My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

Marlin_main.cpp 190KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #ifdef AUTO_BED_LEVELING_GRID
  27. #include "qr_solve.h"
  28. #endif
  29. #endif // ENABLE_AUTO_BED_LEVELING
  30. #define SERVO_LEVELING (defined(ENABLE_AUTO_BED_LEVELING) && PROBE_SERVO_DEACTIVATION_DELAY > 0)
  31. #ifdef MESH_BED_LEVELING
  32. #include "mesh_bed_leveling.h"
  33. #endif
  34. #include "ultralcd.h"
  35. #include "planner.h"
  36. #include "stepper.h"
  37. #include "temperature.h"
  38. #include "motion_control.h"
  39. #include "cardreader.h"
  40. #include "watchdog.h"
  41. #include "configuration_store.h"
  42. #include "language.h"
  43. #include "pins_arduino.h"
  44. #include "math.h"
  45. #ifdef BLINKM
  46. #include "blinkm.h"
  47. #include "Wire.h"
  48. #endif
  49. #if NUM_SERVOS > 0
  50. #include "Servo.h"
  51. #endif
  52. #if HAS_DIGIPOTSS
  53. #include <SPI.h>
  54. #endif
  55. /**
  56. * Look here for descriptions of G-codes:
  57. * - http://linuxcnc.org/handbook/gcode/g-code.html
  58. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  59. *
  60. * Help us document these G-codes online:
  61. * - http://reprap.org/wiki/G-code
  62. * - https://github.com/MarlinFirmware/Marlin/wiki/Marlin-G-Code
  63. */
  64. /**
  65. * Implemented Codes
  66. * -------------------
  67. *
  68. * "G" Codes
  69. *
  70. * G0 -> G1
  71. * G1 - Coordinated Movement X Y Z E
  72. * G2 - CW ARC
  73. * G3 - CCW ARC
  74. * G4 - Dwell S<seconds> or P<milliseconds>
  75. * G10 - retract filament according to settings of M207
  76. * G11 - retract recover filament according to settings of M208
  77. * G28 - Home one or more axes
  78. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  79. * G30 - Single Z Probe, probes bed at current XY location.
  80. * G31 - Dock sled (Z_PROBE_SLED only)
  81. * G32 - Undock sled (Z_PROBE_SLED only)
  82. * G90 - Use Absolute Coordinates
  83. * G91 - Use Relative Coordinates
  84. * G92 - Set current position to coordinates given
  85. *
  86. * "M" Codes
  87. *
  88. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  89. * M1 - Same as M0
  90. * M17 - Enable/Power all stepper motors
  91. * M18 - Disable all stepper motors; same as M84
  92. * M20 - List SD card
  93. * M21 - Init SD card
  94. * M22 - Release SD card
  95. * M23 - Select SD file (M23 filename.g)
  96. * M24 - Start/resume SD print
  97. * M25 - Pause SD print
  98. * M26 - Set SD position in bytes (M26 S12345)
  99. * M27 - Report SD print status
  100. * M28 - Start SD write (M28 filename.g)
  101. * M29 - Stop SD write
  102. * M30 - Delete file from SD (M30 filename.g)
  103. * M31 - Output time since last M109 or SD card start to serial
  104. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  105. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  106. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  107. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  108. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  109. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  110. * M80 - Turn on Power Supply
  111. * M81 - Turn off Power Supply
  112. * M82 - Set E codes absolute (default)
  113. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  114. * M84 - Disable steppers until next move,
  115. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  116. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  117. * M92 - Set axis_steps_per_unit - same syntax as G92
  118. * M104 - Set extruder target temp
  119. * M105 - Read current temp
  120. * M106 - Fan on
  121. * M107 - Fan off
  122. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  123. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  124. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  125. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  126. * M112 - Emergency stop
  127. * M114 - Output current position to serial port
  128. * M115 - Capabilities string
  129. * M117 - display message
  130. * M119 - Output Endstop status to serial port
  131. * M120 - Enable endstop detection
  132. * M121 - Disable endstop detection
  133. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  134. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  135. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  136. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  137. * M140 - Set bed target temp
  138. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  139. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  140. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  141. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  142. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  143. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  144. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  145. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  146. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  147. * M206 - Set additional homing offset
  148. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  149. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  150. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  151. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  152. * M220 - Set speed factor override percentage: S<factor in percent>
  153. * M221 - Set extrude factor override percentage: S<factor in percent>
  154. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  155. * M240 - Trigger a camera to take a photograph
  156. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  157. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  158. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  159. * M301 - Set PID parameters P I and D
  160. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  161. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  162. * M304 - Set bed PID parameters P I and D
  163. * M380 - Activate solenoid on active extruder
  164. * M381 - Disable all solenoids
  165. * M400 - Finish all moves
  166. * M401 - Lower z-probe if present
  167. * M402 - Raise z-probe if present
  168. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  169. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  170. * M406 - Turn off Filament Sensor extrusion control
  171. * M407 - Display measured filament diameter
  172. * M410 - Quickstop. Abort all the planned moves
  173. * M500 - Store parameters in EEPROM
  174. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  175. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  176. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  177. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  178. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  179. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  180. * M666 - Set delta endstop adjustment
  181. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  182. * M907 - Set digital trimpot motor current using axis codes.
  183. * M908 - Control digital trimpot directly.
  184. * M350 - Set microstepping mode.
  185. * M351 - Toggle MS1 MS2 pins directly.
  186. *
  187. * ************ SCARA Specific - This can change to suit future G-code regulations
  188. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  189. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  190. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  191. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  192. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  193. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  194. * ************* SCARA End ***************
  195. *
  196. * M928 - Start SD logging (M928 filename.g) - ended by M29
  197. * M999 - Restart after being stopped by error
  198. */
  199. #ifdef SDSUPPORT
  200. CardReader card;
  201. #endif
  202. bool Running = true;
  203. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  204. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  205. float current_position[NUM_AXIS] = { 0.0 };
  206. static float destination[NUM_AXIS] = { 0.0 };
  207. bool axis_known_position[3] = { false };
  208. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  209. static int cmd_queue_index_r = 0;
  210. static int cmd_queue_index_w = 0;
  211. static int commands_in_queue = 0;
  212. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  213. float homing_feedrate[] = HOMING_FEEDRATE;
  214. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  215. int feedrate_multiplier = 100; //100->1 200->2
  216. int saved_feedrate_multiplier;
  217. int extruder_multiply[EXTRUDERS] = ARRAY_BY_EXTRUDERS(100, 100, 100, 100);
  218. bool volumetric_enabled = false;
  219. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA, DEFAULT_NOMINAL_FILAMENT_DIA);
  220. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS(1.0, 1.0, 1.0, 1.0);
  221. float home_offset[3] = { 0 };
  222. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  223. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  224. uint8_t active_extruder = 0;
  225. int fanSpeed = 0;
  226. bool cancel_heatup = false;
  227. const char errormagic[] PROGMEM = "Error:";
  228. const char echomagic[] PROGMEM = "echo:";
  229. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  230. static float offset[3] = { 0 };
  231. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  232. static char serial_char;
  233. static int serial_count = 0;
  234. static boolean comment_mode = false;
  235. static char *strchr_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  236. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  237. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  238. // Inactivity shutdown
  239. millis_t previous_cmd_ms = 0;
  240. static millis_t max_inactive_time = 0;
  241. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  242. millis_t print_job_start_ms = 0; ///< Print job start time
  243. millis_t print_job_stop_ms = 0; ///< Print job stop time
  244. static uint8_t target_extruder;
  245. bool no_wait_for_cooling = true;
  246. bool target_direction;
  247. #ifdef ENABLE_AUTO_BED_LEVELING
  248. int xy_travel_speed = XY_TRAVEL_SPEED;
  249. float zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  250. #endif
  251. #if defined(Z_DUAL_ENDSTOPS) && !defined(DELTA)
  252. float z_endstop_adj = 0;
  253. #endif
  254. // Extruder offsets
  255. #if EXTRUDERS > 1
  256. #ifndef EXTRUDER_OFFSET_X
  257. #define EXTRUDER_OFFSET_X { 0 }
  258. #endif
  259. #ifndef EXTRUDER_OFFSET_Y
  260. #define EXTRUDER_OFFSET_Y { 0 }
  261. #endif
  262. float extruder_offset[][EXTRUDERS] = {
  263. EXTRUDER_OFFSET_X,
  264. EXTRUDER_OFFSET_Y
  265. #ifdef DUAL_X_CARRIAGE
  266. , { 0 } // supports offsets in XYZ plane
  267. #endif
  268. };
  269. #endif
  270. #ifdef SERVO_ENDSTOPS
  271. int servo_endstops[] = SERVO_ENDSTOPS;
  272. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  273. #endif
  274. #ifdef BARICUDA
  275. int ValvePressure = 0;
  276. int EtoPPressure = 0;
  277. #endif
  278. #ifdef FWRETRACT
  279. bool autoretract_enabled = false;
  280. bool retracted[EXTRUDERS] = { false };
  281. bool retracted_swap[EXTRUDERS] = { false };
  282. float retract_length = RETRACT_LENGTH;
  283. float retract_length_swap = RETRACT_LENGTH_SWAP;
  284. float retract_feedrate = RETRACT_FEEDRATE;
  285. float retract_zlift = RETRACT_ZLIFT;
  286. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  287. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  288. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  289. #endif // FWRETRACT
  290. #if defined(ULTIPANEL) && HAS_POWER_SWITCH
  291. bool powersupply =
  292. #ifdef PS_DEFAULT_OFF
  293. false
  294. #else
  295. true
  296. #endif
  297. ;
  298. #endif
  299. #ifdef DELTA
  300. float delta[3] = { 0 };
  301. #define SIN_60 0.8660254037844386
  302. #define COS_60 0.5
  303. float endstop_adj[3] = { 0 };
  304. // these are the default values, can be overriden with M665
  305. float delta_radius = DELTA_RADIUS;
  306. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  307. float delta_tower1_y = -COS_60 * delta_radius;
  308. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  309. float delta_tower2_y = -COS_60 * delta_radius;
  310. float delta_tower3_x = 0; // back middle tower
  311. float delta_tower3_y = delta_radius;
  312. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  313. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  314. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  315. #ifdef ENABLE_AUTO_BED_LEVELING
  316. int delta_grid_spacing[2] = { 0, 0 };
  317. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  318. #endif
  319. #else
  320. static bool home_all_axis = true;
  321. #endif
  322. #ifdef SCARA
  323. static float delta[3] = { 0 };
  324. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  325. #endif
  326. #ifdef FILAMENT_SENSOR
  327. //Variables for Filament Sensor input
  328. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  329. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  330. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  331. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  332. int delay_index1 = 0; //index into ring buffer
  333. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  334. float delay_dist = 0; //delay distance counter
  335. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  336. #endif
  337. #ifdef FILAMENT_RUNOUT_SENSOR
  338. static bool filrunoutEnqueued = false;
  339. #endif
  340. #ifdef SDSUPPORT
  341. static bool fromsd[BUFSIZE];
  342. #endif
  343. #if NUM_SERVOS > 0
  344. Servo servo[NUM_SERVOS];
  345. #endif
  346. #ifdef CHDK
  347. unsigned long chdkHigh = 0;
  348. boolean chdkActive = false;
  349. #endif
  350. //===========================================================================
  351. //================================ Functions ================================
  352. //===========================================================================
  353. void get_arc_coordinates();
  354. bool setTargetedHotend(int code);
  355. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  356. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  357. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  358. #ifdef PREVENT_DANGEROUS_EXTRUDE
  359. float extrude_min_temp = EXTRUDE_MINTEMP;
  360. #endif
  361. #ifdef SDSUPPORT
  362. #include "SdFatUtil.h"
  363. int freeMemory() { return SdFatUtil::FreeRam(); }
  364. #else
  365. extern "C" {
  366. extern unsigned int __bss_end;
  367. extern unsigned int __heap_start;
  368. extern void *__brkval;
  369. int freeMemory() {
  370. int free_memory;
  371. if ((int)__brkval == 0)
  372. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  373. else
  374. free_memory = ((int)&free_memory) - ((int)__brkval);
  375. return free_memory;
  376. }
  377. }
  378. #endif //!SDSUPPORT
  379. /**
  380. * Inject the next command from the command queue, when possible
  381. * Return false only if no command was pending
  382. */
  383. static bool drain_queued_commands_P() {
  384. if (!queued_commands_P) return false;
  385. // Get the next 30 chars from the sequence of gcodes to run
  386. char cmd[30];
  387. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  388. cmd[sizeof(cmd) - 1] = '\0';
  389. // Look for the end of line, or the end of sequence
  390. size_t i = 0;
  391. char c;
  392. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  393. cmd[i] = '\0';
  394. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  395. if (c)
  396. queued_commands_P += i + 1; // move to next command
  397. else
  398. queued_commands_P = NULL; // will have no more commands in the sequence
  399. }
  400. return true;
  401. }
  402. /**
  403. * Record one or many commands to run from program memory.
  404. * Aborts the current queue, if any.
  405. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  406. */
  407. void enqueuecommands_P(const char* pgcode) {
  408. queued_commands_P = pgcode;
  409. drain_queued_commands_P(); // first command executed asap (when possible)
  410. }
  411. /**
  412. * Copy a command directly into the main command buffer, from RAM.
  413. *
  414. * This is done in a non-safe way and needs a rework someday.
  415. * Returns false if it doesn't add any command
  416. */
  417. bool enqueuecommand(const char *cmd) {
  418. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  419. // This is dangerous if a mixing of serial and this happens
  420. char *command = command_queue[cmd_queue_index_w];
  421. strcpy(command, cmd);
  422. SERIAL_ECHO_START;
  423. SERIAL_ECHOPGM(MSG_Enqueueing);
  424. SERIAL_ECHO(command);
  425. SERIAL_ECHOLNPGM("\"");
  426. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  427. commands_in_queue++;
  428. return true;
  429. }
  430. void setup_killpin() {
  431. #if HAS_KILL
  432. SET_INPUT(KILL_PIN);
  433. WRITE(KILL_PIN, HIGH);
  434. #endif
  435. }
  436. void setup_filrunoutpin() {
  437. #if HAS_FILRUNOUT
  438. pinMode(FILRUNOUT_PIN, INPUT);
  439. #ifdef ENDSTOPPULLUP_FIL_RUNOUT
  440. WRITE(FILLRUNOUT_PIN, HIGH);
  441. #endif
  442. #endif
  443. }
  444. // Set home pin
  445. void setup_homepin(void) {
  446. #if HAS_HOME
  447. SET_INPUT(HOME_PIN);
  448. WRITE(HOME_PIN, HIGH);
  449. #endif
  450. }
  451. void setup_photpin() {
  452. #if HAS_PHOTOGRAPH
  453. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  454. #endif
  455. }
  456. void setup_powerhold() {
  457. #if HAS_SUICIDE
  458. OUT_WRITE(SUICIDE_PIN, HIGH);
  459. #endif
  460. #if HAS_POWER_SWITCH
  461. #ifdef PS_DEFAULT_OFF
  462. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  463. #else
  464. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  465. #endif
  466. #endif
  467. }
  468. void suicide() {
  469. #if HAS_SUICIDE
  470. OUT_WRITE(SUICIDE_PIN, LOW);
  471. #endif
  472. }
  473. void servo_init() {
  474. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  475. servo[0].attach(SERVO0_PIN);
  476. #endif
  477. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  478. servo[1].attach(SERVO1_PIN);
  479. #endif
  480. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  481. servo[2].attach(SERVO2_PIN);
  482. #endif
  483. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  484. servo[3].attach(SERVO3_PIN);
  485. #endif
  486. // Set position of Servo Endstops that are defined
  487. #ifdef SERVO_ENDSTOPS
  488. for (int i = 0; i < 3; i++)
  489. if (servo_endstops[i] >= 0)
  490. servo[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  491. #endif
  492. #if SERVO_LEVELING
  493. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  494. servo[servo_endstops[Z_AXIS]].detach();
  495. #endif
  496. }
  497. /**
  498. * Marlin entry-point: Set up before the program loop
  499. * - Set up the kill pin, filament runout, power hold
  500. * - Start the serial port
  501. * - Print startup messages and diagnostics
  502. * - Get EEPROM or default settings
  503. * - Initialize managers for:
  504. * • temperature
  505. * • planner
  506. * • watchdog
  507. * • stepper
  508. * • photo pin
  509. * • servos
  510. * • LCD controller
  511. * • Digipot I2C
  512. * • Z probe sled
  513. * • status LEDs
  514. */
  515. void setup() {
  516. setup_killpin();
  517. setup_filrunoutpin();
  518. setup_powerhold();
  519. MYSERIAL.begin(BAUDRATE);
  520. SERIAL_PROTOCOLLNPGM("start");
  521. SERIAL_ECHO_START;
  522. // Check startup - does nothing if bootloader sets MCUSR to 0
  523. byte mcu = MCUSR;
  524. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  525. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  526. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  527. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  528. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  529. MCUSR = 0;
  530. SERIAL_ECHOPGM(MSG_MARLIN);
  531. SERIAL_ECHOLNPGM(" " STRING_VERSION);
  532. #ifdef STRING_VERSION_CONFIG_H
  533. #ifdef STRING_CONFIG_H_AUTHOR
  534. SERIAL_ECHO_START;
  535. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  536. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  537. SERIAL_ECHOPGM(MSG_AUTHOR);
  538. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  539. SERIAL_ECHOPGM("Compiled: ");
  540. SERIAL_ECHOLNPGM(__DATE__);
  541. #endif // STRING_CONFIG_H_AUTHOR
  542. #endif // STRING_VERSION_CONFIG_H
  543. SERIAL_ECHO_START;
  544. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  545. SERIAL_ECHO(freeMemory());
  546. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  547. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  548. #ifdef SDSUPPORT
  549. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  550. #endif
  551. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  552. Config_RetrieveSettings();
  553. tp_init(); // Initialize temperature loop
  554. plan_init(); // Initialize planner;
  555. watchdog_init();
  556. st_init(); // Initialize stepper, this enables interrupts!
