My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 313KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361836283638364836583668367836883698370837183728373837483758376837783788379838083818382838383848385838683878388838983908391839283938394839583968397839883998400840184028403840484058406840784088409841084118412841384148415841684178418841984208421842284238424842584268427842884298430843184328433843484358436843784388439844084418442844384448445844684478448844984508451845284538454845584568457845884598460846184628463846484658466846784688469847084718472847384748475847684778478847984808481848284838484848584868487848884898490849184928493849484958496849784988499850085018502850385048505850685078508850985108511851285138514851585168517851885198520852185228523852485258526852785288529853085318532853385348535853685378538853985408541854285438544854585468547854885498550855185528553855485558556855785588559856085618562856385648565856685678568856985708571857285738574857585768577857885798580858185828583858485858586858785888589859085918592859385948595859685978598859986008601860286038604860586068607860886098610861186128613861486158616861786188619862086218622862386248625862686278628862986308631863286338634863586368637863886398640864186428643864486458646864786488649865086518652865386548655865686578658865986608661866286638664866586668667866886698670867186728673867486758676867786788679868086818682868386848685868686878688868986908691869286938694869586968697869886998700870187028703870487058706870787088709871087118712871387148715871687178718871987208721872287238724872587268727872887298730873187328733873487358736873787388739874087418742874387448745874687478748874987508751875287538754875587568757875887598760876187628763876487658766876787688769877087718772877387748775877687778778877987808781878287838784878587868787878887898790879187928793879487958796879787988799880088018802880388048805880688078808880988108811881288138814881588168817881888198820882188228823882488258826882788288829883088318832883388348835883688378838883988408841884288438844884588468847884888498850885188528853885488558856885788588859886088618862886388648865886688678868886988708871887288738874887588768877887888798880888188828883888488858886888788888889889088918892889388948895889688978898889989008901890289038904890589068907890889098910891189128913891489158916891789188919892089218922892389248925892689278928892989308931893289338934893589368937893889398940894189428943894489458946894789488949895089518952895389548955895689578958895989608961896289638964896589668967896889698970897189728973897489758976897789788979898089818982898389848985898689878988898989908991899289938994899589968997899889999000900190029003900490059006900790089009901090119012901390149015901690179018901990209021902290239024902590269027902890299030903190329033903490359036903790389039904090419042904390449045904690479048904990509051905290539054905590569057905890599060906190629063906490659066906790689069907090719072907390749075907690779078907990809081908290839084908590869087908890899090909190929093909490959096909790989099910091019102910391049105910691079108910991109111911291139114911591169117911891199120912191229123912491259126912791289129913091319132913391349135913691379138913991409141914291439144914591469147914891499150915191529153915491559156915791589159916091619162916391649165916691679168916991709171917291739174917591769177917891799180918191829183918491859186918791889189919091919192919391949195919691979198919992009201920292039204920592069207920892099210921192129213921492159216921792189219922092219222922392249225922692279228922992309231923292339234923592369237923892399240924192429243924492459246924792489249925092519252925392549255925692579258925992609261926292639264926592669267926892699270927192729273927492759276927792789279928092819282928392849285928692879288928992909291929292939294929592969297929892999300930193029303930493059306930793089309931093119312931393149315931693179318931993209321932293239324932593269327932893299330933193329333933493359336933793389339934093419342934393449345934693479348934993509351935293539354935593569357935893599360936193629363936493659366936793689369937093719372937393749375937693779378937993809381938293839384938593869387938893899390939193929393939493959396939793989399940094019402940394049405940694079408940994109411941294139414941594169417941894199420942194229423942494259426942794289429943094319432943394349435943694379438943994409441944294439444944594469447944894499450945194529453945494559456945794589459946094619462946394649465946694679468946994709471947294739474947594769477947894799480948194829483948494859486948794889489949094919492949394949495949694979498949995009501950295039504950595069507950895099510951195129513951495159516951795189519952095219522952395249525952695279528952995309531953295339534953595369537953895399540954195429543954495459546954795489549955095519552955395549555955695579558955995609561956295639564956595669567956895699570957195729573957495759576957795789579958095819582958395849585958695879588958995909591959295939594959595969597959895999600960196029603960496059606960796089609961096119612961396149615961696179618961996209621962296239624962596269627962896299630963196329633963496359636963796389639964096419642964396449645964696479648964996509651965296539654965596569657965896599660966196629663966496659666966796689669967096719672967396749675967696779678967996809681968296839684968596869687968896899690969196929693969496959696969796989699970097019702970397049705970697079708970997109711971297139714971597169717971897199720972197229723972497259726972797289729973097319732973397349735973697379738973997409741974297439744974597469747974897499750975197529753975497559756975797589759976097619762976397649765976697679768976997709771977297739774977597769777977897799780978197829783978497859786978797889789979097919792979397949795979697979798979998009801980298039804980598069807980898099810981198129813981498159816981798189819982098219822982398249825982698279828982998309831983298339834983598369837983898399840984198429843984498459846984798489849985098519852985398549855985698579858985998609861986298639864986598669867986898699870987198729873987498759876987798789879988098819882988398849885988698879888988998909891989298939894989598969897989898999900990199029903990499059906990799089909991099119912991399149915991699179918991999209921992299239924992599269927992899299930993199329933993499359936993799389939994099419942994399449945994699479948994999509951995299539954995599569957995899599960996199629963996499659966996799689969997099719972997399749975997699779978997999809981998299839984998599869987998899899990999199929993999499959996999799989999100001000110002100031000410005100061000710008100091001010011100121001310014100151001610017100181001910020100211002210023100241002510026100271002810029100301003110032100331003410035100361003710038100391004010041100421004310044100451004610047100481004910050100511005210053100541005510056100571005810059100601006110062100631006410065100661006710068100691007010071
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * About Marlin
  24. *
  25. * This firmware is a mashup between Sprinter and grbl.
  26. * - https://github.com/kliment/Sprinter
  27. * - https://github.com/simen/grbl/tree
  28. *
  29. * It has preliminary support for Matthew Roberts advance algorithm
  30. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  31. */
  32. #include "Marlin.h"
  33. #include "ultralcd.h"
  34. #include "planner.h"
  35. #include "stepper.h"
  36. #include "endstops.h"
  37. #include "temperature.h"
  38. #include "cardreader.h"
  39. #include "configuration_store.h"
  40. #include "language.h"
  41. #include "pins_arduino.h"
  42. #include "math.h"
  43. #include "nozzle.h"
  44. #include "duration_t.h"
  45. #include "types.h"
  46. #if HAS_ABL
  47. #include "vector_3.h"
  48. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  49. #include "qr_solve.h"
  50. #endif
  51. #elif ENABLED(MESH_BED_LEVELING)
  52. #include "mesh_bed_leveling.h"
  53. #endif
  54. #if ENABLED(BEZIER_CURVE_SUPPORT)
  55. #include "planner_bezier.h"
  56. #endif
  57. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  58. #include "buzzer.h"
  59. #endif
  60. #if ENABLED(USE_WATCHDOG)
  61. #include "watchdog.h"
  62. #endif
  63. #if ENABLED(BLINKM)
  64. #include "blinkm.h"
  65. #include "Wire.h"
  66. #endif
  67. #if HAS_SERVOS
  68. #include "servo.h"
  69. #endif
  70. #if HAS_DIGIPOTSS
  71. #include <SPI.h>
  72. #endif
  73. #if ENABLED(DAC_STEPPER_CURRENT)
  74. #include "stepper_dac.h"
  75. #endif
  76. #if ENABLED(EXPERIMENTAL_I2CBUS)
  77. #include "twibus.h"
  78. #endif
  79. /**
  80. * Look here for descriptions of G-codes:
  81. * - http://linuxcnc.org/handbook/gcode/g-code.html
  82. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  83. *
  84. * Help us document these G-codes online:
  85. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  86. * - http://reprap.org/wiki/G-code
  87. *
  88. * -----------------
  89. * Implemented Codes
  90. * -----------------
  91. *
  92. * "G" Codes
  93. *
  94. * G0 -> G1
  95. * G1 - Coordinated Movement X Y Z E
  96. * G2 - CW ARC
  97. * G3 - CCW ARC
  98. * G4 - Dwell S<seconds> or P<milliseconds>
  99. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  100. * G10 - Retract filament according to settings of M207
  101. * G11 - Retract recover filament according to settings of M208
  102. * G12 - Clean tool
  103. * G20 - Set input units to inches
  104. * G21 - Set input units to millimeters
  105. * G28 - Home one or more axes
  106. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  107. * G30 - Single Z probe, probes bed at X Y location (defaults to current XY location)
  108. * G31 - Dock sled (Z_PROBE_SLED only)
  109. * G32 - Undock sled (Z_PROBE_SLED only)
  110. * G38 - Probe target - similar to G28 except it uses the Z_MIN endstop for all three axes
  111. * G90 - Use Absolute Coordinates
  112. * G91 - Use Relative Coordinates
  113. * G92 - Set current position to coordinates given
  114. *
  115. * "M" Codes
  116. *
  117. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  118. * M1 - Same as M0
  119. * M17 - Enable/Power all stepper motors
  120. * M18 - Disable all stepper motors; same as M84
  121. * M20 - List SD card. (Requires SDSUPPORT)
  122. * M21 - Init SD card. (Requires SDSUPPORT)
  123. * M22 - Release SD card. (Requires SDSUPPORT)
  124. * M23 - Select SD file: "M23 /path/file.gco". (Requires SDSUPPORT)
  125. * M24 - Start/resume SD print. (Requires SDSUPPORT)
  126. * M25 - Pause SD print. (Requires SDSUPPORT)
  127. * M26 - Set SD position in bytes: "M26 S12345". (Requires SDSUPPORT)
  128. * M27 - Report SD print status. (Requires SDSUPPORT)
  129. * M28 - Start SD write: "M28 /path/file.gco". (Requires SDSUPPORT)
  130. * M29 - Stop SD write. (Requires SDSUPPORT)
  131. * M30 - Delete file from SD: "M30 /path/file.gco"
  132. * M31 - Report time since last M109 or SD card start to serial.
  133. * M32 - Select file and start SD print: "M32 [S<bytepos>] !/path/file.gco#". (Requires SDSUPPORT)
  134. * Use P to run other files as sub-programs: "M32 P !filename#"
  135. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  136. * M33 - Get the longname version of a path. (Requires LONG_FILENAME_HOST_SUPPORT)
  137. * M42 - Change pin status via gcode: M42 P<pin> S<value>. LED pin assumed if P is omitted.
  138. * M43 - Monitor pins & report changes - report active pins
  139. * M48 - Measure Z Probe repeatability: M48 P<points> X<pos> Y<pos> V<level> E<engage> L<legs>. (Requires Z_MIN_PROBE_REPEATABILITY_TEST)
  140. * M75 - Start the print job timer.
  141. * M76 - Pause the print job timer.
  142. * M77 - Stop the print job timer.
  143. * M78 - Show statistical information about the print jobs. (Requires PRINTCOUNTER)
  144. * M80 - Turn on Power Supply. (Requires POWER_SUPPLY)
  145. * M81 - Turn off Power Supply. (Requires POWER_SUPPLY)
  146. * M82 - Set E codes absolute (default).
  147. * M83 - Set E codes relative while in Absolute (G90) mode.
  148. * M84 - Disable steppers until next move, or use S<seconds> to specify an idle
  149. * duration after which steppers should turn off. S0 disables the timeout.
  150. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  151. * M92 - Set planner.axis_steps_per_mm for one or more axes.
  152. * M104 - Set extruder target temp.
  153. * M105 - Report current temperatures.
  154. * M106 - Fan on.
  155. * M107 - Fan off.
  156. * M108 - Break out of heating loops (M109, M190, M303). With no controller, breaks out of M0/M1. (Requires EMERGENCY_PARSER)
  157. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  158. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  159. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  160. * M110 - Set the current line number. (Used by host printing)
  161. * M111 - Set debug flags: "M111 S<flagbits>". See flag bits defined in enum.h.
  162. * M112 - Emergency stop.
  163. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages. (Requires HOST_KEEPALIVE_FEATURE)
  164. * M114 - Report current position.
  165. * M115 - Report capabilities. (Extended capabilities requires EXTENDED_CAPABILITIES_REPORT)
  166. * M117 - Display a message on the controller screen. (Requires an LCD)
  167. * M119 - Report endstops status.
  168. * M120 - Enable endstops detection.
  169. * M121 - Disable endstops detection.
  170. * M126 - Solenoid Air Valve Open. (Requires BARICUDA)
  171. * M127 - Solenoid Air Valve Closed. (Requires BARICUDA)
  172. * M128 - EtoP Open. (Requires BARICUDA)
  173. * M129 - EtoP Closed. (Requires BARICUDA)
  174. * M140 - Set bed target temp. S<temp>
  175. * M145 - Set heatup values for materials on the LCD. H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  176. * M149 - Set temperature units. (Requires TEMPERATURE_UNITS_SUPPORT)
  177. * M150 - Set BlinkM Color R<red> U<green> B<blue>. Values 0-255. (Requires BLINKM)
  178. * M155 - Auto-report temperatures with interval of S<seconds>. (Requires AUTO_REPORT_TEMPERATURES)
  179. * M163 - Set a single proportion for a mixing extruder. (Requires MIXING_EXTRUDER)
  180. * M164 - Save the mix as a virtual extruder. (Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS)
  181. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. (Requires MIXING_EXTRUDER)
  182. * M190 - Sxxx Wait for bed current temp to reach target temp. ** Waits only when heating! **
  183. * Rxxx Wait for bed current temp to reach target temp. ** Waits for heating or cooling. **
  184. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  185. * M201 - Set max acceleration in units/s^2 for print moves: "M201 X<accel> Y<accel> Z<accel> E<accel>"
  186. * M202 - Set max acceleration in units/s^2 for travel moves: "M202 X<accel> Y<accel> Z<accel> E<accel>" ** UNUSED IN MARLIN! **
  187. * M203 - Set maximum feedrate: "M203 X<fr> Y<fr> Z<fr> E<fr>" in units/sec.
  188. * M204 - Set default acceleration in units/sec^2: P<printing> R<extruder_only> T<travel>
  189. * M205 - Set advanced settings. Current units apply:
  190. S<print> T<travel> minimum speeds
  191. B<minimum segment time>
  192. X<max X jerk>, Y<max Y jerk>, Z<max Z jerk>, E<max E jerk>
  193. * M206 - Set additional homing offset.
  194. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>. (Requires FWRETRACT)
  195. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>. (Requires FWRETRACT)
  196. * M209 - Turn Automatic Retract Detection on/off: S<0|1> (For slicers that don't support G10/11). (Requires FWRETRACT)
  197. Every normal extrude-only move will be classified as retract depending on the direction.
  198. * M211 - Enable, Disable, and/or Report software endstops: S<0|1>
  199. * M218 - Set a tool offset: "M218 T<index> X<offset> Y<offset>". (Requires 2 or more extruders)
  200. * M220 - Set Feedrate Percentage: "M220 S<percent>" (i.e., "FR" on the LCD)
  201. * M221 - Set Flow Percentage: "M221 S<percent>"
  202. * M226 - Wait until a pin is in a given state: "M226 P<pin> S<state>"
  203. * M240 - Trigger a camera to take a photograph. (Requires CHDK or PHOTOGRAPH_PIN)
  204. * M250 - Set LCD contrast: "M250 C<contrast>" (0-63). (Requires LCD support)
  205. * M260 - i2c Send Data (Requires EXPERIMENTAL_I2CBUS)
  206. * M261 - i2c Request Data (Requires EXPERIMENTAL_I2CBUS)
  207. * M280 - Set servo position absolute: "M280 P<index> S<angle|µs>". (Requires servos)
  208. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  209. * M301 - Set PID parameters P I and D. (Requires PIDTEMP)
  210. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. (Requires PREVENT_COLD_EXTRUSION)
  211. * M303 - PID relay autotune S<temperature> sets the target temperature. Default 150C. (Requires PIDTEMP)
  212. * M304 - Set bed PID parameters P I and D. (Requires PIDTEMPBED)
  213. * M355 - Turn the Case Light on/off and set its brightness. (Requires CASE_LIGHT_PIN)
  214. * M380 - Activate solenoid on active extruder. (Requires EXT_SOLENOID)
  215. * M381 - Disable all solenoids. (Requires EXT_SOLENOID)
  216. * M400 - Finish all moves.
