My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

planner.cpp 41KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002
  1. /*
  2. planner.c - buffers movement commands and manages the acceleration profile plan
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. */
  17. /*
  18. Reasoning behind the mathematics in this module (in the key of 'Mathematica'):
  19. s == speed, a == acceleration, t == time, d == distance
  20. Basic definitions:
  21. Speed[s_, a_, t_] := s + (a*t)
  22. Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t]
  23. Distance to reach a specific speed with a constant acceleration:
  24. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t]
  25. d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance()
  26. Speed after a given distance of travel with constant acceleration:
  27. Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t]
  28. m -> Sqrt[2 a d + s^2]
  29. DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2]
  30. When to start braking (di) to reach a specified destionation speed (s2) after accelerating
  31. from initial speed s1 without ever stopping at a plateau:
  32. Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di]
  33. di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance()
  34. IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a)
  35. */
  36. #include "Marlin.h"
  37. #include "planner.h"
  38. #include "stepper.h"
  39. #include "temperature.h"
  40. #include "ultralcd.h"
  41. #include "language.h"
  42. #ifdef MESH_BED_LEVELING
  43. #include "mesh_bed_leveling.h"
  44. #endif // MESH_BED_LEVELING
  45. //===========================================================================
  46. //============================= public variables ============================
  47. //===========================================================================
  48. unsigned long minsegmenttime;
  49. float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute
  50. float axis_steps_per_unit[NUM_AXIS];
  51. unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
  52. float minimumfeedrate;
  53. float acceleration; // Normal acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all printing moves. M204 SXXXX
  54. float retract_acceleration; // mm/s^2 filament pull-pack and push-forward while standing still in the other axis M204 TXXXX
  55. float travel_acceleration; // Travel acceleration mm/s^2 THIS IS THE DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
  56. float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
  57. float max_z_jerk;
  58. float max_e_jerk;
  59. float mintravelfeedrate;
  60. unsigned long axis_steps_per_sqr_second[NUM_AXIS];
  61. #ifdef ENABLE_AUTO_BED_LEVELING
  62. // this holds the required transform to compensate for bed level
  63. matrix_3x3 plan_bed_level_matrix = {
  64. 1.0, 0.0, 0.0,
  65. 0.0, 1.0, 0.0,
  66. 0.0, 0.0, 1.0
  67. };
  68. #endif // ENABLE_AUTO_BED_LEVELING
  69. // The current position of the tool in absolute steps
  70. long position[NUM_AXIS]; //rescaled from extern when axis_steps_per_unit are changed by gcode
  71. static float previous_speed[NUM_AXIS]; // Speed of previous path line segment
  72. static float previous_nominal_speed; // Nominal speed of previous path line segment
  73. #ifdef AUTOTEMP
  74. float autotemp_max = 250;
  75. float autotemp_min = 210;
  76. float autotemp_factor = 0.1;
  77. bool autotemp_enabled = false;
  78. #endif
  79. unsigned char g_uc_extruder_last_move[4] = {0,0,0,0};
  80. //===========================================================================
  81. //=================semi-private variables, used in inline functions =====
  82. //===========================================================================
  83. block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
  84. volatile unsigned char block_buffer_head; // Index of the next block to be pushed
  85. volatile unsigned char block_buffer_tail; // Index of the block to process now
  86. //===========================================================================
  87. //=============================private variables ============================
  88. //===========================================================================
  89. #ifdef XY_FREQUENCY_LIMIT
  90. // Used for the frequency limit
  91. #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT)
  92. // Old direction bits. Used for speed calculations
  93. static unsigned char old_direction_bits = 0;
  94. // Segment times (in µs). Used for speed calculations
  95. static long axis_segment_time[2][3] = { {MAX_FREQ_TIME+1,0,0}, {MAX_FREQ_TIME+1,0,0} };
  96. #endif
  97. #ifdef FILAMENT_SENSOR
  98. static char meas_sample; //temporary variable to hold filament measurement sample
  99. #endif
  100. // Get the next / previous index of the next block in the ring buffer
  101. // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2
  102. FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); }
  103. FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); }
  104. //===========================================================================
  105. //================================ Functions ================================
  106. //===========================================================================
  107. // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
  108. // given acceleration:
  109. FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) {
  110. if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0
  111. return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2);
  112. }
  113. // This function gives you the point at which you must start braking (at the rate of -acceleration) if
  114. // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
  115. // a total travel of distance. This can be used to compute the intersection point between acceleration and
  116. // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
  117. FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) {
  118. if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0
  119. return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4);
  120. }
  121. // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
  122. void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exit_factor) {
  123. unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min)
  124. unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min)
  125. // Limit minimal step rate (Otherwise the timer will overflow.)