  557. setup_photpin();
  558. servo_init();
  559. lcd_init();
  560. _delay_ms(1000); // wait 1sec to display the splash screen
  561. #if HAS_CONTROLLERFAN
  562. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  563. #endif
  564. #ifdef DIGIPOT_I2C
  565. digipot_i2c_init();
  566. #endif
  567. #ifdef Z_PROBE_SLED
  568. pinMode(SERVO0_PIN, OUTPUT);
  569. digitalWrite(SERVO0_PIN, LOW); // turn it off
  570. #endif // Z_PROBE_SLED
  571. setup_homepin();
  572. #ifdef STAT_LED_RED
  573. pinMode(STAT_LED_RED, OUTPUT);
  574. digitalWrite(STAT_LED_RED, LOW); // turn it off
  575. #endif
  576. #ifdef STAT_LED_BLUE
  577. pinMode(STAT_LED_BLUE, OUTPUT);
  578. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  579. #endif
  580. }
  581. /**
  582. * The main Marlin program loop
  583. *
  584. * - Save or log commands to SD
  585. * - Process available commands (if not saving)
  586. * - Call heater manager
  587. * - Call inactivity manager
  588. * - Call endstop manager
  589. * - Call LCD update
  590. */
  591. void loop() {
  592. if (commands_in_queue < BUFSIZE - 1) get_command();
  593. #ifdef SDSUPPORT
  594. card.checkautostart(false);
  595. #endif
  596. if (commands_in_queue) {
  597. #ifdef SDSUPPORT
  598. if (card.saving) {
  599. char *command = command_queue[cmd_queue_index_r];
  600. if (strstr_P(command, PSTR("M29"))) {
  601. // M29 closes the file
  602. card.closefile();
  603. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  604. }
  605. else {
  606. // Write the string from the read buffer to SD
  607. card.write_command(command);
  608. if (card.logging)
  609. process_commands(); // The card is saving because it's logging
  610. else
  611. SERIAL_PROTOCOLLNPGM(MSG_OK);
  612. }
  613. }
  614. else
  615. process_commands();
  616. #else
  617. process_commands();
  618. #endif // SDSUPPORT
  619. commands_in_queue--;
  620. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  621. }
  622. // Check heater every n milliseconds
  623. manage_heater();
  624. manage_inactivity();
  625. checkHitEndstops();
  626. lcd_update();
  627. }
  628. /**
  629. * Add to the circular command queue the next command from:
  630. * - The command-injection queue (queued_commands_P)
  631. * - The active serial input (usually USB)
  632. * - The SD card file being actively printed
  633. */
  634. void get_command() {
  635. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  636. while (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  637. serial_char = MYSERIAL.read();
  638. if (serial_char == '\n' || serial_char == '\r' ||
  639. serial_count >= (MAX_CMD_SIZE - 1)
  640. ) {
  641. // end of line == end of comment
  642. comment_mode = false;
  643. if (!serial_count) return; // shortcut for empty lines
  644. char *command = command_queue[cmd_queue_index_w];
  645. command[serial_count] = 0; // terminate string
  646. #ifdef SDSUPPORT
  647. fromsd[cmd_queue_index_w] = false;
  648. #endif
  649. if (strchr(command, 'N') != NULL) {
  650. strchr_pointer = strchr(command, 'N');
  651. gcode_N = (strtol(strchr_pointer + 1, NULL, 10));
  652. if (gcode_N != gcode_LastN + 1 && strstr_P(command, PSTR("M110")) == NULL) {
  653. SERIAL_ERROR_START;
  654. SERIAL_ERRORPGM(MSG_ERR_LINE_NO1);
  655. SERIAL_ERROR(gcode_LastN + 1);
  656. SERIAL_ERRORPGM(MSG_ERR_LINE_NO2);
  657. SERIAL_ERRORLN(gcode_N);
  658. FlushSerialRequestResend();
  659. serial_count = 0;
  660. return;
  661. }
  662. if (strchr(command, '*') != NULL) {
  663. byte checksum = 0;
  664. byte count = 0;
  665. while (command[count] != '*') checksum ^= command[count++];
  666. strchr_pointer = strchr(command, '*');
  667. if (strtol(strchr_pointer + 1, NULL, 10) != checksum) {
  668. SERIAL_ERROR_START;
  669. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  670. SERIAL_ERRORLN(gcode_LastN);
  671. FlushSerialRequestResend();
  672. serial_count = 0;
  673. return;
  674. }
  675. //if no errors, continue parsing
  676. }
  677. else {
  678. SERIAL_ERROR_START;
  679. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  680. SERIAL_ERRORLN(gcode_LastN);
  681. FlushSerialRequestResend();
  682. serial_count = 0;
  683. return;
  684. }
  685. gcode_LastN = gcode_N;
  686. //if no errors, continue parsing
  687. }
  688. else { // if we don't receive 'N' but still see '*'
  689. if ((strchr(command, '*') != NULL)) {
  690. SERIAL_ERROR_START;
  691. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  692. SERIAL_ERRORLN(gcode_LastN);
  693. serial_count = 0;
  694. return;
  695. }
  696. }
  697. if (strchr(command, 'G') != NULL) {
  698. strchr_pointer = strchr(command, 'G');
  699. switch (strtol(strchr_pointer + 1, NULL, 10)) {
  700. case 0:
  701. case 1:
  702. case 2:
  703. case 3:
  704. if (IsStopped()) {
  705. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  706. LCD_MESSAGEPGM(MSG_STOPPED);
  707. }
  708. break;
  709. default:
  710. break;
  711. }
  712. }
  713. // If command was e-stop process now
  714. if (strcmp(command, "M112") == 0) kill();
  715. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  716. commands_in_queue += 1;
  717. serial_count = 0; //clear buffer
  718. }
  719. else if (serial_char == '\\') { // Handle escapes
  720. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  721. // if we have one more character, copy it over
  722. serial_char = MYSERIAL.read();
  723. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  724. }
  725. // otherwise do nothing
  726. }
  727. else { // its not a newline, carriage return or escape char
  728. if (serial_char == ';') comment_mode = true;
  729. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  730. }
  731. }
  732. #ifdef SDSUPPORT
  733. if (!card.sdprinting || serial_count) return;
  734. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  735. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  736. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  737. static bool stop_buffering = false;
  738. if (commands_in_queue == 0) stop_buffering = false;
  739. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  740. int16_t n = card.get();
  741. serial_char = (char)n;
  742. if (serial_char == '\n' || serial_char == '\r' ||
  743. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  744. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  745. ) {
  746. if (card.eof()) {
  747. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  748. print_job_stop_ms = millis();
  749. char time[30];
  750. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  751. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  752. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  753. SERIAL_ECHO_START;
  754. SERIAL_ECHOLN(time);
  755. lcd_setstatus(time, true);
  756. card.printingHasFinished();
  757. card.checkautostart(true);
  758. }
  759. if (serial_char == '#') stop_buffering = true;
  760. if (!serial_count) {
  761. comment_mode = false; //for new command
  762. return; //if empty line
  763. }
  764. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  765. // if (!comment_mode) {
  766. fromsd[cmd_queue_index_w] = true;
  767. commands_in_queue += 1;
  768. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  769. // }
  770. comment_mode = false; //for new command
  771. serial_count = 0; //clear buffer
  772. }
  773. else {
  774. if (serial_char == ';') comment_mode = true;
  775. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  776. }
  777. }
  778. #endif // SDSUPPORT
  779. }
  780. bool code_has_value() {
  781. int i = 1;
  782. char c = strchr_pointer[i];
  783. if (c == '-' || c == '+') c = strchr_pointer[++i];
  784. if (c == '.') c = strchr_pointer[++i];
  785. return (c >= '0' && c <= '9');
  786. }
  787. float code_value() {
  788. float ret;
  789. char *e = strchr(strchr_pointer, 'E');
  790. if (e) {
  791. *e = 0;
  792. ret = strtod(strchr_pointer+1, NULL);
  793. *e = 'E';
  794. }
  795. else
  796. ret = strtod(strchr_pointer+1, NULL);
  797. return ret;
  798. }
  799. long code_value_long() { return strtol(strchr_pointer + 1, NULL, 10); }
  800. int16_t code_value_short() { return (int16_t)strtol(strchr_pointer + 1, NULL, 10); }
  801. bool code_seen(char code) {
  802. strchr_pointer = strchr(command_queue[cmd_queue_index_r], code);
  803. return (strchr_pointer != NULL); //Return True if a character was found
  804. }
  805. #define DEFINE_PGM_READ_ANY(type, reader) \
  806. static inline type pgm_read_any(const type *p) \
  807. { return pgm_read_##reader##_near(p); }
  808. DEFINE_PGM_READ_ANY(float, float);
  809. DEFINE_PGM_READ_ANY(signed char, byte);
  810. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  811. static const PROGMEM type array##_P[3] = \
  812. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  813. static inline type array(int axis) \
  814. { return pgm_read_any(&array##_P[axis]); }
  815. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  816. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  817. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  818. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  819. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  820. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  821. #ifdef DUAL_X_CARRIAGE
  822. #define DXC_FULL_CONTROL_MODE 0
  823. #define DXC_AUTO_PARK_MODE 1
  824. #define DXC_DUPLICATION_MODE 2
  825. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  826. static float x_home_pos(int extruder) {
  827. if (extruder == 0)
  828. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  829. else
  830. // In dual carriage mode the extruder offset provides an override of the
  831. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  832. // This allow soft recalibration of the second extruder offset position without firmware reflash
  833. // (through the M218 command).
  834. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  835. }
  836. static int x_home_dir(int extruder) {
  837. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  838. }
  839. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  840. static bool active_extruder_parked = false; // used in mode 1 & 2
  841. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  842. static millis_t delayed_move_time = 0; // used in mode 1
  843. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  844. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  845. bool extruder_duplication_enabled = false; // used in mode 2
  846. #endif //DUAL_X_CARRIAGE
  847. static void axis_is_at_home(int axis) {
  848. #ifdef DUAL_X_CARRIAGE
  849. if (axis == X_AXIS) {
  850. if (active_extruder != 0) {
  851. current_position[X_AXIS] = x_home_pos(active_extruder);
  852. min_pos[X_AXIS] = X2_MIN_POS;
  853. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  854. return;
  855. }
  856. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  857. float xoff = home_offset[X_AXIS];
  858. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  859. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  860. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  861. return;
  862. }
  863. }
  864. #endif
  865. #ifdef SCARA
  866. if (axis == X_AXIS || axis == Y_AXIS) {
  867. float homeposition[3];
  868. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  869. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  870. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  871. // Works out real Homeposition angles using inverse kinematics,
  872. // and calculates homing offset using forward kinematics
  873. calculate_delta(homeposition);
  874. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  875. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  876. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  877. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  878. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  879. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  880. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  881. calculate_SCARA_forward_Transform(delta);
  882. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  883. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  884. current_position[axis] = delta[axis];
  885. // SCARA home positions are based on configuration since the actual limits are determined by the
  886. // inverse kinematic transform.
  887. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  888. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  889. }
  890. else
  891. #endif
  892. {
  893. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  894. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  895. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  896. #if defined(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  897. if (axis == Z_AXIS) current_position[Z_AXIS] += zprobe_zoffset;
  898. #endif
  899. }
  900. }
  901. /**
  902. * Some planner shorthand inline functions
  903. */
  904. inline void set_homing_bump_feedrate(AxisEnum axis) {
  905. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  906. if (homing_bump_divisor[axis] >= 1)
  907. feedrate = homing_feedrate[axis] / homing_bump_divisor[axis];
  908. else {
  909. feedrate = homing_feedrate[axis] / 10;
  910. SERIAL_ECHOLN("Warning: The Homing Bump Feedrate Divisor cannot be less than 1");
  911. }
  912. }
  913. inline void line_to_current_position() {
  914. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  915. }
  916. inline void line_to_z(float zPosition) {
  917. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  918. }
  919. inline void line_to_destination(float mm_m) {
  920. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  921. }
  922. inline void line_to_destination() {
  923. line_to_destination(feedrate);
  924. }
  925. inline void sync_plan_position() {
  926. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  927. }
  928. #if defined(DELTA) || defined(SCARA)
  929. inline void sync_plan_position_delta() {
  930. calculate_delta(current_position);
  931. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  932. }
  933. #endif
  934. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  935. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  936. #ifdef ENABLE_AUTO_BED_LEVELING
  937. #ifdef DELTA
  938. /**
  939. * Calculate delta, start a line, and set current_position to destination
  940. */
  941. void prepare_move_raw() {
  942. refresh_cmd_timeout();
  943. calculate_delta(destination);
  944. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  945. set_current_to_destination();
  946. }
  947. #endif
  948. #ifdef AUTO_BED_LEVELING_GRID
  949. #ifndef DELTA
  950. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  951. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  952. planeNormal.debug("planeNormal");
  953. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  954. //bedLevel.debug("bedLevel");
  955. //plan_bed_level_matrix.debug("bed level before");
  956. //vector_3 uncorrected_position = plan_get_position_mm();
  957. //uncorrected_position.debug("position before");
  958. vector_3 corrected_position = plan_get_position();
  959. //corrected_position.debug("position after");
  960. current_position[X_AXIS] = corrected_position.x;
  961. current_position[Y_AXIS] = corrected_position.y;
  962. current_position[Z_AXIS] = corrected_position.z;
  963. sync_plan_position();
  964. }
  965. #endif // !DELTA
  966. #else // !AUTO_BED_LEVELING_GRID
  967. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  968. plan_bed_level_matrix.set_to_identity();
  969. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  970. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  971. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  972. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  973. if (planeNormal.z < 0) {
  974. planeNormal.x = -planeNormal.x;
  975. planeNormal.y = -planeNormal.y;
  976. planeNormal.z = -planeNormal.z;
  977. }
  978. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  979. vector_3 corrected_position = plan_get_position();
  980. current_position[X_AXIS] = corrected_position.x;
  981. current_position[Y_AXIS] = corrected_position.y;
  982. current_position[Z_AXIS] = corrected_position.z;
  983. sync_plan_position();
  984. }
  985. #endif // !AUTO_BED_LEVELING_GRID
  986. static void run_z_probe() {
  987. #ifdef DELTA
  988. float start_z = current_position[Z_AXIS];
  989. long start_steps = st_get_position(Z_AXIS);
  990. // move down slowly until you find the bed
  991. feedrate = homing_feedrate[Z_AXIS] / 4;
  992. destination[Z_AXIS] = -10;
  993. prepare_move_raw(); // this will also set_current_to_destination
  994. st_synchronize();
  995. endstops_hit_on_purpose(); // clear endstop hit flags
  996. // we have to let the planner know where we are right now as it is not where we said to go.
  997. long stop_steps = st_get_position(Z_AXIS);
  998. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  999. current_position[Z_AXIS] = mm;
  1000. sync_plan_position_delta();
  1001. #else // !DELTA
  1002. plan_bed_level_matrix.set_to_identity();
  1003. feedrate = homing_feedrate[Z_AXIS];
  1004. // move down until you find the bed
  1005. float zPosition = -10;
  1006. line_to_z(zPosition);
  1007. st_synchronize();
  1008. // we have to let the planner know where we are right now as it is not where we said to go.
  1009. zPosition = st_get_position_mm(Z_AXIS);
  1010. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1011. // move up the retract distance
  1012. zPosition += home_bump_mm(Z_AXIS);
  1013. line_to_z(zPosition);
  1014. st_synchronize();
  1015. endstops_hit_on_purpose(); // clear endstop hit flags
  1016. // move back down slowly to find bed
  1017. set_homing_bump_feedrate(Z_AXIS);
  1018. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1019. line_to_z(zPosition);
  1020. st_synchronize();
  1021. endstops_hit_on_purpose(); // clear endstop hit flags
  1022. // Get the current stepper position after bumping an endstop
  1023. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1024. sync_plan_position();
  1025. #endif // !DELTA
  1026. }
  1027. /**
  1028. * Plan a move to (X, Y, Z) and set the current_position
  1029. * The final current_position may not be the one that was requested
  1030. */
  1031. static void do_blocking_move_to(float x, float y, float z) {
  1032. float oldFeedRate = feedrate;
  1033. #ifdef DELTA
  1034. feedrate = XY_TRAVEL_SPEED;
  1035. destination[X_AXIS] = x;
  1036. destination[Y_AXIS] = y;
  1037. destination[Z_AXIS] = z;
  1038. prepare_move_raw(); // this will also set_current_to_destination
  1039. st_synchronize();
  1040. #else
  1041. feedrate = homing_feedrate[Z_AXIS];
  1042. current_position[Z_AXIS] = z;
  1043. line_to_current_position();
  1044. st_synchronize();
  1045. feedrate = xy_travel_speed;
  1046. current_position[X_AXIS] = x;
  1047. current_position[Y_AXIS] = y;
  1048. line_to_current_position();
  1049. st_synchronize();
  1050. #endif
  1051. feedrate = oldFeedRate;
  1052. }
  1053. static void setup_for_endstop_move() {
  1054. saved_feedrate = feedrate;
  1055. saved_feedrate_multiplier = feedrate_multiplier;
  1056. feedrate_multiplier = 100;
  1057. refresh_cmd_timeout();
  1058. enable_endstops(true);
  1059. }
  1060. static void clean_up_after_endstop_move() {
  1061. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1062. enable_endstops(false);
  1063. #endif
  1064. feedrate = saved_feedrate;
  1065. feedrate_multiplier = saved_feedrate_multiplier;
  1066. refresh_cmd_timeout();
  1067. }
  1068. static void deploy_z_probe() {
  1069. #ifdef SERVO_ENDSTOPS
  1070. // Engage Z Servo endstop if enabled
  1071. if (servo_endstops[Z_AXIS] >= 0) {
  1072. #if SERVO_LEVELING
  1073. servo[servo_endstops[Z_AXIS]].attach(0);
  1074. #endif
  1075. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  1076. #if SERVO_LEVELING
  1077. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1078. servo[servo_endstops[Z_AXIS]].detach();
  1079. #endif
  1080. }
  1081. #elif defined(Z_PROBE_ALLEN_KEY)
  1082. feedrate = homing_feedrate[X_AXIS];
  1083. // Move to the start position to initiate deployment
  1084. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_X;
  1085. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Y;
  1086. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_Z;
  1087. prepare_move_raw(); // this will also set_current_to_destination
  1088. // Home X to touch the belt
  1089. feedrate = homing_feedrate[X_AXIS]/10;
  1090. destination[X_AXIS] = 0;
  1091. prepare_move_raw(); // this will also set_current_to_destination
  1092. // Home Y for safety
  1093. feedrate = homing_feedrate[X_AXIS]/2;
  1094. destination[Y_AXIS] = 0;
  1095. prepare_move_raw(); // this will also set_current_to_destination
  1096. st_synchronize();
  1097. #ifdef Z_PROBE_ENDSTOP
  1098. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1099. if (z_probe_endstop)
  1100. #else
  1101. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1102. if (z_min_endstop)
  1103. #endif
  1104. {
  1105. if (IsRunning()) {
  1106. SERIAL_ERROR_START;
  1107. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1108. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1109. }
  1110. Stop();
  1111. }
  1112. #endif // Z_PROBE_ALLEN_KEY
  1113. }
  1114. static void stow_z_probe() {
  1115. #ifdef SERVO_ENDSTOPS
  1116. // Retract Z Servo endstop if enabled
  1117. if (servo_endstops[Z_AXIS] >= 0) {
  1118. #if Z_RAISE_AFTER_PROBING > 0
  1119. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1120. st_synchronize();
  1121. #endif
  1122. #if SERVO_LEVELING
  1123. servo[servo_endstops[Z_AXIS]].attach(0);
  1124. #endif
  1125. servo[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  1126. #if SERVO_LEVELING
  1127. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1128. servo[servo_endstops[Z_AXIS]].detach();
  1129. #endif
  1130. }
  1131. #elif defined(Z_PROBE_ALLEN_KEY)
  1132. // Move up for safety
  1133. feedrate = homing_feedrate[X_AXIS];
  1134. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1135. prepare_move_raw(); // this will also set_current_to_destination
  1136. // Move to the start position to initiate retraction
  1137. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_X;
  1138. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Y;
  1139. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_Z;
  1140. prepare_move_raw(); // this will also set_current_to_destination
  1141. // Move the nozzle down to push the probe into retracted position
  1142. feedrate = homing_feedrate[Z_AXIS]/10;
  1143. destination[Z_AXIS] = current_position[Z_AXIS] - Z_PROBE_ALLEN_KEY_STOW_DEPTH;
  1144. prepare_move_raw(); // this will also set_current_to_destination
  1145. // Move up for safety
  1146. feedrate = homing_feedrate[Z_AXIS]/2;
  1147. destination[Z_AXIS] = current_position[Z_AXIS] + Z_PROBE_ALLEN_KEY_STOW_DEPTH * 2;
  1148. prepare_move_raw(); // this will also set_current_to_destination
  1149. // Home XY for safety
  1150. feedrate = homing_feedrate[X_AXIS]/2;
  1151. destination[X_AXIS] = 0;
  1152. destination[Y_AXIS] = 0;
  1153. prepare_move_raw(); // this will also set_current_to_destination
  1154. st_synchronize();
  1155. #ifdef Z_PROBE_ENDSTOP
  1156. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1157. if (!z_probe_endstop)
  1158. #else
  1159. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1160. if (!z_min_endstop)
  1161. #endif
  1162. {
  1163. if (IsRunning()) {
  1164. SERIAL_ERROR_START;
  1165. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1166. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1167. }
  1168. Stop();
  1169. }
  1170. #endif
  1171. }
  1172. enum ProbeAction {
  1173. ProbeStay = 0,
  1174. ProbeDeploy = BIT(0),
  1175. ProbeStow = BIT(1),
  1176. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1177. };
  1178. // Probe bed height at position (x,y), returns the measured z value
  1179. static float probe_pt(float x, float y, float z_before, ProbeAction retract_action=ProbeDeployAndStow, int verbose_level=1) {
  1180. // move to right place
  1181. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_before); // this also updates current_position
  1182. do_blocking_move_to(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]); // this also updates current_position
  1183. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1184. if (retract_action & ProbeDeploy) deploy_z_probe();
  1185. #endif
  1186. run_z_probe();
  1187. float measured_z = current_position[Z_AXIS];
  1188. #if Z_RAISE_BETWEEN_PROBINGS > 0
  1189. if (retract_action == ProbeStay) {
  1190. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); // this also updates current_position
  1191. st_synchronize();
  1192. }
  1193. #endif
  1194. #if !defined(Z_PROBE_SLED) && !defined(Z_PROBE_ALLEN_KEY)
  1195. if (retract_action & ProbeStow) stow_z_probe();
  1196. #endif
  1197. if (verbose_level > 2) {
  1198. SERIAL_PROTOCOLPGM("Bed");
  1199. SERIAL_PROTOCOLPGM(" X: ");
  1200. SERIAL_PROTOCOL_F(x, 3);
  1201. SERIAL_PROTOCOLPGM(" Y: ");
  1202. SERIAL_PROTOCOL_F(y, 3);
  1203. SERIAL_PROTOCOLPGM(" Z: ");
  1204. SERIAL_PROTOCOL_F(measured_z, 3);
  1205. SERIAL_EOL;
  1206. }
  1207. return measured_z;
  1208. }
  1209. #ifdef DELTA
  1210. /**
  1211. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1212. */
  1213. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1214. if (bed_level[x][y] != 0.0) {
  1215. return; // Don't overwrite good values.
  1216. }
  1217. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1218. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1219. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1220. float median = c; // Median is robust (ignores outliers).
  1221. if (a < b) {
  1222. if (b < c) median = b;
  1223. if (c < a) median = a;
  1224. } else { // b <= a
  1225. if (c < b) median = b;
  1226. if (a < c) median = a;
  1227. }
  1228. bed_level[x][y] = median;
  1229. }
  1230. // Fill in the unprobed points (corners of circular print surface)
  1231. // using linear extrapolation, away from the center.
  1232. static void extrapolate_unprobed_bed_level() {
  1233. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1234. for (int y = 0; y <= half; y++) {
  1235. for (int x = 0; x <= half; x++) {
  1236. if (x + y < 3) continue;
  1237. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1238. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1239. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1240. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1241. }
  1242. }
  1243. }
  1244. // Print calibration results for plotting or manual frame adjustment.
  1245. static void print_bed_level() {
  1246. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1247. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1248. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1249. SERIAL_PROTOCOLCHAR(' ');
  1250. }
  1251. SERIAL_EOL;
  1252. }
  1253. }
  1254. // Reset calibration results to zero.
