My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if HAS_DIGIPOTSS
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //============================= public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //============================= private variables ===========================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static unsigned int cleaning_buffer_counter;
  40. #ifdef Z_DUAL_ENDSTOPS
  41. static bool performing_homing = false,
  42. locked_z_motor = false,
  43. locked_z2_motor = false;
  44. #endif
  45. // Counter variables for the bresenham line tracer
  46. static long counter_x, counter_y, counter_z, counter_e;
  47. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  48. #ifdef ADVANCE
  49. static long advance_rate, advance, final_advance = 0;
  50. static long old_advance = 0;
  51. static long e_steps[4];
  52. #endif
  53. static long acceleration_time, deceleration_time;
  54. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  55. static unsigned short acc_step_rate; // needed for deccelaration start point
  56. static char step_loops;
  57. static unsigned short OCR1A_nominal;
  58. static unsigned short step_loops_nominal;
  59. volatile long endstops_trigsteps[3] = { 0 };
  60. volatile long endstops_stepsTotal, endstops_stepsDone;
  61. static volatile bool endstop_x_hit = false;
  62. static volatile bool endstop_y_hit = false;
  63. static volatile bool endstop_z_hit = false;
  64. static volatile bool endstop_z_probe_hit = false; // Leaving this in even if Z_PROBE_ENDSTOP isn't defined, keeps code below cleaner. #ifdef it and usage below to save space.
  65. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  66. bool abort_on_endstop_hit = false;
  67. #endif
  68. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  69. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  70. #endif
  71. #if HAS_X_MIN
  72. static bool old_x_min_endstop = false;
  73. #endif
  74. #if HAS_X_MAX
  75. static bool old_x_max_endstop = false;
  76. #endif
  77. #if HAS_Y_MIN
  78. static bool old_y_min_endstop = false;
  79. #endif
  80. #if HAS_Y_MAX
  81. static bool old_y_max_endstop = false;
  82. #endif
  83. #if HAS_Z_MIN
  84. static bool old_z_min_endstop = false;
  85. #endif
  86. #if HAS_Z_MAX
  87. static bool old_z_max_endstop = false;
  88. #endif
  89. #ifdef Z_DUAL_ENDSTOPS
  90. // #if HAS_Z2_MIN
  91. static bool old_z2_min_endstop = false;
  92. // #endif
  93. // #if HAS_Z2_MAX
  94. static bool old_z2_max_endstop = false;
  95. // #endif
  96. #endif
  97. #ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
  98. static bool old_z_probe_endstop = false;
  99. #endif
  100. static bool check_endstops = true;
  101. volatile long count_position[NUM_AXIS] = { 0 };
  102. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
  103. //===========================================================================
  104. //================================ functions ================================
  105. //===========================================================================
  106. #ifdef DUAL_X_CARRIAGE
  107. #define X_APPLY_DIR(v,ALWAYS) \
  108. if (extruder_duplication_enabled || ALWAYS) { \
  109. X_DIR_WRITE(v); \
  110. X2_DIR_WRITE(v); \
  111. } \
  112. else { \
  113. if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
  114. }
  115. #define X_APPLY_STEP(v,ALWAYS) \
  116. if (extruder_duplication_enabled || ALWAYS) { \
  117. X_STEP_WRITE(v); \
  118. X2_STEP_WRITE(v); \
  119. } \
  120. else { \
  121. if (current_block->active_extruder != 0) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
  122. }
  123. #else
  124. #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
  125. #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
  126. #endif
  127. #ifdef Y_DUAL_STEPPER_DRIVERS
  128. #define Y_APPLY_DIR(v,Q) { Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }
  129. #define Y_APPLY_STEP(v,Q) { Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }
  130. #else
  131. #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
  132. #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
  133. #endif
  134. #ifdef Z_DUAL_STEPPER_DRIVERS
  135. #define Z_APPLY_DIR(v,Q) { Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }
  136. #ifdef Z_DUAL_ENDSTOPS
  137. #define Z_APPLY_STEP(v,Q) \
  138. if (performing_homing) { \
  139. if (Z_HOME_DIR > 0) {\
  140. if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  141. if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  142. } else {\
  143. if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
  144. if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
  145. } \
  146. } else { \
  147. Z_STEP_WRITE(v); \
  148. Z2_STEP_WRITE(v); \
  149. }
  150. #else
  151. #define Z_APPLY_STEP(v,Q) { Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }
  152. #endif
  153. #else
  154. #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
  155. #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
  156. #endif
  157. #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
  158. // intRes = intIn1 * intIn2 >> 16
  159. // uses:
  160. // r26 to store 0
  161. // r27 to store the byte 1 of the 24 bit result
  162. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  163. asm volatile ( \
  164. "clr r26 \n\t" \
  165. "mul %A1, %B2 \n\t" \
  166. "movw %A0, r0 \n\t" \
  167. "mul %A1, %A2 \n\t" \
  168. "add %A0, r1 \n\t" \
  169. "adc %B0, r26 \n\t" \
