My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Вы не можете выбрать более 25 тем Темы должны начинаться с буквы или цифры, могут содержать дефисы(-) и должны содержать не более 35 символов.

Marlin_main.cpp 246KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #include "ultralcd.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #include "cardreader.h"
  48. #include "configuration_store.h"
  49. #include "language.h"
  50. #include "pins_arduino.h"
  51. #include "math.h"
  52. #include "buzzer.h"
  53. #if ENABLED(USE_WATCHDOG)
  54. #include "watchdog.h"
  55. #endif
  56. #if ENABLED(BLINKM)
  57. #include "blinkm.h"
  58. #include "Wire.h"
  59. #endif
  60. #if HAS_SERVOS
  61. #include "servo.h"
  62. #endif
  63. #if HAS_DIGIPOTSS
  64. #include <SPI.h>
  65. #endif
  66. #if ENABLED(DAC_STEPPER_CURRENT)
  67. #include "stepper_dac.h"
  68. #endif
  69. #if ENABLED(EXPERIMENTAL_I2CBUS)
  70. #include "twibus.h"
  71. #endif
  72. /**
  73. * Look here for descriptions of G-codes:
  74. * - http://linuxcnc.org/handbook/gcode/g-code.html
  75. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  76. *
  77. * Help us document these G-codes online:
  78. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  79. * - http://reprap.org/wiki/G-code
  80. *
  81. * -----------------
  82. * Implemented Codes
  83. * -----------------
  84. *
  85. * "G" Codes
  86. *
  87. * G0 -> G1
  88. * G1 - Coordinated Movement X Y Z E
  89. * G2 - CW ARC
  90. * G3 - CCW ARC
  91. * G4 - Dwell S<seconds> or P<milliseconds>
  92. * G10 - retract filament according to settings of M207
  93. * G11 - retract recover filament according to settings of M208
  94. * G28 - Home one or more axes
  95. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  96. * G30 - Single Z probe, probes bed at current XY location.
  97. * G31 - Dock sled (Z_PROBE_SLED only)
  98. * G32 - Undock sled (Z_PROBE_SLED only)
  99. * G90 - Use Absolute Coordinates
  100. * G91 - Use Relative Coordinates
  101. * G92 - Set current position to coordinates given
  102. *
  103. * "M" Codes
  104. *
  105. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  106. * M1 - Same as M0
  107. * M17 - Enable/Power all stepper motors
  108. * M18 - Disable all stepper motors; same as M84
  109. * M20 - List SD card
  110. * M21 - Init SD card
  111. * M22 - Release SD card
  112. * M23 - Select SD file (M23 filename.g)
  113. * M24 - Start/resume SD print
  114. * M25 - Pause SD print
  115. * M26 - Set SD position in bytes (M26 S12345)
  116. * M27 - Report SD print status
  117. * M28 - Start SD write (M28 filename.g)
  118. * M29 - Stop SD write
  119. * M30 - Delete file from SD (M30 filename.g)
  120. * M31 - Output time since last M109 or SD card start to serial
  121. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  122. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  123. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  124. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  125. * M33 - Get the longname version of a path
  126. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  127. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  128. * M80 - Turn on Power Supply
  129. * M81 - Turn off Power Supply
  130. * M82 - Set E codes absolute (default)
  131. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  132. * M84 - Disable steppers until next move,
  133. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  134. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  135. * M92 - Set axis_steps_per_unit - same syntax as G92
  136. * M104 - Set extruder target temp
  137. * M105 - Read current temp
  138. * M106 - Fan on
  139. * M107 - Fan off
  140. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  141. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  142. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  143. * M110 - Set the current line number
  144. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  145. * M112 - Emergency stop
  146. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  147. * M114 - Output current position to serial port
  148. * M115 - Capabilities string
  149. * M117 - Display a message on the controller screen
  150. * M119 - Output Endstop status to serial port
  151. * M120 - Enable endstop detection
  152. * M121 - Disable endstop detection
  153. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  154. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  155. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  156. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  157. * M140 - Set bed target temp
  158. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  159. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  160. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  161. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  162. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  163. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  164. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  165. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  166. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  167. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  168. * M206 - Set additional homing offset
  169. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  170. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  171. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  172. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  173. * M220 - Set speed factor override percentage: S<factor in percent>
  174. * M221 - Set extrude factor override percentage: S<factor in percent>
  175. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  176. * M240 - Trigger a camera to take a photograph
  177. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  178. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  179. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  180. * M301 - Set PID parameters P I and D
  181. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  182. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  183. * M304 - Set bed PID parameters P I and D
  184. * M380 - Activate solenoid on active extruder
  185. * M381 - Disable all solenoids
  186. * M400 - Finish all moves
  187. * M401 - Lower Z probe if present
  188. * M402 - Raise Z probe if present
  189. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  190. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  191. * M406 - Turn off Filament Sensor extrusion control
  192. * M407 - Display measured filament diameter
  193. * M410 - Quickstop. Abort all the planned moves
  194. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  195. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  196. * M428 - Set the home_offset logically based on the current_position
  197. * M500 - Store parameters in EEPROM
  198. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  199. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  200. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  201. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  202. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  203. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  204. * M666 - Set delta endstop adjustment
  205. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  206. * M907 - Set digital trimpot motor current using axis codes.
  207. * M908 - Control digital trimpot directly.
  208. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  209. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  210. * M350 - Set microstepping mode.
  211. * M351 - Toggle MS1 MS2 pins directly.
  212. *
  213. * ************ SCARA Specific - This can change to suit future G-code regulations
  214. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  215. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  216. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  217. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  218. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  219. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  220. * ************* SCARA End ***************
  221. *
  222. * ************ Custom codes - This can change to suit future G-code regulations
  223. * M100 - Watch Free Memory (For Debugging Only)
  224. * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
  225. * M928 - Start SD logging (M928 filename.g) - ended by M29
  226. * M999 - Restart after being stopped by error
  227. *
  228. * "T" Codes
  229. *
  230. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  231. *
  232. */
  233. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  234. void gcode_M100();
  235. #endif
  236. #if ENABLED(SDSUPPORT)
  237. CardReader card;
  238. #endif
  239. #if ENABLED(EXPERIMENTAL_I2CBUS)
  240. TWIBus i2c;
  241. #endif
  242. bool Running = true;
  243. uint8_t marlin_debug_flags = DEBUG_NONE;
  244. static float feedrate = 1500.0, saved_feedrate;
  245. float current_position[NUM_AXIS] = { 0.0 };
  246. static float destination[NUM_AXIS] = { 0.0 };
  247. bool axis_known_position[3] = { false };
  248. bool axis_homed[3] = { false };
  249. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  250. static char* current_command, *current_command_args;
  251. static int cmd_queue_index_r = 0;
  252. static int cmd_queue_index_w = 0;
  253. static int commands_in_queue = 0;
  254. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  255. const float homing_feedrate[] = HOMING_FEEDRATE;
  256. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  257. int feedrate_multiplier = 100; //100->1 200->2
  258. int saved_feedrate_multiplier;
  259. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  260. bool volumetric_enabled = false;
  261. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  262. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  263. float home_offset[3] = { 0 };
  264. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  265. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  266. #if FAN_COUNT > 0
  267. int fanSpeeds[FAN_COUNT] = { 0 };
  268. #endif
  269. uint8_t active_extruder = 0;
  270. bool cancel_heatup = false;
  271. const char errormagic[] PROGMEM = "Error:";
  272. const char echomagic[] PROGMEM = "echo:";
  273. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  274. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  275. static int serial_count = 0;
  276. static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  277. const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  278. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  279. // Inactivity shutdown
  280. millis_t previous_cmd_ms = 0;
  281. static millis_t max_inactive_time = 0;
  282. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  283. Stopwatch print_job_timer = Stopwatch();
  284. static uint8_t target_extruder;
  285. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  286. int xy_travel_speed = XY_TRAVEL_SPEED;
  287. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  288. #endif
  289. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  290. float z_endstop_adj = 0;
  291. #endif
  292. // Extruder offsets
  293. #if EXTRUDERS > 1
  294. #ifndef EXTRUDER_OFFSET_X
  295. #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
  296. #endif
  297. #ifndef EXTRUDER_OFFSET_Y
  298. #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
  299. #endif
  300. float extruder_offset[][EXTRUDERS] = {
  301. EXTRUDER_OFFSET_X,
  302. EXTRUDER_OFFSET_Y
  303. #if ENABLED(DUAL_X_CARRIAGE)
  304. , { 0 } // Z offsets for each extruder
  305. #endif
  306. };
  307. #endif
  308. #if HAS_SERVO_ENDSTOPS
  309. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  310. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  311. #endif
  312. #if ENABLED(BARICUDA)
  313. int ValvePressure = 0;
  314. int EtoPPressure = 0;
  315. #endif
  316. #if ENABLED(FWRETRACT)
  317. bool autoretract_enabled = false;
  318. bool retracted[EXTRUDERS] = { false };
  319. bool retracted_swap[EXTRUDERS] = { false };
  320. float retract_length = RETRACT_LENGTH;
  321. float retract_length_swap = RETRACT_LENGTH_SWAP;
  322. float retract_feedrate = RETRACT_FEEDRATE;
  323. float retract_zlift = RETRACT_ZLIFT;
  324. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  325. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  326. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  327. #endif // FWRETRACT
  328. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  329. bool powersupply =
  330. #if ENABLED(PS_DEFAULT_OFF)
  331. false
  332. #else
  333. true
  334. #endif
  335. ;
  336. #endif
  337. #if ENABLED(DELTA)
  338. #define TOWER_1 X_AXIS
  339. #define TOWER_2 Y_AXIS
  340. #define TOWER_3 Z_AXIS
  341. float delta[3] = { 0 };
  342. #define SIN_60 0.8660254037844386
  343. #define COS_60 0.5
  344. float endstop_adj[3] = { 0 };
  345. // these are the default values, can be overriden with M665
  346. float delta_radius = DELTA_RADIUS;
  347. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  348. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  349. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  350. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  351. float delta_tower3_x = 0; // back middle tower
  352. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  353. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  354. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  355. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  356. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  357. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  358. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  359. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  360. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  361. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  362. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  363. int delta_grid_spacing[2] = { 0, 0 };
  364. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  365. #endif
  366. #else
  367. static bool home_all_axis = true;
  368. #endif
  369. #if ENABLED(SCARA)
  370. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  371. static float delta[3] = { 0 };
  372. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  373. #endif
  374. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  375. //Variables for Filament Sensor input
  376. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  377. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  378. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  379. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  380. int filwidth_delay_index1 = 0; //index into ring buffer
  381. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  382. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  383. #endif
  384. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  385. static bool filrunoutEnqueued = false;
  386. #endif
  387. static bool send_ok[BUFSIZE];
  388. #if HAS_SERVOS
  389. Servo servo[NUM_SERVOS];
  390. #endif
  391. #ifdef CHDK
  392. millis_t chdkHigh = 0;
  393. boolean chdkActive = false;
  394. #endif
  395. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  396. int lpq_len = 20;
  397. #endif
  398. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  399. // States for managing Marlin and host communication
  400. // Marlin sends messages if blocked or busy
  401. enum MarlinBusyState {
  402. NOT_BUSY, // Not in a handler
  403. IN_HANDLER, // Processing a GCode
  404. IN_PROCESS, // Known to be blocking command input (as in G29)
  405. PAUSED_FOR_USER, // Blocking pending any input
  406. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  407. };
  408. static MarlinBusyState busy_state = NOT_BUSY;
  409. static millis_t next_busy_signal_ms = 0;
  410. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  411. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  412. #else
  413. #define host_keepalive() ;
  414. #define KEEPALIVE_STATE(n) ;
  415. #endif // HOST_KEEPALIVE_FEATURE
  416. /**
  417. * ***************************************************************************
  418. * ******************************** FUNCTIONS ********************************
  419. * ***************************************************************************
  420. */
  421. void get_available_commands();
  422. void process_next_command();
  423. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  424. bool setTargetedHotend(int code);
  425. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  426. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  427. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  428. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  429. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  430. void gcode_M114();
  431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  432. void print_xyz(const char* prefix, const float x, const float y, const float z) {
  433. SERIAL_ECHO(prefix);
  434. SERIAL_ECHOPAIR(": (", x);
  435. SERIAL_ECHOPAIR(", ", y);
  436. SERIAL_ECHOPAIR(", ", z);
  437. SERIAL_ECHOLNPGM(")");
  438. }
  439. void print_xyz(const char* prefix, const float xyz[]) {
  440. print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  441. }
  442. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  443. void print_xyz(const char* prefix, const vector_3 &xyz) {
  444. print_xyz(prefix, xyz.x, xyz.y, xyz.z);
  445. }
  446. #endif
  447. #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
  448. #endif
  449. #if ENABLED(DELTA) || ENABLED(SCARA)
  450. inline void sync_plan_position_delta() {
  451. #if ENABLED(DEBUG_LEVELING_FEATURE)
  452. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  453. #endif
  454. calculate_delta(current_position);
  455. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  456. }
  457. #endif
  458. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  459. float extrude_min_temp = EXTRUDE_MINTEMP;
  460. #endif
  461. #if ENABLED(HAS_Z_MIN_PROBE)
  462. extern volatile bool z_probe_is_active;
  463. #endif
  464. #if ENABLED(SDSUPPORT)
  465. #include "SdFatUtil.h"
  466. int freeMemory() { return SdFatUtil::FreeRam(); }
  467. #else
  468. extern "C" {
  469. extern unsigned int __bss_end;
  470. extern unsigned int __heap_start;
  471. extern void* __brkval;
  472. int freeMemory() {
  473. int free_memory;
  474. if ((int)__brkval == 0)
  475. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  476. else
  477. free_memory = ((int)&free_memory) - ((int)__brkval);
  478. return free_memory;
  479. }
  480. }
  481. #endif //!SDSUPPORT
  482. /**
  483. * Inject the next "immediate" command, when possible.
  484. * Return true if any immediate commands remain to inject.
  485. */
  486. static bool drain_queued_commands_P() {
  487. if (queued_commands_P != NULL) {
  488. size_t i = 0;
  489. char c, cmd[30];
  490. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  491. cmd[sizeof(cmd) - 1] = '\0';
  492. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  493. cmd[i] = '\0';
  494. if (enqueue_and_echo_command(cmd)) { // success?
  495. if (c) // newline char?
  496. queued_commands_P += i + 1; // advance to the next command
  497. else
  498. queued_commands_P = NULL; // nul char? no more commands
  499. }
  500. }
  501. return (queued_commands_P != NULL); // return whether any more remain
  502. }
  503. /**
  504. * Record one or many commands to run from program memory.
  505. * Aborts the current queue, if any.
  506. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  507. */
  508. void enqueue_and_echo_commands_P(const char* pgcode) {
  509. queued_commands_P = pgcode;
  510. drain_queued_commands_P(); // first command executed asap (when possible)
  511. }
  512. /**
  513. * Once a new command is in the ring buffer, call this to commit it
  514. */
  515. inline void _commit_command(bool say_ok) {
  516. send_ok[cmd_queue_index_w] = say_ok;
  517. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  518. commands_in_queue++;
  519. }
  520. /**
  521. * Copy a command directly into the main command buffer, from RAM.
  522. * Returns true if successfully adds the command
  523. */
  524. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  525. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  526. strcpy(command_queue[cmd_queue_index_w], cmd);
  527. _commit_command(say_ok);
  528. return true;
  529. }
  530. void enqueue_and_echo_command_now(const char* cmd) {
  531. while (!enqueue_and_echo_command(cmd)) idle();
  532. }
  533. /**
  534. * Enqueue with Serial Echo
  535. */
  536. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  537. if (_enqueuecommand(cmd, say_ok)) {
  538. SERIAL_ECHO_START;
  539. SERIAL_ECHOPGM(MSG_Enqueueing);
  540. SERIAL_ECHO(cmd);
  541. SERIAL_ECHOLNPGM("\"");
  542. return true;
  543. }
  544. return false;
  545. }
  546. void setup_killpin() {
  547. #if HAS_KILL
  548. SET_INPUT(KILL_PIN);
  549. WRITE(KILL_PIN, HIGH);
  550. #endif
  551. }
  552. void setup_filrunoutpin() {
  553. #if HAS_FILRUNOUT
  554. pinMode(FILRUNOUT_PIN, INPUT);
  555. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  556. WRITE(FILRUNOUT_PIN, HIGH);
  557. #endif
  558. #endif
  559. }
  560. // Set home pin
  561. void setup_homepin(void) {
  562. #if HAS_HOME
  563. SET_INPUT(HOME_PIN);
  564. WRITE(HOME_PIN, HIGH);
  565. #endif
  566. }
  567. void setup_photpin() {
  568. #if HAS_PHOTOGRAPH
  569. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  570. #endif
  571. }
  572. void setup_powerhold() {
  573. #if HAS_SUICIDE
  574. OUT_WRITE(SUICIDE_PIN, HIGH);
  575. #endif
  576. #if HAS_POWER_SWITCH
  577. #if ENABLED(PS_DEFAULT_OFF)
  578. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  579. #else
  580. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  581. #endif
  582. #endif
  583. }
  584. void suicide() {
  585. #if HAS_SUICIDE
  586. OUT_WRITE(SUICIDE_PIN, LOW);
  587. #endif
  588. }
  589. void servo_init() {
  590. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  591. servo[0].attach(SERVO0_PIN);
  592. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  593. #endif
  594. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  595. servo[1].attach(SERVO1_PIN);
  596. servo[1].detach();
  597. #endif
  598. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  599. servo[2].attach(SERVO2_PIN);
  600. servo[2].detach();
  601. #endif
  602. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  603. servo[3].attach(SERVO3_PIN);
  604. servo[3].detach();
  605. #endif
  606. #if HAS_SERVO_ENDSTOPS
  607. z_probe_is_active = false;
  608. /**
  609. * Set position of all defined Servo Endstops
  610. *
  611. * ** UNSAFE! - NEEDS UPDATE! **
  612. *
  613. * The servo might be deployed and positioned too low to stow
  614. * when starting up the machine or rebooting the board.
  615. * There's no way to know where the nozzle is positioned until
  616. * homing has been done - no homing with z-probe without init!
  617. *
  618. */
  619. for (int i = 0; i < 3; i++)
  620. if (servo_endstop_id[i] >= 0)
  621. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  622. #endif // HAS_SERVO_ENDSTOPS
  623. }
  624. /**
  625. * Stepper Reset (RigidBoard, et.al.)
  626. */
  627. #if HAS_STEPPER_RESET
  628. void disableStepperDrivers() {
  629. pinMode(STEPPER_RESET_PIN, OUTPUT);
  630. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  631. }
  632. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  633. #endif
  634. /**
  635. * Marlin entry-point: Set up before the program loop
  636. * - Set up the kill pin, filament runout, power hold
  637. * - Start the serial port
  638. * - Print startup messages and diagnostics
  639. * - Get EEPROM or default settings
  640. * - Initialize managers for:
  641. * • temperature
  642. * • planner
  643. * • watchdog
  644. * • stepper
  645. * • photo pin
  646. * • servos
  647. * • LCD controller
  648. * • Digipot I2C
  649. * • Z probe sled
  650. * • status LEDs
  651. */
  652. void setup() {
  653. #ifdef DISABLE_JTAG
  654. // Disable JTAG on AT90USB chips to free up pins for IO
  655. MCUCR = 0x80;
  656. MCUCR = 0x80;
  657. #endif
  658. setup_killpin();
  659. setup_filrunoutpin();
  660. setup_powerhold();
  661. #if HAS_STEPPER_RESET
  662. disableStepperDrivers();
  663. #endif
  664. MYSERIAL.begin(BAUDRATE);
  665. SERIAL_PROTOCOLLNPGM("start");
  666. SERIAL_ECHO_START;
  667. // Check startup - does nothing if bootloader sets MCUSR to 0
  668. byte mcu = MCUSR;
  669. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  670. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  671. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  672. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  673. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  674. MCUSR = 0;
  675. SERIAL_ECHOPGM(MSG_MARLIN);
  676. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  677. #ifdef STRING_DISTRIBUTION_DATE
  678. #ifdef STRING_CONFIG_H_AUTHOR
  679. SERIAL_ECHO_START;
  680. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  681. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  682. SERIAL_ECHOPGM(MSG_AUTHOR);
  683. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  684. SERIAL_ECHOPGM("Compiled: ");
  685. SERIAL_ECHOLNPGM(__DATE__);
  686. #endif // STRING_CONFIG_H_AUTHOR
  687. #endif // STRING_DISTRIBUTION_DATE
  688. SERIAL_ECHO_START;
  689. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  690. SERIAL_ECHO(freeMemory());
  691. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  692. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  693. // Send "ok" after commands by default
  694. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  695. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  696. Config_RetrieveSettings();
  697. lcd_init();
  698. tp_init(); // Initialize temperature loop
  699. plan_init(); // Initialize planner;
  700. #if ENABLED(DELTA) || ENABLED(SCARA)
  701. // Vital to init kinematic equivalent for X0 Y0 Z0
  702. sync_plan_position_delta();
  703. #endif
  704. #if ENABLED(USE_WATCHDOG)
  705. watchdog_init();
  706. #endif
  707. st_init(); // Initialize stepper, this enables interrupts!
  708. setup_photpin();
  709. servo_init();
  710. #if HAS_CONTROLLERFAN
  711. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  712. #endif
  713. #if HAS_STEPPER_RESET
  714. enableStepperDrivers();
  715. #endif
  716. #if ENABLED(DIGIPOT_I2C)
  717. digipot_i2c_init();
  718. #endif
  719. #if ENABLED(Z_PROBE_SLED)
  720. pinMode(SLED_PIN, OUTPUT);
  721. digitalWrite(SLED_PIN, LOW); // turn it off
  722. #endif // Z_PROBE_SLED
  723. setup_homepin();
  724. #ifdef STAT_LED_RED
  725. pinMode(STAT_LED_RED, OUTPUT);
  726. digitalWrite(STAT_LED_RED, LOW); // turn it off
  727. #endif
  728. #ifdef STAT_LED_BLUE
  729. pinMode(STAT_LED_BLUE, OUTPUT);
  730. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  731. #endif
  732. }
  733. /**
  734. * The main Marlin program loop
  735. *
  736. * - Save or log commands to SD
  737. * - Process available commands (if not saving)
  738. * - Call heater manager
  739. * - Call inactivity manager
  740. * - Call endstop manager
  741. * - Call LCD update
  742. */
  743. void loop() {
  744. if (commands_in_queue < BUFSIZE) get_available_commands();
  745. #if ENABLED(SDSUPPORT)
  746. card.checkautostart(false);
  747. #endif
  748. if (commands_in_queue) {
  749. #if ENABLED(SDSUPPORT)
  750. if (card.saving) {
  751. char* command = command_queue[cmd_queue_index_r];
  752. if (strstr_P(command, PSTR("M29"))) {
  753. // M29 closes the file
  754. card.closefile();
  755. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  756. ok_to_send();
  757. }
  758. else {
  759. // Write the string from the read buffer to SD
  760. card.write_command(command);
  761. if (card.logging)
  762. process_next_command(); // The card is saving because it's logging
  763. else
  764. ok_to_send();
  765. }
  766. }
  767. else
  768. process_next_command();
  769. #else
  770. process_next_command();
  771. #endif // SDSUPPORT
  772. commands_in_queue--;
  773. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  774. }
  775. checkHitEndstops();
  776. idle();
  777. }
  778. void gcode_line_error(const char* err, bool doFlush = true) {
  779. SERIAL_ERROR_START;
  780. serialprintPGM(err);
  781. SERIAL_ERRORLN(gcode_LastN);
  782. //Serial.println(gcode_N);
  783. if (doFlush) FlushSerialRequestResend();
  784. serial_count = 0;
  785. }
  786. inline void get_serial_commands() {
  787. static char serial_line_buffer[MAX_CMD_SIZE];
  788. static boolean serial_comment_mode = false;
  789. // If the command buffer is empty for too long,
  790. // send "wait" to indicate Marlin is still waiting.
  791. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  792. static millis_t last_command_time = 0;
  793. millis_t ms = millis();
  794. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  795. SERIAL_ECHOLNPGM(MSG_WAIT);
  796. last_command_time = ms;
  797. }
  798. #endif
  799. /**
  800. * Loop while serial characters are incoming and the queue is not full
  801. */
  802. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  803. char serial_char = MYSERIAL.read();
  804. /**
  805. * If the character ends the line
  806. */
  807. if (serial_char == '\n' || serial_char == '\r') {
  808. serial_comment_mode = false; // end of line == end of comment
  809. if (!serial_count) continue; // skip empty lines
  810. serial_line_buffer[serial_count] = 0; // terminate string
  811. serial_count = 0; //reset buffer
  812. char* command = serial_line_buffer;
  813. while (*command == ' ') command++; // skip any leading spaces
  814. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  815. char* apos = strchr(command, '*');
  816. if (npos) {
  817. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  818. if (M110) {
  819. char* n2pos = strchr(command + 4, 'N');
  820. if (n2pos) npos = n2pos;
  821. }
  822. gcode_N = strtol(npos + 1, NULL, 10);
  823. if (gcode_N != gcode_LastN + 1 && !M110) {
  824. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  825. return;
  826. }
  827. if (apos) {
  828. byte checksum = 0, count = 0;
  829. while (command[count] != '*') checksum ^= command[count++];
  830. if (strtol(apos + 1, NULL, 10) != checksum) {
  831. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  832. return;
  833. }
  834. // if no errors, continue parsing
  835. }
  836. else {
  837. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  838. return;
  839. }
  840. gcode_LastN = gcode_N;
  841. // if no errors, continue parsing
  842. }
  843. else if (apos) { // No '*' without 'N'
  844. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  845. return;
  846. }
  847. // Movement commands alert when stopped
  848. if (IsStopped()) {
  849. char* gpos = strchr(command, 'G');
  850. if (gpos) {
  851. int codenum = strtol(gpos + 1, NULL, 10);
  852. switch (codenum) {
  853. case 0:
  854. case 1:
  855. case 2:
  856. case 3:
  857. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  858. LCD_MESSAGEPGM(MSG_STOPPED);
  859. break;
  860. }
  861. }
  862. }
  863. // If command was e-stop process now
  864. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  865. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  866. last_command_time = ms;
  867. #endif
  868. // Add the command to the queue
  869. _enqueuecommand(serial_line_buffer, true);
  870. }
  871. else if (serial_count >= MAX_CMD_SIZE - 1) {
  872. // Keep fetching, but ignore normal characters beyond the max length
  873. // The command will be injected when EOL is reached
  874. }
  875. else if (serial_char == '\\') { // Handle escapes
  876. if (MYSERIAL.available() > 0) {
  877. // if we have one more character, copy it over
  878. serial_char = MYSERIAL.read();
  879. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  880. }
  881. // otherwise do nothing
  882. }
  883. else { // it's not a newline, carriage return or escape char
  884. if (serial_char == ';') serial_comment_mode = true;
  885. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  886. }
  887. } // queue has space, serial has data
  888. }
  889. #if ENABLED(SDSUPPORT)
  890. inline void get_sdcard_commands() {
  891. static bool stop_buffering = false,
  892. sd_comment_mode = false;
  893. if (!card.sdprinting) return;
  894. /**
  895. * '#' stops reading from SD to the buffer prematurely, so procedural
  896. * macro calls are possible. If it occurs, stop_buffering is triggered
  897. * and the buffer is run dry; this character _can_ occur in serial com
  898. * due to checksums, however, no checksums are used in SD printing.