  1255. void reset_bed_level() {
  1256. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1257. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1258. bed_level[x][y] = 0.0;
  1259. }
  1260. }
  1261. }
  1262. #endif // DELTA
  1263. #endif // ENABLE_AUTO_BED_LEVELING
  1264. /**
  1265. * Home an individual axis
  1266. */
  1267. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1268. static void homeaxis(AxisEnum axis) {
  1269. #define HOMEAXIS_DO(LETTER) \
  1270. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1271. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1272. int axis_home_dir =
  1273. #ifdef DUAL_X_CARRIAGE
  1274. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1275. #endif
  1276. home_dir(axis);
  1277. // Set the axis position as setup for the move
  1278. current_position[axis] = 0;
  1279. sync_plan_position();
  1280. // Engage Servo endstop if enabled
  1281. #if defined(SERVO_ENDSTOPS) && !defined(Z_PROBE_SLED)
  1282. #if SERVO_LEVELING
  1283. if (axis == Z_AXIS) deploy_z_probe(); else
  1284. #endif
  1285. {
  1286. if (servo_endstops[axis] > -1)
  1287. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  1288. }
  1289. #endif // SERVO_ENDSTOPS && !Z_PROBE_SLED
  1290. #ifdef Z_DUAL_ENDSTOPS
  1291. if (axis == Z_AXIS) In_Homing_Process(true);
  1292. #endif
  1293. // Move towards the endstop until an endstop is triggered
  1294. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1295. feedrate = homing_feedrate[axis];
  1296. line_to_destination();
  1297. st_synchronize();
  1298. // Set the axis position as setup for the move
  1299. current_position[axis] = 0;
  1300. sync_plan_position();
  1301. enable_endstops(false); // Disable endstops while moving away
  1302. // Move away from the endstop by the axis HOME_BUMP_MM
  1303. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1304. line_to_destination();
  1305. st_synchronize();
  1306. enable_endstops(true); // Enable endstops for next homing move
  1307. // Slow down the feedrate for the next move
  1308. set_homing_bump_feedrate(axis);
  1309. // Move slowly towards the endstop until triggered
  1310. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1311. line_to_destination();
  1312. st_synchronize();
  1313. #ifdef Z_DUAL_ENDSTOPS
  1314. if (axis == Z_AXIS) {
  1315. float adj = fabs(z_endstop_adj);
  1316. bool lockZ1;
  1317. if (axis_home_dir > 0) {
  1318. adj = -adj;
  1319. lockZ1 = (z_endstop_adj > 0);
  1320. }
  1321. else
  1322. lockZ1 = (z_endstop_adj < 0);
  1323. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1324. sync_plan_position();
  1325. // Move to the adjusted endstop height
  1326. feedrate = homing_feedrate[axis];
  1327. destination[Z_AXIS] = adj;
  1328. line_to_destination();
  1329. st_synchronize();
  1330. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1331. In_Homing_Process(false);
  1332. } // Z_AXIS
  1333. #endif
  1334. #ifdef DELTA
  1335. // retrace by the amount specified in endstop_adj
  1336. if (endstop_adj[axis] * axis_home_dir < 0) {
  1337. enable_endstops(false); // Disable endstops while moving away
  1338. sync_plan_position();
  1339. destination[axis] = endstop_adj[axis];
  1340. line_to_destination();
  1341. st_synchronize();
  1342. enable_endstops(true); // Enable endstops for next homing move
  1343. }
  1344. #endif
  1345. // Set the axis position to its home position (plus home offsets)
  1346. axis_is_at_home(axis);
  1347. sync_plan_position();
  1348. destination[axis] = current_position[axis];
  1349. feedrate = 0.0;
  1350. endstops_hit_on_purpose(); // clear endstop hit flags
  1351. axis_known_position[axis] = true;
  1352. // Retract Servo endstop if enabled
  1353. #ifdef SERVO_ENDSTOPS
  1354. if (servo_endstops[axis] > -1)
  1355. servo[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  1356. #endif
  1357. #if SERVO_LEVELING && !defined(Z_PROBE_SLED)
  1358. if (axis == Z_AXIS) stow_z_probe();
  1359. #endif
  1360. }
  1361. }
  1362. #ifdef FWRETRACT
  1363. void retract(bool retracting, bool swapretract = false) {
  1364. if (retracting == retracted[active_extruder]) return;
  1365. float oldFeedrate = feedrate;
  1366. set_destination_to_current();
  1367. if (retracting) {
  1368. feedrate = retract_feedrate * 60;
  1369. current_position[E_AXIS] += (swapretract ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1370. plan_set_e_position(current_position[E_AXIS]);
  1371. prepare_move();
  1372. if (retract_zlift > 0.01) {
  1373. current_position[Z_AXIS] -= retract_zlift;
  1374. #ifdef DELTA
  1375. sync_plan_position_delta();
  1376. #else
  1377. sync_plan_position();
  1378. #endif
  1379. prepare_move();
  1380. }
  1381. }
  1382. else {
  1383. if (retract_zlift > 0.01) {
  1384. current_position[Z_AXIS] += retract_zlift;
  1385. #ifdef DELTA
  1386. sync_plan_position_delta();
  1387. #else
  1388. sync_plan_position();
  1389. #endif
  1390. //prepare_move();
  1391. }
  1392. feedrate = retract_recover_feedrate * 60;
  1393. float move_e = swapretract ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1394. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1395. plan_set_e_position(current_position[E_AXIS]);
  1396. prepare_move();
  1397. }
  1398. feedrate = oldFeedrate;
  1399. retracted[active_extruder] = retracting;
  1400. } // retract()
  1401. #endif // FWRETRACT
  1402. #ifdef Z_PROBE_SLED
  1403. #ifndef SLED_DOCKING_OFFSET
  1404. #define SLED_DOCKING_OFFSET 0
  1405. #endif
  1406. /**
  1407. * Method to dock/undock a sled designed by Charles Bell.
  1408. *
  1409. * dock[in] If true, move to MAX_X and engage the electromagnet
  1410. * offset[in] The additional distance to move to adjust docking location
  1411. */
  1412. static void dock_sled(bool dock, int offset=0) {
  1413. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1414. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1415. SERIAL_ECHO_START;
  1416. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1417. return;
  1418. }
  1419. if (dock) {
  1420. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], current_position[Z_AXIS]); // this also updates current_position
  1421. digitalWrite(SERVO0_PIN, LOW); // turn off magnet
  1422. } else {
  1423. float z_loc = current_position[Z_AXIS];
  1424. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1425. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, Y_PROBE_OFFSET_FROM_EXTRUDER, z_loc); // this also updates current_position
  1426. digitalWrite(SERVO0_PIN, HIGH); // turn on magnet
  1427. }
  1428. }
  1429. #endif // Z_PROBE_SLED
  1430. /**
  1431. *
  1432. * G-Code Handler functions
  1433. *
  1434. */
  1435. /**
  1436. * G0, G1: Coordinated movement of X Y Z E axes
  1437. */
  1438. inline void gcode_G0_G1() {
  1439. if (IsRunning()) {
  1440. get_coordinates(); // For X Y Z E F
  1441. #ifdef FWRETRACT
  1442. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1443. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1444. // Is this move an attempt to retract or recover?
  1445. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1446. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1447. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1448. retract(!retracted[active_extruder]);
  1449. return;
  1450. }
  1451. }
  1452. #endif //FWRETRACT
  1453. prepare_move();
  1454. //ClearToSend();
  1455. }
  1456. }
  1457. /**
  1458. * G2: Clockwise Arc
  1459. * G3: Counterclockwise Arc
  1460. */
  1461. inline void gcode_G2_G3(bool clockwise) {
  1462. if (IsRunning()) {
  1463. get_arc_coordinates();
  1464. prepare_arc_move(clockwise);
  1465. }
  1466. }
  1467. /**
  1468. * G4: Dwell S<seconds> or P<milliseconds>
  1469. */
  1470. inline void gcode_G4() {
  1471. millis_t codenum = 0;
  1472. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1473. if (code_seen('S')) codenum = code_value_long() * 1000; // seconds to wait
  1474. st_synchronize();
  1475. refresh_cmd_timeout();
  1476. codenum += previous_cmd_ms; // keep track of when we started waiting
  1477. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1478. while (millis() < codenum) {
  1479. manage_heater();
  1480. manage_inactivity();
  1481. lcd_update();
  1482. }
  1483. }
  1484. #ifdef FWRETRACT
  1485. /**
  1486. * G10 - Retract filament according to settings of M207
  1487. * G11 - Recover filament according to settings of M208
  1488. */
  1489. inline void gcode_G10_G11(bool doRetract=false) {
  1490. #if EXTRUDERS > 1
  1491. if (doRetract) {
  1492. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1493. }
  1494. #endif
  1495. retract(doRetract
  1496. #if EXTRUDERS > 1
  1497. , retracted_swap[active_extruder]
  1498. #endif
  1499. );
  1500. }
  1501. #endif //FWRETRACT
  1502. /**
  1503. * G28: Home all axes according to settings
  1504. *
  1505. * Parameters
  1506. *
  1507. * None Home to all axes with no parameters.
  1508. * With QUICK_HOME enabled XY will home together, then Z.
  1509. *
  1510. * Cartesian parameters
  1511. *
  1512. * X Home to the X endstop
  1513. * Y Home to the Y endstop
  1514. * Z Home to the Z endstop
  1515. *
  1516. */
  1517. inline void gcode_G28() {
  1518. // For auto bed leveling, clear the level matrix
  1519. #ifdef ENABLE_AUTO_BED_LEVELING
  1520. plan_bed_level_matrix.set_to_identity();
  1521. #ifdef DELTA
  1522. reset_bed_level();
  1523. #endif
  1524. #endif
  1525. // For manual bed leveling deactivate the matrix temporarily
  1526. #ifdef MESH_BED_LEVELING
  1527. uint8_t mbl_was_active = mbl.active;
  1528. mbl.active = 0;
  1529. #endif
  1530. saved_feedrate = feedrate;
  1531. saved_feedrate_multiplier = feedrate_multiplier;
  1532. feedrate_multiplier = 100;
  1533. refresh_cmd_timeout();
  1534. enable_endstops(true);
  1535. set_destination_to_current();
  1536. feedrate = 0.0;
  1537. #ifdef DELTA
  1538. // A delta can only safely home all axis at the same time
  1539. // all axis have to home at the same time
  1540. // Pretend the current position is 0,0,0
  1541. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1542. sync_plan_position();
  1543. // Move all carriages up together until the first endstop is hit.
  1544. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1545. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1546. line_to_destination();
  1547. st_synchronize();
  1548. endstops_hit_on_purpose(); // clear endstop hit flags
  1549. // Destination reached
  1550. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1551. // take care of back off and rehome now we are all at the top
  1552. HOMEAXIS(X);
  1553. HOMEAXIS(Y);
  1554. HOMEAXIS(Z);
  1555. sync_plan_position_delta();
  1556. #else // NOT DELTA
  1557. bool homeX = code_seen(axis_codes[X_AXIS]),
  1558. homeY = code_seen(axis_codes[Y_AXIS]),
  1559. homeZ = code_seen(axis_codes[Z_AXIS]);
  1560. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1561. if (home_all_axis || homeZ) {
  1562. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1563. HOMEAXIS(Z);
  1564. #elif !defined(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1565. // Raise Z before homing any other axes
  1566. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1567. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1568. feedrate = max_feedrate[Z_AXIS] * 60;
  1569. line_to_destination();
  1570. st_synchronize();
  1571. #endif
  1572. } // home_all_axis || homeZ
  1573. #ifdef QUICK_HOME
  1574. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1575. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1576. #ifdef DUAL_X_CARRIAGE
  1577. int x_axis_home_dir = x_home_dir(active_extruder);
  1578. extruder_duplication_enabled = false;
  1579. #else
  1580. int x_axis_home_dir = home_dir(X_AXIS);
  1581. #endif
  1582. sync_plan_position();
  1583. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1584. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1585. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1586. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1587. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1588. line_to_destination();
  1589. st_synchronize();
  1590. axis_is_at_home(X_AXIS);
  1591. axis_is_at_home(Y_AXIS);
  1592. sync_plan_position();
  1593. destination[X_AXIS] = current_position[X_AXIS];
  1594. destination[Y_AXIS] = current_position[Y_AXIS];
  1595. line_to_destination();
  1596. feedrate = 0.0;
  1597. st_synchronize();
  1598. endstops_hit_on_purpose(); // clear endstop hit flags
  1599. current_position[X_AXIS] = destination[X_AXIS];
  1600. current_position[Y_AXIS] = destination[Y_AXIS];
  1601. #ifndef SCARA
  1602. current_position[Z_AXIS] = destination[Z_AXIS];
  1603. #endif
  1604. }
  1605. #endif // QUICK_HOME
  1606. #ifdef HOME_Y_BEFORE_X
  1607. // Home Y
  1608. if (home_all_axis || homeY) HOMEAXIS(Y);
  1609. #endif
  1610. // Home X
  1611. if (home_all_axis || homeX) {
  1612. #ifdef DUAL_X_CARRIAGE
  1613. int tmp_extruder = active_extruder;
  1614. extruder_duplication_enabled = false;
  1615. active_extruder = !active_extruder;
  1616. HOMEAXIS(X);
  1617. inactive_extruder_x_pos = current_position[X_AXIS];
  1618. active_extruder = tmp_extruder;
  1619. HOMEAXIS(X);
  1620. // reset state used by the different modes
  1621. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1622. delayed_move_time = 0;
  1623. active_extruder_parked = true;
  1624. #else
  1625. HOMEAXIS(X);
  1626. #endif
  1627. }
  1628. #ifndef HOME_Y_BEFORE_X
  1629. // Home Y
  1630. if (home_all_axis || homeY) HOMEAXIS(Y);
  1631. #endif
  1632. // Home Z last if homing towards the bed
  1633. #if Z_HOME_DIR < 0
  1634. if (home_all_axis || homeZ) {
  1635. #ifdef Z_SAFE_HOMING
  1636. if (home_all_axis) {
  1637. current_position[Z_AXIS] = 0;
  1638. sync_plan_position();
  1639. //
  1640. // Set the probe (or just the nozzle) destination to the safe homing point
  1641. //
  1642. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1643. // then this may not work as expected.
  1644. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1645. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1646. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1647. feedrate = XY_TRAVEL_SPEED;
  1648. // This could potentially move X, Y, Z all together
  1649. line_to_destination();
  1650. st_synchronize();
  1651. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1652. current_position[X_AXIS] = destination[X_AXIS];
  1653. current_position[Y_AXIS] = destination[Y_AXIS];
  1654. // Home the Z axis
  1655. HOMEAXIS(Z);
  1656. }
  1657. else if (homeZ) { // Don't need to Home Z twice
  1658. // Let's see if X and Y are homed
  1659. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1660. // Make sure the probe is within the physical limits
  1661. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1662. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1663. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1664. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1665. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1666. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1667. // Set the plan current position to X, Y, 0
  1668. current_position[Z_AXIS] = 0;
  1669. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1670. // Set Z destination away from bed and raise the axis
  1671. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1672. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1673. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1674. line_to_destination();
  1675. st_synchronize();
  1676. // Home the Z axis
  1677. HOMEAXIS(Z);
  1678. }
  1679. else {
  1680. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1681. SERIAL_ECHO_START;
  1682. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1683. }
  1684. }
  1685. else {
  1686. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1687. SERIAL_ECHO_START;
  1688. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1689. }
  1690. } // !home_all_axes && homeZ
  1691. #else // !Z_SAFE_HOMING
  1692. HOMEAXIS(Z);
  1693. #endif // !Z_SAFE_HOMING
  1694. } // home_all_axis || homeZ
  1695. #endif // Z_HOME_DIR < 0
  1696. sync_plan_position();
  1697. #endif // else DELTA
  1698. #ifdef SCARA
  1699. sync_plan_position_delta();
  1700. #endif
  1701. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1702. enable_endstops(false);
  1703. #endif
  1704. // For manual leveling move back to 0,0
  1705. #ifdef MESH_BED_LEVELING
  1706. if (mbl_was_active) {
  1707. current_position[X_AXIS] = mbl.get_x(0);
  1708. current_position[Y_AXIS] = mbl.get_y(0);
  1709. set_destination_to_current();
  1710. feedrate = homing_feedrate[X_AXIS];
  1711. line_to_destination();
  1712. st_synchronize();
  1713. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1714. sync_plan_position();
  1715. mbl.active = 1;
  1716. }
  1717. #endif
  1718. feedrate = saved_feedrate;
  1719. feedrate_multiplier = saved_feedrate_multiplier;
  1720. refresh_cmd_timeout();
  1721. endstops_hit_on_purpose(); // clear endstop hit flags
  1722. }
  1723. #ifdef MESH_BED_LEVELING
  1724. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1725. /**
  1726. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1727. * mesh to compensate for variable bed height
  1728. *
  1729. * Parameters With MESH_BED_LEVELING:
  1730. *
  1731. * S0 Produce a mesh report
  1732. * S1 Start probing mesh points
  1733. * S2 Probe the next mesh point
  1734. * S3 Xn Yn Zn.nn Manually modify a single point
  1735. *
  1736. * The S0 report the points as below
  1737. *
  1738. * +----> X-axis
  1739. * |
  1740. * |
  1741. * v Y-axis
  1742. *
  1743. */
  1744. inline void gcode_G29() {
  1745. static int probe_point = -1;
  1746. MeshLevelingState state = code_seen('S') || code_seen('s') ? (MeshLevelingState)code_value_short() : MeshReport;
  1747. if (state < 0 || state > 3) {
  1748. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1749. return;
  1750. }
  1751. int ix, iy;
  1752. float z;
  1753. switch(state) {
  1754. case MeshReport:
  1755. if (mbl.active) {
  1756. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1757. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1758. SERIAL_PROTOCOLCHAR(',');
  1759. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1760. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1761. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1762. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1763. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1764. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1765. SERIAL_PROTOCOLPGM(" ");
  1766. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1767. }
  1768. SERIAL_EOL;
  1769. }
  1770. }
  1771. else
  1772. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1773. break;
  1774. case MeshStart:
  1775. mbl.reset();
  1776. probe_point = 0;
  1777. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1778. break;
  1779. case MeshNext:
  1780. if (probe_point < 0) {
  1781. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1782. return;
  1783. }
  1784. if (probe_point == 0) {
  1785. // Set Z to a positive value before recording the first Z.
  1786. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1787. sync_plan_position();
  1788. }
  1789. else {
  1790. // For others, save the Z of the previous point, then raise Z again.
  1791. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1792. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1793. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1794. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1795. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1796. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1797. st_synchronize();
  1798. }
  1799. // Is there another point to sample? Move there.
  1800. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1801. ix = probe_point % MESH_NUM_X_POINTS;
  1802. iy = probe_point / MESH_NUM_X_POINTS;
  1803. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1804. current_position[X_AXIS] = mbl.get_x(ix);
  1805. current_position[Y_AXIS] = mbl.get_y(iy);
  1806. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1807. st_synchronize();
  1808. probe_point++;
  1809. }
  1810. else {
  1811. // After recording the last point, activate the mbl and home
  1812. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1813. probe_point = -1;
  1814. mbl.active = 1;
  1815. enqueuecommands_P(PSTR("G28"));
  1816. }
  1817. break;
  1818. case MeshSet:
  1819. if (code_seen('X') || code_seen('x')) {
  1820. ix = code_value_long()-1;
  1821. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1822. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1823. return;
  1824. }
  1825. } else {
  1826. SERIAL_PROTOCOLPGM("X not entered.\n");
  1827. return;
  1828. }
  1829. if (code_seen('Y') || code_seen('y')) {
  1830. iy = code_value_long()-1;
  1831. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1832. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1833. return;
  1834. }
  1835. } else {
  1836. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1837. return;
  1838. }
  1839. if (code_seen('Z') || code_seen('z')) {
  1840. z = code_value();
  1841. } else {
  1842. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1843. return;
  1844. }
  1845. mbl.z_values[iy][ix] = z;
  1846. } // switch(state)
  1847. }
  1848. #elif defined(ENABLE_AUTO_BED_LEVELING)
  1849. /**
  1850. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  1851. * Will fail if the printer has not been homed with G28.
  1852. *
  1853. * Enhanced G29 Auto Bed Leveling Probe Routine
  1854. *
  1855. * Parameters With AUTO_BED_LEVELING_GRID:
  1856. *
  1857. * P Set the size of the grid that will be probed (P x P points).
  1858. * Not supported by non-linear delta printer bed leveling.
  1859. * Example: "G29 P4"
  1860. *
  1861. * S Set the XY travel speed between probe points (in mm/min)
  1862. *
  1863. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  1864. * or clean the rotation Matrix. Useful to check the topology
  1865. * after a first run of G29.
  1866. *
  1867. * V Set the verbose level (0-4). Example: "G29 V3"
  1868. *
  1869. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  1870. * This is useful for manual bed leveling and finding flaws in the bed (to
  1871. * assist with part placement).
  1872. * Not supported by non-linear delta printer bed leveling.
  1873. *
  1874. * F Set the Front limit of the probing grid
  1875. * B Set the Back limit of the probing grid
  1876. * L Set the Left limit of the probing grid
  1877. * R Set the Right limit of the probing grid
  1878. *
  1879. * Global Parameters:
  1880. *
  1881. * E/e By default G29 will engage the probe, test the bed, then disengage.
  1882. * Include "E" to engage/disengage the probe for each sample.
  1883. * There's no extra effect if you have a fixed probe.
