My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Você não pode selecionar mais de 25 tópicos Os tópicos devem começar com uma letra ou um número, podem incluir traços ('-') e podem ter até 35 caracteres.

Marlin_main.cpp 104KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #if NUM_SERVOS > 0
  38. #include "Servo.h"
  39. #endif
  40. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  41. #include <SPI.h>
  42. #endif
  43. #define VERSION_STRING "1.0.0"
  44. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  45. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  46. //Implemented Codes
  47. //-------------------
  48. // G0 -> G1
  49. // G1 - Coordinated Movement X Y Z E
  50. // G2 - CW ARC
  51. // G3 - CCW ARC
  52. // G4 - Dwell S<seconds> or P<milliseconds>
  53. // G10 - retract filament according to settings of M207
  54. // G11 - retract recover filament according to settings of M208
  55. // G28 - Home all Axis
  56. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  57. // G30 - Single Z Probe, probes bed at current XY location.
  58. // G90 - Use Absolute Coordinates
  59. // G91 - Use Relative Coordinates
  60. // G92 - Set current position to cordinates given
  61. // M Codes
  62. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  63. // M1 - Same as M0
  64. // M17 - Enable/Power all stepper motors
  65. // M18 - Disable all stepper motors; same as M84
  66. // M20 - List SD card
  67. // M21 - Init SD card
  68. // M22 - Release SD card
  69. // M23 - Select SD file (M23 filename.g)
  70. // M24 - Start/resume SD print
  71. // M25 - Pause SD print
  72. // M26 - Set SD position in bytes (M26 S12345)
  73. // M27 - Report SD print status
  74. // M28 - Start SD write (M28 filename.g)
  75. // M29 - Stop SD write
  76. // M30 - Delete file from SD (M30 filename.g)
  77. // M31 - Output time since last M109 or SD card start to serial
  78. // M32 - Select file and start SD print (Can be used when printing from SD card)
  79. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  80. // M80 - Turn on Power Supply
  81. // M81 - Turn off Power Supply
  82. // M82 - Set E codes absolute (default)
  83. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  84. // M84 - Disable steppers until next move,
  85. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  86. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  87. // M92 - Set axis_steps_per_unit - same syntax as G92
  88. // M104 - Set extruder target temp
  89. // M105 - Read current temp
  90. // M106 - Fan on
  91. // M107 - Fan off
  92. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  93. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  94. // M114 - Output current position to serial port
  95. // M115 - Capabilities string
  96. // M117 - display message
  97. // M119 - Output Endstop status to serial port
  98. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  99. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  100. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  101. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  102. // M140 - Set bed target temp
  103. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  104. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  105. // M200 - Set filament diameter
  106. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  107. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  108. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  109. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  110. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  111. // M206 - set additional homeing offset
  112. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  113. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  114. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  115. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  116. // M220 S<factor in percent>- set speed factor override percentage
  117. // M221 S<factor in percent>- set extrude factor override percentage
  118. // M240 - Trigger a camera to take a photograph
  119. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  120. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  121. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  122. // M301 - Set PID parameters P I and D
  123. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  124. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  125. // M304 - Set bed PID parameters P I and D
  126. // M400 - Finish all moves
  127. // M401 - Lower z-probe if present
  128. // M402 - Raise z-probe if present
  129. // M500 - stores paramters in EEPROM
  130. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  131. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  132. // M503 - print the current settings (from memory not from eeprom)
  133. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  134. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  135. // M666 - set delta endstop adjustemnt
  136. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  137. // M907 - Set digital trimpot motor current using axis codes.
  138. // M908 - Control digital trimpot directly.
  139. // M350 - Set microstepping mode.
  140. // M351 - Toggle MS1 MS2 pins directly.
  141. // M928 - Start SD logging (M928 filename.g) - ended by M29
  142. // M999 - Restart after being stopped by error
  143. //Stepper Movement Variables
  144. //===========================================================================
  145. //=============================imported variables============================
  146. //===========================================================================
  147. //===========================================================================
  148. //=============================public variables=============================
  149. //===========================================================================
  150. #ifdef SDSUPPORT
  151. CardReader card;
  152. #endif
  153. float homing_feedrate[] = HOMING_FEEDRATE;
  154. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  155. int feedmultiply=100; //100->1 200->2
  156. int saved_feedmultiply;
  157. int extrudemultiply=100; //100->1 200->2
  158. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  159. float add_homeing[3]={0,0,0};
  160. #ifdef DELTA
  161. float endstop_adj[3]={0,0,0};
  162. #endif
  163. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  164. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  165. // Extruder offset
  166. #if EXTRUDERS > 1
  167. #ifndef DUAL_X_CARRIAGE
  168. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  169. #else
  170. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  171. #endif
  172. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  173. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  174. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  175. #endif
  176. };
  177. #endif
  178. uint8_t active_extruder = 0;
  179. int fanSpeed=0;
  180. #ifdef SERVO_ENDSTOPS
  181. int servo_endstops[] = SERVO_ENDSTOPS;
  182. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  183. #endif
  184. #ifdef BARICUDA
  185. int ValvePressure=0;
  186. int EtoPPressure=0;
  187. #endif
  188. #ifdef FWRETRACT
  189. bool autoretract_enabled=true;
  190. bool retracted=false;
  191. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  192. float retract_recover_length=0, retract_recover_feedrate=8*60;
  193. #endif
  194. #ifdef ULTIPANEL
  195. bool powersupply = true;
  196. #endif
  197. #ifdef DELTA
  198. float delta[3] = {0.0, 0.0, 0.0};
  199. #endif
  200. //===========================================================================
  201. //=============================private variables=============================
  202. //===========================================================================
  203. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  204. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  205. static float offset[3] = {0.0, 0.0, 0.0};
  206. static bool home_all_axis = true;
  207. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  208. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  209. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  210. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  211. static bool fromsd[BUFSIZE];
  212. static int bufindr = 0;
  213. static int bufindw = 0;
  214. static int buflen = 0;
  215. //static int i = 0;
  216. static char serial_char;
  217. static int serial_count = 0;
  218. static boolean comment_mode = false;
  219. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  220. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  221. //static float tt = 0;
  222. //static float bt = 0;
  223. //Inactivity shutdown variables
  224. static unsigned long previous_millis_cmd = 0;
  225. static unsigned long max_inactive_time = 0;
  226. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  227. unsigned long starttime=0;
  228. unsigned long stoptime=0;
  229. static uint8_t tmp_extruder;
  230. bool Stopped=false;
  231. #if NUM_SERVOS > 0
  232. Servo servos[NUM_SERVOS];
  233. #endif
  234. bool CooldownNoWait = true;
  235. bool target_direction;
  236. //===========================================================================
  237. //=============================ROUTINES=============================
  238. //===========================================================================
  239. void get_arc_coordinates();
  240. bool setTargetedHotend(int code);
  241. void serial_echopair_P(const char *s_P, float v)
  242. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  243. void serial_echopair_P(const char *s_P, double v)
  244. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  245. void serial_echopair_P(const char *s_P, unsigned long v)
  246. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  247. extern "C"{
  248. extern unsigned int __bss_end;
  249. extern unsigned int __heap_start;
  250. extern void *__brkval;
  251. int freeMemory() {
  252. int free_memory;
  253. if((int)__brkval == 0)
  254. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  255. else
  256. free_memory = ((int)&free_memory) - ((int)__brkval);
  257. return free_memory;
  258. }
  259. }
  260. //adds an command to the main command buffer
  261. //thats really done in a non-safe way.
  262. //needs overworking someday
  263. void enquecommand(const char *cmd)
  264. {
  265. if(buflen < BUFSIZE)
  266. {
  267. //this is dangerous if a mixing of serial and this happsens
  268. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  269. SERIAL_ECHO_START;
  270. SERIAL_ECHOPGM("enqueing \"");
  271. SERIAL_ECHO(cmdbuffer[bufindw]);
  272. SERIAL_ECHOLNPGM("\"");
  273. bufindw= (bufindw + 1)%BUFSIZE;
  274. buflen += 1;
  275. }
  276. }
  277. void enquecommand_P(const char *cmd)
  278. {
  279. if(buflen < BUFSIZE)
  280. {
  281. //this is dangerous if a mixing of serial and this happsens
  282. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  283. SERIAL_ECHO_START;
  284. SERIAL_ECHOPGM("enqueing \"");
  285. SERIAL_ECHO(cmdbuffer[bufindw]);
  286. SERIAL_ECHOLNPGM("\"");
  287. bufindw= (bufindw + 1)%BUFSIZE;
  288. buflen += 1;
  289. }
  290. }
  291. void setup_killpin()
  292. {
  293. #if defined(KILL_PIN) && KILL_PIN > -1
  294. pinMode(KILL_PIN,INPUT);
  295. WRITE(KILL_PIN,HIGH);
  296. #endif
  297. }
  298. void setup_photpin()
  299. {
  300. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  301. SET_OUTPUT(PHOTOGRAPH_PIN);
  302. WRITE(PHOTOGRAPH_PIN, LOW);
  303. #endif
  304. }
  305. void setup_powerhold()
  306. {
  307. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  308. SET_OUTPUT(SUICIDE_PIN);
  309. WRITE(SUICIDE_PIN, HIGH);
  310. #endif
  311. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  312. SET_OUTPUT(PS_ON_PIN);
  313. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  314. #endif
  315. }
  316. void suicide()
  317. {
  318. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  319. SET_OUTPUT(SUICIDE_PIN);
  320. WRITE(SUICIDE_PIN, LOW);
  321. #endif
  322. }
  323. void servo_init()
  324. {
  325. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  326. servos[0].attach(SERVO0_PIN);
  327. #endif
  328. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  329. servos[1].attach(SERVO1_PIN);
  330. #endif
  331. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  332. servos[2].attach(SERVO2_PIN);
  333. #endif
  334. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  335. servos[3].attach(SERVO3_PIN);
  336. #endif
  337. #if (NUM_SERVOS >= 5)
  338. #error "TODO: enter initalisation code for more servos"
  339. #endif
  340. // Set position of Servo Endstops that are defined
  341. #ifdef SERVO_ENDSTOPS
  342. for(int8_t i = 0; i < 3; i++)
  343. {
  344. if(servo_endstops[i] > -1) {
  345. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  346. }
  347. }
  348. #endif
  349. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  350. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  351. servos[servo_endstops[Z_AXIS]].detach();
  352. #endif
  353. }
  354. void setup()
  355. {
  356. setup_killpin();
  357. setup_powerhold();
  358. MYSERIAL.begin(BAUDRATE);
  359. SERIAL_PROTOCOLLNPGM("start");
  360. SERIAL_ECHO_START;
  361. // Check startup - does nothing if bootloader sets MCUSR to 0
  362. byte mcu = MCUSR;
  363. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  364. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  365. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  366. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  367. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  368. MCUSR=0;
  369. SERIAL_ECHOPGM(MSG_MARLIN);
  370. SERIAL_ECHOLNPGM(VERSION_STRING);
  371. #ifdef STRING_VERSION_CONFIG_H
  372. #ifdef STRING_CONFIG_H_AUTHOR
  373. SERIAL_ECHO_START;
  374. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  375. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  376. SERIAL_ECHOPGM(MSG_AUTHOR);
  377. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  378. SERIAL_ECHOPGM("Compiled: ");
  379. SERIAL_ECHOLNPGM(__DATE__);
  380. #endif
  381. #endif
  382. SERIAL_ECHO_START;
  383. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  384. SERIAL_ECHO(freeMemory());
  385. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  386. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  387. for(int8_t i = 0; i < BUFSIZE; i++)
  388. {
  389. fromsd[i] = false;
  390. }
  391. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  392. Config_RetrieveSettings();
  393. tp_init(); // Initialize temperature loop
  394. plan_init(); // Initialize planner;
  395. watchdog_init();
  396. st_init(); // Initialize stepper, this enables interrupts!
