (!forReplay) {
  1491. CONFIG_ECHO_START;
  1492. SERIAL_ECHOLNPGM("Retract: S<length> F<units/m> Z<lift>");
  1493. }
  1494. CONFIG_ECHO_START;
  1495. SERIAL_ECHOPAIR(" M207 S", LINEAR_UNIT(retract_length));
  1496. #if EXTRUDERS > 1
  1497. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_length_swap));
  1498. #endif
  1499. SERIAL_ECHOPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_feedrate_mm_s)));
  1500. SERIAL_ECHOLNPAIR(" Z", LINEAR_UNIT(retract_zlift));
  1501. if (!forReplay) {
  1502. CONFIG_ECHO_START;
  1503. SERIAL_ECHOLNPGM("Recover: S<length> F<units/m>");
  1504. }
  1505. CONFIG_ECHO_START;
  1506. SERIAL_ECHOPAIR(" M208 S", LINEAR_UNIT(retract_recover_length));
  1507. #if EXTRUDERS > 1
  1508. SERIAL_ECHOPAIR(" W", LINEAR_UNIT(retract_recover_length_swap));
  1509. #endif
  1510. SERIAL_ECHOLNPAIR(" F", MMS_TO_MMM(LINEAR_UNIT(retract_recover_feedrate_mm_s)));
  1511. if (!forReplay) {
  1512. CONFIG_ECHO_START;
  1513. SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
  1514. }
  1515. CONFIG_ECHO_START;
  1516. SERIAL_ECHOLNPAIR(" M209 S", autoretract_enabled ? 1 : 0);
  1517. #endif // FWRETRACT
  1518. /**
  1519. * Auto Bed Leveling
  1520. */
  1521. #if HAS_BED_PROBE
  1522. if (!forReplay) {
  1523. CONFIG_ECHO_START;
  1524. SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
  1525. }
  1526. CONFIG_ECHO_START;
  1527. SERIAL_ECHOLNPAIR(" M851 Z", LINEAR_UNIT(zprobe_zoffset));
  1528. #endif
  1529. /**
  1530. * TMC2130 stepper driver current
  1531. */
  1532. #if ENABLED(HAVE_TMC2130)
  1533. if (!forReplay) {
  1534. CONFIG_ECHO_START;
  1535. SERIAL_ECHOLNPGM("Stepper driver current:");
  1536. }
  1537. CONFIG_ECHO_START;
  1538. SERIAL_ECHO(" M906");
  1539. #if ENABLED(X_IS_TMC2130)
  1540. SERIAL_ECHOPAIR(" X", stepperX.getCurrent());
  1541. #endif
  1542. #if ENABLED(Y_IS_TMC2130)
  1543. SERIAL_ECHOPAIR(" Y", stepperY.getCurrent());
  1544. #endif
  1545. #if ENABLED(Z_IS_TMC2130)
  1546. SERIAL_ECHOPAIR(" Z", stepperZ.getCurrent());
  1547. #endif
  1548. #if ENABLED(X2_IS_TMC2130)
  1549. SERIAL_ECHOPAIR(" X2", stepperX2.getCurrent());
  1550. #endif
  1551. #if ENABLED(Y2_IS_TMC2130)
  1552. SERIAL_ECHOPAIR(" Y2", stepperY2.getCurrent());
  1553. #endif
  1554. #if ENABLED(Z2_IS_TMC2130)
  1555. SERIAL_ECHOPAIR(" Z2", stepperZ2.getCurrent());
  1556. #endif
  1557. #if ENABLED(E0_IS_TMC2130)
  1558. SERIAL_ECHOPAIR(" E0", stepperE0.getCurrent());
  1559. #endif
  1560. #if ENABLED(E1_IS_TMC2130)
  1561. SERIAL_ECHOPAIR(" E1", stepperE1.getCurrent());
  1562. #endif
  1563. #if ENABLED(E2_IS_TMC2130)
  1564. SERIAL_ECHOPAIR(" E2", stepperE2.getCurrent());
  1565. #endif
  1566. #if ENABLED(E3_IS_TMC2130)
  1567. SERIAL_ECHOPAIR(" E3", stepperE3.getCurrent());
  1568. #endif
  1569. SERIAL_EOL;
  1570. #endif
  1571. /**
  1572. * Linear Advance
  1573. */
  1574. #if ENABLED(LIN_ADVANCE)
  1575. if (!forReplay) {
  1576. CONFIG_ECHO_START;
  1577. SERIAL_ECHOLNPGM("Linear Advance:");
  1578. }
  1579. CONFIG_ECHO_START;
  1580. SERIAL_ECHOPAIR(" M900 K", planner.extruder_advance_k);
  1581. SERIAL_ECHOLNPAIR(" R", planner.advance_ed_ratio);
  1582. #endif
  1583. }
  1584. #endif // !DISABLE_M503