  126. if (initial_rate < 120) initial_rate = 120;
  127. if (final_rate < 120) final_rate = 120;
  128. long acceleration = block->acceleration_st;
  129. int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration));
  130. int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration));
  131. // Calculate the size of Plateau of Nominal Rate.
  132. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps;
  133. // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
  134. // have to use intersection_distance() to calculate when to abort acceleration and start braking
  135. // in order to reach the final_rate exactly at the end of this block.
  136. if (plateau_steps < 0) {
  137. accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count));
  138. accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off
  139. accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero)
  140. plateau_steps = 0;
  141. }
  142. #ifdef ADVANCE
  143. volatile long initial_advance = block->advance * entry_factor * entry_factor;
  144. volatile long final_advance = block->advance * exit_factor * exit_factor;
  145. #endif // ADVANCE
  146. // block->accelerate_until = accelerate_steps;
  147. // block->decelerate_after = accelerate_steps+plateau_steps;
  148. CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section
  149. if (!block->busy) { // Don't update variables if block is busy.
  150. block->accelerate_until = accelerate_steps;
  151. block->decelerate_after = accelerate_steps+plateau_steps;
  152. block->initial_rate = initial_rate;
  153. block->final_rate = final_rate;
  154. #ifdef ADVANCE
  155. block->initial_advance = initial_advance;
  156. block->final_advance = final_advance;
  157. #endif
  158. }
  159. CRITICAL_SECTION_END;
  160. }
  161. // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
  162. // acceleration within the allotted distance.
  163. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
  164. return sqrt(target_velocity * target_velocity - 2 * acceleration * distance);
  165. }
  166. // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks.
  167. // This method will calculate the junction jerk as the euclidean distance between the nominal
  168. // velocities of the respective blocks.
  169. //inline float junction_jerk(block_t *before, block_t *after) {
  170. // return sqrt(
  171. // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2));
  172. //}
  173. // The kernel called by planner_recalculate() when scanning the plan from last to first entry.
  174. void planner_reverse_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  175. if (!current) return;
  176. if (next) {
  177. // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
  178. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
  179. // check for maximum allowable speed reductions to ensure maximum possible planned speed.
  180. if (current->entry_speed != current->max_entry_speed) {
  181. // If nominal length true, max junction speed is guaranteed to be reached. Only compute
  182. // for max allowable speed if block is decelerating and nominal length is false.
  183. if (!current->nominal_length_flag && current->max_entry_speed > next->entry_speed) {
  184. current->entry_speed = min(current->max_entry_speed,
  185. max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters));
  186. }
  187. else {
  188. current->entry_speed = current->max_entry_speed;
  189. }
  190. current->recalculate_flag = true;
  191. }
  192. } // Skip last block. Already initialized and set for recalculation.
  193. }
  194. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  195. // implements the reverse pass.
  196. void planner_reverse_pass() {
  197. uint8_t block_index = block_buffer_head;
  198. //Make a local copy of block_buffer_tail, because the interrupt can alter it
  199. CRITICAL_SECTION_START;
  200. unsigned char tail = block_buffer_tail;
  201. CRITICAL_SECTION_END
  202. if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued
  203. block_index = BLOCK_MOD(block_buffer_head - 3);
  204. block_t *block[3] = { NULL, NULL, NULL };
  205. while (block_index != tail) {
  206. block_index = prev_block_index(block_index);
  207. block[2]= block[1];
  208. block[1]= block[0];
  209. block[0] = &block_buffer[block_index];
  210. planner_reverse_pass_kernel(block[0], block[1], block[2]);
  211. }
  212. }
  213. }
  214. // The kernel called by planner_recalculate() when scanning the plan from first to last entry.
  215. void planner_forward_pass_kernel(block_t *previous, block_t *current, block_t *next) {
  216. if (!previous) return;
  217. // If the previous block is an acceleration block, but it is not long enough to complete the
  218. // full speed change within the block, we need to adjust the entry speed accordingly. Entry
  219. // speeds have already been reset, maximized, and reverse planned by reverse planner.
