My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 210KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740
  1. /**
  2. * Marlin Firmware
  3. *
  4. * Based on Sprinter and grbl.
  5. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  6. *
  7. * This program is free software: you can redistribute it and/or modify
  8. * it under the terms of the GNU General Public License as published by
  9. * the Free Software Foundation, either version 3 of the License, or
  10. * (at your option) any later version.
  11. *
  12. * This program is distributed in the hope that it will be useful,
  13. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  15. * GNU General Public License for more details.
  16. *
  17. * You should have received a copy of the GNU General Public License
  18. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  19. *
  20. * About Marlin
  21. *
  22. * This firmware is a mashup between Sprinter and grbl.
  23. * - https://github.com/kliment/Sprinter
  24. * - https://github.com/simen/grbl/tree
  25. *
  26. * It has preliminary support for Matthew Roberts advance algorithm
  27. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  28. */
  29. #include "Marlin.h"
  30. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  31. #include "vector_3.h"
  32. #if ENABLED(AUTO_BED_LEVELING_GRID)
  33. #include "qr_solve.h"
  34. #endif
  35. #endif // ENABLE_AUTO_BED_LEVELING
  36. #if ENABLED(MESH_BED_LEVELING)
  37. #include "mesh_bed_leveling.h"
  38. #endif
  39. #include "ultralcd.h"
  40. #include "planner.h"
  41. #include "stepper.h"
  42. #include "temperature.h"
  43. #include "cardreader.h"
  44. #include "watchdog.h"
  45. #include "configuration_store.h"
  46. #include "language.h"
  47. #include "pins_arduino.h"
  48. #include "math.h"
  49. #include "buzzer.h"
  50. #if ENABLED(BLINKM)
  51. #include "blinkm.h"
  52. #include "Wire.h"
  53. #endif
  54. #if HAS_SERVOS
  55. #include "servo.h"
  56. #endif
  57. #if HAS_DIGIPOTSS
  58. #include <SPI.h>
  59. #endif
  60. /**
  61. * Look here for descriptions of G-codes:
  62. * - http://linuxcnc.org/handbook/gcode/g-code.html
  63. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  64. *
  65. * Help us document these G-codes online:
  66. * - http://www.marlinfirmware.org/index.php/G-Code
  67. * - http://reprap.org/wiki/G-code
  68. *
  69. * -----------------
  70. * Implemented Codes
  71. * -----------------
  72. *
  73. * "G" Codes
  74. *
  75. * G0 -> G1
  76. * G1 - Coordinated Movement X Y Z E
  77. * G2 - CW ARC
  78. * G3 - CCW ARC
  79. * G4 - Dwell S<seconds> or P<milliseconds>
  80. * G10 - retract filament according to settings of M207
  81. * G11 - retract recover filament according to settings of M208
  82. * G28 - Home one or more axes
  83. * G29 - Detailed Z-Probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  84. * G30 - Single Z Probe, probes bed at current XY location.
  85. * G31 - Dock sled (Z_PROBE_SLED only)
  86. * G32 - Undock sled (Z_PROBE_SLED only)
  87. * G90 - Use Absolute Coordinates
  88. * G91 - Use Relative Coordinates
  89. * G92 - Set current position to coordinates given
  90. *
  91. * "M" Codes
  92. *
  93. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  94. * M1 - Same as M0
  95. * M17 - Enable/Power all stepper motors
  96. * M18 - Disable all stepper motors; same as M84
  97. * M20 - List SD card
  98. * M21 - Init SD card
  99. * M22 - Release SD card
  100. * M23 - Select SD file (M23 filename.g)
  101. * M24 - Start/resume SD print
  102. * M25 - Pause SD print
  103. * M26 - Set SD position in bytes (M26 S12345)
  104. * M27 - Report SD print status
  105. * M28 - Start SD write (M28 filename.g)
  106. * M29 - Stop SD write
  107. * M30 - Delete file from SD (M30 filename.g)
  108. * M31 - Output time since last M109 or SD card start to serial
  109. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  110. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  111. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  112. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  113. * M33 - Get the longname version of a path
  114. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  115. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  116. * M80 - Turn on Power Supply
  117. * M81 - Turn off Power Supply
  118. * M82 - Set E codes absolute (default)
  119. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  120. * M84 - Disable steppers until next move,
  121. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  122. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  123. * M92 - Set axis_steps_per_unit - same syntax as G92
  124. * M104 - Set extruder target temp
  125. * M105 - Read current temp
  126. * M106 - Fan on
  127. * M107 - Fan off
  128. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  129. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  130. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  131. * M110 - Set the current line number
  132. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  133. * M112 - Emergency stop
  134. * M114 - Output current position to serial port
  135. * M115 - Capabilities string
  136. * M117 - Display a message on the controller screen
  137. * M119 - Output Endstop status to serial port
  138. * M120 - Enable endstop detection
  139. * M121 - Disable endstop detection
  140. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  141. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  142. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  143. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  144. * M140 - Set bed target temp
  145. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  146. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  147. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  148. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  149. * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
  150. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  151. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  152. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  153. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
  154. * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  155. * M206 - Set additional homing offset
  156. * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
  157. * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  158. * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  159. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  160. * M220 - Set speed factor override percentage: S<factor in percent>
  161. * M221 - Set extrude factor override percentage: S<factor in percent>
  162. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  163. * M240 - Trigger a camera to take a photograph
  164. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  165. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  166. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  167. * M301 - Set PID parameters P I and D
  168. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  169. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  170. * M304 - Set bed PID parameters P I and D
  171. * M380 - Activate solenoid on active extruder
  172. * M381 - Disable all solenoids
  173. * M400 - Finish all moves
  174. * M401 - Lower z-probe if present
  175. * M402 - Raise z-probe if present
  176. * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
  177. * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
  178. * M406 - Turn off Filament Sensor extrusion control
  179. * M407 - Display measured filament diameter
  180. * M410 - Quickstop. Abort all the planned moves
  181. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  182. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
  183. * M428 - Set the home_offset logically based on the current_position
  184. * M500 - Store parameters in EEPROM
  185. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  186. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  187. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  188. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  189. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  190. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  191. * M666 - Set delta endstop adjustment
  192. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  193. * M907 - Set digital trimpot motor current using axis codes.
  194. * M908 - Control digital trimpot directly.
  195. * M350 - Set microstepping mode.
  196. * M351 - Toggle MS1 MS2 pins directly.
  197. *
  198. * ************ SCARA Specific - This can change to suit future G-code regulations
  199. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  200. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  201. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  202. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  203. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  204. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  205. * ************* SCARA End ***************
  206. *
  207. * ************ Custom codes - This can change to suit future G-code regulations
  208. * M100 - Watch Free Memory (For Debugging Only)
  209. * M851 - Set probe's Z offset (mm above extruder -- The value will always be negative)
  210. * M928 - Start SD logging (M928 filename.g) - ended by M29
  211. * M999 - Restart after being stopped by error
  212. *
  213. * "T" Codes
  214. *
  215. * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
  216. *
  217. */
  218. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  219. void gcode_M100();
  220. #endif
  221. #if ENABLED(SDSUPPORT)
  222. CardReader card;
  223. #endif
  224. bool Running = true;
  225. uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
  226. static float feedrate = 1500.0, saved_feedrate;
  227. float current_position[NUM_AXIS] = { 0.0 };
  228. static float destination[NUM_AXIS] = { 0.0 };
  229. bool axis_known_position[3] = { false };
  230. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  231. static char *current_command, *current_command_args;
  232. static int cmd_queue_index_r = 0;
  233. static int cmd_queue_index_w = 0;
  234. static int commands_in_queue = 0;
  235. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  236. const float homing_feedrate[] = HOMING_FEEDRATE;
  237. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  238. int feedrate_multiplier = 100; //100->1 200->2
  239. int saved_feedrate_multiplier;
  240. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  241. bool volumetric_enabled = false;
  242. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  243. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  244. float home_offset[3] = { 0 };
  245. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  246. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  247. uint8_t active_extruder = 0;
  248. int fanSpeed = 0;
  249. bool cancel_heatup = false;
  250. const char errormagic[] PROGMEM = "Error:";
  251. const char echomagic[] PROGMEM = "echo:";
  252. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  253. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  254. static char serial_char;
  255. static int serial_count = 0;
  256. static boolean comment_mode = false;
  257. static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
  258. const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
  259. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  260. // Inactivity shutdown
  261. millis_t previous_cmd_ms = 0;
  262. static millis_t max_inactive_time = 0;
  263. static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
  264. millis_t print_job_start_ms = 0; ///< Print job start time
  265. millis_t print_job_stop_ms = 0; ///< Print job stop time
  266. static uint8_t target_extruder;
  267. bool no_wait_for_cooling = true;
  268. bool target_direction;
  269. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  270. int xy_travel_speed = XY_TRAVEL_SPEED;
  271. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  272. #endif
  273. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  274. float z_endstop_adj = 0;
  275. #endif
  276. // Extruder offsets
  277. #if EXTRUDERS > 1
  278. #ifndef EXTRUDER_OFFSET_X
  279. #define EXTRUDER_OFFSET_X { 0 }
  280. #endif
  281. #ifndef EXTRUDER_OFFSET_Y
  282. #define EXTRUDER_OFFSET_Y { 0 }
  283. #endif
  284. float extruder_offset[][EXTRUDERS] = {
  285. EXTRUDER_OFFSET_X,
  286. EXTRUDER_OFFSET_Y
  287. #if ENABLED(DUAL_X_CARRIAGE)
  288. , { 0 } // supports offsets in XYZ plane
  289. #endif
  290. };
  291. #endif
  292. #if HAS_SERVO_ENDSTOPS
  293. const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
  294. const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
  295. #endif
  296. #if ENABLED(BARICUDA)
  297. int ValvePressure = 0;
  298. int EtoPPressure = 0;
  299. #endif
  300. #if ENABLED(FWRETRACT)
  301. bool autoretract_enabled = false;
  302. bool retracted[EXTRUDERS] = { false };
  303. bool retracted_swap[EXTRUDERS] = { false };
  304. float retract_length = RETRACT_LENGTH;
  305. float retract_length_swap = RETRACT_LENGTH_SWAP;
  306. float retract_feedrate = RETRACT_FEEDRATE;
  307. float retract_zlift = RETRACT_ZLIFT;
  308. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  309. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  310. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  311. #endif // FWRETRACT
  312. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  313. bool powersupply =
  314. #if ENABLED(PS_DEFAULT_OFF)
  315. false
  316. #else
  317. true
  318. #endif
  319. ;
  320. #endif
  321. #if ENABLED(DELTA)
  322. float delta[3] = { 0 };
  323. #define SIN_60 0.8660254037844386
  324. #define COS_60 0.5
  325. float endstop_adj[3] = { 0 };
  326. // these are the default values, can be overriden with M665
  327. float delta_radius = DELTA_RADIUS;
  328. float delta_tower1_x = -SIN_60 * delta_radius; // front left tower
  329. float delta_tower1_y = -COS_60 * delta_radius;
  330. float delta_tower2_x = SIN_60 * delta_radius; // front right tower
  331. float delta_tower2_y = -COS_60 * delta_radius;
  332. float delta_tower3_x = 0; // back middle tower
  333. float delta_tower3_y = delta_radius;
  334. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  335. float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  336. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  337. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  338. int delta_grid_spacing[2] = { 0, 0 };
  339. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  340. #endif
  341. #else
  342. static bool home_all_axis = true;
  343. #endif
  344. #if ENABLED(SCARA)
  345. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  346. static float delta[3] = { 0 };
  347. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  348. #endif
  349. #if ENABLED(FILAMENT_SENSOR)
  350. //Variables for Filament Sensor input
  351. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  352. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  353. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  354. signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  355. int delay_index1 = 0; //index into ring buffer
  356. int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  357. float delay_dist = 0; //delay distance counter
  358. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  359. #endif
  360. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  361. static bool filrunoutEnqueued = false;
  362. #endif
  363. #if ENABLED(SDSUPPORT)
  364. static bool fromsd[BUFSIZE];
  365. #endif
  366. #if HAS_SERVOS
  367. Servo servo[NUM_SERVOS];
  368. #endif
  369. #ifdef CHDK
  370. unsigned long chdkHigh = 0;
  371. boolean chdkActive = false;
  372. #endif
  373. //===========================================================================
  374. //================================ Functions ================================
  375. //===========================================================================
  376. void process_next_command();
  377. void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
  378. bool setTargetedHotend(int code);
  379. void serial_echopair_P(const char *s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  380. void serial_echopair_P(const char *s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  381. void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  382. void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  383. void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  384. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  385. float extrude_min_temp = EXTRUDE_MINTEMP;
  386. #endif
  387. #if ENABLED(SDSUPPORT)
  388. #include "SdFatUtil.h"
  389. int freeMemory() { return SdFatUtil::FreeRam(); }
  390. #else
  391. extern "C" {
  392. extern unsigned int __bss_end;
  393. extern unsigned int __heap_start;
  394. extern void *__brkval;
  395. int freeMemory() {
  396. int free_memory;
  397. if ((int)__brkval == 0)
  398. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  399. else
  400. free_memory = ((int)&free_memory) - ((int)__brkval);
  401. return free_memory;
  402. }
  403. }
  404. #endif //!SDSUPPORT
  405. /**
  406. * Inject the next command from the command queue, when possible
  407. * Return false only if no command was pending
  408. */
  409. static bool drain_queued_commands_P() {
  410. if (!queued_commands_P) return false;
  411. // Get the next 30 chars from the sequence of gcodes to run
  412. char cmd[30];
  413. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  414. cmd[sizeof(cmd) - 1] = '\0';
  415. // Look for the end of line, or the end of sequence
  416. size_t i = 0;
  417. char c;
  418. while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  419. cmd[i] = '\0';
  420. if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
  421. if (c)
  422. queued_commands_P += i + 1; // move to next command
  423. else
  424. queued_commands_P = NULL; // will have no more commands in the sequence
  425. }
  426. return true;
  427. }
  428. /**
  429. * Record one or many commands to run from program memory.
  430. * Aborts the current queue, if any.
  431. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  432. */
  433. void enqueuecommands_P(const char* pgcode) {
  434. queued_commands_P = pgcode;
  435. drain_queued_commands_P(); // first command executed asap (when possible)
  436. }
  437. /**
  438. * Copy a command directly into the main command buffer, from RAM.
  439. *
  440. * This is done in a non-safe way and needs a rework someday.
  441. * Returns false if it doesn't add any command
  442. */
  443. bool enqueuecommand(const char *cmd) {
  444. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  445. // This is dangerous if a mixing of serial and this happens
  446. char *command = command_queue[cmd_queue_index_w];
  447. strcpy(command, cmd);
  448. SERIAL_ECHO_START;
  449. SERIAL_ECHOPGM(MSG_Enqueueing);
  450. SERIAL_ECHO(command);
  451. SERIAL_ECHOLNPGM("\"");
  452. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  453. commands_in_queue++;
  454. return true;
  455. }
  456. void setup_killpin() {
  457. #if HAS_KILL
  458. SET_INPUT(KILL_PIN);
  459. WRITE(KILL_PIN, HIGH);
  460. #endif
  461. }
  462. void setup_filrunoutpin() {
  463. #if HAS_FILRUNOUT
  464. pinMode(FILRUNOUT_PIN, INPUT);
  465. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  466. WRITE(FILRUNOUT_PIN, HIGH);
  467. #endif
  468. #endif
  469. }
  470. // Set home pin
  471. void setup_homepin(void) {
  472. #if HAS_HOME
  473. SET_INPUT(HOME_PIN);
  474. WRITE(HOME_PIN, HIGH);
  475. #endif
  476. }
  477. void setup_photpin() {
  478. #if HAS_PHOTOGRAPH
  479. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  480. #endif
  481. }
  482. void setup_powerhold() {
  483. #if HAS_SUICIDE
  484. OUT_WRITE(SUICIDE_PIN, HIGH);
  485. #endif
  486. #if HAS_POWER_SWITCH
  487. #if ENABLED(PS_DEFAULT_OFF)
  488. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  489. #else
  490. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  491. #endif
  492. #endif
  493. }
  494. void suicide() {
  495. #if HAS_SUICIDE
  496. OUT_WRITE(SUICIDE_PIN, LOW);
  497. #endif
  498. }
  499. void servo_init() {
  500. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  501. servo[0].attach(SERVO0_PIN);
  502. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  503. #endif
  504. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  505. servo[1].attach(SERVO1_PIN);
  506. servo[1].detach();
  507. #endif
  508. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  509. servo[2].attach(SERVO2_PIN);
  510. servo[2].detach();
  511. #endif
  512. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  513. servo[3].attach(SERVO3_PIN);
  514. servo[3].detach();
  515. #endif
  516. // Set position of Servo Endstops that are defined
  517. #if HAS_SERVO_ENDSTOPS
  518. for (int i = 0; i < 3; i++)
  519. if (servo_endstop_id[i] >= 0)
  520. servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
  521. #endif
  522. }
  523. /**
  524. * Stepper Reset (RigidBoard, et.al.)
  525. */
  526. #if HAS_STEPPER_RESET
  527. void disableStepperDrivers() {
  528. pinMode(STEPPER_RESET_PIN, OUTPUT);
  529. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  530. }
  531. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  532. #endif
  533. /**
  534. * Marlin entry-point: Set up before the program loop
  535. * - Set up the kill pin, filament runout, power hold
  536. * - Start the serial port
  537. * - Print startup messages and diagnostics
  538. * - Get EEPROM or default settings
  539. * - Initialize managers for:
  540. * • temperature
  541. * • planner
  542. * • watchdog
  543. * • stepper
  544. * • photo pin
  545. * • servos
  546. * • LCD controller
  547. * • Digipot I2C
  548. * • Z probe sled
  549. * • status LEDs
  550. */
  551. void setup() {
  552. setup_killpin();
  553. setup_filrunoutpin();
  554. setup_powerhold();
  555. #if HAS_STEPPER_RESET
  556. disableStepperDrivers();
  557. #endif
  558. MYSERIAL.begin(BAUDRATE);
  559. SERIAL_PROTOCOLLNPGM("start");
  560. SERIAL_ECHO_START;
  561. // Check startup - does nothing if bootloader sets MCUSR to 0
  562. byte mcu = MCUSR;
  563. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  564. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  565. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  566. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  567. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  568. MCUSR = 0;
  569. SERIAL_ECHOPGM(MSG_MARLIN);
  570. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  571. #ifdef STRING_DISTRIBUTION_DATE
  572. #ifdef STRING_CONFIG_H_AUTHOR
  573. SERIAL_ECHO_START;
  574. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  575. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  576. SERIAL_ECHOPGM(MSG_AUTHOR);
  577. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  578. SERIAL_ECHOPGM("Compiled: ");
  579. SERIAL_ECHOLNPGM(__DATE__);
  580. #endif // STRING_CONFIG_H_AUTHOR
  581. #endif // STRING_DISTRIBUTION_DATE
  582. SERIAL_ECHO_START;
  583. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  584. SERIAL_ECHO(freeMemory());
  585. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  586. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  587. #if ENABLED(SDSUPPORT)
  588. for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
  589. #endif
  590. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  591. Config_RetrieveSettings();
  592. lcd_init();
  593. tp_init(); // Initialize temperature loop
  594. plan_init(); // Initialize planner;
  595. watchdog_init();
  596. st_init(); // Initialize stepper, this enables interrupts!
  597. setup_photpin();
  598. servo_init();
  599. #if HAS_CONTROLLERFAN
  600. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  601. #endif
  602. #if HAS_STEPPER_RESET
  603. enableStepperDrivers();
  604. #endif
  605. #if ENABLED(DIGIPOT_I2C)
  606. digipot_i2c_init();
  607. #endif
  608. #if ENABLED(Z_PROBE_SLED)
  609. pinMode(SLED_PIN, OUTPUT);
  610. digitalWrite(SLED_PIN, LOW); // turn it off
  611. #endif // Z_PROBE_SLED
  612. setup_homepin();
  613. #ifdef STAT_LED_RED
  614. pinMode(STAT_LED_RED, OUTPUT);
  615. digitalWrite(STAT_LED_RED, LOW); // turn it off
  616. #endif
  617. #ifdef STAT_LED_BLUE
  618. pinMode(STAT_LED_BLUE, OUTPUT);
  619. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  620. #endif
  621. }
  622. /**
  623. * The main Marlin program loop
  624. *
  625. * - Save or log commands to SD
  626. * - Process available commands (if not saving)
  627. * - Call heater manager
  628. * - Call inactivity manager
  629. * - Call endstop manager
  630. * - Call LCD update
  631. */
  632. void loop() {
  633. if (commands_in_queue < BUFSIZE - 1) get_command();
  634. #if ENABLED(SDSUPPORT)
  635. card.checkautostart(false);
  636. #endif
  637. if (commands_in_queue) {
  638. #if ENABLED(SDSUPPORT)
  639. if (card.saving) {
  640. char *command = command_queue[cmd_queue_index_r];
  641. if (strstr_P(command, PSTR("M29"))) {
  642. // M29 closes the file
  643. card.closefile();
  644. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  645. }
  646. else {
  647. // Write the string from the read buffer to SD
  648. card.write_command(command);
  649. if (card.logging)
  650. process_next_command(); // The card is saving because it's logging
  651. else
  652. SERIAL_PROTOCOLLNPGM(MSG_OK);
  653. }
  654. }
  655. else
  656. process_next_command();
  657. #else
  658. process_next_command();
  659. #endif // SDSUPPORT
  660. commands_in_queue--;
  661. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  662. }
  663. checkHitEndstops();
  664. idle();
  665. }
  666. void gcode_line_error(const char *err, bool doFlush=true) {
  667. SERIAL_ERROR_START;
  668. serialprintPGM(err);
  669. SERIAL_ERRORLN(gcode_LastN);
  670. //Serial.println(gcode_N);
  671. if (doFlush) FlushSerialRequestResend();
  672. serial_count = 0;
  673. }
  674. /**
  675. * Add to the circular command queue the next command from:
  676. * - The command-injection queue (queued_commands_P)
  677. * - The active serial input (usually USB)
  678. * - The SD card file being actively printed
  679. */
  680. void get_command() {
  681. if (drain_queued_commands_P()) return; // priority is given to non-serial commands
  682. #if ENABLED(NO_TIMEOUTS)
  683. static millis_t last_command_time = 0;
  684. millis_t ms = millis();
  685. if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
  686. SERIAL_ECHOLNPGM(MSG_WAIT);
  687. last_command_time = ms;
  688. }
  689. #endif
  690. //
  691. // Loop while serial characters are incoming and the queue is not full
  692. //
  693. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  694. #if ENABLED(NO_TIMEOUTS)
  695. last_command_time = ms;
  696. #endif
  697. serial_char = MYSERIAL.read();
  698. //
  699. // If the character ends the line, or the line is full...
  700. //
  701. if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
  702. // end of line == end of comment
  703. comment_mode = false;
  704. if (!serial_count) return; // empty lines just exit
  705. char *command = command_queue[cmd_queue_index_w];
  706. command[serial_count] = 0; // terminate string
  707. // this item in the queue is not from sd
  708. #if ENABLED(SDSUPPORT)
  709. fromsd[cmd_queue_index_w] = false;
  710. #endif
  711. char *npos = strchr(command, 'N');
  712. char *apos = strchr(command, '*');
  713. if (npos) {
  714. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  715. if (M110) {
  716. char *n2pos = strchr(command + 4, 'N');
  717. if (n2pos) npos = n2pos;
  718. }
  719. gcode_N = strtol(npos + 1, NULL, 10);
  720. if (gcode_N != gcode_LastN + 1 && !M110) {
  721. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  722. return;
  723. }
  724. if (apos) {
  725. byte checksum = 0, count = 0;
  726. while (command[count] != '*') checksum ^= command[count++];
  727. if (strtol(apos + 1, NULL, 10) != checksum) {
  728. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  729. return;
  730. }
  731. // if no errors, continue parsing
  732. }
  733. else if (npos == command) {
  734. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  735. return;
  736. }
  737. gcode_LastN = gcode_N;
  738. // if no errors, continue parsing
  739. }
  740. else if (apos) { // No '*' without 'N'
  741. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  742. return;
  743. }
  744. // Movement commands alert when stopped
  745. if (IsStopped()) {
  746. char *gpos = strchr(command, 'G');
  747. if (gpos) {
  748. int codenum = strtol(gpos + 1, NULL, 10);
  749. switch (codenum) {
  750. case 0:
  751. case 1:
  752. case 2:
  753. case 3:
  754. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  755. LCD_MESSAGEPGM(MSG_STOPPED);
  756. break;
  757. }
  758. }
  759. }
  760. // If command was e-stop process now
  761. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  762. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  763. commands_in_queue += 1;
  764. serial_count = 0; //clear buffer
  765. }
  766. else if (serial_char == '\\') { // Handle escapes
  767. if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
  768. // if we have one more character, copy it over
  769. serial_char = MYSERIAL.read();
  770. command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  771. }
  772. // otherwise do nothing
  773. }
  774. else { // its not a newline, carriage return or escape char
  775. if (serial_char == ';') comment_mode = true;
  776. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  777. }
  778. }
  779. #if ENABLED(SDSUPPORT)
  780. if (!card.sdprinting || serial_count) return;
  781. // '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
  782. // if it occurs, stop_buffering is triggered and the buffer is ran dry.