  899. */
  900. if (commands_in_queue == 0) stop_buffering = false;
  901. uint16_t sd_count = 0;
  902. bool card_eof = card.eof();
  903. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  904. int16_t n = card.get();
  905. char sd_char = (char)n;
  906. card_eof = card.eof();
  907. if (card_eof || n == -1
  908. || sd_char == '\n' || sd_char == '\r'
  909. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  910. ) {
  911. if (card_eof) {
  912. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  913. print_job_timer.stop();
  914. char time[30];
  915. millis_t t = print_job_timer.duration();
  916. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  917. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  918. SERIAL_ECHO_START;
  919. SERIAL_ECHOLN(time);
  920. lcd_setstatus(time, true);
  921. card.printingHasFinished();
  922. card.checkautostart(true);
  923. }
  924. if (sd_char == '#') stop_buffering = true;
  925. sd_comment_mode = false; //for new command
  926. if (!sd_count) continue; //skip empty lines
  927. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  928. sd_count = 0; //clear buffer
  929. _commit_command(false);
  930. }
  931. else if (sd_count >= MAX_CMD_SIZE - 1) {
  932. /**
  933. * Keep fetching, but ignore normal characters beyond the max length
  934. * The command will be injected when EOL is reached
  935. */
  936. }
  937. else {
  938. if (sd_char == ';') sd_comment_mode = true;
  939. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  940. }
  941. }
  942. }
  943. #endif // SDSUPPORT
  944. /**
  945. * Add to the circular command queue the next command from:
  946. * - The command-injection queue (queued_commands_P)
  947. * - The active serial input (usually USB)
  948. * - The SD card file being actively printed
  949. */
  950. void get_available_commands() {
  951. // if any immediate commands remain, don't get other commands yet
  952. if (drain_queued_commands_P()) return;
  953. get_serial_commands();
  954. #if ENABLED(SDSUPPORT)
  955. get_sdcard_commands();
  956. #endif
  957. }
  958. bool code_has_value() {
  959. int i = 1;
  960. char c = seen_pointer[i];
  961. while (c == ' ') c = seen_pointer[++i];
  962. if (c == '-' || c == '+') c = seen_pointer[++i];
  963. if (c == '.') c = seen_pointer[++i];
  964. return NUMERIC(c);
  965. }
  966. float code_value() {
  967. float ret;
  968. char* e = strchr(seen_pointer, 'E');
  969. if (e) {
  970. *e = 0;
  971. ret = strtod(seen_pointer + 1, NULL);
  972. *e = 'E';
  973. }
  974. else
  975. ret = strtod(seen_pointer + 1, NULL);
  976. return ret;
  977. }
  978. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  979. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  980. bool code_seen(char code) {
  981. seen_pointer = strchr(current_command_args, code);
  982. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  983. }
  984. #define DEFINE_PGM_READ_ANY(type, reader) \
  985. static inline type pgm_read_any(const type *p) \
  986. { return pgm_read_##reader##_near(p); }
  987. DEFINE_PGM_READ_ANY(float, float);
  988. DEFINE_PGM_READ_ANY(signed char, byte);
  989. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  990. static const PROGMEM type array##_P[3] = \
  991. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  992. static inline type array(int axis) \
  993. { return pgm_read_any(&array##_P[axis]); }
  994. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  995. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  996. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  997. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  998. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  999. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1000. #if ENABLED(DUAL_X_CARRIAGE)
  1001. #define DXC_FULL_CONTROL_MODE 0
  1002. #define DXC_AUTO_PARK_MODE 1
  1003. #define DXC_DUPLICATION_MODE 2
  1004. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1005. static float x_home_pos(int extruder) {
  1006. if (extruder == 0)
  1007. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1008. else
  1009. /**
  1010. * In dual carriage mode the extruder offset provides an override of the
  1011. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1012. * This allow soft recalibration of the second extruder offset position
  1013. * without firmware reflash (through the M218 command).
  1014. */
  1015. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  1016. }
  1017. static int x_home_dir(int extruder) {
  1018. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1019. }
  1020. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1021. static bool active_extruder_parked = false; // used in mode 1 & 2
  1022. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1023. static millis_t delayed_move_time = 0; // used in mode 1
  1024. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1025. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1026. bool extruder_duplication_enabled = false; // used in mode 2
  1027. #endif //DUAL_X_CARRIAGE
  1028. static void set_axis_is_at_home(AxisEnum axis) {
  1029. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1030. if (DEBUGGING(LEVELING)) {
  1031. SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
  1032. SERIAL_ECHOLNPGM(") >>>");
  1033. }
  1034. #endif
  1035. #if ENABLED(DUAL_X_CARRIAGE)
  1036. if (axis == X_AXIS) {
  1037. if (active_extruder != 0) {
  1038. current_position[X_AXIS] = x_home_pos(active_extruder);
  1039. min_pos[X_AXIS] = X2_MIN_POS;
  1040. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  1041. return;
  1042. }
  1043. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1044. float xoff = home_offset[X_AXIS];
  1045. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  1046. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  1047. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  1048. return;
  1049. }
  1050. }
  1051. #endif
  1052. #if ENABLED(SCARA)
  1053. if (axis == X_AXIS || axis == Y_AXIS) {
  1054. float homeposition[3];
  1055. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1056. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1057. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1058. /**
  1059. * Works out real Homeposition angles using inverse kinematics,
  1060. * and calculates homing offset using forward kinematics
  1061. */
  1062. calculate_delta(homeposition);
  1063. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1064. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1065. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1066. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1067. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1068. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1069. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1070. calculate_SCARA_forward_Transform(delta);
  1071. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1072. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1073. current_position[axis] = delta[axis];
  1074. /**
  1075. * SCARA home positions are based on configuration since the actual
  1076. * limits are determined by the inverse kinematic transform.
  1077. */
  1078. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1079. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1080. }
  1081. else
  1082. #endif
  1083. {
  1084. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1085. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  1086. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  1087. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
  1088. if (axis == Z_AXIS) {
  1089. current_position[Z_AXIS] -= zprobe_zoffset;
  1090. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1091. if (DEBUGGING(LEVELING)) {
  1092. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1093. SERIAL_EOL;
  1094. }
  1095. #endif
  1096. }
  1097. #endif
  1098. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1099. if (DEBUGGING(LEVELING)) {
  1100. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1101. DEBUG_POS("", current_position);
  1102. }
  1103. #endif
  1104. }
  1105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1106. if (DEBUGGING(LEVELING)) {
  1107. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1108. SERIAL_ECHOLNPGM(")");
  1109. }
  1110. #endif
  1111. }
  1112. /**
  1113. * Some planner shorthand inline functions
  1114. */
  1115. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1116. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1117. int hbd = homing_bump_divisor[axis];
  1118. if (hbd < 1) {
  1119. hbd = 10;
  1120. SERIAL_ECHO_START;
  1121. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1122. }
  1123. feedrate = homing_feedrate[axis] / hbd;
  1124. }
  1125. //
  1126. // line_to_current_position
  1127. // Move the planner to the current position from wherever it last moved
  1128. // (or from wherever it has been told it is located).
  1129. //
  1130. inline void line_to_current_position() {
  1131. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1132. }
  1133. inline void line_to_z(float zPosition) {
  1134. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1135. }
  1136. //
  1137. // line_to_destination
  1138. // Move the planner, not necessarily synced with current_position
  1139. //
  1140. inline void line_to_destination(float mm_m) {
  1141. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1142. }
  1143. inline void line_to_destination() {
  1144. line_to_destination(feedrate);
  1145. }
  1146. /**
  1147. * sync_plan_position
  1148. * Set planner / stepper positions to the cartesian current_position.
  1149. * The stepper code translates these coordinates into step units.
  1150. * Allows translation between steps and units (mm) for cartesian & core robots
  1151. */
  1152. inline void sync_plan_position() {
  1153. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1154. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1155. #endif
  1156. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1157. }
  1158. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1159. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1160. static void setup_for_endstop_move() {
  1161. saved_feedrate = feedrate;
  1162. saved_feedrate_multiplier = feedrate_multiplier;
  1163. feedrate_multiplier = 100;
  1164. refresh_cmd_timeout();
  1165. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1166. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
  1167. #endif
  1168. enable_endstops(true);
  1169. }
  1170. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1171. #if ENABLED(DELTA)
  1172. /**
  1173. * Calculate delta, start a line, and set current_position to destination
  1174. */
  1175. void prepare_move_raw() {
  1176. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1177. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
  1178. #endif
  1179. refresh_cmd_timeout();
  1180. calculate_delta(destination);
  1181. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1182. set_current_to_destination();
  1183. }
  1184. #endif
  1185. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1186. #if DISABLED(DELTA)
  1187. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1188. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1189. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1190. //plan_bed_level_matrix.debug("bed level before");
  1191. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1192. plan_bed_level_matrix.set_to_identity();
  1193. if (DEBUGGING(LEVELING)) {
  1194. vector_3 uncorrected_position = plan_get_position();
  1195. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1196. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1197. }
  1198. #endif
  1199. vector_3 corrected_position = plan_get_position();
  1200. current_position[X_AXIS] = corrected_position.x;
  1201. current_position[Y_AXIS] = corrected_position.y;
  1202. current_position[Z_AXIS] = corrected_position.z;
  1203. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1204. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", current_position);
  1205. #endif
  1206. sync_plan_position();
  1207. }
  1208. #endif // !DELTA
  1209. #else // !AUTO_BED_LEVELING_GRID
  1210. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1211. plan_bed_level_matrix.set_to_identity();
  1212. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1213. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1214. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1215. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1216. if (planeNormal.z < 0) {
  1217. planeNormal.x = -planeNormal.x;
  1218. planeNormal.y = -planeNormal.y;
  1219. planeNormal.z = -planeNormal.z;
  1220. }
  1221. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1222. vector_3 corrected_position = plan_get_position();
  1223. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1224. if (DEBUGGING(LEVELING)) {
  1225. vector_3 uncorrected_position = corrected_position;
  1226. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1227. }
  1228. #endif
  1229. current_position[X_AXIS] = corrected_position.x;
  1230. current_position[Y_AXIS] = corrected_position.y;
  1231. current_position[Z_AXIS] = corrected_position.z;
  1232. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1233. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1234. #endif
  1235. sync_plan_position();
  1236. }
  1237. #endif // !AUTO_BED_LEVELING_GRID
  1238. static void run_z_probe() {
  1239. /**
  1240. * To prevent stepper_inactive_time from running out and
  1241. * EXTRUDER_RUNOUT_PREVENT from extruding
  1242. */
  1243. refresh_cmd_timeout();
  1244. #if ENABLED(DELTA)
  1245. float start_z = current_position[Z_AXIS];
  1246. long start_steps = st_get_position(Z_AXIS);
  1247. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1248. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
  1249. #endif
  1250. // move down slowly until you find the bed
  1251. feedrate = homing_feedrate[Z_AXIS] / 4;
  1252. destination[Z_AXIS] = -10;
  1253. prepare_move_raw(); // this will also set_current_to_destination
  1254. st_synchronize();
  1255. endstops_hit_on_purpose(); // clear endstop hit flags
  1256. /**
  1257. * We have to let the planner know where we are right now as it
  1258. * is not where we said to go.
  1259. */
  1260. long stop_steps = st_get_position(Z_AXIS);
  1261. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1262. current_position[Z_AXIS] = mm;
  1263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1264. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1265. #endif
  1266. sync_plan_position_delta();
  1267. #else // !DELTA
  1268. plan_bed_level_matrix.set_to_identity();
  1269. feedrate = homing_feedrate[Z_AXIS];
  1270. // Move down until the Z probe (or endstop?) is triggered
  1271. float zPosition = -(Z_MAX_LENGTH + 10);
  1272. line_to_z(zPosition);
  1273. st_synchronize();
  1274. // Tell the planner where we ended up - Get this from the stepper handler
  1275. zPosition = st_get_axis_position_mm(Z_AXIS);
  1276. plan_set_position(
  1277. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1278. current_position[E_AXIS]
  1279. );
  1280. // move up the retract distance
  1281. zPosition += home_bump_mm(Z_AXIS);
  1282. line_to_z(zPosition);
  1283. st_synchronize();
  1284. endstops_hit_on_purpose(); // clear endstop hit flags
  1285. // move back down slowly to find bed
  1286. set_homing_bump_feedrate(Z_AXIS);
  1287. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1288. line_to_z(zPosition);
  1289. st_synchronize();
  1290. endstops_hit_on_purpose(); // clear endstop hit flags
  1291. // Get the current stepper position after bumping an endstop
  1292. current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS);
  1293. sync_plan_position();
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1296. #endif
  1297. #endif // !DELTA
  1298. }
  1299. /**
  1300. * Plan a move to (X, Y, Z) and set the current_position
  1301. * The final current_position may not be the one that was requested
  1302. */
  1303. static void do_blocking_move_to(float x, float y, float z) {
  1304. float oldFeedRate = feedrate;
  1305. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1306. if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
  1307. #endif
  1308. #if ENABLED(DELTA)
  1309. feedrate = XY_TRAVEL_SPEED;
  1310. destination[X_AXIS] = x;
  1311. destination[Y_AXIS] = y;
  1312. destination[Z_AXIS] = z;
  1313. prepare_move_raw(); // this will also set_current_to_destination
  1314. st_synchronize();
  1315. #else
  1316. feedrate = homing_feedrate[Z_AXIS];
  1317. current_position[Z_AXIS] = z;
  1318. line_to_current_position();
  1319. st_synchronize();
  1320. feedrate = xy_travel_speed;
  1321. current_position[X_AXIS] = x;
  1322. current_position[Y_AXIS] = y;
  1323. line_to_current_position();
  1324. st_synchronize();
  1325. #endif
  1326. feedrate = oldFeedRate;
  1327. }
  1328. inline void do_blocking_move_to_xy(float x, float y) {
  1329. do_blocking_move_to(x, y, current_position[Z_AXIS]);
  1330. }
  1331. inline void do_blocking_move_to_x(float x) {
  1332. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
  1333. }
  1334. inline void do_blocking_move_to_z(float z) {
  1335. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
  1336. }
  1337. inline void raise_z_after_probing() {
  1338. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
  1339. }
  1340. static void clean_up_after_endstop_move() {
  1341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1342. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()");
  1343. #endif
  1344. endstops_not_homing();
  1345. feedrate = saved_feedrate;
  1346. feedrate_multiplier = saved_feedrate_multiplier;
  1347. refresh_cmd_timeout();
  1348. }
  1349. #if ENABLED(HAS_Z_MIN_PROBE)
  1350. static void deploy_z_probe() {
  1351. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1352. if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
  1353. #endif
  1354. if (z_probe_is_active) return;
  1355. #if HAS_SERVO_ENDSTOPS
  1356. // Engage Z Servo endstop if enabled
  1357. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1358. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1359. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1360. // If endstop is already false, the Z probe is deployed
  1361. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1362. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1363. if (z_probe_endstop)
  1364. #else
  1365. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1366. if (z_min_endstop)
  1367. #endif
  1368. {
  1369. // Move to the start position to initiate deployment
  1370. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1371. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1372. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1373. prepare_move_raw(); // this will also set_current_to_destination
  1374. // Move to engage deployment
  1375. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
  1376. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1377. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
  1378. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1379. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
  1380. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1381. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1382. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1383. prepare_move_raw();
  1384. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1385. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1386. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1387. // Move to trigger deployment
  1388. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
  1389. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1390. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
  1391. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1392. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
  1393. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1394. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1395. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1396. prepare_move_raw();
  1397. #endif
  1398. }
  1399. // Partially Home X,Y for safety
  1400. destination[X_AXIS] = destination[X_AXIS] * 0.75;
  1401. destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
  1402. prepare_move_raw(); // this will also set_current_to_destination
  1403. st_synchronize();
  1404. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1405. z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1406. if (z_probe_endstop)
  1407. #else
  1408. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1409. if (z_min_endstop)
  1410. #endif
  1411. {
  1412. if (IsRunning()) {
  1413. SERIAL_ERROR_START;
  1414. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1415. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1416. }
  1417. Stop();
  1418. }
  1419. #endif // Z_PROBE_ALLEN_KEY
  1420. #if ENABLED(FIX_MOUNTED_PROBE)
  1421. // Noting to be done. Just set z_probe_is_active
  1422. #endif
  1423. z_probe_is_active = true;
  1424. }
  1425. static void stow_z_probe(bool doRaise = true) {
  1426. #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
  1427. UNUSED(doRaise);
  1428. #endif
  1429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1430. if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
  1431. #endif
  1432. if (!z_probe_is_active) return;
  1433. #if HAS_SERVO_ENDSTOPS
  1434. // Retract Z Servo endstop if enabled
  1435. if (servo_endstop_id[Z_AXIS] >= 0) {
  1436. #if Z_RAISE_AFTER_PROBING > 0
  1437. if (doRaise) {
  1438. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1439. if (DEBUGGING(LEVELING)) {
  1440. SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
  1441. SERIAL_EOL;
  1442. SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
  1443. SERIAL_EOL;
  1444. }
  1445. #endif
  1446. raise_z_after_probing(); // this also updates current_position
  1447. st_synchronize();
  1448. }
  1449. #endif
  1450. // Change the Z servo angle
  1451. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1452. }
  1453. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1454. // Move up for safety
  1455. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1456. #if Z_RAISE_AFTER_PROBING > 0
  1457. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1458. prepare_move_raw(); // this will also set_current_to_destination
  1459. #endif
  1460. // Move to the start position to initiate retraction
  1461. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1462. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1463. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1464. prepare_move_raw();
  1465. // Move the nozzle down to push the Z probe into retracted position
  1466. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
  1467. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1468. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
  1469. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1470. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
  1471. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1472. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1473. prepare_move_raw();
  1474. // Move up for safety
  1475. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
  1476. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1477. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
  1478. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1479. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
  1480. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1481. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1482. prepare_move_raw();
  1483. // Home XY for safety
  1484. feedrate = homing_feedrate[X_AXIS] / 2;
  1485. destination[X_AXIS] = 0;
  1486. destination[Y_AXIS] = 0;
  1487. prepare_move_raw(); // this will also set_current_to_destination
  1488. st_synchronize();
  1489. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1490. bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
  1491. if (!z_probe_endstop)
  1492. #else
  1493. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1494. if (!z_min_endstop)
  1495. #endif
  1496. {
  1497. if (IsRunning()) {
  1498. SERIAL_ERROR_START;
  1499. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1500. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1501. }
  1502. Stop();
  1503. }
  1504. #endif // Z_PROBE_ALLEN_KEY
  1505. #if ENABLED(FIX_MOUNTED_PROBE)
  1506. // Nothing to do here. Just clear z_probe_is_active
  1507. #endif
  1508. z_probe_is_active = false;
  1509. }
  1510. #endif // HAS_Z_MIN_PROBE
  1511. enum ProbeAction {
  1512. ProbeStay = 0,
  1513. ProbeDeploy = _BV(0),
  1514. ProbeStow = _BV(1),
  1515. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1516. };
  1517. // Probe bed height at position (x,y), returns the measured z value
  1518. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
  1519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1520. if (DEBUGGING(LEVELING)) {
  1521. SERIAL_ECHOLNPGM("probe_pt >>>");
  1522. SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
  1523. SERIAL_EOL;
  1524. DEBUG_POS("", current_position);
  1525. }
  1526. #endif
  1527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1528. if (DEBUGGING(LEVELING)) {
  1529. SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
  1530. SERIAL_EOL;
  1531. SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
  1532. SERIAL_EOL;
  1533. }
  1534. #endif
  1535. // Move Z up to the z_before height, then move the Z probe to the given XY
  1536. do_blocking_move_to_z(z_before); // this also updates current_position
  1537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1538. if (DEBUGGING(LEVELING)) {
  1539. SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1540. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1541. SERIAL_EOL;
  1542. }
  1543. #endif
  1544. // this also updates current_position
  1545. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1546. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1547. if (probe_action & ProbeDeploy) {
  1548. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1549. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
  1550. #endif
  1551. deploy_z_probe();
  1552. }
  1553. #endif
  1554. run_z_probe();
  1555. float measured_z = current_position[Z_AXIS];
  1556. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1557. if (probe_action & ProbeStow) {
  1558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1559. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
  1560. #endif
  1561. stow_z_probe();
  1562. }
  1563. #endif
  1564. if (verbose_level > 2) {
  1565. SERIAL_PROTOCOLPGM("Bed X: ");
  1566. SERIAL_PROTOCOL_F(x, 3);
  1567. SERIAL_PROTOCOLPGM(" Y: ");
  1568. SERIAL_PROTOCOL_F(y, 3);
  1569. SERIAL_PROTOCOLPGM(" Z: ");
  1570. SERIAL_PROTOCOL_F(measured_z, 3);
  1571. SERIAL_EOL;
  1572. }
  1573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1574. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1575. #endif
  1576. return measured_z;
  1577. }
  1578. #if ENABLED(DELTA)
  1579. /**
  1580. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1581. */
  1582. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1583. if (bed_level[x][y] != 0.0) {
  1584. return; // Don't overwrite good values.
  1585. }
  1586. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1587. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1588. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1589. float median = c; // Median is robust (ignores outliers).
  1590. if (a < b) {
  1591. if (b < c) median = b;
  1592. if (c < a) median = a;
  1593. }
  1594. else { // b <= a
  1595. if (c < b) median = b;
  1596. if (a < c) median = a;
  1597. }
  1598. bed_level[x][y] = median;
  1599. }
  1600. /**
  1601. * Fill in the unprobed points (corners of circular print surface)
  1602. * using linear extrapolation, away from the center.
  1603. */
  1604. static void extrapolate_unprobed_bed_level() {
  1605. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1606. for (int y = 0; y <= half; y++) {
  1607. for (int x = 0; x <= half; x++) {
  1608. if (x + y < 3) continue;
  1609. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1610. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1611. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1612. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1613. }
  1614. }
  1615. }
  1616. /**
  1617. * Print calibration results for plotting or manual frame adjustment.
  1618. */
  1619. static void print_bed_level() {
  1620. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1621. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1622. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1623. SERIAL_PROTOCOLCHAR(' ');
  1624. }
  1625. SERIAL_EOL;
  1626. }
  1627. }
  1628. /**
  1629. * Reset calibration results to zero.
  1630. */
  1631. void reset_bed_level() {
  1632. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1633. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1634. #endif
  1635. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1636. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1637. bed_level[x][y] = 0.0;
  1638. }
  1639. }
  1640. }
  1641. #endif // DELTA
  1642. #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
  1643. void raise_z_for_servo() {
  1644. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
  1645. /**
  1646. * The zprobe_zoffset is negative any switch below the nozzle, so
  1647. * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
  1648. */
  1649. z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
  1650. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  1651. }
  1652. #endif
  1653. #endif // AUTO_BED_LEVELING_FEATURE
  1654. #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
  1655. static void axis_unhomed_error() {
  1656. LCD_MESSAGEPGM(MSG_YX_UNHOMED);
  1657. SERIAL_ECHO_START;
  1658. SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
  1659. }
  1660. #endif
  1661. #if ENABLED(Z_PROBE_SLED)
  1662. #ifndef SLED_DOCKING_OFFSET
  1663. #define SLED_DOCKING_OFFSET 0
  1664. #endif
  1665. /**
  1666. * Method to dock/undock a sled designed by Charles Bell.
  1667. *
  1668. * dock[in] If true, move to MAX_X and engage the electromagnet
  1669. * offset[in] The additional distance to move to adjust docking location
  1670. */
  1671. static void dock_sled(bool dock, int offset = 0) {
  1672. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1673. if (DEBUGGING(LEVELING)) {
  1674. SERIAL_ECHOPAIR("dock_sled(", dock);
  1675. SERIAL_ECHOLNPGM(")");
  1676. }
  1677. #endif
  1678. if (z_probe_is_active == dock) return;
  1679. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  1680. axis_unhomed_error();
  1681. return;
  1682. }
  1683. float oldXpos = current_position[X_AXIS]; // save x position
  1684. if (dock) {
  1685. #if Z_RAISE_AFTER_PROBING > 0
  1686. raise_z_after_probing(); // raise Z
  1687. #endif
  1688. // Dock sled a bit closer to ensure proper capturing
  1689. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
  1690. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1691. }
  1692. else {
  1693. float z_loc = current_position[Z_AXIS];
  1694. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1695. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1696. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1697. }
  1698. do_blocking_move_to_x(oldXpos); // return to position before docking
  1699. z_probe_is_active = dock;
  1700. }
  1701. #endif // Z_PROBE_SLED
  1702. /**
  1703. * Home an individual axis
  1704. */
  1705. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1706. static void homeaxis(AxisEnum axis) {
  1707. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1708. if (DEBUGGING(LEVELING)) {
  1709. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  1710. SERIAL_ECHOLNPGM(")");
  1711. }
  1712. #endif
  1713. #define HOMEAXIS_DO(LETTER) \
  1714. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1715. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1716. int axis_home_dir =
  1717. #if ENABLED(DUAL_X_CARRIAGE)
  1718. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1719. #endif
  1720. home_dir(axis);
  1721. // Set the axis position as setup for the move
  1722. current_position[axis] = 0;
  1723. sync_plan_position();
  1724. #if ENABLED(Z_PROBE_SLED)
  1725. #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
  1726. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1727. #define _Z_DEPLOY (dock_sled(false))
  1728. #define _Z_STOW (dock_sled(true))
  1729. #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1730. #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
  1731. #define _Z_PROBE_SUBTEST false // Z will never be invoked
  1732. #define _Z_DEPLOY (deploy_z_probe())
  1733. #define _Z_STOW (stow_z_probe())
  1734. #elif HAS_SERVO_ENDSTOPS
  1735. #define _Z_SERVO_TEST true // servo.move X, Y, Z
  1736. #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
  1737. #endif
  1738. if (axis == Z_AXIS) {
  1739. // If there's a Z probe that needs deployment...