  217. * M401 - Lower Z probe. (Requires a probe)
  218. * M402 - Raise Z probe. (Requires a probe)
  219. * M404 - Display or set the Nominal Filament Width: "W<diameter>". (Requires FILAMENT_WIDTH_SENSOR)
  220. * M405 - Enable Filament Sensor flow control. "M405 D<delay_cm>". (Requires FILAMENT_WIDTH_SENSOR)
  221. * M406 - Disable Filament Sensor flow control. (Requires FILAMENT_WIDTH_SENSOR)
  222. * M407 - Display measured filament diameter in millimeters. (Requires FILAMENT_WIDTH_SENSOR)
  223. * M410 - Quickstop. Abort all planned moves.
  224. * M420 - Enable/Disable Leveling (with current values) S1=enable S0=disable (Requires MESH_BED_LEVELING or ABL)
  225. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units> (Requires MESH_BED_LEVELING)
  226. * M428 - Set the home_offset based on the current_position. Nearest edge applies.
  227. * M500 - Store parameters in EEPROM. (Requires EEPROM_SETTINGS)
  228. * M501 - Restore parameters from EEPROM. (Requires EEPROM_SETTINGS)
  229. * M502 - Revert to the default "factory settings". ** Does not write them to EEPROM! **
  230. * M503 - Print the current settings (in memory): "M503 S<verbose>". S0 specifies compact output.
  231. * M540 - Enable/disable SD card abort on endstop hit: "M540 S<state>". (Requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  232. * M600 - Pause for filament change: "M600 X<pos> Y<pos> Z<raise> E<first_retract> L<later_retract>". (Requires FILAMENT_CHANGE_FEATURE)
  233. * M665 - Set delta configurations: "M665 L<diagonal rod> R<delta radius> S<segments/s>" (Requires DELTA)
  234. * M666 - Set delta endstop adjustment. (Requires DELTA)
  235. * M605 - Set dual x-carriage movement mode: "M605 S<mode> [X<x_offset>] [R<temp_offset>]". (Requires DUAL_X_CARRIAGE)
  236. * M851 - Set Z probe's Z offset in current units. (Negative = below the nozzle.)
  237. * M907 - Set digital trimpot motor current using axis codes. (Requires a board with digital trimpots)
  238. * M908 - Control digital trimpot directly. (Requires DAC_STEPPER_CURRENT or DIGIPOTSS_PIN)
  239. * M909 - Print digipot/DAC current value. (Requires DAC_STEPPER_CURRENT)
  240. * M910 - Commit digipot/DAC value to external EEPROM via I2C. (Requires DAC_STEPPER_CURRENT)
  241. * M350 - Set microstepping mode. (Requires digital microstepping pins.)
  242. * M351 - Toggle MS1 MS2 pins directly. (Requires digital microstepping pins.)
  243. *
  244. * ************ SCARA Specific - This can change to suit future G-code regulations
  245. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  246. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  247. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  248. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  249. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  250. * ************* SCARA End ***************
  251. *
  252. * ************ Custom codes - This can change to suit future G-code regulations
  253. * M100 - Watch Free Memory (For Debugging). (Requires M100_FREE_MEMORY_WATCHER)
  254. * M928 - Start SD logging: "M928 filename.gco". Stop with M29. (Requires SDSUPPORT)
  255. * M999 - Restart after being stopped by error
  256. *
  257. * "T" Codes
  258. *
  259. * T0-T3 - Select an extruder (tool) by index: "T<n> F<units/min>"
  260. *
  261. */
  262. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  263. void gcode_M100();
  264. #endif
  265. #if ENABLED(SDSUPPORT)
  266. CardReader card;
  267. #endif
  268. #if ENABLED(EXPERIMENTAL_I2CBUS)
  269. TWIBus i2c;
  270. #endif
  271. #if ENABLED(G38_PROBE_TARGET)
  272. bool G38_move = false,
  273. G38_endstop_hit = false;
  274. #endif
  275. bool Running = true;
  276. uint8_t marlin_debug_flags = DEBUG_NONE;
  277. /**
  278. * Cartesian Current Position
  279. * Used to track the logical position as moves are queued.
  280. * Used by 'line_to_current_position' to do a move after changing it.
  281. * Used by 'SYNC_PLAN_POSITION_KINEMATIC' to update 'planner.position'.
  282. */
  283. float current_position[XYZE] = { 0.0 };
  284. /**
  285. * Cartesian Destination
  286. * A temporary position, usually applied to 'current_position'.
  287. * Set with 'gcode_get_destination' or 'set_destination_to_current'.
  288. * 'line_to_destination' sets 'current_position' to 'destination'.
  289. */
  290. static float destination[XYZE] = { 0.0 };
  291. /**
  292. * axis_homed
  293. * Flags that each linear axis was homed.
  294. * XYZ on cartesian, ABC on delta, ABZ on SCARA.
  295. *
  296. * axis_known_position
  297. * Flags that the position is known in each linear axis. Set when homed.
  298. * Cleared whenever a stepper powers off, potentially losing its position.
  299. */
  300. bool axis_homed[XYZ] = { false }, axis_known_position[XYZ] = { false };
  301. /**
  302. * GCode line number handling. Hosts may opt to include line numbers when
  303. * sending commands to Marlin, and lines will be checked for sequentiality.
  304. * M110 S<int> sets the current line number.
  305. */
  306. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  307. /**
  308. * GCode Command Queue
  309. * A simple ring buffer of BUFSIZE command strings.
  310. *
  311. * Commands are copied into this buffer by the command injectors
  312. * (immediate, serial, sd card) and they are processed sequentially by
  313. * the main loop. The process_next_command function parses the next
  314. * command and hands off execution to individual handler functions.
  315. */
  316. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  317. static uint8_t cmd_queue_index_r = 0, // Ring buffer read position
  318. cmd_queue_index_w = 0, // Ring buffer write position
  319. commands_in_queue = 0; // Count of commands in the queue
  320. /**
  321. * Current GCode Command
  322. * When a GCode handler is running, these will be set
  323. */
  324. static char *current_command, // The command currently being executed
  325. *current_command_args, // The address where arguments begin
  326. *seen_pointer; // Set by code_seen(), used by the code_value functions
  327. /**
  328. * Next Injected Command pointer. NULL if no commands are being injected.
  329. * Used by Marlin internally to ensure that commands initiated from within
  330. * are enqueued ahead of any pending serial or sd card commands.
  331. */
  332. static const char *injected_commands_P = NULL;
  333. #if ENABLED(INCH_MODE_SUPPORT)
  334. float linear_unit_factor = 1.0, volumetric_unit_factor = 1.0;
  335. #endif
  336. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  337. TempUnit input_temp_units = TEMPUNIT_C;
  338. #endif
  339. /**
  340. * Feed rates are often configured with mm/m
  341. * but the planner and stepper like mm/s units.
  342. */
  343. float constexpr homing_feedrate_mm_s[] = {
  344. #if ENABLED(DELTA)
  345. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  346. #else
  347. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  348. #endif
  349. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  350. };
  351. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  352. int feedrate_percentage = 100, saved_feedrate_percentage,
  353. flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  354. bool axis_relative_modes[] = AXIS_RELATIVE_MODES,
  355. volumetric_enabled = false;
  356. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA),
  357. volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  358. // The distance that XYZ has been offset by G92. Reset by G28.
  359. float position_shift[XYZ] = { 0 };
  360. // This offset is added to the configured home position.
  361. // Set by M206, M428, or menu item. Saved to EEPROM.
  362. float home_offset[XYZ] = { 0 };
  363. // Software Endstops are based on the configured limits.
  364. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  365. bool soft_endstops_enabled = true;
  366. #endif
  367. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  368. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  369. #if FAN_COUNT > 0
  370. int fanSpeeds[FAN_COUNT] = { 0 };
  371. #endif
  372. // The active extruder (tool). Set with T<extruder> command.
  373. uint8_t active_extruder = 0;
  374. // Relative Mode. Enable with G91, disable with G90.
  375. static bool relative_mode = false;
  376. // For M109 and M190, this flag may be cleared (by M108) to exit the wait loop
  377. volatile bool wait_for_heatup = true;
  378. // For M0/M1, this flag may be cleared (by M108) to exit the wait-for-user loop
  379. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  380. volatile bool wait_for_user = false;
  381. #endif
  382. const char errormagic[] PROGMEM = "Error:";
  383. const char echomagic[] PROGMEM = "echo:";
  384. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  385. // Number of characters read in the current line of serial input
  386. static int serial_count = 0;
  387. // Inactivity shutdown
  388. millis_t previous_cmd_ms = 0;
  389. static millis_t max_inactive_time = 0;
  390. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  391. // Print Job Timer
  392. #if ENABLED(PRINTCOUNTER)
  393. PrintCounter print_job_timer = PrintCounter();
  394. #else
  395. Stopwatch print_job_timer = Stopwatch();
  396. #endif
  397. // Buzzer - I2C on the LCD or a BEEPER_PIN
  398. #if ENABLED(LCD_USE_I2C_BUZZER)
  399. #define BUZZ(d,f) lcd_buzz(d, f)
  400. #elif PIN_EXISTS(BEEPER)
  401. Buzzer buzzer;
  402. #define BUZZ(d,f) buzzer.tone(d, f)
  403. #else
  404. #define BUZZ(d,f) NOOP
  405. #endif
  406. static uint8_t target_extruder;
  407. #if HAS_BED_PROBE
  408. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  409. #endif
  410. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  411. #if HAS_ABL
  412. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  413. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  414. #elif defined(XY_PROBE_SPEED)
  415. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  416. #else
  417. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  418. #endif
  419. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  420. #if ENABLED(DELTA)
  421. #define ADJUST_DELTA(V) \
  422. if (planner.abl_enabled) { \
  423. const float zadj = bilinear_z_offset(V); \
  424. delta[A_AXIS] += zadj; \
  425. delta[B_AXIS] += zadj; \
  426. delta[C_AXIS] += zadj; \
  427. }
  428. #else
  429. #define ADJUST_DELTA(V) if (planner.abl_enabled) { delta[Z_AXIS] += bilinear_z_offset(V); }
  430. #endif
  431. #elif IS_KINEMATIC
  432. #define ADJUST_DELTA(V) NOOP
  433. #endif
  434. #if ENABLED(Z_DUAL_ENDSTOPS)
  435. float z_endstop_adj = 0;
  436. #endif
  437. // Extruder offsets
  438. #if HOTENDS > 1
  439. float hotend_offset[XYZ][HOTENDS];
  440. #endif
  441. #if HAS_Z_SERVO_ENDSTOP
  442. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  443. #endif
  444. #if ENABLED(BARICUDA)
  445. int baricuda_valve_pressure = 0;
  446. int baricuda_e_to_p_pressure = 0;
  447. #endif
  448. #if ENABLED(FWRETRACT)
  449. bool autoretract_enabled = false;
  450. bool retracted[EXTRUDERS] = { false };
  451. bool retracted_swap[EXTRUDERS] = { false };
  452. float retract_length = RETRACT_LENGTH;
  453. float retract_length_swap = RETRACT_LENGTH_SWAP;
  454. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  455. float retract_zlift = RETRACT_ZLIFT;
  456. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  457. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  458. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  459. #endif // FWRETRACT
  460. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  461. bool powersupply =
  462. #if ENABLED(PS_DEFAULT_OFF)
  463. false
  464. #else
  465. true
  466. #endif
  467. ;
  468. #endif
  469. #if ENABLED(DELTA)
  470. #define SIN_60 0.8660254037844386
  471. #define COS_60 0.5
  472. float delta[ABC],
  473. endstop_adj[ABC] = { 0 };
  474. // these are the default values, can be overriden with M665
  475. float delta_radius = DELTA_RADIUS,
  476. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  477. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  478. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  479. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  480. delta_tower3_x = 0, // back middle tower
  481. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  482. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  483. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  484. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  485. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  486. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  487. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  488. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  489. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  490. delta_clip_start_height = Z_MAX_POS;
  491. float delta_safe_distance_from_top();
  492. #else
  493. static bool home_all_axis = true;
  494. #endif
  495. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  496. int bilinear_grid_spacing[2] = { 0 }, bilinear_start[2] = { 0 };
  497. float bed_level_grid[ABL_GRID_POINTS_X][ABL_GRID_POINTS_Y];
  498. #endif
  499. #if IS_SCARA
  500. // Float constants for SCARA calculations
  501. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  502. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  503. L2_2 = sq(float(L2));
  504. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  505. delta[ABC];
  506. #endif
  507. float cartes[XYZ] = { 0 };
  508. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  509. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  510. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  511. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  512. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  513. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  514. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  515. #endif
  516. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  517. static bool filament_ran_out = false;
  518. #endif
  519. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  520. FilamentChangeMenuResponse filament_change_menu_response;
  521. #endif
  522. #if ENABLED(MIXING_EXTRUDER)
  523. float mixing_factor[MIXING_STEPPERS]; // Reciprocal of mix proportion. 0.0 = off, otherwise >= 1.0.
  524. #if MIXING_VIRTUAL_TOOLS > 1
  525. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  526. #endif
  527. #endif
  528. static bool send_ok[BUFSIZE];
  529. #if HAS_SERVOS
  530. Servo servo[NUM_SERVOS];
  531. #define MOVE_SERVO(I, P) servo[I].move(P)
  532. #if HAS_Z_SERVO_ENDSTOP
  533. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  534. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  535. #endif
  536. #endif
  537. #ifdef CHDK
  538. millis_t chdkHigh = 0;
  539. boolean chdkActive = false;
  540. #endif
  541. #if ENABLED(PID_EXTRUSION_SCALING)
  542. int lpq_len = 20;
  543. #endif
  544. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  545. static MarlinBusyState busy_state = NOT_BUSY;
  546. static millis_t next_busy_signal_ms = 0;
  547. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  548. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  549. #else
  550. #define host_keepalive() ;
  551. #define KEEPALIVE_STATE(n) ;
  552. #endif // HOST_KEEPALIVE_FEATURE
  553. #define DEFINE_PGM_READ_ANY(type, reader) \
  554. static inline type pgm_read_any(const type *p) \
  555. { return pgm_read_##reader##_near(p); }
  556. DEFINE_PGM_READ_ANY(float, float)
  557. DEFINE_PGM_READ_ANY(signed char, byte)
  558. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  559. static const PROGMEM type array##_P[XYZ] = \
  560. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  561. static inline type array(int axis) \
  562. { return pgm_read_any(&array##_P[axis]); }
  563. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS)
  564. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS)
  565. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS)
  566. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH)
  567. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM)
  568. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR)
  569. /**
  570. * ***************************************************************************
  571. * ******************************** FUNCTIONS ********************************
  572. * ***************************************************************************
  573. */
  574. void stop();
  575. void get_available_commands();
  576. void process_next_command();
  577. void prepare_move_to_destination();
  578. void get_cartesian_from_steppers();
  579. void set_current_from_steppers_for_axis(const AxisEnum axis);
  580. #if ENABLED(ARC_SUPPORT)
  581. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  582. #endif
  583. #if ENABLED(BEZIER_CURVE_SUPPORT)
  584. void plan_cubic_move(const float offset[4]);
  585. #endif
  586. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  587. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  588. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  589. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  590. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  591. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  592. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  593. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  594. static void report_current_position();
  595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  596. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  597. serialprintPGM(prefix);
  598. SERIAL_ECHOPAIR("(", x);
  599. SERIAL_ECHOPAIR(", ", y);
  600. SERIAL_ECHOPAIR(", ", z);
  601. SERIAL_ECHOPGM(")");
  602. if (suffix) serialprintPGM(suffix);
  603. else SERIAL_EOL;
  604. }
  605. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  606. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  607. }
  608. #if HAS_ABL
  609. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  610. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  611. }
  612. #endif
  613. #define DEBUG_POS(SUFFIX,VAR) do { \
  614. print_xyz(PSTR(" " STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  615. #endif
  616. /**
  617. * sync_plan_position
  618. *
  619. * Set the planner/stepper positions directly from current_position with
  620. * no kinematic translation. Used for homing axes and cartesian/core syncing.