  397. setup_photpin();
  398. servo_init();
  399. lcd_init();
  400. _delay_ms(1000); // wait 1sec to display the splash screen
  401. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  402. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  403. #endif
  404. }
  405. void loop()
  406. {
  407. if(buflen < (BUFSIZE-1))
  408. get_command();
  409. #ifdef SDSUPPORT
  410. card.checkautostart(false);
  411. #endif
  412. if(buflen)
  413. {
  414. #ifdef SDSUPPORT
  415. if(card.saving)
  416. {
  417. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  418. {
  419. card.write_command(cmdbuffer[bufindr]);
  420. if(card.logging)
  421. {
  422. process_commands();
  423. }
  424. else
  425. {
  426. SERIAL_PROTOCOLLNPGM(MSG_OK);
  427. }
  428. }
  429. else
  430. {
  431. card.closefile();
  432. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  433. }
  434. }
  435. else
  436. {
  437. process_commands();
  438. }
  439. #else
  440. process_commands();
  441. #endif //SDSUPPORT
  442. buflen = (buflen-1);
  443. bufindr = (bufindr + 1)%BUFSIZE;
  444. }
  445. //check heater every n milliseconds
  446. manage_heater();
  447. manage_inactivity();
  448. checkHitEndstops();
  449. lcd_update();
  450. }
  451. void get_command()
  452. {
  453. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  454. serial_char = MYSERIAL.read();
  455. if(serial_char == '\n' ||
  456. serial_char == '\r' ||
  457. (serial_char == ':' && comment_mode == false) ||
  458. serial_count >= (MAX_CMD_SIZE - 1) )
  459. {
  460. if(!serial_count) { //if empty line
  461. comment_mode = false; //for new command
  462. return;
  463. }
  464. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  465. if(!comment_mode){
  466. comment_mode = false; //for new command
  467. fromsd[bufindw] = false;
  468. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  469. {
  470. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  471. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  472. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  473. SERIAL_ERROR_START;
  474. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  475. SERIAL_ERRORLN(gcode_LastN);
  476. //Serial.println(gcode_N);
  477. FlushSerialRequestResend();
  478. serial_count = 0;
  479. return;
  480. }
  481. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  482. {
  483. byte checksum = 0;
  484. byte count = 0;
  485. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  486. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  487. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  488. SERIAL_ERROR_START;
  489. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  490. SERIAL_ERRORLN(gcode_LastN);
  491. FlushSerialRequestResend();
  492. serial_count = 0;
  493. return;
  494. }
  495. //if no errors, continue parsing
  496. }
  497. else
  498. {
  499. SERIAL_ERROR_START;
  500. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  501. SERIAL_ERRORLN(gcode_LastN);
  502. FlushSerialRequestResend();
  503. serial_count = 0;
  504. return;
  505. }
  506. gcode_LastN = gcode_N;
  507. //if no errors, continue parsing
  508. }
  509. else // if we don't receive 'N' but still see '*'
  510. {
  511. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  512. {
  513. SERIAL_ERROR_START;
  514. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  515. SERIAL_ERRORLN(gcode_LastN);
  516. serial_count = 0;
  517. return;
  518. }
  519. }
  520. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  521. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  522. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  523. case 0:
  524. case 1:
  525. case 2:
  526. case 3:
  527. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  528. #ifdef SDSUPPORT
  529. if(card.saving)
  530. break;
  531. #endif //SDSUPPORT
  532. SERIAL_PROTOCOLLNPGM(MSG_OK);
  533. }
  534. else {
  535. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  536. LCD_MESSAGEPGM(MSG_STOPPED);
  537. }
  538. break;
  539. default:
  540. break;
  541. }
  542. }
  543. bufindw = (bufindw + 1)%BUFSIZE;
  544. buflen += 1;
  545. }
  546. serial_count = 0; //clear buffer
  547. }
  548. else
  549. {
  550. if(serial_char == ';') comment_mode = true;
  551. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  552. }
  553. }
  554. #ifdef SDSUPPORT
  555. if(!card.sdprinting || serial_count!=0){
  556. return;
  557. }
  558. while( !card.eof() && buflen < BUFSIZE) {
  559. int16_t n=card.get();
  560. serial_char = (char)n;
  561. if(serial_char == '\n' ||
  562. serial_char == '\r' ||
  563. (serial_char == ':' && comment_mode == false) ||
  564. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  565. {
  566. if(card.eof()){
  567. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  568. stoptime=millis();
  569. char time[30];
  570. unsigned long t=(stoptime-starttime)/1000;
  571. int hours, minutes;
  572. minutes=(t/60)%60;
  573. hours=t/60/60;
  574. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  575. SERIAL_ECHO_START;
  576. SERIAL_ECHOLN(time);
  577. lcd_setstatus(time);
  578. card.printingHasFinished();
  579. card.checkautostart(true);
  580. }
  581. if(!serial_count)
  582. {
  583. comment_mode = false; //for new command
  584. return; //if empty line
  585. }
  586. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  587. // if(!comment_mode){
  588. fromsd[bufindw] = true;
  589. buflen += 1;
  590. bufindw = (bufindw + 1)%BUFSIZE;
  591. // }
  592. comment_mode = false; //for new command
  593. serial_count = 0; //clear buffer
  594. }
  595. else
  596. {
  597. if(serial_char == ';') comment_mode = true;
  598. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  599. }
  600. }
  601. #endif //SDSUPPORT
  602. }
  603. float code_value()
  604. {
  605. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  606. }
  607. long code_value_long()
  608. {
  609. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  610. }
  611. bool code_seen(char code)
  612. {
  613. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  614. return (strchr_pointer != NULL); //Return True if a character was found
  615. }
  616. #define DEFINE_PGM_READ_ANY(type, reader) \
  617. static inline type pgm_read_any(const type *p) \
  618. { return pgm_read_##reader##_near(p); }
  619. DEFINE_PGM_READ_ANY(float, float);
  620. DEFINE_PGM_READ_ANY(signed char, byte);
  621. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  622. static const PROGMEM type array##_P[3] = \
  623. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  624. static inline type array(int axis) \
  625. { return pgm_read_any(&array##_P[axis]); }
  626. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  627. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  628. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  629. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  630. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  631. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  632. #ifdef DUAL_X_CARRIAGE
  633. #if EXTRUDERS == 1 || defined(COREXY) \
  634. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  635. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  636. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  637. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  638. #endif
  639. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  640. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  641. #endif
  642. #define DXC_FULL_CONTROL_MODE 0
  643. #define DXC_AUTO_PARK_MODE 1
  644. #define DXC_DUPLICATION_MODE 2
  645. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  646. static float x_home_pos(int extruder) {
  647. if (extruder == 0)
  648. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  649. else
  650. // In dual carriage mode the extruder offset provides an override of the
  651. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  652. // This allow soft recalibration of the second extruder offset position without firmware reflash
  653. // (through the M218 command).
  654. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  655. }
  656. static int x_home_dir(int extruder) {
  657. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  658. }
  659. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  660. static bool active_extruder_parked = false; // used in mode 1 & 2
  661. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  662. static unsigned long delayed_move_time = 0; // used in mode 1
  663. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  664. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  665. bool extruder_duplication_enabled = false; // used in mode 2
  666. #endif //DUAL_X_CARRIAGE
  667. static void axis_is_at_home(int axis) {
  668. #ifdef DUAL_X_CARRIAGE
  669. if (axis == X_AXIS) {
  670. if (active_extruder != 0) {
  671. current_position[X_AXIS] = x_home_pos(active_extruder);
  672. min_pos[X_AXIS] = X2_MIN_POS;
  673. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  674. return;
  675. }
  676. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  677. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  678. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  679. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  680. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  681. return;
  682. }
  683. }
  684. #endif
  685. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  686. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  687. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  688. }
  689. #ifdef ENABLE_AUTO_BED_LEVELING
  690. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  691. plan_bed_level_matrix.set_to_identity();
  692. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  693. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  694. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  695. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  696. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  697. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  698. //planeNormal.debug("planeNormal");
  699. //yPositive.debug("yPositive");
  700. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  701. //bedLevel.debug("bedLevel");
  702. //plan_bed_level_matrix.debug("bed level before");
  703. //vector_3 uncorrected_position = plan_get_position_mm();
  704. //uncorrected_position.debug("position before");
  705. // and set our bed level equation to do the right thing
  706. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  707. //plan_bed_level_matrix.debug("bed level after");
  708. vector_3 corrected_position = plan_get_position();
  709. //corrected_position.debug("position after");
  710. current_position[X_AXIS] = corrected_position.x;
  711. current_position[Y_AXIS] = corrected_position.y;
  712. current_position[Z_AXIS] = corrected_position.z;
  713. // but the bed at 0 so we don't go below it.
  714. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  715. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  716. }
  717. static void run_z_probe() {
  718. plan_bed_level_matrix.set_to_identity();
  719. feedrate = homing_feedrate[Z_AXIS];
  720. // move down until you find the bed
  721. float zPosition = -10;
  722. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  723. st_synchronize();
  724. // we have to let the planner know where we are right now as it is not where we said to go.