  783. // this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
  784. static bool stop_buffering = false;
  785. if (commands_in_queue == 0) stop_buffering = false;
  786. while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
  787. int16_t n = card.get();
  788. serial_char = (char)n;
  789. if (serial_char == '\n' || serial_char == '\r' ||
  790. ((serial_char == '#' || serial_char == ':') && !comment_mode) ||
  791. serial_count >= (MAX_CMD_SIZE - 1) || n == -1
  792. ) {
  793. if (card.eof()) {
  794. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  795. print_job_stop_ms = millis();
  796. char time[30];
  797. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  798. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  799. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  800. SERIAL_ECHO_START;
  801. SERIAL_ECHOLN(time);
  802. lcd_setstatus(time, true);
  803. card.printingHasFinished();
  804. card.checkautostart(true);
  805. }
  806. if (serial_char == '#') stop_buffering = true;
  807. if (!serial_count) {
  808. comment_mode = false; //for new command
  809. return; //if empty line
  810. }
  811. command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
  812. // if (!comment_mode) {
  813. fromsd[cmd_queue_index_w] = true;
  814. commands_in_queue += 1;
  815. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  816. // }
  817. comment_mode = false; //for new command
  818. serial_count = 0; //clear buffer
  819. }
  820. else {
  821. if (serial_char == ';') comment_mode = true;
  822. if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
  823. }
  824. }
  825. #endif // SDSUPPORT
  826. }
  827. bool code_has_value() {
  828. int i = 1;
  829. char c = seen_pointer[i];
  830. if (c == '-' || c == '+') c = seen_pointer[++i];
  831. if (c == '.') c = seen_pointer[++i];
  832. return (c >= '0' && c <= '9');
  833. }
  834. float code_value() {
  835. float ret;
  836. char *e = strchr(seen_pointer, 'E');
  837. if (e) {
  838. *e = 0;
  839. ret = strtod(seen_pointer+1, NULL);
  840. *e = 'E';
  841. }
  842. else
  843. ret = strtod(seen_pointer+1, NULL);
  844. return ret;
  845. }
  846. long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  847. int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
  848. bool code_seen(char code) {
  849. seen_pointer = strchr(current_command_args, code);
  850. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  851. }
  852. #define DEFINE_PGM_READ_ANY(type, reader) \
  853. static inline type pgm_read_any(const type *p) \
  854. { return pgm_read_##reader##_near(p); }
  855. DEFINE_PGM_READ_ANY(float, float);
  856. DEFINE_PGM_READ_ANY(signed char, byte);
  857. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  858. static const PROGMEM type array##_P[3] = \
  859. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  860. static inline type array(int axis) \
  861. { return pgm_read_any(&array##_P[axis]); }
  862. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  863. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  864. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  865. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  866. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  867. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  868. #if ENABLED(DUAL_X_CARRIAGE)
  869. #define DXC_FULL_CONTROL_MODE 0
  870. #define DXC_AUTO_PARK_MODE 1
  871. #define DXC_DUPLICATION_MODE 2
  872. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  873. static float x_home_pos(int extruder) {
  874. if (extruder == 0)
  875. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  876. else
  877. // In dual carriage mode the extruder offset provides an override of the
  878. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  879. // This allow soft recalibration of the second extruder offset position without firmware reflash
  880. // (through the M218 command).
  881. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  882. }
  883. static int x_home_dir(int extruder) {
  884. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  885. }
  886. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  887. static bool active_extruder_parked = false; // used in mode 1 & 2
  888. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  889. static millis_t delayed_move_time = 0; // used in mode 1
  890. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  891. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  892. bool extruder_duplication_enabled = false; // used in mode 2
  893. #endif //DUAL_X_CARRIAGE
  894. static void set_axis_is_at_home(AxisEnum axis) {
  895. #if ENABLED(DUAL_X_CARRIAGE)
  896. if (axis == X_AXIS) {
  897. if (active_extruder != 0) {
  898. current_position[X_AXIS] = x_home_pos(active_extruder);
  899. min_pos[X_AXIS] = X2_MIN_POS;
  900. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  901. return;
  902. }
  903. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  904. float xoff = home_offset[X_AXIS];
  905. current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
  906. min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
  907. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  908. return;
  909. }
  910. }
  911. #endif
  912. #if ENABLED(SCARA)
  913. if (axis == X_AXIS || axis == Y_AXIS) {
  914. float homeposition[3];
  915. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  916. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  917. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  918. // Works out real Homeposition angles using inverse kinematics,
  919. // and calculates homing offset using forward kinematics
  920. calculate_delta(homeposition);
  921. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  922. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  923. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  924. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  925. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  926. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  927. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  928. calculate_SCARA_forward_Transform(delta);
  929. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  930. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  931. current_position[axis] = delta[axis];
  932. // SCARA home positions are based on configuration since the actual limits are determined by the
  933. // inverse kinematic transform.
  934. min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  935. max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  936. }
  937. else
  938. #endif
  939. {
  940. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  941. min_pos[axis] = base_min_pos(axis) + home_offset[axis];
  942. max_pos[axis] = base_max_pos(axis) + home_offset[axis];
  943. #if ENABLED(ENABLE_AUTO_BED_LEVELING) && Z_HOME_DIR < 0
  944. if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
  945. #endif
  946. }
  947. }
  948. /**
  949. * Some planner shorthand inline functions
  950. */
  951. inline void set_homing_bump_feedrate(AxisEnum axis) {
  952. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  953. int hbd = homing_bump_divisor[axis];
  954. if (hbd < 1) {
  955. hbd = 10;
  956. SERIAL_ECHO_START;
  957. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  958. }
  959. feedrate = homing_feedrate[axis] / hbd;
  960. }
  961. inline void line_to_current_position() {
  962. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  963. }
  964. inline void line_to_z(float zPosition) {
  965. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  966. }
  967. inline void line_to_destination(float mm_m) {
  968. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
  969. }
  970. inline void line_to_destination() {
  971. line_to_destination(feedrate);
  972. }
  973. inline void sync_plan_position() {
  974. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  975. }
  976. #if ENABLED(DELTA) || ENABLED(SCARA)
  977. inline void sync_plan_position_delta() {
  978. calculate_delta(current_position);
  979. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  980. }
  981. #endif
  982. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  983. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  984. static void setup_for_endstop_move() {
  985. saved_feedrate = feedrate;
  986. saved_feedrate_multiplier = feedrate_multiplier;
  987. feedrate_multiplier = 100;
  988. refresh_cmd_timeout();
  989. enable_endstops(true);
  990. }
  991. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  992. #if ENABLED(DELTA)
  993. /**
  994. * Calculate delta, start a line, and set current_position to destination
  995. */
  996. void prepare_move_raw() {
  997. refresh_cmd_timeout();
  998. calculate_delta(destination);
  999. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  1000. set_current_to_destination();
  1001. }
  1002. #endif
  1003. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1004. #if DISABLED(DELTA)
  1005. static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
  1006. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1007. planeNormal.debug("planeNormal");
  1008. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1009. //bedLevel.debug("bedLevel");
  1010. //plan_bed_level_matrix.debug("bed level before");
  1011. //vector_3 uncorrected_position = plan_get_position_mm();
  1012. //uncorrected_position.debug("position before");
  1013. vector_3 corrected_position = plan_get_position();
  1014. //corrected_position.debug("position after");
  1015. current_position[X_AXIS] = corrected_position.x;
  1016. current_position[Y_AXIS] = corrected_position.y;
  1017. current_position[Z_AXIS] = corrected_position.z;
  1018. sync_plan_position();
  1019. }
  1020. #endif // !DELTA
  1021. #else // !AUTO_BED_LEVELING_GRID
  1022. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1023. plan_bed_level_matrix.set_to_identity();
  1024. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1025. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1026. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1027. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1028. if (planeNormal.z < 0) {
  1029. planeNormal.x = -planeNormal.x;
  1030. planeNormal.y = -planeNormal.y;
  1031. planeNormal.z = -planeNormal.z;
  1032. }
  1033. plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1034. vector_3 corrected_position = plan_get_position();
  1035. current_position[X_AXIS] = corrected_position.x;
  1036. current_position[Y_AXIS] = corrected_position.y;
  1037. current_position[Z_AXIS] = corrected_position.z;
  1038. sync_plan_position();
  1039. }
  1040. #endif // !AUTO_BED_LEVELING_GRID
  1041. static void run_z_probe() {
  1042. #if ENABLED(DELTA)
  1043. float start_z = current_position[Z_AXIS];
  1044. long start_steps = st_get_position(Z_AXIS);
  1045. // move down slowly until you find the bed
  1046. feedrate = homing_feedrate[Z_AXIS] / 4;
  1047. destination[Z_AXIS] = -10;
  1048. prepare_move_raw(); // this will also set_current_to_destination
  1049. st_synchronize();
  1050. endstops_hit_on_purpose(); // clear endstop hit flags
  1051. // we have to let the planner know where we are right now as it is not where we said to go.
  1052. long stop_steps = st_get_position(Z_AXIS);
  1053. float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
  1054. current_position[Z_AXIS] = mm;
  1055. sync_plan_position_delta();
  1056. #else // !DELTA
  1057. plan_bed_level_matrix.set_to_identity();
  1058. feedrate = homing_feedrate[Z_AXIS];
  1059. // Move down until the probe (or endstop?) is triggered
  1060. float zPosition = -(Z_MAX_LENGTH + 10);
  1061. line_to_z(zPosition);
  1062. st_synchronize();
  1063. // Tell the planner where we ended up - Get this from the stepper handler
  1064. zPosition = st_get_position_mm(Z_AXIS);
  1065. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  1066. // move up the retract distance
  1067. zPosition += home_bump_mm(Z_AXIS);
  1068. line_to_z(zPosition);
  1069. st_synchronize();
  1070. endstops_hit_on_purpose(); // clear endstop hit flags
  1071. // move back down slowly to find bed
  1072. set_homing_bump_feedrate(Z_AXIS);
  1073. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1074. line_to_z(zPosition);
  1075. st_synchronize();
  1076. endstops_hit_on_purpose(); // clear endstop hit flags
  1077. // Get the current stepper position after bumping an endstop
  1078. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  1079. sync_plan_position();
  1080. #endif // !DELTA
  1081. }
  1082. /**
  1083. * Plan a move to (X, Y, Z) and set the current_position
  1084. * The final current_position may not be the one that was requested
  1085. */
  1086. static void do_blocking_move_to(float x, float y, float z) {
  1087. float oldFeedRate = feedrate;
  1088. #if ENABLED(DELTA)
  1089. feedrate = XY_TRAVEL_SPEED;
  1090. destination[X_AXIS] = x;
  1091. destination[Y_AXIS] = y;
  1092. destination[Z_AXIS] = z;
  1093. prepare_move_raw(); // this will also set_current_to_destination
  1094. st_synchronize();
  1095. #else
  1096. feedrate = homing_feedrate[Z_AXIS];
  1097. current_position[Z_AXIS] = z;
  1098. line_to_current_position();
  1099. st_synchronize();
  1100. feedrate = xy_travel_speed;
  1101. current_position[X_AXIS] = x;
  1102. current_position[Y_AXIS] = y;
  1103. line_to_current_position();
  1104. st_synchronize();
  1105. #endif
  1106. feedrate = oldFeedRate;
  1107. }
  1108. inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
  1109. inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
  1110. inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
  1111. static void clean_up_after_endstop_move() {
  1112. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1113. enable_endstops(false);
  1114. #endif
  1115. feedrate = saved_feedrate;
  1116. feedrate_multiplier = saved_feedrate_multiplier;
  1117. refresh_cmd_timeout();
  1118. }
  1119. static void deploy_z_probe() {
  1120. #if HAS_SERVO_ENDSTOPS
  1121. // Engage Z Servo endstop if enabled
  1122. if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
  1123. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1124. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
  1125. // If endstop is already false, the probe is deployed
  1126. #if ENABLED(Z_PROBE_ENDSTOP)
  1127. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1128. if (z_probe_endstop)
  1129. #else
  1130. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1131. if (z_min_endstop)
  1132. #endif
  1133. {
  1134. // Move to the start position to initiate deployment
  1135. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
  1136. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
  1137. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
  1138. prepare_move_raw(); // this will also set_current_to_destination
  1139. // Move to engage deployment
  1140. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
  1141. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
  1142. }
  1143. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
  1144. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
  1145. }
  1146. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
  1147. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
  1148. }
  1149. if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
  1150. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
  1151. }
  1152. prepare_move_raw();
  1153. #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1154. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1155. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1156. }
  1157. // Move to trigger deployment
  1158. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
  1159. feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
  1160. }
  1161. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
  1162. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
  1163. }
  1164. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
  1165. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
  1166. }
  1167. if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
  1168. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
  1169. }
  1170. prepare_move_raw();
  1171. #endif
  1172. }
  1173. // Partially Home X,Y for safety
  1174. destination[X_AXIS] = destination[X_AXIS]*0.75;
  1175. destination[Y_AXIS] = destination[Y_AXIS]*0.75;
  1176. prepare_move_raw(); // this will also set_current_to_destination
  1177. st_synchronize();
  1178. #if ENABLED(Z_PROBE_ENDSTOP)
  1179. z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1180. if (z_probe_endstop)
  1181. #else
  1182. z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1183. if (z_min_endstop)
  1184. #endif
  1185. {
  1186. if (IsRunning()) {
  1187. SERIAL_ERROR_START;
  1188. SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
  1189. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1190. }
  1191. Stop();
  1192. }
  1193. #endif // Z_PROBE_ALLEN_KEY
  1194. }
  1195. static void stow_z_probe(bool doRaise=true) {
  1196. #if HAS_SERVO_ENDSTOPS
  1197. // Retract Z Servo endstop if enabled
  1198. if (servo_endstop_id[Z_AXIS] >= 0) {
  1199. #if Z_RAISE_AFTER_PROBING > 0
  1200. if (doRaise) {
  1201. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // this also updates current_position
  1202. st_synchronize();
  1203. }
  1204. #endif
  1205. // Change the Z servo angle
  1206. servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
  1207. }
  1208. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1209. // Move up for safety
  1210. feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
  1211. #if Z_RAISE_AFTER_PROBING > 0
  1212. destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
  1213. prepare_move_raw(); // this will also set_current_to_destination
  1214. #endif
  1215. // Move to the start position to initiate retraction
  1216. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
  1217. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
  1218. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
  1219. prepare_move_raw();
  1220. // Move the nozzle down to push the probe into retracted position
  1221. if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
  1222. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1223. }
  1224. if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
  1225. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
  1226. }
  1227. if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
  1228. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
  1229. }
  1230. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
  1231. prepare_move_raw();
  1232. // Move up for safety
  1233. if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
  1234. feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
  1235. }
  1236. if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
  1237. destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
  1238. }
  1239. if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
  1240. destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
  1241. }
  1242. destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
  1243. prepare_move_raw();
  1244. // Home XY for safety
  1245. feedrate = homing_feedrate[X_AXIS]/2;
  1246. destination[X_AXIS] = 0;
  1247. destination[Y_AXIS] = 0;
  1248. prepare_move_raw(); // this will also set_current_to_destination
  1249. st_synchronize();
  1250. #if ENABLED(Z_PROBE_ENDSTOP)
  1251. bool z_probe_endstop = (READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
  1252. if (!z_probe_endstop)
  1253. #else
  1254. bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  1255. if (!z_min_endstop)
  1256. #endif
  1257. {
  1258. if (IsRunning()) {
  1259. SERIAL_ERROR_START;
  1260. SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
  1261. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1262. }
  1263. Stop();
  1264. }
  1265. #endif // Z_PROBE_ALLEN_KEY
  1266. }
  1267. enum ProbeAction {
  1268. ProbeStay = 0,
  1269. ProbeDeploy = BIT(0),
  1270. ProbeStow = BIT(1),
  1271. ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
  1272. };
  1273. // Probe bed height at position (x,y), returns the measured z value
  1274. static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
  1275. // Move Z up to the z_before height, then move the probe to the given XY
  1276. do_blocking_move_to_z(z_before); // this also updates current_position
  1277. do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
  1278. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1279. if (probe_action & ProbeDeploy) deploy_z_probe();
  1280. #endif
  1281. run_z_probe();
  1282. float measured_z = current_position[Z_AXIS];
  1283. #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
  1284. if (probe_action & ProbeStow) stow_z_probe();
  1285. #endif
  1286. if (verbose_level > 2) {
  1287. SERIAL_PROTOCOLPGM("Bed X: ");
  1288. SERIAL_PROTOCOL_F(x, 3);
  1289. SERIAL_PROTOCOLPGM(" Y: ");
  1290. SERIAL_PROTOCOL_F(y, 3);
  1291. SERIAL_PROTOCOLPGM(" Z: ");
  1292. SERIAL_PROTOCOL_F(measured_z, 3);
  1293. SERIAL_EOL;
  1294. }
  1295. return measured_z;
  1296. }
  1297. #if ENABLED(DELTA)
  1298. /**
  1299. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1300. */
  1301. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1302. if (bed_level[x][y] != 0.0) {
  1303. return; // Don't overwrite good values.
  1304. }
  1305. float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
  1306. float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
  1307. float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
  1308. float median = c; // Median is robust (ignores outliers).
  1309. if (a < b) {
  1310. if (b < c) median = b;
  1311. if (c < a) median = a;
  1312. } else { // b <= a
  1313. if (c < b) median = b;
  1314. if (a < c) median = a;
  1315. }
  1316. bed_level[x][y] = median;
  1317. }
  1318. // Fill in the unprobed points (corners of circular print surface)
  1319. // using linear extrapolation, away from the center.
  1320. static void extrapolate_unprobed_bed_level() {
  1321. int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
  1322. for (int y = 0; y <= half; y++) {
  1323. for (int x = 0; x <= half; x++) {
  1324. if (x + y < 3) continue;
  1325. extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
  1326. extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
  1327. extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
  1328. extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
  1329. }
  1330. }
  1331. }
  1332. // Print calibration results for plotting or manual frame adjustment.
  1333. static void print_bed_level() {
  1334. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1335. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1336. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1337. SERIAL_PROTOCOLCHAR(' ');
  1338. }
  1339. SERIAL_EOL;
  1340. }
  1341. }
  1342. // Reset calibration results to zero.
  1343. void reset_bed_level() {
  1344. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1345. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1346. bed_level[x][y] = 0.0;
  1347. }
  1348. }
  1349. }
  1350. #endif // DELTA
  1351. #endif // ENABLE_AUTO_BED_LEVELING
  1352. #if ENABLED(Z_PROBE_SLED)
  1353. #ifndef SLED_DOCKING_OFFSET
  1354. #define SLED_DOCKING_OFFSET 0
  1355. #endif
  1356. /**
  1357. * Method to dock/undock a sled designed by Charles Bell.
  1358. *
  1359. * dock[in] If true, move to MAX_X and engage the electromagnet
  1360. * offset[in] The additional distance to move to adjust docking location
  1361. */
  1362. static void dock_sled(bool dock, int offset=0) {
  1363. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  1364. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1365. SERIAL_ECHO_START;
  1366. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1367. return;
  1368. }
  1369. float oldXpos = current_position[X_AXIS]; // save x position
  1370. if (dock) {
  1371. #if Z_RAISE_AFTER_PROBING > 0
  1372. do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); // raise Z
  1373. #endif
  1374. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
  1375. digitalWrite(SLED_PIN, LOW); // turn off magnet
  1376. } else {
  1377. float z_loc = current_position[Z_AXIS];
  1378. if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
  1379. do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
  1380. digitalWrite(SLED_PIN, HIGH); // turn on magnet
  1381. }
  1382. do_blocking_move_to_x(oldXpos); // return to position before docking
  1383. }
  1384. #endif // Z_PROBE_SLED
  1385. /**
  1386. * Home an individual axis
  1387. */
  1388. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1389. static void homeaxis(AxisEnum axis) {
  1390. #define HOMEAXIS_DO(LETTER) \
  1391. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  1392. if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
  1393. int axis_home_dir =
  1394. #if ENABLED(DUAL_X_CARRIAGE)
  1395. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1396. #endif
  1397. home_dir(axis);
  1398. // Set the axis position as setup for the move
  1399. current_position[axis] = 0;
  1400. sync_plan_position();
  1401. #if ENABLED(Z_PROBE_SLED)
  1402. // Get Probe
  1403. if (axis == Z_AXIS) {
  1404. if (axis_home_dir < 0) dock_sled(false);
  1405. }
  1406. #endif
  1407. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1408. // Deploy a probe if there is one, and homing towards the bed
  1409. if (axis == Z_AXIS) {
  1410. if (axis_home_dir < 0) deploy_z_probe();
  1411. }
  1412. #endif
  1413. #if HAS_SERVO_ENDSTOPS
  1414. // Engage Servo endstop if enabled
  1415. if (axis != Z_AXIS && servo_endstop_id[axis] >= 0)
  1416. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
  1417. #endif
  1418. // Set a flag for Z motor locking
  1419. #if ENABLED(Z_DUAL_ENDSTOPS)
  1420. if (axis == Z_AXIS) In_Homing_Process(true);
  1421. #endif
  1422. // Move towards the endstop until an endstop is triggered
  1423. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  1424. feedrate = homing_feedrate[axis];
  1425. line_to_destination();
  1426. st_synchronize();
  1427. // Set the axis position as setup for the move
  1428. current_position[axis] = 0;
  1429. sync_plan_position();
  1430. enable_endstops(false); // Disable endstops while moving away
  1431. // Move away from the endstop by the axis HOME_BUMP_MM
  1432. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  1433. line_to_destination();
  1434. st_synchronize();
  1435. enable_endstops(true); // Enable endstops for next homing move
  1436. // Slow down the feedrate for the next move
  1437. set_homing_bump_feedrate(axis);
  1438. // Move slowly towards the endstop until triggered
  1439. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  1440. line_to_destination();
  1441. st_synchronize();
  1442. #if ENABLED(Z_DUAL_ENDSTOPS)
  1443. if (axis == Z_AXIS) {
  1444. float adj = fabs(z_endstop_adj);
  1445. bool lockZ1;
  1446. if (axis_home_dir > 0) {
  1447. adj = -adj;
  1448. lockZ1 = (z_endstop_adj > 0);
  1449. }
  1450. else
  1451. lockZ1 = (z_endstop_adj < 0);
  1452. if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
  1453. sync_plan_position();
  1454. // Move to the adjusted endstop height
  1455. feedrate = homing_feedrate[axis];
  1456. destination[Z_AXIS] = adj;
  1457. line_to_destination();
  1458. st_synchronize();
  1459. if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
  1460. In_Homing_Process(false);
  1461. } // Z_AXIS
  1462. #endif
  1463. #if ENABLED(DELTA)
  1464. // retrace by the amount specified in endstop_adj
  1465. if (endstop_adj[axis] * axis_home_dir < 0) {
  1466. enable_endstops(false); // Disable endstops while moving away
  1467. sync_plan_position();
  1468. destination[axis] = endstop_adj[axis];
  1469. line_to_destination();
  1470. st_synchronize();
  1471. enable_endstops(true); // Enable endstops for next homing move
  1472. }
  1473. #endif
  1474. // Set the axis position to its home position (plus home offsets)
  1475. set_axis_is_at_home(axis);
  1476. sync_plan_position();
  1477. destination[axis] = current_position[axis];
  1478. feedrate = 0.0;
  1479. endstops_hit_on_purpose(); // clear endstop hit flags
  1480. axis_known_position[axis] = true;
  1481. #if ENABLED(Z_PROBE_SLED)
  1482. // bring probe back
  1483. if (axis == Z_AXIS) {
  1484. if (axis_home_dir < 0) dock_sled(true);
  1485. }
  1486. #endif
  1487. #if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
  1488. // Deploy a probe if there is one, and homing towards the bed
  1489. if (axis == Z_AXIS) {
  1490. if (axis_home_dir < 0) stow_z_probe();
  1491. }
  1492. else
  1493. #endif
  1494. {
  1495. #if HAS_SERVO_ENDSTOPS
  1496. // Retract Servo endstop if enabled
  1497. if (servo_endstop_id[axis] >= 0)
  1498. servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
  1499. #endif
  1500. }
  1501. }
  1502. }
  1503. #if ENABLED(FWRETRACT)
  1504. void retract(bool retracting, bool swapping=false) {
  1505. if (retracting == retracted[active_extruder]) return;
  1506. float oldFeedrate = feedrate;
  1507. set_destination_to_current();
  1508. if (retracting) {
  1509. feedrate = retract_feedrate * 60;
  1510. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1511. plan_set_e_position(current_position[E_AXIS]);
  1512. prepare_move();
  1513. if (retract_zlift > 0.01) {
  1514. current_position[Z_AXIS] -= retract_zlift;
  1515. #if ENABLED(DELTA)
  1516. sync_plan_position_delta();
  1517. #else
  1518. sync_plan_position();
  1519. #endif
  1520. prepare_move();
  1521. }
  1522. }
  1523. else {
  1524. if (retract_zlift > 0.01) {
  1525. current_position[Z_AXIS] += retract_zlift;
  1526. #if ENABLED(DELTA)
  1527. sync_plan_position_delta();
  1528. #else
  1529. sync_plan_position();
  1530. #endif
  1531. //prepare_move();
  1532. }
  1533. feedrate = retract_recover_feedrate * 60;
  1534. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1535. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1536. plan_set_e_position(current_position[E_AXIS]);
  1537. prepare_move();
  1538. }
  1539. feedrate = oldFeedrate;
  1540. retracted[active_extruder] = retracting;
  1541. } // retract()
  1542. #endif // FWRETRACT
  1543. /**
  1544. *
  1545. * G-Code Handler functions
  1546. *
  1547. */
  1548. /**
  1549. * Set XYZE destination and feedrate from the current GCode command
  1550. *
  1551. * - Set destination from included axis codes
  1552. * - Set to current for missing axis codes
  1553. * - Set the feedrate, if included
  1554. */
  1555. void gcode_get_destination() {
  1556. for (int i = 0; i < NUM_AXIS; i++) {
  1557. if (code_seen(axis_codes[i]))
  1558. destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  1559. else
  1560. destination[i] = current_position[i];
  1561. }
  1562. if (code_seen('F')) {
  1563. float next_feedrate = code_value();
  1564. if (next_feedrate > 0.0) feedrate = next_feedrate;
  1565. }
  1566. }
  1567. void unknown_command_error() {
  1568. SERIAL_ECHO_START;
  1569. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1570. SERIAL_ECHO(current_command);
  1571. SERIAL_ECHOPGM("\"\n");
  1572. }
  1573. /**
  1574. * G0, G1: Coordinated movement of X Y Z E axes
  1575. */
  1576. inline void gcode_G0_G1() {
  1577. if (IsRunning()) {
  1578. gcode_get_destination(); // For X Y Z E F
  1579. #if ENABLED(FWRETRACT)
  1580. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  1581. float echange = destination[E_AXIS] - current_position[E_AXIS];
  1582. // Is this move an attempt to retract or recover?