  1740. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1741. // ...and homing Z towards the bed? Deploy it.
  1742. if (axis_home_dir < 0) _Z_DEPLOY;
  1743. #endif
  1744. }
  1745. #if HAS_SERVO_ENDSTOPS
  1746. // Engage an X or Y Servo endstop if enabled
  1747. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1748. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1749. if (_Z_PROBE_SUBTEST) z_probe_is_active = true;
  1750. }
  1751. #endif
  1752. // Set a flag for Z motor locking
  1753. #if ENABLED(Z_DUAL_ENDSTOPS)
  1754. if (axis == Z_AXIS) In_Homing_Process(true);
  1755. #endif
  1756. // Move towards the endstop until an endstop is triggered
  1757. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1758. feedrate = homing_feedrate[axis];
  1759. line_to_destination();
  1760. st_synchronize();
  1761. // Set the axis position as setup for the move
  1762. current_position[axis] = 0;
  1763. sync_plan_position();
  1764. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1765. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1766. #endif
  1767. enable_endstops(false); // Disable endstops while moving away
  1768. // Move away from the endstop by the axis HOME_BUMP_MM
  1769. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1770. line_to_destination();
  1771. st_synchronize();
  1772. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1773. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1774. #endif
  1775. enable_endstops(true); // Enable endstops for next homing move
  1776. // Slow down the feedrate for the next move
  1777. set_homing_bump_feedrate(axis);
  1778. // Move slowly towards the endstop until triggered
  1779. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1780. line_to_destination();
  1781. st_synchronize();
  1782. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1783. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  1784. #endif
  1785. #if ENABLED(Z_DUAL_ENDSTOPS)
  1786. if (axis == Z_AXIS) {
  1787. float adj = fabs(z_endstop_adj);
  1788. bool lockZ1;
  1789. if (axis_home_dir > 0) {
  1790. adj = -adj;
  1791. lockZ1 = (z_endstop_adj > 0);
  1792. }
  1793. else
  1794. lockZ1 = (z_endstop_adj < 0);
  1795. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1796. sync_plan_position();
  1797. // Move to the adjusted endstop height
  1798. feedrate = homing_feedrate[axis];
  1799. destination[Z_AXIS] = adj;
  1800. line_to_destination();
  1801. st_synchronize();
  1802. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1803. In_Homing_Process(false);
  1804. } // Z_AXIS
  1805. #endif
  1806. #if ENABLED(DELTA)
  1807. // retrace by the amount specified in endstop_adj
  1808. if (endstop_adj[axis] * axis_home_dir < 0) {
  1809. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1810. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)");
  1811. #endif
  1812. enable_endstops(false); // Disable endstops while moving away
  1813. sync_plan_position();
  1814. destination[axis] = endstop_adj[axis];
  1815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1816. if (DEBUGGING(LEVELING)) {
  1817. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  1818. DEBUG_POS("", destination);
  1819. }
  1820. #endif
  1821. line_to_destination();
  1822. st_synchronize();
  1823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1824. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)");
  1825. #endif
  1826. enable_endstops(true); // Enable endstops for next homing move
  1827. }
  1828. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1829. else {
  1830. if (DEBUGGING(LEVELING)) {
  1831. SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
  1832. SERIAL_EOL;
  1833. }
  1834. }
  1835. #endif
  1836. #endif
  1837. // Set the axis position to its home position (plus home offsets)
  1838. set_axis_is_at_home(axis);
  1839. sync_plan_position();
  1840. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1841. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1842. #endif
  1843. destination[axis] = current_position[axis];
  1844. feedrate = 0.0;
  1845. endstops_hit_on_purpose(); // clear endstop hit flags
  1846. axis_known_position[axis] = true;
  1847. axis_homed[axis] = true;
  1848. // Put away the Z probe
  1849. #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
  1850. if (axis == Z_AXIS && axis_home_dir < 0) {
  1851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1852. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
  1853. #endif
  1854. _Z_STOW;
  1855. }
  1856. #endif
  1857. // Retract Servo endstop if enabled
  1858. #if HAS_SERVO_ENDSTOPS
  1859. if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
  1860. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1861. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
  1862. #endif
  1863. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1864. if (_Z_PROBE_SUBTEST) z_probe_is_active = false;
  1865. }
  1866. #endif
  1867. }
  1868. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1869. if (DEBUGGING(LEVELING)) {
  1870. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  1871. SERIAL_ECHOLNPGM(")");
  1872. }
  1873. #endif
  1874. }
  1875. #if ENABLED(FWRETRACT)
  1876. void retract(bool retracting, bool swapping = false) {
  1877. if (retracting == retracted[active_extruder]) return;
  1878. float oldFeedrate = feedrate;
  1879. set_destination_to_current();
  1880. if (retracting) {
  1881. feedrate = retract_feedrate * 60;
  1882. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1883. plan_set_e_position(current_position[E_AXIS]);
  1884. prepare_move();
  1885. if (retract_zlift > 0.01) {
  1886. current_position[Z_AXIS] -= retract_zlift;
  1887. #if ENABLED(DELTA)
  1888. sync_plan_position_delta();
  1889. #else
  1890. sync_plan_position();
  1891. #endif
  1892. prepare_move();
  1893. }
  1894. }
  1895. else {
  1896. if (retract_zlift > 0.01) {
  1897. current_position[Z_AXIS] += retract_zlift;
  1898. #if ENABLED(DELTA)
  1899. sync_plan_position_delta();
  1900. #else
  1901. sync_plan_position();
  1902. #endif
  1903. //prepare_move();
  1904. }
  1905. feedrate = retract_recover_feedrate * 60;
  1906. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1907. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1908. plan_set_e_position(current_position[E_AXIS]);
  1909. prepare_move();
  1910. }
  1911. feedrate = oldFeedrate;
  1912. retracted[active_extruder] = retracting;
  1913. } // retract()
  1914. #endif // FWRETRACT
  1915. /**
  1916. * ***************************************************************************
  1917. * ***************************** G-CODE HANDLING *****************************
  1918. * ***************************************************************************
  1919. */
  1920. /**
  1921. * Set XYZE destination and feedrate from the current GCode command
  1922. *
  1923. * - Set destination from included axis codes
  1924. * - Set to current for missing axis codes
  1925. * - Set the feedrate, if included
  1926. */
  1927. void gcode_get_destination() {
  1928. for (int i = 0; i < NUM_AXIS; i++) {
  1929. if (code_seen(axis_codes[i]))
  1930. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1931. else
  1932. destination[i] = current_position[i];
  1933. }
  1934. if (code_seen('F')) {
  1935. float next_feedrate = code_value();
  1936. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1937. }
  1938. }
  1939. void unknown_command_error() {
  1940. SERIAL_ECHO_START;
  1941. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1942. SERIAL_ECHO(current_command);
  1943. SERIAL_ECHOPGM("\"\n");
  1944. }
  1945. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  1946. /**
  1947. * Output a "busy" message at regular intervals
  1948. * while the machine is not accepting commands.
  1949. */
  1950. void host_keepalive() {
  1951. millis_t ms = millis();
  1952. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  1953. if (PENDING(ms, next_busy_signal_ms)) return;
  1954. switch (busy_state) {
  1955. case IN_HANDLER:
  1956. case IN_PROCESS:
  1957. SERIAL_ECHO_START;
  1958. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  1959. break;
  1960. case PAUSED_FOR_USER:
  1961. SERIAL_ECHO_START;
  1962. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  1963. break;
  1964. case PAUSED_FOR_INPUT:
  1965. SERIAL_ECHO_START;
  1966. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  1967. break;
  1968. default:
  1969. break;
  1970. }
  1971. }
  1972. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  1973. }
  1974. #endif //HOST_KEEPALIVE_FEATURE
  1975. /**
  1976. * G0, G1: Coordinated movement of X Y Z E axes
  1977. */
  1978. inline void gcode_G0_G1() {
  1979. if (IsRunning()) {
  1980. gcode_get_destination(); // For X Y Z E F
  1981. #if ENABLED(FWRETRACT)
  1982. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1983. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1984. // Is this move an attempt to retract or recover?
  1985. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1986. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1987. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1988. retract(!retracted[active_extruder]);
  1989. return;
  1990. }
  1991. }
  1992. #endif //FWRETRACT
  1993. prepare_move();
  1994. }
  1995. }
  1996. /**
  1997. * G2: Clockwise Arc
  1998. * G3: Counterclockwise Arc
  1999. */
  2000. inline void gcode_G2_G3(bool clockwise) {
  2001. if (IsRunning()) {
  2002. #if ENABLED(SF_ARC_FIX)
  2003. bool relative_mode_backup = relative_mode;
  2004. relative_mode = true;
  2005. #endif
  2006. gcode_get_destination();
  2007. #if ENABLED(SF_ARC_FIX)
  2008. relative_mode = relative_mode_backup;
  2009. #endif
  2010. // Center of arc as offset from current_position
  2011. float arc_offset[2] = {
  2012. code_seen('I') ? code_value() : 0,
  2013. code_seen('J') ? code_value() : 0
  2014. };
  2015. // Send an arc to the planner
  2016. plan_arc(destination, arc_offset, clockwise);
  2017. refresh_cmd_timeout();
  2018. }
  2019. }
  2020. /**
  2021. * G4: Dwell S<seconds> or P<milliseconds>
  2022. */
  2023. inline void gcode_G4() {
  2024. millis_t codenum = 0;
  2025. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  2026. if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
  2027. st_synchronize();
  2028. refresh_cmd_timeout();
  2029. codenum += previous_cmd_ms; // keep track of when we started waiting
  2030. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2031. while (PENDING(millis(), codenum)) idle();
  2032. }
  2033. #if ENABLED(FWRETRACT)
  2034. /**
  2035. * G10 - Retract filament according to settings of M207
  2036. * G11 - Recover filament according to settings of M208
  2037. */
  2038. inline void gcode_G10_G11(bool doRetract=false) {
  2039. #if EXTRUDERS > 1
  2040. if (doRetract) {
  2041. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  2042. }
  2043. #endif
  2044. retract(doRetract
  2045. #if EXTRUDERS > 1
  2046. , retracted_swap[active_extruder]
  2047. #endif
  2048. );
  2049. }
  2050. #endif //FWRETRACT
  2051. /**
  2052. * G28: Home all axes according to settings
  2053. *
  2054. * Parameters
  2055. *
  2056. * None Home to all axes with no parameters.
  2057. * With QUICK_HOME enabled XY will home together, then Z.
  2058. *
  2059. * Cartesian parameters
  2060. *
  2061. * X Home to the X endstop
  2062. * Y Home to the Y endstop
  2063. * Z Home to the Z endstop
  2064. *
  2065. */
  2066. inline void gcode_G28() {
  2067. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2068. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
  2069. #endif
  2070. // Wait for planner moves to finish!
  2071. st_synchronize();
  2072. // For auto bed leveling, clear the level matrix
  2073. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2074. plan_bed_level_matrix.set_to_identity();
  2075. #if ENABLED(DELTA)
  2076. reset_bed_level();
  2077. #endif
  2078. #endif
  2079. /**
  2080. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2081. * on again when homing all axis
  2082. */
  2083. #if ENABLED(MESH_BED_LEVELING)
  2084. uint8_t mbl_was_active = mbl.active;
  2085. mbl.active = 0;
  2086. #endif
  2087. setup_for_endstop_move();
  2088. /**
  2089. * Directly after a reset this is all 0. Later we get a hint if we have
  2090. * to raise z or not.
  2091. */
  2092. set_destination_to_current();
  2093. feedrate = 0.0;
  2094. #if ENABLED(DELTA)
  2095. /**
  2096. * A delta can only safely home all axis at the same time
  2097. * all axis have to home at the same time
  2098. */
  2099. // Pretend the current position is 0,0,0
  2100. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2101. sync_plan_position();
  2102. // Move all carriages up together until the first endstop is hit.
  2103. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2104. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2105. line_to_destination();
  2106. st_synchronize();
  2107. endstops_hit_on_purpose(); // clear endstop hit flags
  2108. // Destination reached
  2109. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2110. // take care of back off and rehome now we are all at the top
  2111. HOMEAXIS(X);
  2112. HOMEAXIS(Y);
  2113. HOMEAXIS(Z);
  2114. sync_plan_position_delta();
  2115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2116. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2117. #endif
  2118. #else // NOT DELTA
  2119. bool homeX = code_seen(axis_codes[X_AXIS]),
  2120. homeY = code_seen(axis_codes[Y_AXIS]),
  2121. homeZ = code_seen(axis_codes[Z_AXIS]);
  2122. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2123. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2124. if (home_all_axis || homeZ) {
  2125. HOMEAXIS(Z);
  2126. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2127. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2128. #endif
  2129. }
  2130. #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
  2131. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2132. if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
  2133. destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
  2134. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  2135. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2136. if (DEBUGGING(LEVELING)) {
  2137. SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
  2138. SERIAL_EOL;
  2139. DEBUG_POS("> (home_all_axis || homeZ)", current_position);
  2140. DEBUG_POS("> (home_all_axis || homeZ)", destination);
  2141. }
  2142. #endif
  2143. line_to_destination();
  2144. st_synchronize();
  2145. /**
  2146. * Update the current Z position even if it currently not real from
  2147. * Z-home otherwise each call to line_to_destination() will want to
  2148. * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
  2149. */
  2150. current_position[Z_AXIS] = destination[Z_AXIS];
  2151. }
  2152. #endif
  2153. #if ENABLED(QUICK_HOME)
  2154. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  2155. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2156. #if ENABLED(DUAL_X_CARRIAGE)
  2157. int x_axis_home_dir = x_home_dir(active_extruder);
  2158. extruder_duplication_enabled = false;
  2159. #else
  2160. int x_axis_home_dir = home_dir(X_AXIS);
  2161. #endif
  2162. sync_plan_position();
  2163. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2164. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2165. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2166. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2167. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2168. line_to_destination();
  2169. st_synchronize();
  2170. set_axis_is_at_home(X_AXIS);
  2171. set_axis_is_at_home(Y_AXIS);
  2172. sync_plan_position();
  2173. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2174. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
  2175. #endif
  2176. destination[X_AXIS] = current_position[X_AXIS];
  2177. destination[Y_AXIS] = current_position[Y_AXIS];
  2178. line_to_destination();
  2179. feedrate = 0.0;
  2180. st_synchronize();
  2181. endstops_hit_on_purpose(); // clear endstop hit flags
  2182. current_position[X_AXIS] = destination[X_AXIS];
  2183. current_position[Y_AXIS] = destination[Y_AXIS];
  2184. #if DISABLED(SCARA)
  2185. current_position[Z_AXIS] = destination[Z_AXIS];
  2186. #endif
  2187. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2188. if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
  2189. #endif
  2190. }
  2191. #endif // QUICK_HOME
  2192. #if ENABLED(HOME_Y_BEFORE_X)
  2193. // Home Y
  2194. if (home_all_axis || homeY) HOMEAXIS(Y);
  2195. #endif
  2196. // Home X
  2197. if (home_all_axis || homeX) {
  2198. #if ENABLED(DUAL_X_CARRIAGE)
  2199. int tmp_extruder = active_extruder;
  2200. extruder_duplication_enabled = false;
  2201. active_extruder = !active_extruder;
  2202. HOMEAXIS(X);
  2203. inactive_extruder_x_pos = current_position[X_AXIS];
  2204. active_extruder = tmp_extruder;
  2205. HOMEAXIS(X);
  2206. // reset state used by the different modes
  2207. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2208. delayed_move_time = 0;
  2209. active_extruder_parked = true;
  2210. #else
  2211. HOMEAXIS(X);
  2212. #endif
  2213. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2214. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2215. #endif
  2216. }
  2217. #if DISABLED(HOME_Y_BEFORE_X)
  2218. // Home Y
  2219. if (home_all_axis || homeY) {
  2220. HOMEAXIS(Y);
  2221. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2222. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2223. #endif
  2224. }
  2225. #endif
  2226. // Home Z last if homing towards the bed
  2227. #if Z_HOME_DIR < 0
  2228. if (home_all_axis || homeZ) {
  2229. #if ENABLED(Z_SAFE_HOMING)
  2230. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2231. if (DEBUGGING(LEVELING)) {
  2232. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2233. }
  2234. #endif
  2235. if (home_all_axis) {
  2236. /**
  2237. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2238. * No need to move Z any more as this height should already be safe
  2239. * enough to reach Z_SAFE_HOMING XY positions.
  2240. * Just make sure the planner is in sync.
  2241. */
  2242. sync_plan_position();
  2243. /**
  2244. * Set the Z probe (or just the nozzle) destination to the safe
  2245. * homing point
  2246. */
  2247. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2248. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2249. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2250. feedrate = XY_TRAVEL_SPEED;
  2251. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2252. if (DEBUGGING(LEVELING)) {
  2253. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2254. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2255. }
  2256. #endif
  2257. // Move in the XY plane
  2258. line_to_destination();
  2259. st_synchronize();
  2260. /**
  2261. * Update the current positions for XY, Z is still at least at
  2262. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2263. */
  2264. current_position[X_AXIS] = destination[X_AXIS];
  2265. current_position[Y_AXIS] = destination[Y_AXIS];
  2266. // Home the Z axis
  2267. HOMEAXIS(Z);
  2268. }
  2269. else if (homeZ) { // Don't need to Home Z twice
  2270. // Let's see if X and Y are homed
  2271. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
  2272. /**
  2273. * Make sure the Z probe is within the physical limits
  2274. * NOTE: This doesn't necessarily ensure the Z probe is also
  2275. * within the bed!
  2276. */
  2277. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2278. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2279. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2280. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2281. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2282. // Home the Z axis
  2283. HOMEAXIS(Z);
  2284. }
  2285. else {
  2286. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2287. SERIAL_ECHO_START;
  2288. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2289. }
  2290. }
  2291. else {
  2292. axis_unhomed_error();
  2293. }
  2294. } // !home_all_axes && homeZ
  2295. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2296. if (DEBUGGING(LEVELING)) {
  2297. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2298. }
  2299. #endif
  2300. #else // !Z_SAFE_HOMING
  2301. HOMEAXIS(Z);
  2302. #endif // !Z_SAFE_HOMING
  2303. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2304. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2305. #endif
  2306. } // home_all_axis || homeZ
  2307. #endif // Z_HOME_DIR < 0
  2308. sync_plan_position();
  2309. #endif // else DELTA
  2310. #if ENABLED(SCARA)
  2311. sync_plan_position_delta();
  2312. #endif
  2313. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  2314. enable_endstops(false);
  2315. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2316. if (DEBUGGING(LEVELING)) {
  2317. SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
  2318. }
  2319. #endif
  2320. #endif
  2321. // For mesh leveling move back to Z=0
  2322. #if ENABLED(MESH_BED_LEVELING)
  2323. if (mbl_was_active && home_all_axis) {
  2324. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2325. sync_plan_position();
  2326. mbl.active = 1;
  2327. current_position[Z_AXIS] = 0.0;
  2328. set_destination_to_current();
  2329. feedrate = homing_feedrate[Z_AXIS];
  2330. line_to_destination();
  2331. st_synchronize();
  2332. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2333. if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
  2334. #endif
  2335. }
  2336. #endif
  2337. feedrate = saved_feedrate;
  2338. feedrate_multiplier = saved_feedrate_multiplier;
  2339. refresh_cmd_timeout();
  2340. endstops_hit_on_purpose(); // clear endstop hit flags
  2341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2342. if (DEBUGGING(LEVELING)) {
  2343. SERIAL_ECHOLNPGM("<<< gcode_G28");
  2344. }
  2345. #endif
  2346. gcode_M114(); // Send end position to RepetierHost
  2347. }
  2348. #if ENABLED(MESH_BED_LEVELING)
  2349. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
  2350. /**
  2351. * G29: Mesh-based Z probe, probes a grid and produces a
  2352. * mesh to compensate for variable bed height
  2353. *
  2354. * Parameters With MESH_BED_LEVELING:
  2355. *
  2356. * S0 Produce a mesh report
  2357. * S1 Start probing mesh points
  2358. * S2 Probe the next mesh point
  2359. * S3 Xn Yn Zn.nn Manually modify a single point
  2360. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2361. *
  2362. * The S0 report the points as below
  2363. *
  2364. * +----> X-axis 1-n
  2365. * |
  2366. * |
  2367. * v Y-axis 1-n
  2368. *
  2369. */
  2370. inline void gcode_G29() {
  2371. static int probe_point = -1;
  2372. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  2373. if (state < 0 || state > 4) {
  2374. SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
  2375. return;
  2376. }
  2377. int ix, iy;
  2378. float z;
  2379. switch (state) {
  2380. case MeshReport:
  2381. if (mbl.active) {
  2382. SERIAL_PROTOCOLPGM("Num X,Y: ");
  2383. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  2384. SERIAL_PROTOCOLCHAR(',');
  2385. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2386. SERIAL_PROTOCOLPGM("\nZ search height: ");
  2387. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  2388. SERIAL_PROTOCOLPGM("\nZ offset: ");
  2389. SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2390. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2391. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  2392. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  2393. SERIAL_PROTOCOLPGM(" ");
  2394. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  2395. }
  2396. SERIAL_EOL;
  2397. }
  2398. }
  2399. else
  2400. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2401. break;
  2402. case MeshStart:
  2403. mbl.reset();
  2404. probe_point = 0;
  2405. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2406. break;
  2407. case MeshNext:
  2408. if (probe_point < 0) {
  2409. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2410. return;
  2411. }
  2412. if (probe_point == 0) {
  2413. // Set Z to a positive value before recording the first Z.
  2414. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS];
  2415. sync_plan_position();
  2416. }
  2417. else {
  2418. // For others, save the Z of the previous point, then raise Z again.
  2419. ix = (probe_point - 1) % (MESH_NUM_X_POINTS);
  2420. iy = (probe_point - 1) / (MESH_NUM_X_POINTS);
  2421. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2422. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  2423. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS];
  2424. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2425. st_synchronize();
  2426. }
  2427. // Is there another point to sample? Move there.
  2428. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2429. ix = probe_point % (MESH_NUM_X_POINTS);
  2430. iy = probe_point / (MESH_NUM_X_POINTS);
  2431. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  2432. current_position[X_AXIS] = mbl.get_x(ix) + home_offset[X_AXIS];
  2433. current_position[Y_AXIS] = mbl.get_y(iy) + home_offset[Y_AXIS];
  2434. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder);
  2435. st_synchronize();
  2436. probe_point++;
  2437. }
  2438. else {
  2439. // After recording the last point, activate the mbl and home
  2440. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2441. probe_point = -1;
  2442. mbl.active = 1;
  2443. enqueue_and_echo_commands_P(PSTR("G28"));
  2444. }
  2445. break;
  2446. case MeshSet:
  2447. if (code_seen('X')) {
  2448. ix = code_value_long() - 1;
  2449. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  2450. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  2451. return;
  2452. }
  2453. }
  2454. else {
  2455. SERIAL_PROTOCOLPGM("X not entered.\n");
  2456. return;
  2457. }
  2458. if (code_seen('Y')) {
  2459. iy = code_value_long() - 1;
  2460. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  2461. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  2462. return;
  2463. }
  2464. }
  2465. else {
  2466. SERIAL_PROTOCOLPGM("Y not entered.\n");
  2467. return;
  2468. }
  2469. if (code_seen('Z')) {
  2470. z = code_value();
  2471. }
  2472. else {
  2473. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2474. return;
  2475. }
  2476. mbl.z_values[iy][ix] = z;
  2477. break;
  2478. case MeshSetZOffset:
  2479. if (code_seen('Z')) {
  2480. z = code_value();
  2481. }
  2482. else {
  2483. SERIAL_PROTOCOLPGM("Z not entered.\n");
  2484. return;
  2485. }
  2486. mbl.z_offset = z;
  2487. } // switch(state)
  2488. }
  2489. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2490. void out_of_range_error(const char* p_edge) {
  2491. SERIAL_PROTOCOLPGM("?Probe ");
  2492. serialprintPGM(p_edge);
  2493. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2494. }
  2495. /**
  2496. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2497. * Will fail if the printer has not been homed with G28.
  2498. *
  2499. * Enhanced G29 Auto Bed Leveling Probe Routine
  2500. *
  2501. * Parameters With AUTO_BED_LEVELING_GRID:
  2502. *
  2503. * P Set the size of the grid that will be probed (P x P points).
  2504. * Not supported by non-linear delta printer bed leveling.
  2505. * Example: "G29 P4"
  2506. *
  2507. * S Set the XY travel speed between probe points (in mm/min)
  2508. *
  2509. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2510. * or clean the rotation Matrix. Useful to check the topology
  2511. * after a first run of G29.
  2512. *
  2513. * V Set the verbose level (0-4). Example: "G29 V3"
  2514. *
  2515. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2516. * This is useful for manual bed leveling and finding flaws in the bed (to
  2517. * assist with part placement).
  2518. * Not supported by non-linear delta printer bed leveling.
  2519. *
  2520. * F Set the Front limit of the probing grid
  2521. * B Set the Back limit of the probing grid
  2522. * L Set the Left limit of the probing grid
  2523. * R Set the Right limit of the probing grid
  2524. *
  2525. * Global Parameters:
  2526. *
  2527. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2528. * Include "E" to engage/disengage the Z probe for each sample.
  2529. * There's no extra effect if you have a fixed Z probe.