  1884. * Usage: "G29 E" or "G29 e"
  1885. *
  1886. */
  1887. inline void gcode_G29() {
  1888. // Don't allow auto-leveling without homing first
  1889. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1890. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1891. SERIAL_ECHO_START;
  1892. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1893. return;
  1894. }
  1895. int verbose_level = code_seen('V') || code_seen('v') ? code_value_short() : 1;
  1896. if (verbose_level < 0 || verbose_level > 4) {
  1897. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  1898. return;
  1899. }
  1900. bool dryrun = code_seen('D') || code_seen('d'),
  1901. deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  1902. #ifdef AUTO_BED_LEVELING_GRID
  1903. #ifndef DELTA
  1904. bool do_topography_map = verbose_level > 2 || code_seen('T') || code_seen('t');
  1905. #endif
  1906. if (verbose_level > 0) {
  1907. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  1908. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  1909. }
  1910. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  1911. #ifndef DELTA
  1912. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  1913. if (auto_bed_leveling_grid_points < 2) {
  1914. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  1915. return;
  1916. }
  1917. #endif
  1918. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  1919. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  1920. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  1921. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  1922. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  1923. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  1924. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  1925. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  1926. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  1927. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  1928. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  1929. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  1930. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  1931. if (left_out || right_out || front_out || back_out) {
  1932. if (left_out) {
  1933. SERIAL_PROTOCOLPGM("?Probe (L)eft position out of range.\n");
  1934. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  1935. }
  1936. if (right_out) {
  1937. SERIAL_PROTOCOLPGM("?Probe (R)ight position out of range.\n");
  1938. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  1939. }
  1940. if (front_out) {
  1941. SERIAL_PROTOCOLPGM("?Probe (F)ront position out of range.\n");
  1942. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  1943. }
  1944. if (back_out) {
  1945. SERIAL_PROTOCOLPGM("?Probe (B)ack position out of range.\n");
  1946. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  1947. }
  1948. return;
  1949. }
  1950. #endif // AUTO_BED_LEVELING_GRID
  1951. #ifdef Z_PROBE_SLED
  1952. dock_sled(false); // engage (un-dock) the probe
  1953. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  1954. deploy_z_probe();
  1955. #endif
  1956. st_synchronize();
  1957. if (!dryrun) {
  1958. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  1959. plan_bed_level_matrix.set_to_identity();
  1960. #ifdef DELTA
  1961. reset_bed_level();
  1962. #else //!DELTA
  1963. //vector_3 corrected_position = plan_get_position_mm();
  1964. //corrected_position.debug("position before G29");
  1965. vector_3 uncorrected_position = plan_get_position();
  1966. //uncorrected_position.debug("position during G29");
  1967. current_position[X_AXIS] = uncorrected_position.x;
  1968. current_position[Y_AXIS] = uncorrected_position.y;
  1969. current_position[Z_AXIS] = uncorrected_position.z;
  1970. sync_plan_position();
  1971. #endif // !DELTA
  1972. }
  1973. setup_for_endstop_move();
  1974. feedrate = homing_feedrate[Z_AXIS];
  1975. #ifdef AUTO_BED_LEVELING_GRID
  1976. // probe at the points of a lattice grid
  1977. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  1978. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  1979. #ifdef DELTA
  1980. delta_grid_spacing[0] = xGridSpacing;
  1981. delta_grid_spacing[1] = yGridSpacing;
  1982. float z_offset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  1983. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  1984. #else // !DELTA
  1985. // solve the plane equation ax + by + d = z
  1986. // A is the matrix with rows [x y 1] for all the probed points
  1987. // B is the vector of the Z positions
  1988. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  1989. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  1990. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  1991. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  1992. eqnBVector[abl2], // "B" vector of Z points
  1993. mean = 0.0;
  1994. #endif // !DELTA
  1995. int probePointCounter = 0;
  1996. bool zig = true;
  1997. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  1998. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  1999. int xStart, xStop, xInc;
  2000. if (zig) {
  2001. xStart = 0;
  2002. xStop = auto_bed_leveling_grid_points;
  2003. xInc = 1;
  2004. }
  2005. else {
  2006. xStart = auto_bed_leveling_grid_points - 1;
  2007. xStop = -1;
  2008. xInc = -1;
  2009. }
  2010. #ifndef DELTA
  2011. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2012. // This gets the probe points in more readable order.
  2013. if (!do_topography_map) zig = !zig;
  2014. #endif
  2015. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2016. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2017. // raise extruder
  2018. float measured_z,
  2019. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2020. #ifdef DELTA
  2021. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2022. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2023. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2024. #endif //DELTA
  2025. ProbeAction act;
  2026. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2027. act = ProbeDeployAndStow;
  2028. else if (yCount == 0 && xCount == xStart)
  2029. act = ProbeDeploy;
  2030. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2031. act = ProbeStow;
  2032. else
  2033. act = ProbeStay;
  2034. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2035. #ifndef DELTA
  2036. mean += measured_z;
  2037. eqnBVector[probePointCounter] = measured_z;
  2038. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2039. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2040. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2041. #else
  2042. bed_level[xCount][yCount] = measured_z + z_offset;
  2043. #endif
  2044. probePointCounter++;
  2045. manage_heater();
  2046. manage_inactivity();
  2047. lcd_update();
  2048. } //xProbe
  2049. } //yProbe
  2050. clean_up_after_endstop_move();
  2051. #ifdef DELTA
  2052. if (!dryrun) extrapolate_unprobed_bed_level();
  2053. print_bed_level();
  2054. #else // !DELTA
  2055. // solve lsq problem
  2056. double *plane_equation_coefficients = qr_solve(abl2, 3, eqnAMatrix, eqnBVector);
  2057. mean /= abl2;
  2058. if (verbose_level) {
  2059. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2060. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2061. SERIAL_PROTOCOLPGM(" b: ");
  2062. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2063. SERIAL_PROTOCOLPGM(" d: ");
  2064. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2065. SERIAL_EOL;
  2066. if (verbose_level > 2) {
  2067. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2068. SERIAL_PROTOCOL_F(mean, 8);
  2069. SERIAL_EOL;
  2070. }
  2071. }
  2072. // Show the Topography map if enabled
  2073. if (do_topography_map) {
  2074. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2075. SERIAL_PROTOCOLPGM("+-----------+\n");
  2076. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2077. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2078. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2079. SERIAL_PROTOCOLPGM("+-----------+\n");
  2080. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2081. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2082. int ind = yy * auto_bed_leveling_grid_points + xx;
  2083. float diff = eqnBVector[ind] - mean;
  2084. if (diff >= 0.0)
  2085. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2086. else
  2087. SERIAL_PROTOCOLCHAR(' ');
  2088. SERIAL_PROTOCOL_F(diff, 5);
  2089. } // xx
  2090. SERIAL_EOL;
  2091. } // yy
  2092. SERIAL_EOL;
  2093. } //do_topography_map
  2094. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2095. free(plane_equation_coefficients);
  2096. #endif //!DELTA
  2097. #else // !AUTO_BED_LEVELING_GRID
  2098. // Actions for each probe
  2099. ProbeAction p1, p2, p3;
  2100. if (deploy_probe_for_each_reading)
  2101. p1 = p2 = p3 = ProbeDeployAndStow;
  2102. else
  2103. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2104. // Probe at 3 arbitrary points
  2105. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2106. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2107. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2108. clean_up_after_endstop_move();
  2109. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2110. #endif // !AUTO_BED_LEVELING_GRID
  2111. #ifndef DELTA
  2112. if (verbose_level > 0)
  2113. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2114. if (!dryrun) {
  2115. // Correct the Z height difference from z-probe position and hotend tip position.
  2116. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2117. // When the bed is uneven, this height must be corrected.
  2118. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2119. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2120. z_tmp = current_position[Z_AXIS],
  2121. real_z = (float)st_get_position(Z_AXIS) / axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  2122. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  2123. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  2124. sync_plan_position();
  2125. }
  2126. #endif // !DELTA
  2127. #ifdef Z_PROBE_SLED
  2128. dock_sled(true, -SLED_DOCKING_OFFSET); // dock the probe, correcting for over-travel
  2129. #elif defined(Z_PROBE_ALLEN_KEY) //|| defined(SERVO_LEVELING)
  2130. stow_z_probe();
  2131. #endif
  2132. #ifdef Z_PROBE_END_SCRIPT
  2133. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2134. st_synchronize();
  2135. #endif
  2136. }
  2137. #ifndef Z_PROBE_SLED
  2138. inline void gcode_G30() {
  2139. deploy_z_probe(); // Engage Z Servo endstop if available
  2140. st_synchronize();
  2141. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2142. setup_for_endstop_move();
  2143. feedrate = homing_feedrate[Z_AXIS];
  2144. run_z_probe();
  2145. SERIAL_PROTOCOLPGM("Bed");
  2146. SERIAL_PROTOCOLPGM(" X: ");
  2147. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2148. SERIAL_PROTOCOLPGM(" Y: ");
  2149. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2150. SERIAL_PROTOCOLPGM(" Z: ");
  2151. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2152. SERIAL_EOL;
  2153. clean_up_after_endstop_move();
  2154. stow_z_probe(); // Retract Z Servo endstop if available
  2155. }
  2156. #endif //!Z_PROBE_SLED
  2157. #endif //ENABLE_AUTO_BED_LEVELING
  2158. /**
  2159. * G92: Set current position to given X Y Z E
  2160. */
  2161. inline void gcode_G92() {
  2162. if (!code_seen(axis_codes[E_AXIS]))
  2163. st_synchronize();
  2164. bool didXYZ = false;
  2165. for (int i = 0; i < NUM_AXIS; i++) {
  2166. if (code_seen(axis_codes[i])) {
  2167. float v = current_position[i] = code_value();
  2168. if (i == E_AXIS)
  2169. plan_set_e_position(v);
  2170. else
  2171. didXYZ = true;
  2172. }
  2173. }
  2174. if (didXYZ) sync_plan_position();
  2175. }
  2176. #ifdef ULTIPANEL
  2177. /**
  2178. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2179. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2180. */
  2181. inline void gcode_M0_M1() {
  2182. char *src = strchr_pointer + 2;
  2183. millis_t codenum = 0;
  2184. bool hasP = false, hasS = false;
  2185. if (code_seen('P')) {
  2186. codenum = code_value_short(); // milliseconds to wait
  2187. hasP = codenum > 0;
  2188. }
  2189. if (code_seen('S')) {
  2190. codenum = code_value_short() * 1000UL; // seconds to wait
  2191. hasS = codenum > 0;
  2192. }
  2193. char* starpos = strchr(src, '*');
  2194. if (starpos != NULL) *(starpos) = '\0';
  2195. while (*src == ' ') ++src;
  2196. if (!hasP && !hasS && *src != '\0')
  2197. lcd_setstatus(src, true);
  2198. else {
  2199. LCD_MESSAGEPGM(MSG_USERWAIT);
  2200. #if defined(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2201. dontExpireStatus();
  2202. #endif
  2203. }
  2204. lcd_ignore_click();
  2205. st_synchronize();
  2206. refresh_cmd_timeout();
  2207. if (codenum > 0) {
  2208. codenum += previous_cmd_ms; // keep track of when we started waiting
  2209. while(millis() < codenum && !lcd_clicked()) {
  2210. manage_heater();
  2211. manage_inactivity();
  2212. lcd_update();
  2213. }
  2214. lcd_ignore_click(false);
  2215. }
  2216. else {
  2217. if (!lcd_detected()) return;
  2218. while (!lcd_clicked()) {
  2219. manage_heater();
  2220. manage_inactivity();
  2221. lcd_update();
  2222. }
  2223. }
  2224. if (IS_SD_PRINTING)
  2225. LCD_MESSAGEPGM(MSG_RESUMING);
  2226. else
  2227. LCD_MESSAGEPGM(WELCOME_MSG);
  2228. }
  2229. #endif // ULTIPANEL
  2230. /**
  2231. * M17: Enable power on all stepper motors
  2232. */
  2233. inline void gcode_M17() {
  2234. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2235. enable_all_steppers();
  2236. }
  2237. #ifdef SDSUPPORT
  2238. /**
  2239. * M20: List SD card to serial output
  2240. */
  2241. inline void gcode_M20() {
  2242. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2243. card.ls();
  2244. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2245. }
  2246. /**
  2247. * M21: Init SD Card
  2248. */
  2249. inline void gcode_M21() {
  2250. card.initsd();
  2251. }
  2252. /**
  2253. * M22: Release SD Card
  2254. */
  2255. inline void gcode_M22() {
  2256. card.release();
  2257. }
  2258. /**
  2259. * M23: Select a file
  2260. */
  2261. inline void gcode_M23() {
  2262. char* codepos = strchr_pointer + 4;
  2263. char* starpos = strchr(codepos, '*');
  2264. if (starpos) *starpos = '\0';
  2265. card.openFile(codepos, true);
  2266. }
  2267. /**
  2268. * M24: Start SD Print
  2269. */
  2270. inline void gcode_M24() {
  2271. card.startFileprint();
  2272. print_job_start_ms = millis();
  2273. }
  2274. /**
  2275. * M25: Pause SD Print
  2276. */
  2277. inline void gcode_M25() {
  2278. card.pauseSDPrint();
  2279. }
  2280. /**
  2281. * M26: Set SD Card file index
  2282. */
  2283. inline void gcode_M26() {
  2284. if (card.cardOK && code_seen('S'))
  2285. card.setIndex(code_value_short());
  2286. }
  2287. /**
  2288. * M27: Get SD Card status
  2289. */
  2290. inline void gcode_M27() {
  2291. card.getStatus();
  2292. }
  2293. /**
  2294. * M28: Start SD Write
  2295. */
  2296. inline void gcode_M28() {
  2297. char* codepos = strchr_pointer + 4;
  2298. char* starpos = strchr(codepos, '*');
  2299. if (starpos) {
  2300. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2301. strchr_pointer = strchr(npos, ' ') + 1;
  2302. *(starpos) = '\0';
  2303. }
  2304. card.openFile(codepos, false);
  2305. }
  2306. /**
  2307. * M29: Stop SD Write
  2308. * Processed in write to file routine above
  2309. */
  2310. inline void gcode_M29() {
  2311. // card.saving = false;
  2312. }
  2313. /**
  2314. * M30 <filename>: Delete SD Card file
  2315. */
  2316. inline void gcode_M30() {
  2317. if (card.cardOK) {
  2318. card.closefile();
  2319. char* starpos = strchr(strchr_pointer + 4, '*');
  2320. if (starpos) {
  2321. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2322. strchr_pointer = strchr(npos, ' ') + 1;
  2323. *(starpos) = '\0';
  2324. }
  2325. card.removeFile(strchr_pointer + 4);
  2326. }
  2327. }
  2328. #endif
  2329. /**
  2330. * M31: Get the time since the start of SD Print (or last M109)
  2331. */
  2332. inline void gcode_M31() {
  2333. print_job_stop_ms = millis();
  2334. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2335. int min = t / 60, sec = t % 60;
  2336. char time[30];
  2337. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2338. SERIAL_ECHO_START;
  2339. SERIAL_ECHOLN(time);
  2340. lcd_setstatus(time);
  2341. autotempShutdown();
  2342. }
  2343. #ifdef SDSUPPORT
  2344. /**
  2345. * M32: Select file and start SD Print
  2346. */
  2347. inline void gcode_M32() {
  2348. if (card.sdprinting)
  2349. st_synchronize();
  2350. char* codepos = strchr_pointer + 4;
  2351. char* namestartpos = strchr(codepos, '!'); //find ! to indicate filename string start.
  2352. if (! namestartpos)
  2353. namestartpos = codepos; //default name position, 4 letters after the M
  2354. else
  2355. namestartpos++; //to skip the '!'
  2356. char* starpos = strchr(codepos, '*');
  2357. if (starpos) *(starpos) = '\0';
  2358. bool call_procedure = code_seen('P') && (strchr_pointer < namestartpos);
  2359. if (card.cardOK) {
  2360. card.openFile(namestartpos, true, !call_procedure);
  2361. if (code_seen('S') && strchr_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2362. card.setIndex(code_value_short());
  2363. card.startFileprint();
  2364. if (!call_procedure)
  2365. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2366. }
  2367. }
  2368. /**
  2369. * M928: Start SD Write
  2370. */
  2371. inline void gcode_M928() {
  2372. char* starpos = strchr(strchr_pointer + 5, '*');
  2373. if (starpos) {
  2374. char* npos = strchr(command_queue[cmd_queue_index_r], 'N');
  2375. strchr_pointer = strchr(npos, ' ') + 1;
  2376. *(starpos) = '\0';
  2377. }
  2378. card.openLogFile(strchr_pointer + 5);
  2379. }
  2380. #endif // SDSUPPORT
  2381. /**
  2382. * M42: Change pin status via GCode
  2383. */
  2384. inline void gcode_M42() {
  2385. if (code_seen('S')) {
  2386. int pin_status = code_value_short(),
  2387. pin_number = LED_PIN;
  2388. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2389. pin_number = code_value_short();
  2390. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins) / sizeof(*sensitive_pins)); i++) {
  2391. if (sensitive_pins[i] == pin_number) {
  2392. pin_number = -1;
  2393. break;
  2394. }
  2395. }
  2396. #if HAS_FAN
  2397. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2398. #endif
  2399. if (pin_number > -1) {
  2400. pinMode(pin_number, OUTPUT);
  2401. digitalWrite(pin_number, pin_status);
  2402. analogWrite(pin_number, pin_status);
  2403. }
  2404. } // code_seen('S')
  2405. }
  2406. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  2407. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2408. #ifdef Z_PROBE_ENDSTOP
  2409. #if !HAS_Z_PROBE
  2410. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2411. #endif
  2412. #elif !HAS_Z_MIN
  2413. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2414. #endif
  2415. /**
  2416. * M48: Z-Probe repeatability measurement function.
  2417. *
  2418. * Usage:
  2419. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2420. * P = Number of sampled points (4-50, default 10)
  2421. * X = Sample X position
  2422. * Y = Sample Y position
  2423. * V = Verbose level (0-4, default=1)
  2424. * E = Engage probe for each reading
  2425. * L = Number of legs of movement before probe
  2426. *
  2427. * This function assumes the bed has been homed. Specifically, that a G28 command
  2428. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2429. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2430. * regenerated.
  2431. */
  2432. inline void gcode_M48() {
  2433. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2434. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2435. if (code_seen('V') || code_seen('v')) {
  2436. verbose_level = code_value_short();
  2437. if (verbose_level < 0 || verbose_level > 4 ) {
  2438. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2439. return;
  2440. }
  2441. }
  2442. if (verbose_level > 0)
  2443. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2444. if (code_seen('P') || code_seen('p')) {
  2445. n_samples = code_value_short();
  2446. if (n_samples < 4 || n_samples > 50) {
  2447. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2448. return;
  2449. }
  2450. }
  2451. double X_current = st_get_position_mm(X_AXIS),
  2452. Y_current = st_get_position_mm(Y_AXIS),
  2453. Z_current = st_get_position_mm(Z_AXIS),
  2454. E_current = st_get_position_mm(E_AXIS),
  2455. X_probe_location = X_current, Y_probe_location = Y_current,
  2456. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2457. bool deploy_probe_for_each_reading = code_seen('E') || code_seen('e');
  2458. if (code_seen('X') || code_seen('x')) {
  2459. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2460. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2461. SERIAL_PROTOCOLPGM("?X position out of range.\n");
  2462. return;
  2463. }
  2464. }
  2465. if (code_seen('Y') || code_seen('y')) {
  2466. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2467. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2468. SERIAL_PROTOCOLPGM("?Y position out of range.\n");
  2469. return;
  2470. }
  2471. }
  2472. if (code_seen('L') || code_seen('l')) {
  2473. n_legs = code_value_short();
  2474. if (n_legs == 1) n_legs = 2;
  2475. if (n_legs < 0 || n_legs > 15) {
  2476. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2477. return;
  2478. }
  2479. }
  2480. //
  2481. // Do all the preliminary setup work. First raise the probe.
  2482. //
  2483. st_synchronize();
  2484. plan_bed_level_matrix.set_to_identity();
  2485. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2486. st_synchronize();
  2487. //
  2488. // Now get everything to the specified probe point So we can safely do a probe to
  2489. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2490. // use that as a starting point for each probe.
  2491. //
  2492. if (verbose_level > 2)
  2493. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2494. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2495. E_current,
  2496. homing_feedrate[X_AXIS]/60,
  2497. active_extruder);
  2498. st_synchronize();
  2499. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2500. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2501. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2502. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2503. //
  2504. // OK, do the inital probe to get us close to the bed.