  725. zPosition = st_get_position_mm(Z_AXIS);
  726. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  727. // move up the retract distance
  728. zPosition += home_retract_mm(Z_AXIS);
  729. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  730. st_synchronize();
  731. // move back down slowly to find bed
  732. feedrate = homing_feedrate[Z_AXIS]/4;
  733. zPosition -= home_retract_mm(Z_AXIS) * 2;
  734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  735. st_synchronize();
  736. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  737. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  738. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  739. }
  740. static void do_blocking_move_to(float x, float y, float z) {
  741. float oldFeedRate = feedrate;
  742. feedrate = XY_TRAVEL_SPEED;
  743. current_position[X_AXIS] = x;
  744. current_position[Y_AXIS] = y;
  745. current_position[Z_AXIS] = z;
  746. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  747. st_synchronize();
  748. feedrate = oldFeedRate;
  749. }
  750. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  751. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  752. }
  753. static void setup_for_endstop_move() {
  754. saved_feedrate = feedrate;
  755. saved_feedmultiply = feedmultiply;
  756. feedmultiply = 100;
  757. previous_millis_cmd = millis();
  758. enable_endstops(true);
  759. }
  760. static void clean_up_after_endstop_move() {
  761. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  762. enable_endstops(false);
  763. #endif
  764. feedrate = saved_feedrate;
  765. feedmultiply = saved_feedmultiply;
  766. previous_millis_cmd = millis();
  767. }
  768. static void engage_z_probe() {
  769. // Engage Z Servo endstop if enabled
  770. #ifdef SERVO_ENDSTOPS
  771. if (servo_endstops[Z_AXIS] > -1) {
  772. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  773. servos[servo_endstops[Z_AXIS]].attach(0);
  774. #endif
  775. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  776. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  777. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  778. servos[servo_endstops[Z_AXIS]].detach();
  779. #endif
  780. }
  781. #endif
  782. }
  783. static void retract_z_probe() {
  784. // Retract Z Servo endstop if enabled
  785. #ifdef SERVO_ENDSTOPS
  786. if (servo_endstops[Z_AXIS] > -1) {
  787. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  788. servos[servo_endstops[Z_AXIS]].attach(0);
  789. #endif
  790. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  791. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  792. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  793. servos[servo_endstops[Z_AXIS]].detach();
  794. #endif
  795. }
  796. #endif
  797. }
  798. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  799. static void homeaxis(int axis) {
  800. #define HOMEAXIS_DO(LETTER) \
  801. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  802. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  803. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  804. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  805. 0) {
  806. int axis_home_dir = home_dir(axis);
  807. #ifdef DUAL_X_CARRIAGE
  808. if (axis == X_AXIS)
  809. axis_home_dir = x_home_dir(active_extruder);
  810. #endif
  811. current_position[axis] = 0;
  812. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  813. // Engage Servo endstop if enabled
  814. #ifdef SERVO_ENDSTOPS
  815. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  816. if (axis==Z_AXIS) {
  817. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  818. destination[axis] = Z_RAISE_BEFORE_HOMING * axis_home_dir * (-1); // Set destination away from bed
  819. feedrate = max_feedrate[axis];
  820. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  821. st_synchronize();
  822. #endif
  823. engage_z_probe();
  824. }
  825. else
  826. #endif
  827. if (servo_endstops[axis] > -1) {
  828. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  829. }
  830. #endif
  831. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  832. feedrate = homing_feedrate[axis];
  833. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  834. st_synchronize();
  835. current_position[axis] = 0;
  836. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  837. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  839. st_synchronize();
  840. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  841. #ifdef DELTA
  842. feedrate = homing_feedrate[axis]/10;
  843. #else
  844. feedrate = homing_feedrate[axis]/2 ;
  845. #endif
  846. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  847. st_synchronize();
  848. #ifdef DELTA
  849. // retrace by the amount specified in endstop_adj
  850. if (endstop_adj[axis] * axis_home_dir < 0) {
  851. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  852. destination[axis] = endstop_adj[axis];
  853. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  854. st_synchronize();
  855. }
  856. #endif
  857. axis_is_at_home(axis);
  858. destination[axis] = current_position[axis];
  859. feedrate = 0.0;
  860. endstops_hit_on_purpose();
  861. // Retract Servo endstop if enabled
  862. #ifdef SERVO_ENDSTOPS
  863. if (servo_endstops[axis] > -1) {
  864. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  865. }
  866. #endif
  867. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  868. if (axis==Z_AXIS) retract_z_probe();
  869. #endif
  870. }
  871. }
  872. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  873. void process_commands()
  874. {
  875. unsigned long codenum; //throw away variable
  876. char *starpos = NULL;
  877. #ifdef ENABLE_AUTO_BED_LEVELING
  878. float x_tmp, y_tmp, z_tmp, real_z;
  879. #endif
  880. if(code_seen('G'))
  881. {
  882. switch((int)code_value())
  883. {
  884. case 0: // G0 -> G1
  885. case 1: // G1
  886. if(Stopped == false) {
  887. get_coordinates(); // For X Y Z E F
  888. prepare_move();
  889. //ClearToSend();
  890. return;
  891. }
  892. //break;
  893. case 2: // G2 - CW ARC
  894. if(Stopped == false) {
  895. get_arc_coordinates();
  896. prepare_arc_move(true);
  897. return;
  898. }
  899. case 3: // G3 - CCW ARC
  900. if(Stopped == false) {
  901. get_arc_coordinates();
  902. prepare_arc_move(false);
  903. return;
  904. }
  905. case 4: // G4 dwell
  906. LCD_MESSAGEPGM(MSG_DWELL);
  907. codenum = 0;
  908. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  909. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  910. st_synchronize();
  911. codenum += millis(); // keep track of when we started waiting
  912. previous_millis_cmd = millis();
  913. while(millis() < codenum ){
  914. manage_heater();
  915. manage_inactivity();
  916. lcd_update();
  917. }
  918. break;
  919. #ifdef FWRETRACT
  920. case 10: // G10 retract
  921. if(!retracted)
  922. {
  923. destination[X_AXIS]=current_position[X_AXIS];
  924. destination[Y_AXIS]=current_position[Y_AXIS];
  925. destination[Z_AXIS]=current_position[Z_AXIS];
  926. current_position[Z_AXIS]+=-retract_zlift;
  927. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  928. feedrate=retract_feedrate;
  929. retracted=true;
  930. prepare_move();
  931. }
  932. break;
  933. case 11: // G10 retract_recover
  934. if(!retracted)
  935. {
  936. destination[X_AXIS]=current_position[X_AXIS];
  937. destination[Y_AXIS]=current_position[Y_AXIS];
  938. destination[Z_AXIS]=current_position[Z_AXIS];
  939. current_position[Z_AXIS]+=retract_zlift;
  940. current_position[E_AXIS]+=-retract_recover_length;
  941. feedrate=retract_recover_feedrate;
  942. retracted=false;
  943. prepare_move();
  944. }
  945. break;
  946. #endif //FWRETRACT
  947. case 28: //G28 Home all Axis one at a time
  948. #ifdef ENABLE_AUTO_BED_LEVELING
  949. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  950. #endif //ENABLE_AUTO_BED_LEVELING
  951. saved_feedrate = feedrate;
  952. saved_feedmultiply = feedmultiply;
  953. feedmultiply = 100;
  954. previous_millis_cmd = millis();
  955. enable_endstops(true);
  956. for(int8_t i=0; i < NUM_AXIS; i++) {
  957. destination[i] = current_position[i];
  958. }
  959. feedrate = 0.0;
  960. #ifdef DELTA
  961. // A delta can only safely home all axis at the same time
  962. // all axis have to home at the same time
  963. // Move all carriages up together until the first endstop is hit.
  964. current_position[X_AXIS] = 0;
  965. current_position[Y_AXIS] = 0;
  966. current_position[Z_AXIS] = 0;
  967. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  968. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  969. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  970. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  971. feedrate = 1.732 * homing_feedrate[X_AXIS];
  972. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  973. st_synchronize();
  974. endstops_hit_on_purpose();
  975. current_position[X_AXIS] = destination[X_AXIS];
  976. current_position[Y_AXIS] = destination[Y_AXIS];
  977. current_position[Z_AXIS] = destination[Z_AXIS];
  978. // take care of back off and rehome now we are all at the top
  979. HOMEAXIS(X);
  980. HOMEAXIS(Y);
  981. HOMEAXIS(Z);
  982. calculate_delta(current_position);
  983. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  984. #else // NOT DELTA
  985. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  986. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  987. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  988. HOMEAXIS(Z);
  989. }
  990. #endif
  991. #ifdef QUICK_HOME
  992. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  993. {
  994. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  995. #ifndef DUAL_X_CARRIAGE
  996. int x_axis_home_dir = home_dir(X_AXIS);
  997. #else
  998. int x_axis_home_dir = x_home_dir(active_extruder);
  999. extruder_duplication_enabled = false;
  1000. #endif
  1001. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1002. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1003. feedrate = homing_feedrate[X_AXIS];
  1004. if(homing_feedrate[Y_AXIS]<feedrate)
  1005. feedrate =homing_feedrate[Y_AXIS];
  1006. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1007. st_synchronize();
  1008. axis_is_at_home(X_AXIS);
  1009. axis_is_at_home(Y_AXIS);
  1010. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1011. destination[X_AXIS] = current_position[X_AXIS];
  1012. destination[Y_AXIS] = current_position[Y_AXIS];
  1013. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1014. feedrate = 0.0;
  1015. st_synchronize();
  1016. endstops_hit_on_purpose();
  1017. current_position[X_AXIS] = destination[X_AXIS];
  1018. current_position[Y_AXIS] = destination[Y_AXIS];
  1019. current_position[Z_AXIS] = destination[Z_AXIS];
  1020. }
  1021. #endif
  1022. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1023. {
  1024. #ifdef DUAL_X_CARRIAGE
  1025. int tmp_extruder = active_extruder;
  1026. extruder_duplication_enabled = false;
  1027. active_extruder = !active_extruder;
  1028. HOMEAXIS(X);
  1029. inactive_extruder_x_pos = current_position[X_AXIS];
  1030. active_extruder = tmp_extruder;
  1031. HOMEAXIS(X);
  1032. // reset state used by the different modes
  1033. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1034. delayed_move_time = 0;
  1035. active_extruder_parked = true;
  1036. #else
  1037. HOMEAXIS(X);
  1038. #endif
  1039. }
  1040. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1041. HOMEAXIS(Y);
  1042. }
  1043. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1044. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1045. HOMEAXIS(Z);
  1046. }
  1047. #endif
  1048. if(code_seen(axis_codes[X_AXIS]))
  1049. {
  1050. if(code_value_long() != 0) {
  1051. current_position[X_AXIS]=code_value()+add_homeing[0];
  1052. }
  1053. }
  1054. if(code_seen(axis_codes[Y_AXIS])) {
  1055. if(code_value_long() != 0) {
  1056. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1057. }
  1058. }
  1059. if(code_seen(axis_codes[Z_AXIS])) {
  1060. if(code_value_long() != 0) {
  1061. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1062. }
  1063. }
  1064. #ifdef ENABLE_AUTO_BED_LEVELING
  1065. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1066. #endif
  1067. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1068. #endif // else DELTA
  1069. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1070. enable_endstops(false);
  1071. #endif
  1072. feedrate = saved_feedrate;
  1073. feedmultiply = saved_feedmultiply;
  1074. previous_millis_cmd = millis();
  1075. endstops_hit_on_purpose();
  1076. break;
  1077. #ifdef ENABLE_AUTO_BED_LEVELING
  1078. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1079. {
  1080. #if Z_MIN_PIN == -1
  1081. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1082. #endif
  1083. st_synchronize();
  1084. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1085. //vector_3 corrected_position = plan_get_position_mm();
  1086. //corrected_position.debug("position before G29");
  1087. plan_bed_level_matrix.set_to_identity();
  1088. vector_3 uncorrected_position = plan_get_position();
  1089. //uncorrected_position.debug("position durring G29");
  1090. current_position[X_AXIS] = uncorrected_position.x;
  1091. current_position[Y_AXIS] = uncorrected_position.y;
  1092. current_position[Z_AXIS] = uncorrected_position.z;
  1093. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1094. setup_for_endstop_move();
  1095. feedrate = homing_feedrate[Z_AXIS];
  1096. // prob 1
  1097. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1098. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1099. engage_z_probe(); // Engage Z Servo endstop if available
  1100. run_z_probe();
  1101. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1102. SERIAL_PROTOCOLPGM("Bed x: ");
  1103. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1104. SERIAL_PROTOCOLPGM(" y: ");
  1105. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1106. SERIAL_PROTOCOLPGM(" z: ");
  1107. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1108. SERIAL_PROTOCOLPGM("\n");
  1109. // prob 2
  1110. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1111. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1112. run_z_probe();
  1113. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1114. SERIAL_PROTOCOLPGM("Bed x: ");
  1115. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1116. SERIAL_PROTOCOLPGM(" y: ");
  1117. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1118. SERIAL_PROTOCOLPGM(" z: ");
  1119. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1120. SERIAL_PROTOCOLPGM("\n");
  1121. // prob 3
  1122. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1123. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1124. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1125. run_z_probe();
  1126. float z_at_xRight_yFront = current_position[Z_AXIS];
  1127. SERIAL_PROTOCOLPGM("Bed x: ");
  1128. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1129. SERIAL_PROTOCOLPGM(" y: ");
  1130. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1131. SERIAL_PROTOCOLPGM(" z: ");
  1132. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1133. SERIAL_PROTOCOLPGM("\n");
  1134. clean_up_after_endstop_move();
  1135. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1136. retract_z_probe(); // Retract Z Servo endstop if available
  1137. st_synchronize();
  1138. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1139. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1140. // When the bed is uneven, this height must be corrected.