  170. "lsr r0 \n\t" \
  171. "adc %A0, r26 \n\t" \
  172. "adc %B0, r26 \n\t" \
  173. "clr r1 \n\t" \
  174. : \
  175. "=&r" (intRes) \
  176. : \
  177. "d" (charIn1), \
  178. "d" (intIn2) \
  179. : \
  180. "r26" \
  181. )
  182. // intRes = longIn1 * longIn2 >> 24
  183. // uses:
  184. // r26 to store 0
  185. // r27 to store the byte 1 of the 48bit result
  186. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  187. asm volatile ( \
  188. "clr r26 \n\t" \
  189. "mul %A1, %B2 \n\t" \
  190. "mov r27, r1 \n\t" \
  191. "mul %B1, %C2 \n\t" \
  192. "movw %A0, r0 \n\t" \
  193. "mul %C1, %C2 \n\t" \
  194. "add %B0, r0 \n\t" \
  195. "mul %C1, %B2 \n\t" \
  196. "add %A0, r0 \n\t" \
  197. "adc %B0, r1 \n\t" \
  198. "mul %A1, %C2 \n\t" \
  199. "add r27, r0 \n\t" \
  200. "adc %A0, r1 \n\t" \
  201. "adc %B0, r26 \n\t" \
  202. "mul %B1, %B2 \n\t" \
  203. "add r27, r0 \n\t" \
  204. "adc %A0, r1 \n\t" \
  205. "adc %B0, r26 \n\t" \
  206. "mul %C1, %A2 \n\t" \
  207. "add r27, r0 \n\t" \
  208. "adc %A0, r1 \n\t" \
  209. "adc %B0, r26 \n\t" \
  210. "mul %B1, %A2 \n\t" \
  211. "add r27, r1 \n\t" \
  212. "adc %A0, r26 \n\t" \
  213. "adc %B0, r26 \n\t" \
  214. "lsr r27 \n\t" \
  215. "adc %A0, r26 \n\t" \
  216. "adc %B0, r26 \n\t" \
  217. "clr r1 \n\t" \
  218. : \
  219. "=&r" (intRes) \
  220. : \
  221. "d" (longIn1), \
  222. "d" (longIn2) \
  223. : \
  224. "r26" , "r27" \
  225. )
  226. // Some useful constants
  227. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= BIT(OCIE1A)
  228. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~BIT(OCIE1A)
  229. void endstops_hit_on_purpose() {
  230. endstop_x_hit = endstop_y_hit = endstop_z_hit = endstop_z_probe_hit = false; // #ifdef endstop_z_probe_hit = to save space if needed.
  231. }
  232. void checkHitEndstops() {
  233. if (endstop_x_hit || endstop_y_hit || endstop_z_hit || endstop_z_probe_hit) { // #ifdef || endstop_z_probe_hit to save space if needed.
  234. SERIAL_ECHO_START;
  235. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  236. if (endstop_x_hit) {
  237. SERIAL_ECHOPAIR(" X:", (float)endstops_trigsteps[X_AXIS] / axis_steps_per_unit[X_AXIS]);
  238. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  239. }
  240. if (endstop_y_hit) {
  241. SERIAL_ECHOPAIR(" Y:", (float)endstops_trigsteps[Y_AXIS] / axis_steps_per_unit[Y_AXIS]);
  242. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  243. }
  244. if (endstop_z_hit) {
  245. SERIAL_ECHOPAIR(" Z:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  246. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  247. }
  248. #ifdef Z_PROBE_ENDSTOP
  249. if (endstop_z_probe_hit) {
  250. SERIAL_ECHOPAIR(" Z_PROBE:", (float)endstops_trigsteps[Z_AXIS] / axis_steps_per_unit[Z_AXIS]);
  251. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "ZP");
  252. }
  253. #endif
  254. SERIAL_EOL;
  255. endstops_hit_on_purpose();
  256. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  257. if (abort_on_endstop_hit) {
  258. card.sdprinting = false;
  259. card.closefile();
  260. quickStop();
  261. setTargetHotend0(0);
  262. setTargetHotend1(0);
  263. setTargetHotend2(0);
  264. setTargetHotend3(0);
  265. setTargetBed(0);
  266. }
  267. #endif
  268. }
  269. }
  270. void enable_endstops(bool check) { check_endstops = check; }
  271. // __________________________
  272. // /| |\ _________________ ^
  273. // / | | \ /| |\ |
  274. // / | | \ / | | \ s
  275. // / | | | | | \ p
  276. // / | | | | | \ e
  277. // +-----+------------------------+---+--+---------------+----+ e
  278. // | BLOCK 1 | BLOCK 2 | d
  279. //
  280. // time ----->
  281. //
  282. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  283. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  284. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  285. // The slope of acceleration is calculated with the leib ramp alghorithm.
  286. void st_wake_up() {
  287. // TCNT1 = 0;
  288. ENABLE_STEPPER_DRIVER_INTERRUPT();
  289. }
  290. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  291. unsigned short timer;
  292. if (step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  293. if (step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  294. step_rate = (step_rate >> 2) & 0x3fff;
  295. step_loops = 4;
  296. }
  297. else if (step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  298. step_rate = (step_rate >> 1) & 0x7fff;
  299. step_loops = 2;
  300. }
  301. else {
  302. step_loops = 1;
  303. }
  304. if (step_rate < (F_CPU / 500000)) step_rate = (F_CPU / 500000);
  305. step_rate -= (F_CPU / 500000); // Correct for minimal speed
  306. if (step_rate >= (8 * 256)) { // higher step rate
  307. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  308. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  309. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  310. MultiU16X8toH16(timer, tmp_step_rate, gain);
  311. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  312. }
  313. else { // lower step rates
  314. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  315. table_address += ((step_rate)>>1) & 0xfffc;
  316. timer = (unsigned short)pgm_read_word_near(table_address);
  317. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  318. }
  319. if (timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  320. return timer;
  321. }
  322. // Initializes the trapezoid generator from the current block. Called whenever a new
  323. // block begins.