  220. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
  221. if (!previous->nominal_length_flag) {
  222. if (previous->entry_speed < current->entry_speed) {
  223. double entry_speed = min(current->entry_speed,
  224. max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters));
  225. // Check for junction speed change
  226. if (current->entry_speed != entry_speed) {
  227. current->entry_speed = entry_speed;
  228. current->recalculate_flag = true;
  229. }
  230. }
  231. }
  232. }
  233. // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This
  234. // implements the forward pass.
  235. void planner_forward_pass() {
  236. uint8_t block_index = block_buffer_tail;
  237. block_t *block[3] = { NULL, NULL, NULL };
  238. while (block_index != block_buffer_head) {
  239. block[0] = block[1];
  240. block[1] = block[2];
  241. block[2] = &block_buffer[block_index];
  242. planner_forward_pass_kernel(block[0], block[1], block[2]);
  243. block_index = next_block_index(block_index);
  244. }
  245. planner_forward_pass_kernel(block[1], block[2], NULL);
  246. }
  247. // Recalculates the trapezoid speed profiles for all blocks in the plan according to the
  248. // entry_factor for each junction. Must be called by planner_recalculate() after
  249. // updating the blocks.
  250. void planner_recalculate_trapezoids() {
  251. int8_t block_index = block_buffer_tail;
  252. block_t *current;
  253. block_t *next = NULL;
  254. while (block_index != block_buffer_head) {
  255. current = next;
  256. next = &block_buffer[block_index];
  257. if (current) {
  258. // Recalculate if current block entry or exit junction speed has changed.
  259. if (current->recalculate_flag || next->recalculate_flag) {
  260. // NOTE: Entry and exit factors always > 0 by all previous logic operations.
  261. float nom = current->nominal_speed;
  262. calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom);
  263. current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed
  264. }
  265. }
  266. block_index = next_block_index( block_index );
  267. }
  268. // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated.
  269. if (next) {
  270. float nom = next->nominal_speed;
  271. calculate_trapezoid_for_block(next, next->entry_speed / nom, MINIMUM_PLANNER_SPEED / nom);
  272. next->recalculate_flag = false;
  273. }
  274. }
  275. // Recalculates the motion plan according to the following algorithm:
  276. //
  277. // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor)
  278. // so that:
  279. // a. The junction jerk is within the set limit
  280. // b. No speed reduction within one block requires faster deceleration than the one, true constant
  281. // acceleration.
  282. // 2. Go over every block in chronological order and dial down junction speed reduction values if
  283. // a. The speed increase within one block would require faster acceleration than the one, true
  284. // constant acceleration.
  285. //
  286. // When these stages are complete all blocks have an entry_factor that will allow all speed changes to
  287. // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than
  288. // the set limit. Finally it will:
  289. //
  290. // 3. Recalculate trapezoids for all blocks.
  291. void planner_recalculate() {
  292. planner_reverse_pass();
  293. planner_forward_pass();
  294. planner_recalculate_trapezoids();
  295. }
  296. void plan_init() {
  297. block_buffer_head = block_buffer_tail = 0;
  298. memset(position, 0, sizeof(position)); // clear position
  299. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  300. previous_nominal_speed = 0.0;
  301. }
  302. #ifdef AUTOTEMP
  303. void getHighESpeed() {
  304. static float oldt = 0;
  305. if (!autotemp_enabled) return;
  306. if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero.
  307. float high = 0.0;
  308. uint8_t block_index = block_buffer_tail;
  309. while (block_index != block_buffer_head) {
  310. block_t *block = &block_buffer[block_index];
  311. if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) {
  312. float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec;
  313. if (se > high) high = se;
  314. }
  315. block_index = next_block_index(block_index);
  316. }
  317. float t = autotemp_min + high * autotemp_factor;
  318. if (t < autotemp_min) t = autotemp_min;
  319. if (t > autotemp_max) t = autotemp_max;
  320. if (oldt > t) t = AUTOTEMP_OLDWEIGHT * oldt + (1 - AUTOTEMP_OLDWEIGHT) * t;
  321. oldt = t;
  322. setTargetHotend0(t);
  323. }
  324. #endif
  325. void check_axes_activity() {
  326. unsigned char axis_active[NUM_AXIS],
  327. tail_fan_speed = fanSpeed;
  328. #ifdef BARICUDA
  329. unsigned char tail_valve_pressure = ValvePressure,
  330. tail_e_to_p_pressure = EtoPPressure;
  331. #endif
  332. block_t *block;
  333. if (blocks_queued()) {
  334. uint8_t block_index = block_buffer_tail;
  335. tail_fan_speed = block_buffer[block_index].fan_speed;
  336. #ifdef BARICUDA
  337. block = &block_buffer[block_index];
  338. tail_valve_pressure = block->valve_pressure;
  339. tail_e_to_p_pressure = block->e_to_p_pressure;
  340. #endif
  341. while (block_index != block_buffer_head) {
  342. block = &block_buffer[block_index];
  343. for (int i=0; i<NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++;
  344. block_index = next_block_index(block_index);
  345. }
  346. }
  347. if (DISABLE_X && !axis_active[X_AXIS]) disable_x();
  348. if (DISABLE_Y && !axis_active[Y_AXIS]) disable_y();
  349. if (DISABLE_Z && !axis_active[Z_AXIS]) disable_z();
  350. if (DISABLE_E && !axis_active[E_AXIS]) {
  351. disable_e0();
  352. disable_e1();
  353. disable_e2();
  354. disable_e3();
  355. }
  356. #if HAS_FAN
  357. #ifdef FAN_KICKSTART_TIME
  358. static unsigned long fan_kick_end;
  359. if (tail_fan_speed) {
  360. if (fan_kick_end == 0) {
  361. // Just starting up fan - run at full power.