  1141. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1142. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1143. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1144. z_tmp = current_position[Z_AXIS];
  1145. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1146. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1147. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1148. }
  1149. break;
  1150. case 30: // G30 Single Z Probe
  1151. {
  1152. engage_z_probe(); // Engage Z Servo endstop if available
  1153. st_synchronize();
  1154. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1155. setup_for_endstop_move();
  1156. feedrate = homing_feedrate[Z_AXIS];
  1157. run_z_probe();
  1158. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1159. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1160. SERIAL_PROTOCOLPGM(" Y: ");
  1161. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1162. SERIAL_PROTOCOLPGM(" Z: ");
  1163. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1164. SERIAL_PROTOCOLPGM("\n");
  1165. clean_up_after_endstop_move();
  1166. retract_z_probe(); // Retract Z Servo endstop if available
  1167. }
  1168. break;
  1169. #endif // ENABLE_AUTO_BED_LEVELING
  1170. case 90: // G90
  1171. relative_mode = false;
  1172. break;
  1173. case 91: // G91
  1174. relative_mode = true;
  1175. break;
  1176. case 92: // G92
  1177. if(!code_seen(axis_codes[E_AXIS]))
  1178. st_synchronize();
  1179. for(int8_t i=0; i < NUM_AXIS; i++) {
  1180. if(code_seen(axis_codes[i])) {
  1181. if(i == E_AXIS) {
  1182. current_position[i] = code_value();
  1183. plan_set_e_position(current_position[E_AXIS]);
  1184. }
  1185. else {
  1186. current_position[i] = code_value()+add_homeing[i];
  1187. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1188. }
  1189. }
  1190. }
  1191. break;
  1192. }
  1193. }
  1194. else if(code_seen('M'))
  1195. {
  1196. switch( (int)code_value() )
  1197. {
  1198. #ifdef ULTIPANEL
  1199. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1200. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1201. {
  1202. LCD_MESSAGEPGM(MSG_USERWAIT);
  1203. codenum = 0;
  1204. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1205. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1206. st_synchronize();
  1207. previous_millis_cmd = millis();
  1208. if (codenum > 0){
  1209. codenum += millis(); // keep track of when we started waiting
  1210. while(millis() < codenum && !lcd_clicked()){
  1211. manage_heater();
  1212. manage_inactivity();
  1213. lcd_update();
  1214. }
  1215. }else{
  1216. while(!lcd_clicked()){
  1217. manage_heater();
  1218. manage_inactivity();
  1219. lcd_update();
  1220. }
  1221. }
  1222. LCD_MESSAGEPGM(MSG_RESUMING);
  1223. }
  1224. break;
  1225. #endif
  1226. case 17:
  1227. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1228. enable_x();
  1229. enable_y();
  1230. enable_z();
  1231. enable_e0();
  1232. enable_e1();
  1233. enable_e2();
  1234. break;
  1235. #ifdef SDSUPPORT
  1236. case 20: // M20 - list SD card
  1237. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1238. card.ls();
  1239. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1240. break;
  1241. case 21: // M21 - init SD card
  1242. card.initsd();
  1243. break;
  1244. case 22: //M22 - release SD card
  1245. card.release();
  1246. break;
  1247. case 23: //M23 - Select file
  1248. starpos = (strchr(strchr_pointer + 4,'*'));
  1249. if(starpos!=NULL)
  1250. *(starpos-1)='\0';
  1251. card.openFile(strchr_pointer + 4,true);
  1252. break;
  1253. case 24: //M24 - Start SD print
  1254. card.startFileprint();
  1255. starttime=millis();
  1256. break;
  1257. case 25: //M25 - Pause SD print
  1258. card.pauseSDPrint();
  1259. break;
  1260. case 26: //M26 - Set SD index
  1261. if(card.cardOK && code_seen('S')) {
  1262. card.setIndex(code_value_long());
  1263. }
  1264. break;
  1265. case 27: //M27 - Get SD status
  1266. card.getStatus();
  1267. break;
  1268. case 28: //M28 - Start SD write
  1269. starpos = (strchr(strchr_pointer + 4,'*'));
  1270. if(starpos != NULL){
  1271. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1272. strchr_pointer = strchr(npos,' ') + 1;
  1273. *(starpos-1) = '\0';
  1274. }
  1275. card.openFile(strchr_pointer+4,false);
  1276. break;
  1277. case 29: //M29 - Stop SD write
  1278. //processed in write to file routine above
  1279. //card,saving = false;
  1280. break;
  1281. case 30: //M30 <filename> Delete File
  1282. if (card.cardOK){
  1283. card.closefile();
  1284. starpos = (strchr(strchr_pointer + 4,'*'));
  1285. if(starpos != NULL){
  1286. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1287. strchr_pointer = strchr(npos,' ') + 1;
  1288. *(starpos-1) = '\0';
  1289. }
  1290. card.removeFile(strchr_pointer + 4);
  1291. }
  1292. break;
  1293. case 32: //M32 - Select file and start SD print
  1294. if(card.sdprinting) {
  1295. st_synchronize();
  1296. card.closefile();
  1297. card.sdprinting = false;
  1298. }
  1299. starpos = (strchr(strchr_pointer + 4,'*'));
  1300. if(starpos!=NULL)
  1301. *(starpos-1)='\0';
  1302. card.openFile(strchr_pointer + 4,true);
  1303. card.startFileprint();
  1304. starttime=millis();
  1305. break;
  1306. case 928: //M928 - Start SD write
  1307. starpos = (strchr(strchr_pointer + 5,'*'));
  1308. if(starpos != NULL){
  1309. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1310. strchr_pointer = strchr(npos,' ') + 1;
  1311. *(starpos-1) = '\0';
  1312. }
  1313. card.openLogFile(strchr_pointer+5);
  1314. break;
  1315. #endif //SDSUPPORT
  1316. case 31: //M31 take time since the start of the SD print or an M109 command
  1317. {
  1318. stoptime=millis();
  1319. char time[30];
  1320. unsigned long t=(stoptime-starttime)/1000;
  1321. int sec,min;
  1322. min=t/60;
  1323. sec=t%60;
  1324. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1325. SERIAL_ECHO_START;
  1326. SERIAL_ECHOLN(time);
  1327. lcd_setstatus(time);
  1328. autotempShutdown();
  1329. }
  1330. break;
  1331. case 42: //M42 -Change pin status via gcode
  1332. if (code_seen('S'))
  1333. {
  1334. int pin_status = code_value();
  1335. int pin_number = LED_PIN;
  1336. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1337. pin_number = code_value();
  1338. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1339. {
  1340. if (sensitive_pins[i] == pin_number)
  1341. {
  1342. pin_number = -1;
  1343. break;
  1344. }
  1345. }
  1346. #if defined(FAN_PIN) && FAN_PIN > -1
  1347. if (pin_number == FAN_PIN)
  1348. fanSpeed = pin_status;
  1349. #endif
  1350. if (pin_number > -1)
  1351. {
  1352. pinMode(pin_number, OUTPUT);
  1353. digitalWrite(pin_number, pin_status);
  1354. analogWrite(pin_number, pin_status);
  1355. }
  1356. }
  1357. break;
  1358. case 104: // M104
  1359. if(setTargetedHotend(104)){
  1360. break;
  1361. }
  1362. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1363. #ifdef DUAL_X_CARRIAGE
  1364. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1365. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1366. #endif
  1367. setWatch();
  1368. break;
  1369. case 140: // M140 set bed temp
  1370. if (code_seen('S')) setTargetBed(code_value());
  1371. break;
  1372. case 105 : // M105
  1373. if(setTargetedHotend(105)){
  1374. break;
  1375. }
  1376. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1377. SERIAL_PROTOCOLPGM("ok T:");
  1378. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1379. SERIAL_PROTOCOLPGM(" /");
  1380. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1381. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1382. SERIAL_PROTOCOLPGM(" B:");
  1383. SERIAL_PROTOCOL_F(degBed(),1);
  1384. SERIAL_PROTOCOLPGM(" /");
  1385. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1386. #endif //TEMP_BED_PIN
  1387. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1388. SERIAL_PROTOCOLPGM(" T");
  1389. SERIAL_PROTOCOL(cur_extruder);
  1390. SERIAL_PROTOCOLPGM(":");
  1391. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1392. SERIAL_PROTOCOLPGM(" /");
  1393. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1394. }
  1395. #else
  1396. SERIAL_ERROR_START;
  1397. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1398. #endif
  1399. SERIAL_PROTOCOLPGM(" @:");
  1400. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1401. SERIAL_PROTOCOLPGM(" B@:");
  1402. SERIAL_PROTOCOL(getHeaterPower(-1));
  1403. #ifdef SHOW_TEMP_ADC_VALUES
  1404. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1405. SERIAL_PROTOCOLPGM(" ADC B:");
  1406. SERIAL_PROTOCOL_F(degBed(),1);
  1407. SERIAL_PROTOCOLPGM("C->");
  1408. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1409. #endif
  1410. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1411. SERIAL_PROTOCOLPGM(" T");
  1412. SERIAL_PROTOCOL(cur_extruder);
  1413. SERIAL_PROTOCOLPGM(":");
  1414. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1415. SERIAL_PROTOCOLPGM("C->");
  1416. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1417. }
  1418. #endif
  1419. SERIAL_PROTOCOLLN("");
  1420. return;
  1421. break;
  1422. case 109:
  1423. {// M109 - Wait for extruder heater to reach target.