  324. FORCE_INLINE void trapezoid_generator_reset() {
  325. #ifdef ADVANCE
  326. advance = current_block->initial_advance;
  327. final_advance = current_block->final_advance;
  328. // Do E steps + advance steps
  329. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  330. old_advance = advance >>8;
  331. #endif
  332. deceleration_time = 0;
  333. // step_rate to timer interval
  334. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  335. // make a note of the number of step loops required at nominal speed
  336. step_loops_nominal = step_loops;
  337. acc_step_rate = current_block->initial_rate;
  338. acceleration_time = calc_timer(acc_step_rate);
  339. OCR1A = acceleration_time;
  340. // SERIAL_ECHO_START;
  341. // SERIAL_ECHOPGM("advance :");
  342. // SERIAL_ECHO(current_block->advance/256.0);
  343. // SERIAL_ECHOPGM("advance rate :");
  344. // SERIAL_ECHO(current_block->advance_rate/256.0);
  345. // SERIAL_ECHOPGM("initial advance :");
  346. // SERIAL_ECHO(current_block->initial_advance/256.0);
  347. // SERIAL_ECHOPGM("final advance :");
  348. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  349. }
  350. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  351. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  352. ISR(TIMER1_COMPA_vect) {
  353. if(cleaning_buffer_counter)
  354. {
  355. current_block = NULL;
  356. plan_discard_current_block();
  357. #ifdef SD_FINISHED_RELEASECOMMAND
  358. if ((cleaning_buffer_counter == 1) && (SD_FINISHED_STEPPERRELEASE)) enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
  359. #endif
  360. cleaning_buffer_counter--;
  361. OCR1A = 200;
  362. return;
  363. }
  364. // If there is no current block, attempt to pop one from the buffer
  365. if (!current_block) {
  366. // Anything in the buffer?
  367. current_block = plan_get_current_block();
  368. if (current_block) {
  369. current_block->busy = true;
  370. trapezoid_generator_reset();
  371. counter_x = -(current_block->step_event_count >> 1);
  372. counter_y = counter_z = counter_e = counter_x;
  373. step_events_completed = 0;
  374. #ifdef Z_LATE_ENABLE
  375. if (current_block->steps[Z_AXIS] > 0) {
  376. enable_z();
  377. OCR1A = 2000; //1ms wait
  378. return;
  379. }
  380. #endif
  381. // #ifdef ADVANCE
  382. // e_steps[current_block->active_extruder] = 0;
  383. // #endif
  384. }
  385. else {
  386. OCR1A = 2000; // 1kHz.
  387. }
  388. }
  389. if (current_block != NULL) {
  390. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  391. out_bits = current_block->direction_bits;
  392. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  393. if (TEST(out_bits, X_AXIS)) {
  394. X_APPLY_DIR(INVERT_X_DIR,0);
  395. count_direction[X_AXIS] = -1;
  396. }
  397. else {
  398. X_APPLY_DIR(!INVERT_X_DIR,0);
  399. count_direction[X_AXIS] = 1;
  400. }
  401. if (TEST(out_bits, Y_AXIS)) {
  402. Y_APPLY_DIR(INVERT_Y_DIR,0);
  403. count_direction[Y_AXIS] = -1;
  404. }
  405. else {
  406. Y_APPLY_DIR(!INVERT_Y_DIR,0);
  407. count_direction[Y_AXIS] = 1;
  408. }
  409. #define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
  410. bool axis ##_## minmax ##_endstop = (READ(AXIS ##_## MINMAX ##_PIN) != AXIS ##_## MINMAX ##_ENDSTOP_INVERTING); \
  411. if (axis ##_## minmax ##_endstop && old_## axis ##_## minmax ##_endstop && (current_block->steps[AXIS ##_AXIS] > 0)) { \
  412. endstops_trigsteps[AXIS ##_AXIS] = count_position[AXIS ##_AXIS]; \
  413. endstop_## axis ##_hit = true; \
  414. step_events_completed = current_block->step_event_count; \
  415. } \
  416. old_## axis ##_## minmax ##_endstop = axis ##_## minmax ##_endstop;
  417. // Check X and Y endstops
  418. if (check_endstops) {
  419. #ifdef COREXY
  420. // Head direction in -X axis for CoreXY bots.
  421. // If DeltaX == -DeltaY, the movement is only in Y axis
  422. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) == TEST(out_bits, B_AXIS))) {
  423. if (TEST(out_bits, X_HEAD))
  424. #else
  425. if (TEST(out_bits, X_AXIS)) // stepping along -X axis (regular cartesians bot)
  426. #endif
  427. { // -direction
  428. #ifdef DUAL_X_CARRIAGE
  429. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  430. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  431. #endif
  432. {
  433. #if HAS_X_MIN
  434. UPDATE_ENDSTOP(x, X, min, MIN);
  435. #endif
  436. }
  437. }
  438. else { // +direction
  439. #ifdef DUAL_X_CARRIAGE
  440. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  441. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  442. #endif
  443. {
  444. #if HAS_X_MAX
  445. UPDATE_ENDSTOP(x, X, max, MAX);
  446. #endif
  447. }
  448. }
  449. #ifdef COREXY
  450. }
  451. // Head direction in -Y axis for CoreXY bots.