  362. fan_kick_end = millis() + FAN_KICKSTART_TIME;
  363. tail_fan_speed = 255;
  364. } else if (fan_kick_end > millis())
  365. // Fan still spinning up.
  366. tail_fan_speed = 255;
  367. } else {
  368. fan_kick_end = 0;
  369. }
  370. #endif//FAN_KICKSTART_TIME
  371. #ifdef FAN_SOFT_PWM
  372. fanSpeedSoftPwm = tail_fan_speed;
  373. #else
  374. analogWrite(FAN_PIN, tail_fan_speed);
  375. #endif //!FAN_SOFT_PWM
  376. #endif // HAS_FAN
  377. #ifdef AUTOTEMP
  378. getHighESpeed();
  379. #endif
  380. #ifdef BARICUDA
  381. #if HAS_HEATER_1
  382. analogWrite(HEATER_1_PIN,tail_valve_pressure);
  383. #endif
  384. #if HAS_HEATER_2
  385. analogWrite(HEATER_2_PIN,tail_e_to_p_pressure);
  386. #endif
  387. #endif
  388. }
  389. float junction_deviation = 0.1;
  390. // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in
  391. // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration
  392. // calculation the caller must also provide the physical length of the line in millimeters.
  393. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  394. void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder)
  395. #else
  396. void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder)
  397. #endif // ENABLE_AUTO_BED_LEVELING
  398. {
  399. // Calculate the buffer head after we push this byte
  400. int next_buffer_head = next_block_index(block_buffer_head);
  401. // If the buffer is full: good! That means we are well ahead of the robot.
  402. // Rest here until there is room in the buffer.
  403. while(block_buffer_tail == next_buffer_head) {
  404. manage_heater();
  405. manage_inactivity();
  406. lcd_update();
  407. }
  408. #ifdef MESH_BED_LEVELING
  409. if (mbl.active) z += mbl.get_z(x, y);
  410. #elif defined(ENABLE_AUTO_BED_LEVELING)
  411. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  412. #endif
  413. // The target position of the tool in absolute steps
  414. // Calculate target position in absolute steps
  415. //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
  416. long target[NUM_AXIS];
  417. target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  418. target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  419. target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  420. target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  421. float dx = target[X_AXIS] - position[X_AXIS],
  422. dy = target[Y_AXIS] - position[Y_AXIS],
  423. dz = target[Z_AXIS] - position[Z_AXIS],
  424. de = target[E_AXIS] - position[E_AXIS];
  425. #ifdef PREVENT_DANGEROUS_EXTRUDE
  426. if (de) {
  427. if (degHotend(active_extruder) < extrude_min_temp) {
  428. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  429. de = 0; // no difference
  430. SERIAL_ECHO_START;
  431. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  432. }
  433. #ifdef PREVENT_LENGTHY_EXTRUDE
  434. if (labs(de) > axis_steps_per_unit[E_AXIS] * EXTRUDE_MAXLENGTH) {
  435. position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
  436. de = 0; // no difference
  437. SERIAL_ECHO_START;
  438. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  439. }
  440. #endif
  441. }
  442. #endif
  443. // Prepare to set up new block
  444. block_t *block = &block_buffer[block_buffer_head];
  445. // Mark block as not busy (Not executed by the stepper interrupt)
  446. block->busy = false;
  447. // Number of steps for each axis
  448. #ifdef COREXY
  449. // corexy planning
  450. // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
  451. block->steps[A_AXIS] = labs(dx + dy);
  452. block->steps[B_AXIS] = labs(dx - dy);
  453. #else
  454. // default non-h-bot planning
  455. block->steps[X_AXIS] = labs(dx);
  456. block->steps[Y_AXIS] = labs(dy);
  457. #endif