  621. */
  622. inline void sync_plan_position() {
  623. #if ENABLED(DEBUG_LEVELING_FEATURE)
  624. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  625. #endif
  626. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  627. }
  628. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  629. #if IS_KINEMATIC
  630. inline void sync_plan_position_kinematic() {
  631. #if ENABLED(DEBUG_LEVELING_FEATURE)
  632. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  633. #endif
  634. planner.set_position_mm_kinematic(current_position);
  635. }
  636. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  637. #else
  638. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  639. #endif
  640. #if ENABLED(SDSUPPORT)
  641. #include "SdFatUtil.h"
  642. int freeMemory() { return SdFatUtil::FreeRam(); }
  643. #else
  644. extern "C" {
  645. extern unsigned int __bss_end;
  646. extern unsigned int __heap_start;
  647. extern void* __brkval;
  648. int freeMemory() {
  649. int free_memory;
  650. if ((int)__brkval == 0)
  651. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  652. else
  653. free_memory = ((int)&free_memory) - ((int)__brkval);
  654. return free_memory;
  655. }
  656. }
  657. #endif //!SDSUPPORT
  658. #if ENABLED(DIGIPOT_I2C)
  659. extern void digipot_i2c_set_current(int channel, float current);
  660. extern void digipot_i2c_init();
  661. #endif
  662. /**
  663. * Inject the next "immediate" command, when possible.
  664. * Return true if any immediate commands remain to inject.
  665. */
  666. static bool drain_injected_commands_P() {
  667. if (injected_commands_P != NULL) {
  668. size_t i = 0;
  669. char c, cmd[30];
  670. strncpy_P(cmd, injected_commands_P, sizeof(cmd) - 1);
  671. cmd[sizeof(cmd) - 1] = '\0';
  672. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  673. cmd[i] = '\0';
  674. if (enqueue_and_echo_command(cmd)) { // success?
  675. if (c) // newline char?
  676. injected_commands_P += i + 1; // advance to the next command
  677. else
  678. injected_commands_P = NULL; // nul char? no more commands
  679. }
  680. }
  681. return (injected_commands_P != NULL); // return whether any more remain
  682. }
  683. /**
  684. * Record one or many commands to run from program memory.
  685. * Aborts the current queue, if any.
  686. * Note: drain_injected_commands_P() must be called repeatedly to drain the commands afterwards
  687. */
  688. void enqueue_and_echo_commands_P(const char* pgcode) {
  689. injected_commands_P = pgcode;
  690. drain_injected_commands_P(); // first command executed asap (when possible)
  691. }
  692. void clear_command_queue() {
  693. cmd_queue_index_r = cmd_queue_index_w;
  694. commands_in_queue = 0;
  695. }
  696. /**
  697. * Once a new command is in the ring buffer, call this to commit it
  698. */
  699. inline void _commit_command(bool say_ok) {
  700. send_ok[cmd_queue_index_w] = say_ok;
  701. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  702. commands_in_queue++;
  703. }
  704. /**
  705. * Copy a command directly into the main command buffer, from RAM.
  706. * Returns true if successfully adds the command
  707. */
  708. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  709. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  710. strcpy(command_queue[cmd_queue_index_w], cmd);
  711. _commit_command(say_ok);
  712. return true;
  713. }
  714. void enqueue_and_echo_command_now(const char* cmd) {
  715. while (!enqueue_and_echo_command(cmd)) idle();
  716. }
  717. /**
  718. * Enqueue with Serial Echo
  719. */
  720. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  721. if (_enqueuecommand(cmd, say_ok)) {
  722. SERIAL_ECHO_START;
  723. SERIAL_ECHOPAIR(MSG_Enqueueing, cmd);
  724. SERIAL_CHAR('"');
  725. SERIAL_EOL;
  726. return true;
  727. }
  728. return false;
  729. }
  730. void setup_killpin() {
  731. #if HAS_KILL
  732. SET_INPUT(KILL_PIN);
  733. WRITE(KILL_PIN, HIGH);
  734. #endif
  735. }
  736. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  737. void setup_filrunoutpin() {
  738. SET_INPUT(FIL_RUNOUT_PIN);
  739. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  740. WRITE(FIL_RUNOUT_PIN, HIGH);
  741. #endif
  742. }
  743. #endif
  744. // Set home pin
  745. void setup_homepin(void) {
  746. #if HAS_HOME
  747. SET_INPUT(HOME_PIN);
  748. WRITE(HOME_PIN, HIGH);
  749. #endif
  750. }
  751. #if HAS_CASE_LIGHT
  752. void setup_case_light() {
  753. digitalWrite(CASE_LIGHT_PIN,
  754. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  755. 255
  756. #else
  757. 0
  758. #endif
  759. );
  760. analogWrite(CASE_LIGHT_PIN,
  761. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  762. 255
  763. #else
  764. 0
  765. #endif
  766. );
  767. }
  768. #endif
  769. void setup_powerhold() {
  770. #if HAS_SUICIDE
  771. OUT_WRITE(SUICIDE_PIN, HIGH);
  772. #endif
  773. #if HAS_POWER_SWITCH
  774. #if ENABLED(PS_DEFAULT_OFF)
  775. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  776. #else
  777. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  778. #endif
  779. #endif
  780. }
  781. void suicide() {
  782. #if HAS_SUICIDE
  783. OUT_WRITE(SUICIDE_PIN, LOW);
  784. #endif
  785. }
  786. void servo_init() {
  787. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  788. servo[0].attach(SERVO0_PIN);
  789. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  790. #endif
  791. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  792. servo[1].attach(SERVO1_PIN);
  793. servo[1].detach();
  794. #endif
  795. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  796. servo[2].attach(SERVO2_PIN);
  797. servo[2].detach();
  798. #endif
  799. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  800. servo[3].attach(SERVO3_PIN);
  801. servo[3].detach();
  802. #endif
  803. #if HAS_Z_SERVO_ENDSTOP
  804. /**
  805. * Set position of Z Servo Endstop
  806. *
  807. * The servo might be deployed and positioned too low to stow
  808. * when starting up the machine or rebooting the board.
  809. * There's no way to know where the nozzle is positioned until
  810. * homing has been done - no homing with z-probe without init!
  811. *
  812. */
  813. STOW_Z_SERVO();
  814. #endif
  815. }
  816. /**
  817. * Stepper Reset (RigidBoard, et.al.)
  818. */
  819. #if HAS_STEPPER_RESET
  820. void disableStepperDrivers() {
  821. OUT_WRITE(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  822. }
  823. void enableStepperDrivers() { SET_INPUT(STEPPER_RESET_PIN); } // set to input, which allows it to be pulled high by pullups
  824. #endif
  825. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  826. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  827. i2c.receive(bytes);
  828. }
  829. void i2c_on_request() { // just send dummy data for now
  830. i2c.reply("Hello World!\n");
  831. }
  832. #endif
  833. void gcode_line_error(const char* err, bool doFlush = true) {
  834. SERIAL_ERROR_START;
  835. serialprintPGM(err);
  836. SERIAL_ERRORLN(gcode_LastN);
  837. //Serial.println(gcode_N);
  838. if (doFlush) FlushSerialRequestResend();
  839. serial_count = 0;
  840. }
  841. inline void get_serial_commands() {
  842. static char serial_line_buffer[MAX_CMD_SIZE];
  843. static boolean serial_comment_mode = false;
  844. // If the command buffer is empty for too long,
  845. // send "wait" to indicate Marlin is still waiting.
  846. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  847. static millis_t last_command_time = 0;
  848. millis_t ms = millis();
  849. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  850. SERIAL_ECHOLNPGM(MSG_WAIT);
  851. last_command_time = ms;
  852. }
  853. #endif
  854. /**
  855. * Loop while serial characters are incoming and the queue is not full
  856. */
  857. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  858. char serial_char = MYSERIAL.read();
  859. /**
  860. * If the character ends the line
  861. */
  862. if (serial_char == '\n' || serial_char == '\r') {
  863. serial_comment_mode = false; // end of line == end of comment
  864. if (!serial_count) continue; // skip empty lines
  865. serial_line_buffer[serial_count] = 0; // terminate string
  866. serial_count = 0; //reset buffer
  867. char* command = serial_line_buffer;
  868. while (*command == ' ') command++; // skip any leading spaces
  869. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  870. char* apos = strchr(command, '*');
  871. if (npos) {
  872. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  873. if (M110) {
  874. char* n2pos = strchr(command + 4, 'N');
  875. if (n2pos) npos = n2pos;
  876. }
  877. gcode_N = strtol(npos + 1, NULL, 10);
  878. if (gcode_N != gcode_LastN + 1 && !M110) {
  879. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  880. return;
  881. }
  882. if (apos) {
  883. byte checksum = 0, count = 0;
  884. while (command[count] != '*') checksum ^= command[count++];
  885. if (strtol(apos + 1, NULL, 10) != checksum) {
  886. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  887. return;
  888. }
  889. // if no errors, continue parsing
  890. }
  891. else {
  892. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  893. return;
  894. }
  895. gcode_LastN = gcode_N;
  896. // if no errors, continue parsing
  897. }
  898. else if (apos) { // No '*' without 'N'
  899. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  900. return;
  901. }
  902. // Movement commands alert when stopped
  903. if (IsStopped()) {
  904. char* gpos = strchr(command, 'G');
  905. if (gpos) {
  906. int codenum = strtol(gpos + 1, NULL, 10);
  907. switch (codenum) {
  908. case 0:
  909. case 1:
  910. case 2:
  911. case 3:
  912. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  913. LCD_MESSAGEPGM(MSG_STOPPED);
  914. break;
  915. }
  916. }
  917. }
  918. #if DISABLED(EMERGENCY_PARSER)
  919. // If command was e-stop process now
  920. if (strcmp(command, "M108") == 0) {
  921. wait_for_heatup = false;
  922. #if ENABLED(ULTIPANEL)
  923. wait_for_user = false;
  924. #endif
  925. }
  926. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  927. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  928. #endif
  929. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  930. last_command_time = ms;
  931. #endif
  932. // Add the command to the queue
  933. _enqueuecommand(serial_line_buffer, true);
  934. }
  935. else if (serial_count >= MAX_CMD_SIZE - 1) {
  936. // Keep fetching, but ignore normal characters beyond the max length
  937. // The command will be injected when EOL is reached
  938. }
  939. else if (serial_char == '\\') { // Handle escapes
  940. if (MYSERIAL.available() > 0) {
  941. // if we have one more character, copy it over
  942. serial_char = MYSERIAL.read();
  943. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  944. }
  945. // otherwise do nothing
  946. }
  947. else { // it's not a newline, carriage return or escape char
  948. if (serial_char == ';') serial_comment_mode = true;
  949. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  950. }
  951. } // queue has space, serial has data
  952. }
  953. #if ENABLED(SDSUPPORT)
  954. inline void get_sdcard_commands() {
  955. static bool stop_buffering = false,
  956. sd_comment_mode = false;
  957. if (!card.sdprinting) return;
  958. /**
  959. * '#' stops reading from SD to the buffer prematurely, so procedural
  960. * macro calls are possible. If it occurs, stop_buffering is triggered
  961. * and the buffer is run dry; this character _can_ occur in serial com
  962. * due to checksums, however, no checksums are used in SD printing.