  1583. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  1584. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  1585. plan_set_e_position(current_position[E_AXIS]); // AND from the planner
  1586. retract(!retracted[active_extruder]);
  1587. return;
  1588. }
  1589. }
  1590. #endif //FWRETRACT
  1591. prepare_move();
  1592. }
  1593. }
  1594. /**
  1595. * G2: Clockwise Arc
  1596. * G3: Counterclockwise Arc
  1597. */
  1598. inline void gcode_G2_G3(bool clockwise) {
  1599. if (IsRunning()) {
  1600. #if ENABLED(SF_ARC_FIX)
  1601. bool relative_mode_backup = relative_mode;
  1602. relative_mode = true;
  1603. #endif
  1604. gcode_get_destination();
  1605. #if ENABLED(SF_ARC_FIX)
  1606. relative_mode = relative_mode_backup;
  1607. #endif
  1608. // Center of arc as offset from current_position
  1609. float arc_offset[2] = {
  1610. code_seen('I') ? code_value() : 0,
  1611. code_seen('J') ? code_value() : 0
  1612. };
  1613. // Send an arc to the planner
  1614. plan_arc(destination, arc_offset, clockwise);
  1615. refresh_cmd_timeout();
  1616. }
  1617. }
  1618. /**
  1619. * G4: Dwell S<seconds> or P<milliseconds>
  1620. */
  1621. inline void gcode_G4() {
  1622. millis_t codenum = 0;
  1623. if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
  1624. if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1625. st_synchronize();
  1626. refresh_cmd_timeout();
  1627. codenum += previous_cmd_ms; // keep track of when we started waiting
  1628. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  1629. while (millis() < codenum) idle();
  1630. }
  1631. #if ENABLED(FWRETRACT)
  1632. /**
  1633. * G10 - Retract filament according to settings of M207
  1634. * G11 - Recover filament according to settings of M208
  1635. */
  1636. inline void gcode_G10_G11(bool doRetract=false) {
  1637. #if EXTRUDERS > 1
  1638. if (doRetract) {
  1639. retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
  1640. }
  1641. #endif
  1642. retract(doRetract
  1643. #if EXTRUDERS > 1
  1644. , retracted_swap[active_extruder]
  1645. #endif
  1646. );
  1647. }
  1648. #endif //FWRETRACT
  1649. /**
  1650. * G28: Home all axes according to settings
  1651. *
  1652. * Parameters
  1653. *
  1654. * None Home to all axes with no parameters.
  1655. * With QUICK_HOME enabled XY will home together, then Z.
  1656. *
  1657. * Cartesian parameters
  1658. *
  1659. * X Home to the X endstop
  1660. * Y Home to the Y endstop
  1661. * Z Home to the Z endstop
  1662. *
  1663. */
  1664. inline void gcode_G28() {
  1665. // Wait for planner moves to finish!
  1666. st_synchronize();
  1667. // For auto bed leveling, clear the level matrix
  1668. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  1669. plan_bed_level_matrix.set_to_identity();
  1670. #if ENABLED(DELTA)
  1671. reset_bed_level();
  1672. #endif
  1673. #endif
  1674. // For manual bed leveling deactivate the matrix temporarily
  1675. #if ENABLED(MESH_BED_LEVELING)
  1676. uint8_t mbl_was_active = mbl.active;
  1677. mbl.active = 0;
  1678. #endif
  1679. setup_for_endstop_move();
  1680. set_destination_to_current();
  1681. feedrate = 0.0;
  1682. #if ENABLED(DELTA)
  1683. // A delta can only safely home all axis at the same time
  1684. // all axis have to home at the same time
  1685. // Pretend the current position is 0,0,0
  1686. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  1687. sync_plan_position();
  1688. // Move all carriages up together until the first endstop is hit.
  1689. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
  1690. feedrate = 1.732 * homing_feedrate[X_AXIS];
  1691. line_to_destination();
  1692. st_synchronize();
  1693. endstops_hit_on_purpose(); // clear endstop hit flags
  1694. // Destination reached
  1695. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  1696. // take care of back off and rehome now we are all at the top
  1697. HOMEAXIS(X);
  1698. HOMEAXIS(Y);
  1699. HOMEAXIS(Z);
  1700. sync_plan_position_delta();
  1701. #else // NOT DELTA
  1702. bool homeX = code_seen(axis_codes[X_AXIS]),
  1703. homeY = code_seen(axis_codes[Y_AXIS]),
  1704. homeZ = code_seen(axis_codes[Z_AXIS]);
  1705. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  1706. if (home_all_axis || homeZ) {
  1707. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  1708. HOMEAXIS(Z);
  1709. #elif DISABLED(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
  1710. // Raise Z before homing any other axes
  1711. // (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
  1712. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1713. feedrate = max_feedrate[Z_AXIS] * 60;
  1714. line_to_destination();
  1715. st_synchronize();
  1716. #endif
  1717. } // home_all_axis || homeZ
  1718. #if ENABLED(QUICK_HOME)
  1719. if (home_all_axis || (homeX && homeY)) { // First diagonal move
  1720. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  1721. #if ENABLED(DUAL_X_CARRIAGE)
  1722. int x_axis_home_dir = x_home_dir(active_extruder);
  1723. extruder_duplication_enabled = false;
  1724. #else
  1725. int x_axis_home_dir = home_dir(X_AXIS);
  1726. #endif
  1727. sync_plan_position();
  1728. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  1729. mlratio = mlx>mly ? mly/mlx : mlx/mly;
  1730. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  1731. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  1732. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  1733. line_to_destination();
  1734. st_synchronize();
  1735. set_axis_is_at_home(X_AXIS);
  1736. set_axis_is_at_home(Y_AXIS);
  1737. sync_plan_position();
  1738. destination[X_AXIS] = current_position[X_AXIS];
  1739. destination[Y_AXIS] = current_position[Y_AXIS];
  1740. line_to_destination();
  1741. feedrate = 0.0;
  1742. st_synchronize();
  1743. endstops_hit_on_purpose(); // clear endstop hit flags
  1744. current_position[X_AXIS] = destination[X_AXIS];
  1745. current_position[Y_AXIS] = destination[Y_AXIS];
  1746. #if DISABLED(SCARA)
  1747. current_position[Z_AXIS] = destination[Z_AXIS];
  1748. #endif
  1749. }
  1750. #endif // QUICK_HOME
  1751. #if ENABLED(HOME_Y_BEFORE_X)
  1752. // Home Y
  1753. if (home_all_axis || homeY) HOMEAXIS(Y);
  1754. #endif
  1755. // Home X
  1756. if (home_all_axis || homeX) {
  1757. #if ENABLED(DUAL_X_CARRIAGE)
  1758. int tmp_extruder = active_extruder;
  1759. extruder_duplication_enabled = false;
  1760. active_extruder = !active_extruder;
  1761. HOMEAXIS(X);
  1762. inactive_extruder_x_pos = current_position[X_AXIS];
  1763. active_extruder = tmp_extruder;
  1764. HOMEAXIS(X);
  1765. // reset state used by the different modes
  1766. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1767. delayed_move_time = 0;
  1768. active_extruder_parked = true;
  1769. #else
  1770. HOMEAXIS(X);
  1771. #endif
  1772. }
  1773. #if DISABLED(HOME_Y_BEFORE_X)
  1774. // Home Y
  1775. if (home_all_axis || homeY) HOMEAXIS(Y);
  1776. #endif
  1777. // Home Z last if homing towards the bed
  1778. #if Z_HOME_DIR < 0
  1779. if (home_all_axis || homeZ) {
  1780. #if ENABLED(Z_SAFE_HOMING)
  1781. if (home_all_axis) {
  1782. current_position[Z_AXIS] = 0;
  1783. sync_plan_position();
  1784. //
  1785. // Set the probe (or just the nozzle) destination to the safe homing point
  1786. //
  1787. // NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
  1788. // then this may not work as expected.
  1789. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
  1790. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
  1791. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
  1792. feedrate = XY_TRAVEL_SPEED;
  1793. // This could potentially move X, Y, Z all together
  1794. line_to_destination();
  1795. st_synchronize();
  1796. // Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
  1797. current_position[X_AXIS] = destination[X_AXIS];
  1798. current_position[Y_AXIS] = destination[Y_AXIS];
  1799. // Home the Z axis
  1800. HOMEAXIS(Z);
  1801. }
  1802. else if (homeZ) { // Don't need to Home Z twice
  1803. // Let's see if X and Y are homed
  1804. if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
  1805. // Make sure the probe is within the physical limits
  1806. // NOTE: This doesn't necessarily ensure the probe is also within the bed!
  1807. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  1808. if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1809. && cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
  1810. && cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
  1811. && cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
  1812. // Set the plan current position to X, Y, 0
  1813. current_position[Z_AXIS] = 0;
  1814. plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
  1815. // Set Z destination away from bed and raise the axis
  1816. // NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
  1817. destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
  1818. feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
  1819. line_to_destination();
  1820. st_synchronize();
  1821. // Home the Z axis
  1822. HOMEAXIS(Z);
  1823. }
  1824. else {
  1825. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  1826. SERIAL_ECHO_START;
  1827. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  1828. }
  1829. }
  1830. else {
  1831. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  1832. SERIAL_ECHO_START;
  1833. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  1834. }
  1835. } // !home_all_axes && homeZ
  1836. #else // !Z_SAFE_HOMING
  1837. HOMEAXIS(Z);
  1838. #endif // !Z_SAFE_HOMING
  1839. } // home_all_axis || homeZ
  1840. #endif // Z_HOME_DIR < 0
  1841. sync_plan_position();
  1842. #endif // else DELTA
  1843. #if ENABLED(SCARA)
  1844. sync_plan_position_delta();
  1845. #endif
  1846. #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
  1847. enable_endstops(false);
  1848. #endif
  1849. // For manual leveling move back to 0,0
  1850. #if ENABLED(MESH_BED_LEVELING)
  1851. if (mbl_was_active) {
  1852. current_position[X_AXIS] = mbl.get_x(0);
  1853. current_position[Y_AXIS] = mbl.get_y(0);
  1854. set_destination_to_current();
  1855. feedrate = homing_feedrate[X_AXIS];
  1856. line_to_destination();
  1857. st_synchronize();
  1858. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1859. sync_plan_position();
  1860. mbl.active = 1;
  1861. }
  1862. #endif
  1863. feedrate = saved_feedrate;
  1864. feedrate_multiplier = saved_feedrate_multiplier;
  1865. refresh_cmd_timeout();
  1866. endstops_hit_on_purpose(); // clear endstop hit flags
  1867. }
  1868. #if ENABLED(MESH_BED_LEVELING)
  1869. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
  1870. /**
  1871. * G29: Mesh-based Z-Probe, probes a grid and produces a
  1872. * mesh to compensate for variable bed height
  1873. *
  1874. * Parameters With MESH_BED_LEVELING:
  1875. *
  1876. * S0 Produce a mesh report
  1877. * S1 Start probing mesh points
  1878. * S2 Probe the next mesh point
  1879. * S3 Xn Yn Zn.nn Manually modify a single point
  1880. *
  1881. * The S0 report the points as below
  1882. *
  1883. * +----> X-axis
  1884. * |
  1885. * |
  1886. * v Y-axis
  1887. *
  1888. */
  1889. inline void gcode_G29() {
  1890. static int probe_point = -1;
  1891. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
  1892. if (state < 0 || state > 3) {
  1893. SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
  1894. return;
  1895. }
  1896. int ix, iy;
  1897. float z;
  1898. switch(state) {
  1899. case MeshReport:
  1900. if (mbl.active) {
  1901. SERIAL_PROTOCOLPGM("Num X,Y: ");
  1902. SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
  1903. SERIAL_PROTOCOLCHAR(',');
  1904. SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  1905. SERIAL_PROTOCOLPGM("\nZ search height: ");
  1906. SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
  1907. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  1908. for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
  1909. for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
  1910. SERIAL_PROTOCOLPGM(" ");
  1911. SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
  1912. }
  1913. SERIAL_EOL;
  1914. }
  1915. }
  1916. else
  1917. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  1918. break;
  1919. case MeshStart:
  1920. mbl.reset();
  1921. probe_point = 0;
  1922. enqueuecommands_P(PSTR("G28\nG29 S2"));
  1923. break;
  1924. case MeshNext:
  1925. if (probe_point < 0) {
  1926. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  1927. return;
  1928. }
  1929. if (probe_point == 0) {
  1930. // Set Z to a positive value before recording the first Z.
  1931. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1932. sync_plan_position();
  1933. }
  1934. else {
  1935. // For others, save the Z of the previous point, then raise Z again.
  1936. ix = (probe_point - 1) % MESH_NUM_X_POINTS;
  1937. iy = (probe_point - 1) / MESH_NUM_X_POINTS;
  1938. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1939. mbl.set_z(ix, iy, current_position[Z_AXIS]);
  1940. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  1941. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1942. st_synchronize();
  1943. }
  1944. // Is there another point to sample? Move there.
  1945. if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
  1946. ix = probe_point % MESH_NUM_X_POINTS;
  1947. iy = probe_point / MESH_NUM_X_POINTS;
  1948. if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
  1949. current_position[X_AXIS] = mbl.get_x(ix);
  1950. current_position[Y_AXIS] = mbl.get_y(iy);
  1951. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
  1952. st_synchronize();
  1953. probe_point++;
  1954. }
  1955. else {
  1956. // After recording the last point, activate the mbl and home
  1957. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  1958. probe_point = -1;
  1959. mbl.active = 1;
  1960. enqueuecommands_P(PSTR("G28"));
  1961. }
  1962. break;
  1963. case MeshSet:
  1964. if (code_seen('X')) {
  1965. ix = code_value_long()-1;
  1966. if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
  1967. SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
  1968. return;
  1969. }
  1970. } else {
  1971. SERIAL_PROTOCOLPGM("X not entered.\n");
  1972. return;
  1973. }
  1974. if (code_seen('Y')) {
  1975. iy = code_value_long()-1;
  1976. if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
  1977. SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
  1978. return;
  1979. }
  1980. } else {
  1981. SERIAL_PROTOCOLPGM("Y not entered.\n");
  1982. return;
  1983. }
  1984. if (code_seen('Z')) {
  1985. z = code_value();
  1986. } else {
  1987. SERIAL_PROTOCOLPGM("Z not entered.\n");
  1988. return;
  1989. }
  1990. mbl.z_values[iy][ix] = z;
  1991. } // switch(state)
  1992. }
  1993. #elif ENABLED(ENABLE_AUTO_BED_LEVELING)
  1994. void out_of_range_error(const char *p_edge) {
  1995. SERIAL_PROTOCOLPGM("?Probe ");
  1996. serialprintPGM(p_edge);
  1997. SERIAL_PROTOCOLLNPGM(" position out of range.");
  1998. }
  1999. /**
  2000. * G29: Detailed Z-Probe, probes the bed at 3 or more points.
  2001. * Will fail if the printer has not been homed with G28.
  2002. *
  2003. * Enhanced G29 Auto Bed Leveling Probe Routine
  2004. *
  2005. * Parameters With AUTO_BED_LEVELING_GRID:
  2006. *
  2007. * P Set the size of the grid that will be probed (P x P points).
  2008. * Not supported by non-linear delta printer bed leveling.
  2009. * Example: "G29 P4"
  2010. *
  2011. * S Set the XY travel speed between probe points (in mm/min)
  2012. *
  2013. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2014. * or clean the rotation Matrix. Useful to check the topology
  2015. * after a first run of G29.
  2016. *
  2017. * V Set the verbose level (0-4). Example: "G29 V3"
  2018. *
  2019. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2020. * This is useful for manual bed leveling and finding flaws in the bed (to
  2021. * assist with part placement).
  2022. * Not supported by non-linear delta printer bed leveling.
  2023. *
  2024. * F Set the Front limit of the probing grid
  2025. * B Set the Back limit of the probing grid
  2026. * L Set the Left limit of the probing grid
  2027. * R Set the Right limit of the probing grid
  2028. *
  2029. * Global Parameters:
  2030. *
  2031. * E/e By default G29 will engage the probe, test the bed, then disengage.
  2032. * Include "E" to engage/disengage the probe for each sample.
  2033. * There's no extra effect if you have a fixed probe.
  2034. * Usage: "G29 E" or "G29 e"
  2035. *
  2036. */
  2037. inline void gcode_G29() {
  2038. // Don't allow auto-leveling without homing first
  2039. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2040. LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
  2041. SERIAL_ECHO_START;
  2042. SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
  2043. return;
  2044. }
  2045. int verbose_level = code_seen('V') ? code_value_short() : 1;
  2046. if (verbose_level < 0 || verbose_level > 4) {
  2047. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2048. return;
  2049. }
  2050. bool dryrun = code_seen('D'),
  2051. deploy_probe_for_each_reading = code_seen('E');
  2052. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2053. #if DISABLED(DELTA)
  2054. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2055. #endif
  2056. if (verbose_level > 0) {
  2057. SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
  2058. if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
  2059. }
  2060. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2061. #if DISABLED(DELTA)
  2062. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
  2063. if (auto_bed_leveling_grid_points < 2) {
  2064. SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
  2065. return;
  2066. }
  2067. #endif
  2068. xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
  2069. int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
  2070. right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
  2071. front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
  2072. back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
  2073. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2074. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
  2075. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2076. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2077. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2078. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
  2079. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2080. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2081. if (left_out || right_out || front_out || back_out) {
  2082. if (left_out) {
  2083. out_of_range_error(PSTR("(L)eft"));
  2084. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
  2085. }
  2086. if (right_out) {
  2087. out_of_range_error(PSTR("(R)ight"));
  2088. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2089. }
  2090. if (front_out) {
  2091. out_of_range_error(PSTR("(F)ront"));
  2092. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
  2093. }
  2094. if (back_out) {
  2095. out_of_range_error(PSTR("(B)ack"));
  2096. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2097. }
  2098. return;
  2099. }
  2100. #endif // AUTO_BED_LEVELING_GRID
  2101. #if ENABLED(Z_PROBE_SLED)
  2102. dock_sled(false); // engage (un-dock) the probe
  2103. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2104. deploy_z_probe();
  2105. #endif
  2106. st_synchronize();
  2107. if (!dryrun) {
  2108. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2109. plan_bed_level_matrix.set_to_identity();
  2110. #if ENABLED(DELTA)
  2111. reset_bed_level();
  2112. #else //!DELTA
  2113. //vector_3 corrected_position = plan_get_position_mm();
  2114. //corrected_position.debug("position before G29");
  2115. vector_3 uncorrected_position = plan_get_position();
  2116. //uncorrected_position.debug("position during G29");
  2117. current_position[X_AXIS] = uncorrected_position.x;
  2118. current_position[Y_AXIS] = uncorrected_position.y;
  2119. current_position[Z_AXIS] = uncorrected_position.z;
  2120. sync_plan_position();
  2121. #endif // !DELTA
  2122. }
  2123. setup_for_endstop_move();
  2124. feedrate = homing_feedrate[Z_AXIS];
  2125. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2126. // probe at the points of a lattice grid
  2127. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2128. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2129. #if ENABLED(DELTA)
  2130. delta_grid_spacing[0] = xGridSpacing;
  2131. delta_grid_spacing[1] = yGridSpacing;
  2132. float z_offset = zprobe_zoffset;
  2133. if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
  2134. #else // !DELTA
  2135. // solve the plane equation ax + by + d = z
  2136. // A is the matrix with rows [x y 1] for all the probed points
  2137. // B is the vector of the Z positions
  2138. // the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2139. // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2140. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2141. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2142. eqnBVector[abl2], // "B" vector of Z points
  2143. mean = 0.0;
  2144. #endif // !DELTA
  2145. int probePointCounter = 0;
  2146. bool zig = true;
  2147. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2148. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2149. int xStart, xStop, xInc;
  2150. if (zig) {
  2151. xStart = 0;
  2152. xStop = auto_bed_leveling_grid_points;
  2153. xInc = 1;
  2154. }
  2155. else {
  2156. xStart = auto_bed_leveling_grid_points - 1;
  2157. xStop = -1;
  2158. xInc = -1;
  2159. }
  2160. #if DISABLED(DELTA)
  2161. // If do_topography_map is set then don't zig-zag. Just scan in one direction.
  2162. // This gets the probe points in more readable order.