  458. block->steps[Z_AXIS] = labs(dz);
  459. block->steps[E_AXIS] = labs(de);
  460. block->steps[E_AXIS] *= volumetric_multiplier[active_extruder];
  461. block->steps[E_AXIS] *= extruder_multiply[active_extruder];
  462. block->steps[E_AXIS] /= 100;
  463. block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS])));
  464. // Bail if this is a zero-length block
  465. if (block->step_event_count <= dropsegments) return;
  466. block->fan_speed = fanSpeed;
  467. #ifdef BARICUDA
  468. block->valve_pressure = ValvePressure;
  469. block->e_to_p_pressure = EtoPPressure;
  470. #endif
  471. // Compute direction bits for this block
  472. uint8_t db = 0;
  473. #ifdef COREXY
  474. if (dx < 0) db |= BIT(X_HEAD); // Save the real Extruder (head) direction in X Axis
  475. if (dy < 0) db |= BIT(Y_HEAD); // ...and Y
  476. if (dx + dy < 0) db |= BIT(A_AXIS); // Motor A direction
  477. if (dx - dy < 0) db |= BIT(B_AXIS); // Motor B direction
  478. #else
  479. if (dx < 0) db |= BIT(X_AXIS);
  480. if (dy < 0) db |= BIT(Y_AXIS);
  481. #endif
  482. if (dz < 0) db |= BIT(Z_AXIS);
  483. if (de < 0) db |= BIT(E_AXIS);
  484. block->direction_bits = db;
  485. block->active_extruder = extruder;
  486. //enable active axes
  487. #ifdef COREXY
  488. if (block->steps[A_AXIS] || block->steps[B_AXIS]) {
  489. enable_x();
  490. enable_y();
  491. }
  492. #else
  493. if (block->steps[X_AXIS]) enable_x();
  494. if (block->steps[Y_AXIS]) enable_y();
  495. #endif
  496. #ifndef Z_LATE_ENABLE
  497. if (block->steps[Z_AXIS]) enable_z();
  498. #endif
  499. // Enable extruder(s)
  500. if (block->steps[E_AXIS]) {
  501. if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder
  502. for (int i=0; i<EXTRUDERS; i++)
  503. if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--;
  504. switch(extruder) {
  505. case 0:
  506. enable_e0();
  507. g_uc_extruder_last_move[0] = BLOCK_BUFFER_SIZE * 2;
  508. #if EXTRUDERS > 1
  509. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  510. #if EXTRUDERS > 2
  511. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  512. #if EXTRUDERS > 3
  513. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  514. #endif
  515. #endif
  516. #endif
  517. break;
  518. #if EXTRUDERS > 1
  519. case 1:
  520. enable_e1();
  521. g_uc_extruder_last_move[1] = BLOCK_BUFFER_SIZE * 2;
  522. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  523. #if EXTRUDERS > 2
  524. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  525. #if EXTRUDERS > 3
  526. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  527. #endif
  528. #endif
  529. break;
  530. #if EXTRUDERS > 2
  531. case 2:
  532. enable_e2();
  533. g_uc_extruder_last_move[2] = BLOCK_BUFFER_SIZE * 2;
  534. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  535. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  536. #if EXTRUDERS > 3
  537. if (g_uc_extruder_last_move[3] == 0) disable_e3();
  538. #endif
  539. break;
  540. #if EXTRUDERS > 3
  541. case 3:
  542. enable_e3();
  543. g_uc_extruder_last_move[3] = BLOCK_BUFFER_SIZE * 2;
  544. if (g_uc_extruder_last_move[0] == 0) disable_e0();
  545. if (g_uc_extruder_last_move[1] == 0) disable_e1();
  546. if (g_uc_extruder_last_move[2] == 0) disable_e2();
  547. break;
  548. #endif // EXTRUDERS > 3
  549. #endif // EXTRUDERS > 2
  550. #endif // EXTRUDERS > 1
  551. }
  552. }
  553. else { // enable all
  554. enable_e0();
  555. enable_e1();
  556. enable_e2();
  557. enable_e3();
  558. }
  559. }
  560. if (block->steps[E_AXIS]) {
  561. if (feed_rate < minimumfeedrate) feed_rate = minimumfeedrate;
  562. }
  563. else if (feed_rate < mintravelfeedrate) feed_rate = mintravelfeedrate;
  564. /**
  565. * This part of the code calculates the total length of the movement.