  452. // If DeltaX == DeltaY, the movement is only in X axis
  453. if ((current_block->steps[A_AXIS] != current_block->steps[B_AXIS]) || (TEST(out_bits, A_AXIS) != TEST(out_bits, B_AXIS))) {
  454. if (TEST(out_bits, Y_HEAD))
  455. #else
  456. if (TEST(out_bits, Y_AXIS)) // -direction
  457. #endif
  458. { // -direction
  459. #if HAS_Y_MIN
  460. UPDATE_ENDSTOP(y, Y, min, MIN);
  461. #endif
  462. }
  463. else { // +direction
  464. #if HAS_Y_MAX
  465. UPDATE_ENDSTOP(y, Y, max, MAX);
  466. #endif
  467. }
  468. #ifdef COREXY
  469. }
  470. #endif
  471. }
  472. if (TEST(out_bits, Z_AXIS)) { // -direction
  473. Z_APPLY_DIR(INVERT_Z_DIR,0);
  474. count_direction[Z_AXIS] = -1;
  475. if (check_endstops) {
  476. #if HAS_Z_MIN
  477. #ifdef Z_DUAL_ENDSTOPS
  478. bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
  479. z2_min_endstop =
  480. #if HAS_Z2_MIN
  481. READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
  482. #else
  483. z_min_endstop
  484. #endif
  485. ;
  486. bool z_min_both = z_min_endstop && old_z_min_endstop,
  487. z2_min_both = z2_min_endstop && old_z2_min_endstop;
  488. if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
  489. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  490. endstop_z_hit = true;
  491. if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
  492. step_events_completed = current_block->step_event_count;
  493. }
  494. old_z_min_endstop = z_min_endstop;
  495. old_z2_min_endstop = z2_min_endstop;
  496. #else // !Z_DUAL_ENDSTOPS
  497. UPDATE_ENDSTOP(z, Z, min, MIN);
  498. #endif // !Z_DUAL_ENDSTOPS
  499. #endif // Z_MIN_PIN
  500. #ifdef Z_PROBE_ENDSTOP
  501. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  502. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  503. if(z_probe_endstop && old_z_probe_endstop)
  504. {
  505. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  506. endstop_z_probe_hit=true;
  507. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  508. }
  509. old_z_probe_endstop = z_probe_endstop;
  510. #endif
  511. } // check_endstops
  512. }
  513. else { // +direction
  514. Z_APPLY_DIR(!INVERT_Z_DIR,0);
  515. count_direction[Z_AXIS] = 1;
  516. if (check_endstops) {
  517. #if HAS_Z_MAX
  518. #ifdef Z_DUAL_ENDSTOPS
  519. bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
  520. z2_max_endstop =
  521. #if HAS_Z2_MAX
  522. READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
  523. #else
  524. z_max_endstop
  525. #endif
  526. ;
  527. bool z_max_both = z_max_endstop && old_z_max_endstop,
  528. z2_max_both = z2_max_endstop && old_z2_max_endstop;
  529. if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
  530. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  531. endstop_z_hit = true;
  532. // if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
  533. // if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
  534. if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
  535. step_events_completed = current_block->step_event_count;
  536. }
  537. old_z_max_endstop = z_max_endstop;
  538. old_z2_max_endstop = z2_max_endstop;
  539. #else // !Z_DUAL_ENDSTOPS
  540. UPDATE_ENDSTOP(z, Z, max, MAX);
  541. #endif // !Z_DUAL_ENDSTOPS
  542. #endif // Z_MAX_PIN
  543. #ifdef Z_PROBE_ENDSTOP
  544. UPDATE_ENDSTOP(z, Z, probe, PROBE);
  545. z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  546. if(z_probe_endstop && old_z_probe_endstop)
  547. {
  548. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  549. endstop_z_probe_hit=true;
  550. // if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
  551. }
  552. old_z_probe_endstop = z_probe_endstop;
  553. #endif
  554. } // check_endstops
  555. } // +direction
  556. #ifndef ADVANCE
  557. if (TEST(out_bits, E_AXIS)) { // -direction
  558. REV_E_DIR();
  559. count_direction[E_AXIS] = -1;
  560. }
  561. else { // +direction
  562. NORM_E_DIR();
  563. count_direction[E_AXIS] = 1;
  564. }
  565. #endif //!ADVANCE
  566. // Take multiple steps per interrupt (For high speed moves)
  567. for (int8_t i = 0; i < step_loops; i++) {
  568. #ifndef AT90USB
  569. MSerial.checkRx(); // Check for serial chars.
  570. #endif
  571. #ifdef ADVANCE
  572. counter_e += current_block->steps[E_AXIS];
  573. if (counter_e > 0) {
  574. counter_e -= current_block->step_event_count;
  575. e_steps[current_block->active_extruder] += TEST(out_bits, E_AXIS) ? -1 : 1;
  576. }
  577. #endif //ADVANCE
  578. #ifdef CONFIG_STEPPERS_TOSHIBA
  579. /**
  580. * The Toshiba stepper controller require much longer pulses.
  581. * So we 'stage' decompose the pulses between high and low
  582. * instead of doing each in turn. The extra tests add enough
  583. * lag to allow it work with without needing NOPs
  584. */
  585. #define STEP_ADD(axis, AXIS) \
  586. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  587. if (counter_## axis > 0) { AXIS ##_STEP_WRITE(HIGH); }
  588. STEP_ADD(x,X);
  589. STEP_ADD(y,Y);
  590. STEP_ADD(z,Z);
  591. #ifndef ADVANCE
  592. STEP_ADD(e,E);
  593. #endif
  594. #define STEP_IF_COUNTER(axis, AXIS) \
  595. if (counter_## axis > 0) { \
  596. counter_## axis -= current_block->step_event_count; \
  597. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  598. AXIS ##_STEP_WRITE(LOW); \
  599. }
  600. STEP_IF_COUNTER(x, X);
  601. STEP_IF_COUNTER(y, Y);
  602. STEP_IF_COUNTER(z, Z);
  603. #ifndef ADVANCE
  604. STEP_IF_COUNTER(e, E);
  605. #endif
  606. #else // !CONFIG_STEPPERS_TOSHIBA
  607. #define APPLY_MOVEMENT(axis, AXIS) \
  608. counter_## axis += current_block->steps[AXIS ##_AXIS]; \
  609. if (counter_## axis > 0) { \
  610. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN,0); \
  611. counter_## axis -= current_block->step_event_count; \