  2163. if (!do_topography_map) zig = !zig;
  2164. #else
  2165. zig = !zig;
  2166. #endif
  2167. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2168. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2169. // raise extruder
  2170. float measured_z,
  2171. z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
  2172. #if ENABLED(DELTA)
  2173. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2174. float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
  2175. if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
  2176. #endif //DELTA
  2177. ProbeAction act;
  2178. if (deploy_probe_for_each_reading) // G29 E - Stow between probes
  2179. act = ProbeDeployAndStow;
  2180. else if (yCount == 0 && xCount == xStart)
  2181. act = ProbeDeploy;
  2182. else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
  2183. act = ProbeStow;
  2184. else
  2185. act = ProbeStay;
  2186. measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
  2187. #if DISABLED(DELTA)
  2188. mean += measured_z;
  2189. eqnBVector[probePointCounter] = measured_z;
  2190. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2191. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2192. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2193. #else
  2194. bed_level[xCount][yCount] = measured_z + z_offset;
  2195. #endif
  2196. probePointCounter++;
  2197. idle();
  2198. } //xProbe
  2199. } //yProbe
  2200. clean_up_after_endstop_move();
  2201. #if ENABLED(DELTA)
  2202. if (!dryrun) extrapolate_unprobed_bed_level();
  2203. print_bed_level();
  2204. #else // !DELTA
  2205. // solve lsq problem
  2206. double plane_equation_coefficients[3];
  2207. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  2208. mean /= abl2;
  2209. if (verbose_level) {
  2210. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  2211. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  2212. SERIAL_PROTOCOLPGM(" b: ");
  2213. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  2214. SERIAL_PROTOCOLPGM(" d: ");
  2215. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  2216. SERIAL_EOL;
  2217. if (verbose_level > 2) {
  2218. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  2219. SERIAL_PROTOCOL_F(mean, 8);
  2220. SERIAL_EOL;
  2221. }
  2222. }
  2223. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  2224. free(plane_equation_coefficients);
  2225. // Show the Topography map if enabled
  2226. if (do_topography_map) {
  2227. SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
  2228. SERIAL_PROTOCOLPGM("+-----------+\n");
  2229. SERIAL_PROTOCOLPGM("|...Back....|\n");
  2230. SERIAL_PROTOCOLPGM("|Left..Right|\n");
  2231. SERIAL_PROTOCOLPGM("|...Front...|\n");
  2232. SERIAL_PROTOCOLPGM("+-----------+\n");
  2233. float min_diff = 999;
  2234. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2235. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2236. int ind = yy * auto_bed_leveling_grid_points + xx;
  2237. float diff = eqnBVector[ind] - mean;
  2238. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2239. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2240. z_tmp = 0;
  2241. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2242. if (eqnBVector[ind] - z_tmp < min_diff)
  2243. min_diff = eqnBVector[ind] - z_tmp;
  2244. if (diff >= 0.0)
  2245. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  2246. else
  2247. SERIAL_PROTOCOLCHAR(' ');
  2248. SERIAL_PROTOCOL_F(diff, 5);
  2249. } // xx
  2250. SERIAL_EOL;
  2251. } // yy
  2252. SERIAL_EOL;
  2253. if (verbose_level > 3) {
  2254. SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
  2255. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  2256. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  2257. int ind = yy * auto_bed_leveling_grid_points + xx;
  2258. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  2259. y_tmp = eqnAMatrix[ind + 1 * abl2],
  2260. z_tmp = 0;
  2261. apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
  2262. float diff = eqnBVector[ind] - z_tmp - min_diff;
  2263. if (diff >= 0.0)
  2264. SERIAL_PROTOCOLPGM(" +");
  2265. // Include + for column alignment
  2266. else
  2267. SERIAL_PROTOCOLCHAR(' ');
  2268. SERIAL_PROTOCOL_F(diff, 5);
  2269. } // xx
  2270. SERIAL_EOL;
  2271. } // yy
  2272. SERIAL_EOL;
  2273. }
  2274. } //do_topography_map
  2275. #endif //!DELTA
  2276. #else // !AUTO_BED_LEVELING_GRID
  2277. // Actions for each probe
  2278. ProbeAction p1, p2, p3;
  2279. if (deploy_probe_for_each_reading)
  2280. p1 = p2 = p3 = ProbeDeployAndStow;
  2281. else
  2282. p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
  2283. // Probe at 3 arbitrary points
  2284. float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
  2285. z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
  2286. z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
  2287. clean_up_after_endstop_move();
  2288. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2289. #endif // !AUTO_BED_LEVELING_GRID
  2290. #if DISABLED(DELTA)
  2291. if (verbose_level > 0)
  2292. plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
  2293. if (!dryrun) {
  2294. // Correct the Z height difference from z-probe position and hotend tip position.
  2295. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  2296. // When the bed is uneven, this height must be corrected.
  2297. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  2298. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  2299. z_tmp = current_position[Z_AXIS],
  2300. real_z = st_get_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
  2301. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the probe offset
  2302. // Get the current Z position and send it to the planner.
  2303. //
  2304. // >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
  2305. //
  2306. // >> zprobe_zoffset : Z distance from nozzle to probe (set by default, M851, EEPROM, or Menu)
  2307. //
  2308. // >> Z_RAISE_AFTER_PROBING : The distance the probe will have lifted after the last probe
  2309. //
  2310. // >> Should home_offset[Z_AXIS] be included?
  2311. //
  2312. // Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
  2313. // If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
  2314. // then perhaps it should not be included here. The purpose of home_offset[] is to
  2315. // adjust for inaccurate endstops, not for reasonably accurate probes. If it were
  2316. // added here, it could be seen as a compensating factor for the Z probe.
  2317. //
  2318. current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
  2319. #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
  2320. + Z_RAISE_AFTER_PROBING
  2321. #endif
  2322. ;
  2323. // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The probe determines Z=0, not "Z home"
  2324. sync_plan_position();
  2325. }
  2326. #endif // !DELTA
  2327. #if ENABLED(Z_PROBE_SLED)
  2328. dock_sled(true); // dock the probe
  2329. #elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
  2330. stow_z_probe();
  2331. #endif
  2332. #ifdef Z_PROBE_END_SCRIPT
  2333. enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
  2334. st_synchronize();
  2335. #endif
  2336. }
  2337. #if DISABLED(Z_PROBE_SLED)
  2338. inline void gcode_G30() {
  2339. deploy_z_probe(); // Engage Z Servo endstop if available
  2340. st_synchronize();
  2341. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  2342. setup_for_endstop_move();
  2343. feedrate = homing_feedrate[Z_AXIS];
  2344. run_z_probe();
  2345. SERIAL_PROTOCOLPGM("Bed X: ");
  2346. SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
  2347. SERIAL_PROTOCOLPGM(" Y: ");
  2348. SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
  2349. SERIAL_PROTOCOLPGM(" Z: ");
  2350. SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
  2351. SERIAL_EOL;
  2352. clean_up_after_endstop_move();
  2353. stow_z_probe(); // Retract Z Servo endstop if available
  2354. }
  2355. #endif //!Z_PROBE_SLED
  2356. #endif //ENABLE_AUTO_BED_LEVELING
  2357. /**
  2358. * G92: Set current position to given X Y Z E
  2359. */
  2360. inline void gcode_G92() {
  2361. if (!code_seen(axis_codes[E_AXIS]))
  2362. st_synchronize();
  2363. bool didXYZ = false;
  2364. for (int i = 0; i < NUM_AXIS; i++) {
  2365. if (code_seen(axis_codes[i])) {
  2366. float v = current_position[i] = code_value();
  2367. if (i == E_AXIS)
  2368. plan_set_e_position(v);
  2369. else
  2370. didXYZ = true;
  2371. }
  2372. }
  2373. if (didXYZ) {
  2374. #if ENABLED(DELTA) || ENABLED(SCARA)
  2375. sync_plan_position_delta();
  2376. #else
  2377. sync_plan_position();
  2378. #endif
  2379. }
  2380. }
  2381. #if ENABLED(ULTIPANEL)
  2382. /**
  2383. * M0: // M0 - Unconditional stop - Wait for user button press on LCD
  2384. * M1: // M1 - Conditional stop - Wait for user button press on LCD
  2385. */
  2386. inline void gcode_M0_M1() {
  2387. char *args = current_command_args;
  2388. millis_t codenum = 0;
  2389. bool hasP = false, hasS = false;
  2390. if (code_seen('P')) {
  2391. codenum = code_value_short(); // milliseconds to wait
  2392. hasP = codenum > 0;
  2393. }
  2394. if (code_seen('S')) {
  2395. codenum = code_value() * 1000; // seconds to wait
  2396. hasS = codenum > 0;
  2397. }
  2398. if (!hasP && !hasS && *args != '\0')
  2399. lcd_setstatus(args, true);
  2400. else {
  2401. LCD_MESSAGEPGM(MSG_USERWAIT);
  2402. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  2403. dontExpireStatus();
  2404. #endif
  2405. }
  2406. lcd_ignore_click();
  2407. st_synchronize();
  2408. refresh_cmd_timeout();
  2409. if (codenum > 0) {
  2410. codenum += previous_cmd_ms; // wait until this time for a click
  2411. while (millis() < codenum && !lcd_clicked()) idle();
  2412. lcd_ignore_click(false);
  2413. }
  2414. else {
  2415. if (!lcd_detected()) return;
  2416. while (!lcd_clicked()) idle();
  2417. }
  2418. if (IS_SD_PRINTING)
  2419. LCD_MESSAGEPGM(MSG_RESUMING);
  2420. else
  2421. LCD_MESSAGEPGM(WELCOME_MSG);
  2422. }
  2423. #endif // ULTIPANEL
  2424. /**
  2425. * M17: Enable power on all stepper motors
  2426. */
  2427. inline void gcode_M17() {
  2428. LCD_MESSAGEPGM(MSG_NO_MOVE);
  2429. enable_all_steppers();
  2430. }
  2431. #if ENABLED(SDSUPPORT)
  2432. /**
  2433. * M20: List SD card to serial output
  2434. */
  2435. inline void gcode_M20() {
  2436. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  2437. card.ls();
  2438. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  2439. }
  2440. /**
  2441. * M21: Init SD Card
  2442. */
  2443. inline void gcode_M21() {
  2444. card.initsd();
  2445. }
  2446. /**
  2447. * M22: Release SD Card
  2448. */
  2449. inline void gcode_M22() {
  2450. card.release();
  2451. }
  2452. /**
  2453. * M23: Select a file
  2454. */
  2455. inline void gcode_M23() {
  2456. card.openFile(current_command_args, true);
  2457. }
  2458. /**
  2459. * M24: Start SD Print
  2460. */
  2461. inline void gcode_M24() {
  2462. card.startFileprint();
  2463. print_job_start_ms = millis();
  2464. }
  2465. /**
  2466. * M25: Pause SD Print
  2467. */
  2468. inline void gcode_M25() {
  2469. card.pauseSDPrint();
  2470. }
  2471. /**
  2472. * M26: Set SD Card file index
  2473. */
  2474. inline void gcode_M26() {
  2475. if (card.cardOK && code_seen('S'))
  2476. card.setIndex(code_value_short());
  2477. }
  2478. /**
  2479. * M27: Get SD Card status
  2480. */
  2481. inline void gcode_M27() {
  2482. card.getStatus();
  2483. }
  2484. /**
  2485. * M28: Start SD Write
  2486. */
  2487. inline void gcode_M28() {
  2488. card.openFile(current_command_args, false);
  2489. }
  2490. /**
  2491. * M29: Stop SD Write
  2492. * Processed in write to file routine above
  2493. */
  2494. inline void gcode_M29() {
  2495. // card.saving = false;
  2496. }
  2497. /**
  2498. * M30 <filename>: Delete SD Card file
  2499. */
  2500. inline void gcode_M30() {
  2501. if (card.cardOK) {
  2502. card.closefile();
  2503. card.removeFile(current_command_args);
  2504. }
  2505. }
  2506. #endif
  2507. /**
  2508. * M31: Get the time since the start of SD Print (or last M109)
  2509. */
  2510. inline void gcode_M31() {
  2511. print_job_stop_ms = millis();
  2512. millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
  2513. int min = t / 60, sec = t % 60;
  2514. char time[30];
  2515. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  2516. SERIAL_ECHO_START;
  2517. SERIAL_ECHOLN(time);
  2518. lcd_setstatus(time);
  2519. autotempShutdown();
  2520. }
  2521. #if ENABLED(SDSUPPORT)
  2522. /**
  2523. * M32: Select file and start SD Print
  2524. */
  2525. inline void gcode_M32() {
  2526. if (card.sdprinting)
  2527. st_synchronize();
  2528. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  2529. if (!namestartpos)
  2530. namestartpos = current_command_args; // Default name position, 4 letters after the M
  2531. else
  2532. namestartpos++; //to skip the '!'
  2533. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  2534. if (card.cardOK) {
  2535. card.openFile(namestartpos, true, !call_procedure);
  2536. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  2537. card.setIndex(code_value_short());
  2538. card.startFileprint();
  2539. if (!call_procedure)
  2540. print_job_start_ms = millis(); //procedure calls count as normal print time.
  2541. }
  2542. }
  2543. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  2544. /**
  2545. * M33: Get the long full path of a file or folder
  2546. *
  2547. * Parameters:
  2548. * <dospath> Case-insensitive DOS-style path to a file or folder
  2549. *
  2550. * Example:
  2551. * M33 miscel~1/armchair/armcha~1.gco
  2552. *
  2553. * Output:
  2554. * /Miscellaneous/Armchair/Armchair.gcode
  2555. */
  2556. inline void gcode_M33() {
  2557. card.printLongPath(current_command_args);
  2558. }
  2559. #endif
  2560. /**
  2561. * M928: Start SD Write
  2562. */
  2563. inline void gcode_M928() {
  2564. card.openLogFile(current_command_args);
  2565. }
  2566. #endif // SDSUPPORT
  2567. /**
  2568. * M42: Change pin status via GCode
  2569. */
  2570. inline void gcode_M42() {
  2571. if (code_seen('S')) {
  2572. int pin_status = code_value_short(),
  2573. pin_number = LED_PIN;
  2574. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  2575. pin_number = code_value_short();
  2576. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  2577. if (sensitive_pins[i] == pin_number) {
  2578. pin_number = -1;
  2579. break;
  2580. }
  2581. }
  2582. #if HAS_FAN
  2583. if (pin_number == FAN_PIN) fanSpeed = pin_status;
  2584. #endif
  2585. if (pin_number > -1) {
  2586. pinMode(pin_number, OUTPUT);
  2587. digitalWrite(pin_number, pin_status);
  2588. analogWrite(pin_number, pin_status);
  2589. }
  2590. } // code_seen('S')
  2591. }
  2592. #if ENABLED(ENABLE_AUTO_BED_LEVELING) && ENABLED(Z_PROBE_REPEATABILITY_TEST)
  2593. // This is redundant since the SanityCheck.h already checks for a valid Z_PROBE_PIN, but here for clarity.
  2594. #if ENABLED(Z_PROBE_ENDSTOP)
  2595. #if !HAS_Z_PROBE
  2596. #error You must define Z_PROBE_PIN to enable Z-Probe repeatability calculation.
  2597. #endif
  2598. #elif !HAS_Z_MIN
  2599. #error You must define Z_MIN_PIN to enable Z-Probe repeatability calculation.
  2600. #endif
  2601. /**
  2602. * M48: Z-Probe repeatability measurement function.
  2603. *
  2604. * Usage:
  2605. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  2606. * P = Number of sampled points (4-50, default 10)
  2607. * X = Sample X position
  2608. * Y = Sample Y position
  2609. * V = Verbose level (0-4, default=1)
  2610. * E = Engage probe for each reading
  2611. * L = Number of legs of movement before probe
  2612. *
  2613. * This function assumes the bed has been homed. Specifically, that a G28 command
  2614. * as been issued prior to invoking the M48 Z-Probe repeatability measurement function.
  2615. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  2616. * regenerated.
  2617. */
  2618. inline void gcode_M48() {
  2619. double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
  2620. uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
  2621. if (code_seen('V')) {
  2622. verbose_level = code_value_short();
  2623. if (verbose_level < 0 || verbose_level > 4 ) {
  2624. SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
  2625. return;
  2626. }
  2627. }
  2628. if (verbose_level > 0)
  2629. SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
  2630. if (code_seen('P')) {
  2631. n_samples = code_value_short();
  2632. if (n_samples < 4 || n_samples > 50) {
  2633. SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
  2634. return;
  2635. }
  2636. }
  2637. double X_current = st_get_position_mm(X_AXIS),
  2638. Y_current = st_get_position_mm(Y_AXIS),
  2639. Z_current = st_get_position_mm(Z_AXIS),
  2640. E_current = st_get_position_mm(E_AXIS),
  2641. X_probe_location = X_current, Y_probe_location = Y_current,
  2642. Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
  2643. bool deploy_probe_for_each_reading = code_seen('E');
  2644. if (code_seen('X')) {
  2645. X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
  2646. if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
  2647. out_of_range_error(PSTR("X"));
  2648. return;
  2649. }
  2650. }
  2651. if (code_seen('Y')) {
  2652. Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
  2653. if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
  2654. out_of_range_error(PSTR("Y"));
  2655. return;
  2656. }
  2657. }
  2658. if (code_seen('L')) {
  2659. n_legs = code_value_short();
  2660. if (n_legs == 1) n_legs = 2;
  2661. if (n_legs < 0 || n_legs > 15) {
  2662. SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
  2663. return;
  2664. }
  2665. }
  2666. //
  2667. // Do all the preliminary setup work. First raise the probe.
  2668. //
  2669. st_synchronize();
  2670. plan_bed_level_matrix.set_to_identity();
  2671. plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
  2672. st_synchronize();
  2673. //
  2674. // Now get everything to the specified probe point So we can safely do a probe to
  2675. // get us close to the bed. If the Z-Axis is far from the bed, we don't want to
  2676. // use that as a starting point for each probe.
  2677. //
  2678. if (verbose_level > 2)
  2679. SERIAL_PROTOCOLPGM("Positioning the probe...\n");
  2680. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2681. E_current,
  2682. homing_feedrate[X_AXIS]/60,
  2683. active_extruder);
  2684. st_synchronize();
  2685. current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
  2686. current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
  2687. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2688. current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
  2689. //
  2690. // OK, do the initial probe to get us close to the bed.