  963. */
  964. if (commands_in_queue == 0) stop_buffering = false;
  965. uint16_t sd_count = 0;
  966. bool card_eof = card.eof();
  967. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  968. int16_t n = card.get();
  969. char sd_char = (char)n;
  970. card_eof = card.eof();
  971. if (card_eof || n == -1
  972. || sd_char == '\n' || sd_char == '\r'
  973. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  974. ) {
  975. if (card_eof) {
  976. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  977. card.printingHasFinished();
  978. card.checkautostart(true);
  979. }
  980. else if (n == -1) {
  981. SERIAL_ERROR_START;
  982. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  983. }
  984. if (sd_char == '#') stop_buffering = true;
  985. sd_comment_mode = false; //for new command
  986. if (!sd_count) continue; //skip empty lines
  987. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  988. sd_count = 0; //clear buffer
  989. _commit_command(false);
  990. }
  991. else if (sd_count >= MAX_CMD_SIZE - 1) {
  992. /**
  993. * Keep fetching, but ignore normal characters beyond the max length
  994. * The command will be injected when EOL is reached
  995. */
  996. }
  997. else {
  998. if (sd_char == ';') sd_comment_mode = true;
  999. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1000. }
  1001. }
  1002. }
  1003. #endif // SDSUPPORT
  1004. /**
  1005. * Add to the circular command queue the next command from:
  1006. * - The command-injection queue (injected_commands_P)
  1007. * - The active serial input (usually USB)
  1008. * - The SD card file being actively printed
  1009. */
  1010. void get_available_commands() {
  1011. // if any immediate commands remain, don't get other commands yet
  1012. if (drain_injected_commands_P()) return;
  1013. get_serial_commands();
  1014. #if ENABLED(SDSUPPORT)
  1015. get_sdcard_commands();
  1016. #endif
  1017. }
  1018. inline bool code_has_value() {
  1019. int i = 1;
  1020. char c = seen_pointer[i];
  1021. while (c == ' ') c = seen_pointer[++i];
  1022. if (c == '-' || c == '+') c = seen_pointer[++i];
  1023. if (c == '.') c = seen_pointer[++i];
  1024. return NUMERIC(c);
  1025. }
  1026. inline float code_value_float() {
  1027. float ret;
  1028. char* e = strchr(seen_pointer, 'E');
  1029. if (e) {
  1030. *e = 0;
  1031. ret = strtod(seen_pointer + 1, NULL);
  1032. *e = 'E';
  1033. }
  1034. else
  1035. ret = strtod(seen_pointer + 1, NULL);
  1036. return ret;
  1037. }
  1038. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1039. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1040. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1041. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1042. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1043. inline bool code_value_bool() { return !code_has_value() || code_value_byte() > 0; }
  1044. #if ENABLED(INCH_MODE_SUPPORT)
  1045. inline void set_input_linear_units(LinearUnit units) {
  1046. switch (units) {
  1047. case LINEARUNIT_INCH:
  1048. linear_unit_factor = 25.4;
  1049. break;
  1050. case LINEARUNIT_MM:
  1051. default:
  1052. linear_unit_factor = 1.0;
  1053. break;
  1054. }
  1055. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1056. }
  1057. inline float axis_unit_factor(int axis) {
  1058. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1059. }
  1060. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1061. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1062. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1063. #else
  1064. inline float code_value_linear_units() { return code_value_float(); }
  1065. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1066. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1067. #endif
  1068. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1069. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1070. float code_value_temp_abs() {
  1071. switch (input_temp_units) {
  1072. case TEMPUNIT_C:
  1073. return code_value_float();
  1074. case TEMPUNIT_F:
  1075. return (code_value_float() - 32) * 0.5555555556;
  1076. case TEMPUNIT_K:
  1077. return code_value_float() - 272.15;
  1078. default:
  1079. return code_value_float();
  1080. }
  1081. }
  1082. float code_value_temp_diff() {
  1083. switch (input_temp_units) {
  1084. case TEMPUNIT_C:
  1085. case TEMPUNIT_K:
  1086. return code_value_float();
  1087. case TEMPUNIT_F:
  1088. return code_value_float() * 0.5555555556;
  1089. default:
  1090. return code_value_float();
  1091. }
  1092. }
  1093. #else
  1094. float code_value_temp_abs() { return code_value_float(); }
  1095. float code_value_temp_diff() { return code_value_float(); }
  1096. #endif
  1097. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1098. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1099. bool code_seen(char code) {
  1100. seen_pointer = strchr(current_command_args, code);
  1101. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1102. }
  1103. /**
  1104. * Set target_extruder from the T parameter or the active_extruder
  1105. *
  1106. * Returns TRUE if the target is invalid
  1107. */
  1108. bool get_target_extruder_from_command(int code) {
  1109. if (code_seen('T')) {
  1110. if (code_value_byte() >= EXTRUDERS) {
  1111. SERIAL_ECHO_START;
  1112. SERIAL_CHAR('M');
  1113. SERIAL_ECHO(code);
  1114. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1115. return true;
  1116. }
  1117. target_extruder = code_value_byte();
  1118. }
  1119. else
  1120. target_extruder = active_extruder;
  1121. return false;
  1122. }
  1123. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1124. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1125. #endif
  1126. #if ENABLED(DUAL_X_CARRIAGE)
  1127. static DualXMode dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1128. static float x_home_pos(int extruder) {
  1129. if (extruder == 0)
  1130. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1131. else
  1132. /**
  1133. * In dual carriage mode the extruder offset provides an override of the
  1134. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1135. * This allow soft recalibration of the second extruder offset position
  1136. * without firmware reflash (through the M218 command).
  1137. */
  1138. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1139. }
  1140. static int x_home_dir(int extruder) {
  1141. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1142. }
  1143. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1144. static bool active_extruder_parked = false; // used in mode 1 & 2
  1145. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1146. static millis_t delayed_move_time = 0; // used in mode 1
  1147. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1148. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1149. #endif // DUAL_X_CARRIAGE
  1150. /**
  1151. * Software endstops can be used to monitor the open end of
  1152. * an axis that has a hardware endstop on the other end. Or
  1153. * they can prevent axes from moving past endstops and grinding.
  1154. *
  1155. * To keep doing their job as the coordinate system changes,
  1156. * the software endstop positions must be refreshed to remain
  1157. * at the same positions relative to the machine.
  1158. */
  1159. void update_software_endstops(AxisEnum axis) {
  1160. float offs = LOGICAL_POSITION(0, axis);
  1161. #if ENABLED(DUAL_X_CARRIAGE)
  1162. if (axis == X_AXIS) {
  1163. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1164. if (active_extruder != 0) {
  1165. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1166. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1167. return;
  1168. }
  1169. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1170. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1171. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1172. return;
  1173. }
  1174. }
  1175. else
  1176. #endif
  1177. {
  1178. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1179. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1180. }
  1181. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1182. if (DEBUGGING(LEVELING)) {
  1183. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1184. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1185. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1186. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1187. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1188. }
  1189. #endif
  1190. #if ENABLED(DELTA)
  1191. if (axis == Z_AXIS)
  1192. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1193. #endif
  1194. }
  1195. /**
  1196. * Change the home offset for an axis, update the current
  1197. * position and the software endstops to retain the same
  1198. * relative distance to the new home.
  1199. *
  1200. * Since this changes the current_position, code should
  1201. * call sync_plan_position soon after this.
  1202. */
  1203. static void set_home_offset(AxisEnum axis, float v) {
  1204. current_position[axis] += v - home_offset[axis];
  1205. home_offset[axis] = v;
  1206. update_software_endstops(axis);
  1207. }
  1208. /**
  1209. * Set an axis' current position to its home position (after homing).
  1210. *
  1211. * For Core and Cartesian robots this applies one-to-one when an
  1212. * individual axis has been homed.
  1213. *
  1214. * DELTA should wait until all homing is done before setting the XYZ
  1215. * current_position to home, because homing is a single operation.
  1216. * In the case where the axis positions are already known and previously
  1217. * homed, DELTA could home to X or Y individually by moving either one
  1218. * to the center. However, homing Z always homes XY and Z.
  1219. *
  1220. * SCARA should wait until all XY homing is done before setting the XY
  1221. * current_position to home, because neither X nor Y is at home until
  1222. * both are at home. Z can however be homed individually.
  1223. *
  1224. */
  1225. static void set_axis_is_at_home(AxisEnum axis) {
  1226. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1227. if (DEBUGGING(LEVELING)) {
  1228. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1229. SERIAL_CHAR(')');
  1230. SERIAL_EOL;
  1231. }
  1232. #endif
  1233. axis_known_position[axis] = axis_homed[axis] = true;
  1234. position_shift[axis] = 0;
  1235. update_software_endstops(axis);
  1236. #if ENABLED(DUAL_X_CARRIAGE)
  1237. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1238. if (active_extruder != 0)
  1239. current_position[X_AXIS] = x_home_pos(active_extruder);
  1240. else
  1241. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1242. update_software_endstops(X_AXIS);
  1243. return;
  1244. }
  1245. #endif
  1246. #if ENABLED(MORGAN_SCARA)
  1247. /**
  1248. * Morgan SCARA homes XY at the same time
  1249. */
  1250. if (axis == X_AXIS || axis == Y_AXIS) {
  1251. float homeposition[XYZ];
  1252. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos((AxisEnum)i), i);
  1253. // SERIAL_ECHOPAIR("homeposition X:", homeposition[X_AXIS]);
  1254. // SERIAL_ECHOLNPAIR(" Y:", homeposition[Y_AXIS]);
  1255. /**
  1256. * Get Home position SCARA arm angles using inverse kinematics,
  1257. * and calculate homing offset using forward kinematics
  1258. */
  1259. inverse_kinematics(homeposition);
  1260. forward_kinematics_SCARA(delta[A_AXIS], delta[B_AXIS]);
  1261. // SERIAL_ECHOPAIR("Cartesian X:", cartes[X_AXIS]);
  1262. // SERIAL_ECHOLNPAIR(" Y:", cartes[Y_AXIS]);
  1263. current_position[axis] = LOGICAL_POSITION(cartes[axis], axis);
  1264. /**
  1265. * SCARA home positions are based on configuration since the actual
  1266. * limits are determined by the inverse kinematic transform.
  1267. */
  1268. soft_endstop_min[axis] = base_min_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1269. soft_endstop_max[axis] = base_max_pos(axis); // + (cartes[axis] - base_home_pos(axis));
  1270. }
  1271. else
  1272. #endif
  1273. {
  1274. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1275. }
  1276. /**
  1277. * Z Probe Z Homing? Account for the probe's Z offset.
  1278. */
  1279. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1280. if (axis == Z_AXIS) {
  1281. #if HOMING_Z_WITH_PROBE
  1282. current_position[Z_AXIS] -= zprobe_zoffset;
  1283. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1284. if (DEBUGGING(LEVELING)) {
  1285. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1286. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1287. }
  1288. #endif
  1289. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1290. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1291. #endif
  1292. }
  1293. #endif
  1294. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1295. if (DEBUGGING(LEVELING)) {
  1296. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1297. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1298. DEBUG_POS("", current_position);
  1299. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1300. SERIAL_CHAR(')');
  1301. SERIAL_EOL;
  1302. }
  1303. #endif
  1304. }
  1305. /**
  1306. * Some planner shorthand inline functions
  1307. */
  1308. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1309. int constexpr homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1310. int hbd = homing_bump_divisor[axis];
  1311. if (hbd < 1) {
  1312. hbd = 10;
  1313. SERIAL_ECHO_START;
  1314. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1315. }
  1316. return homing_feedrate_mm_s[axis] / hbd;
  1317. }
  1318. //
  1319. // line_to_current_position
  1320. // Move the planner to the current position from wherever it last moved
  1321. // (or from wherever it has been told it is located).
  1322. //
  1323. inline void line_to_current_position() {
  1324. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1325. }
  1326. //
  1327. // line_to_destination
  1328. // Move the planner, not necessarily synced with current_position
  1329. //
  1330. inline void line_to_destination(float fr_mm_s) {
  1331. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1332. }
  1333. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1334. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1335. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1336. #if IS_KINEMATIC
  1337. /**
  1338. * Calculate delta, start a line, and set current_position to destination
  1339. */
  1340. void prepare_uninterpolated_move_to_destination(const float fr_mm_s=0.0) {
  1341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1342. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_uninterpolated_move_to_destination", destination);
  1343. #endif
  1344. if ( current_position[X_AXIS] == destination[X_AXIS]
  1345. && current_position[Y_AXIS] == destination[Y_AXIS]
  1346. && current_position[Z_AXIS] == destination[Z_AXIS]
  1347. && current_position[E_AXIS] == destination[E_AXIS]
  1348. ) return;
  1349. refresh_cmd_timeout();
  1350. planner.buffer_line_kinematic(destination, MMS_SCALED(fr_mm_s ? fr_mm_s : feedrate_mm_s), active_extruder);
  1351. set_current_to_destination();
  1352. }
  1353. #endif // IS_KINEMATIC
  1354. /**
  1355. * Plan a move to (X, Y, Z) and set the current_position
  1356. * The final current_position may not be the one that was requested
  1357. */
  1358. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1359. float old_feedrate_mm_s = feedrate_mm_s;
  1360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1361. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1362. #endif
  1363. #if ENABLED(DELTA)
  1364. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1365. set_destination_to_current(); // sync destination at the start
  1366. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1367. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1368. #endif
  1369. // when in the danger zone
  1370. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1371. if (z > delta_clip_start_height) { // staying in the danger zone
  1372. destination[X_AXIS] = x; // move directly (uninterpolated)
  1373. destination[Y_AXIS] = y;
  1374. destination[Z_AXIS] = z;
  1375. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1376. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1377. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1378. #endif
  1379. return;
  1380. }
  1381. else {
  1382. destination[Z_AXIS] = delta_clip_start_height;
  1383. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1384. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1385. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1386. #endif
  1387. }
  1388. }
  1389. if (z > current_position[Z_AXIS]) { // raising?
  1390. destination[Z_AXIS] = z;
  1391. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1392. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1393. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1394. #endif
  1395. }
  1396. destination[X_AXIS] = x;
  1397. destination[Y_AXIS] = y;
  1398. prepare_move_to_destination(); // set_current_to_destination
  1399. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1400. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1401. #endif
  1402. if (z < current_position[Z_AXIS]) { // lowering?
  1403. destination[Z_AXIS] = z;
  1404. prepare_uninterpolated_move_to_destination(); // set_current_to_destination
  1405. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1406. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1407. #endif
  1408. }
  1409. #elif IS_SCARA
  1410. set_destination_to_current();
  1411. // If Z needs to raise, do it before moving XY
  1412. if (destination[Z_AXIS] < z) {
  1413. destination[Z_AXIS] = z;
  1414. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1415. }
  1416. destination[X_AXIS] = x;
  1417. destination[Y_AXIS] = y;
  1418. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S);
  1419. // If Z needs to lower, do it after moving XY
  1420. if (destination[Z_AXIS] > z) {
  1421. destination[Z_AXIS] = z;
  1422. prepare_uninterpolated_move_to_destination(fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS]);
  1423. }
  1424. #else
  1425. // If Z needs to raise, do it before moving XY
  1426. if (current_position[Z_AXIS] < z) {
  1427. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1428. current_position[Z_AXIS] = z;
  1429. line_to_current_position();
  1430. }
  1431. feedrate_mm_s = fr_mm_s ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1432. current_position[X_AXIS] = x;
  1433. current_position[Y_AXIS] = y;
  1434. line_to_current_position();
  1435. // If Z needs to lower, do it after moving XY
  1436. if (current_position[Z_AXIS] > z) {
  1437. feedrate_mm_s = fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1438. current_position[Z_AXIS] = z;
  1439. line_to_current_position();
  1440. }
  1441. #endif
  1442. stepper.synchronize();
  1443. feedrate_mm_s = old_feedrate_mm_s;
  1444. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1445. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1446. #endif
  1447. }
  1448. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1449. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1450. }
  1451. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1452. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1453. }
  1454. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1455. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1456. }
  1457. //
  1458. // Prepare to do endstop or probe moves
  1459. // with custom feedrates.
  1460. //
  1461. // - Save current feedrates
  1462. // - Reset the rate multiplier
  1463. // - Reset the command timeout
  1464. // - Enable the endstops (for endstop moves)
  1465. //
  1466. static void setup_for_endstop_or_probe_move() {
  1467. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1468. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1469. #endif
  1470. saved_feedrate_mm_s = feedrate_mm_s;
  1471. saved_feedrate_percentage = feedrate_percentage;
  1472. feedrate_percentage = 100;
  1473. refresh_cmd_timeout();
  1474. }
  1475. static void clean_up_after_endstop_or_probe_move() {
  1476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1477. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1478. #endif
  1479. feedrate_mm_s = saved_feedrate_mm_s;
  1480. feedrate_percentage = saved_feedrate_percentage;
  1481. refresh_cmd_timeout();
  1482. }
  1483. #if HAS_BED_PROBE
  1484. /**
  1485. * Raise Z to a minimum height to make room for a probe to move
  1486. */
  1487. inline void do_probe_raise(float z_raise) {
  1488. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1489. if (DEBUGGING(LEVELING)) {
  1490. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1491. SERIAL_CHAR(')');
  1492. SERIAL_EOL;
  1493. }
  1494. #endif
  1495. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1496. if (zprobe_zoffset < 0) z_dest -= zprobe_zoffset;
  1497. if (z_dest > current_position[Z_AXIS])
  1498. do_blocking_move_to_z(z_dest);
  1499. }
  1500. #endif //HAS_BED_PROBE
  1501. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1502. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1503. const bool xx = x && !axis_homed[X_AXIS],
  1504. yy = y && !axis_homed[Y_AXIS],
  1505. zz = z && !axis_homed[Z_AXIS];
  1506. if (xx || yy || zz) {
  1507. SERIAL_ECHO_START;
  1508. SERIAL_ECHOPGM(MSG_HOME " ");
  1509. if (xx) SERIAL_ECHOPGM(MSG_X);
  1510. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1511. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1512. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1513. #if ENABLED(ULTRA_LCD)
  1514. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1515. strcat_P(message, PSTR(MSG_HOME " "));
  1516. if (xx) strcat_P(message, PSTR(MSG_X));
  1517. if (yy) strcat_P(message, PSTR(MSG_Y));
  1518. if (zz) strcat_P(message, PSTR(MSG_Z));
  1519. strcat_P(message, PSTR(" " MSG_FIRST));
  1520. lcd_setstatus(message);
  1521. #endif
  1522. return true;
  1523. }
  1524. return false;
  1525. }
  1526. #endif
  1527. #if ENABLED(Z_PROBE_SLED)
  1528. #ifndef SLED_DOCKING_OFFSET
  1529. #define SLED_DOCKING_OFFSET 0
  1530. #endif
  1531. /**
  1532. * Method to dock/undock a sled designed by Charles Bell.