  566. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS.
  567. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS
  568. * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y.
  569. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head.
  570. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed.
  571. */
  572. #ifdef COREXY
  573. float delta_mm[6];
  574. delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS];
  575. delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS];
  576. delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS];
  577. delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS];
  578. #else
  579. float delta_mm[4];
  580. delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS];
  581. delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS];
  582. #endif
  583. delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS];
  584. delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[active_extruder] * extruder_multiply[active_extruder] / 100.0;
  585. if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) {
  586. block->millimeters = fabs(delta_mm[E_AXIS]);
  587. }
  588. else {
  589. block->millimeters = sqrt(
  590. #ifdef COREXY
  591. square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD])
  592. #else
  593. square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS])
  594. #endif
  595. + square(delta_mm[Z_AXIS])
  596. );
  597. }
  598. float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
  599. // Calculate speed in mm/second for each axis. No divide by zero due to previous checks.
  600. float inverse_second = feed_rate * inverse_millimeters;
  601. int moves_queued = movesplanned();
  602. // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill
  603. #if defined(OLD_SLOWDOWN) || defined(SLOWDOWN)
  604. bool mq = moves_queued > 1 && moves_queued < BLOCK_BUFFER_SIZE / 2;
  605. #ifdef OLD_SLOWDOWN
  606. if (mq) feed_rate *= 2.0 * moves_queued / BLOCK_BUFFER_SIZE;
  607. #endif
  608. #ifdef SLOWDOWN
  609. // segment time im micro seconds
  610. unsigned long segment_time = lround(1000000.0/inverse_second);
  611. if (mq) {
  612. if (segment_time < minsegmenttime) {
  613. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
  614. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued));
  615. #ifdef XY_FREQUENCY_LIMIT
  616. segment_time = lround(1000000.0 / inverse_second);
  617. #endif
  618. }
  619. }
  620. #endif
  621. #endif
  622. block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0
  623. block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0
  624. #ifdef FILAMENT_SENSOR
  625. //FMM update ring buffer used for delay with filament measurements
  626. if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized
  627. const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10;
  628. delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis
  629. while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer
  630. while (delay_dist < 0) delay_dist += MMD10;
  631. delay_index1 = delay_dist / 10.0; // calculate index
  632. delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above)
  633. if (delay_index1 != delay_index2) { // moved index
  634. meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
  635. while (delay_index1 != delay_index2) {
  636. // Increment and loop around buffer
  637. if (++delay_index2 >= MMD) delay_index2 -= MMD;
  638. delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY);
  639. measurement_delay[delay_index2] = meas_sample;
  640. }
  641. }
  642. }
  643. #endif
  644. // Calculate and limit speed in mm/sec for each axis
  645. float current_speed[NUM_AXIS];
  646. float speed_factor = 1.0; //factor <=1 do decrease speed
  647. for (int i = 0; i < NUM_AXIS; i++) {
  648. current_speed[i] = delta_mm[i] * inverse_second;
  649. float cs = fabs(current_speed[i]), mf = max_feedrate[i];
  650. if (cs > mf) speed_factor = min(speed_factor, mf / cs);
  651. }
  652. // Max segement time in us.