  2691. // Then retrace the right amount and use that in subsequent probes
  2692. //
  2693. deploy_z_probe();
  2694. setup_for_endstop_move();
  2695. run_z_probe();
  2696. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2697. Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
  2698. plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
  2699. E_current,
  2700. homing_feedrate[X_AXIS]/60,
  2701. active_extruder);
  2702. st_synchronize();
  2703. current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
  2704. if (deploy_probe_for_each_reading) stow_z_probe();
  2705. for (uint8_t n=0; n < n_samples; n++) {
  2706. // Make sure we are at the probe location
  2707. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2708. if (n_legs) {
  2709. millis_t ms = millis();
  2710. double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
  2711. theta = RADIANS(ms % 360L);
  2712. float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
  2713. //SERIAL_ECHOPAIR("starting radius: ",radius);
  2714. //SERIAL_ECHOPAIR(" theta: ",theta);
  2715. //SERIAL_ECHOPAIR(" direction: ",dir);
  2716. //SERIAL_EOL;
  2717. for (uint8_t l = 0; l < n_legs - 1; l++) {
  2718. ms = millis();
  2719. theta += RADIANS(dir * (ms % 20L));
  2720. radius += (ms % 10L) - 5L;
  2721. if (radius < 0.0) radius = -radius;
  2722. X_current = X_probe_location + cos(theta) * radius;
  2723. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  2724. Y_current = Y_probe_location + sin(theta) * radius;
  2725. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  2726. if (verbose_level > 3) {
  2727. SERIAL_ECHOPAIR("x: ", X_current);
  2728. SERIAL_ECHOPAIR("y: ", Y_current);
  2729. SERIAL_EOL;
  2730. }
  2731. do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
  2732. } // n_legs loop
  2733. // Go back to the probe location
  2734. do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
  2735. } // n_legs
  2736. if (deploy_probe_for_each_reading) {
  2737. deploy_z_probe();
  2738. delay(1000);
  2739. }
  2740. setup_for_endstop_move();
  2741. run_z_probe();
  2742. sample_set[n] = current_position[Z_AXIS];
  2743. //
  2744. // Get the current mean for the data points we have so far
  2745. //
  2746. sum = 0.0;
  2747. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  2748. mean = sum / (n + 1);
  2749. //
  2750. // Now, use that mean to calculate the standard deviation for the
  2751. // data points we have so far
  2752. //
  2753. sum = 0.0;
  2754. for (uint8_t j = 0; j <= n; j++) {
  2755. float ss = sample_set[j] - mean;
  2756. sum += ss * ss;
  2757. }
  2758. sigma = sqrt(sum / (n + 1));
  2759. if (verbose_level > 1) {
  2760. SERIAL_PROTOCOL(n+1);
  2761. SERIAL_PROTOCOLPGM(" of ");
  2762. SERIAL_PROTOCOL((int)n_samples);
  2763. SERIAL_PROTOCOLPGM(" z: ");
  2764. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  2765. if (verbose_level > 2) {
  2766. SERIAL_PROTOCOLPGM(" mean: ");
  2767. SERIAL_PROTOCOL_F(mean,6);
  2768. SERIAL_PROTOCOLPGM(" sigma: ");
  2769. SERIAL_PROTOCOL_F(sigma,6);
  2770. }
  2771. }
  2772. if (verbose_level > 0) SERIAL_EOL;
  2773. plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
  2774. st_synchronize();
  2775. // Stow between
  2776. if (deploy_probe_for_each_reading) {
  2777. stow_z_probe();
  2778. delay(1000);
  2779. }
  2780. }
  2781. // Stow after
  2782. if (!deploy_probe_for_each_reading) {
  2783. stow_z_probe();
  2784. delay(1000);
  2785. }
  2786. clean_up_after_endstop_move();
  2787. if (verbose_level > 0) {
  2788. SERIAL_PROTOCOLPGM("Mean: ");
  2789. SERIAL_PROTOCOL_F(mean, 6);
  2790. SERIAL_EOL;
  2791. }
  2792. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  2793. SERIAL_PROTOCOL_F(sigma, 6);
  2794. SERIAL_EOL; SERIAL_EOL;
  2795. }
  2796. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  2797. /**
  2798. * M104: Set hot end temperature
  2799. */
  2800. inline void gcode_M104() {
  2801. if (setTargetedHotend(104)) return;
  2802. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2803. if (code_seen('S')) {
  2804. float temp = code_value();
  2805. setTargetHotend(temp, target_extruder);
  2806. #if ENABLED(DUAL_X_CARRIAGE)
  2807. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2808. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2809. #endif
  2810. }
  2811. }
  2812. /**
  2813. * M105: Read hot end and bed temperature
  2814. */
  2815. inline void gcode_M105() {
  2816. if (setTargetedHotend(105)) return;
  2817. #if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
  2818. SERIAL_PROTOCOLPGM(MSG_OK);
  2819. #if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
  2820. SERIAL_PROTOCOLPGM(" T:");
  2821. SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
  2822. SERIAL_PROTOCOLPGM(" /");
  2823. SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
  2824. #endif
  2825. #if HAS_TEMP_BED
  2826. SERIAL_PROTOCOLPGM(" B:");
  2827. SERIAL_PROTOCOL_F(degBed(), 1);
  2828. SERIAL_PROTOCOLPGM(" /");
  2829. SERIAL_PROTOCOL_F(degTargetBed(), 1);
  2830. #endif
  2831. for (int8_t e = 0; e < EXTRUDERS; ++e) {
  2832. SERIAL_PROTOCOLPGM(" T");
  2833. SERIAL_PROTOCOL(e);
  2834. SERIAL_PROTOCOLCHAR(':');
  2835. SERIAL_PROTOCOL_F(degHotend(e), 1);
  2836. SERIAL_PROTOCOLPGM(" /");
  2837. SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
  2838. }
  2839. #else // !HAS_TEMP_0 && !HAS_TEMP_BED
  2840. SERIAL_ERROR_START;
  2841. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  2842. #endif
  2843. SERIAL_PROTOCOLPGM(" @:");
  2844. #ifdef EXTRUDER_WATTS
  2845. SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
  2846. SERIAL_PROTOCOLCHAR('W');
  2847. #else
  2848. SERIAL_PROTOCOL(getHeaterPower(target_extruder));
  2849. #endif
  2850. SERIAL_PROTOCOLPGM(" B@:");
  2851. #ifdef BED_WATTS
  2852. SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
  2853. SERIAL_PROTOCOLCHAR('W');
  2854. #else
  2855. SERIAL_PROTOCOL(getHeaterPower(-1));
  2856. #endif
  2857. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  2858. #if HAS_TEMP_BED
  2859. SERIAL_PROTOCOLPGM(" ADC B:");
  2860. SERIAL_PROTOCOL_F(degBed(),1);
  2861. SERIAL_PROTOCOLPGM("C->");
  2862. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  2863. #endif
  2864. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  2865. SERIAL_PROTOCOLPGM(" T");
  2866. SERIAL_PROTOCOL(cur_extruder);
  2867. SERIAL_PROTOCOLCHAR(':');
  2868. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  2869. SERIAL_PROTOCOLPGM("C->");
  2870. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  2871. }
  2872. #endif
  2873. SERIAL_EOL;
  2874. }
  2875. #if HAS_FAN
  2876. /**
  2877. * M106: Set Fan Speed
  2878. */
  2879. inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
  2880. /**
  2881. * M107: Fan Off
  2882. */
  2883. inline void gcode_M107() { fanSpeed = 0; }
  2884. #endif // HAS_FAN
  2885. /**
  2886. * M109: Wait for extruder(s) to reach temperature
  2887. */
  2888. inline void gcode_M109() {
  2889. if (setTargetedHotend(109)) return;
  2890. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2891. LCD_MESSAGEPGM(MSG_HEATING);
  2892. no_wait_for_cooling = code_seen('S');
  2893. if (no_wait_for_cooling || code_seen('R')) {
  2894. float temp = code_value();
  2895. setTargetHotend(temp, target_extruder);
  2896. #if ENABLED(DUAL_X_CARRIAGE)
  2897. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  2898. setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
  2899. #endif
  2900. }
  2901. #if ENABLED(AUTOTEMP)
  2902. autotemp_enabled = code_seen('F');
  2903. if (autotemp_enabled) autotemp_factor = code_value();
  2904. if (code_seen('S')) autotemp_min = code_value();
  2905. if (code_seen('B')) autotemp_max = code_value();
  2906. #endif
  2907. millis_t temp_ms = millis();
  2908. /* See if we are heating up or cooling down */
  2909. target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
  2910. cancel_heatup = false;
  2911. #ifdef TEMP_RESIDENCY_TIME
  2912. long residency_start_ms = -1;
  2913. /* continue to loop until we have reached the target temp
  2914. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  2915. while((!cancel_heatup)&&((residency_start_ms == -1) ||
  2916. (residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
  2917. #else
  2918. while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
  2919. #endif //TEMP_RESIDENCY_TIME
  2920. { // while loop
  2921. if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
  2922. SERIAL_PROTOCOLPGM("T:");
  2923. SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
  2924. SERIAL_PROTOCOLPGM(" E:");
  2925. SERIAL_PROTOCOL((int)target_extruder);
  2926. #ifdef TEMP_RESIDENCY_TIME
  2927. SERIAL_PROTOCOLPGM(" W:");
  2928. if (residency_start_ms > -1) {
  2929. temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
  2930. SERIAL_PROTOCOLLN(temp_ms);
  2931. }
  2932. else {
  2933. SERIAL_PROTOCOLLNPGM("?");
  2934. }
  2935. #else
  2936. SERIAL_EOL;
  2937. #endif
  2938. temp_ms = millis();
  2939. }
  2940. idle();
  2941. #ifdef TEMP_RESIDENCY_TIME
  2942. // start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  2943. // or when current temp falls outside the hysteresis after target temp was reached
  2944. if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
  2945. (residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
  2946. (residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
  2947. {
  2948. residency_start_ms = millis();
  2949. }
  2950. #endif //TEMP_RESIDENCY_TIME
  2951. }
  2952. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  2953. refresh_cmd_timeout();
  2954. print_job_start_ms = previous_cmd_ms;
  2955. }
  2956. #if HAS_TEMP_BED
  2957. /**
  2958. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  2959. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  2960. */
  2961. inline void gcode_M190() {
  2962. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  2963. LCD_MESSAGEPGM(MSG_BED_HEATING);
  2964. no_wait_for_cooling = code_seen('S');
  2965. if (no_wait_for_cooling || code_seen('R'))
  2966. setTargetBed(code_value());
  2967. millis_t temp_ms = millis();
  2968. cancel_heatup = false;
  2969. target_direction = isHeatingBed(); // true if heating, false if cooling
  2970. while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
  2971. millis_t ms = millis();
  2972. if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
  2973. temp_ms = ms;
  2974. float tt = degHotend(active_extruder);
  2975. SERIAL_PROTOCOLPGM("T:");
  2976. SERIAL_PROTOCOL(tt);
  2977. SERIAL_PROTOCOLPGM(" E:");
  2978. SERIAL_PROTOCOL((int)active_extruder);
  2979. SERIAL_PROTOCOLPGM(" B:");
  2980. SERIAL_PROTOCOL_F(degBed(), 1);
  2981. SERIAL_EOL;
  2982. }
  2983. idle();
  2984. }
  2985. LCD_MESSAGEPGM(MSG_BED_DONE);
  2986. refresh_cmd_timeout();
  2987. }
  2988. #endif // HAS_TEMP_BED
  2989. /**
  2990. * M111: Set the debug level
  2991. */
  2992. inline void gcode_M111() {
  2993. marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
  2994. if (marlin_debug_flags & DEBUG_ECHO) {
  2995. SERIAL_ECHO_START;
  2996. SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
  2997. }
  2998. // FOR MOMENT NOT ACTIVE
  2999. //if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
  3000. //if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
  3001. if (marlin_debug_flags & DEBUG_DRYRUN) {
  3002. SERIAL_ECHO_START;
  3003. SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
  3004. disable_all_heaters();
  3005. }
  3006. }
  3007. /**
  3008. * M112: Emergency Stop
  3009. */
  3010. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3011. #if ENABLED(BARICUDA)
  3012. #if HAS_HEATER_1
  3013. /**
  3014. * M126: Heater 1 valve open
  3015. */
  3016. inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3017. /**
  3018. * M127: Heater 1 valve close
  3019. */
  3020. inline void gcode_M127() { ValvePressure = 0; }
  3021. #endif
  3022. #if HAS_HEATER_2
  3023. /**
  3024. * M128: Heater 2 valve open
  3025. */
  3026. inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
  3027. /**
  3028. * M129: Heater 2 valve close
  3029. */
  3030. inline void gcode_M129() { EtoPPressure = 0; }
  3031. #endif
  3032. #endif //BARICUDA
  3033. /**
  3034. * M140: Set bed temperature
  3035. */
  3036. inline void gcode_M140() {
  3037. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  3038. if (code_seen('S')) setTargetBed(code_value());
  3039. }
  3040. #if ENABLED(ULTIPANEL)
  3041. /**
  3042. * M145: Set the heatup state for a material in the LCD menu
  3043. * S<material> (0=PLA, 1=ABS)
  3044. * H<hotend temp>
  3045. * B<bed temp>
  3046. * F<fan speed>
  3047. */
  3048. inline void gcode_M145() {
  3049. uint8_t material = code_seen('S') ? code_value_short() : 0;
  3050. if (material < 0 || material > 1) {
  3051. SERIAL_ERROR_START;
  3052. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  3053. }
  3054. else {
  3055. int v;
  3056. switch (material) {
  3057. case 0:
  3058. if (code_seen('H')) {
  3059. v = code_value_short();
  3060. plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3061. }
  3062. if (code_seen('F')) {
  3063. v = code_value_short();
  3064. plaPreheatFanSpeed = constrain(v, 0, 255);
  3065. }
  3066. #if TEMP_SENSOR_BED != 0
  3067. if (code_seen('B')) {
  3068. v = code_value_short();
  3069. plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3070. }
  3071. #endif
  3072. break;
  3073. case 1:
  3074. if (code_seen('H')) {
  3075. v = code_value_short();
  3076. absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  3077. }
  3078. if (code_seen('F')) {
  3079. v = code_value_short();
  3080. absPreheatFanSpeed = constrain(v, 0, 255);
  3081. }
  3082. #if TEMP_SENSOR_BED != 0
  3083. if (code_seen('B')) {
  3084. v = code_value_short();
  3085. absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  3086. }
  3087. #endif
  3088. break;
  3089. }
  3090. }
  3091. }
  3092. #endif
  3093. #if HAS_POWER_SWITCH
  3094. /**
  3095. * M80: Turn on Power Supply
  3096. */
  3097. inline void gcode_M80() {
  3098. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  3099. // If you have a switch on suicide pin, this is useful
  3100. // if you want to start another print with suicide feature after
  3101. // a print without suicide...
  3102. #if HAS_SUICIDE
  3103. OUT_WRITE(SUICIDE_PIN, HIGH);
  3104. #endif
  3105. #if ENABLED(ULTIPANEL)
  3106. powersupply = true;
  3107. LCD_MESSAGEPGM(WELCOME_MSG);
  3108. lcd_update();
  3109. #endif
  3110. }
  3111. #endif // HAS_POWER_SWITCH
  3112. /**
  3113. * M81: Turn off Power, including Power Supply, if there is one.
  3114. *
  3115. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  3116. */
  3117. inline void gcode_M81() {
  3118. disable_all_heaters();
  3119. finishAndDisableSteppers();
  3120. fanSpeed = 0;
  3121. delay(1000); // Wait 1 second before switching off
  3122. #if HAS_SUICIDE
  3123. st_synchronize();
  3124. suicide();
  3125. #elif HAS_POWER_SWITCH
  3126. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  3127. #endif
  3128. #if ENABLED(ULTIPANEL)
  3129. #if HAS_POWER_SWITCH
  3130. powersupply = false;
  3131. #endif
  3132. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  3133. lcd_update();
  3134. #endif
  3135. }
  3136. /**
  3137. * M82: Set E codes absolute (default)
  3138. */
  3139. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  3140. /**
  3141. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  3142. */
  3143. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  3144. /**
  3145. * M18, M84: Disable all stepper motors
  3146. */
  3147. inline void gcode_M18_M84() {
  3148. if (code_seen('S')) {
  3149. stepper_inactive_time = code_value() * 1000;
  3150. }
  3151. else {
  3152. bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
  3153. if (all_axis) {
  3154. finishAndDisableSteppers();
  3155. }
  3156. else {
  3157. st_synchronize();
  3158. if (code_seen('X')) disable_x();
  3159. if (code_seen('Y')) disable_y();
  3160. if (code_seen('Z')) disable_z();
  3161. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  3162. if (code_seen('E')) {
  3163. disable_e0();
  3164. disable_e1();
  3165. disable_e2();
  3166. disable_e3();
  3167. }
  3168. #endif
  3169. }
  3170. }
  3171. }
  3172. /**
  3173. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  3174. */
  3175. inline void gcode_M85() {
  3176. if (code_seen('S')) max_inactive_time = code_value() * 1000;
  3177. }
  3178. /**
  3179. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  3180. * (Follows the same syntax as G92)
  3181. */
  3182. inline void gcode_M92() {
  3183. for(int8_t i=0; i < NUM_AXIS; i++) {
  3184. if (code_seen(axis_codes[i])) {
  3185. if (i == E_AXIS) {
  3186. float value = code_value();
  3187. if (value < 20.0) {
  3188. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  3189. max_e_jerk *= factor;
  3190. max_feedrate[i] *= factor;
  3191. axis_steps_per_sqr_second[i] *= factor;
  3192. }
  3193. axis_steps_per_unit[i] = value;
  3194. }
  3195. else {
  3196. axis_steps_per_unit[i] = code_value();
  3197. }
  3198. }
  3199. }
  3200. }
  3201. /**
  3202. * M114: Output current position to serial port
  3203. */
  3204. inline void gcode_M114() {
  3205. SERIAL_PROTOCOLPGM("X:");
  3206. SERIAL_PROTOCOL(current_position[X_AXIS]);
  3207. SERIAL_PROTOCOLPGM(" Y:");
  3208. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  3209. SERIAL_PROTOCOLPGM(" Z:");
  3210. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  3211. SERIAL_PROTOCOLPGM(" E:");
  3212. SERIAL_PROTOCOL(current_position[E_AXIS]);
  3213. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  3214. SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
  3215. SERIAL_PROTOCOLPGM(" Y:");
  3216. SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
  3217. SERIAL_PROTOCOLPGM(" Z:");
  3218. SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
  3219. SERIAL_EOL;
  3220. #if ENABLED(SCARA)
  3221. SERIAL_PROTOCOLPGM("SCARA Theta:");
  3222. SERIAL_PROTOCOL(delta[X_AXIS]);
  3223. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3224. SERIAL_PROTOCOL(delta[Y_AXIS]);
  3225. SERIAL_EOL;
  3226. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  3227. SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
  3228. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  3229. SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
  3230. SERIAL_EOL;
  3231. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  3232. SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
  3233. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  3234. SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
  3235. SERIAL_EOL; SERIAL_EOL;
  3236. #endif
  3237. }
  3238. /**
  3239. * M115: Capabilities string
  3240. */
  3241. inline void gcode_M115() {
  3242. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  3243. }
  3244. /**
  3245. * M117: Set LCD Status Message
  3246. */
  3247. inline void gcode_M117() {
  3248. lcd_setstatus(current_command_args);
  3249. }
  3250. /**
  3251. * M119: Output endstop states to serial output
  3252. */
  3253. inline void gcode_M119() {
  3254. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  3255. #if HAS_X_MIN
  3256. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  3257. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3258. #endif
  3259. #if HAS_X_MAX
  3260. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  3261. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3262. #endif
  3263. #if HAS_Y_MIN
  3264. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  3265. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3266. #endif
  3267. #if HAS_Y_MAX
  3268. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  3269. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3270. #endif
  3271. #if HAS_Z_MIN
  3272. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  3273. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3274. #endif
  3275. #if HAS_Z_MAX
  3276. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  3277. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3278. #endif
  3279. #if HAS_Z2_MAX
  3280. SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
  3281. SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3282. #endif
  3283. #if HAS_Z_PROBE
  3284. SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
  3285. SERIAL_PROTOCOLLN(((READ(Z_PROBE_PIN)^Z_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  3286. #endif
  3287. }
  3288. /**
  3289. * M120: Enable endstops
  3290. */
  3291. inline void gcode_M120() { enable_endstops(true); }
  3292. /**
  3293. * M121: Disable endstops
  3294. */
  3295. inline void gcode_M121() { enable_endstops(false); }
  3296. #if ENABLED(BLINKM)
  3297. /**
  3298. * M150: Set Status LED Color - Use R-U-B for R-G-B
  3299. */
  3300. inline void gcode_M150() {
  3301. SendColors(
  3302. code_seen('R') ? (byte)code_value_short() : 0,
  3303. code_seen('U') ? (byte)code_value_short() : 0,
  3304. code_seen('B') ? (byte)code_value_short() : 0
  3305. );
  3306. }
  3307. #endif // BLINKM
  3308. /**
  3309. * M200: Set filament diameter and set E axis units to cubic millimeters
  3310. *
  3311. * T<extruder> - Optional extruder number. Current extruder if omitted.
  3312. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
  3313. */
  3314. inline void gcode_M200() {
  3315. if (setTargetedHotend(200)) return;
  3316. if (code_seen('D')) {
  3317. float diameter = code_value();
  3318. // setting any extruder filament size disables volumetric on the assumption that
  3319. // slicers either generate in extruder values as cubic mm or as as filament feeds
  3320. // for all extruders
  3321. volumetric_enabled = (diameter != 0.0);
  3322. if (volumetric_enabled) {
  3323. filament_size[target_extruder] = diameter;
  3324. // make sure all extruders have some sane value for the filament size
  3325. for (int i=0; i<EXTRUDERS; i++)
  3326. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  3327. }
  3328. }
  3329. else {
  3330. //reserved for setting filament diameter via UFID or filament measuring device
  3331. return;
  3332. }
  3333. calculate_volumetric_multipliers();
  3334. }
  3335. /**
  3336. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  3337. */
  3338. inline void gcode_M201() {
  3339. for (int8_t i=0; i < NUM_AXIS; i++) {
  3340. if (code_seen(axis_codes[i])) {
  3341. max_acceleration_units_per_sq_second[i] = code_value();
  3342. }
  3343. }
  3344. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  3345. reset_acceleration_rates();
  3346. }
  3347. #if 0 // Not used for Sprinter/grbl gen6
  3348. inline void gcode_M202() {
  3349. for(int8_t i=0; i < NUM_AXIS; i++) {
  3350. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  3351. }
  3352. }
  3353. #endif
  3354. /**
  3355. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  3356. */
  3357. inline void gcode_M203() {
  3358. for (int8_t i=0; i < NUM_AXIS; i++) {
  3359. if (code_seen(axis_codes[i])) {
  3360. max_feedrate[i] = code_value();
  3361. }
  3362. }
  3363. }
  3364. /**
  3365. * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
  3366. *
  3367. * P = Printing moves
  3368. * R = Retract only (no X, Y, Z) moves
  3369. * T = Travel (non printing) moves
  3370. *
  3371. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  3372. */
  3373. inline void gcode_M204() {
  3374. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  3375. travel_acceleration = acceleration = code_value();
  3376. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
  3377. SERIAL_EOL;
  3378. }
  3379. if (code_seen('P')) {
  3380. acceleration = code_value();
  3381. SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
  3382. SERIAL_EOL;
  3383. }
  3384. if (code_seen('R')) {
  3385. retract_acceleration = code_value();
  3386. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
  3387. SERIAL_EOL;
  3388. }
  3389. if (code_seen('T')) {
  3390. travel_acceleration = code_value();
  3391. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
  3392. SERIAL_EOL;
  3393. }
  3394. }
  3395. /**
  3396. * M205: Set Advanced Settings
  3397. *
  3398. * S = Min Feed Rate (mm/s)
  3399. * T = Min Travel Feed Rate (mm/s)
  3400. * B = Min Segment Time (µs)
  3401. * X = Max XY Jerk (mm/s/s)
  3402. * Z = Max Z Jerk (mm/s/s)
  3403. * E = Max E Jerk (mm/s/s)
  3404. */
  3405. inline void gcode_M205() {
  3406. if (code_seen('S')) minimumfeedrate = code_value();
  3407. if (code_seen('T')) mintravelfeedrate = code_value();
  3408. if (code_seen('B')) minsegmenttime = code_value();
  3409. if (code_seen('X')) max_xy_jerk = code_value();
  3410. if (code_seen('Z')) max_z_jerk = code_value();
  3411. if (code_seen('E')) max_e_jerk = code_value();
  3412. }
  3413. /**
  3414. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  3415. */
  3416. inline void gcode_M206() {
  3417. for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
  3418. if (code_seen(axis_codes[i])) {
  3419. home_offset[i] = code_value();
  3420. }
  3421. }
  3422. #if ENABLED(SCARA)
  3423. if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
  3424. if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
  3425. #endif
  3426. }
  3427. #if ENABLED(DELTA)
  3428. /**
  3429. * M665: Set delta configurations
  3430. *
  3431. * L = diagonal rod
  3432. * R = delta radius
  3433. * S = segments per second
  3434. */
  3435. inline void gcode_M665() {
  3436. if (code_seen('L')) delta_diagonal_rod = code_value();
  3437. if (code_seen('R')) delta_radius = code_value();
  3438. if (code_seen('S')) delta_segments_per_second = code_value();
  3439. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  3440. }
  3441. /**
  3442. * M666: Set delta endstop adjustment
  3443. */
  3444. inline void gcode_M666() {
  3445. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3446. if (code_seen(axis_codes[i])) {
  3447. endstop_adj[i] = code_value();
  3448. }
  3449. }
  3450. }
  3451. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  3452. /**
  3453. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  3454. */
  3455. inline void gcode_M666() {
  3456. if (code_seen('Z')) z_endstop_adj = code_value();
  3457. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  3458. SERIAL_EOL;
  3459. }
  3460. #endif // !DELTA && Z_DUAL_ENDSTOPS
  3461. #if ENABLED(FWRETRACT)
  3462. /**
  3463. * M207: Set firmware retraction values
  3464. *
  3465. * S[+mm] retract_length
  3466. * W[+mm] retract_length_swap (multi-extruder)
  3467. * F[mm/min] retract_feedrate
  3468. * Z[mm] retract_zlift
  3469. */
  3470. inline void gcode_M207() {
  3471. if (code_seen('S')) retract_length = code_value();
  3472. if (code_seen('F')) retract_feedrate = code_value() / 60;
  3473. if (code_seen('Z')) retract_zlift = code_value();
  3474. #if EXTRUDERS > 1
  3475. if (code_seen('W')) retract_length_swap = code_value();
  3476. #endif
  3477. }
  3478. /**
  3479. * M208: Set firmware un-retraction values
  3480. *
  3481. * S[+mm] retract_recover_length (in addition to M207 S*)
  3482. * W[+mm] retract_recover_length_swap (multi-extruder)
  3483. * F[mm/min] retract_recover_feedrate
  3484. */
  3485. inline void gcode_M208() {
  3486. if (code_seen('S')) retract_recover_length = code_value();