  1533. *
  1534. * stow[in] If false, move to MAX_X and engage the solenoid
  1535. * If true, move to MAX_X and release the solenoid
  1536. */
  1537. static void dock_sled(bool stow) {
  1538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1539. if (DEBUGGING(LEVELING)) {
  1540. SERIAL_ECHOPAIR("dock_sled(", stow);
  1541. SERIAL_CHAR(')');
  1542. SERIAL_EOL;
  1543. }
  1544. #endif
  1545. // Dock sled a bit closer to ensure proper capturing
  1546. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1547. #if PIN_EXISTS(SLED)
  1548. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1549. #endif
  1550. }
  1551. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1552. void run_deploy_moves_script() {
  1553. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1556. #endif
  1557. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1558. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1559. #endif
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1565. #endif
  1566. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1567. #endif
  1568. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1571. #endif
  1572. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1573. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1574. #endif
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1580. #endif
  1581. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1582. #endif
  1583. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1586. #endif
  1587. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1588. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1589. #endif
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1595. #endif
  1596. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1597. #endif
  1598. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1601. #endif
  1602. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1603. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1604. #endif
  1605. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1606. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1607. #endif
  1608. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1609. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1610. #endif
  1611. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1612. #endif
  1613. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1614. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1615. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1616. #endif
  1617. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1618. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1619. #endif
  1620. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1621. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1622. #endif
  1623. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1624. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1625. #endif
  1626. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1627. #endif
  1628. }
  1629. void run_stow_moves_script() {
  1630. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1632. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1633. #endif
  1634. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1635. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1636. #endif
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1638. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1641. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1642. #endif
  1643. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1644. #endif
  1645. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1647. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1648. #endif
  1649. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1650. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1651. #endif
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1653. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1656. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1657. #endif
  1658. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1659. #endif
  1660. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1662. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1663. #endif
  1664. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1665. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1666. #endif
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1668. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1671. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1672. #endif
  1673. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1674. #endif
  1675. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1677. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1678. #endif
  1679. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1680. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1681. #endif
  1682. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1683. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1684. #endif
  1685. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1686. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1687. #endif
  1688. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1689. #endif
  1690. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1691. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1692. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1693. #endif
  1694. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1695. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1696. #endif
  1697. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1698. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1699. #endif
  1700. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1701. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1702. #endif
  1703. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1704. #endif
  1705. }
  1706. #endif
  1707. #if HAS_BED_PROBE
  1708. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1709. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1710. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1711. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1712. #else
  1713. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1714. #endif
  1715. #endif
  1716. #define DEPLOY_PROBE() set_probe_deployed(true)
  1717. #define STOW_PROBE() set_probe_deployed(false)
  1718. #if ENABLED(BLTOUCH)
  1719. FORCE_INLINE void set_bltouch_deployed(const bool &deploy) {
  1720. servo[Z_ENDSTOP_SERVO_NR].move(deploy ? BLTOUCH_DEPLOY : BLTOUCH_STOW);
  1721. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1722. if (DEBUGGING(LEVELING)) {
  1723. SERIAL_ECHOPAIR("set_bltouch_deployed(", deploy);
  1724. SERIAL_CHAR(')');
  1725. SERIAL_EOL;
  1726. }
  1727. #endif
  1728. }
  1729. #endif
  1730. // returns false for ok and true for failure
  1731. static bool set_probe_deployed(bool deploy) {
  1732. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1733. if (DEBUGGING(LEVELING)) {
  1734. DEBUG_POS("set_probe_deployed", current_position);
  1735. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1736. }
  1737. #endif
  1738. if (endstops.z_probe_enabled == deploy) return false;
  1739. // Make room for probe
  1740. do_probe_raise(_Z_CLEARANCE_DEPLOY_PROBE);
  1741. // When deploying make sure BLTOUCH is not already triggered
  1742. #if ENABLED(BLTOUCH)
  1743. if (deploy && TEST_BLTOUCH()) { stop(); return true; }
  1744. #endif
  1745. #if ENABLED(Z_PROBE_SLED)
  1746. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1747. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1748. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1749. #endif
  1750. float oldXpos = current_position[X_AXIS],
  1751. oldYpos = current_position[Y_AXIS];
  1752. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1753. // If endstop is already false, the Z probe is deployed
  1754. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1755. // Would a goto be less ugly?
  1756. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1757. // for a triggered when stowed manual probe.
  1758. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1759. // otherwise an Allen-Key probe can't be stowed.
  1760. #endif
  1761. #if ENABLED(Z_PROBE_SLED)
  1762. dock_sled(!deploy);
  1763. #elif HAS_Z_SERVO_ENDSTOP && DISABLED(BLTOUCH)
  1764. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1765. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1766. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1767. #endif
  1768. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1769. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1770. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1771. if (IsRunning()) {
  1772. SERIAL_ERROR_START;
  1773. SERIAL_ERRORLNPGM("Z-Probe failed");
  1774. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1775. }
  1776. stop();
  1777. return true;
  1778. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1779. #endif
  1780. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1781. endstops.enable_z_probe(deploy);
  1782. return false;
  1783. }
  1784. static void do_probe_move(float z, float fr_mm_m) {
  1785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1786. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1787. #endif
  1788. // Deploy BLTouch at the start of any probe
  1789. #if ENABLED(BLTOUCH)
  1790. set_bltouch_deployed(true);
  1791. #endif
  1792. // Move down until probe triggered
  1793. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1794. // Retract BLTouch immediately after a probe
  1795. #if ENABLED(BLTOUCH)
  1796. set_bltouch_deployed(false);
  1797. #endif
  1798. // Clear endstop flags
  1799. endstops.hit_on_purpose();
  1800. // Get Z where the steppers were interrupted
  1801. set_current_from_steppers_for_axis(Z_AXIS);
  1802. // Tell the planner where we actually are
  1803. SYNC_PLAN_POSITION_KINEMATIC();
  1804. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1805. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1806. #endif
  1807. }
  1808. // Do a single Z probe and return with current_position[Z_AXIS]
  1809. // at the height where the probe triggered.
  1810. static float run_z_probe() {
  1811. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1812. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1813. #endif
  1814. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1815. refresh_cmd_timeout();
  1816. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1817. // Do a first probe at the fast speed
  1818. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1819. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1820. float first_probe_z = current_position[Z_AXIS];
  1821. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("1st Probe Z:", first_probe_z);
  1822. #endif
  1823. // move up by the bump distance
  1824. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1825. #else
  1826. // If the nozzle is above the travel height then
  1827. // move down quickly before doing the slow probe
  1828. float z = LOGICAL_Z_POSITION(Z_CLEARANCE_BETWEEN_PROBES);
  1829. if (zprobe_zoffset < 0) z -= zprobe_zoffset;
  1830. if (z < current_position[Z_AXIS])
  1831. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1832. #endif
  1833. // move down slowly to find bed
  1834. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1836. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1837. #endif
  1838. // Debug: compare probe heights
  1839. #if ENABLED(PROBE_DOUBLE_TOUCH) && ENABLED(DEBUG_LEVELING_FEATURE)
  1840. if (DEBUGGING(LEVELING)) {
  1841. SERIAL_ECHOPAIR("2nd Probe Z:", current_position[Z_AXIS]);
  1842. SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
  1843. }
  1844. #endif
  1845. return current_position[Z_AXIS];
  1846. }
  1847. //
  1848. // - Move to the given XY
  1849. // - Deploy the probe, if not already deployed
  1850. // - Probe the bed, get the Z position
  1851. // - Depending on the 'stow' flag
  1852. // - Stow the probe, or
  1853. // - Raise to the BETWEEN height
  1854. // - Return the probed Z position
  1855. //
  1856. static float probe_pt(const float &x, const float &y, bool stow = true, int verbose_level = 1) {
  1857. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1858. if (DEBUGGING(LEVELING)) {
  1859. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1860. SERIAL_ECHOPAIR(", ", y);
  1861. SERIAL_ECHOPAIR(", ", stow ? "" : "no ");
  1862. SERIAL_ECHOLNPGM("stow)");
  1863. DEBUG_POS("", current_position);
  1864. }
  1865. #endif
  1866. float old_feedrate_mm_s = feedrate_mm_s;
  1867. // Ensure a minimum height before moving the probe
  1868. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1869. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1870. // Move the probe to the given XY
  1871. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1872. if (DEPLOY_PROBE()) return NAN;
  1873. float measured_z = run_z_probe();
  1874. if (!stow)
  1875. do_probe_raise(Z_CLEARANCE_BETWEEN_PROBES);
  1876. else
  1877. if (STOW_PROBE()) return NAN;
  1878. if (verbose_level > 2) {
  1879. SERIAL_PROTOCOLPGM("Bed X: ");
  1880. SERIAL_PROTOCOL_F(x, 3);
  1881. SERIAL_PROTOCOLPGM(" Y: ");
  1882. SERIAL_PROTOCOL_F(y, 3);
  1883. SERIAL_PROTOCOLPGM(" Z: ");
  1884. SERIAL_PROTOCOL_F(measured_z, 3);
  1885. SERIAL_EOL;
  1886. }
  1887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1888. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1889. #endif
  1890. feedrate_mm_s = old_feedrate_mm_s;
  1891. return measured_z;
  1892. }
  1893. #endif // HAS_BED_PROBE
  1894. #if PLANNER_LEVELING
  1895. /**
  1896. * Turn bed leveling on or off, fixing the current
  1897. * position as-needed.
  1898. *
  1899. * Disable: Current position = physical position
  1900. * Enable: Current position = "unleveled" physical position
  1901. */
  1902. void set_bed_leveling_enabled(bool enable=true) {
  1903. #if ENABLED(MESH_BED_LEVELING)
  1904. if (!enable && mbl.active())
  1905. current_position[Z_AXIS] +=
  1906. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - (MESH_HOME_SEARCH_Z);
  1907. mbl.set_active(enable && mbl.has_mesh()); // was set_has_mesh(). Is this not correct?
  1908. #elif HAS_ABL
  1909. if (enable != planner.abl_enabled) {
  1910. planner.abl_enabled = enable;
  1911. if (!enable)
  1912. set_current_from_steppers_for_axis(
  1913. #if ABL_PLANAR
  1914. ALL_AXES
  1915. #else
  1916. Z_AXIS
  1917. #endif
  1918. );
  1919. else
  1920. planner.unapply_leveling(current_position);
  1921. }
  1922. #endif
  1923. }
  1924. /**
  1925. * Reset calibration results to zero.
  1926. */
  1927. void reset_bed_level() {
  1928. #if ENABLED(MESH_BED_LEVELING)
  1929. if (mbl.has_mesh()) {
  1930. set_bed_leveling_enabled(false);
  1931. mbl.reset();
  1932. mbl.set_has_mesh(false);
  1933. }
  1934. #else
  1935. planner.abl_enabled = false;
  1936. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1937. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1938. #endif
  1939. #if ABL_PLANAR
  1940. planner.bed_level_matrix.set_to_identity();
  1941. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1942. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++)
  1943. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++)
  1944. bed_level_grid[x][y] = 1000.0;
  1945. #endif
  1946. #endif
  1947. }
  1948. #endif // PLANNER_LEVELING
  1949. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1950. /**
  1951. * Extrapolate a single point from its neighbors
  1952. */
  1953. static void extrapolate_one_point(uint8_t x, uint8_t y, int8_t xdir, int8_t ydir) {
  1954. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1955. if (DEBUGGING(LEVELING)) {
  1956. SERIAL_ECHOPGM("Extrapolate [");
  1957. if (x < 10) SERIAL_CHAR(' ');
  1958. SERIAL_ECHO((int)x);
  1959. SERIAL_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  1960. SERIAL_CHAR(' ');
  1961. if (y < 10) SERIAL_CHAR(' ');
  1962. SERIAL_ECHO((int)y);
  1963. SERIAL_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  1964. SERIAL_CHAR(']');
  1965. }
  1966. #endif
  1967. if (bed_level_grid[x][y] < 999.0) {
  1968. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1969. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(" (done)");
  1970. #endif
  1971. return; // Don't overwrite good values.
  1972. }
  1973. SERIAL_EOL;
  1974. // Get X neighbors, Y neighbors, and XY neighbors
  1975. float a1 = bed_level_grid[x + xdir][y], a2 = bed_level_grid[x + xdir * 2][y],
  1976. b1 = bed_level_grid[x][y + ydir], b2 = bed_level_grid[x][y + ydir * 2],
  1977. c1 = bed_level_grid[x + xdir][y + ydir], c2 = bed_level_grid[x + xdir * 2][y + ydir * 2];
  1978. // Treat far unprobed points as zero, near as equal to far
  1979. if (a2 > 999.0) a2 = 0.0; if (a1 > 999.0) a1 = a2;
  1980. if (b2 > 999.0) b2 = 0.0; if (b1 > 999.0) b1 = b2;
  1981. if (c2 > 999.0) c2 = 0.0; if (c1 > 999.0) c1 = c2;
  1982. float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  1983. // Take the average intstead of the median
  1984. bed_level_grid[x][y] = (a + b + c) / 3.0;
  1985. // Median is robust (ignores outliers).
  1986. // bed_level_grid[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  1987. // : ((c < b) ? b : (a < c) ? a : c);
  1988. }
  1989. //Enable this if your SCARA uses 180° of total area
  1990. //#define EXTRAPOLATE_FROM_EDGE
  1991. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  1992. #if ABL_GRID_POINTS_X < ABL_GRID_POINTS_Y
  1993. #define HALF_IN_X
  1994. #elif ABL_GRID_POINTS_Y < ABL_GRID_POINTS_X
  1995. #define HALF_IN_Y
  1996. #endif
  1997. #endif
  1998. /**
  1999. * Fill in the unprobed points (corners of circular print surface)
  2000. * using linear extrapolation, away from the center.
  2001. */
  2002. static void extrapolate_unprobed_bed_level() {
  2003. #ifdef HALF_IN_X
  2004. const uint8_t ctrx2 = 0, xlen = ABL_GRID_POINTS_X - 1;
  2005. #else
  2006. const uint8_t ctrx1 = (ABL_GRID_POINTS_X - 1) / 2, // left-of-center
  2007. ctrx2 = ABL_GRID_POINTS_X / 2, // right-of-center
  2008. xlen = ctrx1;
  2009. #endif
  2010. #ifdef HALF_IN_Y
  2011. const uint8_t ctry2 = 0, ylen = ABL_GRID_POINTS_Y - 1;
  2012. #else
  2013. const uint8_t ctry1 = (ABL_GRID_POINTS_Y - 1) / 2, // top-of-center
  2014. ctry2 = ABL_GRID_POINTS_Y / 2, // bottom-of-center
  2015. ylen = ctry1;
  2016. #endif
  2017. for (uint8_t xo = 0; xo <= xlen; xo++)
  2018. for (uint8_t yo = 0; yo <= ylen; yo++) {
  2019. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  2020. #ifndef HALF_IN_X
  2021. uint8_t x1 = ctrx1 - xo;
  2022. #endif
  2023. #ifndef HALF_IN_Y
  2024. uint8_t y1 = ctry1 - yo;
  2025. #ifndef HALF_IN_X
  2026. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  2027. #endif
  2028. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  2029. #endif
  2030. #ifndef HALF_IN_X
  2031. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  2032. #endif
  2033. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  2034. }
  2035. }
  2036. /**
  2037. * Print calibration results for plotting or manual frame adjustment.