  1424. if(setTargetedHotend(109)){
  1425. break;
  1426. }
  1427. LCD_MESSAGEPGM(MSG_HEATING);
  1428. #ifdef AUTOTEMP
  1429. autotemp_enabled=false;
  1430. #endif
  1431. if (code_seen('S')) {
  1432. setTargetHotend(code_value(), tmp_extruder);
  1433. #ifdef DUAL_X_CARRIAGE
  1434. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1435. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1436. #endif
  1437. CooldownNoWait = true;
  1438. } else if (code_seen('R')) {
  1439. setTargetHotend(code_value(), tmp_extruder);
  1440. #ifdef DUAL_X_CARRIAGE
  1441. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1442. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1443. #endif
  1444. CooldownNoWait = false;
  1445. }
  1446. #ifdef AUTOTEMP
  1447. if (code_seen('S')) autotemp_min=code_value();
  1448. if (code_seen('B')) autotemp_max=code_value();
  1449. if (code_seen('F'))
  1450. {
  1451. autotemp_factor=code_value();
  1452. autotemp_enabled=true;
  1453. }
  1454. #endif
  1455. setWatch();
  1456. codenum = millis();
  1457. /* See if we are heating up or cooling down */
  1458. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1459. #ifdef TEMP_RESIDENCY_TIME
  1460. long residencyStart;
  1461. residencyStart = -1;
  1462. /* continue to loop until we have reached the target temp
  1463. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1464. while((residencyStart == -1) ||
  1465. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1466. #else
  1467. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1468. #endif //TEMP_RESIDENCY_TIME
  1469. if( (millis() - codenum) > 1000UL )
  1470. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1471. SERIAL_PROTOCOLPGM("T:");
  1472. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1473. SERIAL_PROTOCOLPGM(" E:");
  1474. SERIAL_PROTOCOL((int)tmp_extruder);
  1475. #ifdef TEMP_RESIDENCY_TIME
  1476. SERIAL_PROTOCOLPGM(" W:");
  1477. if(residencyStart > -1)
  1478. {
  1479. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1480. SERIAL_PROTOCOLLN( codenum );
  1481. }
  1482. else
  1483. {
  1484. SERIAL_PROTOCOLLN( "?" );
  1485. }
  1486. #else
  1487. SERIAL_PROTOCOLLN("");
  1488. #endif
  1489. codenum = millis();
  1490. }
  1491. manage_heater();
  1492. manage_inactivity();
  1493. lcd_update();
  1494. #ifdef TEMP_RESIDENCY_TIME
  1495. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1496. or when current temp falls outside the hysteresis after target temp was reached */
  1497. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1498. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1499. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1500. {
  1501. residencyStart = millis();
  1502. }
  1503. #endif //TEMP_RESIDENCY_TIME
  1504. }
  1505. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1506. starttime=millis();
  1507. previous_millis_cmd = millis();
  1508. }
  1509. break;
  1510. case 190: // M190 - Wait for bed heater to reach target.
  1511. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1512. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1513. if (code_seen('S')) {
  1514. setTargetBed(code_value());
  1515. CooldownNoWait = true;
  1516. } else if (code_seen('R')) {
  1517. setTargetBed(code_value());
  1518. CooldownNoWait = false;
  1519. }
  1520. codenum = millis();
  1521. target_direction = isHeatingBed(); // true if heating, false if cooling
  1522. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1523. {
  1524. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1525. {
  1526. float tt=degHotend(active_extruder);
  1527. SERIAL_PROTOCOLPGM("T:");
  1528. SERIAL_PROTOCOL(tt);
  1529. SERIAL_PROTOCOLPGM(" E:");
  1530. SERIAL_PROTOCOL((int)active_extruder);
  1531. SERIAL_PROTOCOLPGM(" B:");
  1532. SERIAL_PROTOCOL_F(degBed(),1);
  1533. SERIAL_PROTOCOLLN("");
  1534. codenum = millis();
  1535. }
  1536. manage_heater();
  1537. manage_inactivity();
  1538. lcd_update();
  1539. }
  1540. LCD_MESSAGEPGM(MSG_BED_DONE);
  1541. previous_millis_cmd = millis();
  1542. #endif
  1543. break;
  1544. #if defined(FAN_PIN) && FAN_PIN > -1
  1545. case 106: //M106 Fan On
  1546. if (code_seen('S')){
  1547. fanSpeed=constrain(code_value(),0,255);
  1548. }
  1549. else {
  1550. fanSpeed=255;
  1551. }
  1552. break;
  1553. case 107: //M107 Fan Off
  1554. fanSpeed = 0;
  1555. break;
  1556. #endif //FAN_PIN
  1557. #ifdef BARICUDA
  1558. // PWM for HEATER_1_PIN
  1559. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1560. case 126: //M126 valve open
  1561. if (code_seen('S')){
  1562. ValvePressure=constrain(code_value(),0,255);
  1563. }
  1564. else {
  1565. ValvePressure=255;
  1566. }
  1567. break;
  1568. case 127: //M127 valve closed
  1569. ValvePressure = 0;
  1570. break;
  1571. #endif //HEATER_1_PIN
  1572. // PWM for HEATER_2_PIN
  1573. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1574. case 128: //M128 valve open
  1575. if (code_seen('S')){
  1576. EtoPPressure=constrain(code_value(),0,255);
  1577. }
  1578. else {
  1579. EtoPPressure=255;
  1580. }
  1581. break;
  1582. case 129: //M129 valve closed
  1583. EtoPPressure = 0;
  1584. break;
  1585. #endif //HEATER_2_PIN
  1586. #endif
  1587. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1588. case 80: // M80 - Turn on Power Supply
  1589. SET_OUTPUT(PS_ON_PIN); //GND
  1590. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1591. #ifdef ULTIPANEL
  1592. powersupply = true;
  1593. LCD_MESSAGEPGM(WELCOME_MSG);
  1594. lcd_update();
  1595. #endif
  1596. break;
  1597. #endif
  1598. case 81: // M81 - Turn off Power Supply
  1599. disable_heater();
  1600. st_synchronize();
  1601. disable_e0();
  1602. disable_e1();
  1603. disable_e2();
  1604. finishAndDisableSteppers();
  1605. fanSpeed = 0;
  1606. delay(1000); // Wait a little before to switch off
  1607. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1608. st_synchronize();
  1609. suicide();
  1610. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1611. SET_OUTPUT(PS_ON_PIN);
  1612. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1613. #endif
  1614. #ifdef ULTIPANEL
  1615. powersupply = false;
  1616. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1617. lcd_update();
  1618. #endif
  1619. break;
  1620. case 82:
  1621. axis_relative_modes[3] = false;
  1622. break;
  1623. case 83:
  1624. axis_relative_modes[3] = true;
  1625. break;
  1626. case 18: //compatibility
  1627. case 84: // M84
  1628. if(code_seen('S')){
  1629. stepper_inactive_time = code_value() * 1000;
  1630. }
  1631. else
  1632. {
  1633. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1634. if(all_axis)
  1635. {
  1636. st_synchronize();
  1637. disable_e0();
  1638. disable_e1();
  1639. disable_e2();
  1640. finishAndDisableSteppers();
  1641. }
  1642. else
  1643. {
  1644. st_synchronize();
  1645. if(code_seen('X')) disable_x();
  1646. if(code_seen('Y')) disable_y();
  1647. if(code_seen('Z')) disable_z();
  1648. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1649. if(code_seen('E')) {
  1650. disable_e0();
  1651. disable_e1();
  1652. disable_e2();
  1653. }
  1654. #endif
  1655. }
  1656. }
  1657. break;
  1658. case 85: // M85
  1659. code_seen('S');
  1660. max_inactive_time = code_value() * 1000;
  1661. break;
  1662. case 92: // M92
  1663. for(int8_t i=0; i < NUM_AXIS; i++)
  1664. {
  1665. if(code_seen(axis_codes[i]))
  1666. {
  1667. if(i == 3) { // E
  1668. float value = code_value();
  1669. if(value < 20.0) {
  1670. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1671. max_e_jerk *= factor;
  1672. max_feedrate[i] *= factor;
  1673. axis_steps_per_sqr_second[i] *= factor;
  1674. }
  1675. axis_steps_per_unit[i] = value;
  1676. }
  1677. else {
  1678. axis_steps_per_unit[i] = code_value();
  1679. }
  1680. }
  1681. }
  1682. break;
  1683. case 115: // M115
  1684. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1685. break;
  1686. case 117: // M117 display message
  1687. starpos = (strchr(strchr_pointer + 5,'*'));
  1688. if(starpos!=NULL)
  1689. *(starpos-1)='\0';
  1690. lcd_setstatus(strchr_pointer + 5);
  1691. break;
  1692. case 114: // M114
  1693. SERIAL_PROTOCOLPGM("X:");
  1694. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1695. SERIAL_PROTOCOLPGM("Y:");
  1696. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1697. SERIAL_PROTOCOLPGM("Z:");
  1698. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1699. SERIAL_PROTOCOLPGM("E:");
  1700. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1701. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1702. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1703. SERIAL_PROTOCOLPGM("Y:");
  1704. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1705. SERIAL_PROTOCOLPGM("Z:");
  1706. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1707. SERIAL_PROTOCOLLN("");
  1708. break;
  1709. case 120: // M120
  1710. enable_endstops(false) ;
  1711. break;
  1712. case 121: // M121
  1713. enable_endstops(true) ;
  1714. break;
  1715. case 119: // M119
  1716. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1717. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1718. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1719. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1720. #endif
  1721. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1722. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1723. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1724. #endif
  1725. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1726. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1727. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1728. #endif
  1729. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1730. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1731. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1732. #endif
  1733. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1734. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1735. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1736. #endif
  1737. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1738. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1739. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1740. #endif
  1741. break;
  1742. //TODO: update for all axis, use for loop
  1743. case 201: // M201
  1744. for(int8_t i=0; i < NUM_AXIS; i++)
  1745. {
  1746. if(code_seen(axis_codes[i]))
  1747. {
  1748. max_acceleration_units_per_sq_second[i] = code_value();
  1749. }
  1750. }
  1751. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1752. reset_acceleration_rates();
  1753. break;