  612. count_position[AXIS ##_AXIS] += count_direction[AXIS ##_AXIS]; \
  613. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN,0); \
  614. }
  615. APPLY_MOVEMENT(x, X);
  616. APPLY_MOVEMENT(y, Y);
  617. APPLY_MOVEMENT(z, Z);
  618. #ifndef ADVANCE
  619. APPLY_MOVEMENT(e, E);
  620. #endif
  621. #endif // CONFIG_STEPPERS_TOSHIBA
  622. step_events_completed++;
  623. if (step_events_completed >= current_block->step_event_count) break;
  624. }
  625. // Calculate new timer value
  626. unsigned short timer;
  627. unsigned short step_rate;
  628. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  629. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  630. acc_step_rate += current_block->initial_rate;
  631. // upper limit
  632. if (acc_step_rate > current_block->nominal_rate)
  633. acc_step_rate = current_block->nominal_rate;
  634. // step_rate to timer interval
  635. timer = calc_timer(acc_step_rate);
  636. OCR1A = timer;
  637. acceleration_time += timer;
  638. #ifdef ADVANCE
  639. for(int8_t i=0; i < step_loops; i++) {
  640. advance += advance_rate;
  641. }
  642. //if (advance > current_block->advance) advance = current_block->advance;
  643. // Do E steps + advance steps
  644. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  645. old_advance = advance >>8;
  646. #endif
  647. }
  648. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  649. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  650. if (step_rate > acc_step_rate) { // Check step_rate stays positive
  651. step_rate = current_block->final_rate;
  652. }
  653. else {
  654. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  655. }
  656. // lower limit
  657. if (step_rate < current_block->final_rate)
  658. step_rate = current_block->final_rate;
  659. // step_rate to timer interval
  660. timer = calc_timer(step_rate);
  661. OCR1A = timer;
  662. deceleration_time += timer;
  663. #ifdef ADVANCE
  664. for(int8_t i=0; i < step_loops; i++) {
  665. advance -= advance_rate;
  666. }
  667. if (advance < final_advance) advance = final_advance;
  668. // Do E steps + advance steps
  669. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  670. old_advance = advance >>8;
  671. #endif //ADVANCE
  672. }
  673. else {
  674. OCR1A = OCR1A_nominal;
  675. // ensure we're running at the correct step rate, even if we just came off an acceleration
  676. step_loops = step_loops_nominal;
  677. }
  678. // If current block is finished, reset pointer
  679. if (step_events_completed >= current_block->step_event_count) {
  680. current_block = NULL;
  681. plan_discard_current_block();
  682. }
  683. }
  684. }
  685. #ifdef ADVANCE
  686. unsigned char old_OCR0A;
  687. // Timer interrupt for E. e_steps is set in the main routine;
  688. // Timer 0 is shared with millies
  689. ISR(TIMER0_COMPA_vect)
  690. {
  691. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  692. OCR0A = old_OCR0A;
  693. // Set E direction (Depends on E direction + advance)
  694. for(unsigned char i=0; i<4;i++) {
  695. if (e_steps[0] != 0) {
  696. E0_STEP_WRITE(INVERT_E_STEP_PIN);
  697. if (e_steps[0] < 0) {
  698. E0_DIR_WRITE(INVERT_E0_DIR);
  699. e_steps[0]++;
  700. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  701. }
  702. else if (e_steps[0] > 0) {
  703. E0_DIR_WRITE(!INVERT_E0_DIR);
  704. e_steps[0]--;
  705. E0_STEP_WRITE(!INVERT_E_STEP_PIN);
  706. }
  707. }
  708. #if EXTRUDERS > 1
  709. if (e_steps[1] != 0) {
  710. E1_STEP_WRITE(INVERT_E_STEP_PIN);
  711. if (e_steps[1] < 0) {
  712. E1_DIR_WRITE(INVERT_E1_DIR);
  713. e_steps[1]++;
  714. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  715. }
  716. else if (e_steps[1] > 0) {
  717. E1_DIR_WRITE(!INVERT_E1_DIR);
  718. e_steps[1]--;
  719. E1_STEP_WRITE(!INVERT_E_STEP_PIN);
  720. }
  721. }
  722. #endif
  723. #if EXTRUDERS > 2
  724. if (e_steps[2] != 0) {
  725. E2_STEP_WRITE(INVERT_E_STEP_PIN);
  726. if (e_steps[2] < 0) {
  727. E2_DIR_WRITE(INVERT_E2_DIR);
  728. e_steps[2]++;
  729. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  730. }
  731. else if (e_steps[2] > 0) {
  732. E2_DIR_WRITE(!INVERT_E2_DIR);
  733. e_steps[2]--;
  734. E2_STEP_WRITE(!INVERT_E_STEP_PIN);
  735. }
  736. }
  737. #endif
  738. #if EXTRUDERS > 3
  739. if (e_steps[3] != 0) {
  740. E3_STEP_WRITE(INVERT_E_STEP_PIN);
  741. if (e_steps[3] < 0) {
  742. E3_DIR_WRITE(INVERT_E3_DIR);
  743. e_steps[3]++;
  744. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  745. }
  746. else if (e_steps[3] > 0) {
  747. E3_DIR_WRITE(!INVERT_E3_DIR);
  748. e_steps[3]--;
  749. E3_STEP_WRITE(!INVERT_E_STEP_PIN);
  750. }
  751. }
  752. #endif
  753. }
  754. }
  755. #endif // ADVANCE
  756. void st_init() {
  757. digipot_init(); //Initialize Digipot Motor Current
  758. microstep_init(); //Initialize Microstepping Pins
  759. // initialise TMC Steppers
  760. #ifdef HAVE_TMCDRIVER
  761. tmc_init();
  762. #endif
  763. // initialise L6470 Steppers
  764. #ifdef HAVE_L6470DRIVER
  765. L6470_init();
  766. #endif
  767. // Initialize Dir Pins
  768. #if HAS_X_DIR
  769. X_DIR_INIT;
  770. #endif
  771. #if HAS_X2_DIR
  772. X2_DIR_INIT;
  773. #endif
  774. #if HAS_Y_DIR
  775. Y_DIR_INIT;
  776. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
  777. Y2_DIR_INIT;
  778. #endif
  779. #endif
  780. #if HAS_Z_DIR
  781. Z_DIR_INIT;
  782. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
  783. Z2_DIR_INIT;
  784. #endif
  785. #endif
  786. #if HAS_E0_DIR
  787. E0_DIR_INIT;
  788. #endif
  789. #if HAS_E1_DIR
  790. E1_DIR_INIT;
  791. #endif
  792. #if HAS_E2_DIR
  793. E2_DIR_INIT;
  794. #endif
  795. #if HAS_E3_DIR
  796. E3_DIR_INIT;
  797. #endif
  798. //Initialize Enable Pins - steppers default to disabled.