  3487. if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
  3488. #if EXTRUDERS > 1
  3489. if (code_seen('W')) retract_recover_length_swap = code_value();
  3490. #endif
  3491. }
  3492. /**
  3493. * M209: Enable automatic retract (M209 S1)
  3494. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  3495. */
  3496. inline void gcode_M209() {
  3497. if (code_seen('S')) {
  3498. int t = code_value_short();
  3499. switch(t) {
  3500. case 0:
  3501. autoretract_enabled = false;
  3502. break;
  3503. case 1:
  3504. autoretract_enabled = true;
  3505. break;
  3506. default:
  3507. unknown_command_error();
  3508. return;
  3509. }
  3510. for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
  3511. }
  3512. }
  3513. #endif // FWRETRACT
  3514. #if EXTRUDERS > 1
  3515. /**
  3516. * M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  3517. */
  3518. inline void gcode_M218() {
  3519. if (setTargetedHotend(218)) return;
  3520. if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
  3521. if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
  3522. #if ENABLED(DUAL_X_CARRIAGE)
  3523. if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
  3524. #endif
  3525. SERIAL_ECHO_START;
  3526. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  3527. for (int e = 0; e < EXTRUDERS; e++) {
  3528. SERIAL_CHAR(' ');
  3529. SERIAL_ECHO(extruder_offset[X_AXIS][e]);
  3530. SERIAL_CHAR(',');
  3531. SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
  3532. #if ENABLED(DUAL_X_CARRIAGE)
  3533. SERIAL_CHAR(',');
  3534. SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
  3535. #endif
  3536. }
  3537. SERIAL_EOL;
  3538. }
  3539. #endif // EXTRUDERS > 1
  3540. /**
  3541. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  3542. */
  3543. inline void gcode_M220() {
  3544. if (code_seen('S')) feedrate_multiplier = code_value();
  3545. }
  3546. /**
  3547. * M221: Set extrusion percentage (M221 T0 S95)
  3548. */
  3549. inline void gcode_M221() {
  3550. if (code_seen('S')) {
  3551. int sval = code_value();
  3552. if (code_seen('T')) {
  3553. if (setTargetedHotend(221)) return;
  3554. extruder_multiplier[target_extruder] = sval;
  3555. }
  3556. else {
  3557. extruder_multiplier[active_extruder] = sval;
  3558. }
  3559. }
  3560. }
  3561. /**
  3562. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  3563. */
  3564. inline void gcode_M226() {
  3565. if (code_seen('P')) {
  3566. int pin_number = code_value();
  3567. int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
  3568. if (pin_state >= -1 && pin_state <= 1) {
  3569. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  3570. if (sensitive_pins[i] == pin_number) {
  3571. pin_number = -1;
  3572. break;
  3573. }
  3574. }
  3575. if (pin_number > -1) {
  3576. int target = LOW;
  3577. st_synchronize();
  3578. pinMode(pin_number, INPUT);
  3579. switch(pin_state){
  3580. case 1:
  3581. target = HIGH;
  3582. break;
  3583. case 0:
  3584. target = LOW;
  3585. break;
  3586. case -1:
  3587. target = !digitalRead(pin_number);
  3588. break;
  3589. }
  3590. while (digitalRead(pin_number) != target) idle();
  3591. } // pin_number > -1
  3592. } // pin_state -1 0 1
  3593. } // code_seen('P')
  3594. }
  3595. #if HAS_SERVOS
  3596. /**
  3597. * M280: Get or set servo position. P<index> S<angle>
  3598. */
  3599. inline void gcode_M280() {
  3600. int servo_index = code_seen('P') ? code_value_short() : -1;
  3601. int servo_position = 0;
  3602. if (code_seen('S')) {
  3603. servo_position = code_value_short();
  3604. if (servo_index >= 0 && servo_index < NUM_SERVOS)
  3605. servo[servo_index].move(servo_position);
  3606. else {
  3607. SERIAL_ECHO_START;
  3608. SERIAL_ECHO("Servo ");
  3609. SERIAL_ECHO(servo_index);
  3610. SERIAL_ECHOLN(" out of range");
  3611. }
  3612. }
  3613. else if (servo_index >= 0) {
  3614. SERIAL_PROTOCOL(MSG_OK);
  3615. SERIAL_PROTOCOL(" Servo ");
  3616. SERIAL_PROTOCOL(servo_index);
  3617. SERIAL_PROTOCOL(": ");
  3618. SERIAL_PROTOCOL(servo[servo_index].read());
  3619. SERIAL_EOL;
  3620. }
  3621. }
  3622. #endif // HAS_SERVOS
  3623. #if HAS_BUZZER
  3624. /**
  3625. * M300: Play beep sound S<frequency Hz> P<duration ms>
  3626. */
  3627. inline void gcode_M300() {
  3628. uint16_t beepS = code_seen('S') ? code_value_short() : 110;
  3629. uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
  3630. if (beepP > 5000) beepP = 5000; // limit to 5 seconds
  3631. buzz(beepP, beepS);
  3632. }
  3633. #endif // HAS_BUZZER
  3634. #if ENABLED(PIDTEMP)
  3635. /**
  3636. * M301: Set PID parameters P I D (and optionally C)
  3637. */
  3638. inline void gcode_M301() {
  3639. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  3640. // default behaviour (omitting E parameter) is to update for extruder 0 only
  3641. int e = code_seen('E') ? code_value() : 0; // extruder being updated
  3642. if (e < EXTRUDERS) { // catch bad input value
  3643. if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
  3644. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
  3645. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
  3646. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  3647. if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
  3648. #endif
  3649. updatePID();
  3650. SERIAL_PROTOCOL(MSG_OK);
  3651. #if ENABLED(PID_PARAMS_PER_EXTRUDER)
  3652. SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
  3653. SERIAL_PROTOCOL(e);
  3654. #endif // PID_PARAMS_PER_EXTRUDER
  3655. SERIAL_PROTOCOL(" p:");
  3656. SERIAL_PROTOCOL(PID_PARAM(Kp, e));
  3657. SERIAL_PROTOCOL(" i:");
  3658. SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
  3659. SERIAL_PROTOCOL(" d:");
  3660. SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
  3661. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  3662. SERIAL_PROTOCOL(" c:");
  3663. //Kc does not have scaling applied above, or in resetting defaults
  3664. SERIAL_PROTOCOL(PID_PARAM(Kc, e));
  3665. #endif
  3666. SERIAL_EOL;
  3667. }
  3668. else {
  3669. SERIAL_ECHO_START;
  3670. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  3671. }
  3672. }
  3673. #endif // PIDTEMP
  3674. #if ENABLED(PIDTEMPBED)
  3675. inline void gcode_M304() {
  3676. if (code_seen('P')) bedKp = code_value();
  3677. if (code_seen('I')) bedKi = scalePID_i(code_value());
  3678. if (code_seen('D')) bedKd = scalePID_d(code_value());
  3679. updatePID();
  3680. SERIAL_PROTOCOL(MSG_OK);
  3681. SERIAL_PROTOCOL(" p:");
  3682. SERIAL_PROTOCOL(bedKp);
  3683. SERIAL_PROTOCOL(" i:");
  3684. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  3685. SERIAL_PROTOCOL(" d:");
  3686. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  3687. SERIAL_EOL;
  3688. }
  3689. #endif // PIDTEMPBED
  3690. #if defined(CHDK) || HAS_PHOTOGRAPH
  3691. /**
  3692. * M240: Trigger a camera by emulating a Canon RC-1
  3693. * See http://www.doc-diy.net/photo/rc-1_hacked/
  3694. */
  3695. inline void gcode_M240() {
  3696. #ifdef CHDK
  3697. OUT_WRITE(CHDK, HIGH);
  3698. chdkHigh = millis();
  3699. chdkActive = true;
  3700. #elif HAS_PHOTOGRAPH
  3701. const uint8_t NUM_PULSES = 16;
  3702. const float PULSE_LENGTH = 0.01524;
  3703. for (int i = 0; i < NUM_PULSES; i++) {
  3704. WRITE(PHOTOGRAPH_PIN, HIGH);
  3705. _delay_ms(PULSE_LENGTH);
  3706. WRITE(PHOTOGRAPH_PIN, LOW);
  3707. _delay_ms(PULSE_LENGTH);
  3708. }
  3709. delay(7.33);
  3710. for (int i = 0; i < NUM_PULSES; i++) {
  3711. WRITE(PHOTOGRAPH_PIN, HIGH);
  3712. _delay_ms(PULSE_LENGTH);
  3713. WRITE(PHOTOGRAPH_PIN, LOW);
  3714. _delay_ms(PULSE_LENGTH);
  3715. }
  3716. #endif // !CHDK && HAS_PHOTOGRAPH
  3717. }
  3718. #endif // CHDK || PHOTOGRAPH_PIN
  3719. #if ENABLED(HAS_LCD_CONTRAST)
  3720. /**
  3721. * M250: Read and optionally set the LCD contrast
  3722. */
  3723. inline void gcode_M250() {
  3724. if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
  3725. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  3726. SERIAL_PROTOCOL(lcd_contrast);
  3727. SERIAL_EOL;
  3728. }
  3729. #endif // HAS_LCD_CONTRAST
  3730. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  3731. void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
  3732. /**
  3733. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
  3734. */
  3735. inline void gcode_M302() {
  3736. set_extrude_min_temp(code_seen('S') ? code_value() : 0);
  3737. }
  3738. #endif // PREVENT_DANGEROUS_EXTRUDE
  3739. /**
  3740. * M303: PID relay autotune
  3741. * S<temperature> sets the target temperature. (default target temperature = 150C)
  3742. * E<extruder> (-1 for the bed)
  3743. * C<cycles>
  3744. */
  3745. inline void gcode_M303() {
  3746. int e = code_seen('E') ? code_value_short() : 0;
  3747. int c = code_seen('C') ? code_value_short() : 5;
  3748. float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
  3749. PID_autotune(temp, e, c);
  3750. }
  3751. #if ENABLED(SCARA)
  3752. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  3753. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  3754. //SERIAL_ECHOLN(" Soft endstops disabled ");
  3755. if (IsRunning()) {
  3756. //gcode_get_destination(); // For X Y Z E F
  3757. delta[X_AXIS] = delta_x;
  3758. delta[Y_AXIS] = delta_y;
  3759. calculate_SCARA_forward_Transform(delta);
  3760. destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
  3761. destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
  3762. prepare_move();
  3763. //ok_to_send();
  3764. return true;
  3765. }
  3766. return false;
  3767. }
  3768. /**
  3769. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  3770. */
  3771. inline bool gcode_M360() {
  3772. SERIAL_ECHOLN(" Cal: Theta 0 ");
  3773. return SCARA_move_to_cal(0, 120);
  3774. }
  3775. /**
  3776. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  3777. */
  3778. inline bool gcode_M361() {
  3779. SERIAL_ECHOLN(" Cal: Theta 90 ");
  3780. return SCARA_move_to_cal(90, 130);
  3781. }
  3782. /**
  3783. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  3784. */
  3785. inline bool gcode_M362() {
  3786. SERIAL_ECHOLN(" Cal: Psi 0 ");
  3787. return SCARA_move_to_cal(60, 180);
  3788. }
  3789. /**
  3790. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  3791. */
  3792. inline bool gcode_M363() {
  3793. SERIAL_ECHOLN(" Cal: Psi 90 ");
  3794. return SCARA_move_to_cal(50, 90);
  3795. }
  3796. /**
  3797. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  3798. */
  3799. inline bool gcode_M364() {
  3800. SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
  3801. return SCARA_move_to_cal(45, 135);
  3802. }
  3803. /**
  3804. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  3805. */
  3806. inline void gcode_M365() {
  3807. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3808. if (code_seen(axis_codes[i])) {
  3809. axis_scaling[i] = code_value();
  3810. }
  3811. }
  3812. }
  3813. #endif // SCARA
  3814. #if ENABLED(EXT_SOLENOID)
  3815. void enable_solenoid(uint8_t num) {
  3816. switch(num) {
  3817. case 0:
  3818. OUT_WRITE(SOL0_PIN, HIGH);
  3819. break;
  3820. #if HAS_SOLENOID_1
  3821. case 1:
  3822. OUT_WRITE(SOL1_PIN, HIGH);
  3823. break;
  3824. #endif
  3825. #if HAS_SOLENOID_2
  3826. case 2:
  3827. OUT_WRITE(SOL2_PIN, HIGH);
  3828. break;
  3829. #endif
  3830. #if HAS_SOLENOID_3
  3831. case 3:
  3832. OUT_WRITE(SOL3_PIN, HIGH);
  3833. break;
  3834. #endif
  3835. default:
  3836. SERIAL_ECHO_START;
  3837. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  3838. break;
  3839. }
  3840. }
  3841. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  3842. void disable_all_solenoids() {
  3843. OUT_WRITE(SOL0_PIN, LOW);
  3844. OUT_WRITE(SOL1_PIN, LOW);
  3845. OUT_WRITE(SOL2_PIN, LOW);
  3846. OUT_WRITE(SOL3_PIN, LOW);
  3847. }
  3848. /**
  3849. * M380: Enable solenoid on the active extruder
  3850. */
  3851. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  3852. /**
  3853. * M381: Disable all solenoids
  3854. */
  3855. inline void gcode_M381() { disable_all_solenoids(); }
  3856. #endif // EXT_SOLENOID
  3857. /**
  3858. * M400: Finish all moves
  3859. */
  3860. inline void gcode_M400() { st_synchronize(); }
  3861. #if ENABLED(ENABLE_AUTO_BED_LEVELING) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
  3862. #if HAS_SERVO_ENDSTOPS
  3863. void raise_z_for_servo() {
  3864. float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_HOMING;
  3865. z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
  3866. if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
  3867. }
  3868. #endif
  3869. /**
  3870. * M401: Engage Z Servo endstop if available
  3871. */
  3872. inline void gcode_M401() {
  3873. #if HAS_SERVO_ENDSTOPS
  3874. raise_z_for_servo();
  3875. #endif
  3876. deploy_z_probe();
  3877. }
  3878. /**
  3879. * M402: Retract Z Servo endstop if enabled
  3880. */
  3881. inline void gcode_M402() {
  3882. #if HAS_SERVO_ENDSTOPS
  3883. raise_z_for_servo();
  3884. #endif
  3885. stow_z_probe(false);
  3886. }
  3887. #endif // ENABLE_AUTO_BED_LEVELING && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  3888. #if ENABLED(FILAMENT_SENSOR)
  3889. /**
  3890. * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
  3891. */
  3892. inline void gcode_M404() {
  3893. #if HAS_FILWIDTH
  3894. if (code_seen('W')) {
  3895. filament_width_nominal = code_value();
  3896. }
  3897. else {
  3898. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  3899. SERIAL_PROTOCOLLN(filament_width_nominal);
  3900. }
  3901. #endif
  3902. }
  3903. /**
  3904. * M405: Turn on filament sensor for control
  3905. */
  3906. inline void gcode_M405() {
  3907. if (code_seen('D')) meas_delay_cm = code_value();
  3908. if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
  3909. if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
  3910. int temp_ratio = widthFil_to_size_ratio();
  3911. for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
  3912. measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
  3913. delay_index1 = delay_index2 = 0;
  3914. }
  3915. filament_sensor = true;
  3916. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3917. //SERIAL_PROTOCOL(filament_width_meas);
  3918. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  3919. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  3920. }
  3921. /**
  3922. * M406: Turn off filament sensor for control
  3923. */
  3924. inline void gcode_M406() { filament_sensor = false; }
  3925. /**
  3926. * M407: Get measured filament diameter on serial output
  3927. */
  3928. inline void gcode_M407() {
  3929. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  3930. SERIAL_PROTOCOLLN(filament_width_meas);
  3931. }
  3932. #endif // FILAMENT_SENSOR
  3933. /**
  3934. * M410: Quickstop - Abort all planned moves
  3935. *
  3936. * This will stop the carriages mid-move, so most likely they
  3937. * will be out of sync with the stepper position after this.
  3938. */
  3939. inline void gcode_M410() { quickStop(); }
  3940. #if ENABLED(MESH_BED_LEVELING)
  3941. /**
  3942. * M420: Enable/Disable Mesh Bed Leveling
  3943. */
  3944. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
  3945. /**
  3946. * M421: Set a single Mesh Bed Leveling Z coordinate
  3947. */
  3948. inline void gcode_M421() {
  3949. float x, y, z;
  3950. bool err = false, hasX, hasY, hasZ;
  3951. if ((hasX = code_seen('X'))) x = code_value();
  3952. if ((hasY = code_seen('Y'))) y = code_value();
  3953. if ((hasZ = code_seen('Z'))) z = code_value();
  3954. if (!hasX || !hasY || !hasZ) {
  3955. SERIAL_ERROR_START;
  3956. SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
  3957. err = true;
  3958. }
  3959. if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
  3960. SERIAL_ERROR_START;
  3961. SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
  3962. err = true;
  3963. }
  3964. if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
  3965. }
  3966. #endif
  3967. /**
  3968. * M428: Set home_offset based on the distance between the
  3969. * current_position and the nearest "reference point."
  3970. * If an axis is past center its endstop position
  3971. * is the reference-point. Otherwise it uses 0. This allows
  3972. * the Z offset to be set near the bed when using a max endstop.
  3973. *
  3974. * M428 can't be used more than 2cm away from 0 or an endstop.
  3975. *
  3976. * Use M206 to set these values directly.
  3977. */
  3978. inline void gcode_M428() {
  3979. bool err = false;
  3980. float new_offs[3], new_pos[3];
  3981. memcpy(new_pos, current_position, sizeof(new_pos));
  3982. memcpy(new_offs, home_offset, sizeof(new_offs));
  3983. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  3984. if (axis_known_position[i]) {
  3985. float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
  3986. diff = new_pos[i] - base;
  3987. if (diff > -20 && diff < 20) {
  3988. new_offs[i] -= diff;
  3989. new_pos[i] = base;
  3990. }
  3991. else {
  3992. SERIAL_ERROR_START;
  3993. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  3994. LCD_ALERTMESSAGEPGM("Err: Too far!");
  3995. #if HAS_BUZZER
  3996. enqueuecommands_P(PSTR("M300 S40 P200"));
  3997. #endif
  3998. err = true;
  3999. break;
  4000. }
  4001. }
  4002. }
  4003. if (!err) {
  4004. memcpy(current_position, new_pos, sizeof(new_pos));
  4005. memcpy(home_offset, new_offs, sizeof(new_offs));
  4006. sync_plan_position();
  4007. LCD_ALERTMESSAGEPGM("Offset applied.");
  4008. #if HAS_BUZZER
  4009. enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
  4010. #endif
  4011. }
  4012. }
  4013. /**
  4014. * M500: Store settings in EEPROM
  4015. */
  4016. inline void gcode_M500() {
  4017. Config_StoreSettings();
  4018. }
  4019. /**
  4020. * M501: Read settings from EEPROM
  4021. */
  4022. inline void gcode_M501() {
  4023. Config_RetrieveSettings();
  4024. }
  4025. /**
  4026. * M502: Revert to default settings
  4027. */
  4028. inline void gcode_M502() {
  4029. Config_ResetDefault();
  4030. }
  4031. /**
  4032. * M503: print settings currently in memory
  4033. */
  4034. inline void gcode_M503() {
  4035. Config_PrintSettings(code_seen('S') && code_value() == 0);
  4036. }
  4037. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4038. /**
  4039. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  4040. */
  4041. inline void gcode_M540() {
  4042. if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
  4043. }
  4044. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  4045. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4046. inline void gcode_SET_Z_PROBE_OFFSET() {
  4047. float value;
  4048. if (code_seen('Z')) {
  4049. value = code_value();
  4050. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  4051. zprobe_zoffset = value;
  4052. SERIAL_ECHO_START;
  4053. SERIAL_ECHOLNPGM(MSG_ZPROBE_ZOFFSET " " MSG_OK);
  4054. SERIAL_EOL;
  4055. }
  4056. else {
  4057. SERIAL_ECHO_START;
  4058. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  4059. SERIAL_ECHOPGM(MSG_Z_MIN);
  4060. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  4061. SERIAL_ECHOPGM(MSG_Z_MAX);
  4062. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  4063. SERIAL_EOL;
  4064. }
  4065. }
  4066. else {
  4067. SERIAL_ECHO_START;
  4068. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET " : ");
  4069. SERIAL_ECHO(zprobe_zoffset);
  4070. SERIAL_EOL;
  4071. }
  4072. }
  4073. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4074. #if ENABLED(FILAMENTCHANGEENABLE)
  4075. /**
  4076. * M600: Pause for filament change
  4077. *
  4078. * E[distance] - Retract the filament this far (negative value)
  4079. * Z[distance] - Move the Z axis by this distance
  4080. * X[position] - Move to this X position, with Y
  4081. * Y[position] - Move to this Y position, with X
  4082. * L[distance] - Retract distance for removal (manual reload)
  4083. *
  4084. * Default values are used for omitted arguments.
  4085. *
  4086. */
  4087. inline void gcode_M600() {
  4088. if (degHotend(active_extruder) < extrude_min_temp) {
  4089. SERIAL_ERROR_START;
  4090. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  4091. return;
  4092. }
  4093. float lastpos[NUM_AXIS], fr60 = feedrate / 60;
  4094. for (int i=0; i<NUM_AXIS; i++)
  4095. lastpos[i] = destination[i] = current_position[i];
  4096. #if ENABLED(DELTA)
  4097. #define RUNPLAN calculate_delta(destination); \
  4098. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4099. #else
  4100. #define RUNPLAN line_to_destination();
  4101. #endif
  4102. //retract by E
  4103. if (code_seen('E')) destination[E_AXIS] += code_value();
  4104. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  4105. else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
  4106. #endif
  4107. RUNPLAN;
  4108. //lift Z
  4109. if (code_seen('Z')) destination[Z_AXIS] += code_value();
  4110. #ifdef FILAMENTCHANGE_ZADD
  4111. else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
  4112. #endif
  4113. RUNPLAN;
  4114. //move xy
  4115. if (code_seen('X')) destination[X_AXIS] = code_value();
  4116. #ifdef FILAMENTCHANGE_XPOS
  4117. else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
  4118. #endif
  4119. if (code_seen('Y')) destination[Y_AXIS] = code_value();
  4120. #ifdef FILAMENTCHANGE_YPOS
  4121. else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
  4122. #endif
  4123. RUNPLAN;
  4124. if (code_seen('L')) destination[E_AXIS] += code_value();
  4125. #ifdef FILAMENTCHANGE_FINALRETRACT
  4126. else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
  4127. #endif
  4128. RUNPLAN;
  4129. //finish moves
  4130. st_synchronize();
  4131. //disable extruder steppers so filament can be removed
  4132. disable_e0();
  4133. disable_e1();
  4134. disable_e2();
  4135. disable_e3();
  4136. delay(100);
  4137. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  4138. millis_t next_tick = 0;
  4139. while (!lcd_clicked()) {
  4140. #ifndef AUTO_FILAMENT_CHANGE
  4141. millis_t ms = millis();
  4142. if (ms >= next_tick) {
  4143. lcd_quick_feedback();
  4144. next_tick = ms + 2500; // feedback every 2.5s while waiting
  4145. }
  4146. manage_heater();
  4147. manage_inactivity(true);
  4148. lcd_update();
  4149. #else
  4150. current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
  4151. destination[E_AXIS] = current_position[E_AXIS];
  4152. line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
  4153. st_synchronize();
  4154. #endif
  4155. } // while(!lcd_clicked)
  4156. lcd_quick_feedback(); // click sound feedback
  4157. #ifdef AUTO_FILAMENT_CHANGE
  4158. current_position[E_AXIS] = 0;
  4159. st_synchronize();
  4160. #endif
  4161. //return to normal
  4162. if (code_seen('L')) destination[E_AXIS] -= code_value();
  4163. #ifdef FILAMENTCHANGE_FINALRETRACT
  4164. else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
  4165. #endif
  4166. current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  4167. plan_set_e_position(current_position[E_AXIS]);
  4168. RUNPLAN; //should do nothing
  4169. lcd_reset_alert_level();
  4170. #if ENABLED(DELTA)
  4171. // Move XYZ to starting position, then E
  4172. calculate_delta(lastpos);
  4173. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
  4174. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
  4175. #else
  4176. // Move XY to starting position, then Z, then E
  4177. destination[X_AXIS] = lastpos[X_AXIS];
  4178. destination[Y_AXIS] = lastpos[Y_AXIS];
  4179. line_to_destination();
  4180. destination[Z_AXIS] = lastpos[Z_AXIS];
  4181. line_to_destination();
  4182. destination[E_AXIS] = lastpos[E_AXIS];
  4183. line_to_destination();
  4184. #endif
  4185. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  4186. filrunoutEnqueued = false;
  4187. #endif
  4188. }
  4189. #endif // FILAMENTCHANGEENABLE
  4190. #if ENABLED(DUAL_X_CARRIAGE)
  4191. /**
  4192. * M605: Set dual x-carriage movement mode
  4193. *
  4194. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  4195. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  4196. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  4197. * millimeters x-offset and an optional differential hotend temperature of
  4198. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  4199. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  4200. *
  4201. * Note: the X axis should be homed after changing dual x-carriage mode.
  4202. */
  4203. inline void gcode_M605() {
  4204. st_synchronize();
  4205. if (code_seen('S')) dual_x_carriage_mode = code_value();
  4206. switch(dual_x_carriage_mode) {
  4207. case DXC_DUPLICATION_MODE:
  4208. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
  4209. if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
  4210. SERIAL_ECHO_START;
  4211. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4212. SERIAL_CHAR(' ');
  4213. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  4214. SERIAL_CHAR(',');
  4215. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  4216. SERIAL_CHAR(' ');
  4217. SERIAL_ECHO(duplicate_extruder_x_offset);
  4218. SERIAL_CHAR(',');
  4219. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  4220. break;
  4221. case DXC_FULL_CONTROL_MODE:
  4222. case DXC_AUTO_PARK_MODE:
  4223. break;
  4224. default:
  4225. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  4226. break;
  4227. }
  4228. active_extruder_parked = false;
  4229. extruder_duplication_enabled = false;
  4230. delayed_move_time = 0;
  4231. }
  4232. #endif // DUAL_X_CARRIAGE
  4233. /**
  4234. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  4235. */
  4236. inline void gcode_M907() {
  4237. #if HAS_DIGIPOTSS
  4238. for (int i=0;i<NUM_AXIS;i++)
  4239. if (code_seen(axis_codes[i])) digipot_current(i, code_value());
  4240. if (code_seen('B')) digipot_current(4, code_value());
  4241. if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
  4242. #endif
  4243. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  4244. if (code_seen('X')) digipot_current(0, code_value());
  4245. #endif
  4246. #ifdef MOTOR_CURRENT_PWM_Z_PIN
  4247. if (code_seen('Z')) digipot_current(1, code_value());
  4248. #endif
  4249. #ifdef MOTOR_CURRENT_PWM_E_PIN
  4250. if (code_seen('E')) digipot_current(2, code_value());
  4251. #endif
  4252. #if ENABLED(DIGIPOT_I2C)
  4253. // this one uses actual amps in floating point
  4254. for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
  4255. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  4256. for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
  4257. #endif
  4258. }
  4259. #if HAS_DIGIPOTSS
  4260. /**
  4261. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  4262. */
  4263. inline void gcode_M908() {
  4264. digitalPotWrite(
  4265. code_seen('P') ? code_value() : 0,
  4266. code_seen('S') ? code_value() : 0
  4267. );
  4268. }
  4269. #endif // HAS_DIGIPOTSS
  4270. #if HAS_MICROSTEPS
  4271. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4272. inline void gcode_M350() {
  4273. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  4274. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  4275. if(code_seen('B')) microstep_mode(4,code_value());
  4276. microstep_readings();
  4277. }
  4278. /**
  4279. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  4280. * S# determines MS1 or MS2, X# sets the pin high/low.