  1754. #if 0 // Not used for Sprinter/grbl gen6
  1755. case 202: // M202
  1756. for(int8_t i=0; i < NUM_AXIS; i++) {
  1757. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1758. }
  1759. break;
  1760. #endif
  1761. case 203: // M203 max feedrate mm/sec
  1762. for(int8_t i=0; i < NUM_AXIS; i++) {
  1763. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1764. }
  1765. break;
  1766. case 204: // M204 acclereration S normal moves T filmanent only moves
  1767. {
  1768. if(code_seen('S')) acceleration = code_value() ;
  1769. if(code_seen('T')) retract_acceleration = code_value() ;
  1770. }
  1771. break;
  1772. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1773. {
  1774. if(code_seen('S')) minimumfeedrate = code_value();
  1775. if(code_seen('T')) mintravelfeedrate = code_value();
  1776. if(code_seen('B')) minsegmenttime = code_value() ;
  1777. if(code_seen('X')) max_xy_jerk = code_value() ;
  1778. if(code_seen('Z')) max_z_jerk = code_value() ;
  1779. if(code_seen('E')) max_e_jerk = code_value() ;
  1780. }
  1781. break;
  1782. case 206: // M206 additional homeing offset
  1783. for(int8_t i=0; i < 3; i++)
  1784. {
  1785. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1786. }
  1787. break;
  1788. #ifdef DELTA
  1789. case 666: // M666 set delta endstop adjustemnt
  1790. for(int8_t i=0; i < 3; i++)
  1791. {
  1792. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1793. }
  1794. break;
  1795. #endif
  1796. #ifdef FWRETRACT
  1797. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1798. {
  1799. if(code_seen('S'))
  1800. {
  1801. retract_length = code_value() ;
  1802. }
  1803. if(code_seen('F'))
  1804. {
  1805. retract_feedrate = code_value() ;
  1806. }
  1807. if(code_seen('Z'))
  1808. {
  1809. retract_zlift = code_value() ;
  1810. }
  1811. }break;
  1812. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1813. {
  1814. if(code_seen('S'))
  1815. {
  1816. retract_recover_length = code_value() ;
  1817. }
  1818. if(code_seen('F'))
  1819. {
  1820. retract_recover_feedrate = code_value() ;
  1821. }
  1822. }break;
  1823. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1824. {
  1825. if(code_seen('S'))
  1826. {
  1827. int t= code_value() ;
  1828. switch(t)
  1829. {
  1830. case 0: autoretract_enabled=false;retracted=false;break;
  1831. case 1: autoretract_enabled=true;retracted=false;break;
  1832. default:
  1833. SERIAL_ECHO_START;
  1834. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1835. SERIAL_ECHO(cmdbuffer[bufindr]);
  1836. SERIAL_ECHOLNPGM("\"");
  1837. }
  1838. }
  1839. }break;
  1840. #endif // FWRETRACT
  1841. #if EXTRUDERS > 1
  1842. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1843. {
  1844. if(setTargetedHotend(218)){
  1845. break;
  1846. }
  1847. if(code_seen('X'))
  1848. {
  1849. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1850. }
  1851. if(code_seen('Y'))
  1852. {
  1853. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1854. }
  1855. #ifdef DUAL_X_CARRIAGE
  1856. if(code_seen('Z'))
  1857. {
  1858. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1859. }
  1860. #endif
  1861. SERIAL_ECHO_START;
  1862. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1863. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1864. {
  1865. SERIAL_ECHO(" ");
  1866. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1867. SERIAL_ECHO(",");
  1868. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1869. #ifdef DUAL_X_CARRIAGE
  1870. SERIAL_ECHO(",");
  1871. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1872. #endif
  1873. }
  1874. SERIAL_ECHOLN("");
  1875. }break;
  1876. #endif
  1877. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1878. {
  1879. if(code_seen('S'))
  1880. {
  1881. feedmultiply = code_value() ;
  1882. }
  1883. }
  1884. break;
  1885. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1886. {
  1887. if(code_seen('S'))
  1888. {
  1889. extrudemultiply = code_value() ;
  1890. }
  1891. }
  1892. break;
  1893. #if NUM_SERVOS > 0
  1894. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1895. {
  1896. int servo_index = -1;
  1897. int servo_position = 0;
  1898. if (code_seen('P'))
  1899. servo_index = code_value();
  1900. if (code_seen('S')) {
  1901. servo_position = code_value();
  1902. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1903. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1904. servos[servo_index].attach(0);
  1905. #endif
  1906. servos[servo_index].write(servo_position);
  1907. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1908. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1909. servos[servo_index].detach();
  1910. #endif
  1911. }
  1912. else {
  1913. SERIAL_ECHO_START;
  1914. SERIAL_ECHO("Servo ");
  1915. SERIAL_ECHO(servo_index);
  1916. SERIAL_ECHOLN(" out of range");
  1917. }
  1918. }
  1919. else if (servo_index >= 0) {
  1920. SERIAL_PROTOCOL(MSG_OK);
  1921. SERIAL_PROTOCOL(" Servo ");
  1922. SERIAL_PROTOCOL(servo_index);
  1923. SERIAL_PROTOCOL(": ");
  1924. SERIAL_PROTOCOL(servos[servo_index].read());
  1925. SERIAL_PROTOCOLLN("");
  1926. }
  1927. }
  1928. break;
  1929. #endif // NUM_SERVOS > 0
  1930. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1931. case 300: // M300
  1932. {
  1933. int beepS = code_seen('S') ? code_value() : 110;
  1934. int beepP = code_seen('P') ? code_value() : 1000;
  1935. if (beepS > 0)
  1936. {
  1937. #if BEEPER > 0
  1938. tone(BEEPER, beepS);
  1939. delay(beepP);
  1940. noTone(BEEPER);
  1941. #elif defined(ULTRALCD)
  1942. lcd_buzz(beepS, beepP);
  1943. #endif
  1944. }
  1945. else
  1946. {
  1947. delay(beepP);
  1948. }
  1949. }
  1950. break;
  1951. #endif // M300
  1952. #ifdef PIDTEMP
  1953. case 301: // M301
  1954. {
  1955. if(code_seen('P')) Kp = code_value();
  1956. if(code_seen('I')) Ki = scalePID_i(code_value());
  1957. if(code_seen('D')) Kd = scalePID_d(code_value());
  1958. #ifdef PID_ADD_EXTRUSION_RATE
  1959. if(code_seen('C')) Kc = code_value();
  1960. #endif
  1961. updatePID();
  1962. SERIAL_PROTOCOL(MSG_OK);
  1963. SERIAL_PROTOCOL(" p:");
  1964. SERIAL_PROTOCOL(Kp);
  1965. SERIAL_PROTOCOL(" i:");
  1966. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1967. SERIAL_PROTOCOL(" d:");
  1968. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1969. #ifdef PID_ADD_EXTRUSION_RATE
  1970. SERIAL_PROTOCOL(" c:");
  1971. //Kc does not have scaling applied above, or in resetting defaults
  1972. SERIAL_PROTOCOL(Kc);
  1973. #endif
  1974. SERIAL_PROTOCOLLN("");
  1975. }
  1976. break;
  1977. #endif //PIDTEMP
  1978. #ifdef PIDTEMPBED
  1979. case 304: // M304
  1980. {
  1981. if(code_seen('P')) bedKp = code_value();
  1982. if(code_seen('I')) bedKi = scalePID_i(code_value());
  1983. if(code_seen('D')) bedKd = scalePID_d(code_value());
  1984. updatePID();
  1985. SERIAL_PROTOCOL(MSG_OK);
  1986. SERIAL_PROTOCOL(" p:");
  1987. SERIAL_PROTOCOL(bedKp);
  1988. SERIAL_PROTOCOL(" i:");
  1989. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  1990. SERIAL_PROTOCOL(" d:");
  1991. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  1992. SERIAL_PROTOCOLLN("");
  1993. }
  1994. break;
  1995. #endif //PIDTEMP
  1996. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1997. {
  1998. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  1999. const uint8_t NUM_PULSES=16;
  2000. const float PULSE_LENGTH=0.01524;
  2001. for(int i=0; i < NUM_PULSES; i++) {
  2002. WRITE(PHOTOGRAPH_PIN, HIGH);
  2003. _delay_ms(PULSE_LENGTH);
  2004. WRITE(PHOTOGRAPH_PIN, LOW);
  2005. _delay_ms(PULSE_LENGTH);
  2006. }
  2007. delay(7.33);
  2008. for(int i=0; i < NUM_PULSES; i++) {
  2009. WRITE(PHOTOGRAPH_PIN, HIGH);
  2010. _delay_ms(PULSE_LENGTH);
  2011. WRITE(PHOTOGRAPH_PIN, LOW);
  2012. _delay_ms(PULSE_LENGTH);
  2013. }
  2014. #endif
  2015. }
  2016. break;
  2017. #ifdef DOGLCD
  2018. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2019. {
  2020. if (code_seen('C')) {
  2021. lcd_setcontrast( ((int)code_value())&63 );
  2022. }
  2023. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2024. SERIAL_PROTOCOL(lcd_contrast);
  2025. SERIAL_PROTOCOLLN("");
  2026. }
  2027. break;
  2028. #endif
  2029. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2030. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2031. {
  2032. float temp = .0;
  2033. if (code_seen('S')) temp=code_value();
  2034. set_extrude_min_temp(temp);
  2035. }
  2036. break;
  2037. #endif
  2038. case 303: // M303 PID autotune
  2039. {
  2040. float temp = 150.0;
  2041. int e=0;
  2042. int c=5;
  2043. if (code_seen('E')) e=code_value();
  2044. if (e<0)
  2045. temp=70;
  2046. if (code_seen('S')) temp=code_value();
  2047. if (code_seen('C')) c=code_value();
  2048. PID_autotune(temp, e, c);
  2049. }
  2050. break;
  2051. case 400: // M400 finish all moves
  2052. {
  2053. st_synchronize();
  2054. }
  2055. break;
  2056. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2057. case 401:
  2058. {
  2059. engage_z_probe(); // Engage Z Servo endstop if available
  2060. }
  2061. break;
  2062. case 402:
  2063. {
  2064. retract_z_probe(); // Retract Z Servo endstop if enabled
  2065. }
  2066. break;
  2067. #endif
  2068. case 500: // M500 Store settings in EEPROM
  2069. {
  2070. Config_StoreSettings();
  2071. }
  2072. break;
  2073. case 501: // M501 Read settings from EEPROM
  2074. {
  2075. Config_RetrieveSettings();
  2076. }
  2077. break;
  2078. case 502: // M502 Revert to default settings
  2079. {
  2080. Config_ResetDefault();
  2081. }
  2082. break;
  2083. case 503: // M503 print settings currently in memory
  2084. {
  2085. Config_PrintSettings();
  2086. }
  2087. break;
  2088. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2089. case 540:
  2090. {
  2091. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2092. }
  2093. break;
  2094. #endif
  2095. #ifdef FILAMENTCHANGEENABLE
  2096. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2097. {
  2098. float target[4];
  2099. float lastpos[4];
  2100. target[X_AXIS]=current_position[X_AXIS];
  2101. target[Y_AXIS]=current_position[Y_AXIS];
  2102. target[Z_AXIS]=current_position[Z_AXIS];
  2103. target[E_AXIS]=current_position[E_AXIS];
  2104. lastpos[X_AXIS]=current_position[X_AXIS];
  2105. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2106. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2107. lastpos[E_AXIS]=current_position[E_AXIS];
  2108. //retract by E
  2109. if(code_seen('E'))
  2110. {
  2111. target[E_AXIS]+= code_value();
  2112. }
  2113. else
  2114. {
  2115. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2116. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2117. #endif