  799. #if HAS_X_ENABLE
  800. X_ENABLE_INIT;
  801. if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
  802. #endif
  803. #if HAS_X2_ENABLE
  804. X2_ENABLE_INIT;
  805. if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
  806. #endif
  807. #if HAS_Y_ENABLE
  808. Y_ENABLE_INIT;
  809. if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
  810. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
  811. Y2_ENABLE_INIT;
  812. if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
  813. #endif
  814. #endif
  815. #if HAS_Z_ENABLE
  816. Z_ENABLE_INIT;
  817. if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
  818. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
  819. Z2_ENABLE_INIT;
  820. if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
  821. #endif
  822. #endif
  823. #if HAS_E0_ENABLE
  824. E0_ENABLE_INIT;
  825. if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
  826. #endif
  827. #if HAS_E1_ENABLE
  828. E1_ENABLE_INIT;
  829. if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
  830. #endif
  831. #if HAS_E2_ENABLE
  832. E2_ENABLE_INIT;
  833. if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
  834. #endif
  835. #if HAS_E3_ENABLE
  836. E3_ENABLE_INIT;
  837. if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
  838. #endif
  839. //endstops and pullups
  840. #if HAS_X_MIN
  841. SET_INPUT(X_MIN_PIN);
  842. #ifdef ENDSTOPPULLUP_XMIN
  843. WRITE(X_MIN_PIN,HIGH);
  844. #endif
  845. #endif
  846. #if HAS_Y_MIN
  847. SET_INPUT(Y_MIN_PIN);
  848. #ifdef ENDSTOPPULLUP_YMIN
  849. WRITE(Y_MIN_PIN,HIGH);
  850. #endif
  851. #endif
  852. #if HAS_Z_MIN
  853. SET_INPUT(Z_MIN_PIN);
  854. #ifdef ENDSTOPPULLUP_ZMIN
  855. WRITE(Z_MIN_PIN,HIGH);
  856. #endif
  857. #endif
  858. #if HAS_X_MAX
  859. SET_INPUT(X_MAX_PIN);
  860. #ifdef ENDSTOPPULLUP_XMAX
  861. WRITE(X_MAX_PIN,HIGH);
  862. #endif
  863. #endif
  864. #if HAS_Y_MAX
  865. SET_INPUT(Y_MAX_PIN);
  866. #ifdef ENDSTOPPULLUP_YMAX
  867. WRITE(Y_MAX_PIN,HIGH);
  868. #endif
  869. #endif
  870. #if HAS_Z_MAX
  871. SET_INPUT(Z_MAX_PIN);
  872. #ifdef ENDSTOPPULLUP_ZMAX
  873. WRITE(Z_MAX_PIN,HIGH);
  874. #endif
  875. #endif
  876. #if HAS_Z2_MAX
  877. SET_INPUT(Z2_MAX_PIN);
  878. #ifdef ENDSTOPPULLUP_ZMAX
  879. WRITE(Z2_MAX_PIN,HIGH);
  880. #endif
  881. #endif
  882. #if (defined(Z_PROBE_PIN) && Z_PROBE_PIN >= 0) && defined(Z_PROBE_ENDSTOP) // Check for Z_PROBE_ENDSTOP so we don't pull a pin high unless it's to be used.
  883. SET_INPUT(Z_PROBE_PIN);
  884. #ifdef ENDSTOPPULLUP_ZPROBE
  885. WRITE(Z_PROBE_PIN,HIGH);
  886. #endif
  887. #endif
  888. #define AXIS_INIT(axis, AXIS, PIN) \
  889. AXIS ##_STEP_INIT; \
  890. AXIS ##_STEP_WRITE(INVERT_## PIN ##_STEP_PIN); \
  891. disable_## axis()
  892. #define E_AXIS_INIT(NUM) AXIS_INIT(e## NUM, E## NUM, E)
  893. // Initialize Step Pins
  894. #if HAS_X_STEP
  895. AXIS_INIT(x, X, X);
  896. #endif
  897. #if HAS_X2_STEP
  898. AXIS_INIT(x, X2, X);
  899. #endif
  900. #if HAS_Y_STEP
  901. #if defined(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_STEP
  902. Y2_STEP_INIT;
  903. Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
  904. #endif
  905. AXIS_INIT(y, Y, Y);
  906. #endif
  907. #if HAS_Z_STEP
  908. #if defined(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_STEP
  909. Z2_STEP_INIT;
  910. Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
  911. #endif
  912. AXIS_INIT(z, Z, Z);
  913. #endif
  914. #if HAS_E0_STEP
  915. E_AXIS_INIT(0);
  916. #endif
  917. #if HAS_E1_STEP
  918. E_AXIS_INIT(1);
  919. #endif
  920. #if HAS_E2_STEP
  921. E_AXIS_INIT(2);
  922. #endif
  923. #if HAS_E3_STEP
  924. E_AXIS_INIT(3);
  925. #endif
  926. // waveform generation = 0100 = CTC
  927. TCCR1B &= ~BIT(WGM13);
  928. TCCR1B |= BIT(WGM12);
  929. TCCR1A &= ~BIT(WGM11);
  930. TCCR1A &= ~BIT(WGM10);
  931. // output mode = 00 (disconnected)
  932. TCCR1A &= ~(3<<COM1A0);
  933. TCCR1A &= ~(3<<COM1B0);