  653. #ifdef XY_FREQUENCY_LIMIT
  654. #define MAX_FREQ_TIME (1000000.0 / XY_FREQUENCY_LIMIT)
  655. // Check and limit the xy direction change frequency
  656. unsigned char direction_change = block->direction_bits ^ old_direction_bits;
  657. old_direction_bits = block->direction_bits;
  658. segment_time = lround((float)segment_time / speed_factor);
  659. long xs0 = axis_segment_time[X_AXIS][0],
  660. xs1 = axis_segment_time[X_AXIS][1],
  661. xs2 = axis_segment_time[X_AXIS][2],
  662. ys0 = axis_segment_time[Y_AXIS][0],
  663. ys1 = axis_segment_time[Y_AXIS][1],
  664. ys2 = axis_segment_time[Y_AXIS][2];
  665. if ((direction_change & BIT(X_AXIS)) != 0) {
  666. xs2 = axis_segment_time[X_AXIS][2] = xs1;
  667. xs1 = axis_segment_time[X_AXIS][1] = xs0;
  668. xs0 = 0;
  669. }
  670. xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time;
  671. if ((direction_change & BIT(Y_AXIS)) != 0) {
  672. ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1];
  673. ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0];
  674. ys0 = 0;
  675. }
  676. ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time;
  677. long max_x_segment_time = max(xs0, max(xs1, xs2)),
  678. max_y_segment_time = max(ys0, max(ys1, ys2)),
  679. min_xy_segment_time = min(max_x_segment_time, max_y_segment_time);
  680. if (min_xy_segment_time < MAX_FREQ_TIME) {
  681. float low_sf = speed_factor * min_xy_segment_time / MAX_FREQ_TIME;
  682. speed_factor = min(speed_factor, low_sf);
  683. }
  684. #endif // XY_FREQUENCY_LIMIT
  685. // Correct the speed
  686. if (speed_factor < 1.0) {
  687. for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor;
  688. block->nominal_speed *= speed_factor;
  689. block->nominal_rate *= speed_factor;
  690. }
  691. // Compute and limit the acceleration rate for the trapezoid generator.
  692. float steps_per_mm = block->step_event_count / block->millimeters;
  693. long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS];
  694. if (bsx == 0 && bsy == 0 && bsz == 0) {
  695. block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  696. }
  697. else if (bse == 0) {
  698. block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  699. }
  700. else {
  701. block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2
  702. }
  703. // Limit acceleration per axis
  704. unsigned long acc_st = block->acceleration_st,
  705. xsteps = axis_steps_per_sqr_second[X_AXIS],
  706. ysteps = axis_steps_per_sqr_second[Y_AXIS],
  707. zsteps = axis_steps_per_sqr_second[Z_AXIS],
  708. esteps = axis_steps_per_sqr_second[E_AXIS];
  709. if ((float)acc_st * bsx / block->step_event_count > xsteps) acc_st = xsteps;
  710. if ((float)acc_st * bsy / block->step_event_count > ysteps) acc_st = ysteps;
  711. if ((float)acc_st * bsz / block->step_event_count > zsteps) acc_st = zsteps;
  712. if ((float)acc_st * bse / block->step_event_count > esteps) acc_st = esteps;
  713. block->acceleration_st = acc_st;
  714. block->acceleration = acc_st / steps_per_mm;
  715. block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0));
  716. #if 0 // Use old jerk for now
  717. // Compute path unit vector
  718. double unit_vec[3];
  719. unit_vec[X_AXIS] = delta_mm[X_AXIS]*inverse_millimeters;
  720. unit_vec[Y_AXIS] = delta_mm[Y_AXIS]*inverse_millimeters;
  721. unit_vec[Z_AXIS] = delta_mm[Z_AXIS]*inverse_millimeters;
  722. // Compute maximum allowable entry speed at junction by centripetal acceleration approximation.
  723. // Let a circle be tangent to both previous and current path line segments, where the junction
  724. // deviation is defined as the distance from the junction to the closest edge of the circle,
  725. // colinear with the circle center. The circular segment joining the two paths represents the
  726. // path of centripetal acceleration. Solve for max velocity based on max acceleration about the
  727. // radius of the circle, defined indirectly by junction deviation. This may be also viewed as
  728. // path width or max_jerk in the previous grbl version. This approach does not actually deviate
  729. // from path, but used as a robust way to compute cornering speeds, as it takes into account the
  730. // nonlinearities of both the junction angle and junction velocity.
  731. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed
  732. // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles.
  733. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) {
  734. // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
  735. // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
  736. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
  737. - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
  738. - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
  739. // Skip and use default max junction speed for 0 degree acute junction.
  740. if (cos_theta < 0.95) {
  741. vmax_junction = min(previous_nominal_speed,block->nominal_speed);
  742. // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds.
  743. if (cos_theta > -0.95) {
  744. // Compute maximum junction velocity based on maximum acceleration and junction deviation
  745. double sin_theta_d2 = sqrt(0.5*(1.0-cos_theta)); // Trig half angle identity. Always positive.