  2505. // Then retrace the right amount and use that in subsequent probes
  2506. //
  2507. deploy_z_probe();
  2508. setup_for_endstop_move();
  2509. run_z_probe();
  2510. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2511. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2512. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2513. E_current,
  2514. homing_feedrate[X_AXIS]/60,
  2515. active_extruder);
  2516. st_synchronize();
  2517. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2518. if (deploy_probe_for_each_reading) stow_z_probe();
  2519. for (uint8_t n=0; n < n_samples; n++) {
  2520. // Make sure we are at the probe location
  2521. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2522. if (n_legs) {
  2523. millis_t ms = millis();
  2524. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2525. theta = RADIANS(ms % 360L);
  2526. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2527. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2528. //SERIAL_ECHOPAIR(" theta: ",theta);
  2529. //SERIAL_ECHOPAIR(" direction: ",dir);
  2530. //SERIAL_EOL;
  2531. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2532. ms = millis();
  2533. theta += RADIANS(dir * (ms % 20L));
  2534. radius += (ms % 10L) - 5L;
  2535. if (radius < 0.0) radius = -radius;
  2536. X_current = X_probe_location + cos(theta) * radius;
  2537. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2538. Y_current = Y_probe_location + sin(theta) * radius;
  2539. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2540. if (verbose_level > 3) {
  2541. SERIAL_ECHOPAIR("x: ", X_current);
  2542. SERIAL_ECHOPAIR("y: ", Y_current);
  2543. SERIAL_EOL;
  2544. }
  2545. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2546. } // n_legs loop
  2547. // Go back to the probe location
  2548. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2549. } // n_legs
  2550. if (deploy_probe_for_each_reading) {
  2551. deploy_z_probe();
  2552. delay(1000);
  2553. }
  2554. setup_for_endstop_move();
  2555. run_z_probe();
  2556. sample_set[n] = current_position[Z_AXIS];
  2557. //
  2558. // Get the current mean for the data points we have so far
  2559. //
  2560. sum = 0.0;
  2561. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2562. mean = sum / (n + 1);
  2563. //
  2564. // Now, use that mean to calculate the standard deviation for the
  2565. // data points we have so far
  2566. //
  2567. sum = 0.0;
  2568. for (uint8_t j = 0; j <= n; j++) {
  2569. float ss = sample_set[j] - mean;
  2570. sum += ss * ss;
  2571. }
  2572. sigma = sqrt(sum / (n + 1));
  2573. if (verbose_level > 1) {
  2574. SERIAL_PROTOCOL(n+1);
  2575. SERIAL_PROTOCOLPGM(" of ");
  2576. SERIAL_PROTOCOL(n_samples);
  2577. SERIAL_PROTOCOLPGM(" z: ");
  2578. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2579. if (verbose_level > 2) {
  2580. SERIAL_PROTOCOLPGM(" mean: ");
  2581. SERIAL_PROTOCOL_F(mean,6);
  2582. SERIAL_PROTOCOLPGM(" sigma: ");
  2583. SERIAL_PROTOCOL_F(sigma,6);
  2584. }
  2585. }
  2586. if (verbose_level > 0) SERIAL_EOL;
  2587. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2588. st_synchronize();
  2589. if (deploy_probe_for_each_reading) {
  2590. stow_z_probe();
  2591. delay(1000);
  2592. }
  2593. }
  2594. if (!deploy_probe_for_each_reading) {
  2595. stow_z_probe();
  2596. delay(1000);
  2597. }
  2598. clean_up_after_endstop_move();
  2599. // enable_endstops(true);
  2600. if (verbose_level > 0) {
  2601. SERIAL_PROTOCOLPGM("Mean: ");
  2602. SERIAL_PROTOCOL_F(mean, 6);
  2603. SERIAL_EOL;
  2604. }
  2605. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2606. SERIAL_PROTOCOL_F(sigma, 6);
  2607. SERIAL_EOL; SERIAL_EOL;
  2608. }
  2609. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2610. /**
  2611. * M104: Set hot end temperature
  2612. */
  2613. inline void gcode_M104() {
  2614. if (setTargetedHotend(104)) return;
  2615. if (code_seen('S')) {
  2616. float temp = code_value();
  2617. setTargetHotend(temp, target_extruder);
  2618. #ifdef DUAL_X_CARRIAGE
  2619. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2620. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2621. #endif
  2622. setWatch();
  2623. }
  2624. }
  2625. /**
  2626. * M105: Read hot end and bed temperature
  2627. */
  2628. inline void gcode_M105() {
  2629. if (setTargetedHotend(105)) return;
  2630. #if HAS_TEMP_0 || HAS_TEMP_BED || defined(HEATER_0_USES_MAX6675)
  2631. SERIAL_PROTOCOLPGM("ok");
  2632. #if HAS_TEMP_0
  2633. SERIAL_PROTOCOLPGM(" T:");
  2634. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2635. SERIAL_PROTOCOLPGM(" /");
  2636. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2637. #endif
  2638. #if HAS_TEMP_BED
  2639. SERIAL_PROTOCOLPGM(" B:");
  2640. SERIAL_PROTOCOL_F(degBed(), 1);
  2641. SERIAL_PROTOCOLPGM(" /");
  2642. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2643. #endif
  2644. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2645. SERIAL_PROTOCOLPGM(" T");
  2646. SERIAL_PROTOCOL(e);
  2647. SERIAL_PROTOCOLCHAR(':');
  2648. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2649. SERIAL_PROTOCOLPGM(" /");
  2650. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2651. }
  2652. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2653. SERIAL_ERROR_START;
  2654. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2655. #endif
  2656. SERIAL_PROTOCOLPGM(" @:");
  2657. #ifdef EXTRUDER_WATTS
  2658. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2659. SERIAL_PROTOCOLCHAR('W');
  2660. #else
  2661. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2662. #endif
  2663. SERIAL_PROTOCOLPGM(" B@:");
  2664. #ifdef BED_WATTS
  2665. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2666. SERIAL_PROTOCOLCHAR('W');
  2667. #else
  2668. SERIAL_PROTOCOL(getHeaterPower(-1));
  2669. #endif
  2670. #ifdef SHOW_TEMP_ADC_VALUES
  2671. #if HAS_TEMP_BED
  2672. SERIAL_PROTOCOLPGM(" ADC B:");
  2673. SERIAL_PROTOCOL_F(degBed(),1);
  2674. SERIAL_PROTOCOLPGM("C->");
  2675. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2676. #endif
  2677. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2678. SERIAL_PROTOCOLPGM(" T");
  2679. SERIAL_PROTOCOL(cur_extruder);
  2680. SERIAL_PROTOCOLCHAR(':');
  2681. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2682. SERIAL_PROTOCOLPGM("C->");
  2683. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2684. }
  2685. #endif
  2686. SERIAL_EOL;
  2687. }
  2688. #if HAS_FAN
  2689. /**
  2690. * M106: Set Fan Speed
  2691. */
  2692. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2693. /**
  2694. * M107: Fan Off
  2695. */
  2696. inline void gcode_M107() { fanSpeed = 0; }
  2697. #endif // HAS_FAN
  2698. /**
  2699. * M109: Wait for extruder(s) to reach temperature
  2700. */
  2701. inline void gcode_M109() {
  2702. if (setTargetedHotend(109)) return;
  2703. LCD_MESSAGEPGM(MSG_HEATING);
  2704. no_wait_for_cooling = code_seen('S');
  2705. if (no_wait_for_cooling || code_seen('R')) {
  2706. float temp = code_value();
  2707. setTargetHotend(temp, target_extruder);
  2708. #ifdef DUAL_X_CARRIAGE
  2709. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2710. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2711. #endif
  2712. }
  2713. #ifdef AUTOTEMP
  2714. autotemp_enabled = code_seen('F');
  2715. if (autotemp_enabled) autotemp_factor = code_value();
  2716. if (code_seen('S')) autotemp_min = code_value();
  2717. if (code_seen('B')) autotemp_max = code_value();
  2718. #endif
  2719. setWatch();
  2720. millis_t temp_ms = millis();
  2721. /* See if we are heating up or cooling down */
  2722. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2723. cancel_heatup = false;
  2724. #ifdef TEMP_RESIDENCY_TIME
  2725. long residency_start_ms = -1;
  2726. /* continue to loop until we have reached the target temp
  2727. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2728. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2729. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2730. #else
  2731. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2732. #endif //TEMP_RESIDENCY_TIME
  2733. { // while loop
  2734. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2735. SERIAL_PROTOCOLPGM("T:");
  2736. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2737. SERIAL_PROTOCOLPGM(" E:");
  2738. SERIAL_PROTOCOL((int)target_extruder);
  2739. #ifdef TEMP_RESIDENCY_TIME
  2740. SERIAL_PROTOCOLPGM(" W:");
  2741. if (residency_start_ms > -1) {
  2742. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2743. SERIAL_PROTOCOLLN(temp_ms);
  2744. }
  2745. else {
  2746. SERIAL_PROTOCOLLNPGM("?");
  2747. }
  2748. #else
  2749. SERIAL_EOL;
  2750. #endif
  2751. temp_ms = millis();
  2752. }
  2753. manage_heater();
  2754. manage_inactivity();
  2755. lcd_update();
  2756. #ifdef TEMP_RESIDENCY_TIME
  2757. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2758. // or when current temp falls outside the hysteresis after target temp was reached
  2759. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2760. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2761. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2762. {
  2763. residency_start_ms = millis();
  2764. }
  2765. #endif //TEMP_RESIDENCY_TIME
  2766. }
  2767. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2768. refresh_cmd_timeout();
  2769. print_job_start_ms = previous_cmd_ms;
  2770. }
  2771. #if HAS_TEMP_BED
  2772. /**
  2773. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2774. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2775. */
  2776. inline void gcode_M190() {
  2777. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2778. no_wait_for_cooling = code_seen('S');
  2779. if (no_wait_for_cooling || code_seen('R'))
  2780. setTargetBed(code_value());
  2781. millis_t temp_ms = millis();
  2782. cancel_heatup = false;
  2783. target_direction = isHeatingBed(); // true if heating, false if cooling
  2784. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2785. millis_t ms = millis();
  2786. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2787. temp_ms = ms;
  2788. float tt = degHotend(active_extruder);
  2789. SERIAL_PROTOCOLPGM("T:");
  2790. SERIAL_PROTOCOL(tt);
  2791. SERIAL_PROTOCOLPGM(" E:");
  2792. SERIAL_PROTOCOL((int)active_extruder);
  2793. SERIAL_PROTOCOLPGM(" B:");
  2794. SERIAL_PROTOCOL_F(degBed(), 1);
  2795. SERIAL_EOL;
  2796. }
  2797. manage_heater();
  2798. manage_inactivity();
  2799. lcd_update();
  2800. }
  2801. LCD_MESSAGEPGM(MSG_BED_DONE);
  2802. refresh_cmd_timeout();
  2803. }
  2804. #endif // HAS_TEMP_BED
  2805. /**
  2806. * M111: Set the debug level
  2807. */
  2808. inline void gcode_M111() {
  2809. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_ERRORS;
  2810. }
  2811. /**
  2812. * M112: Emergency Stop
  2813. */
  2814. inline void gcode_M112() { kill(); }
  2815. #ifdef BARICUDA
  2816. #if HAS_HEATER_1
  2817. /**
  2818. * M126: Heater 1 valve open
  2819. */
  2820. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2821. /**
  2822. * M127: Heater 1 valve close
  2823. */
  2824. inline void gcode_M127() { ValvePressure = 0; }
  2825. #endif
  2826. #if HAS_HEATER_2
  2827. /**
  2828. * M128: Heater 2 valve open
  2829. */
  2830. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  2831. /**
  2832. * M129: Heater 2 valve close
  2833. */
  2834. inline void gcode_M129() { EtoPPressure = 0; }
  2835. #endif
  2836. #endif //BARICUDA
  2837. /**
  2838. * M140: Set bed temperature
  2839. */
  2840. inline void gcode_M140() {
  2841. if (code_seen('S')) setTargetBed(code_value());
  2842. }
  2843. #if HAS_POWER_SWITCH
  2844. /**
  2845. * M80: Turn on Power Supply
  2846. */
  2847. inline void gcode_M80() {
  2848. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  2849. // If you have a switch on suicide pin, this is useful
  2850. // if you want to start another print with suicide feature after
  2851. // a print without suicide...
  2852. #if HAS_SUICIDE
  2853. OUT_WRITE(SUICIDE_PIN, HIGH);
  2854. #endif
  2855. #ifdef ULTIPANEL
  2856. powersupply = true;
  2857. LCD_MESSAGEPGM(WELCOME_MSG);
  2858. lcd_update();
  2859. #endif
  2860. }
  2861. #endif // HAS_POWER_SWITCH
  2862. /**
  2863. * M81: Turn off Power, including Power Supply, if there is one.
  2864. *
  2865. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  2866. */
  2867. inline void gcode_M81() {
  2868. disable_all_heaters();
  2869. st_synchronize();
  2870. disable_e0();
  2871. disable_e1();
  2872. disable_e2();
  2873. disable_e3();
  2874. finishAndDisableSteppers();
  2875. fanSpeed = 0;
  2876. delay(1000); // Wait 1 second before switching off
  2877. #if HAS_SUICIDE
  2878. st_synchronize();
  2879. suicide();
  2880. #elif HAS_POWER_SWITCH
  2881. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  2882. #endif
  2883. #ifdef ULTIPANEL
  2884. #if HAS_POWER_SWITCH
  2885. powersupply = false;
  2886. #endif
  2887. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  2888. lcd_update();
  2889. #endif
  2890. }
  2891. /**
  2892. * M82: Set E codes absolute (default)
  2893. */
  2894. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  2895. /**
  2896. * M82: Set E codes relative while in Absolute Coordinates (G90) mode
  2897. */
  2898. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  2899. /**
  2900. * M18, M84: Disable all stepper motors
  2901. */
  2902. inline void gcode_M18_M84() {
  2903. if (code_seen('S')) {
  2904. stepper_inactive_time = code_value() * 1000;
  2905. }
  2906. else {
  2907. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  2908. if (all_axis) {
  2909. st_synchronize();
  2910. disable_e0();
  2911. disable_e1();
  2912. disable_e2();
  2913. disable_e3();
  2914. finishAndDisableSteppers();
  2915. }
  2916. else {
  2917. st_synchronize();
  2918. if (code_seen('X')) disable_x();
  2919. if (code_seen('Y')) disable_y();
  2920. if (code_seen('Z')) disable_z();
  2921. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  2922. if (code_seen('E')) {
  2923. disable_e0();
  2924. disable_e1();
  2925. disable_e2();
  2926. disable_e3();
  2927. }
  2928. #endif
  2929. }
  2930. }
  2931. }
  2932. /**
  2933. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2934. */
  2935. inline void gcode_M85() {
  2936. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  2937. }
  2938. /**
  2939. * M92: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  2940. */
  2941. inline void gcode_M92() {
  2942. for(int8_t i=0; i < NUM_AXIS; i++) {
  2943. if (code_seen(axis_codes[i])) {
  2944. if (i == E_AXIS) {
  2945. float value = code_value();
  2946. if (value < 20.0) {
  2947. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  2948. max_e_jerk *= factor;
  2949. max_feedrate[i] *= factor;
  2950. axis_steps_per_sqr_second[i] *= factor;
  2951. }
  2952. axis_steps_per_unit[i] = value;
  2953. }
  2954. else {
  2955. axis_steps_per_unit[i] = code_value();
  2956. }
  2957. }
  2958. }
  2959. }
  2960. /**
  2961. * M114: Output current position to serial port
  2962. */
  2963. inline void gcode_M114() {
  2964. SERIAL_PROTOCOLPGM("X:");
  2965. SERIAL_PROTOCOL(current_position[X_AXIS]);
  2966. SERIAL_PROTOCOLPGM(" Y:");
  2967. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  2968. SERIAL_PROTOCOLPGM(" Z:");
  2969. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  2970. SERIAL_PROTOCOLPGM(" E:");
  2971. SERIAL_PROTOCOL(current_position[E_AXIS]);
  2972. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  2973. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  2974. SERIAL_PROTOCOLPGM(" Y:");
  2975. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  2976. SERIAL_PROTOCOLPGM(" Z:");
  2977. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  2978. SERIAL_EOL;
  2979. #ifdef SCARA
  2980. SERIAL_PROTOCOLPGM("SCARA Theta:");
  2981. SERIAL_PROTOCOL(delta[X_AXIS]);
  2982. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2983. SERIAL_PROTOCOL(delta[Y_AXIS]);
  2984. SERIAL_EOL;
  2985. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  2986. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  2987. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  2988. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  2989. SERIAL_EOL;
  2990. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  2991. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  2992. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  2993. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  2994. SERIAL_EOL; SERIAL_EOL;
  2995. #endif
  2996. }
  2997. /**
  2998. * M115: Capabilities string
  2999. */
  3000. inline void gcode_M115() {
  3001. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3002. }
  3003. /**
  3004. * M117: Set LCD Status Message
  3005. */
  3006. inline void gcode_M117() {
  3007. char* codepos = strchr_pointer + 5;
  3008. char* starpos = strchr(codepos, '*');
  3009. if (starpos) *starpos = '\0';
  3010. lcd_setstatus(codepos);
  3011. }
  3012. /**
  3013. * M119: Output endstop states to serial output
  3014. */
  3015. inline void gcode_M119() {
  3016. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3017. #if HAS_X_MIN
  3018. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3019. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3020. #endif
  3021. #if HAS_X_MAX
  3022. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3023. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3024. #endif
  3025. #if HAS_Y_MIN
  3026. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3027. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3028. #endif
  3029. #if HAS_Y_MAX
  3030. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3031. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3032. #endif
  3033. #if HAS_Z_MIN
  3034. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3035. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3036. #endif
  3037. #if HAS_Z_MAX
  3038. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3039. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3040. #endif
  3041. #if HAS_Z2_MAX
  3042. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3043. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3044. #endif
  3045. #if HAS_Z_PROBE
  3046. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3047. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3048. #endif
  3049. }
  3050. /**
  3051. * M120: Enable endstops
  3052. */
  3053. inline void gcode_M120() { enable_endstops(false); }
  3054. /**
  3055. * M121: Disable endstops
  3056. */
  3057. inline void gcode_M121() { enable_endstops(true); }
  3058. #ifdef BLINKM
  3059. /**
  3060. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3061. */
  3062. inline void gcode_M150() {
  3063. SendColors(
  3064. code_seen('R') ? (byte)code_value_short() : 0,
  3065. code_seen('U') ? (byte)code_value_short() : 0,
  3066. code_seen('B') ? (byte)code_value_short() : 0
  3067. );
  3068. }
  3069. #endif // BLINKM
  3070. /**
  3071. * M200: Set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  3072. * T<extruder>
  3073. * D<millimeters>
  3074. */
  3075. inline void gcode_M200() {
  3076. int tmp_extruder = active_extruder;
  3077. if (code_seen('T')) {
  3078. tmp_extruder = code_value_short();
  3079. if (tmp_extruder >= EXTRUDERS) {
  3080. SERIAL_ECHO_START;
  3081. SERIAL_ECHO(MSG_M200_INVALID_EXTRUDER);
  3082. return;
  3083. }
  3084. }
  3085. if (code_seen('D')) {
  3086. float diameter = code_value();
  3087. // setting any extruder filament size disables volumetric on the assumption that
  3088. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3089. // for all extruders
  3090. volumetric_enabled = (diameter != 0.0);
  3091. if (volumetric_enabled) {
  3092. filament_size[tmp_extruder] = diameter;
  3093. // make sure all extruders have some sane value for the filament size
  3094. for (int i=0; i<EXTRUDERS; i++)
  3095. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3096. }
  3097. }
  3098. else {
  3099. //reserved for setting filament diameter via UFID or filament measuring device
  3100. return;
  3101. }
  3102. calculate_volumetric_multipliers();
  3103. }
  3104. /**
  3105. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3106. */
  3107. inline void gcode_M201() {
  3108. for (int8_t i=0; i < NUM_AXIS; i++) {
  3109. if (code_seen(axis_codes[i])) {
  3110. max_acceleration_units_per_sq_second[i] = code_value();
  3111. }
  3112. }
  3113. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3114. reset_acceleration_rates();
  3115. }
  3116. #if 0 // Not used for Sprinter/grbl gen6
  3117. inline void gcode_M202() {
  3118. for(int8_t i=0; i < NUM_AXIS; i++) {
  3119. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3120. }
  3121. }
  3122. #endif
  3123. /**
  3124. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3125. */
  3126. inline void gcode_M203() {
  3127. for (int8_t i=0; i < NUM_AXIS; i++) {
  3128. if (code_seen(axis_codes[i])) {
  3129. max_feedrate[i] = code_value();
  3130. }
  3131. }
  3132. }
  3133. /**
  3134. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3135. *
  3136. * P = Printing moves
  3137. * R = Retract only (no X, Y, Z) moves
  3138. * T = Travel (non printing) moves
  3139. *
  3140. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3141. */
  3142. inline void gcode_M204() {
  3143. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3144. acceleration = code_value();
  3145. travel_acceleration = acceleration;
  3146. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration );
  3147. SERIAL_EOL;
  3148. }
  3149. if (code_seen('P')) {
  3150. acceleration = code_value();
  3151. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3152. SERIAL_EOL;
  3153. }
  3154. if (code_seen('R')) {
  3155. retract_acceleration = code_value();
  3156. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3157. SERIAL_EOL;
  3158. }
  3159. if (code_seen('T')) {
  3160. travel_acceleration = code_value();
  3161. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3162. SERIAL_EOL;
  3163. }
  3164. }
  3165. /**
  3166. * M205: Set Advanced Settings
  3167. *
  3168. * S = Min Feed Rate (mm/s)
  3169. * T = Min Travel Feed Rate (mm/s)
  3170. * B = Min Segment Time (µs)
  3171. * X = Max XY Jerk (mm/s/s)
  3172. * Z = Max Z Jerk (mm/s/s)
  3173. * E = Max E Jerk (mm/s/s)
  3174. */
  3175. inline void gcode_M205() {
  3176. if (code_seen('S')) minimumfeedrate = code_value();
  3177. if (code_seen('T')) mintravelfeedrate = code_value();
  3178. if (code_seen('B')) minsegmenttime = code_value();
  3179. if (code_seen('X')) max_xy_jerk = code_value();
  3180. if (code_seen('Z')) max_z_jerk = code_value();
  3181. if (code_seen('E')) max_e_jerk = code_value();
  3182. }
  3183. /**