  934. // Set the timer pre-scaler
  935. // Generally we use a divider of 8, resulting in a 2MHz timer
  936. // frequency on a 16MHz MCU. If you are going to change this, be
  937. // sure to regenerate speed_lookuptable.h with
  938. // create_speed_lookuptable.py
  939. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  940. OCR1A = 0x4000;
  941. TCNT1 = 0;
  942. ENABLE_STEPPER_DRIVER_INTERRUPT();
  943. #ifdef ADVANCE
  944. #if defined(TCCR0A) && defined(WGM01)
  945. TCCR0A &= ~BIT(WGM01);
  946. TCCR0A &= ~BIT(WGM00);
  947. #endif
  948. e_steps[0] = 0;
  949. e_steps[1] = 0;
  950. e_steps[2] = 0;
  951. e_steps[3] = 0;
  952. TIMSK0 |= BIT(OCIE0A);
  953. #endif //ADVANCE
  954. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  955. sei();
  956. }
  957. // Block until all buffered steps are executed
  958. void st_synchronize() {
  959. while (blocks_queued()) {
  960. manage_heater();
  961. manage_inactivity();
  962. lcd_update();
  963. }
  964. }
  965. void st_set_position(const long &x, const long &y, const long &z, const long &e) {
  966. CRITICAL_SECTION_START;
  967. count_position[X_AXIS] = x;
  968. count_position[Y_AXIS] = y;
  969. count_position[Z_AXIS] = z;
  970. count_position[E_AXIS] = e;
  971. CRITICAL_SECTION_END;
  972. }
  973. void st_set_e_position(const long &e) {
  974. CRITICAL_SECTION_START;
  975. count_position[E_AXIS] = e;
  976. CRITICAL_SECTION_END;
  977. }
  978. long st_get_position(uint8_t axis) {
  979. long count_pos;
  980. CRITICAL_SECTION_START;
  981. count_pos = count_position[axis];
  982. CRITICAL_SECTION_END;
  983. return count_pos;
  984. }
  985. #ifdef ENABLE_AUTO_BED_LEVELING
  986. float st_get_position_mm(uint8_t axis) {
  987. float steper_position_in_steps = st_get_position(axis);
  988. return steper_position_in_steps / axis_steps_per_unit[axis];
  989. }
  990. #endif // ENABLE_AUTO_BED_LEVELING
  991. void finishAndDisableSteppers() {
  992. st_synchronize();
  993. disable_all_steppers();
  994. }
  995. void quickStop() {
  996. cleaning_buffer_counter = 5000;
  997. DISABLE_STEPPER_DRIVER_INTERRUPT();
  998. while (blocks_queued()) plan_discard_current_block();
  999. current_block = NULL;
  1000. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1001. }
  1002. #ifdef BABYSTEPPING
  1003. // MUST ONLY BE CALLED BY AN ISR,
  1004. // No other ISR should ever interrupt this!
  1005. void babystep(const uint8_t axis, const bool direction) {
  1006. #define BABYSTEP_AXIS(axis, AXIS, INVERT) { \
  1007. enable_## axis(); \
  1008. uint8_t old_pin = AXIS ##_DIR_READ; \
  1009. AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR^direction^INVERT, true); \
  1010. AXIS ##_APPLY_STEP(!INVERT_## AXIS ##_STEP_PIN, true); \
  1011. _delay_us(1U); \
  1012. AXIS ##_APPLY_STEP(INVERT_## AXIS ##_STEP_PIN, true); \
  1013. AXIS ##_APPLY_DIR(old_pin, true); \
  1014. }
  1015. switch(axis) {
  1016. case X_AXIS:
  1017. BABYSTEP_AXIS(x, X, false);
  1018. break;
  1019. case Y_AXIS:
  1020. BABYSTEP_AXIS(y, Y, false);
  1021. break;
  1022. case Z_AXIS: {
  1023. #ifndef DELTA
  1024. BABYSTEP_AXIS(z, Z, BABYSTEP_INVERT_Z);
  1025. #else // DELTA
  1026. bool z_direction = direction ^ BABYSTEP_INVERT_Z;
  1027. enable_x();
  1028. enable_y();
  1029. enable_z();
  1030. uint8_t old_x_dir_pin = X_DIR_READ,
  1031. old_y_dir_pin = Y_DIR_READ,
  1032. old_z_dir_pin = Z_DIR_READ;
  1033. //setup new step
  1034. X_DIR_WRITE(INVERT_X_DIR^z_direction);
  1035. Y_DIR_WRITE(INVERT_Y_DIR^z_direction);
  1036. Z_DIR_WRITE(INVERT_Z_DIR^z_direction);
  1037. //perform step
  1038. X_STEP_WRITE(!INVERT_X_STEP_PIN);
  1039. Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
  1040. Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
  1041. _delay_us(1U);
  1042. X_STEP_WRITE(INVERT_X_STEP_PIN);
  1043. Y_STEP_WRITE(INVERT_Y_STEP_PIN);
  1044. Z_STEP_WRITE(INVERT_Z_STEP_PIN);
  1045. //get old pin state back.