  2118. }
  2119. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2120. //lift Z
  2121. if(code_seen('Z'))
  2122. {
  2123. target[Z_AXIS]+= code_value();
  2124. }
  2125. else
  2126. {
  2127. #ifdef FILAMENTCHANGE_ZADD
  2128. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2129. #endif
  2130. }
  2131. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2132. //move xy
  2133. if(code_seen('X'))
  2134. {
  2135. target[X_AXIS]+= code_value();
  2136. }
  2137. else
  2138. {
  2139. #ifdef FILAMENTCHANGE_XPOS
  2140. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2141. #endif
  2142. }
  2143. if(code_seen('Y'))
  2144. {
  2145. target[Y_AXIS]= code_value();
  2146. }
  2147. else
  2148. {
  2149. #ifdef FILAMENTCHANGE_YPOS
  2150. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2151. #endif
  2152. }
  2153. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2154. if(code_seen('L'))
  2155. {
  2156. target[E_AXIS]+= code_value();
  2157. }
  2158. else
  2159. {
  2160. #ifdef FILAMENTCHANGE_FINALRETRACT
  2161. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2162. #endif
  2163. }
  2164. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2165. //finish moves
  2166. st_synchronize();
  2167. //disable extruder steppers so filament can be removed
  2168. disable_e0();
  2169. disable_e1();
  2170. disable_e2();
  2171. delay(100);
  2172. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2173. uint8_t cnt=0;
  2174. while(!lcd_clicked()){
  2175. cnt++;
  2176. manage_heater();
  2177. manage_inactivity();
  2178. lcd_update();
  2179. if(cnt==0)
  2180. {
  2181. #if BEEPER > 0
  2182. SET_OUTPUT(BEEPER);
  2183. WRITE(BEEPER,HIGH);
  2184. delay(3);
  2185. WRITE(BEEPER,LOW);
  2186. delay(3);
  2187. #else
  2188. lcd_buzz(1000/6,100);
  2189. #endif
  2190. }
  2191. }
  2192. //return to normal
  2193. if(code_seen('L'))
  2194. {
  2195. target[E_AXIS]+= -code_value();
  2196. }
  2197. else
  2198. {
  2199. #ifdef FILAMENTCHANGE_FINALRETRACT
  2200. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2201. #endif
  2202. }
  2203. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2204. plan_set_e_position(current_position[E_AXIS]);
  2205. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2206. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2207. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2208. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2209. }
  2210. break;
  2211. #endif //FILAMENTCHANGEENABLE
  2212. #ifdef DUAL_X_CARRIAGE
  2213. case 605: // Set dual x-carriage movement mode:
  2214. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2215. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2216. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2217. // millimeters x-offset and an optional differential hotend temperature of
  2218. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2219. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2220. //
  2221. // Note: the X axis should be homed after changing dual x-carriage mode.
  2222. {
  2223. st_synchronize();
  2224. if (code_seen('S'))
  2225. dual_x_carriage_mode = code_value();
  2226. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2227. {
  2228. if (code_seen('X'))
  2229. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2230. if (code_seen('R'))
  2231. duplicate_extruder_temp_offset = code_value();
  2232. SERIAL_ECHO_START;
  2233. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2234. SERIAL_ECHO(" ");
  2235. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2236. SERIAL_ECHO(",");
  2237. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2238. SERIAL_ECHO(" ");
  2239. SERIAL_ECHO(duplicate_extruder_x_offset);
  2240. SERIAL_ECHO(",");
  2241. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2242. }
  2243. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2244. {
  2245. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2246. }
  2247. active_extruder_parked = false;
  2248. extruder_duplication_enabled = false;
  2249. delayed_move_time = 0;
  2250. }
  2251. break;
  2252. #endif //DUAL_X_CARRIAGE
  2253. case 907: // M907 Set digital trimpot motor current using axis codes.
  2254. {
  2255. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2256. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2257. if(code_seen('B')) digipot_current(4,code_value());
  2258. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2259. #endif
  2260. }
  2261. break;
  2262. case 908: // M908 Control digital trimpot directly.
  2263. {
  2264. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2265. uint8_t channel,current;
  2266. if(code_seen('P')) channel=code_value();
  2267. if(code_seen('S')) current=code_value();
  2268. digitalPotWrite(channel, current);
  2269. #endif
  2270. }
  2271. break;
  2272. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2273. {
  2274. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2275. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2276. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2277. if(code_seen('B')) microstep_mode(4,code_value());
  2278. microstep_readings();
  2279. #endif
  2280. }
  2281. break;
  2282. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2283. {
  2284. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2285. if(code_seen('S')) switch((int)code_value())
  2286. {
  2287. case 1:
  2288. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2289. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2290. break;
  2291. case 2:
  2292. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2293. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2294. break;
  2295. }
  2296. microstep_readings();
  2297. #endif
  2298. }
  2299. break;
  2300. case 999: // M999: Restart after being stopped
  2301. Stopped = false;
  2302. lcd_reset_alert_level();
  2303. gcode_LastN = Stopped_gcode_LastN;
  2304. FlushSerialRequestResend();
  2305. break;
  2306. }
  2307. }
  2308. else if(code_seen('T'))
  2309. {
  2310. tmp_extruder = code_value();
  2311. if(tmp_extruder >= EXTRUDERS) {
  2312. SERIAL_ECHO_START;
  2313. SERIAL_ECHO("T");
  2314. SERIAL_ECHO(tmp_extruder);
  2315. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2316. }
  2317. else {
  2318. boolean make_move = false;
  2319. if(code_seen('F')) {
  2320. make_move = true;
  2321. next_feedrate = code_value();
  2322. if(next_feedrate > 0.0) {
  2323. feedrate = next_feedrate;
  2324. }
  2325. }
  2326. #if EXTRUDERS > 1
  2327. if(tmp_extruder != active_extruder) {
  2328. // Save current position to return to after applying extruder offset
  2329. memcpy(destination, current_position, sizeof(destination));
  2330. #ifdef DUAL_X_CARRIAGE
  2331. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2332. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2333. {
  2334. // Park old head: 1) raise 2) move to park position 3) lower
  2335. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2336. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2337. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2338. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2339. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2340. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2341. st_synchronize();
  2342. }
  2343. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2344. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2345. extruder_offset[Y_AXIS][active_extruder] +
  2346. extruder_offset[Y_AXIS][tmp_extruder];
  2347. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2348. extruder_offset[Z_AXIS][active_extruder] +
  2349. extruder_offset[Z_AXIS][tmp_extruder];
  2350. active_extruder = tmp_extruder;
  2351. // This function resets the max/min values - the current position may be overwritten below.
  2352. axis_is_at_home(X_AXIS);
  2353. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2354. {
  2355. current_position[X_AXIS] = inactive_extruder_x_pos;
  2356. inactive_extruder_x_pos = destination[X_AXIS];
  2357. }
  2358. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2359. {
  2360. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2361. if (active_extruder == 0 || active_extruder_parked)
  2362. current_position[X_AXIS] = inactive_extruder_x_pos;
  2363. else
  2364. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2365. inactive_extruder_x_pos = destination[X_AXIS];
  2366. extruder_duplication_enabled = false;
  2367. }
  2368. else
  2369. {
  2370. // record raised toolhead position for use by unpark
  2371. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2372. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2373. active_extruder_parked = true;
  2374. delayed_move_time = 0;
  2375. }
  2376. #else
  2377. // Offset extruder (only by XY)
  2378. int i;
  2379. for(i = 0; i < 2; i++) {
  2380. current_position[i] = current_position[i] -
  2381. extruder_offset[i][active_extruder] +
  2382. extruder_offset[i][tmp_extruder];
  2383. }
  2384. // Set the new active extruder and position
  2385. active_extruder = tmp_extruder;
  2386. #endif //else DUAL_X_CARRIAGE
  2387. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2388. // Move to the old position if 'F' was in the parameters
  2389. if(make_move && Stopped == false) {
  2390. prepare_move();
  2391. }
  2392. }
  2393. #endif
  2394. SERIAL_ECHO_START;
  2395. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2396. SERIAL_PROTOCOLLN((int)active_extruder);
  2397. }
  2398. }
  2399. else
  2400. {
  2401. SERIAL_ECHO_START;
  2402. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2403. SERIAL_ECHO(cmdbuffer[bufindr]);
  2404. SERIAL_ECHOLNPGM("\"");
  2405. }
  2406. ClearToSend();
  2407. }
  2408. void FlushSerialRequestResend()
  2409. {
  2410. //char cmdbuffer[bufindr][100]="Resend:";
  2411. MYSERIAL.flush();
  2412. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2413. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2414. ClearToSend();
  2415. }
  2416. void ClearToSend()
  2417. {
  2418. previous_millis_cmd = millis();
  2419. #ifdef SDSUPPORT
  2420. if(fromsd[bufindr])
  2421. return;
  2422. #endif //SDSUPPORT
  2423. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2424. }
  2425. void get_coordinates()
  2426. {
  2427. bool seen[4]={false,false,false,false};
  2428. for(int8_t i=0; i < NUM_AXIS; i++) {
  2429. if(code_seen(axis_codes[i]))
  2430. {
  2431. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2432. seen[i]=true;
  2433. }
  2434. else destination[i] = current_position[i]; //Are these else lines really needed?