  2530. * Usage: "G29 E" or "G29 e"
  2531. *
  2532. */
  2533. inline void gcode_G29() {
  2534. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2535. if (DEBUGGING(LEVELING)) {
  2536. SERIAL_ECHOLNPGM("gcode_G29 >>>");
  2537. DEBUG_POS("", current_position);
  2538. }
  2539. #endif
  2540. // Don't allow auto-leveling without homing first
  2541. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
  2542. axis_unhomed_error();
  2543. return;
  2544. }
  2545. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2546. if (verbose_level < 0 || verbose_level > 4) {
  2547. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2548. return;
  2549. }
  2550. bool dryrun = code_seen('D'),
  2551. deploy_probe_for_each_reading = code_seen('E');
  2552. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2553. #if DISABLED(DELTA)
  2554. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2555. #endif
  2556. if (verbose_level > 0) {
  2557. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2558. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2559. }
  2560. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2561. #if DISABLED(DELTA)
  2562. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2563. if (auto_bed_leveling_grid_points < 2) {
  2564. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2565. return;
  2566. }
  2567. #endif
  2568. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2569. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2570. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2571. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2572. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2573. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2574. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2575. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2576. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2577. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2578. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2579. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2580. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2581. if (left_out || right_out || front_out || back_out) {
  2582. if (left_out) {
  2583. out_of_range_error(PSTR("(L)eft"));
  2584. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2585. }
  2586. if (right_out) {
  2587. out_of_range_error(PSTR("(R)ight"));
  2588. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2589. }
  2590. if (front_out) {
  2591. out_of_range_error(PSTR("(F)ront"));
  2592. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2593. }
  2594. if (back_out) {
  2595. out_of_range_error(PSTR("(B)ack"));
  2596. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2597. }
  2598. return;
  2599. }
  2600. #endif // AUTO_BED_LEVELING_GRID
  2601. if (!dryrun) {
  2602. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2603. plan_bed_level_matrix.set_to_identity();
  2604. #if ENABLED(DELTA)
  2605. reset_bed_level();
  2606. #else //!DELTA
  2607. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2608. if (DEBUGGING(LEVELING)) {
  2609. vector_3 corrected_position = plan_get_position();
  2610. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2611. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2612. }
  2613. #endif
  2614. //vector_3 corrected_position = plan_get_position();
  2615. //corrected_position.debug("position before G29");
  2616. vector_3 uncorrected_position = plan_get_position();
  2617. //uncorrected_position.debug("position during G29");
  2618. current_position[X_AXIS] = uncorrected_position.x;
  2619. current_position[Y_AXIS] = uncorrected_position.y;
  2620. current_position[Z_AXIS] = uncorrected_position.z;
  2621. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2622. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2623. #endif
  2624. sync_plan_position();
  2625. #endif // !DELTA
  2626. }
  2627. #if ENABLED(Z_PROBE_SLED)
  2628. dock_sled(false); // engage (un-dock) the Z probe
  2629. #elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
  2630. deploy_z_probe();
  2631. #endif
  2632. st_synchronize();
  2633. setup_for_endstop_move();
  2634. feedrate = homing_feedrate[Z_AXIS];
  2635. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2636. // probe at the points of a lattice grid
  2637. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2638. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2639. #if ENABLED(DELTA)
  2640. delta_grid_spacing[0] = xGridSpacing;
  2641. delta_grid_spacing[1] = yGridSpacing;
  2642. float zoffset = zprobe_zoffset;
  2643. if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
  2644. #else // !DELTA
  2645. /**
  2646. * solve the plane equation ax + by + d = z
  2647. * A is the matrix with rows [x y 1] for all the probed points
  2648. * B is the vector of the Z positions
  2649. * the normal vector to the plane is formed by the coefficients of the
  2650. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2651. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2652. */
  2653. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2654. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2655. eqnBVector[abl2], // "B" vector of Z points
  2656. mean = 0.0;
  2657. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2658. #endif // !DELTA
  2659. int probePointCounter = 0;
  2660. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2661. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2662. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2663. int xStart, xStop, xInc;
  2664. if (zig) {
  2665. xStart = 0;
  2666. xStop = auto_bed_leveling_grid_points;
  2667. xInc = 1;
  2668. }
  2669. else {
  2670. xStart = auto_bed_leveling_grid_points - 1;
  2671. xStop = -1;
  2672. xInc = -1;
  2673. }
  2674. zig = !zig;
  2675. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2676. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2677. // raise extruder
  2678. float measured_z,
  2679. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
  2680. if (probePointCounter) {
  2681. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2682. if (DEBUGGING(LEVELING)) {
  2683. SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
  2684. SERIAL_EOL;
  2685. }
  2686. #endif
  2687. }
  2688. else {
  2689. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2690. if (DEBUGGING(LEVELING)) {
  2691. SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
  2692. SERIAL_EOL;
  2693. }
  2694. #endif
  2695. }
  2696. #if ENABLED(DELTA)
  2697. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2698. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2699. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2700. #endif //DELTA
  2701. ProbeAction act;
  2702. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2703. act = ProbeDeployAndStow;
  2704. else if (yCount == 0 && xCount == xStart)
  2705. act = ProbeDeploy;
  2706. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2707. act = ProbeStow;
  2708. else
  2709. act = ProbeStay;
  2710. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2711. #if DISABLED(DELTA)
  2712. mean += measured_z;
  2713. eqnBVector[probePointCounter] = measured_z;
  2714. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2715. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2716. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2717. indexIntoAB[xCount][yCount] = probePointCounter;
  2718. #else
  2719. bed_level[xCount][yCount] = measured_z + zoffset;
  2720. #endif
  2721. probePointCounter++;
  2722. idle();
  2723. } //xProbe
  2724. } //yProbe
  2725. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2726. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  2727. #endif
  2728. clean_up_after_endstop_move();
  2729. #if ENABLED(DELTA)
  2730. if (!dryrun) extrapolate_unprobed_bed_level();
  2731. print_bed_level();
  2732. #else // !DELTA
  2733. // solve lsq problem
  2734. double plane_equation_coefficients[3];
  2735. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2736. mean /= abl2;
  2737. if (verbose_level) {
  2738. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2739. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2740. SERIAL_PROTOCOLPGM(" b: ");
  2741. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2742. SERIAL_PROTOCOLPGM(" d: ");
  2743. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2744. SERIAL_EOL;
  2745. if (verbose_level > 2) {
  2746. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2747. SERIAL_PROTOCOL_F(mean, 8);
  2748. SERIAL_EOL;
  2749. }
  2750. }
  2751. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2752. // Show the Topography map if enabled
  2753. if (do_topography_map) {
  2754. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2755. SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
  2756. SERIAL_PROTOCOLPGM(" | |\n");
  2757. SERIAL_PROTOCOLPGM(" L | (+) | R\n");
  2758. SERIAL_PROTOCOLPGM(" E | | I\n");
  2759. SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
  2760. SERIAL_PROTOCOLPGM(" T | | H\n");
  2761. SERIAL_PROTOCOLPGM(" | (-) | T\n");
  2762. SERIAL_PROTOCOLPGM(" | |\n");
  2763. SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
  2764. SERIAL_PROTOCOLPGM(" (0,0)\n");
  2765. float min_diff = 999;
  2766. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2767. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2768. int ind = indexIntoAB[xx][yy];
  2769. float diff = eqnBVector[ind] - mean;
  2770. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2771. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2772. z_tmp = 0;
  2773. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2774. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  2775. if (diff >= 0.0)
  2776. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2777. else
  2778. SERIAL_PROTOCOLCHAR(' ');
  2779. SERIAL_PROTOCOL_F(diff, 5);
  2780. } // xx
  2781. SERIAL_EOL;
  2782. } // yy
  2783. SERIAL_EOL;
  2784. if (verbose_level > 3) {
  2785. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2786. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2787. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2788. int ind = indexIntoAB[xx][yy];
  2789. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2790. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2791. z_tmp = 0;
  2792. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2793. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2794. if (diff >= 0.0)
  2795. SERIAL_PROTOCOLPGM(" +");
  2796. // Include + for column alignment
  2797. else
  2798. SERIAL_PROTOCOLCHAR(' ');
  2799. SERIAL_PROTOCOL_F(diff, 5);
  2800. } // xx
  2801. SERIAL_EOL;
  2802. } // yy
  2803. SERIAL_EOL;
  2804. }
  2805. } //do_topography_map
  2806. #endif //!DELTA
  2807. #else // !AUTO_BED_LEVELING_GRID
  2808. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2809. if (DEBUGGING(LEVELING)) {
  2810. SERIAL_ECHOLNPGM("> 3-point Leveling");
  2811. }
  2812. #endif
  2813. // Actions for each probe
  2814. ProbeAction p1, p2, p3;
  2815. if (deploy_probe_for_each_reading)
  2816. p1 = p2 = p3 = ProbeDeployAndStow;
  2817. else
  2818. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2819. // Probe at 3 arbitrary points
  2820. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2821. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2822. Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
  2823. p1, verbose_level),
  2824. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2825. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2826. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2827. p2, verbose_level),
  2828. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2829. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2830. current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
  2831. p3, verbose_level);
  2832. clean_up_after_endstop_move();
  2833. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2834. #endif // !AUTO_BED_LEVELING_GRID
  2835. #if ENABLED(DELTA)
  2836. // Allen Key Probe for Delta
  2837. #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
  2838. stow_z_probe();
  2839. #elif Z_RAISE_AFTER_PROBING > 0
  2840. raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
  2841. #endif
  2842. #else // !DELTA
  2843. if (verbose_level > 0)
  2844. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2845. if (!dryrun) {
  2846. /**
  2847. * Correct the Z height difference from Z probe position and nozzle tip position.
  2848. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  2849. * from the nozzle. When the bed is uneven, this height must be corrected.
  2850. */
  2851. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2852. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2853. z_tmp = current_position[Z_AXIS],
  2854. real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2855. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2856. if (DEBUGGING(LEVELING)) {
  2857. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
  2858. SERIAL_EOL;
  2859. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
  2860. SERIAL_EOL;
  2861. }
  2862. #endif
  2863. // Apply the correction sending the Z probe offset
  2864. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp);
  2865. /*
  2866. * Get the current Z position and send it to the planner.
  2867. *
  2868. * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
  2869. * (most recent plan_set_position/sync_plan_position)
  2870. *
  2871. * >> zprobe_zoffset : Z distance from nozzle to Z probe
  2872. * (set by default, M851, EEPROM, or Menu)
  2873. *
  2874. * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
  2875. * after the last probe
  2876. *
  2877. * >> Should home_offset[Z_AXIS] be included?
  2878. *
  2879. *
  2880. * Discussion: home_offset[Z_AXIS] was applied in G28 to set the
  2881. * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
  2882. * not actually "homing" Z... then perhaps it should not be included
  2883. * here. The purpose of home_offset[] is to adjust for inaccurate
  2884. * endstops, not for reasonably accurate probes. If it were added
  2885. * here, it could be seen as a compensating factor for the Z probe.
  2886. */
  2887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2888. if (DEBUGGING(LEVELING)) {
  2889. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  2890. SERIAL_EOL;
  2891. }
  2892. #endif
  2893. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2894. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2895. + Z_RAISE_AFTER_PROBING
  2896. #endif
  2897. ;
  2898. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
  2899. sync_plan_position();
  2900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2901. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  2902. #endif
  2903. }
  2904. // Sled assembly for Cartesian bots
  2905. #if ENABLED(Z_PROBE_SLED)
  2906. dock_sled(true); // dock the sled
  2907. #elif Z_RAISE_AFTER_PROBING > 0
  2908. // Raise Z axis for non-delta and non servo based probes
  2909. #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
  2910. raise_z_after_probing();
  2911. #endif
  2912. #endif
  2913. #endif // !DELTA
  2914. #ifdef Z_PROBE_END_SCRIPT
  2915. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2916. if (DEBUGGING(LEVELING)) {
  2917. SERIAL_ECHO("Z Probe End Script: ");
  2918. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  2919. }
  2920. #endif
  2921. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  2922. #if ENABLED(HAS_Z_MIN_PROBE)
  2923. z_probe_is_active = false;
  2924. #endif
  2925. st_synchronize();
  2926. #endif
  2927. KEEPALIVE_STATE(IN_HANDLER);
  2928. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2929. if (DEBUGGING(LEVELING)) {
  2930. SERIAL_ECHOLNPGM("<<< gcode_G29");
  2931. }
  2932. #endif
  2933. gcode_M114(); // Send end position to RepetierHost
  2934. }
  2935. #if DISABLED(Z_PROBE_SLED) // could be avoided
  2936. /**
  2937. * G30: Do a single Z probe at the current XY
  2938. */
  2939. inline void gcode_G30() {
  2940. #if HAS_SERVO_ENDSTOPS
  2941. raise_z_for_servo();
  2942. #endif
  2943. deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2944. st_synchronize();
  2945. // TODO: clear the leveling matrix or the planner will be set incorrectly
  2946. setup_for_endstop_move(); // Too late. Must be done before deploying.
  2947. feedrate = homing_feedrate[Z_AXIS];
  2948. run_z_probe();
  2949. SERIAL_PROTOCOLPGM("Bed X: ");
  2950. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2951. SERIAL_PROTOCOLPGM(" Y: ");
  2952. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  2953. SERIAL_PROTOCOLPGM(" Z: ");
  2954. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2955. SERIAL_EOL;
  2956. clean_up_after_endstop_move(); // Too early. must be done after the stowing.
  2957. #if HAS_SERVO_ENDSTOPS
  2958. raise_z_for_servo();
  2959. #endif
  2960. stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
  2961. gcode_M114(); // Send end position to RepetierHost
  2962. }
  2963. #endif //!Z_PROBE_SLED
  2964. #endif //AUTO_BED_LEVELING_FEATURE
  2965. /**
  2966. * G92: Set current position to given X Y Z E
  2967. */
  2968. inline void gcode_G92() {
  2969. if (!code_seen(axis_codes[E_AXIS]))
  2970. st_synchronize();
  2971. bool didXYZ = false;
  2972. for (int i = 0; i < NUM_AXIS; i++) {
  2973. if (code_seen(axis_codes[i])) {
  2974. float v = current_position[i] = code_value();
  2975. if (i == E_AXIS)
  2976. plan_set_e_position(v);
  2977. else
  2978. didXYZ = true;
  2979. }
  2980. }
  2981. if (didXYZ) {
  2982. #if ENABLED(DELTA) || ENABLED(SCARA)
  2983. sync_plan_position_delta();
  2984. #else
  2985. sync_plan_position();
  2986. #endif
  2987. }
  2988. }
  2989. #if ENABLED(ULTIPANEL)
  2990. /**
  2991. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2992. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2993. */
  2994. inline void gcode_M0_M1() {
  2995. char* args = current_command_args;
  2996. uint8_t test_value = 12;
  2997. SERIAL_ECHOPAIR("TEST", test_value);
  2998. millis_t codenum = 0;
  2999. bool hasP = false, hasS = false;
  3000. if (code_seen('P')) {
  3001. codenum = code_value_short(); // milliseconds to wait
  3002. hasP = codenum > 0;
  3003. }
  3004. if (code_seen('S')) {
  3005. codenum = code_value() * 1000UL; // seconds to wait
  3006. hasS = codenum > 0;
  3007. }
  3008. if (!hasP && !hasS && *args != '\0')
  3009. lcd_setstatus(args, true);
  3010. else {
  3011. LCD_MESSAGEPGM(MSG_USERWAIT);
  3012. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3013. dontExpireStatus();
  3014. #endif
  3015. }
  3016. lcd_ignore_click();
  3017. st_synchronize();
  3018. refresh_cmd_timeout();
  3019. if (codenum > 0) {
  3020. codenum += previous_cmd_ms; // wait until this time for a click
  3021. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3022. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3023. KEEPALIVE_STATE(IN_HANDLER);
  3024. lcd_ignore_click(false);
  3025. }
  3026. else {
  3027. if (!lcd_detected()) return;
  3028. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3029. while (!lcd_clicked()) idle();
  3030. KEEPALIVE_STATE(IN_HANDLER);
  3031. }
  3032. if (IS_SD_PRINTING)
  3033. LCD_MESSAGEPGM(MSG_RESUMING);
  3034. else
  3035. LCD_MESSAGEPGM(WELCOME_MSG);
  3036. }
  3037. #endif // ULTIPANEL
  3038. /**
  3039. * M17: Enable power on all stepper motors
  3040. */
  3041. inline void gcode_M17() {
  3042. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3043. enable_all_steppers();
  3044. }
  3045. #if ENABLED(SDSUPPORT)
  3046. /**
  3047. * M20: List SD card to serial output
  3048. */
  3049. inline void gcode_M20() {
  3050. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3051. card.ls();
  3052. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3053. }
  3054. /**
  3055. * M21: Init SD Card
  3056. */
  3057. inline void gcode_M21() {
  3058. card.initsd();
  3059. }
  3060. /**
  3061. * M22: Release SD Card
  3062. */
  3063. inline void gcode_M22() {
  3064. card.release();
  3065. }
  3066. /**
  3067. * M23: Open a file
  3068. */
  3069. inline void gcode_M23() {
  3070. card.openFile(current_command_args, true);
  3071. }
  3072. /**
  3073. * M24: Start SD Print
  3074. */
  3075. inline void gcode_M24() {
  3076. card.startFileprint();
  3077. print_job_timer.start();
  3078. }
  3079. /**
  3080. * M25: Pause SD Print
  3081. */
  3082. inline void gcode_M25() {
  3083. card.pauseSDPrint();
  3084. }
  3085. /**
  3086. * M26: Set SD Card file index
  3087. */
  3088. inline void gcode_M26() {
  3089. if (card.cardOK && code_seen('S'))
  3090. card.setIndex(code_value_short());
  3091. }
  3092. /**
  3093. * M27: Get SD Card status
  3094. */
  3095. inline void gcode_M27() {
  3096. card.getStatus();
  3097. }
  3098. /**
  3099. * M28: Start SD Write
  3100. */
  3101. inline void gcode_M28() {
  3102. card.openFile(current_command_args, false);
  3103. }
  3104. /**
  3105. * M29: Stop SD Write
  3106. * Processed in write to file routine above
  3107. */
  3108. inline void gcode_M29() {
  3109. // card.saving = false;
  3110. }
  3111. /**
  3112. * M30 <filename>: Delete SD Card file
  3113. */
  3114. inline void gcode_M30() {
  3115. if (card.cardOK) {
  3116. card.closefile();
  3117. card.removeFile(current_command_args);
  3118. }
  3119. }
  3120. #endif //SDSUPPORT
  3121. /**
  3122. * M31: Get the time since the start of SD Print (or last M109)
  3123. */
  3124. inline void gcode_M31() {
  3125. millis_t t = print_job_timer.duration();
  3126. int min = t / 60, sec = t % 60;
  3127. char time[30];
  3128. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3129. SERIAL_ECHO_START;
  3130. SERIAL_ECHOLN(time);
  3131. lcd_setstatus(time);
  3132. autotempShutdown();
  3133. }
  3134. #if ENABLED(SDSUPPORT)
  3135. /**
  3136. * M32: Select file and start SD Print
  3137. */
  3138. inline void gcode_M32() {
  3139. if (card.sdprinting)
  3140. st_synchronize();
  3141. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3142. if (!namestartpos)
  3143. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3144. else
  3145. namestartpos++; //to skip the '!'
  3146. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3147. if (card.cardOK) {
  3148. card.openFile(namestartpos, true, call_procedure);
  3149. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3150. card.setIndex(code_value_short());
  3151. card.startFileprint();
  3152. // Procedure calls count as normal print time.
  3153. if (!call_procedure) print_job_timer.start();
  3154. }
  3155. }
  3156. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3157. /**
  3158. * M33: Get the long full path of a file or folder
  3159. *
  3160. * Parameters:
  3161. * <dospath> Case-insensitive DOS-style path to a file or folder
  3162. *
  3163. * Example:
  3164. * M33 miscel~1/armchair/armcha~1.gco
  3165. *
  3166. * Output:
  3167. * /Miscellaneous/Armchair/Armchair.gcode
  3168. */
  3169. inline void gcode_M33() {
  3170. card.printLongPath(current_command_args);
  3171. }
  3172. #endif
  3173. /**
  3174. * M928: Start SD Write
  3175. */
  3176. inline void gcode_M928() {
  3177. card.openLogFile(current_command_args);
  3178. }
  3179. #endif // SDSUPPORT
  3180. /**
  3181. * M42: Change pin status via GCode
  3182. *
  3183. * P<pin> Pin number (LED if omitted)
  3184. * S<byte> Pin status from 0 - 255
  3185. */
  3186. inline void gcode_M42() {
  3187. if (code_seen('S')) {
  3188. int pin_status = code_value_short();
  3189. if (pin_status < 0 || pin_status > 255) return;
  3190. int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
  3191. if (pin_number < 0) return;
  3192. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3193. if (pin_number == sensitive_pins[i]) return;
  3194. pinMode(pin_number, OUTPUT);
  3195. digitalWrite(pin_number, pin_status);
  3196. analogWrite(pin_number, pin_status);
  3197. #if FAN_COUNT > 0
  3198. switch (pin_number) {
  3199. #if HAS_FAN0
  3200. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3201. #endif
  3202. #if HAS_FAN1
  3203. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3204. #endif
  3205. #if HAS_FAN2
  3206. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3207. #endif
  3208. }
  3209. #endif
  3210. } // code_seen('S')
  3211. }
  3212. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3213. /**
  3214. * This is redundant since the SanityCheck.h already checks for a valid
  3215. * Z_MIN_PROBE_PIN, but here for clarity.
  3216. */
  3217. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  3218. #if !HAS_Z_PROBE
  3219. #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
  3220. #endif
  3221. #elif !HAS_Z_MIN
  3222. #error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
  3223. #endif
  3224. /**
  3225. * M48: Z probe repeatability measurement function.
  3226. *
  3227. * Usage:
  3228. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3229. * P = Number of sampled points (4-50, default 10)
  3230. * X = Sample X position
  3231. * Y = Sample Y position
  3232. * V = Verbose level (0-4, default=1)
  3233. * E = Engage Z probe for each reading
  3234. * L = Number of legs of movement before probe
  3235. * S = Schizoid (Or Star if you prefer)
  3236. *
  3237. * This function assumes the bed has been homed. Specifically, that a G28 command
  3238. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3239. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3240. * regenerated.
  3241. */
  3242. inline void gcode_M48() {
  3243. if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
  3244. axis_unhomed_error();
  3245. return;
  3246. }
  3247. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  3248. int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
  3249. if (code_seen('V')) {
  3250. verbose_level = code_value_short();
  3251. if (verbose_level < 0 || verbose_level > 4) {
  3252. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  3253. return;
  3254. }
  3255. }
  3256. if (verbose_level > 0)
  3257. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  3258. if (code_seen('P')) {
  3259. n_samples = code_value_short();
  3260. if (n_samples < 4 || n_samples > 50) {
  3261. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  3262. return;
  3263. }
  3264. }
  3265. float X_current = current_position[X_AXIS],
  3266. Y_current = current_position[Y_AXIS],
  3267. Z_current = current_position[Z_AXIS],
  3268. X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
  3269. Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3270. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  3271. bool deploy_probe_for_each_reading = code_seen('E');
  3272. if (code_seen('X')) {
  3273. X_probe_location = code_value();
  3274. #if DISABLED(DELTA)
  3275. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3276. out_of_range_error(PSTR("X"));
  3277. return;
  3278. }
  3279. #endif
  3280. }
  3281. if (code_seen('Y')) {
  3282. Y_probe_location = code_value();
  3283. #if DISABLED(DELTA)
  3284. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3285. out_of_range_error(PSTR("Y"));
  3286. return;
  3287. }
  3288. #endif
  3289. }
  3290. #if ENABLED(DELTA)
  3291. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3292. SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
  3293. return;
  3294. }
  3295. #endif
  3296. bool seen_L = code_seen('L');
  3297. if (seen_L) {
  3298. n_legs = code_value_short();
  3299. if (n_legs < 0 || n_legs > 15) {
  3300. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  3301. return;
  3302. }
  3303. if (n_legs == 1) n_legs = 2;
  3304. }
  3305. if (code_seen('S')) {
  3306. schizoid_flag++;
  3307. if (!seen_L) n_legs = 7;
  3308. }
  3309. /**
  3310. * Now get everything to the specified probe point So we can safely do a
  3311. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3312. * we don't want to use that as a starting point for each probe.
  3313. */
  3314. if (verbose_level > 2)
  3315. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  3316. #if ENABLED(DELTA)
  3317. // we don't do bed level correction in M48 because we want the raw data when we probe
  3318. reset_bed_level();
  3319. #else
  3320. // we don't do bed level correction in M48 because we want the raw data when we probe
  3321. plan_bed_level_matrix.set_to_identity();
  3322. #endif
  3323. if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
  3324. do_blocking_move_to_z(Z_start_location);
  3325. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3326. /**
  3327. * OK, do the initial probe to get us close to the bed.
  3328. * Then retrace the right amount and use that in subsequent probes
  3329. */
  3330. setup_for_endstop_move();
  3331. probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
  3332. deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
  3333. verbose_level);
  3334. raise_z_after_probing();
  3335. for (uint8_t n = 0; n < n_samples; n++) {
  3336. randomSeed(millis());
  3337. delay(500);
  3338. if (n_legs) {
  3339. float radius, angle = random(0.0, 360.0);
  3340. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3341. radius = random(
  3342. #if ENABLED(DELTA)
  3343. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3344. #else
  3345. 5, X_MAX_LENGTH / 8
  3346. #endif
  3347. );
  3348. if (verbose_level > 3) {
  3349. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3350. SERIAL_ECHOPAIR(" angle: ", angle);
  3351. delay(100);
  3352. if (dir > 0)
  3353. SERIAL_ECHO(" Direction: Counter Clockwise \n");
  3354. else
  3355. SERIAL_ECHO(" Direction: Clockwise \n");
  3356. delay(100);
  3357. }
  3358. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3359. double delta_angle;
  3360. if (schizoid_flag)
  3361. // The points of a 5 point star are 72 degrees apart. We need to
  3362. // skip a point and go to the next one on the star.
  3363. delta_angle = dir * 2.0 * 72.0;
  3364. else
  3365. // If we do this line, we are just trying to move further
  3366. // around the circle.
  3367. delta_angle = dir * (float) random(25, 45);
  3368. angle += delta_angle;
  3369. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3370. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3371. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3372. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3373. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius;
  3374. Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius;
  3375. #if DISABLED(DELTA)
  3376. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3377. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3378. #else
  3379. // If we have gone out too far, we can do a simple fix and scale the numbers
  3380. // back in closer to the origin.
  3381. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3382. X_current /= 1.25;
  3383. Y_current /= 1.25;
  3384. if (verbose_level > 3) {
  3385. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3386. SERIAL_ECHOPAIR(", ", Y_current);
  3387. SERIAL_EOL;
  3388. delay(50);
  3389. }
  3390. }
  3391. #endif
  3392. if (verbose_level > 3) {
  3393. SERIAL_PROTOCOL("Going to:");
  3394. SERIAL_ECHOPAIR("x: ", X_current);
  3395. SERIAL_ECHOPAIR("y: ", Y_current);
  3396. SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
  3397. SERIAL_EOL;
  3398. delay(55);
  3399. }
  3400. do_blocking_move_to_xy(X_current, Y_current);
  3401. } // n_legs loop
  3402. } // n_legs
  3403. /**
  3404. * We don't really have to do this move, but if we don't we can see a
  3405. * funny shift in the Z Height because the user might not have the
  3406. * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
  3407. * height. This gets us back to the probe location at the same height that
  3408. * we have been running around the circle at.