  1046. X_DIR_WRITE(old_x_dir_pin);
  1047. Y_DIR_WRITE(old_y_dir_pin);
  1048. Z_DIR_WRITE(old_z_dir_pin);
  1049. #endif
  1050. } break;
  1051. default: break;
  1052. }
  1053. }
  1054. #endif //BABYSTEPPING
  1055. // From Arduino DigitalPotControl example
  1056. void digitalPotWrite(int address, int value) {
  1057. #if HAS_DIGIPOTSS
  1058. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1059. SPI.transfer(address); // send in the address and value via SPI:
  1060. SPI.transfer(value);
  1061. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1062. //delay(10);
  1063. #endif
  1064. }
  1065. // Initialize Digipot Motor Current
  1066. void digipot_init() {
  1067. #if HAS_DIGIPOTSS
  1068. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1069. SPI.begin();
  1070. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1071. for (int i = 0; i <= 4; i++) {
  1072. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1073. digipot_current(i,digipot_motor_current[i]);
  1074. }
  1075. #endif
  1076. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1077. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1078. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1079. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1080. digipot_current(0, motor_current_setting[0]);
  1081. digipot_current(1, motor_current_setting[1]);
  1082. digipot_current(2, motor_current_setting[2]);
  1083. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1084. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1085. #endif
  1086. }
  1087. void digipot_current(uint8_t driver, int current) {
  1088. #if HAS_DIGIPOTSS
  1089. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1090. digitalPotWrite(digipot_ch[driver], current);
  1091. #endif
  1092. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1093. switch(driver) {
  1094. case 0: analogWrite(MOTOR_CURRENT_PWM_XY_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1095. case 1: analogWrite(MOTOR_CURRENT_PWM_Z_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1096. case 2: analogWrite(MOTOR_CURRENT_PWM_E_PIN, 255L * current / MOTOR_CURRENT_PWM_RANGE); break;
  1097. }
  1098. #endif
  1099. }
  1100. void microstep_init() {
  1101. #if HAS_MICROSTEPS_E1
  1102. pinMode(E1_MS1_PIN,OUTPUT);
  1103. pinMode(E1_MS2_PIN,OUTPUT);
  1104. #endif
  1105. #if HAS_MICROSTEPS
  1106. pinMode(X_MS1_PIN,OUTPUT);
  1107. pinMode(X_MS2_PIN,OUTPUT);
  1108. pinMode(Y_MS1_PIN,OUTPUT);
  1109. pinMode(Y_MS2_PIN,OUTPUT);
  1110. pinMode(Z_MS1_PIN,OUTPUT);
  1111. pinMode(Z_MS2_PIN,OUTPUT);
  1112. pinMode(E0_MS1_PIN,OUTPUT);
  1113. pinMode(E0_MS2_PIN,OUTPUT);
  1114. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1115. for (uint16_t i = 0; i < sizeof(microstep_modes) / sizeof(microstep_modes[0]); i++)
  1116. microstep_mode(i, microstep_modes[i]);
  1117. #endif
  1118. }
  1119. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2) {
  1120. if (ms1 >= 0) switch(driver) {
  1121. case 0: digitalWrite(X_MS1_PIN, ms1); break;
  1122. case 1: digitalWrite(Y_MS1_PIN, ms1); break;
  1123. case 2: digitalWrite(Z_MS1_PIN, ms1); break;
  1124. case 3: digitalWrite(E0_MS1_PIN, ms1); break;
  1125. #if HAS_MICROSTEPS_E1
  1126. case 4: digitalWrite(E1_MS1_PIN, ms1); break;
  1127. #endif
  1128. }
  1129. if (ms2 >= 0) switch(driver) {
  1130. case 0: digitalWrite(X_MS2_PIN, ms2); break;
  1131. case 1: digitalWrite(Y_MS2_PIN, ms2); break;
  1132. case 2: digitalWrite(Z_MS2_PIN, ms2); break;
  1133. case 3: digitalWrite(E0_MS2_PIN, ms2); break;
  1134. #if defined(E1_MS2_PIN) && E1_MS2_PIN >= 0
  1135. case 4: digitalWrite(E1_MS2_PIN, ms2); break;
  1136. #endif
  1137. }
  1138. }
  1139. void microstep_mode(uint8_t driver, uint8_t stepping_mode) {
  1140. switch(stepping_mode) {
  1141. case 1: microstep_ms(driver,MICROSTEP1); break;
  1142. case 2: microstep_ms(driver,MICROSTEP2); break;
  1143. case 4: microstep_ms(driver,MICROSTEP4); break;
  1144. case 8: microstep_ms(driver,MICROSTEP8); break;
  1145. case 16: microstep_ms(driver,MICROSTEP16); break;
  1146. }
  1147. }
  1148. void microstep_readings() {
  1149. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1150. SERIAL_PROTOCOLPGM("X: ");
  1151. SERIAL_PROTOCOL(digitalRead(X_MS1_PIN));
  1152. SERIAL_PROTOCOLLN(digitalRead(X_MS2_PIN));
  1153. SERIAL_PROTOCOLPGM("Y: ");
  1154. SERIAL_PROTOCOL(digitalRead(Y_MS1_PIN));
  1155. SERIAL_PROTOCOLLN(digitalRead(Y_MS2_PIN));
  1156. SERIAL_PROTOCOLPGM("Z: ");
  1157. SERIAL_PROTOCOL(digitalRead(Z_MS1_PIN));
  1158. SERIAL_PROTOCOLLN(digitalRead(Z_MS2_PIN));
  1159. SERIAL_PROTOCOLPGM("E0: ");
  1160. SERIAL_PROTOCOL(digitalRead(E0_MS1_PIN));
  1161. SERIAL_PROTOCOLLN(digitalRead(E0_MS2_PIN));
  1162. #if HAS_MICROSTEPS_E1
  1163. SERIAL_PROTOCOLPGM("E1: ");
  1164. SERIAL_PROTOCOL(digitalRead(E1_MS1_PIN));
  1165. SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
  1166. #endif
  1167. }
  1168. #ifdef Z_DUAL_ENDSTOPS
  1169. void In_Homing_Process(bool state) { performing_homing = state; }
  1170. void Lock_z_motor(bool state) { locked_z_motor = state; }
  1171. void Lock_z2_motor(bool state) { locked_z2_motor = state; }
  1172. #endif