  4281. */
  4282. inline void gcode_M351() {
  4283. if (code_seen('S')) switch(code_value_short()) {
  4284. case 1:
  4285. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
  4286. if (code_seen('B')) microstep_ms(4, code_value(), -1);
  4287. break;
  4288. case 2:
  4289. for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
  4290. if (code_seen('B')) microstep_ms(4, -1, code_value());
  4291. break;
  4292. }
  4293. microstep_readings();
  4294. }
  4295. #endif // HAS_MICROSTEPS
  4296. /**
  4297. * M999: Restart after being stopped
  4298. */
  4299. inline void gcode_M999() {
  4300. Running = true;
  4301. lcd_reset_alert_level();
  4302. gcode_LastN = Stopped_gcode_LastN;
  4303. FlushSerialRequestResend();
  4304. }
  4305. /**
  4306. * T0-T3: Switch tool, usually switching extruders
  4307. *
  4308. * F[mm/min] Set the movement feedrate
  4309. */
  4310. inline void gcode_T(uint8_t tmp_extruder) {
  4311. if (tmp_extruder >= EXTRUDERS) {
  4312. SERIAL_ECHO_START;
  4313. SERIAL_CHAR('T');
  4314. SERIAL_PROTOCOL_F(tmp_extruder,DEC);
  4315. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  4316. }
  4317. else {
  4318. target_extruder = tmp_extruder;
  4319. #if EXTRUDERS > 1
  4320. bool make_move = false;
  4321. #endif
  4322. if (code_seen('F')) {
  4323. #if EXTRUDERS > 1
  4324. make_move = true;
  4325. #endif
  4326. float next_feedrate = code_value();
  4327. if (next_feedrate > 0.0) feedrate = next_feedrate;
  4328. }
  4329. #if EXTRUDERS > 1
  4330. if (tmp_extruder != active_extruder) {
  4331. // Save current position to return to after applying extruder offset
  4332. set_destination_to_current();
  4333. #if ENABLED(DUAL_X_CARRIAGE)
  4334. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  4335. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  4336. // Park old head: 1) raise 2) move to park position 3) lower
  4337. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4338. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4339. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  4340. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  4341. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  4342. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  4343. st_synchronize();
  4344. }
  4345. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  4346. current_position[Y_AXIS] = current_position[Y_AXIS] -
  4347. extruder_offset[Y_AXIS][active_extruder] +
  4348. extruder_offset[Y_AXIS][tmp_extruder];
  4349. current_position[Z_AXIS] = current_position[Z_AXIS] -
  4350. extruder_offset[Z_AXIS][active_extruder] +
  4351. extruder_offset[Z_AXIS][tmp_extruder];
  4352. active_extruder = tmp_extruder;
  4353. // This function resets the max/min values - the current position may be overwritten below.
  4354. set_axis_is_at_home(X_AXIS);
  4355. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  4356. current_position[X_AXIS] = inactive_extruder_x_pos;
  4357. inactive_extruder_x_pos = destination[X_AXIS];
  4358. }
  4359. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  4360. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  4361. if (active_extruder == 0 || active_extruder_parked)
  4362. current_position[X_AXIS] = inactive_extruder_x_pos;
  4363. else
  4364. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  4365. inactive_extruder_x_pos = destination[X_AXIS];
  4366. extruder_duplication_enabled = false;
  4367. }
  4368. else {
  4369. // record raised toolhead position for use by unpark
  4370. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  4371. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  4372. active_extruder_parked = true;
  4373. delayed_move_time = 0;
  4374. }
  4375. #else // !DUAL_X_CARRIAGE
  4376. // Offset extruder (only by XY)
  4377. for (int i=X_AXIS; i<=Y_AXIS; i++)
  4378. current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
  4379. // Set the new active extruder and position
  4380. active_extruder = tmp_extruder;
  4381. #endif // !DUAL_X_CARRIAGE
  4382. #if ENABLED(DELTA)
  4383. sync_plan_position_delta();
  4384. #else
  4385. sync_plan_position();
  4386. #endif
  4387. // Move to the old position if 'F' was in the parameters
  4388. if (make_move && IsRunning()) prepare_move();
  4389. }
  4390. #if ENABLED(EXT_SOLENOID)
  4391. st_synchronize();
  4392. disable_all_solenoids();
  4393. enable_solenoid_on_active_extruder();
  4394. #endif // EXT_SOLENOID
  4395. #endif // EXTRUDERS > 1
  4396. SERIAL_ECHO_START;
  4397. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  4398. SERIAL_PROTOCOLLN((int)active_extruder);
  4399. }
  4400. }
  4401. /**
  4402. * Process a single command and dispatch it to its handler
  4403. * This is called from the main loop()
  4404. */
  4405. void process_next_command() {
  4406. current_command = command_queue[cmd_queue_index_r];
  4407. if ((marlin_debug_flags & DEBUG_ECHO)) {
  4408. SERIAL_ECHO_START;
  4409. SERIAL_ECHOLN(current_command);
  4410. }
  4411. // Sanitize the current command:
  4412. // - Skip leading spaces
  4413. // - Bypass N[0-9][0-9]*[ ]*
  4414. // - Overwrite * with nul to mark the end
  4415. while (*current_command == ' ') ++current_command;
  4416. if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
  4417. current_command += 2; // skip N[-0-9]
  4418. while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
  4419. while (*current_command == ' ') ++current_command; // skip [ ]*
  4420. }
  4421. char *starpos = strchr(current_command, '*'); // * should always be the last parameter
  4422. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  4423. // Get the command code, which must be G, M, or T
  4424. char command_code = *current_command;
  4425. // The code must have a numeric value
  4426. bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
  4427. int codenum; // define ahead of goto
  4428. // Bail early if there's no code
  4429. if (!code_is_good) goto ExitUnknownCommand;
  4430. // Args pointer optimizes code_seen, especially those taking XYZEF
  4431. // This wastes a little cpu on commands that expect no arguments.
  4432. current_command_args = current_command;
  4433. while (*current_command_args && *current_command_args != ' ') ++current_command_args;
  4434. while (*current_command_args == ' ') ++current_command_args;
  4435. // Interpret the code int
  4436. seen_pointer = current_command;
  4437. codenum = code_value_short();
  4438. // Handle a known G, M, or T
  4439. switch(command_code) {
  4440. case 'G': switch (codenum) {
  4441. // G0, G1
  4442. case 0:
  4443. case 1:
  4444. gcode_G0_G1();
  4445. break;
  4446. // G2, G3
  4447. #if DISABLED(SCARA)
  4448. case 2: // G2 - CW ARC
  4449. case 3: // G3 - CCW ARC
  4450. gcode_G2_G3(codenum == 2);
  4451. break;
  4452. #endif
  4453. // G4 Dwell
  4454. case 4:
  4455. gcode_G4();
  4456. break;
  4457. #if ENABLED(FWRETRACT)
  4458. case 10: // G10: retract
  4459. case 11: // G11: retract_recover
  4460. gcode_G10_G11(codenum == 10);
  4461. break;
  4462. #endif //FWRETRACT
  4463. case 28: // G28: Home all axes, one at a time
  4464. gcode_G28();
  4465. break;
  4466. #if ENABLED(ENABLE_AUTO_BED_LEVELING) || ENABLED(MESH_BED_LEVELING)
  4467. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
  4468. gcode_G29();
  4469. break;
  4470. #endif
  4471. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  4472. #if DISABLED(Z_PROBE_SLED)
  4473. case 30: // G30 Single Z Probe
  4474. gcode_G30();
  4475. break;
  4476. #else // Z_PROBE_SLED
  4477. case 31: // G31: dock the sled
  4478. case 32: // G32: undock the sled
  4479. dock_sled(codenum == 31);
  4480. break;
  4481. #endif // Z_PROBE_SLED
  4482. #endif // ENABLE_AUTO_BED_LEVELING
  4483. case 90: // G90
  4484. relative_mode = false;
  4485. break;
  4486. case 91: // G91
  4487. relative_mode = true;
  4488. break;
  4489. case 92: // G92
  4490. gcode_G92();
  4491. break;
  4492. }
  4493. break;
  4494. case 'M': switch (codenum) {
  4495. #if ENABLED(ULTIPANEL)
  4496. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  4497. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  4498. gcode_M0_M1();
  4499. break;
  4500. #endif // ULTIPANEL
  4501. case 17:
  4502. gcode_M17();
  4503. break;
  4504. #if ENABLED(SDSUPPORT)
  4505. case 20: // M20 - list SD card
  4506. gcode_M20(); break;
  4507. case 21: // M21 - init SD card
  4508. gcode_M21(); break;
  4509. case 22: //M22 - release SD card
  4510. gcode_M22(); break;
  4511. case 23: //M23 - Select file
  4512. gcode_M23(); break;
  4513. case 24: //M24 - Start SD print
  4514. gcode_M24(); break;
  4515. case 25: //M25 - Pause SD print
  4516. gcode_M25(); break;
  4517. case 26: //M26 - Set SD index
  4518. gcode_M26(); break;
  4519. case 27: //M27 - Get SD status
  4520. gcode_M27(); break;
  4521. case 28: //M28 - Start SD write
  4522. gcode_M28(); break;
  4523. case 29: //M29 - Stop SD write
  4524. gcode_M29(); break;
  4525. case 30: //M30 <filename> Delete File
  4526. gcode_M30(); break;
  4527. case 32: //M32 - Select file and start SD print
  4528. gcode_M32(); break;
  4529. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  4530. case 33: //M33 - Get the long full path to a file or folder
  4531. gcode_M33(); break;
  4532. #endif // LONG_FILENAME_HOST_SUPPORT
  4533. case 928: //M928 - Start SD write
  4534. gcode_M928(); break;
  4535. #endif //SDSUPPORT
  4536. case 31: //M31 take time since the start of the SD print or an M109 command
  4537. gcode_M31();
  4538. break;
  4539. case 42: //M42 -Change pin status via gcode
  4540. gcode_M42();
  4541. break;
  4542. #if ENABLED(ENABLE_AUTO_BED_LEVELING) && ENABLED(Z_PROBE_REPEATABILITY_TEST)
  4543. case 48: // M48 Z-Probe repeatability
  4544. gcode_M48();
  4545. break;
  4546. #endif // ENABLE_AUTO_BED_LEVELING && Z_PROBE_REPEATABILITY_TEST
  4547. #ifdef M100_FREE_MEMORY_WATCHER
  4548. case 100:
  4549. gcode_M100();
  4550. break;
  4551. #endif
  4552. case 104: // M104
  4553. gcode_M104();
  4554. break;
  4555. case 111: // M111: Set debug level
  4556. gcode_M111();
  4557. break;
  4558. case 112: // M112: Emergency Stop
  4559. gcode_M112();
  4560. break;
  4561. case 140: // M140: Set bed temp
  4562. gcode_M140();
  4563. break;
  4564. case 105: // M105: Read current temperature
  4565. gcode_M105();
  4566. return; // "ok" already printed
  4567. case 109: // M109: Wait for temperature
  4568. gcode_M109();
  4569. break;
  4570. #if HAS_TEMP_BED
  4571. case 190: // M190: Wait for bed heater to reach target
  4572. gcode_M190();
  4573. break;
  4574. #endif // HAS_TEMP_BED
  4575. #if HAS_FAN
  4576. case 106: // M106: Fan On
  4577. gcode_M106();
  4578. break;
  4579. case 107: // M107: Fan Off
  4580. gcode_M107();
  4581. break;
  4582. #endif // HAS_FAN
  4583. #if ENABLED(BARICUDA)
  4584. // PWM for HEATER_1_PIN
  4585. #if HAS_HEATER_1
  4586. case 126: // M126: valve open
  4587. gcode_M126();
  4588. break;
  4589. case 127: // M127: valve closed
  4590. gcode_M127();
  4591. break;
  4592. #endif // HAS_HEATER_1
  4593. // PWM for HEATER_2_PIN
  4594. #if HAS_HEATER_2
  4595. case 128: // M128: valve open
  4596. gcode_M128();
  4597. break;
  4598. case 129: // M129: valve closed
  4599. gcode_M129();
  4600. break;
  4601. #endif // HAS_HEATER_2
  4602. #endif // BARICUDA
  4603. #if HAS_POWER_SWITCH
  4604. case 80: // M80: Turn on Power Supply
  4605. gcode_M80();
  4606. break;
  4607. #endif // HAS_POWER_SWITCH
  4608. case 81: // M81: Turn off Power, including Power Supply, if possible
  4609. gcode_M81();
  4610. break;
  4611. case 82:
  4612. gcode_M82();
  4613. break;
  4614. case 83:
  4615. gcode_M83();
  4616. break;
  4617. case 18: // (for compatibility)
  4618. case 84: // M84
  4619. gcode_M18_M84();
  4620. break;
  4621. case 85: // M85
  4622. gcode_M85();
  4623. break;
  4624. case 92: // M92: Set the steps-per-unit for one or more axes
  4625. gcode_M92();
  4626. break;
  4627. case 115: // M115: Report capabilities
  4628. gcode_M115();
  4629. break;
  4630. case 117: // M117: Set LCD message text, if possible
  4631. gcode_M117();
  4632. break;
  4633. case 114: // M114: Report current position
  4634. gcode_M114();
  4635. break;
  4636. case 120: // M120: Enable endstops
  4637. gcode_M120();
  4638. break;
  4639. case 121: // M121: Disable endstops
  4640. gcode_M121();
  4641. break;
  4642. case 119: // M119: Report endstop states
  4643. gcode_M119();
  4644. break;
  4645. #if ENABLED(ULTIPANEL)
  4646. case 145: // M145: Set material heatup parameters
  4647. gcode_M145();
  4648. break;
  4649. #endif
  4650. #if ENABLED(BLINKM)
  4651. case 150: // M150
  4652. gcode_M150();
  4653. break;
  4654. #endif //BLINKM
  4655. case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
  4656. gcode_M200();
  4657. break;
  4658. case 201: // M201
  4659. gcode_M201();
  4660. break;
  4661. #if 0 // Not used for Sprinter/grbl gen6
  4662. case 202: // M202
  4663. gcode_M202();
  4664. break;
  4665. #endif
  4666. case 203: // M203 max feedrate mm/sec
  4667. gcode_M203();
  4668. break;
  4669. case 204: // M204 acclereration S normal moves T filmanent only moves
  4670. gcode_M204();
  4671. break;
  4672. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  4673. gcode_M205();
  4674. break;
  4675. case 206: // M206 additional homing offset
  4676. gcode_M206();
  4677. break;
  4678. #if ENABLED(DELTA)
  4679. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  4680. gcode_M665();
  4681. break;
  4682. #endif
  4683. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  4684. case 666: // M666 set delta / dual endstop adjustment
  4685. gcode_M666();
  4686. break;
  4687. #endif
  4688. #if ENABLED(FWRETRACT)
  4689. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
  4690. gcode_M207();
  4691. break;
  4692. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
  4693. gcode_M208();
  4694. break;
  4695. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4696. gcode_M209();
  4697. break;
  4698. #endif // FWRETRACT
  4699. #if EXTRUDERS > 1
  4700. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  4701. gcode_M218();
  4702. break;
  4703. #endif
  4704. case 220: // M220 S<factor in percent>- set speed factor override percentage
  4705. gcode_M220();
  4706. break;
  4707. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  4708. gcode_M221();
  4709. break;
  4710. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  4711. gcode_M226();
  4712. break;
  4713. #if HAS_SERVOS
  4714. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  4715. gcode_M280();
  4716. break;
  4717. #endif // HAS_SERVOS
  4718. #if HAS_BUZZER
  4719. case 300: // M300 - Play beep tone
  4720. gcode_M300();
  4721. break;
  4722. #endif // HAS_BUZZER
  4723. #if ENABLED(PIDTEMP)
  4724. case 301: // M301
  4725. gcode_M301();
  4726. break;
  4727. #endif // PIDTEMP
  4728. #if ENABLED(PIDTEMPBED)
  4729. case 304: // M304
  4730. gcode_M304();
  4731. break;
  4732. #endif // PIDTEMPBED
  4733. #if defined(CHDK) || HAS_PHOTOGRAPH
  4734. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  4735. gcode_M240();
  4736. break;
  4737. #endif // CHDK || PHOTOGRAPH_PIN
  4738. #if ENABLED(HAS_LCD_CONTRAST)
  4739. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  4740. gcode_M250();
  4741. break;
  4742. #endif // HAS_LCD_CONTRAST
  4743. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4744. case 302: // allow cold extrudes, or set the minimum extrude temperature
  4745. gcode_M302();
  4746. break;
  4747. #endif // PREVENT_DANGEROUS_EXTRUDE
  4748. case 303: // M303 PID autotune
  4749. gcode_M303();
  4750. break;
  4751. #if ENABLED(SCARA)
  4752. case 360: // M360 SCARA Theta pos1
  4753. if (gcode_M360()) return;
  4754. break;
  4755. case 361: // M361 SCARA Theta pos2
  4756. if (gcode_M361()) return;
  4757. break;
  4758. case 362: // M362 SCARA Psi pos1
  4759. if (gcode_M362()) return;
  4760. break;
  4761. case 363: // M363 SCARA Psi pos2
  4762. if (gcode_M363()) return;
  4763. break;
  4764. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  4765. if (gcode_M364()) return;
  4766. break;
  4767. case 365: // M365 Set SCARA scaling for X Y Z
  4768. gcode_M365();
  4769. break;
  4770. #endif // SCARA
  4771. case 400: // M400 finish all moves
  4772. gcode_M400();
  4773. break;
  4774. #if ENABLED(ENABLE_AUTO_BED_LEVELING) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
  4775. case 401:
  4776. gcode_M401();
  4777. break;
  4778. case 402:
  4779. gcode_M402();
  4780. break;
  4781. #endif // ENABLE_AUTO_BED_LEVELING && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
  4782. #if ENABLED(FILAMENT_SENSOR)
  4783. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  4784. gcode_M404();
  4785. break;
  4786. case 405: //M405 Turn on filament sensor for control
  4787. gcode_M405();
  4788. break;
  4789. case 406: //M406 Turn off filament sensor for control
  4790. gcode_M406();
  4791. break;
  4792. case 407: //M407 Display measured filament diameter
  4793. gcode_M407();
  4794. break;
  4795. #endif // FILAMENT_SENSOR
  4796. case 410: // M410 quickstop - Abort all the planned moves.
  4797. gcode_M410();
  4798. break;
  4799. #if ENABLED(MESH_BED_LEVELING)
  4800. case 420: // M420 Enable/Disable Mesh Bed Leveling
  4801. gcode_M420();
  4802. break;
  4803. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  4804. gcode_M421();
  4805. break;
  4806. #endif
  4807. case 428: // M428 Apply current_position to home_offset
  4808. gcode_M428();
  4809. break;
  4810. case 500: // M500 Store settings in EEPROM
  4811. gcode_M500();
  4812. break;
  4813. case 501: // M501 Read settings from EEPROM
  4814. gcode_M501();
  4815. break;
  4816. case 502: // M502 Revert to default settings
  4817. gcode_M502();
  4818. break;
  4819. case 503: // M503 print settings currently in memory
  4820. gcode_M503();
  4821. break;
  4822. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  4823. case 540:
  4824. gcode_M540();
  4825. break;
  4826. #endif
  4827. #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4828. case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
  4829. gcode_SET_Z_PROBE_OFFSET();
  4830. break;
  4831. #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
  4832. #if ENABLED(FILAMENTCHANGEENABLE)
  4833. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  4834. gcode_M600();
  4835. break;
  4836. #endif // FILAMENTCHANGEENABLE
  4837. #if ENABLED(DUAL_X_CARRIAGE)
  4838. case 605:
  4839. gcode_M605();
  4840. break;
  4841. #endif // DUAL_X_CARRIAGE
  4842. case 907: // M907 Set digital trimpot motor current using axis codes.
  4843. gcode_M907();
  4844. break;
  4845. #if HAS_DIGIPOTSS
  4846. case 908: // M908 Control digital trimpot directly.
  4847. gcode_M908();
  4848. break;
  4849. #endif // HAS_DIGIPOTSS
  4850. #if HAS_MICROSTEPS
  4851. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  4852. gcode_M350();
  4853. break;
  4854. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  4855. gcode_M351();
  4856. break;
  4857. #endif // HAS_MICROSTEPS
  4858. case 999: // M999: Restart after being Stopped
  4859. gcode_M999();
  4860. break;
  4861. }
  4862. break;
  4863. case 'T':
  4864. gcode_T(codenum);
  4865. break;
  4866. default: code_is_good = false;
  4867. }
  4868. ExitUnknownCommand:
  4869. // Still unknown command? Throw an error
  4870. if (!code_is_good) unknown_command_error();
  4871. ok_to_send();
  4872. }
  4873. void FlushSerialRequestResend() {
  4874. //char command_queue[cmd_queue_index_r][100]="Resend:";
  4875. MYSERIAL.flush();
  4876. SERIAL_PROTOCOLPGM(MSG_RESEND);
  4877. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  4878. ok_to_send();
  4879. }
  4880. void ok_to_send() {
  4881. refresh_cmd_timeout();
  4882. #if ENABLED(SDSUPPORT)
  4883. if (fromsd[cmd_queue_index_r]) return;
  4884. #endif
  4885. SERIAL_PROTOCOLPGM(MSG_OK);
  4886. #if ENABLED(ADVANCED_OK)
  4887. SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
  4888. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
  4889. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  4890. #endif
  4891. SERIAL_EOL;
  4892. }
  4893. void clamp_to_software_endstops(float target[3]) {
  4894. if (min_software_endstops) {
  4895. NOLESS(target[X_AXIS], min_pos[X_AXIS]);
  4896. NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
  4897. float negative_z_offset = 0;
  4898. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  4899. if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
  4900. if (home_offset[Z_AXIS] < 0) negative_z_offset += home_offset[Z_AXIS];
  4901. #endif
  4902. NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
  4903. }
  4904. if (max_software_endstops) {
  4905. NOMORE(target[X_AXIS], max_pos[X_AXIS]);
  4906. NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
  4907. NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
  4908. }
  4909. }
  4910. #if ENABLED(DELTA)
  4911. void recalc_delta_settings(float radius, float diagonal_rod) {
  4912. delta_tower1_x = -SIN_60 * radius; // front left tower
  4913. delta_tower1_y = -COS_60 * radius;
  4914. delta_tower2_x = SIN_60 * radius; // front right tower
  4915. delta_tower2_y = -COS_60 * radius;
  4916. delta_tower3_x = 0.0; // back middle tower
  4917. delta_tower3_y = radius;
  4918. delta_diagonal_rod_2 = sq(diagonal_rod);
  4919. }
  4920. void calculate_delta(float cartesian[3]) {
  4921. delta[X_AXIS] = sqrt(delta_diagonal_rod_2
  4922. - sq(delta_tower1_x-cartesian[X_AXIS])
  4923. - sq(delta_tower1_y-cartesian[Y_AXIS])
  4924. ) + cartesian[Z_AXIS];
  4925. delta[Y_AXIS] = sqrt(delta_diagonal_rod_2
  4926. - sq(delta_tower2_x-cartesian[X_AXIS])
  4927. - sq(delta_tower2_y-cartesian[Y_AXIS])
  4928. ) + cartesian[Z_AXIS];
  4929. delta[Z_AXIS] = sqrt(delta_diagonal_rod_2
  4930. - sq(delta_tower3_x-cartesian[X_AXIS])
  4931. - sq(delta_tower3_y-cartesian[Y_AXIS])
  4932. ) + cartesian[Z_AXIS];
  4933. /*
  4934. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  4935. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  4936. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  4937. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  4938. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  4939. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  4940. */
  4941. }
  4942. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  4943. // Adjust print surface height by linear interpolation over the bed_level array.