  3409. */
  3410. do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER);
  3411. if (deploy_probe_for_each_reading)
  3412. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
  3413. else {
  3414. if (n == n_samples - 1)
  3415. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
  3416. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
  3417. }
  3418. /**
  3419. * Get the current mean for the data points we have so far
  3420. */
  3421. sum = 0.0;
  3422. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3423. mean = sum / (n + 1);
  3424. /**
  3425. * Now, use that mean to calculate the standard deviation for the
  3426. * data points we have so far
  3427. */
  3428. sum = 0.0;
  3429. for (uint8_t j = 0; j <= n; j++) {
  3430. float ss = sample_set[j] - mean;
  3431. sum += ss * ss;
  3432. }
  3433. sigma = sqrt(sum / (n + 1));
  3434. if (verbose_level > 1) {
  3435. SERIAL_PROTOCOL(n + 1);
  3436. SERIAL_PROTOCOLPGM(" of ");
  3437. SERIAL_PROTOCOL((int)n_samples);
  3438. SERIAL_PROTOCOLPGM(" z: ");
  3439. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3440. delay(50);
  3441. if (verbose_level > 2) {
  3442. SERIAL_PROTOCOLPGM(" mean: ");
  3443. SERIAL_PROTOCOL_F(mean, 6);
  3444. SERIAL_PROTOCOLPGM(" sigma: ");
  3445. SERIAL_PROTOCOL_F(sigma, 6);
  3446. }
  3447. }
  3448. if (verbose_level > 0) SERIAL_EOL;
  3449. delay(50);
  3450. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  3451. } // End of probe loop code
  3452. // raise_z_after_probing();
  3453. if (verbose_level > 0) {
  3454. SERIAL_PROTOCOLPGM("Mean: ");
  3455. SERIAL_PROTOCOL_F(mean, 6);
  3456. SERIAL_EOL;
  3457. delay(25);
  3458. }
  3459. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3460. SERIAL_PROTOCOL_F(sigma, 6);
  3461. SERIAL_EOL; SERIAL_EOL;
  3462. delay(25);
  3463. clean_up_after_endstop_move();
  3464. gcode_M114(); // Send end position to RepetierHost
  3465. }
  3466. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  3467. /**
  3468. * M75: Start print timer
  3469. */
  3470. inline void gcode_M75() {
  3471. print_job_timer.start();
  3472. }
  3473. /**
  3474. * M76: Pause print timer
  3475. */
  3476. inline void gcode_M76() {
  3477. print_job_timer.pause();
  3478. }
  3479. /**
  3480. * M77: Stop print timer
  3481. */
  3482. inline void gcode_M77() {
  3483. print_job_timer.stop();
  3484. }
  3485. /**
  3486. * M104: Set hot end temperature
  3487. */
  3488. inline void gcode_M104() {
  3489. if (setTargetedHotend(104)) return;
  3490. if (DEBUGGING(DRYRUN)) return;
  3491. if (code_seen('S')) {
  3492. float temp = code_value();
  3493. setTargetHotend(temp, target_extruder);
  3494. #if ENABLED(DUAL_X_CARRIAGE)
  3495. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3496. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3497. #endif
  3498. /**
  3499. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3500. * stand by mode, for instance in a dual extruder setup, without affecting
  3501. * the running print timer.
  3502. */
  3503. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3504. print_job_timer.stop();
  3505. LCD_MESSAGEPGM(WELCOME_MSG);
  3506. }
  3507. /**
  3508. * We do not check if the timer is already running because this check will
  3509. * be done for us inside the Stopwatch::start() method thus a running timer
  3510. * will not restart.
  3511. */
  3512. else print_job_timer.start();
  3513. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3514. }
  3515. }
  3516. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3517. void print_heaterstates() {
  3518. #if HAS_TEMP_HOTEND
  3519. SERIAL_PROTOCOLPGM(" T:");
  3520. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  3521. SERIAL_PROTOCOLPGM(" /");
  3522. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  3523. #endif
  3524. #if HAS_TEMP_BED
  3525. SERIAL_PROTOCOLPGM(" B:");
  3526. SERIAL_PROTOCOL_F(degBed(), 1);
  3527. SERIAL_PROTOCOLPGM(" /");
  3528. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  3529. #endif
  3530. #if EXTRUDERS > 1
  3531. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3532. SERIAL_PROTOCOLPGM(" T");
  3533. SERIAL_PROTOCOL(e);
  3534. SERIAL_PROTOCOLCHAR(':');
  3535. SERIAL_PROTOCOL_F(degHotend(e), 1);
  3536. SERIAL_PROTOCOLPGM(" /");
  3537. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  3538. }
  3539. #endif
  3540. #if HAS_TEMP_BED
  3541. SERIAL_PROTOCOLPGM(" B@:");
  3542. #ifdef BED_WATTS
  3543. SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
  3544. SERIAL_PROTOCOLCHAR('W');
  3545. #else
  3546. SERIAL_PROTOCOL(getHeaterPower(-1));
  3547. #endif
  3548. #endif
  3549. SERIAL_PROTOCOLPGM(" @:");
  3550. #ifdef EXTRUDER_WATTS
  3551. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
  3552. SERIAL_PROTOCOLCHAR('W');
  3553. #else
  3554. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  3555. #endif
  3556. #if EXTRUDERS > 1
  3557. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  3558. SERIAL_PROTOCOLPGM(" @");
  3559. SERIAL_PROTOCOL(e);
  3560. SERIAL_PROTOCOLCHAR(':');
  3561. #ifdef EXTRUDER_WATTS
  3562. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
  3563. SERIAL_PROTOCOLCHAR('W');
  3564. #else
  3565. SERIAL_PROTOCOL(getHeaterPower(e));
  3566. #endif
  3567. }
  3568. #endif
  3569. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3570. #if HAS_TEMP_BED
  3571. SERIAL_PROTOCOLPGM(" ADC B:");
  3572. SERIAL_PROTOCOL_F(degBed(), 1);
  3573. SERIAL_PROTOCOLPGM("C->");
  3574. SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
  3575. #endif
  3576. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  3577. SERIAL_PROTOCOLPGM(" T");
  3578. SERIAL_PROTOCOL(cur_extruder);
  3579. SERIAL_PROTOCOLCHAR(':');
  3580. SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
  3581. SERIAL_PROTOCOLPGM("C->");
  3582. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
  3583. }
  3584. #endif
  3585. }
  3586. #endif
  3587. /**
  3588. * M105: Read hot end and bed temperature
  3589. */
  3590. inline void gcode_M105() {
  3591. if (setTargetedHotend(105)) return;
  3592. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3593. SERIAL_PROTOCOLPGM(MSG_OK);
  3594. print_heaterstates();
  3595. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3596. SERIAL_ERROR_START;
  3597. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3598. #endif
  3599. SERIAL_EOL;
  3600. }
  3601. #if FAN_COUNT > 0
  3602. /**
  3603. * M106: Set Fan Speed
  3604. *
  3605. * S<int> Speed between 0-255
  3606. * P<index> Fan index, if more than one fan
  3607. */
  3608. inline void gcode_M106() {
  3609. uint16_t s = code_seen('S') ? code_value_short() : 255,
  3610. p = code_seen('P') ? code_value_short() : 0;
  3611. NOMORE(s, 255);
  3612. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3613. }
  3614. /**
  3615. * M107: Fan Off
  3616. */
  3617. inline void gcode_M107() {
  3618. uint16_t p = code_seen('P') ? code_value_short() : 0;
  3619. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3620. }
  3621. #endif // FAN_COUNT > 0
  3622. /**
  3623. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3624. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3625. */
  3626. inline void gcode_M109() {
  3627. if (setTargetedHotend(109)) return;
  3628. if (DEBUGGING(DRYRUN)) return;
  3629. bool no_wait_for_cooling = code_seen('S');
  3630. if (no_wait_for_cooling || code_seen('R')) {
  3631. float temp = code_value();
  3632. setTargetHotend(temp, target_extruder);
  3633. #if ENABLED(DUAL_X_CARRIAGE)
  3634. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3635. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  3636. #endif
  3637. /**
  3638. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3639. * stand by mode, for instance in a dual extruder setup, without affecting
  3640. * the running print timer.
  3641. */
  3642. if (temp <= (EXTRUDE_MINTEMP)/2) {
  3643. print_job_timer.stop();
  3644. LCD_MESSAGEPGM(WELCOME_MSG);
  3645. }
  3646. /**
  3647. * We do not check if the timer is already running because this check will
  3648. * be done for us inside the Stopwatch::start() method thus a running timer
  3649. * will not restart.
  3650. */
  3651. else print_job_timer.start();
  3652. if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3653. }
  3654. #if ENABLED(AUTOTEMP)
  3655. autotemp_enabled = code_seen('F');
  3656. if (autotemp_enabled) autotemp_factor = code_value();
  3657. if (code_seen('S')) autotemp_min = code_value();
  3658. if (code_seen('B')) autotemp_max = code_value();
  3659. #endif
  3660. bool wants_to_cool = isCoolingHotend(target_extruder);
  3661. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3662. if (no_wait_for_cooling && wants_to_cool) return;
  3663. // Prevents a wait-forever situation if R is misused i.e. M109 R0
  3664. // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
  3665. if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return;
  3666. #ifdef TEMP_RESIDENCY_TIME
  3667. millis_t residency_start_ms = 0;
  3668. // Loop until the temperature has stabilized
  3669. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3670. #else
  3671. // Loop until the temperature is very close target
  3672. #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
  3673. #endif //TEMP_RESIDENCY_TIME
  3674. cancel_heatup = false;
  3675. millis_t now, next_temp_ms = 0;
  3676. do {
  3677. now = millis();
  3678. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3679. next_temp_ms = now + 1000UL;
  3680. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3681. print_heaterstates();
  3682. #endif
  3683. #ifdef TEMP_RESIDENCY_TIME
  3684. SERIAL_PROTOCOLPGM(" W:");
  3685. if (residency_start_ms) {
  3686. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3687. SERIAL_PROTOCOLLN(rem);
  3688. }
  3689. else {
  3690. SERIAL_PROTOCOLLNPGM("?");
  3691. }
  3692. #else
  3693. SERIAL_EOL;
  3694. #endif
  3695. }
  3696. idle();
  3697. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3698. #ifdef TEMP_RESIDENCY_TIME
  3699. float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder));
  3700. if (!residency_start_ms) {
  3701. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3702. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
  3703. }
  3704. else if (temp_diff > TEMP_HYSTERESIS) {
  3705. // Restart the timer whenever the temperature falls outside the hysteresis.
  3706. residency_start_ms = millis();
  3707. }
  3708. #endif //TEMP_RESIDENCY_TIME
  3709. } while (!cancel_heatup && TEMP_CONDITIONS);
  3710. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3711. }
  3712. #if HAS_TEMP_BED
  3713. /**
  3714. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3715. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3716. */
  3717. inline void gcode_M190() {
  3718. if (DEBUGGING(DRYRUN)) return;
  3719. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3720. bool no_wait_for_cooling = code_seen('S');
  3721. if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
  3722. bool wants_to_cool = isCoolingBed();
  3723. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3724. if (no_wait_for_cooling && wants_to_cool) return;
  3725. cancel_heatup = false;
  3726. millis_t next_temp_ms = 0;
  3727. // Wait for temperature to come close enough
  3728. do {
  3729. millis_t now = millis();
  3730. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3731. next_temp_ms = now + 1000UL;
  3732. print_heaterstates();
  3733. SERIAL_EOL;
  3734. }
  3735. idle();
  3736. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3737. } while (!cancel_heatup && (wants_to_cool ? isCoolingBed() : isHeatingBed()));
  3738. LCD_MESSAGEPGM(MSG_BED_DONE);
  3739. }
  3740. #endif // HAS_TEMP_BED
  3741. /**
  3742. * M110: Set Current Line Number
  3743. */
  3744. inline void gcode_M110() {
  3745. if (code_seen('N')) gcode_N = code_value_long();
  3746. }
  3747. /**
  3748. * M111: Set the debug level
  3749. */
  3750. inline void gcode_M111() {
  3751. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
  3752. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  3753. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  3754. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  3755. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  3756. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  3757. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3758. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  3759. #endif
  3760. const static char* const debug_strings[] PROGMEM = {
  3761. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  3762. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3763. str_debug_32
  3764. #endif
  3765. };
  3766. SERIAL_ECHO_START;
  3767. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  3768. if (marlin_debug_flags) {
  3769. uint8_t comma = 0;
  3770. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  3771. if (TEST(marlin_debug_flags, i)) {
  3772. if (comma++) SERIAL_CHAR(',');
  3773. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  3774. }
  3775. }
  3776. }
  3777. else {
  3778. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  3779. }
  3780. SERIAL_EOL;
  3781. }
  3782. /**
  3783. * M112: Emergency Stop
  3784. */
  3785. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3786. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  3787. /**
  3788. * M113: Get or set Host Keepalive interval (0 to disable)
  3789. *
  3790. * S<seconds> Optional. Set the keepalive interval.
  3791. */
  3792. inline void gcode_M113() {
  3793. if (code_seen('S')) {
  3794. host_keepalive_interval = (uint8_t)code_value_short();
  3795. NOMORE(host_keepalive_interval, 60);
  3796. }
  3797. else {
  3798. SERIAL_ECHO_START;
  3799. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  3800. SERIAL_EOL;
  3801. }
  3802. }
  3803. #endif
  3804. #if ENABLED(BARICUDA)
  3805. #if HAS_HEATER_1
  3806. /**
  3807. * M126: Heater 1 valve open
  3808. */
  3809. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3810. /**
  3811. * M127: Heater 1 valve close
  3812. */
  3813. inline void gcode_M127() { ValvePressure = 0; }
  3814. #endif
  3815. #if HAS_HEATER_2
  3816. /**
  3817. * M128: Heater 2 valve open
  3818. */
  3819. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3820. /**
  3821. * M129: Heater 2 valve close
  3822. */
  3823. inline void gcode_M129() { EtoPPressure = 0; }
  3824. #endif
  3825. #endif //BARICUDA
  3826. /**
  3827. * M140: Set bed temperature
  3828. */
  3829. inline void gcode_M140() {
  3830. if (DEBUGGING(DRYRUN)) return;
  3831. if (code_seen('S')) setTargetBed(code_value());
  3832. }
  3833. #if ENABLED(ULTIPANEL)
  3834. /**
  3835. * M145: Set the heatup state for a material in the LCD menu
  3836. * S<material> (0=PLA, 1=ABS)
  3837. * H<hotend temp>
  3838. * B<bed temp>
  3839. * F<fan speed>
  3840. */
  3841. inline void gcode_M145() {
  3842. int8_t material = code_seen('S') ? code_value_short() : 0;
  3843. if (material < 0 || material > 1) {
  3844. SERIAL_ERROR_START;
  3845. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3846. }
  3847. else {
  3848. int v;
  3849. switch (material) {
  3850. case 0:
  3851. if (code_seen('H')) {
  3852. v = code_value_short();
  3853. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3854. }
  3855. if (code_seen('F')) {
  3856. v = code_value_short();
  3857. plaPreheatFanSpeed = constrain(v, 0, 255);
  3858. }
  3859. #if TEMP_SENSOR_BED != 0
  3860. if (code_seen('B')) {
  3861. v = code_value_short();
  3862. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3863. }
  3864. #endif
  3865. break;
  3866. case 1:
  3867. if (code_seen('H')) {
  3868. v = code_value_short();
  3869. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3870. }
  3871. if (code_seen('F')) {
  3872. v = code_value_short();
  3873. absPreheatFanSpeed = constrain(v, 0, 255);
  3874. }
  3875. #if TEMP_SENSOR_BED != 0
  3876. if (code_seen('B')) {
  3877. v = code_value_short();
  3878. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3879. }
  3880. #endif
  3881. break;
  3882. }
  3883. }
  3884. }
  3885. #endif
  3886. #if HAS_POWER_SWITCH
  3887. /**
  3888. * M80: Turn on Power Supply
  3889. */
  3890. inline void gcode_M80() {
  3891. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3892. /**
  3893. * If you have a switch on suicide pin, this is useful
  3894. * if you want to start another print with suicide feature after
  3895. * a print without suicide...
  3896. */
  3897. #if HAS_SUICIDE
  3898. OUT_WRITE(SUICIDE_PIN, HIGH);
  3899. #endif
  3900. #if ENABLED(ULTIPANEL)
  3901. powersupply = true;
  3902. LCD_MESSAGEPGM(WELCOME_MSG);
  3903. lcd_update();
  3904. #endif
  3905. }
  3906. #endif // HAS_POWER_SWITCH
  3907. /**
  3908. * M81: Turn off Power, including Power Supply, if there is one.
  3909. *
  3910. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3911. */
  3912. inline void gcode_M81() {
  3913. disable_all_heaters();
  3914. finishAndDisableSteppers();
  3915. #if FAN_COUNT > 0
  3916. #if FAN_COUNT > 1
  3917. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  3918. #else
  3919. fanSpeeds[0] = 0;
  3920. #endif
  3921. #endif
  3922. delay(1000); // Wait 1 second before switching off
  3923. #if HAS_SUICIDE
  3924. st_synchronize();
  3925. suicide();
  3926. #elif HAS_POWER_SWITCH
  3927. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3928. #endif
  3929. #if ENABLED(ULTIPANEL)
  3930. #if HAS_POWER_SWITCH
  3931. powersupply = false;
  3932. #endif
  3933. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3934. lcd_update();
  3935. #endif
  3936. }
  3937. /**
  3938. * M82: Set E codes absolute (default)
  3939. */
  3940. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3941. /**
  3942. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3943. */
  3944. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3945. /**
  3946. * M18, M84: Disable all stepper motors
  3947. */
  3948. inline void gcode_M18_M84() {
  3949. if (code_seen('S')) {
  3950. stepper_inactive_time = code_value() * 1000UL;
  3951. }
  3952. else {
  3953. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
  3954. if (all_axis) {
  3955. finishAndDisableSteppers();
  3956. }
  3957. else {
  3958. st_synchronize();
  3959. if (code_seen('X')) disable_x();
  3960. if (code_seen('Y')) disable_y();
  3961. if (code_seen('Z')) disable_z();
  3962. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3963. if (code_seen('E')) {
  3964. disable_e0();
  3965. disable_e1();
  3966. disable_e2();
  3967. disable_e3();
  3968. }
  3969. #endif
  3970. }
  3971. }
  3972. }
  3973. /**
  3974. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3975. */
  3976. inline void gcode_M85() {
  3977. if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
  3978. }
  3979. /**
  3980. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3981. * (Follows the same syntax as G92)
  3982. */
  3983. inline void gcode_M92() {
  3984. for (int8_t i = 0; i < NUM_AXIS; i++) {
  3985. if (code_seen(axis_codes[i])) {
  3986. if (i == E_AXIS) {
  3987. float value = code_value();
  3988. if (value < 20.0) {
  3989. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3990. max_e_jerk *= factor;
  3991. max_feedrate[i] *= factor;
  3992. axis_steps_per_sqr_second[i] *= factor;
  3993. }
  3994. axis_steps_per_unit[i] = value;
  3995. }
  3996. else {
  3997. axis_steps_per_unit[i] = code_value();
  3998. }
  3999. }
  4000. }
  4001. }
  4002. /**
  4003. * M114: Output current position to serial port
  4004. */
  4005. inline void gcode_M114() {
  4006. SERIAL_PROTOCOLPGM("X:");
  4007. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4008. SERIAL_PROTOCOLPGM(" Y:");
  4009. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4010. SERIAL_PROTOCOLPGM(" Z:");
  4011. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4012. SERIAL_PROTOCOLPGM(" E:");
  4013. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4014. CRITICAL_SECTION_START;
  4015. extern volatile long count_position[NUM_AXIS];
  4016. long xpos = count_position[X_AXIS],
  4017. ypos = count_position[Y_AXIS],
  4018. zpos = count_position[Z_AXIS];
  4019. CRITICAL_SECTION_END;
  4020. #if ENABLED(COREXY) || ENABLED(COREXZ)
  4021. SERIAL_PROTOCOLPGM(MSG_COUNT_A);
  4022. #else
  4023. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  4024. #endif
  4025. SERIAL_PROTOCOL(xpos);
  4026. #if ENABLED(COREXY)
  4027. SERIAL_PROTOCOLPGM(" B:");
  4028. #else
  4029. SERIAL_PROTOCOLPGM(" Y:");
  4030. #endif
  4031. SERIAL_PROTOCOL(ypos);
  4032. #if ENABLED(COREXZ)
  4033. SERIAL_PROTOCOLPGM(" C:");
  4034. #else
  4035. SERIAL_PROTOCOLPGM(" Z:");
  4036. #endif
  4037. SERIAL_PROTOCOL(zpos);
  4038. SERIAL_EOL;
  4039. #if ENABLED(SCARA)
  4040. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4041. SERIAL_PROTOCOL(delta[X_AXIS]);
  4042. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4043. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4044. SERIAL_EOL;
  4045. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4046. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4047. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4048. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4049. SERIAL_EOL;
  4050. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4051. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]);
  4052. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4053. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]);
  4054. SERIAL_EOL; SERIAL_EOL;
  4055. #endif
  4056. }
  4057. /**
  4058. * M115: Capabilities string
  4059. */
  4060. inline void gcode_M115() {
  4061. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4062. }
  4063. /**
  4064. * M117: Set LCD Status Message
  4065. */
  4066. inline void gcode_M117() {
  4067. lcd_setstatus(current_command_args);
  4068. }
  4069. /**
  4070. * M119: Output endstop states to serial output
  4071. */
  4072. inline void gcode_M119() {
  4073. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  4074. #if HAS_X_MIN
  4075. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  4076. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4077. #endif
  4078. #if HAS_X_MAX
  4079. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  4080. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4081. #endif
  4082. #if HAS_Y_MIN
  4083. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  4084. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4085. #endif
  4086. #if HAS_Y_MAX
  4087. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  4088. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4089. #endif
  4090. #if HAS_Z_MIN
  4091. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  4092. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4093. #endif
  4094. #if HAS_Z_MAX
  4095. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  4096. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4097. #endif
  4098. #if HAS_Z2_MAX
  4099. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  4100. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4101. #endif
  4102. #if HAS_Z_PROBE
  4103. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  4104. SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN));
  4105. #endif
  4106. }
  4107. /**
  4108. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4109. */
  4110. inline void gcode_M120() { enable_endstops_globally(true); }
  4111. /**
  4112. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4113. */
  4114. inline void gcode_M121() { enable_endstops_globally(false); }
  4115. #if ENABLED(BLINKM)
  4116. /**
  4117. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4118. */
  4119. inline void gcode_M150() {
  4120. SendColors(
  4121. code_seen('R') ? (byte)code_value_short() : 0,
  4122. code_seen('U') ? (byte)code_value_short() : 0,
  4123. code_seen('B') ? (byte)code_value_short() : 0
  4124. );
  4125. }
  4126. #endif // BLINKM
  4127. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4128. /**
  4129. * M155: Send data to a I2C slave device
  4130. *
  4131. * This is a PoC, the formating and arguments for the GCODE will
  4132. * change to be more compatible, the current proposal is:
  4133. *
  4134. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4135. *
  4136. * M155 B<byte-1 value in base 10>
  4137. * M155 B<byte-2 value in base 10>
  4138. * M155 B<byte-3 value in base 10>
  4139. *
  4140. * M155 S1 ; Send the buffered data and reset the buffer
  4141. * M155 R1 ; Reset the buffer without sending data
  4142. *
  4143. */
  4144. inline void gcode_M155() {
  4145. // Set the target address
  4146. if (code_seen('A'))
  4147. i2c.address((uint8_t) code_value_short());
  4148. // Add a new byte to the buffer
  4149. else if (code_seen('B'))
  4150. i2c.addbyte((int) code_value_short());
  4151. // Flush the buffer to the bus
  4152. else if (code_seen('S')) i2c.send();
  4153. // Reset and rewind the buffer
  4154. else if (code_seen('R')) i2c.reset();
  4155. }
  4156. /**
  4157. * M156: Request X bytes from I2C slave device
  4158. *
  4159. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4160. */
  4161. inline void gcode_M156() {
  4162. uint8_t addr = code_seen('A') ? code_value_short() : 0;
  4163. int bytes = code_seen('B') ? code_value_short() : 0;
  4164. if (addr && bytes) {
  4165. i2c.address(addr);
  4166. i2c.reqbytes(bytes);
  4167. }
  4168. }
  4169. #endif //EXPERIMENTAL_I2CBUS
  4170. /**
  4171. * M200: Set filament diameter and set E axis units to cubic millimeters
  4172. *
  4173. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4174. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  4175. */
  4176. inline void gcode_M200() {
  4177. if (setTargetedHotend(200)) return;
  4178. if (code_seen('D')) {
  4179. float diameter = code_value();
  4180. // setting any extruder filament size disables volumetric on the assumption that
  4181. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4182. // for all extruders
  4183. volumetric_enabled = (diameter != 0.0);
  4184. if (volumetric_enabled) {
  4185. filament_size[target_extruder] = diameter;
  4186. // make sure all extruders have some sane value for the filament size
  4187. for (int i = 0; i < EXTRUDERS; i++)
  4188. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4189. }
  4190. }
  4191. else {
  4192. //reserved for setting filament diameter via UFID or filament measuring device
  4193. return;
  4194. }
  4195. calculate_volumetric_multipliers();
  4196. }
  4197. /**
  4198. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4199. */
  4200. inline void gcode_M201() {
  4201. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4202. if (code_seen(axis_codes[i])) {
  4203. max_acceleration_units_per_sq_second[i] = code_value();
  4204. }
  4205. }
  4206. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4207. reset_acceleration_rates();
  4208. }
  4209. #if 0 // Not used for Sprinter/grbl gen6
  4210. inline void gcode_M202() {
  4211. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4212. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  4213. }
  4214. }
  4215. #endif
  4216. /**
  4217. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  4218. */
  4219. inline void gcode_M203() {
  4220. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4221. if (code_seen(axis_codes[i])) {
  4222. max_feedrate[i] = code_value();
  4223. }
  4224. }
  4225. }
  4226. /**
  4227. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  4228. *
  4229. * P = Printing moves
  4230. * R = Retract only (no X, Y, Z) moves
  4231. * T = Travel (non printing) moves
  4232. *
  4233. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4234. */
  4235. inline void gcode_M204() {
  4236. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4237. travel_acceleration = acceleration = code_value();
  4238. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  4239. SERIAL_EOL;
  4240. }
  4241. if (code_seen('P')) {
  4242. acceleration = code_value();
  4243. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration);
  4244. SERIAL_EOL;
  4245. }
  4246. if (code_seen('R')) {
  4247. retract_acceleration = code_value();
  4248. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration);
  4249. SERIAL_EOL;
  4250. }
  4251. if (code_seen('T')) {
  4252. travel_acceleration = code_value();
  4253. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration);