  2038. */
  2039. static void print_bed_level() {
  2040. SERIAL_ECHOPGM("Bilinear Leveling Grid:\n ");
  2041. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2042. SERIAL_PROTOCOLPGM(" ");
  2043. if (x < 10) SERIAL_PROTOCOLCHAR(' ');
  2044. SERIAL_PROTOCOL((int)x);
  2045. }
  2046. SERIAL_EOL;
  2047. for (uint8_t y = 0; y < ABL_GRID_POINTS_Y; y++) {
  2048. if (y < 10) SERIAL_PROTOCOLCHAR(' ');
  2049. SERIAL_PROTOCOL((int)y);
  2050. for (uint8_t x = 0; x < ABL_GRID_POINTS_X; x++) {
  2051. SERIAL_PROTOCOLCHAR(' ');
  2052. float offset = bed_level_grid[x][y];
  2053. if (offset < 999.0) {
  2054. if (offset > 0) SERIAL_CHAR('+');
  2055. SERIAL_PROTOCOL_F(offset, 2);
  2056. }
  2057. else
  2058. SERIAL_PROTOCOLPGM(" ====");
  2059. }
  2060. SERIAL_EOL;
  2061. }
  2062. SERIAL_EOL;
  2063. }
  2064. #endif // AUTO_BED_LEVELING_BILINEAR
  2065. /**
  2066. * Home an individual linear axis
  2067. */
  2068. static void do_homing_move(const AxisEnum axis, float distance, float fr_mm_s=0.0) {
  2069. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2070. if (DEBUGGING(LEVELING)) {
  2071. SERIAL_ECHOPAIR(">>> do_homing_move(", axis_codes[axis]);
  2072. SERIAL_ECHOPAIR(", ", distance);
  2073. SERIAL_ECHOPAIR(", ", fr_mm_s);
  2074. SERIAL_CHAR(')');
  2075. SERIAL_EOL;
  2076. }
  2077. #endif
  2078. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2079. bool deploy_bltouch = (axis == Z_AXIS && distance < 0);
  2080. if (deploy_bltouch) set_bltouch_deployed(true);
  2081. #endif
  2082. // Tell the planner we're at Z=0
  2083. current_position[axis] = 0;
  2084. #if IS_SCARA
  2085. SYNC_PLAN_POSITION_KINEMATIC();
  2086. current_position[axis] = distance;
  2087. inverse_kinematics(current_position);
  2088. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2089. #else
  2090. sync_plan_position();
  2091. current_position[axis] = distance;
  2092. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], fr_mm_s ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  2093. #endif
  2094. stepper.synchronize();
  2095. #if HOMING_Z_WITH_PROBE && ENABLED(BLTOUCH)
  2096. if (deploy_bltouch) set_bltouch_deployed(false);
  2097. #endif
  2098. endstops.hit_on_purpose();
  2099. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2100. if (DEBUGGING(LEVELING)) {
  2101. SERIAL_ECHOPAIR("<<< do_homing_move(", axis_codes[axis]);
  2102. SERIAL_CHAR(')');
  2103. SERIAL_EOL;
  2104. }
  2105. #endif
  2106. }
  2107. /**
  2108. * Home an individual "raw axis" to its endstop.
  2109. * This applies to XYZ on Cartesian and Core robots, and
  2110. * to the individual ABC steppers on DELTA and SCARA.
  2111. *
  2112. * At the end of the procedure the axis is marked as
  2113. * homed and the current position of that axis is updated.
  2114. * Kinematic robots should wait till all axes are homed
  2115. * before updating the current position.
  2116. */
  2117. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2118. static void homeaxis(AxisEnum axis) {
  2119. #if IS_SCARA
  2120. // Only Z homing (with probe) is permitted
  2121. if (axis != Z_AXIS) { BUZZ(100, 880); return; }
  2122. #else
  2123. #define CAN_HOME(A) \
  2124. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  2125. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  2126. #endif
  2127. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2128. if (DEBUGGING(LEVELING)) {
  2129. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  2130. SERIAL_CHAR(')');
  2131. SERIAL_EOL;
  2132. }
  2133. #endif
  2134. int axis_home_dir =
  2135. #if ENABLED(DUAL_X_CARRIAGE)
  2136. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2137. #endif
  2138. home_dir(axis);
  2139. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2140. #if HOMING_Z_WITH_PROBE
  2141. if (axis == Z_AXIS && DEPLOY_PROBE()) return;
  2142. #endif
  2143. // Set a flag for Z motor locking
  2144. #if ENABLED(Z_DUAL_ENDSTOPS)
  2145. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2146. #endif
  2147. // Fast move towards endstop until triggered
  2148. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2149. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 1 Fast:");
  2150. #endif
  2151. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  2152. // When homing Z with probe respect probe clearance
  2153. const float bump = axis_home_dir * (
  2154. #if HOMING_Z_WITH_PROBE
  2155. (axis == Z_AXIS) ? max(Z_CLEARANCE_BETWEEN_PROBES, home_bump_mm(Z_AXIS)) :
  2156. #endif
  2157. home_bump_mm(axis)
  2158. );
  2159. // If a second homing move is configured...
  2160. if (bump) {
  2161. // Move away from the endstop by the axis HOME_BUMP_MM
  2162. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2163. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Move Away:");
  2164. #endif
  2165. do_homing_move(axis, -bump);
  2166. // Slow move towards endstop until triggered
  2167. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2168. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Home 2 Slow:");
  2169. #endif
  2170. do_homing_move(axis, 2 * bump, get_homing_bump_feedrate(axis));
  2171. }
  2172. #if ENABLED(Z_DUAL_ENDSTOPS)
  2173. if (axis == Z_AXIS) {
  2174. float adj = fabs(z_endstop_adj);
  2175. bool lockZ1;
  2176. if (axis_home_dir > 0) {
  2177. adj = -adj;
  2178. lockZ1 = (z_endstop_adj > 0);
  2179. }
  2180. else
  2181. lockZ1 = (z_endstop_adj < 0);
  2182. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2183. // Move to the adjusted endstop height
  2184. do_homing_move(axis, adj);
  2185. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2186. stepper.set_homing_flag(false);
  2187. } // Z_AXIS
  2188. #endif
  2189. #if IS_SCARA
  2190. set_axis_is_at_home(axis);
  2191. SYNC_PLAN_POSITION_KINEMATIC();
  2192. #elif ENABLED(DELTA)
  2193. // Delta has already moved all three towers up in G28
  2194. // so here it re-homes each tower in turn.
  2195. // Delta homing treats the axes as normal linear axes.
  2196. // retrace by the amount specified in endstop_adj
  2197. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  2198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2199. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("endstop_adj:");
  2200. #endif
  2201. do_homing_move(axis, endstop_adj[axis]);
  2202. }
  2203. #else
  2204. // For cartesian/core machines,
  2205. // set the axis to its home position
  2206. set_axis_is_at_home(axis);
  2207. sync_plan_position();
  2208. destination[axis] = current_position[axis];
  2209. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2210. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2211. #endif
  2212. #endif
  2213. // Put away the Z probe
  2214. #if HOMING_Z_WITH_PROBE
  2215. if (axis == Z_AXIS && STOW_PROBE()) return;
  2216. #endif
  2217. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2218. if (DEBUGGING(LEVELING)) {
  2219. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  2220. SERIAL_CHAR(')');
  2221. SERIAL_EOL;
  2222. }
  2223. #endif
  2224. } // homeaxis()
  2225. #if ENABLED(FWRETRACT)
  2226. void retract(bool retracting, bool swapping = false) {
  2227. if (retracting == retracted[active_extruder]) return;
  2228. float old_feedrate_mm_s = feedrate_mm_s;
  2229. set_destination_to_current();
  2230. if (retracting) {
  2231. feedrate_mm_s = retract_feedrate_mm_s;
  2232. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2233. sync_plan_position_e();
  2234. prepare_move_to_destination();
  2235. if (retract_zlift > 0.01) {
  2236. current_position[Z_AXIS] -= retract_zlift;
  2237. SYNC_PLAN_POSITION_KINEMATIC();
  2238. prepare_move_to_destination();
  2239. }
  2240. }
  2241. else {
  2242. if (retract_zlift > 0.01) {
  2243. current_position[Z_AXIS] += retract_zlift;
  2244. SYNC_PLAN_POSITION_KINEMATIC();
  2245. }
  2246. feedrate_mm_s = retract_recover_feedrate_mm_s;
  2247. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2248. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2249. sync_plan_position_e();
  2250. prepare_move_to_destination();
  2251. }
  2252. feedrate_mm_s = old_feedrate_mm_s;
  2253. retracted[active_extruder] = retracting;
  2254. } // retract()
  2255. #endif // FWRETRACT
  2256. #if ENABLED(MIXING_EXTRUDER)
  2257. void normalize_mix() {
  2258. float mix_total = 0.0;
  2259. for (int i = 0; i < MIXING_STEPPERS; i++) mix_total += RECIPROCAL(mixing_factor[i]);
  2260. // Scale all values if they don't add up to ~1.0
  2261. if (!NEAR(mix_total, 1.0)) {
  2262. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2263. for (int i = 0; i < MIXING_STEPPERS; i++) mixing_factor[i] *= mix_total;
  2264. }
  2265. }
  2266. #if ENABLED(DIRECT_MIXING_IN_G1)
  2267. // Get mixing parameters from the GCode
  2268. // The total "must" be 1.0 (but it will be normalized)
  2269. // If no mix factors are given, the old mix is preserved
  2270. void gcode_get_mix() {
  2271. const char* mixing_codes = "ABCDHI";
  2272. byte mix_bits = 0;
  2273. for (uint8_t i = 0; i < MIXING_STEPPERS; i++) {
  2274. if (code_seen(mixing_codes[i])) {
  2275. SBI(mix_bits, i);
  2276. float v = code_value_float();
  2277. NOLESS(v, 0.0);
  2278. mixing_factor[i] = RECIPROCAL(v);
  2279. }
  2280. }
  2281. // If any mixing factors were included, clear the rest
  2282. // If none were included, preserve the last mix
  2283. if (mix_bits) {
  2284. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  2285. if (!TEST(mix_bits, i)) mixing_factor[i] = 0.0;
  2286. normalize_mix();
  2287. }
  2288. }
  2289. #endif
  2290. #endif
  2291. /**
  2292. * ***************************************************************************
  2293. * ***************************** G-CODE HANDLING *****************************
  2294. * ***************************************************************************
  2295. */
  2296. /**
  2297. * Set XYZE destination and feedrate from the current GCode command
  2298. *
  2299. * - Set destination from included axis codes
  2300. * - Set to current for missing axis codes
  2301. * - Set the feedrate, if included
  2302. */
  2303. void gcode_get_destination() {
  2304. LOOP_XYZE(i) {
  2305. if (code_seen(axis_codes[i]))
  2306. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2307. else
  2308. destination[i] = current_position[i];
  2309. }
  2310. if (code_seen('F') && code_value_linear_units() > 0.0)
  2311. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2312. #if ENABLED(PRINTCOUNTER)
  2313. if (!DEBUGGING(DRYRUN))
  2314. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2315. #endif
  2316. // Get ABCDHI mixing factors
  2317. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2318. gcode_get_mix();
  2319. #endif
  2320. }
  2321. void unknown_command_error() {
  2322. SERIAL_ECHO_START;
  2323. SERIAL_ECHOPAIR(MSG_UNKNOWN_COMMAND, current_command);
  2324. SERIAL_CHAR('"');
  2325. SERIAL_EOL;
  2326. }
  2327. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2328. /**
  2329. * Output a "busy" message at regular intervals
  2330. * while the machine is not accepting commands.
  2331. */
  2332. void host_keepalive() {
  2333. millis_t ms = millis();
  2334. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2335. if (PENDING(ms, next_busy_signal_ms)) return;
  2336. switch (busy_state) {
  2337. case IN_HANDLER:
  2338. case IN_PROCESS:
  2339. SERIAL_ECHO_START;
  2340. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2341. break;
  2342. case PAUSED_FOR_USER:
  2343. SERIAL_ECHO_START;
  2344. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2345. break;
  2346. case PAUSED_FOR_INPUT:
  2347. SERIAL_ECHO_START;
  2348. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2349. break;
  2350. default:
  2351. break;
  2352. }
  2353. }
  2354. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2355. }
  2356. #endif //HOST_KEEPALIVE_FEATURE
  2357. bool position_is_reachable(float target[XYZ]
  2358. #if HAS_BED_PROBE
  2359. , bool by_probe=false
  2360. #endif
  2361. ) {
  2362. float dx = RAW_X_POSITION(target[X_AXIS]),
  2363. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2364. #if HAS_BED_PROBE
  2365. if (by_probe) {
  2366. dx -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2367. dy -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2368. }
  2369. #endif
  2370. #if IS_SCARA
  2371. #if MIDDLE_DEAD_ZONE_R > 0
  2372. const float R2 = HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y);
  2373. return R2 >= sq(float(MIDDLE_DEAD_ZONE_R)) && R2 <= sq(L1 + L2);
  2374. #else
  2375. return HYPOT2(dx - SCARA_OFFSET_X, dy - SCARA_OFFSET_Y) <= sq(L1 + L2);
  2376. #endif
  2377. #elif ENABLED(DELTA)
  2378. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2379. #else
  2380. const float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2381. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2382. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2383. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2384. #endif
  2385. }
  2386. /**************************************************
  2387. ***************** GCode Handlers *****************
  2388. **************************************************/
  2389. /**
  2390. * G0, G1: Coordinated movement of X Y Z E axes
  2391. */
  2392. inline void gcode_G0_G1(
  2393. #if IS_SCARA
  2394. bool fast_move=false
  2395. #endif
  2396. ) {
  2397. if (IsRunning()) {
  2398. gcode_get_destination(); // For X Y Z E F
  2399. #if ENABLED(FWRETRACT)
  2400. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2401. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2402. // Is this move an attempt to retract or recover?
  2403. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2404. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2405. sync_plan_position_e(); // AND from the planner
  2406. retract(!retracted[active_extruder]);
  2407. return;
  2408. }
  2409. }
  2410. #endif //FWRETRACT
  2411. #if IS_SCARA
  2412. fast_move ? prepare_uninterpolated_move_to_destination() : prepare_move_to_destination();
  2413. #else
  2414. prepare_move_to_destination();
  2415. #endif
  2416. }
  2417. }
  2418. /**
  2419. * G2: Clockwise Arc
  2420. * G3: Counterclockwise Arc
  2421. *
  2422. * This command has two forms: IJ-form and R-form.
  2423. *
  2424. * - I specifies an X offset. J specifies a Y offset.
  2425. * At least one of the IJ parameters is required.
  2426. * X and Y can be omitted to do a complete circle.
  2427. * The given XY is not error-checked. The arc ends
  2428. * based on the angle of the destination.
  2429. * Mixing I or J with R will throw an error.