  3184. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3185. */
  3186. inline void gcode_M206() {
  3187. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3188. if (code_seen(axis_codes[i])) {
  3189. home_offset[i] = code_value();
  3190. }
  3191. }
  3192. #ifdef SCARA
  3193. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3194. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3195. #endif
  3196. }
  3197. #ifdef DELTA
  3198. /**
  3199. * M665: Set delta configurations
  3200. *
  3201. * L = diagonal rod
  3202. * R = delta radius
  3203. * S = segments per second
  3204. */
  3205. inline void gcode_M665() {
  3206. if (code_seen('L')) delta_diagonal_rod = code_value();
  3207. if (code_seen('R')) delta_radius = code_value();
  3208. if (code_seen('S')) delta_segments_per_second = code_value();
  3209. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3210. }
  3211. /**
  3212. * M666: Set delta endstop adjustment
  3213. */
  3214. inline void gcode_M666() {
  3215. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3216. if (code_seen(axis_codes[i])) {
  3217. endstop_adj[i] = code_value();
  3218. }
  3219. }
  3220. }
  3221. #elif defined(Z_DUAL_ENDSTOPS) // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3222. /**
  3223. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3224. */
  3225. inline void gcode_M666() {
  3226. if (code_seen('Z')) z_endstop_adj = code_value();
  3227. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3228. SERIAL_EOL;
  3229. }
  3230. #endif // !DELTA && defined(Z_DUAL_ENDSTOPS)
  3231. #ifdef FWRETRACT
  3232. /**
  3233. * M207: Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  3234. */
  3235. inline void gcode_M207() {
  3236. if (code_seen('S')) retract_length = code_value();
  3237. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3238. if (code_seen('Z')) retract_zlift = code_value();
  3239. }
  3240. /**
  3241. * M208: Set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  3242. */
  3243. inline void gcode_M208() {
  3244. if (code_seen('S')) retract_recover_length = code_value();
  3245. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3246. }
  3247. /**
  3248. * M209: Enable automatic retract (M209 S1)
  3249. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3250. */
  3251. inline void gcode_M209() {
  3252. if (code_seen('S')) {
  3253. int t = code_value_short();
  3254. switch(t) {
  3255. case 0:
  3256. autoretract_enabled = false;
  3257. break;
  3258. case 1:
  3259. autoretract_enabled = true;
  3260. break;
  3261. default:
  3262. SERIAL_ECHO_START;
  3263. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  3264. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  3265. SERIAL_ECHOLNPGM("\"");
  3266. return;
  3267. }
  3268. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3269. }
  3270. }
  3271. #endif // FWRETRACT
  3272. #if EXTRUDERS > 1
  3273. /**
  3274. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3275. */
  3276. inline void gcode_M218() {
  3277. if (setTargetedHotend(218)) return;
  3278. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3279. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3280. #ifdef DUAL_X_CARRIAGE
  3281. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3282. #endif
  3283. SERIAL_ECHO_START;
  3284. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3285. for (int e = 0; e < EXTRUDERS; e++) {
  3286. SERIAL_CHAR(' ');
  3287. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3288. SERIAL_CHAR(',');
  3289. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3290. #ifdef DUAL_X_CARRIAGE
  3291. SERIAL_CHAR(',');
  3292. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3293. #endif
  3294. }
  3295. SERIAL_EOL;
  3296. }
  3297. #endif // EXTRUDERS > 1
  3298. /**
  3299. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3300. */
  3301. inline void gcode_M220() {
  3302. if (code_seen('S')) feedrate_multiplier = code_value();
  3303. }
  3304. /**
  3305. * M221: Set extrusion percentage (M221 T0 S95)
  3306. */
  3307. inline void gcode_M221() {
  3308. if (code_seen('S')) {
  3309. int sval = code_value();
  3310. if (code_seen('T')) {
  3311. if (setTargetedHotend(221)) return;
  3312. extruder_multiply[target_extruder] = sval;
  3313. }
  3314. else {
  3315. extruder_multiply[active_extruder] = sval;
  3316. }
  3317. }
  3318. }
  3319. /**
  3320. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3321. */
  3322. inline void gcode_M226() {
  3323. if (code_seen('P')) {
  3324. int pin_number = code_value();
  3325. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3326. if (pin_state >= -1 && pin_state <= 1) {
  3327. for (int8_t i = 0; i < (int8_t)(sizeof(sensitive_pins)/sizeof(*sensitive_pins)); i++) {
  3328. if (sensitive_pins[i] == pin_number) {
  3329. pin_number = -1;
  3330. break;
  3331. }
  3332. }
  3333. if (pin_number > -1) {
  3334. int target = LOW;
  3335. st_synchronize();
  3336. pinMode(pin_number, INPUT);
  3337. switch(pin_state){
  3338. case 1:
  3339. target = HIGH;
  3340. break;
  3341. case 0:
  3342. target = LOW;
  3343. break;
  3344. case -1:
  3345. target = !digitalRead(pin_number);
  3346. break;
  3347. }
  3348. while(digitalRead(pin_number) != target) {
  3349. manage_heater();
  3350. manage_inactivity();
  3351. lcd_update();
  3352. }
  3353. } // pin_number > -1
  3354. } // pin_state -1 0 1
  3355. } // code_seen('P')
  3356. }
  3357. #if NUM_SERVOS > 0
  3358. /**
  3359. * M280: Set servo position absolute. P: servo index, S: angle or microseconds
  3360. */
  3361. inline void gcode_M280() {
  3362. int servo_index = code_seen('P') ? code_value() : -1;
  3363. int servo_position = 0;
  3364. if (code_seen('S')) {
  3365. servo_position = code_value();
  3366. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  3367. #if SERVO_LEVELING
  3368. servo[servo_index].attach(0);
  3369. #endif
  3370. servo[servo_index].write(servo_position);
  3371. #if SERVO_LEVELING
  3372. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  3373. servo[servo_index].detach();
  3374. #endif
  3375. }
  3376. else {
  3377. SERIAL_ECHO_START;
  3378. SERIAL_ECHO("Servo ");
  3379. SERIAL_ECHO(servo_index);
  3380. SERIAL_ECHOLN(" out of range");
  3381. }
  3382. }
  3383. else if (servo_index >= 0) {
  3384. SERIAL_PROTOCOL(MSG_OK);
  3385. SERIAL_PROTOCOL(" Servo ");
  3386. SERIAL_PROTOCOL(servo_index);
  3387. SERIAL_PROTOCOL(": ");
  3388. SERIAL_PROTOCOL(servo[servo_index].read());
  3389. SERIAL_EOL;
  3390. }
  3391. }
  3392. #endif // NUM_SERVOS > 0
  3393. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  3394. /**
  3395. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3396. */
  3397. inline void gcode_M300() {
  3398. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3399. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3400. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3401. lcd_buzz(beepP, beepS);
  3402. }
  3403. #endif // BEEPER>0 || ULTRALCD || LCD_USE_I2C_BUZZER
  3404. #ifdef PIDTEMP
  3405. /**
  3406. * M301: Set PID parameters P I D (and optionally C)
  3407. */
  3408. inline void gcode_M301() {
  3409. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3410. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3411. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3412. if (e < EXTRUDERS) { // catch bad input value
  3413. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3414. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3415. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3416. #ifdef PID_ADD_EXTRUSION_RATE
  3417. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3418. #endif
  3419. updatePID();
  3420. SERIAL_PROTOCOL(MSG_OK);
  3421. #ifdef PID_PARAMS_PER_EXTRUDER
  3422. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3423. SERIAL_PROTOCOL(e);
  3424. #endif // PID_PARAMS_PER_EXTRUDER
  3425. SERIAL_PROTOCOL(" p:");
  3426. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3427. SERIAL_PROTOCOL(" i:");
  3428. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3429. SERIAL_PROTOCOL(" d:");
  3430. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3431. #ifdef PID_ADD_EXTRUSION_RATE
  3432. SERIAL_PROTOCOL(" c:");
  3433. //Kc does not have scaling applied above, or in resetting defaults
  3434. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3435. #endif
  3436. SERIAL_EOL;
  3437. }
  3438. else {
  3439. SERIAL_ECHO_START;
  3440. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3441. }
  3442. }
  3443. #endif // PIDTEMP
  3444. #ifdef PIDTEMPBED
  3445. inline void gcode_M304() {
  3446. if (code_seen('P')) bedKp = code_value();
  3447. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3448. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3449. updatePID();
  3450. SERIAL_PROTOCOL(MSG_OK);
  3451. SERIAL_PROTOCOL(" p:");
  3452. SERIAL_PROTOCOL(bedKp);
  3453. SERIAL_PROTOCOL(" i:");
  3454. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3455. SERIAL_PROTOCOL(" d:");
  3456. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3457. SERIAL_EOL;
  3458. }
  3459. #endif // PIDTEMPBED
  3460. #if defined(CHDK) || HAS_PHOTOGRAPH
  3461. /**
  3462. * M240: Trigger a camera by emulating a Canon RC-1
  3463. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3464. */
  3465. inline void gcode_M240() {
  3466. #ifdef CHDK
  3467. OUT_WRITE(CHDK, HIGH);
  3468. chdkHigh = millis();
  3469. chdkActive = true;
  3470. #elif HAS_PHOTOGRAPH
  3471. const uint8_t NUM_PULSES = 16;
  3472. const float PULSE_LENGTH = 0.01524;
  3473. for (int i = 0; i < NUM_PULSES; i++) {
  3474. WRITE(PHOTOGRAPH_PIN, HIGH);
  3475. _delay_ms(PULSE_LENGTH);
  3476. WRITE(PHOTOGRAPH_PIN, LOW);
  3477. _delay_ms(PULSE_LENGTH);
  3478. }
  3479. delay(7.33);
  3480. for (int i = 0; i < NUM_PULSES; i++) {
  3481. WRITE(PHOTOGRAPH_PIN, HIGH);
  3482. _delay_ms(PULSE_LENGTH);
  3483. WRITE(PHOTOGRAPH_PIN, LOW);
  3484. _delay_ms(PULSE_LENGTH);
  3485. }
  3486. #endif // !CHDK && HAS_PHOTOGRAPH
  3487. }
  3488. #endif // CHDK || PHOTOGRAPH_PIN
  3489. #ifdef HAS_LCD_CONTRAST
  3490. /**
  3491. * M250: Read and optionally set the LCD contrast
  3492. */
  3493. inline void gcode_M250() {
  3494. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3495. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3496. SERIAL_PROTOCOL(lcd_contrast);
  3497. SERIAL_EOL;
  3498. }
  3499. #endif // HAS_LCD_CONTRAST
  3500. #ifdef PREVENT_DANGEROUS_EXTRUDE
  3501. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3502. /**
  3503. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3504. */
  3505. inline void gcode_M302() {
  3506. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3507. }
  3508. #endif // PREVENT_DANGEROUS_EXTRUDE
  3509. /**
  3510. * M303: PID relay autotune
  3511. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3512. * E<extruder> (-1 for the bed)
  3513. * C<cycles>
  3514. */
  3515. inline void gcode_M303() {
  3516. int e = code_seen('E') ? code_value_short() : 0;
  3517. int c = code_seen('C') ? code_value_short() : 5;
  3518. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3519. PID_autotune(temp, e, c);
  3520. }
  3521. #ifdef SCARA
  3522. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3523. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3524. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3525. if (IsRunning()) {
  3526. //get_coordinates(); // For X Y Z E F
  3527. delta[X_AXIS] = delta_x;
  3528. delta[Y_AXIS] = delta_y;
  3529. calculate_SCARA_forward_Transform(delta);
  3530. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3531. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3532. prepare_move();
  3533. //ClearToSend();
  3534. return true;
  3535. }
  3536. return false;
  3537. }
  3538. /**
  3539. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3540. */
  3541. inline bool gcode_M360() {
  3542. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3543. return SCARA_move_to_cal(0, 120);
  3544. }
  3545. /**
  3546. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3547. */
  3548. inline bool gcode_M361() {
  3549. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3550. return SCARA_move_to_cal(90, 130);
  3551. }
  3552. /**
  3553. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3554. */
  3555. inline bool gcode_M362() {
  3556. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3557. return SCARA_move_to_cal(60, 180);
  3558. }
  3559. /**
  3560. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3561. */
  3562. inline bool gcode_M363() {
  3563. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3564. return SCARA_move_to_cal(50, 90);
  3565. }
  3566. /**
  3567. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3568. */
  3569. inline bool gcode_M364() {
  3570. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3571. return SCARA_move_to_cal(45, 135);
  3572. }
  3573. /**
  3574. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3575. */
  3576. inline void gcode_M365() {
  3577. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3578. if (code_seen(axis_codes[i])) {
  3579. axis_scaling[i] = code_value();
  3580. }
  3581. }
  3582. }
  3583. #endif // SCARA
  3584. #ifdef EXT_SOLENOID
  3585. void enable_solenoid(uint8_t num) {
  3586. switch(num) {
  3587. case 0:
  3588. OUT_WRITE(SOL0_PIN, HIGH);
  3589. break;
  3590. #if HAS_SOLENOID_1
  3591. case 1:
  3592. OUT_WRITE(SOL1_PIN, HIGH);
  3593. break;
  3594. #endif
  3595. #if HAS_SOLENOID_2
  3596. case 2:
  3597. OUT_WRITE(SOL2_PIN, HIGH);
  3598. break;
  3599. #endif
  3600. #if HAS_SOLENOID_3
  3601. case 3:
  3602. OUT_WRITE(SOL3_PIN, HIGH);
  3603. break;
  3604. #endif
  3605. default:
  3606. SERIAL_ECHO_START;
  3607. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3608. break;
  3609. }
  3610. }
  3611. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3612. void disable_all_solenoids() {
  3613. OUT_WRITE(SOL0_PIN, LOW);
  3614. OUT_WRITE(SOL1_PIN, LOW);
  3615. OUT_WRITE(SOL2_PIN, LOW);
  3616. OUT_WRITE(SOL3_PIN, LOW);
  3617. }
  3618. /**
  3619. * M380: Enable solenoid on the active extruder
  3620. */
  3621. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3622. /**
  3623. * M381: Disable all solenoids
  3624. */
  3625. inline void gcode_M381() { disable_all_solenoids(); }
  3626. #endif // EXT_SOLENOID
  3627. /**
  3628. * M400: Finish all moves
  3629. */
  3630. inline void gcode_M400() { st_synchronize(); }
  3631. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  3632. #ifdef SERVO_ENDSTOPS
  3633. void raise_z_for_servo() {
  3634. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3635. if (!axis_known_position[Z_AXIS]) z_dest += zpos;
  3636. if (zpos < z_dest)
  3637. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z_dest); // also updates current_position
  3638. }
  3639. #endif
  3640. /**
  3641. * M401: Engage Z Servo endstop if available
  3642. */
  3643. inline void gcode_M401() {
  3644. #ifdef SERVO_ENDSTOPS
  3645. raise_z_for_servo();
  3646. #endif
  3647. deploy_z_probe();
  3648. }
  3649. /**
  3650. * M402: Retract Z Servo endstop if enabled
  3651. */
  3652. inline void gcode_M402() {
  3653. #ifdef SERVO_ENDSTOPS
  3654. raise_z_for_servo();
  3655. #endif
  3656. stow_z_probe();
  3657. }
  3658. #endif
  3659. #ifdef FILAMENT_SENSOR
  3660. /**
  3661. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3662. */
  3663. inline void gcode_M404() {
  3664. #if HAS_FILWIDTH
  3665. if (code_seen('W')) {
  3666. filament_width_nominal = code_value();
  3667. }
  3668. else {
  3669. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3670. SERIAL_PROTOCOLLN(filament_width_nominal);
  3671. }
  3672. #endif
  3673. }
  3674. /**
  3675. * M405: Turn on filament sensor for control
  3676. */
  3677. inline void gcode_M405() {
  3678. if (code_seen('D')) meas_delay_cm = code_value();
  3679. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3680. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3681. int temp_ratio = widthFil_to_size_ratio();
  3682. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3683. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3684. delay_index1 = delay_index2 = 0;
  3685. }
  3686. filament_sensor = true;
  3687. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3688. //SERIAL_PROTOCOL(filament_width_meas);
  3689. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3690. //SERIAL_PROTOCOL(extruder_multiply[active_extruder]);
  3691. }
  3692. /**
  3693. * M406: Turn off filament sensor for control
  3694. */
  3695. inline void gcode_M406() { filament_sensor = false; }
  3696. /**
  3697. * M407: Get measured filament diameter on serial output
  3698. */
  3699. inline void gcode_M407() {
  3700. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3701. SERIAL_PROTOCOLLN(filament_width_meas);
  3702. }
  3703. #endif // FILAMENT_SENSOR
  3704. /**
  3705. * M410: Quickstop - Abort all planned moves
  3706. *
  3707. * This will stop the carriages mid-move, so most likely they
  3708. * will be out of sync with the stepper position after this.
  3709. */
  3710. inline void gcode_M410() { quickStop(); }
  3711. /**
  3712. * M500: Store settings in EEPROM
  3713. */
  3714. inline void gcode_M500() {
  3715. Config_StoreSettings();
  3716. }
  3717. /**
  3718. * M501: Read settings from EEPROM
  3719. */
  3720. inline void gcode_M501() {
  3721. Config_RetrieveSettings();
  3722. }
  3723. /**
  3724. * M502: Revert to default settings
  3725. */
  3726. inline void gcode_M502() {
  3727. Config_ResetDefault();
  3728. }
  3729. /**
  3730. * M503: print settings currently in memory
  3731. */
  3732. inline void gcode_M503() {
  3733. Config_PrintSettings(code_seen('S') && code_value() == 0);
  3734. }
  3735. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3736. /**
  3737. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  3738. */
  3739. inline void gcode_M540() {
  3740. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  3741. }
  3742. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  3743. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3744. inline void gcode_SET_Z_PROBE_OFFSET() {
  3745. float value;
  3746. if (code_seen('Z')) {
  3747. value = code_value();
  3748. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  3749. zprobe_zoffset = -value; // compare w/ line 278 of configuration_store.cpp
  3750. SERIAL_ECHO_START;
  3751. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  3752. SERIAL_EOL;
  3753. }
  3754. else {
  3755. SERIAL_ECHO_START;
  3756. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  3757. SERIAL_ECHOPGM(MSG_Z_MIN);
  3758. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  3759. SERIAL_ECHOPGM(MSG_Z_MAX);
  3760. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  3761. SERIAL_EOL;
  3762. }
  3763. }
  3764. else {
  3765. SERIAL_ECHO_START;
  3766. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " : ");
  3767. SERIAL_ECHO(-zprobe_zoffset);
  3768. SERIAL_EOL;
  3769. }
  3770. }
  3771. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  3772. #ifdef FILAMENTCHANGEENABLE
  3773. /**
  3774. * M600: Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  3775. */
  3776. inline void gcode_M600() {
  3777. float target[NUM_AXIS], lastpos[NUM_AXIS], fr60 = feedrate / 60;
  3778. for (int i=0; i<NUM_AXIS; i++)
  3779. target[i] = lastpos[i] = current_position[i];
  3780. #define BASICPLAN plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder);
  3781. #ifdef DELTA
  3782. #define RUNPLAN calculate_delta(target); BASICPLAN
  3783. #else
  3784. #define RUNPLAN BASICPLAN
  3785. #endif
  3786. //retract by E
  3787. if (code_seen('E')) target[E_AXIS] += code_value();
  3788. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  3789. else target[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  3790. #endif
  3791. RUNPLAN;
  3792. //lift Z
  3793. if (code_seen('Z')) target[Z_AXIS] += code_value();
  3794. #ifdef FILAMENTCHANGE_ZADD
  3795. else target[Z_AXIS] += FILAMENTCHANGE_ZADD;
  3796. #endif
  3797. RUNPLAN;
  3798. //move xy
  3799. if (code_seen('X')) target[X_AXIS] = code_value();
  3800. #ifdef FILAMENTCHANGE_XPOS
  3801. else target[X_AXIS] = FILAMENTCHANGE_XPOS;
  3802. #endif
  3803. if (code_seen('Y')) target[Y_AXIS] = code_value();
  3804. #ifdef FILAMENTCHANGE_YPOS
  3805. else target[Y_AXIS] = FILAMENTCHANGE_YPOS;
  3806. #endif
  3807. RUNPLAN;
  3808. if (code_seen('L')) target[E_AXIS] += code_value();
  3809. #ifdef FILAMENTCHANGE_FINALRETRACT
  3810. else target[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  3811. #endif
  3812. RUNPLAN;
  3813. //finish moves
  3814. st_synchronize();
  3815. //disable extruder steppers so filament can be removed
  3816. disable_e0();
  3817. disable_e1();
  3818. disable_e2();
  3819. disable_e3();
  3820. delay(100);
  3821. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  3822. uint8_t cnt = 0;
  3823. while (!lcd_clicked()) {
  3824. if (++cnt == 0) lcd_quick_feedback(); // every 256th frame till the lcd is clicked
  3825. manage_heater();
  3826. manage_inactivity(true);
  3827. lcd_update();
  3828. } // while(!lcd_clicked)
  3829. //return to normal
  3830. if (code_seen('L')) target[E_AXIS] -= code_value();
  3831. #ifdef FILAMENTCHANGE_FINALRETRACT
  3832. else target[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  3833. #endif
  3834. current_position[E_AXIS] = target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  3835. plan_set_e_position(current_position[E_AXIS]);
  3836. RUNPLAN; //should do nothing
  3837. lcd_reset_alert_level();
  3838. #ifdef DELTA
  3839. calculate_delta(lastpos);
  3840. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xyz back
  3841. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3842. #else
  3843. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move xy back
  3844. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], fr60, active_extruder); //move z back
  3845. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); //final untretract
  3846. #endif
  3847. #ifdef FILAMENT_RUNOUT_SENSOR
  3848. filrunoutEnqueued = false;
  3849. #endif
  3850. }
  3851. #endif // FILAMENTCHANGEENABLE
  3852. #ifdef DUAL_X_CARRIAGE
  3853. /**
  3854. * M605: Set dual x-carriage movement mode
  3855. *
  3856. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  3857. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  3858. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  3859. * millimeters x-offset and an optional differential hotend temperature of
  3860. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  3861. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  3862. *
  3863. * Note: the X axis should be homed after changing dual x-carriage mode.