  4254. SERIAL_EOL;
  4255. }
  4256. }
  4257. /**
  4258. * M205: Set Advanced Settings
  4259. *
  4260. * S = Min Feed Rate (mm/s)
  4261. * T = Min Travel Feed Rate (mm/s)
  4262. * B = Min Segment Time (µs)
  4263. * X = Max XY Jerk (mm/s/s)
  4264. * Z = Max Z Jerk (mm/s/s)
  4265. * E = Max E Jerk (mm/s/s)
  4266. */
  4267. inline void gcode_M205() {
  4268. if (code_seen('S')) minimumfeedrate = code_value();
  4269. if (code_seen('T')) mintravelfeedrate = code_value();
  4270. if (code_seen('B')) minsegmenttime = code_value();
  4271. if (code_seen('X')) max_xy_jerk = code_value();
  4272. if (code_seen('Z')) max_z_jerk = code_value();
  4273. if (code_seen('E')) max_e_jerk = code_value();
  4274. }
  4275. static void set_home_offset(AxisEnum axis, float v) {
  4276. min_pos[axis] = base_min_pos(axis) + v;
  4277. max_pos[axis] = base_max_pos(axis) + v;
  4278. current_position[axis] += v - home_offset[axis];
  4279. home_offset[axis] = v;
  4280. }
  4281. /**
  4282. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4283. */
  4284. inline void gcode_M206() {
  4285. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4286. if (code_seen(axis_codes[i]))
  4287. set_home_offset((AxisEnum)i, code_value());
  4288. #if ENABLED(SCARA)
  4289. if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
  4290. if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
  4291. #endif
  4292. sync_plan_position();
  4293. }
  4294. #if ENABLED(DELTA)
  4295. /**
  4296. * M665: Set delta configurations
  4297. *
  4298. * L = diagonal rod
  4299. * R = delta radius
  4300. * S = segments per second
  4301. * A = Alpha (Tower 1) diagonal rod trim
  4302. * B = Beta (Tower 2) diagonal rod trim
  4303. * C = Gamma (Tower 3) diagonal rod trim
  4304. */
  4305. inline void gcode_M665() {
  4306. if (code_seen('L')) delta_diagonal_rod = code_value();
  4307. if (code_seen('R')) delta_radius = code_value();
  4308. if (code_seen('S')) delta_segments_per_second = code_value();
  4309. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
  4310. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
  4311. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
  4312. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4313. }
  4314. /**
  4315. * M666: Set delta endstop adjustment
  4316. */
  4317. inline void gcode_M666() {
  4318. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4319. if (DEBUGGING(LEVELING)) {
  4320. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4321. }
  4322. #endif
  4323. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4324. if (code_seen(axis_codes[i])) {
  4325. endstop_adj[i] = code_value();
  4326. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4327. if (DEBUGGING(LEVELING)) {
  4328. SERIAL_ECHOPGM("endstop_adj[");
  4329. SERIAL_ECHO(axis_codes[i]);
  4330. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4331. SERIAL_EOL;
  4332. }
  4333. #endif
  4334. }
  4335. }
  4336. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4337. if (DEBUGGING(LEVELING)) {
  4338. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4339. }
  4340. #endif
  4341. }
  4342. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4343. /**
  4344. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4345. */
  4346. inline void gcode_M666() {
  4347. if (code_seen('Z')) z_endstop_adj = code_value();
  4348. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4349. SERIAL_EOL;
  4350. }
  4351. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4352. #if ENABLED(FWRETRACT)
  4353. /**
  4354. * M207: Set firmware retraction values
  4355. *
  4356. * S[+mm] retract_length
  4357. * W[+mm] retract_length_swap (multi-extruder)
  4358. * F[mm/min] retract_feedrate
  4359. * Z[mm] retract_zlift
  4360. */
  4361. inline void gcode_M207() {
  4362. if (code_seen('S')) retract_length = code_value();
  4363. if (code_seen('F')) retract_feedrate = code_value() / 60;
  4364. if (code_seen('Z')) retract_zlift = code_value();
  4365. #if EXTRUDERS > 1
  4366. if (code_seen('W')) retract_length_swap = code_value();
  4367. #endif
  4368. }
  4369. /**
  4370. * M208: Set firmware un-retraction values
  4371. *
  4372. * S[+mm] retract_recover_length (in addition to M207 S*)
  4373. * W[+mm] retract_recover_length_swap (multi-extruder)
  4374. * F[mm/min] retract_recover_feedrate
  4375. */
  4376. inline void gcode_M208() {
  4377. if (code_seen('S')) retract_recover_length = code_value();
  4378. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  4379. #if EXTRUDERS > 1
  4380. if (code_seen('W')) retract_recover_length_swap = code_value();
  4381. #endif
  4382. }
  4383. /**
  4384. * M209: Enable automatic retract (M209 S1)
  4385. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4386. */
  4387. inline void gcode_M209() {
  4388. if (code_seen('S')) {
  4389. int t = code_value_short();
  4390. switch (t) {
  4391. case 0:
  4392. autoretract_enabled = false;
  4393. break;
  4394. case 1:
  4395. autoretract_enabled = true;
  4396. break;
  4397. default:
  4398. unknown_command_error();
  4399. return;
  4400. }
  4401. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4402. }
  4403. }
  4404. #endif // FWRETRACT
  4405. #if EXTRUDERS > 1
  4406. /**
  4407. * M218 - set hotend offset (in mm)
  4408. *
  4409. * T<tool>
  4410. * X<xoffset>
  4411. * Y<yoffset>
  4412. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4413. */
  4414. inline void gcode_M218() {
  4415. if (setTargetedHotend(218)) return;
  4416. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  4417. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  4418. #if ENABLED(DUAL_X_CARRIAGE)
  4419. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  4420. #endif
  4421. SERIAL_ECHO_START;
  4422. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4423. for (int e = 0; e < EXTRUDERS; e++) {
  4424. SERIAL_CHAR(' ');
  4425. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  4426. SERIAL_CHAR(',');
  4427. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  4428. #if ENABLED(DUAL_X_CARRIAGE)
  4429. SERIAL_CHAR(',');
  4430. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  4431. #endif
  4432. }
  4433. SERIAL_EOL;
  4434. }
  4435. #endif // EXTRUDERS > 1
  4436. /**
  4437. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4438. */
  4439. inline void gcode_M220() {
  4440. if (code_seen('S')) feedrate_multiplier = code_value();
  4441. }
  4442. /**
  4443. * M221: Set extrusion percentage (M221 T0 S95)
  4444. */
  4445. inline void gcode_M221() {
  4446. if (code_seen('S')) {
  4447. int sval = code_value();
  4448. if (setTargetedHotend(221)) return;
  4449. extruder_multiplier[target_extruder] = sval;
  4450. }
  4451. }
  4452. /**
  4453. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4454. */
  4455. inline void gcode_M226() {
  4456. if (code_seen('P')) {
  4457. int pin_number = code_value();
  4458. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  4459. if (pin_state >= -1 && pin_state <= 1) {
  4460. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4461. if (sensitive_pins[i] == pin_number) {
  4462. pin_number = -1;
  4463. break;
  4464. }
  4465. }
  4466. if (pin_number > -1) {
  4467. int target = LOW;
  4468. st_synchronize();
  4469. pinMode(pin_number, INPUT);
  4470. switch (pin_state) {
  4471. case 1:
  4472. target = HIGH;
  4473. break;
  4474. case 0:
  4475. target = LOW;
  4476. break;
  4477. case -1:
  4478. target = !digitalRead(pin_number);
  4479. break;
  4480. }
  4481. while (digitalRead(pin_number) != target) idle();
  4482. } // pin_number > -1
  4483. } // pin_state -1 0 1
  4484. } // code_seen('P')
  4485. }
  4486. #if HAS_SERVOS
  4487. /**
  4488. * M280: Get or set servo position. P<index> S<angle>
  4489. */
  4490. inline void gcode_M280() {
  4491. int servo_index = code_seen('P') ? code_value_short() : -1;
  4492. int servo_position = 0;
  4493. if (code_seen('S')) {
  4494. servo_position = code_value_short();
  4495. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  4496. servo[servo_index].move(servo_position);
  4497. else {
  4498. SERIAL_ERROR_START;
  4499. SERIAL_ERROR("Servo ");
  4500. SERIAL_ERROR(servo_index);
  4501. SERIAL_ERRORLN(" out of range");
  4502. }
  4503. }
  4504. else if (servo_index >= 0) {
  4505. SERIAL_ECHO_START;
  4506. SERIAL_ECHO(" Servo ");
  4507. SERIAL_ECHO(servo_index);
  4508. SERIAL_ECHO(": ");
  4509. SERIAL_ECHOLN(servo[servo_index].read());
  4510. }
  4511. }
  4512. #endif // HAS_SERVOS
  4513. #if HAS_BUZZER
  4514. /**
  4515. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4516. */
  4517. inline void gcode_M300() {
  4518. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  4519. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  4520. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  4521. buzz(beepP, beepS);
  4522. }
  4523. #endif // HAS_BUZZER
  4524. #if ENABLED(PIDTEMP)
  4525. /**
  4526. * M301: Set PID parameters P I D (and optionally C, L)
  4527. *
  4528. * P[float] Kp term
  4529. * I[float] Ki term (unscaled)
  4530. * D[float] Kd term (unscaled)
  4531. *
  4532. * With PID_ADD_EXTRUSION_RATE:
  4533. *
  4534. * C[float] Kc term
  4535. * L[float] LPQ length
  4536. */
  4537. inline void gcode_M301() {
  4538. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4539. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4540. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  4541. if (e < EXTRUDERS) { // catch bad input value
  4542. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  4543. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  4544. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  4545. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4546. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  4547. if (code_seen('L')) lpq_len = code_value();
  4548. NOMORE(lpq_len, LPQ_MAX_LEN);
  4549. #endif
  4550. updatePID();
  4551. SERIAL_ECHO_START;
  4552. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  4553. SERIAL_ECHO(" e:"); // specify extruder in serial output
  4554. SERIAL_ECHO(e);
  4555. #endif // PID_PARAMS_PER_EXTRUDER
  4556. SERIAL_ECHO(" p:");
  4557. SERIAL_ECHO(PID_PARAM(Kp, e));
  4558. SERIAL_ECHO(" i:");
  4559. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4560. SERIAL_ECHO(" d:");
  4561. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4562. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4563. SERIAL_ECHO(" c:");
  4564. //Kc does not have scaling applied above, or in resetting defaults
  4565. SERIAL_ECHO(PID_PARAM(Kc, e));
  4566. #endif
  4567. SERIAL_EOL;
  4568. }
  4569. else {
  4570. SERIAL_ERROR_START;
  4571. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4572. }
  4573. }
  4574. #endif // PIDTEMP
  4575. #if ENABLED(PIDTEMPBED)
  4576. inline void gcode_M304() {
  4577. if (code_seen('P')) bedKp = code_value();
  4578. if (code_seen('I')) bedKi = scalePID_i(code_value());
  4579. if (code_seen('D')) bedKd = scalePID_d(code_value());
  4580. updatePID();
  4581. SERIAL_ECHO_START;
  4582. SERIAL_ECHO(" p:");
  4583. SERIAL_ECHO(bedKp);
  4584. SERIAL_ECHO(" i:");
  4585. SERIAL_ECHO(unscalePID_i(bedKi));
  4586. SERIAL_ECHO(" d:");
  4587. SERIAL_ECHOLN(unscalePID_d(bedKd));
  4588. }
  4589. #endif // PIDTEMPBED
  4590. #if defined(CHDK) || HAS_PHOTOGRAPH
  4591. /**
  4592. * M240: Trigger a camera by emulating a Canon RC-1
  4593. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4594. */
  4595. inline void gcode_M240() {
  4596. #ifdef CHDK
  4597. OUT_WRITE(CHDK, HIGH);
  4598. chdkHigh = millis();
  4599. chdkActive = true;
  4600. #elif HAS_PHOTOGRAPH
  4601. const uint8_t NUM_PULSES = 16;
  4602. const float PULSE_LENGTH = 0.01524;
  4603. for (int i = 0; i < NUM_PULSES; i++) {
  4604. WRITE(PHOTOGRAPH_PIN, HIGH);
  4605. _delay_ms(PULSE_LENGTH);
  4606. WRITE(PHOTOGRAPH_PIN, LOW);
  4607. _delay_ms(PULSE_LENGTH);
  4608. }
  4609. delay(7.33);
  4610. for (int i = 0; i < NUM_PULSES; i++) {
  4611. WRITE(PHOTOGRAPH_PIN, HIGH);
  4612. _delay_ms(PULSE_LENGTH);
  4613. WRITE(PHOTOGRAPH_PIN, LOW);
  4614. _delay_ms(PULSE_LENGTH);
  4615. }
  4616. #endif // !CHDK && HAS_PHOTOGRAPH
  4617. }
  4618. #endif // CHDK || PHOTOGRAPH_PIN
  4619. #if ENABLED(HAS_LCD_CONTRAST)
  4620. /**
  4621. * M250: Read and optionally set the LCD contrast
  4622. */
  4623. inline void gcode_M250() {
  4624. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  4625. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4626. SERIAL_PROTOCOL(lcd_contrast);
  4627. SERIAL_EOL;
  4628. }
  4629. #endif // HAS_LCD_CONTRAST
  4630. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4631. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  4632. /**
  4633. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  4634. */
  4635. inline void gcode_M302() {
  4636. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  4637. }
  4638. #endif // PREVENT_DANGEROUS_EXTRUDE
  4639. /**
  4640. * M303: PID relay autotune
  4641. *
  4642. * S<temperature> sets the target temperature. (default 150C)
  4643. * E<extruder> (-1 for the bed) (default 0)
  4644. * C<cycles>
  4645. * U<bool> with a non-zero value will apply the result to current settings
  4646. */
  4647. inline void gcode_M303() {
  4648. int e = code_seen('E') ? code_value_short() : 0;
  4649. int c = code_seen('C') ? code_value_short() : 5;
  4650. bool u = code_seen('U') && code_value_short() != 0;
  4651. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  4652. if (e >= 0 && e < EXTRUDERS)
  4653. target_extruder = e;
  4654. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4655. PID_autotune(temp, e, c, u);
  4656. KEEPALIVE_STATE(IN_HANDLER);
  4657. }
  4658. #if ENABLED(SCARA)
  4659. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4660. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4661. //SERIAL_ECHOLN(" Soft endstops disabled ");
  4662. if (IsRunning()) {
  4663. //gcode_get_destination(); // For X Y Z E F
  4664. delta[X_AXIS] = delta_x;
  4665. delta[Y_AXIS] = delta_y;
  4666. calculate_SCARA_forward_Transform(delta);
  4667. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4668. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4669. prepare_move();
  4670. //ok_to_send();
  4671. return true;
  4672. }
  4673. return false;
  4674. }
  4675. /**
  4676. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4677. */
  4678. inline bool gcode_M360() {
  4679. SERIAL_ECHOLN(" Cal: Theta 0 ");
  4680. return SCARA_move_to_cal(0, 120);
  4681. }
  4682. /**
  4683. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4684. */
  4685. inline bool gcode_M361() {
  4686. SERIAL_ECHOLN(" Cal: Theta 90 ");
  4687. return SCARA_move_to_cal(90, 130);
  4688. }
  4689. /**
  4690. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4691. */
  4692. inline bool gcode_M362() {
  4693. SERIAL_ECHOLN(" Cal: Psi 0 ");
  4694. return SCARA_move_to_cal(60, 180);
  4695. }
  4696. /**
  4697. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4698. */
  4699. inline bool gcode_M363() {
  4700. SERIAL_ECHOLN(" Cal: Psi 90 ");
  4701. return SCARA_move_to_cal(50, 90);
  4702. }
  4703. /**
  4704. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4705. */
  4706. inline bool gcode_M364() {
  4707. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  4708. return SCARA_move_to_cal(45, 135);
  4709. }
  4710. /**
  4711. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4712. */
  4713. inline void gcode_M365() {
  4714. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4715. if (code_seen(axis_codes[i])) {
  4716. axis_scaling[i] = code_value();
  4717. }
  4718. }
  4719. }
  4720. #endif // SCARA
  4721. #if ENABLED(EXT_SOLENOID)
  4722. void enable_solenoid(uint8_t num) {
  4723. switch (num) {
  4724. case 0:
  4725. OUT_WRITE(SOL0_PIN, HIGH);
  4726. break;
  4727. #if HAS_SOLENOID_1
  4728. case 1:
  4729. OUT_WRITE(SOL1_PIN, HIGH);
  4730. break;
  4731. #endif
  4732. #if HAS_SOLENOID_2
  4733. case 2:
  4734. OUT_WRITE(SOL2_PIN, HIGH);
  4735. break;
  4736. #endif
  4737. #if HAS_SOLENOID_3
  4738. case 3:
  4739. OUT_WRITE(SOL3_PIN, HIGH);
  4740. break;
  4741. #endif
  4742. default:
  4743. SERIAL_ECHO_START;
  4744. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4745. break;
  4746. }
  4747. }
  4748. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4749. void disable_all_solenoids() {
  4750. OUT_WRITE(SOL0_PIN, LOW);
  4751. OUT_WRITE(SOL1_PIN, LOW);
  4752. OUT_WRITE(SOL2_PIN, LOW);
  4753. OUT_WRITE(SOL3_PIN, LOW);
  4754. }
  4755. /**
  4756. * M380: Enable solenoid on the active extruder
  4757. */
  4758. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4759. /**
  4760. * M381: Disable all solenoids
  4761. */
  4762. inline void gcode_M381() { disable_all_solenoids(); }
  4763. #endif // EXT_SOLENOID
  4764. /**
  4765. * M400: Finish all moves
  4766. */
  4767. inline void gcode_M400() { st_synchronize(); }
  4768. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  4769. /**
  4770. * M401: Engage Z Servo endstop if available
  4771. */
  4772. inline void gcode_M401() {
  4773. #if HAS_SERVO_ENDSTOPS
  4774. raise_z_for_servo();
  4775. #endif
  4776. deploy_z_probe();
  4777. }
  4778. /**
  4779. * M402: Retract Z Servo endstop if enabled
  4780. */
  4781. inline void gcode_M402() {
  4782. #if HAS_SERVO_ENDSTOPS
  4783. raise_z_for_servo();
  4784. #endif
  4785. stow_z_probe(false);
  4786. }
  4787. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4788. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  4789. /**
  4790. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  4791. */
  4792. inline void gcode_M404() {
  4793. if (code_seen('W')) {
  4794. filament_width_nominal = code_value();
  4795. }
  4796. else {
  4797. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  4798. SERIAL_PROTOCOLLN(filament_width_nominal);
  4799. }
  4800. }
  4801. /**
  4802. * M405: Turn on filament sensor for control
  4803. */
  4804. inline void gcode_M405() {
  4805. if (code_seen('D')) meas_delay_cm = code_value();
  4806. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  4807. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  4808. int temp_ratio = widthFil_to_size_ratio();
  4809. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  4810. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  4811. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  4812. }
  4813. filament_sensor = true;
  4814. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4815. //SERIAL_PROTOCOL(filament_width_meas);
  4816. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  4817. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  4818. }
  4819. /**
  4820. * M406: Turn off filament sensor for control
  4821. */
  4822. inline void gcode_M406() { filament_sensor = false; }
  4823. /**
  4824. * M407: Get measured filament diameter on serial output
  4825. */
  4826. inline void gcode_M407() {
  4827. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  4828. SERIAL_PROTOCOLLN(filament_width_meas);
  4829. }
  4830. #endif // FILAMENT_WIDTH_SENSOR
  4831. /**
  4832. * M410: Quickstop - Abort all planned moves
  4833. *
  4834. * This will stop the carriages mid-move, so most likely they
  4835. * will be out of sync with the stepper position after this.
  4836. */
  4837. inline void gcode_M410() { quickStop(); }
  4838. #if ENABLED(MESH_BED_LEVELING)
  4839. /**
  4840. * M420: Enable/Disable Mesh Bed Leveling
  4841. */
  4842. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  4843. /**
  4844. * M421: Set a single Mesh Bed Leveling Z coordinate
  4845. */
  4846. inline void gcode_M421() {
  4847. float x = 0, y = 0, z = 0;
  4848. bool err = false, hasX, hasY, hasZ;
  4849. if ((hasX = code_seen('X'))) x = code_value();
  4850. if ((hasY = code_seen('Y'))) y = code_value();
  4851. if ((hasZ = code_seen('Z'))) z = code_value();
  4852. if (!hasX || !hasY || !hasZ) {
  4853. SERIAL_ERROR_START;
  4854. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  4855. err = true;
  4856. }
  4857. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  4858. SERIAL_ERROR_START;
  4859. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  4860. err = true;
  4861. }
  4862. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  4863. }
  4864. #endif
  4865. /**
  4866. * M428: Set home_offset based on the distance between the
  4867. * current_position and the nearest "reference point."
  4868. * If an axis is past center its endstop position
  4869. * is the reference-point. Otherwise it uses 0. This allows
  4870. * the Z offset to be set near the bed when using a max endstop.
  4871. *
  4872. * M428 can't be used more than 2cm away from 0 or an endstop.
  4873. *
  4874. * Use M206 to set these values directly.
  4875. */
  4876. inline void gcode_M428() {
  4877. bool err = false;
  4878. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4879. if (axis_homed[i]) {
  4880. float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  4881. diff = current_position[i] - base;
  4882. if (diff > -20 && diff < 20) {
  4883. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  4884. }
  4885. else {
  4886. SERIAL_ERROR_START;
  4887. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  4888. LCD_ALERTMESSAGEPGM("Err: Too far!");
  4889. #if HAS_BUZZER
  4890. buzz(200, 40);
  4891. #endif
  4892. err = true;
  4893. break;
  4894. }
  4895. }
  4896. }
  4897. if (!err) {
  4898. sync_plan_position();
  4899. LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  4900. #if HAS_BUZZER
  4901. buzz(200, 659);
  4902. buzz(200, 698);
  4903. #endif
  4904. }
  4905. }
  4906. /**
  4907. * M500: Store settings in EEPROM
  4908. */
  4909. inline void gcode_M500() {
  4910. Config_StoreSettings();
  4911. }
  4912. /**
  4913. * M501: Read settings from EEPROM
  4914. */
  4915. inline void gcode_M501() {
  4916. Config_RetrieveSettings();
  4917. }
  4918. /**
  4919. * M502: Revert to default settings
  4920. */
  4921. inline void gcode_M502() {
  4922. Config_ResetDefault();
  4923. }
  4924. /**
  4925. * M503: print settings currently in memory
  4926. */
  4927. inline void gcode_M503() {
  4928. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4929. }
  4930. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4931. /**
  4932. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4933. */
  4934. inline void gcode_M540() {
  4935. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4936. }
  4937. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4938. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4939. inline void gcode_SET_Z_PROBE_OFFSET() {
  4940. SERIAL_ECHO_START;
  4941. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4942. SERIAL_CHAR(' ');
  4943. if (code_seen('Z')) {
  4944. float value = code_value();
  4945. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4946. zprobe_zoffset = value;
  4947. SERIAL_ECHO(zprobe_zoffset);
  4948. }
  4949. else {
  4950. SERIAL_ECHOPGM(MSG_Z_MIN);
  4951. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4952. SERIAL_ECHOPGM(MSG_Z_MAX);
  4953. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4954. }
  4955. }
  4956. else {
  4957. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  4958. }
  4959. SERIAL_EOL;
  4960. }
  4961. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4962. #if ENABLED(FILAMENTCHANGEENABLE)
  4963. /**
  4964. * M600: Pause for filament change
  4965. *
  4966. * E[distance] - Retract the filament this far (negative value)
  4967. * Z[distance] - Move the Z axis by this distance
  4968. * X[position] - Move to this X position, with Y
  4969. * Y[position] - Move to this Y position, with X
  4970. * L[distance] - Retract distance for removal (manual reload)
  4971. *
  4972. * Default values are used for omitted arguments.
  4973. *
  4974. */
  4975. inline void gcode_M600() {
  4976. if (degHotend(active_extruder) < extrude_min_temp) {
  4977. SERIAL_ERROR_START;
  4978. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4979. return;
  4980. }
  4981. float lastpos[NUM_AXIS];
  4982. #if ENABLED(DELTA)
  4983. float fr60 = feedrate / 60;
  4984. #endif
  4985. for (int i = 0; i < NUM_AXIS; i++)
  4986. lastpos[i] = destination[i] = current_position[i];
  4987. #if ENABLED(DELTA)
  4988. #define RUNPLAN calculate_delta(destination); \
  4989. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4990. #else
  4991. #define RUNPLAN line_to_destination();
  4992. #endif
  4993. //retract by E
  4994. if (code_seen('E')) destination[E_AXIS] += code_value();
  4995. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4996. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4997. #endif
  4998. RUNPLAN;
  4999. //lift Z
  5000. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  5001. #ifdef FILAMENTCHANGE_ZADD
  5002. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  5003. #endif
  5004. RUNPLAN;
  5005. //move xy
  5006. if (code_seen('X')) destination[X_AXIS] = code_value();
  5007. #ifdef FILAMENTCHANGE_XPOS
  5008. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  5009. #endif
  5010. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  5011. #ifdef FILAMENTCHANGE_YPOS
  5012. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  5013. #endif
  5014. RUNPLAN;
  5015. if (code_seen('L')) destination[E_AXIS] += code_value();
  5016. #ifdef FILAMENTCHANGE_FINALRETRACT
  5017. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  5018. #endif
  5019. RUNPLAN;
  5020. //finish moves
  5021. st_synchronize();
  5022. //disable extruder steppers so filament can be removed
  5023. disable_e0();
  5024. disable_e1();
  5025. disable_e2();
  5026. disable_e3();
  5027. delay(100);
  5028. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  5029. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5030. millis_t next_tick = 0;
  5031. #endif
  5032. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5033. while (!lcd_clicked()) {
  5034. #if DISABLED(AUTO_FILAMENT_CHANGE)
  5035. millis_t ms = millis();
  5036. if (ELAPSED(ms, next_tick)) {
  5037. lcd_quick_feedback();
  5038. next_tick = ms + 2500UL; // feedback every 2.5s while waiting
  5039. }
  5040. idle(true);
  5041. #else
  5042. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  5043. destination[E_AXIS] = current_position[E_AXIS];
  5044. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  5045. st_synchronize();
  5046. #endif
  5047. } // while(!lcd_clicked)
  5048. KEEPALIVE_STATE(IN_HANDLER);
  5049. lcd_quick_feedback(); // click sound feedback
  5050. #if ENABLED(AUTO_FILAMENT_CHANGE)
  5051. current_position[E_AXIS] = 0;
  5052. st_synchronize();
  5053. #endif
  5054. //return to normal
  5055. if (code_seen('L')) destination[E_AXIS] -= code_value();
  5056. #ifdef FILAMENTCHANGE_FINALRETRACT
  5057. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  5058. #endif
  5059. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  5060. plan_set_e_position(current_position[E_AXIS]);
  5061. RUNPLAN; //should do nothing
  5062. lcd_reset_alert_level();
  5063. #if ENABLED(DELTA)
  5064. // Move XYZ to starting position, then E
  5065. calculate_delta(lastpos);
  5066. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  5067. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  5068. #else
  5069. // Move XY to starting position, then Z, then E
  5070. destination[X_AXIS] = lastpos[X_AXIS];
  5071. destination[Y_AXIS] = lastpos[Y_AXIS];
  5072. line_to_destination();
  5073. destination[Z_AXIS] = lastpos[Z_AXIS];
  5074. line_to_destination();
  5075. destination[E_AXIS] = lastpos[E_AXIS];
  5076. line_to_destination();
  5077. #endif
  5078. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5079. filrunoutEnqueued = false;
  5080. #endif
  5081. }
  5082. #endif // FILAMENTCHANGEENABLE
  5083. #if ENABLED(DUAL_X_CARRIAGE)
  5084. /**
  5085. * M605: Set dual x-carriage movement mode
  5086. *
  5087. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5088. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5089. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5090. * millimeters x-offset and an optional differential hotend temperature of
  5091. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5092. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5093. *
  5094. * Note: the X axis should be homed after changing dual x-carriage mode.