  2430. *
  2431. * - R specifies the radius. X or Y is required.
  2432. * Omitting both X and Y will throw an error.
  2433. * X or Y must differ from the current XY.
  2434. * Mixing R with I or J will throw an error.
  2435. *
  2436. * Examples:
  2437. *
  2438. * G2 I10 ; CW circle centered at X+10
  2439. * G3 X20 Y12 R14 ; CCW circle with r=14 ending at X20 Y12
  2440. */
  2441. #if ENABLED(ARC_SUPPORT)
  2442. inline void gcode_G2_G3(bool clockwise) {
  2443. if (IsRunning()) {
  2444. #if ENABLED(SF_ARC_FIX)
  2445. bool relative_mode_backup = relative_mode;
  2446. relative_mode = true;
  2447. #endif
  2448. gcode_get_destination();
  2449. #if ENABLED(SF_ARC_FIX)
  2450. relative_mode = relative_mode_backup;
  2451. #endif
  2452. float arc_offset[2] = { 0.0, 0.0 };
  2453. if (code_seen('R')) {
  2454. const float r = code_value_axis_units(X_AXIS),
  2455. x1 = current_position[X_AXIS], y1 = current_position[Y_AXIS],
  2456. x2 = destination[X_AXIS], y2 = destination[Y_AXIS];
  2457. if (r && (x2 != x1 || y2 != y1)) {
  2458. const float e = clockwise ^ (r < 0) ? -1 : 1, // clockwise -1/1, counterclockwise 1/-1
  2459. dx = x2 - x1, dy = y2 - y1, // X and Y differences
  2460. d = HYPOT(dx, dy), // Linear distance between the points
  2461. h = sqrt(sq(r) - sq(d * 0.5)), // Distance to the arc pivot-point
  2462. mx = (x1 + x2) * 0.5, my = (y1 + y2) * 0.5, // Point between the two points
  2463. sx = -dy / d, sy = dx / d, // Slope of the perpendicular bisector
  2464. cx = mx + e * h * sx, cy = my + e * h * sy; // Pivot-point of the arc
  2465. arc_offset[X_AXIS] = cx - x1;
  2466. arc_offset[Y_AXIS] = cy - y1;
  2467. }
  2468. }
  2469. else {
  2470. if (code_seen('I')) arc_offset[X_AXIS] = code_value_axis_units(X_AXIS);
  2471. if (code_seen('J')) arc_offset[Y_AXIS] = code_value_axis_units(Y_AXIS);
  2472. }
  2473. if (arc_offset[0] || arc_offset[1]) {
  2474. // Send an arc to the planner
  2475. plan_arc(destination, arc_offset, clockwise);
  2476. refresh_cmd_timeout();
  2477. }
  2478. else {
  2479. // Bad arguments
  2480. SERIAL_ERROR_START;
  2481. SERIAL_ERRORLNPGM(MSG_ERR_ARC_ARGS);
  2482. }
  2483. }
  2484. }
  2485. #endif
  2486. /**
  2487. * G4: Dwell S<seconds> or P<milliseconds>
  2488. */
  2489. inline void gcode_G4() {
  2490. millis_t dwell_ms = 0;
  2491. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2492. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2493. stepper.synchronize();
  2494. refresh_cmd_timeout();
  2495. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2496. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2497. while (PENDING(millis(), dwell_ms)) idle();
  2498. }
  2499. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2500. /**
  2501. * Parameters interpreted according to:
  2502. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2503. * However I, J omission is not supported at this point; all
  2504. * parameters can be omitted and default to zero.
  2505. */
  2506. /**
  2507. * G5: Cubic B-spline
  2508. */
  2509. inline void gcode_G5() {
  2510. if (IsRunning()) {
  2511. gcode_get_destination();
  2512. float offset[] = {
  2513. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2514. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2515. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2516. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2517. };
  2518. plan_cubic_move(offset);
  2519. }
  2520. }
  2521. #endif // BEZIER_CURVE_SUPPORT
  2522. #if ENABLED(FWRETRACT)
  2523. /**
  2524. * G10 - Retract filament according to settings of M207
  2525. * G11 - Recover filament according to settings of M208
  2526. */
  2527. inline void gcode_G10_G11(bool doRetract=false) {
  2528. #if EXTRUDERS > 1
  2529. if (doRetract) {
  2530. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2531. }
  2532. #endif
  2533. retract(doRetract
  2534. #if EXTRUDERS > 1
  2535. , retracted_swap[active_extruder]
  2536. #endif
  2537. );
  2538. }
  2539. #endif //FWRETRACT
  2540. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2541. /**
  2542. * G12: Clean the nozzle
  2543. */
  2544. inline void gcode_G12() {
  2545. // Don't allow nozzle cleaning without homing first
  2546. if (axis_unhomed_error(true, true, true)) { return; }
  2547. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2548. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2549. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2550. Nozzle::clean(pattern, strokes, objects);
  2551. }
  2552. #endif
  2553. #if ENABLED(INCH_MODE_SUPPORT)
  2554. /**
  2555. * G20: Set input mode to inches
  2556. */
  2557. inline void gcode_G20() { set_input_linear_units(LINEARUNIT_INCH); }
  2558. /**
  2559. * G21: Set input mode to millimeters
  2560. */
  2561. inline void gcode_G21() { set_input_linear_units(LINEARUNIT_MM); }
  2562. #endif
  2563. #if ENABLED(NOZZLE_PARK_FEATURE)
  2564. /**
  2565. * G27: Park the nozzle
  2566. */
  2567. inline void gcode_G27() {
  2568. // Don't allow nozzle parking without homing first
  2569. if (axis_unhomed_error(true, true, true)) { return; }
  2570. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2571. Nozzle::park(z_action);
  2572. }
  2573. #endif // NOZZLE_PARK_FEATURE
  2574. #if ENABLED(QUICK_HOME)
  2575. static void quick_home_xy() {
  2576. // Pretend the current position is 0,0
  2577. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2578. sync_plan_position();
  2579. int x_axis_home_dir =
  2580. #if ENABLED(DUAL_X_CARRIAGE)
  2581. x_home_dir(active_extruder)
  2582. #else
  2583. home_dir(X_AXIS)
  2584. #endif
  2585. ;
  2586. float mlx = max_length(X_AXIS),
  2587. mly = max_length(Y_AXIS),
  2588. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2589. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2590. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2591. endstops.hit_on_purpose(); // clear endstop hit flags
  2592. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2593. }
  2594. #endif // QUICK_HOME
  2595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2596. void log_machine_info() {
  2597. SERIAL_ECHOPGM("Machine Type: ");
  2598. #if ENABLED(DELTA)
  2599. SERIAL_ECHOLNPGM("Delta");
  2600. #elif IS_SCARA
  2601. SERIAL_ECHOLNPGM("SCARA");
  2602. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2603. SERIAL_ECHOLNPGM("Core");
  2604. #else
  2605. SERIAL_ECHOLNPGM("Cartesian");
  2606. #endif
  2607. SERIAL_ECHOPGM("Probe: ");
  2608. #if ENABLED(FIX_MOUNTED_PROBE)
  2609. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2610. #elif ENABLED(BLTOUCH)
  2611. SERIAL_ECHOLNPGM("BLTOUCH");
  2612. #elif HAS_Z_SERVO_ENDSTOP
  2613. SERIAL_ECHOLNPGM("SERVO PROBE");
  2614. #elif ENABLED(Z_PROBE_SLED)
  2615. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2616. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2617. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2618. #else
  2619. SERIAL_ECHOLNPGM("NONE");
  2620. #endif
  2621. #if HAS_BED_PROBE
  2622. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2623. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2624. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2625. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2626. SERIAL_ECHOPGM(" (Right");
  2627. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2628. SERIAL_ECHOPGM(" (Left");
  2629. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2630. SERIAL_ECHOPGM(" (Middle");
  2631. #else
  2632. SERIAL_ECHOPGM(" (Aligned With");
  2633. #endif
  2634. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2635. SERIAL_ECHOPGM("-Back");
  2636. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2637. SERIAL_ECHOPGM("-Front");
  2638. #elif (X_PROBE_OFFSET_FROM_EXTRUDER != 0)
  2639. SERIAL_ECHOPGM("-Center");
  2640. #endif
  2641. if (zprobe_zoffset < 0)
  2642. SERIAL_ECHOPGM(" & Below");
  2643. else if (zprobe_zoffset > 0)
  2644. SERIAL_ECHOPGM(" & Above");
  2645. else
  2646. SERIAL_ECHOPGM(" & Same Z as");
  2647. SERIAL_ECHOLNPGM(" Nozzle)");
  2648. #endif
  2649. #if HAS_ABL
  2650. SERIAL_ECHOPGM("Auto Bed Leveling: ");
  2651. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2652. SERIAL_ECHOPGM("LINEAR");
  2653. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2654. SERIAL_ECHOPGM("BILINEAR");
  2655. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2656. SERIAL_ECHOPGM("3POINT");
  2657. #endif
  2658. if (planner.abl_enabled) {
  2659. SERIAL_ECHOLNPGM(" (enabled)");
  2660. #if ENABLED(AUTO_BED_LEVELING_LINEAR) || ENABLED(AUTO_BED_LEVELING_3POINT)
  2661. float diff[XYZ] = {
  2662. stepper.get_axis_position_mm(X_AXIS) - current_position[X_AXIS],
  2663. stepper.get_axis_position_mm(Y_AXIS) - current_position[Y_AXIS],
  2664. stepper.get_axis_position_mm(Z_AXIS) - current_position[Z_AXIS]
  2665. };
  2666. SERIAL_ECHOPGM("ABL Adjustment X");
  2667. if (diff[X_AXIS] > 0) SERIAL_CHAR('+');
  2668. SERIAL_ECHO(diff[X_AXIS]);
  2669. SERIAL_ECHOPGM(" Y");
  2670. if (diff[Y_AXIS] > 0) SERIAL_CHAR('+');
  2671. SERIAL_ECHO(diff[Y_AXIS]);
  2672. SERIAL_ECHOPGM(" Z");
  2673. if (diff[Z_AXIS] > 0) SERIAL_CHAR('+');
  2674. SERIAL_ECHO(diff[Z_AXIS]);
  2675. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2676. SERIAL_ECHOPAIR("ABL Adjustment Z", bilinear_z_offset(current_position));
  2677. #endif
  2678. }
  2679. SERIAL_EOL;
  2680. #elif ENABLED(MESH_BED_LEVELING)
  2681. SERIAL_ECHOPGM("Mesh Bed Leveling");
  2682. if (mbl.active()) {
  2683. SERIAL_ECHOLNPGM(" (enabled)");
  2684. SERIAL_ECHOPAIR("MBL Adjustment Z", mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)));
  2685. }
  2686. SERIAL_EOL;
  2687. #endif
  2688. }
  2689. #endif // DEBUG_LEVELING_FEATURE
  2690. #if ENABLED(DELTA)
  2691. /**
  2692. * A delta can only safely home all axes at the same time
  2693. * This is like quick_home_xy() but for 3 towers.
  2694. */
  2695. inline void home_delta() {
  2696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2697. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> home_delta", current_position);
  2698. #endif
  2699. // Init the current position of all carriages to 0,0,0
  2700. ZERO(current_position);
  2701. sync_plan_position();
  2702. // Move all carriages together linearly until an endstop is hit.
  2703. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2704. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2705. line_to_current_position();
  2706. stepper.synchronize();
  2707. endstops.hit_on_purpose(); // clear endstop hit flags
  2708. // At least one carriage has reached the top.
  2709. // Now re-home each carriage separately.
  2710. HOMEAXIS(A);
  2711. HOMEAXIS(B);
  2712. HOMEAXIS(C);
  2713. // Set all carriages to their home positions
  2714. // Do this here all at once for Delta, because
  2715. // XYZ isn't ABC. Applying this per-tower would
  2716. // give the impression that they are the same.
  2717. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2718. SYNC_PLAN_POSITION_KINEMATIC();
  2719. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2720. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< home_delta", current_position);
  2721. #endif
  2722. }
  2723. #endif // DELTA
  2724. #if ENABLED(Z_SAFE_HOMING)
  2725. inline void home_z_safely() {
  2726. // Disallow Z homing if X or Y are unknown
  2727. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2728. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2729. SERIAL_ECHO_START;
  2730. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2731. return;
  2732. }
  2733. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2734. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2735. #endif
  2736. SYNC_PLAN_POSITION_KINEMATIC();
  2737. /**
  2738. * Move the Z probe (or just the nozzle) to the safe homing point
  2739. */
  2740. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2741. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2742. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2743. if (position_is_reachable(
  2744. destination
  2745. #if HOMING_Z_WITH_PROBE
  2746. , true
  2747. #endif
  2748. )
  2749. ) {
  2750. #if HOMING_Z_WITH_PROBE
  2751. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2752. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2753. #endif
  2754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2755. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2756. #endif
  2757. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2758. HOMEAXIS(Z);
  2759. }
  2760. else {
  2761. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2762. SERIAL_ECHO_START;
  2763. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2764. }
  2765. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2766. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2767. #endif
  2768. }
  2769. #endif // Z_SAFE_HOMING
  2770. /**
  2771. * G28: Home all axes according to settings
  2772. *
  2773. * Parameters
  2774. *
  2775. * None Home to all axes with no parameters.
  2776. * With QUICK_HOME enabled XY will home together, then Z.
  2777. *
  2778. * Cartesian parameters
  2779. *
  2780. * X Home to the X endstop
  2781. * Y Home to the Y endstop
  2782. * Z Home to the Z endstop
  2783. *
  2784. */
  2785. inline void gcode_G28() {
  2786. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2787. if (DEBUGGING(LEVELING)) {
  2788. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2789. log_machine_info();
  2790. }
  2791. #endif
  2792. // Wait for planner moves to finish!