  3864. */
  3865. inline void gcode_M605() {
  3866. st_synchronize();
  3867. if (code_seen('S')) dual_x_carriage_mode = code_value();
  3868. switch(dual_x_carriage_mode) {
  3869. case DXC_DUPLICATION_MODE:
  3870. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  3871. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  3872. SERIAL_ECHO_START;
  3873. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3874. SERIAL_CHAR(' ');
  3875. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  3876. SERIAL_CHAR(',');
  3877. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  3878. SERIAL_CHAR(' ');
  3879. SERIAL_ECHO(duplicate_extruder_x_offset);
  3880. SERIAL_CHAR(',');
  3881. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  3882. break;
  3883. case DXC_FULL_CONTROL_MODE:
  3884. case DXC_AUTO_PARK_MODE:
  3885. break;
  3886. default:
  3887. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  3888. break;
  3889. }
  3890. active_extruder_parked = false;
  3891. extruder_duplication_enabled = false;
  3892. delayed_move_time = 0;
  3893. }
  3894. #endif // DUAL_X_CARRIAGE
  3895. /**
  3896. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  3897. */
  3898. inline void gcode_M907() {
  3899. #if HAS_DIGIPOTSS
  3900. for (int i=0;i<NUM_AXIS;i++)
  3901. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  3902. if (code_seen('B')) digipot_current(4, code_value());
  3903. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  3904. #endif
  3905. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  3906. if (code_seen('X')) digipot_current(0, code_value());
  3907. #endif
  3908. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  3909. if (code_seen('Z')) digipot_current(1, code_value());
  3910. #endif
  3911. #ifdef MOTOR_CURRENT_PWM_E_PIN
  3912. if (code_seen('E')) digipot_current(2, code_value());
  3913. #endif
  3914. #ifdef DIGIPOT_I2C
  3915. // this one uses actual amps in floating point
  3916. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  3917. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  3918. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  3919. #endif
  3920. }
  3921. #if HAS_DIGIPOTSS
  3922. /**
  3923. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  3924. */
  3925. inline void gcode_M908() {
  3926. digitalPotWrite(
  3927. code_seen('P') ? code_value() : 0,
  3928. code_seen('S') ? code_value() : 0
  3929. );
  3930. }
  3931. #endif // HAS_DIGIPOTSS
  3932. #if HAS_MICROSTEPS
  3933. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  3934. inline void gcode_M350() {
  3935. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  3936. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  3937. if(code_seen('B')) microstep_mode(4,code_value());
  3938. microstep_readings();
  3939. }
  3940. /**
  3941. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  3942. * S# determines MS1 or MS2, X# sets the pin high/low.
  3943. */
  3944. inline void gcode_M351() {
  3945. if (code_seen('S')) switch(code_value_short()) {
  3946. case 1:
  3947. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  3948. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  3949. break;
  3950. case 2:
  3951. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  3952. if (code_seen('B')) microstep_ms(4, -1, code_value());
  3953. break;
  3954. }
  3955. microstep_readings();
  3956. }
  3957. #endif // HAS_MICROSTEPS
  3958. /**
  3959. * M999: Restart after being stopped
  3960. */
  3961. inline void gcode_M999() {
  3962. Running = true;
  3963. lcd_reset_alert_level();
  3964. gcode_LastN = Stopped_gcode_LastN;
  3965. FlushSerialRequestResend();
  3966. }
  3967. /**
  3968. * T0-T3: Switch tool, usually switching extruders
  3969. */
  3970. inline void gcode_T() {
  3971. int tmp_extruder = code_value();
  3972. if (tmp_extruder >= EXTRUDERS) {
  3973. SERIAL_ECHO_START;
  3974. SERIAL_CHAR('T');
  3975. SERIAL_ECHO(tmp_extruder);
  3976. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3977. }
  3978. else {
  3979. target_extruder = tmp_extruder;
  3980. #if EXTRUDERS > 1
  3981. bool make_move = false;
  3982. #endif
  3983. if (code_seen('F')) {
  3984. #if EXTRUDERS > 1
  3985. make_move = true;
  3986. #endif
  3987. next_feedrate = code_value();
  3988. if (next_feedrate > 0.0) feedrate = next_feedrate;
  3989. }
  3990. #if EXTRUDERS > 1
  3991. if (tmp_extruder != active_extruder) {
  3992. // Save current position to return to after applying extruder offset
  3993. set_destination_to_current();
  3994. #ifdef DUAL_X_CARRIAGE
  3995. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  3996. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  3997. // Park old head: 1) raise 2) move to park position 3) lower
  3998. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  3999. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4000. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4001. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4002. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4003. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4004. st_synchronize();
  4005. }
  4006. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4007. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4008. extruder_offset[Y_AXIS][active_extruder] +
  4009. extruder_offset[Y_AXIS][tmp_extruder];
  4010. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4011. extruder_offset[Z_AXIS][active_extruder] +
  4012. extruder_offset[Z_AXIS][tmp_extruder];
  4013. active_extruder = tmp_extruder;
  4014. // This function resets the max/min values - the current position may be overwritten below.
  4015. axis_is_at_home(X_AXIS);
  4016. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4017. current_position[X_AXIS] = inactive_extruder_x_pos;
  4018. inactive_extruder_x_pos = destination[X_AXIS];
  4019. }
  4020. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4021. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4022. if (active_extruder == 0 || active_extruder_parked)
  4023. current_position[X_AXIS] = inactive_extruder_x_pos;
  4024. else
  4025. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4026. inactive_extruder_x_pos = destination[X_AXIS];
  4027. extruder_duplication_enabled = false;
  4028. }
  4029. else {
  4030. // record raised toolhead position for use by unpark
  4031. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4032. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4033. active_extruder_parked = true;
  4034. delayed_move_time = 0;
  4035. }
  4036. #else // !DUAL_X_CARRIAGE
  4037. // Offset extruder (only by XY)
  4038. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4039. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4040. // Set the new active extruder and position
  4041. active_extruder = tmp_extruder;
  4042. #endif // !DUAL_X_CARRIAGE
  4043. #ifdef DELTA
  4044. sync_plan_position_delta();
  4045. #else
  4046. sync_plan_position();
  4047. #endif
  4048. // Move to the old position if 'F' was in the parameters
  4049. if (make_move && IsRunning()) prepare_move();
  4050. }
  4051. #ifdef EXT_SOLENOID
  4052. st_synchronize();
  4053. disable_all_solenoids();
  4054. enable_solenoid_on_active_extruder();
  4055. #endif // EXT_SOLENOID
  4056. #endif // EXTRUDERS > 1
  4057. SERIAL_ECHO_START;
  4058. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4059. SERIAL_PROTOCOLLN((int)active_extruder);
  4060. }
  4061. }
  4062. /**
  4063. * Process Commands and dispatch them to handlers
  4064. * This is called from the main loop()
  4065. */
  4066. void process_commands() {
  4067. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4068. SERIAL_ECHO_START;
  4069. SERIAL_ECHOLN(command_queue[cmd_queue_index_r]);
  4070. }
  4071. if (code_seen('G')) {
  4072. int gCode = code_value_short();
  4073. switch(gCode) {
  4074. // G0, G1
  4075. case 0:
  4076. case 1:
  4077. gcode_G0_G1();
  4078. break;
  4079. // G2, G3
  4080. #ifndef SCARA
  4081. case 2: // G2 - CW ARC
  4082. case 3: // G3 - CCW ARC
  4083. gcode_G2_G3(gCode == 2);
  4084. break;
  4085. #endif
  4086. // G4 Dwell
  4087. case 4:
  4088. gcode_G4();
  4089. break;
  4090. #ifdef FWRETRACT
  4091. case 10: // G10: retract
  4092. case 11: // G11: retract_recover
  4093. gcode_G10_G11(gCode == 10);
  4094. break;
  4095. #endif //FWRETRACT
  4096. case 28: // G28: Home all axes, one at a time
  4097. gcode_G28();
  4098. break;
  4099. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  4100. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4101. gcode_G29();
  4102. break;
  4103. #endif
  4104. #ifdef ENABLE_AUTO_BED_LEVELING
  4105. #ifndef Z_PROBE_SLED
  4106. case 30: // G30 Single Z Probe
  4107. gcode_G30();
  4108. break;
  4109. #else // Z_PROBE_SLED
  4110. case 31: // G31: dock the sled
  4111. case 32: // G32: undock the sled
  4112. dock_sled(gCode == 31);
  4113. break;
  4114. #endif // Z_PROBE_SLED
  4115. #endif // ENABLE_AUTO_BED_LEVELING
  4116. case 90: // G90
  4117. relative_mode = false;
  4118. break;
  4119. case 91: // G91
  4120. relative_mode = true;
  4121. break;
  4122. case 92: // G92
  4123. gcode_G92();
  4124. break;
  4125. }
  4126. }
  4127. else if (code_seen('M')) {
  4128. switch(code_value_short()) {
  4129. #ifdef ULTIPANEL
  4130. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4131. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4132. gcode_M0_M1();
  4133. break;
  4134. #endif // ULTIPANEL
  4135. case 17:
  4136. gcode_M17();
  4137. break;
  4138. #ifdef SDSUPPORT
  4139. case 20: // M20 - list SD card
  4140. gcode_M20(); break;
  4141. case 21: // M21 - init SD card
  4142. gcode_M21(); break;
  4143. case 22: //M22 - release SD card
  4144. gcode_M22(); break;
  4145. case 23: //M23 - Select file
  4146. gcode_M23(); break;
  4147. case 24: //M24 - Start SD print
  4148. gcode_M24(); break;
  4149. case 25: //M25 - Pause SD print
  4150. gcode_M25(); break;
  4151. case 26: //M26 - Set SD index
  4152. gcode_M26(); break;
  4153. case 27: //M27 - Get SD status
  4154. gcode_M27(); break;
  4155. case 28: //M28 - Start SD write
  4156. gcode_M28(); break;
  4157. case 29: //M29 - Stop SD write
  4158. gcode_M29(); break;
  4159. case 30: //M30 <filename> Delete File
  4160. gcode_M30(); break;
  4161. case 32: //M32 - Select file and start SD print
  4162. gcode_M32(); break;
  4163. case 928: //M928 - Start SD write
  4164. gcode_M928(); break;
  4165. #endif //SDSUPPORT
  4166. case 31: //M31 take time since the start of the SD print or an M109 command
  4167. gcode_M31();
  4168. break;
  4169. case 42: //M42 -Change pin status via gcode
  4170. gcode_M42();
  4171. break;
  4172. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(Z_PROBE_REPEATABILITY_TEST)
  4173. case 48: // M48 Z-Probe repeatability
  4174. gcode_M48();
  4175. break;
  4176. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4177. case 104: // M104
  4178. gcode_M104();
  4179. break;
  4180. case 111: // M111: Set debug level
  4181. gcode_M111();
  4182. break;
  4183. case 112: // M112: Emergency Stop
  4184. gcode_M112();
  4185. break;
  4186. case 140: // M140: Set bed temp
  4187. gcode_M140();
  4188. break;
  4189. case 105: // M105: Read current temperature
  4190. gcode_M105();
  4191. return;
  4192. break;
  4193. case 109: // M109: Wait for temperature
  4194. gcode_M109();
  4195. break;
  4196. #if HAS_TEMP_BED
  4197. case 190: // M190: Wait for bed heater to reach target
  4198. gcode_M190();
  4199. break;
  4200. #endif // HAS_TEMP_BED
  4201. #if HAS_FAN
  4202. case 106: // M106: Fan On
  4203. gcode_M106();
  4204. break;
  4205. case 107: // M107: Fan Off
  4206. gcode_M107();
  4207. break;
  4208. #endif // HAS_FAN
  4209. #ifdef BARICUDA
  4210. // PWM for HEATER_1_PIN
  4211. #if HAS_HEATER_1
  4212. case 126: // M126: valve open
  4213. gcode_M126();
  4214. break;
  4215. case 127: // M127: valve closed
  4216. gcode_M127();
  4217. break;
  4218. #endif // HAS_HEATER_1
  4219. // PWM for HEATER_2_PIN
  4220. #if HAS_HEATER_2
  4221. case 128: // M128: valve open
  4222. gcode_M128();
  4223. break;
  4224. case 129: // M129: valve closed
  4225. gcode_M129();
  4226. break;
  4227. #endif // HAS_HEATER_2
  4228. #endif // BARICUDA
  4229. #if HAS_POWER_SWITCH
  4230. case 80: // M80: Turn on Power Supply
  4231. gcode_M80();
  4232. break;
  4233. #endif // HAS_POWER_SWITCH
  4234. case 81: // M81: Turn off Power, including Power Supply, if possible
  4235. gcode_M81();
  4236. break;
  4237. case 82:
  4238. gcode_M82();
  4239. break;
  4240. case 83:
  4241. gcode_M83();
  4242. break;
  4243. case 18: // (for compatibility)
  4244. case 84: // M84
  4245. gcode_M18_M84();
  4246. break;
  4247. case 85: // M85
  4248. gcode_M85();
  4249. break;
  4250. case 92: // M92
  4251. gcode_M92();
  4252. break;
  4253. case 115: // M115
  4254. gcode_M115();
  4255. break;
  4256. case 117: // M117 display message
  4257. gcode_M117();
  4258. break;
  4259. case 114: // M114
  4260. gcode_M114();
  4261. break;
  4262. case 120: // M120
  4263. gcode_M120();
  4264. break;
  4265. case 121: // M121
  4266. gcode_M121();
  4267. break;
  4268. case 119: // M119
  4269. gcode_M119();
  4270. break;
  4271. //TODO: update for all axis, use for loop
  4272. #ifdef BLINKM
  4273. case 150: // M150
  4274. gcode_M150();
  4275. break;
  4276. #endif //BLINKM
  4277. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4278. gcode_M200();
  4279. break;
  4280. case 201: // M201
  4281. gcode_M201();
  4282. break;
  4283. #if 0 // Not used for Sprinter/grbl gen6
  4284. case 202: // M202
  4285. gcode_M202();
  4286. break;
  4287. #endif
  4288. case 203: // M203 max feedrate mm/sec
  4289. gcode_M203();
  4290. break;
  4291. case 204: // M204 acclereration S normal moves T filmanent only moves
  4292. gcode_M204();
  4293. break;
  4294. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4295. gcode_M205();
  4296. break;
  4297. case 206: // M206 additional homing offset
  4298. gcode_M206();
  4299. break;
  4300. #ifdef DELTA
  4301. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4302. gcode_M665();
  4303. break;
  4304. #endif
  4305. #if defined(DELTA) || defined(Z_DUAL_ENDSTOPS)
  4306. case 666: // M666 set delta / dual endstop adjustment
  4307. gcode_M666();
  4308. break;
  4309. #endif
  4310. #ifdef FWRETRACT
  4311. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4312. gcode_M207();
  4313. break;
  4314. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4315. gcode_M208();
  4316. break;
  4317. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4318. gcode_M209();
  4319. break;
  4320. #endif // FWRETRACT
  4321. #if EXTRUDERS > 1
  4322. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4323. gcode_M218();
  4324. break;
  4325. #endif
  4326. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4327. gcode_M220();
  4328. break;
  4329. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4330. gcode_M221();
  4331. break;
  4332. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4333. gcode_M226();
  4334. break;
  4335. #if NUM_SERVOS > 0
  4336. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4337. gcode_M280();
  4338. break;
  4339. #endif // NUM_SERVOS > 0
  4340. #if BEEPER > 0 || defined(ULTRALCD) || defined(LCD_USE_I2C_BUZZER)
  4341. case 300: // M300 - Play beep tone
  4342. gcode_M300();
  4343. break;
  4344. #endif // BEEPER > 0 || ULTRALCD || LCD_USE_I2C_BUZZER
  4345. #ifdef PIDTEMP
  4346. case 301: // M301
  4347. gcode_M301();
  4348. break;
  4349. #endif // PIDTEMP
  4350. #ifdef PIDTEMPBED
  4351. case 304: // M304
  4352. gcode_M304();
  4353. break;
  4354. #endif // PIDTEMPBED
  4355. #if defined(CHDK) || HAS_PHOTOGRAPH
  4356. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4357. gcode_M240();
  4358. break;
  4359. #endif // CHDK || PHOTOGRAPH_PIN
  4360. #ifdef HAS_LCD_CONTRAST
  4361. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4362. gcode_M250();
  4363. break;
  4364. #endif // HAS_LCD_CONTRAST
  4365. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4366. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4367. gcode_M302();
  4368. break;
  4369. #endif // PREVENT_DANGEROUS_EXTRUDE
  4370. case 303: // M303 PID autotune
  4371. gcode_M303();
  4372. break;
  4373. #ifdef SCARA
  4374. case 360: // M360 SCARA Theta pos1
  4375. if (gcode_M360()) return;
  4376. break;
  4377. case 361: // M361 SCARA Theta pos2
  4378. if (gcode_M361()) return;
  4379. break;
  4380. case 362: // M362 SCARA Psi pos1
  4381. if (gcode_M362()) return;
  4382. break;
  4383. case 363: // M363 SCARA Psi pos2
  4384. if (gcode_M363()) return;
  4385. break;
  4386. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4387. if (gcode_M364()) return;
  4388. break;
  4389. case 365: // M365 Set SCARA scaling for X Y Z
  4390. gcode_M365();
  4391. break;
  4392. #endif // SCARA
  4393. case 400: // M400 finish all moves
  4394. gcode_M400();
  4395. break;
  4396. #if defined(ENABLE_AUTO_BED_LEVELING) && (defined(SERVO_ENDSTOPS) || defined(Z_PROBE_ALLEN_KEY)) && not defined(Z_PROBE_SLED)
  4397. case 401:
  4398. gcode_M401();
  4399. break;
  4400. case 402:
  4401. gcode_M402();
  4402. break;
  4403. #endif
  4404. #ifdef FILAMENT_SENSOR
  4405. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4406. gcode_M404();
  4407. break;
  4408. case 405: //M405 Turn on filament sensor for control
  4409. gcode_M405();
  4410. break;
  4411. case 406: //M406 Turn off filament sensor for control
  4412. gcode_M406();
  4413. break;
  4414. case 407: //M407 Display measured filament diameter
  4415. gcode_M407();
  4416. break;
  4417. #endif // FILAMENT_SENSOR
  4418. case 410: // M410 quickstop - Abort all the planned moves.
  4419. gcode_M410();
  4420. break;
  4421. case 500: // M500 Store settings in EEPROM
  4422. gcode_M500();
  4423. break;
  4424. case 501: // M501 Read settings from EEPROM
  4425. gcode_M501();
  4426. break;
  4427. case 502: // M502 Revert to default settings
  4428. gcode_M502();
  4429. break;
  4430. case 503: // M503 print settings currently in memory
  4431. gcode_M503();
  4432. break;
  4433. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4434. case 540:
  4435. gcode_M540();
  4436. break;
  4437. #endif
  4438. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4439. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4440. gcode_SET_Z_PROBE_OFFSET();
  4441. break;
  4442. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4443. #ifdef FILAMENTCHANGEENABLE
  4444. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4445. gcode_M600();
  4446. break;
  4447. #endif // FILAMENTCHANGEENABLE
  4448. #ifdef DUAL_X_CARRIAGE
  4449. case 605:
  4450. gcode_M605();
  4451. break;
  4452. #endif // DUAL_X_CARRIAGE
  4453. case 907: // M907 Set digital trimpot motor current using axis codes.
  4454. gcode_M907();
  4455. break;
  4456. #if HAS_DIGIPOTSS
  4457. case 908: // M908 Control digital trimpot directly.
  4458. gcode_M908();
  4459. break;
  4460. #endif // HAS_DIGIPOTSS
  4461. #if HAS_MICROSTEPS
  4462. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4463. gcode_M350();
  4464. break;
  4465. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4466. gcode_M351();
  4467. break;
  4468. #endif // HAS_MICROSTEPS
  4469. case 999: // M999: Restart after being Stopped
  4470. gcode_M999();
  4471. break;
  4472. }
  4473. }
  4474. else if (code_seen('T')) {
  4475. gcode_T();
  4476. }
  4477. else {
  4478. SERIAL_ECHO_START;
  4479. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  4480. SERIAL_ECHO(command_queue[cmd_queue_index_r]);
  4481. SERIAL_ECHOLNPGM("\"");
  4482. }
  4483. ClearToSend();
  4484. }
  4485. void FlushSerialRequestResend() {
  4486. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4487. MYSERIAL.flush();
  4488. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4489. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4490. ClearToSend();
  4491. }
  4492. void ClearToSend() {
  4493. refresh_cmd_timeout();
  4494. #ifdef SDSUPPORT
  4495. if (fromsd[cmd_queue_index_r]) return;
  4496. #endif
  4497. SERIAL_PROTOCOLLNPGM(MSG_OK);
  4498. }
  4499. void get_coordinates() {
  4500. for (int i = 0; i < NUM_AXIS; i++) {
  4501. if (code_seen(axis_codes[i]))
  4502. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  4503. else
  4504. destination[i] = current_position[i];
  4505. }
  4506. if (code_seen('F')) {
  4507. next_feedrate = code_value();
  4508. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4509. }
  4510. }
  4511. void get_arc_coordinates() {
  4512. #ifdef SF_ARC_FIX
  4513. bool relative_mode_backup = relative_mode;
  4514. relative_mode = true;
  4515. #endif
  4516. get_coordinates();
  4517. #ifdef SF_ARC_FIX
  4518. relative_mode = relative_mode_backup;
  4519. #endif
  4520. offset[0] = code_seen('I') ? code_value() : 0;
  4521. offset[1] = code_seen('J') ? code_value() : 0;
  4522. }
  4523. void clamp_to_software_endstops(float target[3]) {
  4524. if (min_software_endstops) {
  4525. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4526. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4527. float negative_z_offset = 0;
  4528. #ifdef ENABLE_AUTO_BED_LEVELING
  4529. if (Z_PROBE_OFFSET_FROM_EXTRUDER < 0) negative_z_offset += Z_PROBE_OFFSET_FROM_EXTRUDER;
  4530. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4531. #endif
  4532. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4533. }
  4534. if (max_software_endstops) {
  4535. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4536. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4537. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4538. }
  4539. }
  4540. #ifdef DELTA
  4541. void recalc_delta_settings(float radius, float diagonal_rod) {
  4542. delta_tower1_x = -SIN_60 * radius; // front left tower
  4543. delta_tower1_y = -COS_60 * radius;
  4544. delta_tower2_x = SIN_60 * radius; // front right tower
  4545. delta_tower2_y = -COS_60 * radius;
  4546. delta_tower3_x = 0.0; // back middle tower
  4547. delta_tower3_y = radius;
  4548. delta_diagonal_rod_2 = sq(diagonal_rod);
  4549. }
  4550. void calculate_delta(float cartesian[3]) {
  4551. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4552. - sq(delta_tower1_x-cartesian[X_AXIS])
  4553. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4554. ) + cartesian[Z_AXIS];
  4555. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4556. - sq(delta_tower2_x-cartesian[X_AXIS])
  4557. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4558. ) + cartesian[Z_AXIS];
  4559. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4560. - sq(delta_tower3_x-cartesian[X_AXIS])
  4561. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4562. ) + cartesian[Z_AXIS];
  4563. /*
  4564. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4565. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4566. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4567. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4568. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4569. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4570. */
  4571. }
  4572. #ifdef ENABLE_AUTO_BED_LEVELING
  4573. // Adjust print surface height by linear interpolation over the bed_level array.