  5095. */
  5096. inline void gcode_M605() {
  5097. st_synchronize();
  5098. if (code_seen('S')) dual_x_carriage_mode = code_value();
  5099. switch (dual_x_carriage_mode) {
  5100. case DXC_DUPLICATION_MODE:
  5101. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  5102. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  5103. SERIAL_ECHO_START;
  5104. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5105. SERIAL_CHAR(' ');
  5106. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  5107. SERIAL_CHAR(',');
  5108. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  5109. SERIAL_CHAR(' ');
  5110. SERIAL_ECHO(duplicate_extruder_x_offset);
  5111. SERIAL_CHAR(',');
  5112. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  5113. break;
  5114. case DXC_FULL_CONTROL_MODE:
  5115. case DXC_AUTO_PARK_MODE:
  5116. break;
  5117. default:
  5118. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5119. break;
  5120. }
  5121. active_extruder_parked = false;
  5122. extruder_duplication_enabled = false;
  5123. delayed_move_time = 0;
  5124. }
  5125. #endif // DUAL_X_CARRIAGE
  5126. /**
  5127. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5128. */
  5129. inline void gcode_M907() {
  5130. #if HAS_DIGIPOTSS
  5131. for (int i = 0; i < NUM_AXIS; i++)
  5132. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  5133. if (code_seen('B')) digipot_current(4, code_value());
  5134. if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
  5135. #endif
  5136. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5137. if (code_seen('X')) digipot_current(0, code_value());
  5138. #endif
  5139. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5140. if (code_seen('Z')) digipot_current(1, code_value());
  5141. #endif
  5142. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5143. if (code_seen('E')) digipot_current(2, code_value());
  5144. #endif
  5145. #if ENABLED(DIGIPOT_I2C)
  5146. // this one uses actual amps in floating point
  5147. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  5148. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5149. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
  5150. #endif
  5151. #if ENABLED(DAC_STEPPER_CURRENT)
  5152. if (code_seen('S')) {
  5153. float dac_percent = code_value();
  5154. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5155. }
  5156. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
  5157. #endif
  5158. }
  5159. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5160. /**
  5161. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5162. */
  5163. inline void gcode_M908() {
  5164. #if HAS_DIGIPOTSS
  5165. digitalPotWrite(
  5166. code_seen('P') ? code_value() : 0,
  5167. code_seen('S') ? code_value() : 0
  5168. );
  5169. #endif
  5170. #ifdef DAC_STEPPER_CURRENT
  5171. dac_current_raw(
  5172. code_seen('P') ? code_value_long() : -1,
  5173. code_seen('S') ? code_value_short() : 0
  5174. );
  5175. #endif
  5176. }
  5177. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5178. inline void gcode_M909() { dac_print_values(); }
  5179. inline void gcode_M910() { dac_commit_eeprom(); }
  5180. #endif
  5181. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5182. #if HAS_MICROSTEPS
  5183. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5184. inline void gcode_M350() {
  5185. if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
  5186. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
  5187. if (code_seen('B')) microstep_mode(4, code_value());
  5188. microstep_readings();
  5189. }
  5190. /**
  5191. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5192. * S# determines MS1 or MS2, X# sets the pin high/low.
  5193. */
  5194. inline void gcode_M351() {
  5195. if (code_seen('S')) switch (code_value_short()) {
  5196. case 1:
  5197. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  5198. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  5199. break;
  5200. case 2:
  5201. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  5202. if (code_seen('B')) microstep_ms(4, -1, code_value());
  5203. break;
  5204. }
  5205. microstep_readings();
  5206. }
  5207. #endif // HAS_MICROSTEPS
  5208. /**
  5209. * M999: Restart after being stopped
  5210. */
  5211. inline void gcode_M999() {
  5212. Running = true;
  5213. lcd_reset_alert_level();
  5214. // gcode_LastN = Stopped_gcode_LastN;
  5215. FlushSerialRequestResend();
  5216. }
  5217. /**
  5218. * T0-T3: Switch tool, usually switching extruders
  5219. *
  5220. * F[mm/min] Set the movement feedrate
  5221. */
  5222. inline void gcode_T(uint8_t tmp_extruder) {
  5223. if (tmp_extruder >= EXTRUDERS) {
  5224. SERIAL_ECHO_START;
  5225. SERIAL_CHAR('T');
  5226. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5227. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5228. }
  5229. else {
  5230. target_extruder = tmp_extruder;
  5231. #if EXTRUDERS > 1
  5232. bool make_move = false;
  5233. #endif
  5234. if (code_seen('F')) {
  5235. #if EXTRUDERS > 1
  5236. make_move = true;
  5237. #endif
  5238. float next_feedrate = code_value();
  5239. if (next_feedrate > 0.0) feedrate = next_feedrate;
  5240. }
  5241. #if EXTRUDERS > 1
  5242. if (tmp_extruder != active_extruder) {
  5243. // Save current position to return to after applying extruder offset
  5244. set_destination_to_current();
  5245. #if ENABLED(DUAL_X_CARRIAGE)
  5246. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5247. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5248. // Park old head: 1) raise 2) move to park position 3) lower
  5249. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5250. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5251. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5252. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  5253. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5254. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5255. st_synchronize();
  5256. }
  5257. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5258. current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
  5259. current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
  5260. active_extruder = tmp_extruder;
  5261. // This function resets the max/min values - the current position may be overwritten below.
  5262. set_axis_is_at_home(X_AXIS);
  5263. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5264. current_position[X_AXIS] = inactive_extruder_x_pos;
  5265. inactive_extruder_x_pos = destination[X_AXIS];
  5266. }
  5267. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5268. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5269. if (active_extruder == 0 || active_extruder_parked)
  5270. current_position[X_AXIS] = inactive_extruder_x_pos;
  5271. else
  5272. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5273. inactive_extruder_x_pos = destination[X_AXIS];
  5274. extruder_duplication_enabled = false;
  5275. }
  5276. else {
  5277. // record raised toolhead position for use by unpark
  5278. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5279. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5280. active_extruder_parked = true;
  5281. delayed_move_time = 0;
  5282. }
  5283. #else // !DUAL_X_CARRIAGE
  5284. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5285. // Offset extruder, make sure to apply the bed level rotation matrix
  5286. vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
  5287. extruder_offset[Y_AXIS][tmp_extruder],
  5288. 0),
  5289. act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
  5290. extruder_offset[Y_AXIS][active_extruder],
  5291. 0),
  5292. offset_vec = tmp_offset_vec - act_offset_vec;
  5293. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5294. if (DEBUGGING(LEVELING)) {
  5295. SERIAL_ECHOLNPGM(">>> gcode_T");
  5296. tmp_offset_vec.debug("tmp_offset_vec");
  5297. act_offset_vec.debug("act_offset_vec");
  5298. offset_vec.debug("offset_vec (BEFORE)");
  5299. DEBUG_POS("BEFORE rotation", current_position);
  5300. }
  5301. #endif
  5302. offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
  5303. current_position[X_AXIS] += offset_vec.x;
  5304. current_position[Y_AXIS] += offset_vec.y;
  5305. current_position[Z_AXIS] += offset_vec.z;
  5306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5307. if (DEBUGGING(LEVELING)) {
  5308. offset_vec.debug("offset_vec (AFTER)");
  5309. DEBUG_POS("AFTER rotation", current_position);
  5310. SERIAL_ECHOLNPGM("<<< gcode_T");
  5311. }
  5312. #endif
  5313. #else // !AUTO_BED_LEVELING_FEATURE
  5314. // Offset extruder (only by XY)
  5315. for (int i=X_AXIS; i<=Y_AXIS; i++)
  5316. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  5317. #endif // !AUTO_BED_LEVELING_FEATURE
  5318. // Set the new active extruder and position
  5319. active_extruder = tmp_extruder;
  5320. #endif // !DUAL_X_CARRIAGE
  5321. #if ENABLED(DELTA)
  5322. sync_plan_position_delta();
  5323. #else
  5324. sync_plan_position();
  5325. #endif
  5326. // Move to the old position if 'F' was in the parameters
  5327. if (make_move && IsRunning()) prepare_move();
  5328. }
  5329. #if ENABLED(EXT_SOLENOID)
  5330. st_synchronize();
  5331. disable_all_solenoids();
  5332. enable_solenoid_on_active_extruder();
  5333. #endif // EXT_SOLENOID
  5334. #endif // EXTRUDERS > 1
  5335. SERIAL_ECHO_START;
  5336. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  5337. SERIAL_PROTOCOLLN((int)active_extruder);
  5338. }
  5339. }
  5340. /**
  5341. * Process a single command and dispatch it to its handler
  5342. * This is called from the main loop()
  5343. */
  5344. void process_next_command() {
  5345. current_command = command_queue[cmd_queue_index_r];
  5346. if (DEBUGGING(ECHO)) {
  5347. SERIAL_ECHO_START;
  5348. SERIAL_ECHOLN(current_command);
  5349. }
  5350. // Sanitize the current command:
  5351. // - Skip leading spaces
  5352. // - Bypass N[-0-9][0-9]*[ ]*
  5353. // - Overwrite * with nul to mark the end
  5354. while (*current_command == ' ') ++current_command;
  5355. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5356. current_command += 2; // skip N[-0-9]
  5357. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5358. while (*current_command == ' ') ++current_command; // skip [ ]*
  5359. }
  5360. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5361. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5362. char *cmd_ptr = current_command;
  5363. // Get the command code, which must be G, M, or T
  5364. char command_code = *cmd_ptr++;
  5365. // Skip spaces to get the numeric part
  5366. while (*cmd_ptr == ' ') cmd_ptr++;
  5367. uint16_t codenum = 0; // define ahead of goto
  5368. // Bail early if there's no code
  5369. bool code_is_good = NUMERIC(*cmd_ptr);
  5370. if (!code_is_good) goto ExitUnknownCommand;
  5371. // Get and skip the code number
  5372. do {
  5373. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5374. cmd_ptr++;
  5375. } while (NUMERIC(*cmd_ptr));
  5376. // Skip all spaces to get to the first argument, or nul
  5377. while (*cmd_ptr == ' ') cmd_ptr++;
  5378. // The command's arguments (if any) start here, for sure!
  5379. current_command_args = cmd_ptr;
  5380. KEEPALIVE_STATE(IN_HANDLER);
  5381. // Handle a known G, M, or T
  5382. switch (command_code) {
  5383. case 'G': switch (codenum) {
  5384. // G0, G1
  5385. case 0:
  5386. case 1:
  5387. gcode_G0_G1();
  5388. break;
  5389. // G2, G3
  5390. #if DISABLED(SCARA)
  5391. case 2: // G2 - CW ARC
  5392. case 3: // G3 - CCW ARC
  5393. gcode_G2_G3(codenum == 2);
  5394. break;
  5395. #endif
  5396. // G4 Dwell
  5397. case 4:
  5398. gcode_G4();
  5399. break;
  5400. #if ENABLED(FWRETRACT)
  5401. case 10: // G10: retract
  5402. case 11: // G11: retract_recover
  5403. gcode_G10_G11(codenum == 10);
  5404. break;
  5405. #endif //FWRETRACT
  5406. case 28: // G28: Home all axes, one at a time
  5407. gcode_G28();
  5408. break;
  5409. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5410. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5411. gcode_G29();
  5412. break;
  5413. #endif
  5414. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5415. #if DISABLED(Z_PROBE_SLED)
  5416. case 30: // G30 Single Z probe
  5417. gcode_G30();
  5418. break;
  5419. #else // Z_PROBE_SLED
  5420. case 31: // G31: dock the sled
  5421. case 32: // G32: undock the sled
  5422. dock_sled(codenum == 31);
  5423. break;
  5424. #endif // Z_PROBE_SLED
  5425. #endif // AUTO_BED_LEVELING_FEATURE
  5426. case 90: // G90
  5427. relative_mode = false;
  5428. break;
  5429. case 91: // G91
  5430. relative_mode = true;
  5431. break;
  5432. case 92: // G92
  5433. gcode_G92();
  5434. break;
  5435. }
  5436. break;
  5437. case 'M': switch (codenum) {
  5438. #if ENABLED(ULTIPANEL)
  5439. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5440. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5441. gcode_M0_M1();
  5442. break;
  5443. #endif // ULTIPANEL
  5444. case 17:
  5445. gcode_M17();
  5446. break;
  5447. #if ENABLED(SDSUPPORT)
  5448. case 20: // M20 - list SD card
  5449. gcode_M20(); break;
  5450. case 21: // M21 - init SD card
  5451. gcode_M21(); break;
  5452. case 22: //M22 - release SD card
  5453. gcode_M22(); break;
  5454. case 23: //M23 - Select file
  5455. gcode_M23(); break;
  5456. case 24: //M24 - Start SD print
  5457. gcode_M24(); break;
  5458. case 25: //M25 - Pause SD print
  5459. gcode_M25(); break;
  5460. case 26: //M26 - Set SD index
  5461. gcode_M26(); break;
  5462. case 27: //M27 - Get SD status
  5463. gcode_M27(); break;
  5464. case 28: //M28 - Start SD write
  5465. gcode_M28(); break;
  5466. case 29: //M29 - Stop SD write
  5467. gcode_M29(); break;
  5468. case 30: //M30 <filename> Delete File
  5469. gcode_M30(); break;
  5470. case 32: //M32 - Select file and start SD print
  5471. gcode_M32(); break;
  5472. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5473. case 33: //M33 - Get the long full path to a file or folder
  5474. gcode_M33(); break;
  5475. #endif // LONG_FILENAME_HOST_SUPPORT
  5476. case 928: //M928 - Start SD write
  5477. gcode_M928(); break;
  5478. #endif //SDSUPPORT
  5479. case 31: //M31 take time since the start of the SD print or an M109 command
  5480. gcode_M31();
  5481. break;
  5482. case 42: //M42 -Change pin status via gcode
  5483. gcode_M42();
  5484. break;
  5485. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5486. case 48: // M48 Z probe repeatability
  5487. gcode_M48();
  5488. break;
  5489. #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
  5490. case 75: // Start print timer
  5491. gcode_M75();
  5492. break;
  5493. case 76: // Pause print timer
  5494. gcode_M76();
  5495. break;
  5496. case 77: // Stop print timer
  5497. gcode_M77();
  5498. break;
  5499. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5500. case 100:
  5501. gcode_M100();
  5502. break;
  5503. #endif
  5504. case 104: // M104
  5505. gcode_M104();
  5506. break;
  5507. case 110: // M110: Set Current Line Number
  5508. gcode_M110();
  5509. break;
  5510. case 111: // M111: Set debug level
  5511. gcode_M111();
  5512. break;
  5513. case 112: // M112: Emergency Stop
  5514. gcode_M112();
  5515. break;
  5516. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5517. case 113: // M113: Set Host Keepalive interval
  5518. gcode_M113();
  5519. break;
  5520. #endif
  5521. case 140: // M140: Set bed temp
  5522. gcode_M140();
  5523. break;
  5524. case 105: // M105: Read current temperature
  5525. gcode_M105();
  5526. KEEPALIVE_STATE(NOT_BUSY);
  5527. return; // "ok" already printed
  5528. case 109: // M109: Wait for temperature
  5529. gcode_M109();
  5530. break;
  5531. #if HAS_TEMP_BED
  5532. case 190: // M190: Wait for bed heater to reach target
  5533. gcode_M190();
  5534. break;
  5535. #endif // HAS_TEMP_BED
  5536. #if FAN_COUNT > 0
  5537. case 106: // M106: Fan On
  5538. gcode_M106();
  5539. break;
  5540. case 107: // M107: Fan Off
  5541. gcode_M107();
  5542. break;
  5543. #endif // FAN_COUNT > 0
  5544. #if ENABLED(BARICUDA)
  5545. // PWM for HEATER_1_PIN
  5546. #if HAS_HEATER_1
  5547. case 126: // M126: valve open
  5548. gcode_M126();
  5549. break;
  5550. case 127: // M127: valve closed
  5551. gcode_M127();
  5552. break;
  5553. #endif // HAS_HEATER_1
  5554. // PWM for HEATER_2_PIN
  5555. #if HAS_HEATER_2
  5556. case 128: // M128: valve open
  5557. gcode_M128();
  5558. break;
  5559. case 129: // M129: valve closed
  5560. gcode_M129();
  5561. break;
  5562. #endif // HAS_HEATER_2
  5563. #endif // BARICUDA
  5564. #if HAS_POWER_SWITCH
  5565. case 80: // M80: Turn on Power Supply
  5566. gcode_M80();
  5567. break;
  5568. #endif // HAS_POWER_SWITCH
  5569. case 81: // M81: Turn off Power, including Power Supply, if possible
  5570. gcode_M81();
  5571. break;
  5572. case 82:
  5573. gcode_M82();
  5574. break;
  5575. case 83:
  5576. gcode_M83();
  5577. break;
  5578. case 18: // (for compatibility)
  5579. case 84: // M84
  5580. gcode_M18_M84();
  5581. break;
  5582. case 85: // M85
  5583. gcode_M85();
  5584. break;
  5585. case 92: // M92: Set the steps-per-unit for one or more axes
  5586. gcode_M92();
  5587. break;
  5588. case 115: // M115: Report capabilities
  5589. gcode_M115();
  5590. break;
  5591. case 117: // M117: Set LCD message text, if possible
  5592. gcode_M117();
  5593. break;
  5594. case 114: // M114: Report current position
  5595. gcode_M114();
  5596. break;
  5597. case 120: // M120: Enable endstops
  5598. gcode_M120();
  5599. break;
  5600. case 121: // M121: Disable endstops
  5601. gcode_M121();
  5602. break;
  5603. case 119: // M119: Report endstop states
  5604. gcode_M119();
  5605. break;
  5606. #if ENABLED(ULTIPANEL)
  5607. case 145: // M145: Set material heatup parameters
  5608. gcode_M145();
  5609. break;
  5610. #endif
  5611. #if ENABLED(BLINKM)
  5612. case 150: // M150
  5613. gcode_M150();
  5614. break;
  5615. #endif //BLINKM
  5616. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5617. case 155:
  5618. gcode_M155();
  5619. break;
  5620. case 156:
  5621. gcode_M156();
  5622. break;
  5623. #endif //EXPERIMENTAL_I2CBUS
  5624. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  5625. gcode_M200();
  5626. break;
  5627. case 201: // M201
  5628. gcode_M201();
  5629. break;
  5630. #if 0 // Not used for Sprinter/grbl gen6
  5631. case 202: // M202
  5632. gcode_M202();
  5633. break;
  5634. #endif
  5635. case 203: // M203 max feedrate mm/sec
  5636. gcode_M203();
  5637. break;
  5638. case 204: // M204 acclereration S normal moves T filmanent only moves
  5639. gcode_M204();
  5640. break;
  5641. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  5642. gcode_M205();
  5643. break;
  5644. case 206: // M206 additional homing offset
  5645. gcode_M206();
  5646. break;
  5647. #if ENABLED(DELTA)
  5648. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  5649. gcode_M665();
  5650. break;
  5651. #endif
  5652. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  5653. case 666: // M666 set delta / dual endstop adjustment
  5654. gcode_M666();
  5655. break;
  5656. #endif
  5657. #if ENABLED(FWRETRACT)
  5658. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  5659. gcode_M207();
  5660. break;
  5661. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  5662. gcode_M208();
  5663. break;
  5664. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  5665. gcode_M209();
  5666. break;
  5667. #endif // FWRETRACT
  5668. #if EXTRUDERS > 1
  5669. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  5670. gcode_M218();
  5671. break;
  5672. #endif
  5673. case 220: // M220 S<factor in percent>- set speed factor override percentage
  5674. gcode_M220();
  5675. break;
  5676. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  5677. gcode_M221();
  5678. break;
  5679. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  5680. gcode_M226();
  5681. break;
  5682. #if HAS_SERVOS
  5683. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  5684. gcode_M280();
  5685. break;
  5686. #endif // HAS_SERVOS
  5687. #if HAS_BUZZER
  5688. case 300: // M300 - Play beep tone
  5689. gcode_M300();
  5690. break;
  5691. #endif // HAS_BUZZER
  5692. #if ENABLED(PIDTEMP)
  5693. case 301: // M301
  5694. gcode_M301();
  5695. break;
  5696. #endif // PIDTEMP
  5697. #if ENABLED(PIDTEMPBED)
  5698. case 304: // M304
  5699. gcode_M304();
  5700. break;
  5701. #endif // PIDTEMPBED
  5702. #if defined(CHDK) || HAS_PHOTOGRAPH
  5703. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  5704. gcode_M240();
  5705. break;
  5706. #endif // CHDK || PHOTOGRAPH_PIN
  5707. #if ENABLED(HAS_LCD_CONTRAST)
  5708. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  5709. gcode_M250();
  5710. break;
  5711. #endif // HAS_LCD_CONTRAST
  5712. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5713. case 302: // allow cold extrudes, or set the minimum extrude temperature
  5714. gcode_M302();
  5715. break;
  5716. #endif // PREVENT_DANGEROUS_EXTRUDE
  5717. case 303: // M303 PID autotune
  5718. gcode_M303();
  5719. break;
  5720. #if ENABLED(SCARA)
  5721. case 360: // M360 SCARA Theta pos1
  5722. if (gcode_M360()) return;
  5723. break;
  5724. case 361: // M361 SCARA Theta pos2
  5725. if (gcode_M361()) return;
  5726. break;
  5727. case 362: // M362 SCARA Psi pos1
  5728. if (gcode_M362()) return;
  5729. break;
  5730. case 363: // M363 SCARA Psi pos2
  5731. if (gcode_M363()) return;
  5732. break;
  5733. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  5734. if (gcode_M364()) return;
  5735. break;
  5736. case 365: // M365 Set SCARA scaling for X Y Z
  5737. gcode_M365();
  5738. break;
  5739. #endif // SCARA
  5740. case 400: // M400 finish all moves
  5741. gcode_M400();
  5742. break;
  5743. #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  5744. case 401:
  5745. gcode_M401();
  5746. break;
  5747. case 402:
  5748. gcode_M402();
  5749. break;
  5750. #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  5751. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5752. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  5753. gcode_M404();
  5754. break;
  5755. case 405: //M405 Turn on filament sensor for control
  5756. gcode_M405();
  5757. break;
  5758. case 406: //M406 Turn off filament sensor for control
  5759. gcode_M406();
  5760. break;
  5761. case 407: //M407 Display measured filament diameter
  5762. gcode_M407();
  5763. break;
  5764. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  5765. case 410: // M410 quickstop - Abort all the planned moves.
  5766. gcode_M410();
  5767. break;
  5768. #if ENABLED(MESH_BED_LEVELING)
  5769. case 420: // M420 Enable/Disable Mesh Bed Leveling
  5770. gcode_M420();
  5771. break;
  5772. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  5773. gcode_M421();
  5774. break;
  5775. #endif
  5776. case 428: // M428 Apply current_position to home_offset
  5777. gcode_M428();
  5778. break;
  5779. case 500: // M500 Store settings in EEPROM
  5780. gcode_M500();
  5781. break;
  5782. case 501: // M501 Read settings from EEPROM
  5783. gcode_M501();
  5784. break;
  5785. case 502: // M502 Revert to default settings
  5786. gcode_M502();
  5787. break;
  5788. case 503: // M503 print settings currently in memory
  5789. gcode_M503();
  5790. break;
  5791. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5792. case 540:
  5793. gcode_M540();
  5794. break;
  5795. #endif
  5796. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5797. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  5798. gcode_SET_Z_PROBE_OFFSET();
  5799. break;
  5800. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  5801. #if ENABLED(FILAMENTCHANGEENABLE)
  5802. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  5803. gcode_M600();
  5804. break;
  5805. #endif // FILAMENTCHANGEENABLE
  5806. #if ENABLED(DUAL_X_CARRIAGE)
  5807. case 605:
  5808. gcode_M605();
  5809. break;
  5810. #endif // DUAL_X_CARRIAGE
  5811. case 907: // M907 Set digital trimpot motor current using axis codes.
  5812. gcode_M907();
  5813. break;
  5814. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5815. case 908: // M908 Control digital trimpot directly.