  746. vmax_junction = min(vmax_junction,
  747. sqrt(block->acceleration * junction_deviation * sin_theta_d2/(1.0-sin_theta_d2)) );
  748. }
  749. }
  750. }
  751. #endif
  752. // Start with a safe speed
  753. float vmax_junction = max_xy_jerk / 2;
  754. float vmax_junction_factor = 1.0;
  755. float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2;
  756. float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS];
  757. if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2);
  758. if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2);
  759. vmax_junction = min(vmax_junction, block->nominal_speed);
  760. float safe_speed = vmax_junction;
  761. if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) {
  762. float dx = current_speed[X_AXIS] - previous_speed[X_AXIS],
  763. dy = current_speed[Y_AXIS] - previous_speed[Y_AXIS],
  764. dz = fabs(csz - previous_speed[Z_AXIS]),
  765. de = fabs(cse - previous_speed[E_AXIS]),
  766. jerk = sqrt(dx * dx + dy * dy);
  767. // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) {
  768. vmax_junction = block->nominal_speed;
  769. // }
  770. if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk;
  771. if (dz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dz);
  772. if (de > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / de);
  773. vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed
  774. }
  775. block->max_entry_speed = vmax_junction;
  776. // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED.
  777. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters);
  778. block->entry_speed = min(vmax_junction, v_allowable);
  779. // Initialize planner efficiency flags
  780. // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds.
  781. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then
  782. // the current block and next block junction speeds are guaranteed to always be at their maximum
  783. // junction speeds in deceleration and acceleration, respectively. This is due to how the current
  784. // block nominal speed limits both the current and next maximum junction speeds. Hence, in both
  785. // the reverse and forward planners, the corresponding block junction speed will always be at the
  786. // the maximum junction speed and may always be ignored for any speed reduction checks.
  787. block->nominal_length_flag = (block->nominal_speed <= v_allowable);
  788. block->recalculate_flag = true; // Always calculate trapezoid for new block
  789. // Update previous path unit_vector and nominal speed
  790. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
  791. previous_nominal_speed = block->nominal_speed;
  792. #ifdef ADVANCE
  793. // Calculate advance rate
  794. if (!bse || (!bsx && !bsy && !bsz)) {
  795. block->advance_rate = 0;
  796. block->advance = 0;
  797. }
  798. else {
  799. long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st);
  800. float advance = (STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K) * (cse * cse * EXTRUSION_AREA * EXTRUSION_AREA) * 256;
  801. block->advance = advance;
  802. block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
  803. }
  804. /*
  805. SERIAL_ECHO_START;
  806. SERIAL_ECHOPGM("advance :");
  807. SERIAL_ECHO(block->advance/256.0);
  808. SERIAL_ECHOPGM("advance rate :");
  809. SERIAL_ECHOLN(block->advance_rate/256.0);
  810. */
  811. #endif // ADVANCE
  812. calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);
  813. // Move buffer head
  814. block_buffer_head = next_buffer_head;
  815. // Update position
  816. for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i];
  817. planner_recalculate();
  818. st_wake_up();
  819. } // plan_buffer_line()
  820. #if defined(ENABLE_AUTO_BED_LEVELING) && !defined(DELTA)
  821. vector_3 plan_get_position() {
  822. vector_3 position = vector_3(st_get_position_mm(X_AXIS), st_get_position_mm(Y_AXIS), st_get_position_mm(Z_AXIS));
  823. //position.debug("in plan_get position");
  824. //plan_bed_level_matrix.debug("in plan_get bed_level");
  825. matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix);
  826. //inverse.debug("in plan_get inverse");
  827. position.apply_rotation(inverse);
  828. //position.debug("after rotation");
  829. return position;
  830. }
  831. #endif // ENABLE_AUTO_BED_LEVELING && !DELTA
  832. #if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)
  833. void plan_set_position(float x, float y, float z, const float &e)
  834. #else
  835. void plan_set_position(const float &x, const float &y, const float &z, const float &e)
  836. #endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING
  837. {
  838. #ifdef MESH_BED_LEVELING
  839. if (mbl.active) z += mbl.get_z(x, y);
  840. #elif defined(ENABLE_AUTO_BED_LEVELING)
  841. apply_rotation_xyz(plan_bed_level_matrix, x, y, z);
  842. #endif
  843. float nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]);
  844. float ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]);
  845. float nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]);
  846. float ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  847. st_set_position(nx, ny, nz, ne);
  848. previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest.
  849. for (int i=0; i<NUM_AXIS; i++) previous_speed[i] = 0.0;
  850. }
  851. void plan_set_e_position(const float &e) {
  852. position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]);
  853. st_set_e_position(position[E_AXIS]);
  854. }
  855. // Calculate the steps/s^2 acceleration rates, based on the mm/s^s
  856. void reset_acceleration_rates() {
  857. for (int i = 0; i < NUM_AXIS; i++)
  858. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  859. }