  4944. void adjust_delta(float cartesian[3]) {
  4945. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  4946. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  4947. float h1 = 0.001 - half, h2 = half - 0.001,
  4948. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  4949. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  4950. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  4951. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  4952. z1 = bed_level[floor_x + half][floor_y + half],
  4953. z2 = bed_level[floor_x + half][floor_y + half + 1],
  4954. z3 = bed_level[floor_x + half + 1][floor_y + half],
  4955. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  4956. left = (1 - ratio_y) * z1 + ratio_y * z2,
  4957. right = (1 - ratio_y) * z3 + ratio_y * z4,
  4958. offset = (1 - ratio_x) * left + ratio_x * right;
  4959. delta[X_AXIS] += offset;
  4960. delta[Y_AXIS] += offset;
  4961. delta[Z_AXIS] += offset;
  4962. /*
  4963. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  4964. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  4965. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  4966. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  4967. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  4968. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  4969. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  4970. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  4971. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  4972. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  4973. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  4974. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  4975. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  4976. */
  4977. }
  4978. #endif // ENABLE_AUTO_BED_LEVELING
  4979. #endif // DELTA
  4980. #if ENABLED(MESH_BED_LEVELING)
  4981. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  4982. void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
  4983. {
  4984. if (!mbl.active) {
  4985. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  4986. set_current_to_destination();
  4987. return;
  4988. }
  4989. int pix = mbl.select_x_index(current_position[X_AXIS]);
  4990. int piy = mbl.select_y_index(current_position[Y_AXIS]);
  4991. int ix = mbl.select_x_index(x);
  4992. int iy = mbl.select_y_index(y);
  4993. pix = min(pix, MESH_NUM_X_POINTS - 2);
  4994. piy = min(piy, MESH_NUM_Y_POINTS - 2);
  4995. ix = min(ix, MESH_NUM_X_POINTS - 2);
  4996. iy = min(iy, MESH_NUM_Y_POINTS - 2);
  4997. if (pix == ix && piy == iy) {
  4998. // Start and end on same mesh square
  4999. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5000. set_current_to_destination();
  5001. return;
  5002. }
  5003. float nx, ny, ne, normalized_dist;
  5004. if (ix > pix && (x_splits) & BIT(ix)) {
  5005. nx = mbl.get_x(ix);
  5006. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5007. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5008. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5009. x_splits ^= BIT(ix);
  5010. } else if (ix < pix && (x_splits) & BIT(pix)) {
  5011. nx = mbl.get_x(pix);
  5012. normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
  5013. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  5014. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5015. x_splits ^= BIT(pix);
  5016. } else if (iy > piy && (y_splits) & BIT(iy)) {
  5017. ny = mbl.get_y(iy);
  5018. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5019. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5020. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5021. y_splits ^= BIT(iy);
  5022. } else if (iy < piy && (y_splits) & BIT(piy)) {
  5023. ny = mbl.get_y(piy);
  5024. normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
  5025. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  5026. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  5027. y_splits ^= BIT(piy);
  5028. } else {
  5029. // Already split on a border
  5030. plan_buffer_line(x, y, z, e, feed_rate, extruder);
  5031. set_current_to_destination();
  5032. return;
  5033. }
  5034. // Do the split and look for more borders
  5035. destination[X_AXIS] = nx;
  5036. destination[Y_AXIS] = ny;
  5037. destination[E_AXIS] = ne;
  5038. mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
  5039. destination[X_AXIS] = x;
  5040. destination[Y_AXIS] = y;
  5041. destination[E_AXIS] = e;
  5042. mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  5043. }
  5044. #endif // MESH_BED_LEVELING
  5045. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5046. inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
  5047. if (marlin_debug_flags & DEBUG_DRYRUN) return;
  5048. float de = dest_e - curr_e;
  5049. if (de) {
  5050. if (degHotend(active_extruder) < extrude_min_temp) {
  5051. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5052. SERIAL_ECHO_START;
  5053. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  5054. }
  5055. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  5056. if (labs(de) > EXTRUDE_MAXLENGTH) {
  5057. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  5058. SERIAL_ECHO_START;
  5059. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  5060. }
  5061. #endif
  5062. }
  5063. }
  5064. #endif // PREVENT_DANGEROUS_EXTRUDE
  5065. #if ENABLED(DELTA) || ENABLED(SCARA)
  5066. inline bool prepare_move_delta(float target[NUM_AXIS]) {
  5067. float difference[NUM_AXIS];
  5068. for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  5069. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  5070. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  5071. if (cartesian_mm < 0.000001) return false;
  5072. float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
  5073. int steps = max(1, int(delta_segments_per_second * seconds));
  5074. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  5075. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  5076. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  5077. for (int s = 1; s <= steps; s++) {
  5078. float fraction = float(s) / float(steps);
  5079. for (int8_t i = 0; i < NUM_AXIS; i++)
  5080. target[i] = current_position[i] + difference[i] * fraction;
  5081. calculate_delta(target);
  5082. #if ENABLED(ENABLE_AUTO_BED_LEVELING)
  5083. adjust_delta(target);
  5084. #endif
  5085. //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
  5086. //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
  5087. //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
  5088. //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
  5089. //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5090. //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5091. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
  5092. }
  5093. return true;
  5094. }
  5095. #endif // DELTA || SCARA
  5096. #if ENABLED(SCARA)
  5097. inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
  5098. #endif
  5099. #if ENABLED(DUAL_X_CARRIAGE)
  5100. inline bool prepare_move_dual_x_carriage() {
  5101. if (active_extruder_parked) {
  5102. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  5103. // move duplicate extruder into correct duplication position.
  5104. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  5105. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  5106. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  5107. sync_plan_position();
  5108. st_synchronize();
  5109. extruder_duplication_enabled = true;
  5110. active_extruder_parked = false;
  5111. }
  5112. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  5113. if (current_position[E_AXIS] == destination[E_AXIS]) {
  5114. // This is a travel move (with no extrusion)
  5115. // Skip it, but keep track of the current position
  5116. // (so it can be used as the start of the next non-travel move)
  5117. if (delayed_move_time != 0xFFFFFFFFUL) {
  5118. set_current_to_destination();
  5119. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  5120. delayed_move_time = millis();
  5121. return false;
  5122. }
  5123. }
  5124. delayed_move_time = 0;
  5125. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  5126. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5127. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
  5128. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  5129. active_extruder_parked = false;
  5130. }
  5131. }
  5132. return true;
  5133. }
  5134. #endif // DUAL_X_CARRIAGE
  5135. #if DISABLED(DELTA) && DISABLED(SCARA)
  5136. inline bool prepare_move_cartesian() {
  5137. // Do not use feedrate_multiplier for E or Z only moves
  5138. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  5139. line_to_destination();
  5140. }
  5141. else {
  5142. #if ENABLED(MESH_BED_LEVELING)
  5143. mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
  5144. return false;
  5145. #else
  5146. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  5147. #endif
  5148. }
  5149. return true;
  5150. }
  5151. #endif // !DELTA && !SCARA
  5152. /**
  5153. * Prepare a single move and get ready for the next one
  5154. *
  5155. * (This may call plan_buffer_line several times to put
  5156. * smaller moves into the planner for DELTA or SCARA.)
  5157. */
  5158. void prepare_move() {
  5159. clamp_to_software_endstops(destination);
  5160. refresh_cmd_timeout();
  5161. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  5162. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  5163. #endif
  5164. #if ENABLED(SCARA)
  5165. if (!prepare_move_scara(destination)) return;
  5166. #elif ENABLED(DELTA)
  5167. if (!prepare_move_delta(destination)) return;
  5168. #endif
  5169. #if ENABLED(DUAL_X_CARRIAGE)
  5170. if (!prepare_move_dual_x_carriage()) return;
  5171. #endif
  5172. #if DISABLED(DELTA) && DISABLED(SCARA)
  5173. if (!prepare_move_cartesian()) return;
  5174. #endif
  5175. set_current_to_destination();
  5176. }
  5177. /**
  5178. * Plan an arc in 2 dimensions
  5179. *
  5180. * The arc is approximated by generating many small linear segments.
  5181. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  5182. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  5183. * larger segments will tend to be more efficient. Your slicer should have
  5184. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  5185. */
  5186. void plan_arc(
  5187. float target[NUM_AXIS], // Destination position
  5188. float *offset, // Center of rotation relative to current_position
  5189. uint8_t clockwise // Clockwise?
  5190. ) {
  5191. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  5192. center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
  5193. center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
  5194. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  5195. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  5196. r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
  5197. r_axis1 = -offset[Y_AXIS],
  5198. rt_axis0 = target[X_AXIS] - center_axis0,
  5199. rt_axis1 = target[Y_AXIS] - center_axis1;
  5200. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  5201. float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
  5202. if (angular_travel < 0) { angular_travel += RADIANS(360); }
  5203. if (clockwise) { angular_travel -= RADIANS(360); }
  5204. // Make a circle if the angular rotation is 0
  5205. if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
  5206. angular_travel += RADIANS(360);
  5207. float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
  5208. if (mm_of_travel < 0.001) { return; }
  5209. uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
  5210. if (segments == 0) segments = 1;
  5211. float theta_per_segment = angular_travel/segments;
  5212. float linear_per_segment = linear_travel/segments;
  5213. float extruder_per_segment = extruder_travel/segments;
  5214. /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  5215. and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  5216. r_T = [cos(phi) -sin(phi);
  5217. sin(phi) cos(phi] * r ;
  5218. For arc generation, the center of the circle is the axis of rotation and the radius vector is
  5219. defined from the circle center to the initial position. Each line segment is formed by successive
  5220. vector rotations. This requires only two cos() and sin() computations to form the rotation
  5221. matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  5222. all double numbers are single precision on the Arduino. (True double precision will not have
  5223. round off issues for CNC applications.) Single precision error can accumulate to be greater than
  5224. tool precision in some cases. Therefore, arc path correction is implemented.
  5225. Small angle approximation may be used to reduce computation overhead further. This approximation
  5226. holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  5227. theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  5228. to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  5229. numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  5230. issue for CNC machines with the single precision Arduino calculations.
  5231. This approximation also allows plan_arc to immediately insert a line segment into the planner
  5232. without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  5233. a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  5234. This is important when there are successive arc motions.
  5235. */
  5236. // Vector rotation matrix values
  5237. float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
  5238. float sin_T = theta_per_segment;
  5239. float arc_target[NUM_AXIS];
  5240. float sin_Ti;
  5241. float cos_Ti;
  5242. float r_axisi;
  5243. uint16_t i;
  5244. int8_t count = 0;
  5245. // Initialize the linear axis
  5246. arc_target[Z_AXIS] = current_position[Z_AXIS];
  5247. // Initialize the extruder axis
  5248. arc_target[E_AXIS] = current_position[E_AXIS];
  5249. float feed_rate = feedrate*feedrate_multiplier/60/100.0;
  5250. for (i = 1; i < segments; i++) { // Increment (segments-1)
  5251. if (count < N_ARC_CORRECTION) {
  5252. // Apply vector rotation matrix to previous r_axis0 / 1
  5253. r_axisi = r_axis0*sin_T + r_axis1*cos_T;
  5254. r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
  5255. r_axis1 = r_axisi;
  5256. count++;
  5257. }
  5258. else {
  5259. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  5260. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  5261. cos_Ti = cos(i*theta_per_segment);
  5262. sin_Ti = sin(i*theta_per_segment);
  5263. r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
  5264. r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
  5265. count = 0;
  5266. }
  5267. // Update arc_target location
  5268. arc_target[X_AXIS] = center_axis0 + r_axis0;
  5269. arc_target[Y_AXIS] = center_axis1 + r_axis1;
  5270. arc_target[Z_AXIS] += linear_per_segment;
  5271. arc_target[E_AXIS] += extruder_per_segment;
  5272. clamp_to_software_endstops(arc_target);
  5273. #if defined(DELTA) || defined(SCARA)
  5274. calculate_delta(arc_target);
  5275. #ifdef ENABLE_AUTO_BED_LEVELING
  5276. adjust_delta(arc_target);
  5277. #endif
  5278. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5279. #else
  5280. plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  5281. #endif
  5282. }
  5283. // Ensure last segment arrives at target location.
  5284. #if defined(DELTA) || defined(SCARA)
  5285. calculate_delta(target);
  5286. #ifdef ENABLE_AUTO_BED_LEVELING
  5287. adjust_delta(target);
  5288. #endif
  5289. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5290. #else
  5291. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  5292. #endif
  5293. // As far as the parser is concerned, the position is now == target. In reality the
  5294. // motion control system might still be processing the action and the real tool position
  5295. // in any intermediate location.
  5296. set_current_to_destination();
  5297. }
  5298. #if HAS_CONTROLLERFAN
  5299. void controllerFan() {
  5300. static millis_t lastMotor = 0; // Last time a motor was turned on
  5301. static millis_t lastMotorCheck = 0; // Last time the state was checked
  5302. millis_t ms = millis();
  5303. if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
  5304. lastMotorCheck = ms;
  5305. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
  5306. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  5307. #if EXTRUDERS > 1
  5308. || E1_ENABLE_READ == E_ENABLE_ON
  5309. #if HAS_X2_ENABLE
  5310. || X2_ENABLE_READ == X_ENABLE_ON
  5311. #endif
  5312. #if EXTRUDERS > 2
  5313. || E2_ENABLE_READ == E_ENABLE_ON
  5314. #if EXTRUDERS > 3
  5315. || E3_ENABLE_READ == E_ENABLE_ON
  5316. #endif
  5317. #endif
  5318. #endif
  5319. ) {
  5320. lastMotor = ms; //... set time to NOW so the fan will turn on
  5321. }
  5322. uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  5323. // allows digital or PWM fan output to be used (see M42 handling)
  5324. digitalWrite(CONTROLLERFAN_PIN, speed);
  5325. analogWrite(CONTROLLERFAN_PIN, speed);
  5326. }
  5327. }
  5328. #endif // HAS_CONTROLLERFAN
  5329. #if ENABLED(SCARA)
  5330. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  5331. // Perform forward kinematics, and place results in delta[3]
  5332. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5333. float x_sin, x_cos, y_sin, y_cos;
  5334. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  5335. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  5336. x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5337. x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
  5338. y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5339. y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
  5340. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  5341. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  5342. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  5343. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  5344. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  5345. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  5346. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  5347. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  5348. }
  5349. void calculate_delta(float cartesian[3]){
  5350. //reverse kinematics.
  5351. // Perform reversed kinematics, and place results in delta[3]
  5352. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  5353. float SCARA_pos[2];
  5354. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  5355. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  5356. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  5357. #if (Linkage_1 == Linkage_2)
  5358. SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
  5359. #else
  5360. SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
  5361. #endif
  5362. SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
  5363. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  5364. SCARA_K2 = Linkage_2 * SCARA_S2;
  5365. SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
  5366. SCARA_psi = atan2(SCARA_S2,SCARA_C2);
  5367. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  5368. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  5369. delta[Z_AXIS] = cartesian[Z_AXIS];
  5370. /*
  5371. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  5372. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  5373. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  5374. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  5375. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  5376. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  5377. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  5378. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  5379. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  5380. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  5381. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  5382. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  5383. SERIAL_EOL;
  5384. */
  5385. }
  5386. #endif // SCARA
  5387. #if ENABLED(TEMP_STAT_LEDS)
  5388. static bool red_led = false;
  5389. static millis_t next_status_led_update_ms = 0;
  5390. void handle_status_leds(void) {
  5391. float max_temp = 0.0;
  5392. if (millis() > next_status_led_update_ms) {
  5393. next_status_led_update_ms += 500; // Update every 0.5s
  5394. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
  5395. max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
  5396. #if HAS_TEMP_BED
  5397. max_temp = max(max(max_temp, degTargetBed()), degBed());
  5398. #endif
  5399. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  5400. if (new_led != red_led) {
  5401. red_led = new_led;
  5402. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  5403. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  5404. }
  5405. }
  5406. }
  5407. #endif
  5408. void enable_all_steppers() {
  5409. enable_x();
  5410. enable_y();
  5411. enable_z();
  5412. enable_e0();
  5413. enable_e1();
  5414. enable_e2();
  5415. enable_e3();
  5416. }
  5417. void disable_all_steppers() {
  5418. disable_x();
  5419. disable_y();
  5420. disable_z();
  5421. disable_e0();
  5422. disable_e1();
  5423. disable_e2();
  5424. disable_e3();
  5425. }
  5426. /**
  5427. * Standard idle routine keeps the machine alive
  5428. */
  5429. void idle() {
  5430. manage_heater();
  5431. manage_inactivity();
  5432. lcd_update();
  5433. }
  5434. /**
  5435. * Manage several activities:
  5436. * - Check for Filament Runout
  5437. * - Keep the command buffer full
  5438. * - Check for maximum inactive time between commands
  5439. * - Check for maximum inactive time between stepper commands
  5440. * - Check if pin CHDK needs to go LOW
  5441. * - Check for KILL button held down
  5442. * - Check for HOME button held down
  5443. * - Check if cooling fan needs to be switched on
  5444. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  5445. */
  5446. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  5447. #if HAS_FILRUNOUT
  5448. if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  5449. filrunout();
  5450. #endif
  5451. if (commands_in_queue < BUFSIZE - 1) get_command();
  5452. millis_t ms = millis();
  5453. if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
  5454. if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
  5455. && !ignore_stepper_queue && !blocks_queued()) {
  5456. #if DISABLE_X == true
  5457. disable_x();
  5458. #endif
  5459. #if DISABLE_Y == true
  5460. disable_y();
  5461. #endif
  5462. #if DISABLE_Z == true
  5463. disable_z();
  5464. #endif
  5465. #if DISABLE_E == true
  5466. disable_e0();
  5467. disable_e1();
  5468. disable_e2();
  5469. disable_e3();
  5470. #endif
  5471. }
  5472. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  5473. if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
  5474. chdkActive = false;
  5475. WRITE(CHDK, LOW);
  5476. }
  5477. #endif
  5478. #if HAS_KILL
  5479. // Check if the kill button was pressed and wait just in case it was an accidental
  5480. // key kill key press
  5481. // -------------------------------------------------------------------------------
  5482. static int killCount = 0; // make the inactivity button a bit less responsive
  5483. const int KILL_DELAY = 750;
  5484. if (!READ(KILL_PIN))
  5485. killCount++;
  5486. else if (killCount > 0)
  5487. killCount--;
  5488. // Exceeded threshold and we can confirm that it was not accidental
  5489. // KILL the machine
  5490. // ----------------------------------------------------------------
  5491. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  5492. #endif
  5493. #if HAS_HOME
  5494. // Check to see if we have to home, use poor man's debouncer
  5495. // ---------------------------------------------------------
  5496. static int homeDebounceCount = 0; // poor man's debouncing count
  5497. const int HOME_DEBOUNCE_DELAY = 750;
  5498. if (!READ(HOME_PIN)) {
  5499. if (!homeDebounceCount) {
  5500. enqueuecommands_P(PSTR("G28"));
  5501. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  5502. }
  5503. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  5504. homeDebounceCount++;
  5505. else
  5506. homeDebounceCount = 0;
  5507. }
  5508. #endif
  5509. #if HAS_CONTROLLERFAN
  5510. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  5511. #endif
  5512. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  5513. if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
  5514. if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  5515. bool oldstatus;
  5516. switch(active_extruder) {
  5517. case 0:
  5518. oldstatus = E0_ENABLE_READ;
  5519. enable_e0();
  5520. break;
  5521. #if EXTRUDERS > 1
  5522. case 1:
  5523. oldstatus = E1_ENABLE_READ;
  5524. enable_e1();
  5525. break;
  5526. #if EXTRUDERS > 2
  5527. case 2:
  5528. oldstatus = E2_ENABLE_READ;
  5529. enable_e2();
  5530. break;
  5531. #if EXTRUDERS > 3
  5532. case 3:
  5533. oldstatus = E3_ENABLE_READ;
  5534. enable_e3();
  5535. break;
  5536. #endif
  5537. #endif
  5538. #endif
  5539. }
  5540. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  5541. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  5542. destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
  5543. EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
  5544. current_position[E_AXIS] = oldepos;
  5545. destination[E_AXIS] = oldedes;
  5546. plan_set_e_position(oldepos);
  5547. previous_cmd_ms = ms; // refresh_cmd_timeout()
  5548. st_synchronize();
  5549. switch(active_extruder) {
  5550. case 0:
  5551. E0_ENABLE_WRITE(oldstatus);
  5552. break;
  5553. #if EXTRUDERS > 1
  5554. case 1:
  5555. E1_ENABLE_WRITE(oldstatus);
  5556. break;
  5557. #if EXTRUDERS > 2
  5558. case 2:
  5559. E2_ENABLE_WRITE(oldstatus);
  5560. break;
  5561. #if EXTRUDERS > 3
  5562. case 3:
  5563. E3_ENABLE_WRITE(oldstatus);
  5564. break;
  5565. #endif
  5566. #endif
  5567. #endif
  5568. }
  5569. }
  5570. #endif
  5571. #if ENABLED(DUAL_X_CARRIAGE)
  5572. // handle delayed move timeout
  5573. if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
  5574. // travel moves have been received so enact them
  5575. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  5576. set_destination_to_current();
  5577. prepare_move();
  5578. }
  5579. #endif
  5580. #if ENABLED(TEMP_STAT_LEDS)
  5581. handle_status_leds();
  5582. #endif
  5583. check_axes_activity();
  5584. }
  5585. void kill(const char *lcd_msg) {
  5586. #if ENABLED(ULTRA_LCD)
  5587. lcd_setalertstatuspgm(lcd_msg);
  5588. #endif
  5589. cli(); // Stop interrupts
  5590. disable_all_heaters();
  5591. disable_all_steppers();
  5592. #if HAS_POWER_SWITCH
  5593. pinMode(PS_ON_PIN, INPUT);
  5594. #endif
  5595. SERIAL_ERROR_START;
  5596. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  5597. // FMC small patch to update the LCD before ending
  5598. sei(); // enable interrupts
  5599. for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
  5600. cli(); // disable interrupts
  5601. suicide();
  5602. while(1) { /* Intentionally left empty */ } // Wait for reset
  5603. }
  5604. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5605. void filrunout() {
  5606. if (!filrunoutEnqueued) {
  5607. filrunoutEnqueued = true;
  5608. enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  5609. st_synchronize();
  5610. }
  5611. }
  5612. #endif // FILAMENT_RUNOUT_SENSOR
  5613. #if ENABLED(FAST_PWM_FAN)
  5614. void setPwmFrequency(uint8_t pin, int val) {
  5615. val &= 0x07;
  5616. switch (digitalPinToTimer(pin)) {
  5617. #if defined(TCCR0A)
  5618. case TIMER0A:
  5619. case TIMER0B:
  5620. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  5621. // TCCR0B |= val;
  5622. break;
  5623. #endif
  5624. #if defined(TCCR1A)
  5625. case TIMER1A:
  5626. case TIMER1B:
  5627. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5628. // TCCR1B |= val;
  5629. break;
  5630. #endif
  5631. #if defined(TCCR2)
  5632. case TIMER2:
  5633. case TIMER2:
  5634. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  5635. TCCR2 |= val;
  5636. break;
  5637. #endif
  5638. #if defined(TCCR2A)
  5639. case TIMER2A:
  5640. case TIMER2B:
  5641. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  5642. TCCR2B |= val;
  5643. break;
  5644. #endif
  5645. #if defined(TCCR3A)
  5646. case TIMER3A:
  5647. case TIMER3B:
  5648. case TIMER3C:
  5649. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  5650. TCCR3B |= val;
  5651. break;
  5652. #endif
  5653. #if defined(TCCR4A)
  5654. case TIMER4A:
  5655. case TIMER4B:
  5656. case TIMER4C:
  5657. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  5658. TCCR4B |= val;
  5659. break;
  5660. #endif
  5661. #if defined(TCCR5A)
  5662. case TIMER5A:
  5663. case TIMER5B:
  5664. case TIMER5C:
  5665. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  5666. TCCR5B |= val;
  5667. break;
  5668. #endif
  5669. }
  5670. }
  5671. #endif // FAST_PWM_FAN
  5672. void Stop() {
  5673. disable_all_heaters();
  5674. if (IsRunning()) {
  5675. Running = false;
  5676. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  5677. SERIAL_ERROR_START;
  5678. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  5679. LCD_MESSAGEPGM(MSG_STOPPED);
  5680. }
  5681. }
  5682. /**
  5683. * Set target_extruder from the T parameter or the active_extruder
  5684. *
  5685. * Returns TRUE if the target is invalid
  5686. */
  5687. bool setTargetedHotend(int code) {
  5688. target_extruder = active_extruder;
  5689. if (code_seen('T')) {
  5690. target_extruder = code_value_short();
  5691. if (target_extruder >= EXTRUDERS) {
  5692. SERIAL_ECHO_START;
  5693. SERIAL_CHAR('M');
  5694. SERIAL_ECHO(code);
  5695. SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
  5696. SERIAL_ECHOLN(target_extruder);
  5697. return true;
  5698. }
  5699. }
  5700. return false;
  5701. }
  5702. float calculate_volumetric_multiplier(float diameter) {
  5703. if (!volumetric_enabled || diameter == 0) return 1.0;
  5704. float d2 = diameter * 0.5;
  5705. return 1.0 / (M_PI * d2 * d2);
  5706. }
  5707. void calculate_volumetric_multipliers() {
  5708. for (int i=0; i<EXTRUDERS; i++)
  5709. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  5710. }