  2435. }
  2436. if(code_seen('F')) {
  2437. next_feedrate = code_value();
  2438. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2439. }
  2440. #ifdef FWRETRACT
  2441. if(autoretract_enabled)
  2442. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2443. {
  2444. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2445. if(echange<-MIN_RETRACT) //retract
  2446. {
  2447. if(!retracted)
  2448. {
  2449. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2450. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2451. float correctede=-echange-retract_length;
  2452. //to generate the additional steps, not the destination is changed, but inversely the current position
  2453. current_position[E_AXIS]+=-correctede;
  2454. feedrate=retract_feedrate;
  2455. retracted=true;
  2456. }
  2457. }
  2458. else
  2459. if(echange>MIN_RETRACT) //retract_recover
  2460. {
  2461. if(retracted)
  2462. {
  2463. //current_position[Z_AXIS]+=-retract_zlift;
  2464. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2465. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2466. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2467. feedrate=retract_recover_feedrate;
  2468. retracted=false;
  2469. }
  2470. }
  2471. }
  2472. #endif //FWRETRACT
  2473. }
  2474. void get_arc_coordinates()
  2475. {
  2476. #ifdef SF_ARC_FIX
  2477. bool relative_mode_backup = relative_mode;
  2478. relative_mode = true;
  2479. #endif
  2480. get_coordinates();
  2481. #ifdef SF_ARC_FIX
  2482. relative_mode=relative_mode_backup;
  2483. #endif
  2484. if(code_seen('I')) {
  2485. offset[0] = code_value();
  2486. }
  2487. else {
  2488. offset[0] = 0.0;
  2489. }
  2490. if(code_seen('J')) {
  2491. offset[1] = code_value();
  2492. }
  2493. else {
  2494. offset[1] = 0.0;
  2495. }
  2496. }
  2497. void clamp_to_software_endstops(float target[3])
  2498. {
  2499. if (min_software_endstops) {
  2500. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2501. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2502. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2503. }
  2504. if (max_software_endstops) {
  2505. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2506. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2507. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2508. }
  2509. }
  2510. #ifdef DELTA
  2511. void calculate_delta(float cartesian[3])
  2512. {
  2513. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2514. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2515. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2516. ) + cartesian[Z_AXIS];
  2517. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2518. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2519. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2520. ) + cartesian[Z_AXIS];
  2521. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2522. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2523. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2524. ) + cartesian[Z_AXIS];
  2525. /*
  2526. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2527. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2528. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2529. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2530. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2531. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2532. */
  2533. }
  2534. #endif
  2535. void prepare_move()
  2536. {
  2537. clamp_to_software_endstops(destination);
  2538. previous_millis_cmd = millis();
  2539. #ifdef DELTA
  2540. float difference[NUM_AXIS];
  2541. for (int8_t i=0; i < NUM_AXIS; i++) {
  2542. difference[i] = destination[i] - current_position[i];
  2543. }
  2544. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2545. sq(difference[Y_AXIS]) +
  2546. sq(difference[Z_AXIS]));
  2547. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2548. if (cartesian_mm < 0.000001) { return; }
  2549. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2550. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2551. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2552. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2553. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2554. for (int s = 1; s <= steps; s++) {
  2555. float fraction = float(s) / float(steps);
  2556. for(int8_t i=0; i < NUM_AXIS; i++) {
  2557. destination[i] = current_position[i] + difference[i] * fraction;
  2558. }
  2559. calculate_delta(destination);
  2560. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2561. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2562. active_extruder);
  2563. }
  2564. #else
  2565. #ifdef DUAL_X_CARRIAGE
  2566. if (active_extruder_parked)
  2567. {
  2568. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2569. {
  2570. // move duplicate extruder into correct duplication position.
  2571. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2572. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2573. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2574. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2575. st_synchronize();
  2576. extruder_duplication_enabled = true;
  2577. active_extruder_parked = false;
  2578. }
  2579. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2580. {
  2581. if (current_position[E_AXIS] == destination[E_AXIS])
  2582. {
  2583. // this is a travel move - skit it but keep track of current position (so that it can later
  2584. // be used as start of first non-travel move)
  2585. if (delayed_move_time != 0xFFFFFFFFUL)
  2586. {
  2587. memcpy(current_position, destination, sizeof(current_position));
  2588. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2589. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2590. delayed_move_time = millis();
  2591. return;
  2592. }
  2593. }
  2594. delayed_move_time = 0;
  2595. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2596. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2597. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2598. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2599. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2600. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2601. active_extruder_parked = false;
  2602. }
  2603. }
  2604. #endif //DUAL_X_CARRIAGE
  2605. // Do not use feedmultiply for E or Z only moves
  2606. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2607. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2608. }
  2609. else {
  2610. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2611. }
  2612. #endif //else DELTA
  2613. for(int8_t i=0; i < NUM_AXIS; i++) {
  2614. current_position[i] = destination[i];
  2615. }
  2616. }
  2617. void prepare_arc_move(char isclockwise) {
  2618. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2619. // Trace the arc
  2620. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2621. // As far as the parser is concerned, the position is now == target. In reality the
  2622. // motion control system might still be processing the action and the real tool position
  2623. // in any intermediate location.
  2624. for(int8_t i=0; i < NUM_AXIS; i++) {
  2625. current_position[i] = destination[i];
  2626. }
  2627. previous_millis_cmd = millis();
  2628. }
  2629. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2630. #if defined(FAN_PIN)
  2631. #if CONTROLLERFAN_PIN == FAN_PIN
  2632. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2633. #endif
  2634. #endif
  2635. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2636. unsigned long lastMotorCheck = 0;
  2637. void controllerFan()
  2638. {
  2639. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2640. {
  2641. lastMotorCheck = millis();
  2642. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2643. #if EXTRUDERS > 2
  2644. || !READ(E2_ENABLE_PIN)
  2645. #endif
  2646. #if EXTRUDER > 1
  2647. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2648. || !READ(X2_ENABLE_PIN)
  2649. #endif
  2650. || !READ(E1_ENABLE_PIN)
  2651. #endif
  2652. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2653. {
  2654. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2655. }
  2656. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2657. {
  2658. digitalWrite(CONTROLLERFAN_PIN, 0);
  2659. analogWrite(CONTROLLERFAN_PIN, 0);
  2660. }
  2661. else
  2662. {
  2663. // allows digital or PWM fan output to be used (see M42 handling)
  2664. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2665. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2666. }
  2667. }
  2668. }
  2669. #endif
  2670. void manage_inactivity()
  2671. {
  2672. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2673. if(max_inactive_time)
  2674. kill();
  2675. if(stepper_inactive_time) {
  2676. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2677. {
  2678. if(blocks_queued() == false) {
  2679. disable_x();
  2680. disable_y();
  2681. disable_z();
  2682. disable_e0();
  2683. disable_e1();
  2684. disable_e2();
  2685. }
  2686. }
  2687. }
  2688. #if defined(KILL_PIN) && KILL_PIN > -1
  2689. if( 0 == READ(KILL_PIN) )
  2690. kill();
  2691. #endif
  2692. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2693. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2694. #endif
  2695. #ifdef EXTRUDER_RUNOUT_PREVENT
  2696. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2697. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2698. {
  2699. bool oldstatus=READ(E0_ENABLE_PIN);
  2700. enable_e0();
  2701. float oldepos=current_position[E_AXIS];
  2702. float oldedes=destination[E_AXIS];
  2703. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2704. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2705. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2706. current_position[E_AXIS]=oldepos;
  2707. destination[E_AXIS]=oldedes;
  2708. plan_set_e_position(oldepos);
  2709. previous_millis_cmd=millis();
  2710. st_synchronize();
  2711. WRITE(E0_ENABLE_PIN,oldstatus);
  2712. }
  2713. #endif
  2714. #if defined(DUAL_X_CARRIAGE)
  2715. // handle delayed move timeout
  2716. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2717. {
  2718. // travel moves have been received so enact them
  2719. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2720. memcpy(destination,current_position,sizeof(destination));
  2721. prepare_move();
  2722. }
  2723. #endif
  2724. check_axes_activity();
  2725. }
  2726. void kill()
  2727. {
  2728. cli(); // Stop interrupts
  2729. disable_heater();
  2730. disable_x();
  2731. disable_y();
  2732. disable_z();
  2733. disable_e0();
  2734. disable_e1();
  2735. disable_e2();
  2736. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2737. pinMode(PS_ON_PIN,INPUT);
  2738. #endif
  2739. SERIAL_ERROR_START;
  2740. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2741. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2742. suicide();
  2743. while(1) { /* Intentionally left empty */ } // Wait for reset
  2744. }
  2745. void Stop()
  2746. {
  2747. disable_heater();
  2748. if(Stopped == false) {
  2749. Stopped = true;
  2750. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2751. SERIAL_ERROR_START;
  2752. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2753. LCD_MESSAGEPGM(MSG_STOPPED);
  2754. }
  2755. }
  2756. bool IsStopped() { return Stopped; };
  2757. #ifdef FAST_PWM_FAN
  2758. void setPwmFrequency(uint8_t pin, int val)
  2759. {
  2760. val &= 0x07;
  2761. switch(digitalPinToTimer(pin))
  2762. {
  2763. #if defined(TCCR0A)
  2764. case TIMER0A:
  2765. case TIMER0B:
  2766. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2767. // TCCR0B |= val;
  2768. break;
  2769. #endif
  2770. #if defined(TCCR1A)
  2771. case TIMER1A:
  2772. case TIMER1B:
  2773. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2774. // TCCR1B |= val;
  2775. break;
  2776. #endif
  2777. #if defined(TCCR2)
  2778. case TIMER2:
  2779. case TIMER2:
  2780. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2781. TCCR2 |= val;
  2782. break;
  2783. #endif
  2784. #if defined(TCCR2A)
  2785. case TIMER2A:
  2786. case TIMER2B:
  2787. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2788. TCCR2B |= val;
  2789. break;
  2790. #endif
  2791. #if defined(TCCR3A)
  2792. case TIMER3A:
  2793. case TIMER3B:
  2794. case TIMER3C:
  2795. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2796. TCCR3B |= val;
  2797. break;
  2798. #endif
  2799. #if defined(TCCR4A)
  2800. case TIMER4A:
  2801. case TIMER4B:
  2802. case TIMER4C:
  2803. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2804. TCCR4B |= val;
  2805. break;
  2806. #endif
  2807. #if defined(TCCR5A)
  2808. case TIMER5A:
  2809. case TIMER5B:
  2810. case TIMER5C:
  2811. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2812. TCCR5B |= val;
  2813. break;
  2814. #endif
  2815. }
  2816. }
  2817. #endif //FAST_PWM_FAN
  2818. bool setTargetedHotend(int code){
  2819. tmp_extruder = active_extruder;
  2820. if(code_seen('T')) {
  2821. tmp_extruder = code_value();
  2822. if(tmp_extruder >= EXTRUDERS) {
  2823. SERIAL_ECHO_START;
  2824. switch(code){
  2825. case 104:
  2826. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2827. break;
  2828. case 105:
  2829. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2830. break;
  2831. case 109:
  2832. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2833. break;
  2834. case 218:
  2835. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2836. break;
  2837. }
  2838. SERIAL_ECHOLN(tmp_extruder);
  2839. return true;
  2840. }
  2841. }
  2842. return false;
  2843. }