  4574. void adjust_delta(float cartesian[3]) {
  4575. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4576. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4577. float h1 = 0.001 - half, h2 = half - 0.001,
  4578. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4579. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4580. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4581. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4582. z1 = bed_level[floor_x + half][floor_y + half],
  4583. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4584. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4585. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4586. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4587. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4588. offset = (1 - ratio_x) * left + ratio_x * right;
  4589. delta[X_AXIS] += offset;
  4590. delta[Y_AXIS] += offset;
  4591. delta[Z_AXIS] += offset;
  4592. /*
  4593. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4594. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4595. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4596. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4597. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4598. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4599. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4600. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4601. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4602. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4603. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4604. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4605. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4606. */
  4607. }
  4608. #endif // ENABLE_AUTO_BED_LEVELING
  4609. #endif // DELTA
  4610. #ifdef MESH_BED_LEVELING
  4611. #if !defined(MIN)
  4612. #define MIN(_v1, _v2) (((_v1) < (_v2)) ? (_v1) : (_v2))
  4613. #endif // ! MIN
  4614. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4615. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4616. {
  4617. if (!mbl.active) {
  4618. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4619. set_current_to_destination();
  4620. return;
  4621. }
  4622. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4623. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4624. int ix = mbl.select_x_index(x);
  4625. int iy = mbl.select_y_index(y);
  4626. pix = MIN(pix, MESH_NUM_X_POINTS-2);
  4627. piy = MIN(piy, MESH_NUM_Y_POINTS-2);
  4628. ix = MIN(ix, MESH_NUM_X_POINTS-2);
  4629. iy = MIN(iy, MESH_NUM_Y_POINTS-2);
  4630. if (pix == ix && piy == iy) {
  4631. // Start and end on same mesh square
  4632. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4633. set_current_to_destination();
  4634. return;
  4635. }
  4636. float nx, ny, ne, normalized_dist;
  4637. if (ix > pix && (x_splits) & BIT(ix)) {
  4638. nx = mbl.get_x(ix);
  4639. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4640. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4641. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4642. x_splits ^= BIT(ix);
  4643. } else if (ix < pix && (x_splits) & BIT(pix)) {
  4644. nx = mbl.get_x(pix);
  4645. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  4646. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  4647. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4648. x_splits ^= BIT(pix);
  4649. } else if (iy > piy && (y_splits) & BIT(iy)) {
  4650. ny = mbl.get_y(iy);
  4651. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4652. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4653. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4654. y_splits ^= BIT(iy);
  4655. } else if (iy < piy && (y_splits) & BIT(piy)) {
  4656. ny = mbl.get_y(piy);
  4657. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  4658. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  4659. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  4660. y_splits ^= BIT(piy);
  4661. } else {
  4662. // Already split on a border
  4663. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4664. set_current_to_destination();
  4665. return;
  4666. }
  4667. // Do the split and look for more borders
  4668. destination[X_AXIS] = nx;
  4669. destination[Y_AXIS] = ny;
  4670. destination[E_AXIS] = ne;
  4671. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  4672. destination[X_AXIS] = x;
  4673. destination[Y_AXIS] = y;
  4674. destination[E_AXIS] = e;
  4675. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  4676. }
  4677. #endif // MESH_BED_LEVELING
  4678. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4679. inline float prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  4680. float de = dest_e - curr_e;
  4681. if (de) {
  4682. if (degHotend(active_extruder) < extrude_min_temp) {
  4683. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4684. SERIAL_ECHO_START;
  4685. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  4686. return 0;
  4687. }
  4688. #ifdef PREVENT_LENGTHY_EXTRUDE
  4689. if (labs(de) > EXTRUDE_MAXLENGTH) {
  4690. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  4691. SERIAL_ECHO_START;
  4692. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  4693. return 0;
  4694. }
  4695. #endif
  4696. }
  4697. return de;
  4698. }
  4699. #endif // PREVENT_DANGEROUS_EXTRUDE
  4700. void prepare_move() {
  4701. clamp_to_software_endstops(destination);
  4702. refresh_cmd_timeout();
  4703. #ifdef PREVENT_DANGEROUS_EXTRUDE
  4704. (void)prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  4705. #endif
  4706. #ifdef SCARA //for now same as delta-code
  4707. float difference[NUM_AXIS];
  4708. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4709. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4710. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  4711. if (cartesian_mm < 0.000001) { return; }
  4712. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4713. int steps = max(1, int(scara_segments_per_second * seconds));
  4714. //SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4715. //SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4716. //SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4717. for (int s = 1; s <= steps; s++) {
  4718. float fraction = float(s) / float(steps);
  4719. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4720. calculate_delta(destination);
  4721. //SERIAL_ECHOPGM("destination[X_AXIS]="); SERIAL_ECHOLN(destination[X_AXIS]);
  4722. //SERIAL_ECHOPGM("destination[Y_AXIS]="); SERIAL_ECHOLN(destination[Y_AXIS]);
  4723. //SERIAL_ECHOPGM("destination[Z_AXIS]="); SERIAL_ECHOLN(destination[Z_AXIS]);
  4724. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  4725. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4726. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4727. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4728. }
  4729. #endif // SCARA
  4730. #ifdef DELTA
  4731. float difference[NUM_AXIS];
  4732. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = destination[i] - current_position[i];
  4733. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  4734. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  4735. if (cartesian_mm < 0.000001) return;
  4736. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  4737. int steps = max(1, int(delta_segments_per_second * seconds));
  4738. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  4739. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  4740. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  4741. for (int s = 1; s <= steps; s++) {
  4742. float fraction = float(s) / float(steps);
  4743. for (int8_t i = 0; i < NUM_AXIS; i++) destination[i] = current_position[i] + difference[i] * fraction;
  4744. calculate_delta(destination);
  4745. #ifdef ENABLE_AUTO_BED_LEVELING
  4746. adjust_delta(destination);
  4747. #endif
  4748. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  4749. }
  4750. #endif // DELTA
  4751. #ifdef DUAL_X_CARRIAGE
  4752. if (active_extruder_parked) {
  4753. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  4754. // move duplicate extruder into correct duplication position.
  4755. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  4756. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  4757. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  4758. sync_plan_position();
  4759. st_synchronize();
  4760. extruder_duplication_enabled = true;
  4761. active_extruder_parked = false;
  4762. }
  4763. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  4764. if (current_position[E_AXIS] == destination[E_AXIS]) {
  4765. // This is a travel move (with no extrusion)
  4766. // Skip it, but keep track of the current position
  4767. // (so it can be used as the start of the next non-travel move)
  4768. if (delayed_move_time != 0xFFFFFFFFUL) {
  4769. set_current_to_destination();
  4770. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  4771. delayed_move_time = millis();
  4772. return;
  4773. }
  4774. }
  4775. delayed_move_time = 0;
  4776. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  4777. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4778. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  4779. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4780. active_extruder_parked = false;
  4781. }
  4782. }
  4783. #endif // DUAL_X_CARRIAGE
  4784. #if !defined(DELTA) && !defined(SCARA)
  4785. // Do not use feedrate_multiplier for E or Z only moves
  4786. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  4787. line_to_destination();
  4788. }
  4789. else {
  4790. #ifdef MESH_BED_LEVELING
  4791. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  4792. return;
  4793. #else
  4794. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  4795. #endif // MESH_BED_LEVELING
  4796. }
  4797. #endif // !(DELTA || SCARA)
  4798. set_current_to_destination();
  4799. }
  4800. void prepare_arc_move(char isclockwise) {
  4801. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  4802. // Trace the arc
  4803. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedrate_multiplier/60/100.0, r, isclockwise, active_extruder);
  4804. // As far as the parser is concerned, the position is now == target. In reality the
  4805. // motion control system might still be processing the action and the real tool position
  4806. // in any intermediate location.
  4807. set_current_to_destination();
  4808. refresh_cmd_timeout();
  4809. }
  4810. #if HAS_CONTROLLERFAN
  4811. millis_t lastMotor = 0; // Last time a motor was turned on
  4812. millis_t lastMotorCheck = 0; // Last time the state was checked
  4813. void controllerFan() {
  4814. millis_t ms = millis();
  4815. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  4816. lastMotorCheck = ms;
  4817. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  4818. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  4819. #if EXTRUDERS > 1
  4820. || E1_ENABLE_READ == E_ENABLE_ON
  4821. #if HAS_X2_ENABLE
  4822. || X2_ENABLE_READ == X_ENABLE_ON
  4823. #endif
  4824. #if EXTRUDERS > 2
  4825. || E2_ENABLE_READ == E_ENABLE_ON
  4826. #if EXTRUDERS > 3
  4827. || E3_ENABLE_READ == E_ENABLE_ON
  4828. #endif
  4829. #endif
  4830. #endif
  4831. ) {
  4832. lastMotor = ms; //... set time to NOW so the fan will turn on
  4833. }
  4834. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  4835. // allows digital or PWM fan output to be used (see M42 handling)
  4836. digitalWrite(CONTROLLERFAN_PIN, speed);
  4837. analogWrite(CONTROLLERFAN_PIN, speed);
  4838. }
  4839. }
  4840. #endif
  4841. #ifdef SCARA
  4842. void calculate_SCARA_forward_Transform(float f_scara[3])
  4843. {
  4844. // Perform forward kinematics, and place results in delta[3]
  4845. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4846. float x_sin, x_cos, y_sin, y_cos;
  4847. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  4848. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  4849. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4850. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  4851. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4852. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  4853. // SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  4854. // SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  4855. // SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  4856. // SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  4857. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  4858. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  4859. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  4860. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  4861. }
  4862. void calculate_delta(float cartesian[3]){
  4863. //reverse kinematics.
  4864. // Perform reversed kinematics, and place results in delta[3]
  4865. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  4866. float SCARA_pos[2];
  4867. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  4868. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  4869. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  4870. #if (Linkage_1 == Linkage_2)
  4871. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  4872. #else
  4873. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  4874. #endif
  4875. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  4876. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  4877. SCARA_K2 = Linkage_2 * SCARA_S2;
  4878. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  4879. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  4880. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  4881. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  4882. delta[Z_AXIS] = cartesian[Z_AXIS];
  4883. /*
  4884. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4885. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4886. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4887. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  4888. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  4889. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4890. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4891. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4892. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  4893. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  4894. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  4895. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  4896. SERIAL_ECHOLN(" ");*/
  4897. }
  4898. #endif
  4899. #ifdef TEMP_STAT_LEDS
  4900. static bool red_led = false;
  4901. static millis_t next_status_led_update_ms = 0;
  4902. void handle_status_leds(void) {
  4903. float max_temp = 0.0;
  4904. if (millis() > next_status_led_update_ms) {
  4905. next_status_led_update_ms += 500; // Update every 0.5s
  4906. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  4907. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  4908. #if HAS_TEMP_BED
  4909. max_temp = max(max(max_temp, degTargetBed()), degBed());
  4910. #endif
  4911. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  4912. if (new_led != red_led) {
  4913. red_led = new_led;
  4914. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  4915. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  4916. }
  4917. }
  4918. }
  4919. #endif
  4920. void enable_all_steppers() {
  4921. enable_x();
  4922. enable_y();
  4923. enable_z();
  4924. enable_e0();
  4925. enable_e1();
  4926. enable_e2();
  4927. enable_e3();
  4928. }
  4929. void disable_all_steppers() {
  4930. disable_x();
  4931. disable_y();
  4932. disable_z();
  4933. disable_e0();
  4934. disable_e1();
  4935. disable_e2();
  4936. disable_e3();
  4937. }
  4938. /**
  4939. * Manage several activities:
  4940. * - Check for Filament Runout
  4941. * - Keep the command buffer full
  4942. * - Check for maximum inactive time between commands
  4943. * - Check for maximum inactive time between stepper commands
  4944. * - Check if pin CHDK needs to go LOW
  4945. * - Check for KILL button held down
  4946. * - Check for HOME button held down
  4947. * - Check if cooling fan needs to be switched on
  4948. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  4949. */
  4950. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  4951. #if HAS_FILRUNOUT
  4952. if (card.sdprinting && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  4953. filrunout();
  4954. #endif
  4955. if (commands_in_queue < BUFSIZE - 1) get_command();
  4956. millis_t ms = millis();
  4957. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill();
  4958. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  4959. && !ignore_stepper_queue && !blocks_queued())
  4960. disable_all_steppers();
  4961. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  4962. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  4963. chdkActive = false;
  4964. WRITE(CHDK, LOW);
  4965. }
  4966. #endif
  4967. #if HAS_KILL
  4968. // Check if the kill button was pressed and wait just in case it was an accidental
  4969. // key kill key press
  4970. // -------------------------------------------------------------------------------
  4971. static int killCount = 0; // make the inactivity button a bit less responsive
  4972. const int KILL_DELAY = 750;
  4973. if (!READ(KILL_PIN))
  4974. killCount++;
  4975. else if (killCount > 0)
  4976. killCount--;
  4977. // Exceeded threshold and we can confirm that it was not accidental
  4978. // KILL the machine
  4979. // ----------------------------------------------------------------
  4980. if (killCount >= KILL_DELAY) kill();
  4981. #endif
  4982. #if HAS_HOME
  4983. // Check to see if we have to home, use poor man's debouncer
  4984. // ---------------------------------------------------------
  4985. static int homeDebounceCount = 0; // poor man's debouncing count
  4986. const int HOME_DEBOUNCE_DELAY = 750;
  4987. if (!READ(HOME_PIN)) {
  4988. if (!homeDebounceCount) {
  4989. enqueuecommands_P(PSTR("G28"));
  4990. LCD_ALERTMESSAGEPGM(MSG_AUTO_HOME);
  4991. }
  4992. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  4993. homeDebounceCount++;
  4994. else
  4995. homeDebounceCount = 0;
  4996. }
  4997. #endif
  4998. #if HAS_CONTROLLERFAN
  4999. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5000. #endif
  5001. #ifdef EXTRUDER_RUNOUT_PREVENT
  5002. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5003. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5004. bool oldstatus;
  5005. switch(active_extruder) {
  5006. case 0:
  5007. oldstatus = E0_ENABLE_READ;
  5008. enable_e0();
  5009. break;
  5010. #if EXTRUDERS > 1
  5011. case 1:
  5012. oldstatus = E1_ENABLE_READ;
  5013. enable_e1();
  5014. break;
  5015. #if EXTRUDERS > 2
  5016. case 2:
  5017. oldstatus = E2_ENABLE_READ;
  5018. enable_e2();
  5019. break;
  5020. #if EXTRUDERS > 3
  5021. case 3:
  5022. oldstatus = E3_ENABLE_READ;
  5023. enable_e3();
  5024. break;
  5025. #endif
  5026. #endif
  5027. #endif
  5028. }
  5029. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5030. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5031. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5032. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5033. current_position[E_AXIS] = oldepos;
  5034. destination[E_AXIS] = oldedes;
  5035. plan_set_e_position(oldepos);
  5036. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5037. st_synchronize();
  5038. switch(active_extruder) {
  5039. case 0:
  5040. E0_ENABLE_WRITE(oldstatus);
  5041. break;
  5042. #if EXTRUDERS > 1
  5043. case 1:
  5044. E1_ENABLE_WRITE(oldstatus);
  5045. break;
  5046. #if EXTRUDERS > 2
  5047. case 2:
  5048. E2_ENABLE_WRITE(oldstatus);
  5049. break;
  5050. #if EXTRUDERS > 3
  5051. case 3:
  5052. E3_ENABLE_WRITE(oldstatus);
  5053. break;
  5054. #endif
  5055. #endif
  5056. #endif
  5057. }
  5058. }
  5059. #endif
  5060. #ifdef DUAL_X_CARRIAGE
  5061. // handle delayed move timeout
  5062. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5063. // travel moves have been received so enact them
  5064. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5065. set_destination_to_current();
  5066. prepare_move();
  5067. }
  5068. #endif
  5069. #ifdef TEMP_STAT_LEDS
  5070. handle_status_leds();
  5071. #endif
  5072. check_axes_activity();
  5073. }
  5074. void kill()
  5075. {
  5076. cli(); // Stop interrupts
  5077. disable_all_heaters();
  5078. disable_all_steppers();
  5079. #if HAS_POWER_SWITCH
  5080. pinMode(PS_ON_PIN, INPUT);
  5081. #endif
  5082. SERIAL_ERROR_START;
  5083. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5084. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  5085. // FMC small patch to update the LCD before ending
  5086. sei(); // enable interrupts
  5087. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5088. cli(); // disable interrupts
  5089. suicide();
  5090. while(1) { /* Intentionally left empty */ } // Wait for reset
  5091. }
  5092. #ifdef FILAMENT_RUNOUT_SENSOR
  5093. void filrunout() {
  5094. if (!filrunoutEnqueued) {
  5095. filrunoutEnqueued = true;
  5096. enqueuecommand("M600");
  5097. }
  5098. }
  5099. #endif
  5100. void Stop() {
  5101. disable_all_heaters();
  5102. if (IsRunning()) {
  5103. Running = false;
  5104. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5105. SERIAL_ERROR_START;
  5106. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5107. LCD_MESSAGEPGM(MSG_STOPPED);
  5108. }
  5109. }
  5110. #ifdef FAST_PWM_FAN
  5111. void setPwmFrequency(uint8_t pin, int val)
  5112. {
  5113. val &= 0x07;
  5114. switch(digitalPinToTimer(pin))
  5115. {
  5116. #if defined(TCCR0A)
  5117. case TIMER0A:
  5118. case TIMER0B:
  5119. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5120. // TCCR0B |= val;
  5121. break;
  5122. #endif
  5123. #if defined(TCCR1A)
  5124. case TIMER1A:
  5125. case TIMER1B:
  5126. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5127. // TCCR1B |= val;
  5128. break;
  5129. #endif
  5130. #if defined(TCCR2)
  5131. case TIMER2:
  5132. case TIMER2:
  5133. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5134. TCCR2 |= val;
  5135. break;
  5136. #endif
  5137. #if defined(TCCR2A)
  5138. case TIMER2A:
  5139. case TIMER2B:
  5140. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5141. TCCR2B |= val;
  5142. break;
  5143. #endif
  5144. #if defined(TCCR3A)
  5145. case TIMER3A:
  5146. case TIMER3B:
  5147. case TIMER3C:
  5148. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5149. TCCR3B |= val;
  5150. break;
  5151. #endif
  5152. #if defined(TCCR4A)
  5153. case TIMER4A:
  5154. case TIMER4B:
  5155. case TIMER4C:
  5156. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5157. TCCR4B |= val;
  5158. break;
  5159. #endif
  5160. #if defined(TCCR5A)
  5161. case TIMER5A:
  5162. case TIMER5B:
  5163. case TIMER5C:
  5164. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5165. TCCR5B |= val;
  5166. break;
  5167. #endif
  5168. }
  5169. }
  5170. #endif //FAST_PWM_FAN
  5171. bool setTargetedHotend(int code){
  5172. target_extruder = active_extruder;
  5173. if (code_seen('T')) {
  5174. target_extruder = code_value_short();
  5175. if (target_extruder >= EXTRUDERS) {
  5176. SERIAL_ECHO_START;
  5177. switch(code){
  5178. case 104:
  5179. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  5180. break;
  5181. case 105:
  5182. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  5183. break;
  5184. case 109:
  5185. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  5186. break;
  5187. case 218:
  5188. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  5189. break;
  5190. case 221:
  5191. SERIAL_ECHO(MSG_M221_INVALID_EXTRUDER);
  5192. break;
  5193. }
  5194. SERIAL_ECHOLN(target_extruder);
  5195. return true;
  5196. }
  5197. }
  5198. return false;
  5199. }
  5200. float calculate_volumetric_multiplier(float diameter) {
  5201. if (!volumetric_enabled || diameter == 0) return 1.0;
  5202. float d2 = diameter * 0.5;
  5203. return 1.0 / (M_PI * d2 * d2);
  5204. }
  5205. void calculate_volumetric_multipliers() {
  5206. for (int i=0; i<EXTRUDERS; i++)
  5207. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5208. }