  5816. gcode_M908();
  5817. break;
  5818. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5819. case 909: // M909 Print digipot/DAC current value
  5820. gcode_M909();
  5821. break;
  5822. case 910: // M910 Commit digipot/DAC value to external EEPROM
  5823. gcode_M910();
  5824. break;
  5825. #endif
  5826. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5827. #if HAS_MICROSTEPS
  5828. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5829. gcode_M350();
  5830. break;
  5831. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  5832. gcode_M351();
  5833. break;
  5834. #endif // HAS_MICROSTEPS
  5835. case 999: // M999: Restart after being Stopped
  5836. gcode_M999();
  5837. break;
  5838. }
  5839. break;
  5840. case 'T':
  5841. gcode_T(codenum);
  5842. break;
  5843. default: code_is_good = false;
  5844. }
  5845. KEEPALIVE_STATE(NOT_BUSY);
  5846. ExitUnknownCommand:
  5847. // Still unknown command? Throw an error
  5848. if (!code_is_good) unknown_command_error();
  5849. ok_to_send();
  5850. }
  5851. void FlushSerialRequestResend() {
  5852. //char command_queue[cmd_queue_index_r][100]="Resend:";
  5853. MYSERIAL.flush();
  5854. SERIAL_PROTOCOLPGM(MSG_RESEND);
  5855. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  5856. ok_to_send();
  5857. }
  5858. void ok_to_send() {
  5859. refresh_cmd_timeout();
  5860. if (!send_ok[cmd_queue_index_r]) return;
  5861. SERIAL_PROTOCOLPGM(MSG_OK);
  5862. #if ENABLED(ADVANCED_OK)
  5863. char* p = command_queue[cmd_queue_index_r];
  5864. if (*p == 'N') {
  5865. SERIAL_PROTOCOL(' ');
  5866. SERIAL_ECHO(*p++);
  5867. while (NUMERIC_SIGNED(*p))
  5868. SERIAL_ECHO(*p++);
  5869. }
  5870. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  5871. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  5872. #endif
  5873. SERIAL_EOL;
  5874. }
  5875. void clamp_to_software_endstops(float target[3]) {
  5876. if (min_software_endstops) {
  5877. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  5878. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  5879. float negative_z_offset = 0;
  5880. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5881. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  5882. if (home_offset[Z_AXIS] < 0) {
  5883. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5884. if (DEBUGGING(LEVELING)) {
  5885. SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
  5886. SERIAL_EOL;
  5887. }
  5888. #endif
  5889. negative_z_offset += home_offset[Z_AXIS];
  5890. }
  5891. #endif
  5892. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  5893. }
  5894. if (max_software_endstops) {
  5895. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  5896. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  5897. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  5898. }
  5899. }
  5900. #if ENABLED(DELTA)
  5901. void recalc_delta_settings(float radius, float diagonal_rod) {
  5902. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  5903. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  5904. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  5905. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  5906. delta_tower3_x = 0.0; // back middle tower
  5907. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  5908. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  5909. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  5910. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  5911. }
  5912. void calculate_delta(float cartesian[3]) {
  5913. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  5914. - sq(delta_tower1_x - cartesian[X_AXIS])
  5915. - sq(delta_tower1_y - cartesian[Y_AXIS])
  5916. ) + cartesian[Z_AXIS];
  5917. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  5918. - sq(delta_tower2_x - cartesian[X_AXIS])
  5919. - sq(delta_tower2_y - cartesian[Y_AXIS])
  5920. ) + cartesian[Z_AXIS];
  5921. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  5922. - sq(delta_tower3_x - cartesian[X_AXIS])
  5923. - sq(delta_tower3_y - cartesian[Y_AXIS])
  5924. ) + cartesian[Z_AXIS];
  5925. /**
  5926. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5927. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5928. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5929. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  5930. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  5931. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  5932. */
  5933. }
  5934. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5935. // Adjust print surface height by linear interpolation over the bed_level array.
  5936. void adjust_delta(float cartesian[3]) {
  5937. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  5938. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  5939. float h1 = 0.001 - half, h2 = half - 0.001,
  5940. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  5941. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  5942. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  5943. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  5944. z1 = bed_level[floor_x + half][floor_y + half],
  5945. z2 = bed_level[floor_x + half][floor_y + half + 1],
  5946. z3 = bed_level[floor_x + half + 1][floor_y + half],
  5947. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  5948. left = (1 - ratio_y) * z1 + ratio_y * z2,
  5949. right = (1 - ratio_y) * z3 + ratio_y * z4,
  5950. offset = (1 - ratio_x) * left + ratio_x * right;
  5951. delta[X_AXIS] += offset;
  5952. delta[Y_AXIS] += offset;
  5953. delta[Z_AXIS] += offset;
  5954. /**
  5955. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  5956. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  5957. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  5958. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  5959. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  5960. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  5961. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  5962. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  5963. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  5964. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  5965. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  5966. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  5967. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  5968. */
  5969. }
  5970. #endif // AUTO_BED_LEVELING_FEATURE
  5971. #endif // DELTA
  5972. #if ENABLED(MESH_BED_LEVELING)
  5973. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  5974. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  5975. if (!mbl.active) {
  5976. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5977. set_current_to_destination();
  5978. return;
  5979. }
  5980. int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
  5981. int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
  5982. int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
  5983. int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
  5984. pix = min(pix, MESH_NUM_X_POINTS - 2);
  5985. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  5986. ix = min(ix, MESH_NUM_X_POINTS - 2);
  5987. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  5988. if (pix == ix && piy == iy) {
  5989. // Start and end on same mesh square
  5990. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5991. set_current_to_destination();
  5992. return;
  5993. }
  5994. float nx, ny, nz, ne, normalized_dist;
  5995. if (ix > pix && TEST(x_splits, ix)) {
  5996. nx = mbl.get_x(ix) + home_offset[X_AXIS];
  5997. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  5998. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5999. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6000. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6001. CBI(x_splits, ix);
  6002. }
  6003. else if (ix < pix && TEST(x_splits, pix)) {
  6004. nx = mbl.get_x(pix) + home_offset[X_AXIS];
  6005. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6006. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6007. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6008. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6009. CBI(x_splits, pix);
  6010. }
  6011. else if (iy > piy && TEST(y_splits, iy)) {
  6012. ny = mbl.get_y(iy) + home_offset[Y_AXIS];
  6013. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6014. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6015. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6016. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6017. CBI(y_splits, iy);
  6018. }
  6019. else if (iy < piy && TEST(y_splits, piy)) {
  6020. ny = mbl.get_y(piy) + home_offset[Y_AXIS];
  6021. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6022. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6023. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6024. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6025. CBI(y_splits, piy);
  6026. }
  6027. else {
  6028. // Already split on a border
  6029. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  6030. set_current_to_destination();
  6031. return;
  6032. }
  6033. // Do the split and look for more borders
  6034. destination[X_AXIS] = nx;
  6035. destination[Y_AXIS] = ny;
  6036. destination[Z_AXIS] = nz;
  6037. destination[E_AXIS] = ne;
  6038. mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6039. destination[X_AXIS] = x;
  6040. destination[Y_AXIS] = y;
  6041. destination[Z_AXIS] = z;
  6042. destination[E_AXIS] = e;
  6043. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6044. }
  6045. #endif // MESH_BED_LEVELING
  6046. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6047. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6048. if (DEBUGGING(DRYRUN)) return;
  6049. float de = dest_e - curr_e;
  6050. if (de) {
  6051. if (degHotend(active_extruder) < extrude_min_temp) {
  6052. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6053. SERIAL_ECHO_START;
  6054. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6055. }
  6056. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6057. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6058. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6059. SERIAL_ECHO_START;
  6060. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6061. }
  6062. #endif
  6063. }
  6064. }
  6065. #endif // PREVENT_DANGEROUS_EXTRUDE
  6066. #if ENABLED(DELTA) || ENABLED(SCARA)
  6067. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  6068. float difference[NUM_AXIS];
  6069. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6070. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6071. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6072. if (cartesian_mm < 0.000001) return false;
  6073. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  6074. int steps = max(1, int(delta_segments_per_second * seconds));
  6075. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6076. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6077. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6078. for (int s = 1; s <= steps; s++) {
  6079. float fraction = float(s) / float(steps);
  6080. for (int8_t i = 0; i < NUM_AXIS; i++)
  6081. target[i] = current_position[i] + difference[i] * fraction;
  6082. calculate_delta(target);
  6083. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6084. adjust_delta(target);
  6085. #endif
  6086. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  6087. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  6088. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  6089. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  6090. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6091. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6092. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
  6093. }
  6094. return true;
  6095. }
  6096. #endif // DELTA || SCARA
  6097. #if ENABLED(SCARA)
  6098. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  6099. #endif
  6100. #if ENABLED(DUAL_X_CARRIAGE)
  6101. inline bool prepare_move_dual_x_carriage() {
  6102. if (active_extruder_parked) {
  6103. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6104. // move duplicate extruder into correct duplication position.
  6105. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6106. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6107. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  6108. sync_plan_position();
  6109. st_synchronize();
  6110. extruder_duplication_enabled = true;
  6111. active_extruder_parked = false;
  6112. }
  6113. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6114. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6115. // This is a travel move (with no extrusion)
  6116. // Skip it, but keep track of the current position
  6117. // (so it can be used as the start of the next non-travel move)
  6118. if (delayed_move_time != 0xFFFFFFFFUL) {
  6119. set_current_to_destination();
  6120. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6121. delayed_move_time = millis();
  6122. return false;
  6123. }
  6124. }
  6125. delayed_move_time = 0;
  6126. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6127. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  6129. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  6130. active_extruder_parked = false;
  6131. }
  6132. }
  6133. return true;
  6134. }
  6135. #endif // DUAL_X_CARRIAGE
  6136. #if DISABLED(DELTA) && DISABLED(SCARA)
  6137. inline bool prepare_move_cartesian() {
  6138. // Do not use feedrate_multiplier for E or Z only moves
  6139. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6140. line_to_destination();
  6141. }
  6142. else {
  6143. #if ENABLED(MESH_BED_LEVELING)
  6144. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6145. return false;
  6146. #else
  6147. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6148. #endif
  6149. }
  6150. return true;
  6151. }
  6152. #endif // !DELTA && !SCARA
  6153. /**
  6154. * Prepare a single move and get ready for the next one
  6155. *
  6156. * (This may call plan_buffer_line several times to put
  6157. * smaller moves into the planner for DELTA or SCARA.)
  6158. */
  6159. void prepare_move() {
  6160. clamp_to_software_endstops(destination);
  6161. refresh_cmd_timeout();
  6162. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6163. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6164. #endif
  6165. #if ENABLED(SCARA)
  6166. if (!prepare_move_scara(destination)) return;
  6167. #elif ENABLED(DELTA)
  6168. if (!prepare_move_delta(destination)) return;
  6169. #endif
  6170. #if ENABLED(DUAL_X_CARRIAGE)
  6171. if (!prepare_move_dual_x_carriage()) return;
  6172. #endif
  6173. #if DISABLED(DELTA) && DISABLED(SCARA)
  6174. if (!prepare_move_cartesian()) return;
  6175. #endif
  6176. set_current_to_destination();
  6177. }
  6178. /**
  6179. * Plan an arc in 2 dimensions
  6180. *
  6181. * The arc is approximated by generating many small linear segments.
  6182. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6183. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6184. * larger segments will tend to be more efficient. Your slicer should have
  6185. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6186. */
  6187. void plan_arc(
  6188. float target[NUM_AXIS], // Destination position
  6189. float* offset, // Center of rotation relative to current_position
  6190. uint8_t clockwise // Clockwise?
  6191. ) {
  6192. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6193. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  6194. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  6195. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6196. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6197. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  6198. r_axis1 = -offset[Y_AXIS],
  6199. rt_axis0 = target[X_AXIS] - center_axis0,
  6200. rt_axis1 = target[Y_AXIS] - center_axis1;
  6201. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6202. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
  6203. if (angular_travel < 0) angular_travel += RADIANS(360);
  6204. if (clockwise) angular_travel -= RADIANS(360);
  6205. // Make a circle if the angular rotation is 0
  6206. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  6207. angular_travel += RADIANS(360);
  6208. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6209. if (mm_of_travel < 0.001) return;
  6210. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6211. if (segments == 0) segments = 1;
  6212. float theta_per_segment = angular_travel / segments;
  6213. float linear_per_segment = linear_travel / segments;
  6214. float extruder_per_segment = extruder_travel / segments;
  6215. /**
  6216. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6217. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6218. * r_T = [cos(phi) -sin(phi);
  6219. * sin(phi) cos(phi] * r ;
  6220. *
  6221. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6222. * defined from the circle center to the initial position. Each line segment is formed by successive
  6223. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6224. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6225. * all double numbers are single precision on the Arduino. (True double precision will not have
  6226. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6227. * tool precision in some cases. Therefore, arc path correction is implemented.
  6228. *
  6229. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6230. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6231. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6232. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6233. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6234. * issue for CNC machines with the single precision Arduino calculations.
  6235. *
  6236. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6237. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6238. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6239. * This is important when there are successive arc motions.
  6240. */
  6241. // Vector rotation matrix values
  6242. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6243. float sin_T = theta_per_segment;
  6244. float arc_target[NUM_AXIS];
  6245. float sin_Ti;
  6246. float cos_Ti;
  6247. float r_axisi;
  6248. uint16_t i;
  6249. int8_t count = 0;
  6250. // Initialize the linear axis
  6251. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6252. // Initialize the extruder axis
  6253. arc_target[E_AXIS] = current_position[E_AXIS];
  6254. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6255. for (i = 1; i < segments; i++) { // Increment (segments-1)
  6256. if (count < N_ARC_CORRECTION) {
  6257. // Apply vector rotation matrix to previous r_axis0 / 1
  6258. r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
  6259. r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
  6260. r_axis1 = r_axisi;
  6261. count++;
  6262. }
  6263. else {
  6264. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6265. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6266. cos_Ti = cos(i * theta_per_segment);
  6267. sin_Ti = sin(i * theta_per_segment);
  6268. r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6269. r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6270. count = 0;
  6271. }
  6272. // Update arc_target location
  6273. arc_target[X_AXIS] = center_axis0 + r_axis0;
  6274. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  6275. arc_target[Z_AXIS] += linear_per_segment;
  6276. arc_target[E_AXIS] += extruder_per_segment;
  6277. clamp_to_software_endstops(arc_target);
  6278. #if ENABLED(DELTA) || ENABLED(SCARA)
  6279. calculate_delta(arc_target);
  6280. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6281. adjust_delta(arc_target);
  6282. #endif
  6283. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6284. #else
  6285. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6286. #endif
  6287. }
  6288. // Ensure last segment arrives at target location.
  6289. #if ENABLED(DELTA) || ENABLED(SCARA)
  6290. calculate_delta(target);
  6291. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6292. adjust_delta(target);
  6293. #endif
  6294. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6295. #else
  6296. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6297. #endif
  6298. // As far as the parser is concerned, the position is now == target. In reality the
  6299. // motion control system might still be processing the action and the real tool position
  6300. // in any intermediate location.
  6301. set_current_to_destination();
  6302. }
  6303. #if HAS_CONTROLLERFAN
  6304. void controllerFan() {
  6305. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6306. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6307. millis_t ms = millis();
  6308. if (ELAPSED(ms, nextMotorCheck)) {
  6309. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6310. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  6311. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6312. #if EXTRUDERS > 1
  6313. || E1_ENABLE_READ == E_ENABLE_ON
  6314. #if HAS_X2_ENABLE
  6315. || X2_ENABLE_READ == X_ENABLE_ON
  6316. #endif
  6317. #if EXTRUDERS > 2
  6318. || E2_ENABLE_READ == E_ENABLE_ON
  6319. #if EXTRUDERS > 3
  6320. || E3_ENABLE_READ == E_ENABLE_ON
  6321. #endif
  6322. #endif
  6323. #endif
  6324. ) {
  6325. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6326. }
  6327. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6328. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6329. // allows digital or PWM fan output to be used (see M42 handling)
  6330. digitalWrite(CONTROLLERFAN_PIN, speed);
  6331. analogWrite(CONTROLLERFAN_PIN, speed);
  6332. }
  6333. }
  6334. #endif // HAS_CONTROLLERFAN
  6335. #if ENABLED(SCARA)
  6336. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6337. // Perform forward kinematics, and place results in delta[3]
  6338. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6339. float x_sin, x_cos, y_sin, y_cos;
  6340. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6341. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6342. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6343. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6344. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6345. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6346. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6347. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6348. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6349. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6350. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6351. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6352. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6353. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6354. }
  6355. void calculate_delta(float cartesian[3]) {
  6356. //reverse kinematics.
  6357. // Perform reversed kinematics, and place results in delta[3]
  6358. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6359. float SCARA_pos[2];
  6360. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6361. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6362. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6363. #if (Linkage_1 == Linkage_2)
  6364. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6365. #else
  6366. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6367. #endif
  6368. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6369. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6370. SCARA_K2 = Linkage_2 * SCARA_S2;
  6371. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6372. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6373. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6374. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6375. delta[Z_AXIS] = cartesian[Z_AXIS];
  6376. /**
  6377. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6378. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6379. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6380. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6381. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6382. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6383. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6384. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6385. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6386. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6387. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6388. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6389. SERIAL_EOL;
  6390. */
  6391. }
  6392. #endif // SCARA
  6393. #if ENABLED(TEMP_STAT_LEDS)
  6394. static bool red_led = false;
  6395. static millis_t next_status_led_update_ms = 0;
  6396. void handle_status_leds(void) {
  6397. float max_temp = 0.0;
  6398. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6399. next_status_led_update_ms += 500; // Update every 0.5s
  6400. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  6401. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  6402. #if HAS_TEMP_BED
  6403. max_temp = max(max(max_temp, degTargetBed()), degBed());
  6404. #endif
  6405. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6406. if (new_led != red_led) {
  6407. red_led = new_led;
  6408. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6409. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6410. }
  6411. }
  6412. }
  6413. #endif
  6414. void enable_all_steppers() {
  6415. enable_x();
  6416. enable_y();
  6417. enable_z();
  6418. enable_e0();
  6419. enable_e1();
  6420. enable_e2();
  6421. enable_e3();
  6422. }
  6423. void disable_all_steppers() {
  6424. disable_x();
  6425. disable_y();
  6426. disable_z();
  6427. disable_e0();
  6428. disable_e1();
  6429. disable_e2();
  6430. disable_e3();
  6431. }
  6432. /**
  6433. * Standard idle routine keeps the machine alive
  6434. */
  6435. void idle(
  6436. #if ENABLED(FILAMENTCHANGEENABLE)
  6437. bool no_stepper_sleep/*=false*/
  6438. #endif
  6439. ) {
  6440. manage_heater();
  6441. manage_inactivity(
  6442. #if ENABLED(FILAMENTCHANGEENABLE)
  6443. no_stepper_sleep
  6444. #endif
  6445. );
  6446. host_keepalive();
  6447. lcd_update();
  6448. }
  6449. /**
  6450. * Manage several activities:
  6451. * - Check for Filament Runout
  6452. * - Keep the command buffer full
  6453. * - Check for maximum inactive time between commands
  6454. * - Check for maximum inactive time between stepper commands
  6455. * - Check if pin CHDK needs to go LOW
  6456. * - Check for KILL button held down
  6457. * - Check for HOME button held down
  6458. * - Check if cooling fan needs to be switched on
  6459. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6460. */
  6461. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6462. #if HAS_FILRUNOUT
  6463. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6464. filrunout();
  6465. #endif
  6466. if (commands_in_queue < BUFSIZE) get_available_commands();
  6467. millis_t ms = millis();
  6468. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6469. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6470. && !ignore_stepper_queue && !blocks_queued()) {
  6471. #if ENABLED(DISABLE_INACTIVE_X)
  6472. disable_x();
  6473. #endif
  6474. #if ENABLED(DISABLE_INACTIVE_Y)
  6475. disable_y();
  6476. #endif
  6477. #if ENABLED(DISABLE_INACTIVE_Z)
  6478. disable_z();
  6479. #endif
  6480. #if ENABLED(DISABLE_INACTIVE_E)
  6481. disable_e0();
  6482. disable_e1();
  6483. disable_e2();
  6484. disable_e3();
  6485. #endif
  6486. }
  6487. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6488. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6489. chdkActive = false;
  6490. WRITE(CHDK, LOW);
  6491. }
  6492. #endif
  6493. #if HAS_KILL
  6494. // Check if the kill button was pressed and wait just in case it was an accidental
  6495. // key kill key press
  6496. // -------------------------------------------------------------------------------
  6497. static int killCount = 0; // make the inactivity button a bit less responsive
  6498. const int KILL_DELAY = 750;
  6499. if (!READ(KILL_PIN))
  6500. killCount++;
  6501. else if (killCount > 0)
  6502. killCount--;
  6503. // Exceeded threshold and we can confirm that it was not accidental
  6504. // KILL the machine
  6505. // ----------------------------------------------------------------
  6506. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6507. #endif
  6508. #if HAS_HOME
  6509. // Check to see if we have to home, use poor man's debouncer
  6510. // ---------------------------------------------------------
  6511. static int homeDebounceCount = 0; // poor man's debouncing count
  6512. const int HOME_DEBOUNCE_DELAY = 2500;
  6513. if (!READ(HOME_PIN)) {
  6514. if (!homeDebounceCount) {
  6515. enqueue_and_echo_commands_P(PSTR("G28"));
  6516. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6517. }
  6518. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6519. homeDebounceCount++;
  6520. else
  6521. homeDebounceCount = 0;
  6522. }
  6523. #endif
  6524. #if HAS_CONTROLLERFAN
  6525. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6526. #endif
  6527. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6528. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6529. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6530. bool oldstatus;
  6531. switch (active_extruder) {
  6532. case 0:
  6533. oldstatus = E0_ENABLE_READ;
  6534. enable_e0();
  6535. break;
  6536. #if EXTRUDERS > 1
  6537. case 1:
  6538. oldstatus = E1_ENABLE_READ;
  6539. enable_e1();
  6540. break;
  6541. #if EXTRUDERS > 2
  6542. case 2:
  6543. oldstatus = E2_ENABLE_READ;
  6544. enable_e2();
  6545. break;
  6546. #if EXTRUDERS > 3
  6547. case 3:
  6548. oldstatus = E3_ENABLE_READ;
  6549. enable_e3();
  6550. break;
  6551. #endif
  6552. #endif
  6553. #endif
  6554. }
  6555. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6556. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6557. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS],
  6558. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder);
  6559. current_position[E_AXIS] = oldepos;
  6560. destination[E_AXIS] = oldedes;
  6561. plan_set_e_position(oldepos);
  6562. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6563. st_synchronize();
  6564. switch (active_extruder) {
  6565. case 0:
  6566. E0_ENABLE_WRITE(oldstatus);
  6567. break;
  6568. #if EXTRUDERS > 1
  6569. case 1:
  6570. E1_ENABLE_WRITE(oldstatus);
  6571. break;
  6572. #if EXTRUDERS > 2
  6573. case 2:
  6574. E2_ENABLE_WRITE(oldstatus);
  6575. break;
  6576. #if EXTRUDERS > 3
  6577. case 3:
  6578. E3_ENABLE_WRITE(oldstatus);
  6579. break;
  6580. #endif
  6581. #endif
  6582. #endif
  6583. }
  6584. }
  6585. #endif
  6586. #if ENABLED(DUAL_X_CARRIAGE)
  6587. // handle delayed move timeout
  6588. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6589. // travel moves have been received so enact them
  6590. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6591. set_destination_to_current();
  6592. prepare_move();
  6593. }
  6594. #endif
  6595. #if ENABLED(TEMP_STAT_LEDS)
  6596. handle_status_leds();
  6597. #endif
  6598. check_axes_activity();
  6599. }
  6600. void kill(const char* lcd_msg) {
  6601. #if ENABLED(ULTRA_LCD)
  6602. lcd_setalertstatuspgm(lcd_msg);
  6603. #else
  6604. UNUSED(lcd_msg);
  6605. #endif
  6606. cli(); // Stop interrupts
  6607. disable_all_heaters();
  6608. disable_all_steppers();
  6609. #if HAS_POWER_SWITCH
  6610. pinMode(PS_ON_PIN, INPUT);
  6611. #endif
  6612. SERIAL_ERROR_START;
  6613. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6614. // FMC small patch to update the LCD before ending
  6615. sei(); // enable interrupts
  6616. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  6617. cli(); // disable interrupts
  6618. suicide();
  6619. while (1) {
  6620. #if ENABLED(USE_WATCHDOG)
  6621. watchdog_reset();
  6622. #endif
  6623. } // Wait for reset
  6624. }
  6625. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6626. void filrunout() {
  6627. if (!filrunoutEnqueued) {
  6628. filrunoutEnqueued = true;
  6629. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6630. st_synchronize();
  6631. }
  6632. }
  6633. #endif // FILAMENT_RUNOUT_SENSOR
  6634. #if ENABLED(FAST_PWM_FAN)
  6635. void setPwmFrequency(uint8_t pin, int val) {
  6636. val &= 0x07;
  6637. switch (digitalPinToTimer(pin)) {
  6638. #if defined(TCCR0A)
  6639. case TIMER0A:
  6640. case TIMER0B:
  6641. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  6642. // TCCR0B |= val;
  6643. break;
  6644. #endif
  6645. #if defined(TCCR1A)
  6646. case TIMER1A:
  6647. case TIMER1B:
  6648. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6649. // TCCR1B |= val;
  6650. break;
  6651. #endif
  6652. #if defined(TCCR2)
  6653. case TIMER2:
  6654. case TIMER2:
  6655. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  6656. TCCR2 |= val;
  6657. break;
  6658. #endif
  6659. #if defined(TCCR2A)
  6660. case TIMER2A:
  6661. case TIMER2B:
  6662. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  6663. TCCR2B |= val;
  6664. break;
  6665. #endif
  6666. #if defined(TCCR3A)
  6667. case TIMER3A:
  6668. case TIMER3B:
  6669. case TIMER3C:
  6670. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  6671. TCCR3B |= val;
  6672. break;
  6673. #endif
  6674. #if defined(TCCR4A)
  6675. case TIMER4A:
  6676. case TIMER4B:
  6677. case TIMER4C:
  6678. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  6679. TCCR4B |= val;
  6680. break;
  6681. #endif
  6682. #if defined(TCCR5A)
  6683. case TIMER5A:
  6684. case TIMER5B:
  6685. case TIMER5C:
  6686. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  6687. TCCR5B |= val;
  6688. break;
  6689. #endif
  6690. }
  6691. }
  6692. #endif // FAST_PWM_FAN
  6693. void Stop() {
  6694. disable_all_heaters();
  6695. if (IsRunning()) {
  6696. Running = false;
  6697. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  6698. SERIAL_ERROR_START;
  6699. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  6700. LCD_MESSAGEPGM(MSG_STOPPED);
  6701. }
  6702. }
  6703. /**
  6704. * Set target_extruder from the T parameter or the active_extruder
  6705. *
  6706. * Returns TRUE if the target is invalid
  6707. */
  6708. bool setTargetedHotend(int code) {
  6709. target_extruder = active_extruder;
  6710. if (code_seen('T')) {
  6711. target_extruder = code_value_short();
  6712. if (target_extruder >= EXTRUDERS) {
  6713. SERIAL_ECHO_START;
  6714. SERIAL_CHAR('M');
  6715. SERIAL_ECHO(code);
  6716. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  6717. SERIAL_ECHOLN((int)target_extruder);
  6718. return true;
  6719. }
  6720. }
  6721. return false;
  6722. }
  6723. float calculate_volumetric_multiplier(float diameter) {
  6724. if (!volumetric_enabled || diameter == 0) return 1.0;
  6725. float d2 = diameter * 0.5;
  6726. return 1.0 / (M_PI * d2 * d2);
  6727. }
  6728. void calculate_volumetric_multipliers() {
  6729. for (int i = 0; i < EXTRUDERS; i++)
  6730. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  6731. }