  2793. stepper.synchronize();
  2794. // For auto bed leveling, clear the level matrix
  2795. #if HAS_ABL
  2796. reset_bed_level();
  2797. #endif
  2798. // Always home with tool 0 active
  2799. #if HOTENDS > 1
  2800. uint8_t old_tool_index = active_extruder;
  2801. tool_change(0, 0, true);
  2802. #endif
  2803. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2804. extruder_duplication_enabled = false;
  2805. #endif
  2806. /**
  2807. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2808. * on again when homing all axis
  2809. */
  2810. #if ENABLED(MESH_BED_LEVELING)
  2811. float pre_home_z = MESH_HOME_SEARCH_Z;
  2812. if (mbl.active()) {
  2813. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2814. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2815. #endif
  2816. // Save known Z position if already homed
  2817. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2818. pre_home_z = current_position[Z_AXIS];
  2819. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2820. }
  2821. mbl.set_active(false);
  2822. current_position[Z_AXIS] = pre_home_z;
  2823. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2824. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2825. #endif
  2826. }
  2827. #endif
  2828. setup_for_endstop_or_probe_move();
  2829. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2830. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2831. #endif
  2832. endstops.enable(true); // Enable endstops for next homing move
  2833. #if ENABLED(DELTA)
  2834. home_delta();
  2835. #else // NOT DELTA
  2836. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2837. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2838. set_destination_to_current();
  2839. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2840. if (home_all_axis || homeZ) {
  2841. HOMEAXIS(Z);
  2842. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2843. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2844. #endif
  2845. }
  2846. #else
  2847. if (home_all_axis || homeX || homeY) {
  2848. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2849. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2850. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2851. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2852. if (DEBUGGING(LEVELING))
  2853. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2854. #endif
  2855. do_blocking_move_to_z(destination[Z_AXIS]);
  2856. }
  2857. }
  2858. #endif
  2859. #if ENABLED(QUICK_HOME)
  2860. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2861. #endif
  2862. #if ENABLED(HOME_Y_BEFORE_X)
  2863. // Home Y
  2864. if (home_all_axis || homeY) {
  2865. HOMEAXIS(Y);
  2866. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2867. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2868. #endif
  2869. }
  2870. #endif
  2871. // Home X
  2872. if (home_all_axis || homeX) {
  2873. #if ENABLED(DUAL_X_CARRIAGE)
  2874. int tmp_extruder = active_extruder;
  2875. active_extruder = !active_extruder;
  2876. HOMEAXIS(X);
  2877. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2878. active_extruder = tmp_extruder;
  2879. HOMEAXIS(X);
  2880. // reset state used by the different modes
  2881. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2882. delayed_move_time = 0;
  2883. active_extruder_parked = true;
  2884. #else
  2885. HOMEAXIS(X);
  2886. #endif
  2887. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2888. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2889. #endif
  2890. }
  2891. #if DISABLED(HOME_Y_BEFORE_X)
  2892. // Home Y
  2893. if (home_all_axis || homeY) {
  2894. HOMEAXIS(Y);
  2895. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2896. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2897. #endif
  2898. }
  2899. #endif
  2900. // Home Z last if homing towards the bed
  2901. #if Z_HOME_DIR < 0
  2902. if (home_all_axis || homeZ) {
  2903. #if ENABLED(Z_SAFE_HOMING)
  2904. home_z_safely();
  2905. #else
  2906. HOMEAXIS(Z);
  2907. #endif
  2908. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2909. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2910. #endif
  2911. } // home_all_axis || homeZ
  2912. #endif // Z_HOME_DIR < 0
  2913. SYNC_PLAN_POSITION_KINEMATIC();
  2914. #endif // !DELTA (gcode_G28)
  2915. endstops.not_homing();
  2916. #if ENABLED(DELTA)
  2917. // move to a height where we can use the full xy-area
  2918. do_blocking_move_to_z(delta_clip_start_height);
  2919. #endif
  2920. // Enable mesh leveling again
  2921. #if ENABLED(MESH_BED_LEVELING)
  2922. if (mbl.has_mesh()) {
  2923. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2924. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2925. #endif
  2926. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2927. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2928. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2929. #endif
  2930. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2931. #if Z_HOME_DIR > 0
  2932. + Z_MAX_POS
  2933. #endif
  2934. ;
  2935. SYNC_PLAN_POSITION_KINEMATIC();
  2936. mbl.set_active(true);
  2937. #if ENABLED(MESH_G28_REST_ORIGIN)
  2938. current_position[Z_AXIS] = 0.0;
  2939. set_destination_to_current();
  2940. line_to_destination(homing_feedrate_mm_s[Z_AXIS]);
  2941. stepper.synchronize();
  2942. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2943. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2944. #endif
  2945. #else
  2946. planner.unapply_leveling(current_position);
  2947. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2948. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2949. #endif
  2950. #endif
  2951. }
  2952. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2953. current_position[Z_AXIS] = pre_home_z;
  2954. SYNC_PLAN_POSITION_KINEMATIC();
  2955. mbl.set_active(true);
  2956. planner.unapply_leveling(current_position);
  2957. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2958. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2959. #endif
  2960. }
  2961. }
  2962. #endif
  2963. clean_up_after_endstop_or_probe_move();
  2964. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2965. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2966. #endif
  2967. // Restore the active tool after homing
  2968. #if HOTENDS > 1
  2969. tool_change(old_tool_index, 0, true);
  2970. #endif
  2971. report_current_position();
  2972. }
  2973. #if HAS_PROBING_PROCEDURE
  2974. void out_of_range_error(const char* p_edge) {
  2975. SERIAL_PROTOCOLPGM("?Probe ");
  2976. serialprintPGM(p_edge);
  2977. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2978. }
  2979. #endif
  2980. #if ENABLED(MESH_BED_LEVELING)
  2981. inline void _mbl_goto_xy(float x, float y) {
  2982. float old_feedrate_mm_s = feedrate_mm_s;
  2983. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2984. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2985. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  2986. + Z_CLEARANCE_BETWEEN_PROBES
  2987. #elif Z_HOMING_HEIGHT > 0
  2988. + Z_HOMING_HEIGHT
  2989. #endif
  2990. ;
  2991. line_to_current_position();
  2992. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2993. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2994. line_to_current_position();
  2995. #if Z_CLEARANCE_BETWEEN_PROBES > 0 || Z_HOMING_HEIGHT > 0
  2996. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2997. line_to_current_position();
  2998. #endif
  2999. feedrate_mm_s = old_feedrate_mm_s;
  3000. stepper.synchronize();
  3001. }
  3002. /**
  3003. * G29: Mesh-based Z probe, probes a grid and produces a
  3004. * mesh to compensate for variable bed height
  3005. *
  3006. * Parameters With MESH_BED_LEVELING:
  3007. *
  3008. * S0 Produce a mesh report
  3009. * S1 Start probing mesh points
  3010. * S2 Probe the next mesh point
  3011. * S3 Xn Yn Zn.nn Manually modify a single point
  3012. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  3013. * S5 Reset and disable mesh
  3014. *
  3015. * The S0 report the points as below
  3016. *
  3017. * +----> X-axis 1-n
  3018. * |
  3019. * |
  3020. * v Y-axis 1-n
  3021. *
  3022. */
  3023. inline void gcode_G29() {
  3024. static int probe_point = -1;
  3025. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  3026. if (state < 0 || state > 5) {
  3027. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  3028. return;
  3029. }
  3030. int8_t px, py;
  3031. switch (state) {
  3032. case MeshReport:
  3033. if (mbl.has_mesh()) {
  3034. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  3035. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  3036. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  3037. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  3038. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  3039. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  3040. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  3041. SERIAL_PROTOCOLPGM(" ");
  3042. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  3043. }
  3044. SERIAL_EOL;
  3045. }
  3046. }
  3047. else
  3048. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  3049. break;
  3050. case MeshStart:
  3051. mbl.reset();
  3052. probe_point = 0;
  3053. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  3054. break;
  3055. case MeshNext:
  3056. if (probe_point < 0) {
  3057. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  3058. return;
  3059. }
  3060. // For each G29 S2...
  3061. if (probe_point == 0) {
  3062. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  3063. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3064. #if Z_HOME_DIR > 0
  3065. + Z_MAX_POS
  3066. #endif
  3067. ;
  3068. SYNC_PLAN_POSITION_KINEMATIC();
  3069. }
  3070. else {
  3071. // For G29 S2 after adjusting Z.
  3072. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  3073. }
  3074. // If there's another point to sample, move there with optional lift.
  3075. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  3076. mbl.zigzag(probe_point, px, py);
  3077. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  3078. probe_point++;
  3079. }
  3080. else {
  3081. // One last "return to the bed" (as originally coded) at completion
  3082. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  3083. #if Z_CLEARANCE_BETWEEN_PROBES > Z_HOMING_HEIGHT
  3084. + Z_CLEARANCE_BETWEEN_PROBES
  3085. #elif Z_HOMING_HEIGHT > 0
  3086. + Z_HOMING_HEIGHT
  3087. #endif
  3088. ;
  3089. line_to_current_position();
  3090. stepper.synchronize();
  3091. // After recording the last point, activate the mbl and home
  3092. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  3093. probe_point = -1;
  3094. mbl.set_has_mesh(true);
  3095. enqueue_and_echo_commands_P(PSTR("G28"));
  3096. }
  3097. break;
  3098. case MeshSet:
  3099. if (code_seen('X')) {
  3100. px = code_value_int() - 1;
  3101. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  3102. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  3103. return;
  3104. }
  3105. }
  3106. else {
  3107. SERIAL_CHAR('X'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3108. return;
  3109. }
  3110. if (code_seen('Y')) {
  3111. py = code_value_int() - 1;
  3112. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  3113. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  3114. return;
  3115. }
  3116. }
  3117. else {
  3118. SERIAL_CHAR('Y'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3119. return;
  3120. }
  3121. if (code_seen('Z')) {
  3122. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  3123. }
  3124. else {
  3125. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3126. return;
  3127. }
  3128. break;
  3129. case MeshSetZOffset:
  3130. if (code_seen('Z')) {
  3131. mbl.z_offset = code_value_axis_units(Z_AXIS);
  3132. }
  3133. else {
  3134. SERIAL_CHAR('Z'); SERIAL_PROTOCOLLNPGM(" not entered.");
  3135. return;
  3136. }
  3137. break;
  3138. case MeshReset:
  3139. if (mbl.active()) {
  3140. current_position[Z_AXIS] +=
  3141. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  3142. mbl.reset();
  3143. SYNC_PLAN_POSITION_KINEMATIC();
  3144. }
  3145. else
  3146. mbl.reset();
  3147. } // switch(state)
  3148. report_current_position();
  3149. }
  3150. #elif HAS_ABL
  3151. /**
  3152. * G29: Detailed Z probe, probes the bed at 3 or more points.
  3153. * Will fail if the printer has not been homed with G28.
  3154. *
  3155. * Enhanced G29 Auto Bed Leveling Probe Routine
  3156. *
  3157. * Parameters With ABL_GRID:
  3158. *
  3159. * P Set the size of the grid that will be probed (P x P points).
  3160. * Not supported by non-linear delta printer bed leveling.
  3161. * Example: "G29 P4"
  3162. *
  3163. * S Set the XY travel speed between probe points (in units/min)
  3164. *
  3165. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  3166. * or clean the rotation Matrix. Useful to check the topology
  3167. * after a first run of G29.
  3168. *
  3169. * V Set the verbose level (0-4). Example: "G29 V3"
  3170. *
  3171. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  3172. * This is useful for manual bed leveling and finding flaws in the bed (to
  3173. * assist with part placement).
  3174. * Not supported by non-linear delta printer bed leveling.
  3175. *
  3176. * F Set the Front limit of the probing grid
  3177. * B Set the Back limit of the probing grid
  3178. * L Set the Left limit of the probing grid
  3179. * R Set the Right limit of the probing grid
  3180. *
  3181. * Global Parameters:
  3182. *
  3183. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  3184. * Include "E" to engage/disengage the Z probe for each sample.
  3185. * There's no extra effect if you have a fixed Z probe.
  3186. * Usage: "G29 E" or "G29 e"
  3187. *
  3188. */
  3189. inline void gcode_G29() {
  3190. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3191. bool query = code_seen('Q');
  3192. uint8_t old_debug_flags = marlin_debug_flags;
  3193. if (query) marlin_debug_flags |= DEBUG_LEVELING;
  3194. if (DEBUGGING(LEVELING)) {
  3195. DEBUG_POS(">>> gcode_G29", current_position);
  3196. log_machine_info();
  3197. }
  3198. marlin_debug_flags = old_debug_flags;
  3199. if (query) return;
  3200. #endif
  3201. // Don't allow auto-leveling without homing first
  3202. if (axis_unhomed_error(true, true, true)) return;
  3203. int verbose_level = code_seen('V') ? code_value_int() : 1;
  3204. if (verbose_level < 0 || verbose_level > 4) {
  3205. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  3206. return;
  3207. }
  3208. bool dryrun = code_seen('D'),
  3209. stow_probe_after_each = code_seen('E');
  3210. #if ABL_GRID
  3211. if (verbose_level > 0) {
  3212. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  3213. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  3214. }
  3215. #if ABL_PLANAR
  3216. bool do_topography_map = verbose_level > 2 || code_seen('T');
  3217. // X and Y specify points in each direction, overriding the default
  3218. // These values may be saved with the completed mesh
  3219. int abl_grid_points_x = code_seen('X') ? code_value_int() : ABL_GRID_POINTS_X,
  3220. abl_grid_points_y = code_seen('Y') ? code_value_int() : ABL_GRID_POINTS_Y;
  3221. if (code_seen('P')) abl_grid_points_x = abl_grid_points_y = code_value_int();
  3222. if (abl_grid_points_x < 2 || abl_grid_points_y < 2) {
  3223. SERIAL_PROTOCOLLNPGM("?Number of probe points is implausible (2 minimum).");
  3224. return;
  3225. }
  3226. #else
  3227. const int abl_grid_points_x = ABL_GRID_POINTS_X, abl_grid_points_y = ABL_GRID_POINTS_Y;
  3228. #endif
  3229. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  3230. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  3231. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  3232. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  3233. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  3234. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  3235. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  3236. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  3237. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  3238. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  3239. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  3240. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  3241. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  3242. if (left_out || right_out || front_out || back_out) {
  3243. if (left_out) {
  3244. out_of_range_error(PSTR("(L)eft"));
  3245. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  3246. }
  3247. if (right_out) {
  3248. out_of_range_error(PSTR("(R)ight"));
  3249. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  3250. }
  3251. if (front_out) {
  3252. out_of_range_error(PSTR("(F)ront"));
  3253. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  3254. }
  3255. if (back_out) {
  3256. out_of_range_error(PSTR("(B)ack"));
  3257. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  3258. }
  3259. return;
  3260. }
  3261. #endif // ABL_GRID
  3262. stepper.synchronize();
  3263. // Disable auto bed leveling during G29
  3264. bool abl_should_enable = planner.abl_enabled;
  3265. planner.abl_enabled = false;
  3266. if (!dryrun) {
  3267. // Re-orient the current position without leveling
  3268. // based on where the steppers are positioned.
  3269. set_current_from_steppers_for_axis(ALL_AXES);
  3270. // Sync the planner to where the steppers stopped
  3271. SYNC_PLAN_POSITION_KINEMATIC();
  3272. }
  3273. setup_for_endstop_or_probe_move();
  3274. // Deploy the probe. Probe will raise if needed.
  3275. if (DEPLOY_PROBE()) {
  3276. planner.abl_enabled = abl_should_enable;
  3277. return;
  3278. }
  3279. float xProbe = 0, yProbe = 0, measured_z = 0;
  3280. #if ABL_GRID
  3281. // probe at the points of a lattice grid
  3282. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (abl_grid_points_x - 1),
  3283. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (abl_grid_points_y - 1);
  3284. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3285. float zoffset = zprobe_zoffset;
  3286. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  3287. if ( xGridSpacing != bilinear_grid_spacing[X_AXIS]
  3288. || yGridSpacing != bilinear_grid_spacing[Y_AXIS]
  3289. || left_probe_bed_position != bilinear_start[X_AXIS]
  3290. || front_probe_bed_position != bilinear_start[Y_AXIS]
  3291. ) {
  3292. reset_bed_level();
  3293. bilinear_grid_spacing[X_AXIS] = xGridSpacing;
  3294. bilinear_grid_spacing[Y_AXIS] = yGridSpacing;
  3295. bilinear_start[X_AXIS] = RAW_X_POSITION(left_probe_bed_position);
  3296. bilinear_start[Y_AXIS] = RAW_Y_POSITION(front_probe_bed_position);
  3297. // Can't re-enable (on error) until the new grid is written
  3298. abl_should_enable = false;
  3299. }
  3300. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3301. /**
  3302. * solve the plane equation ax + by + d = z
  3303. * A is the matrix with rows [x y 1] for all the probed points
  3304. * B is the vector of the Z positions
  3305. * the normal vector to the plane is formed by the coefficients of the
  3306. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  3307. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  3308. */
  3309. int abl2 = abl_grid_points_x * abl_grid_points_y,
  3310. indexIntoAB[abl_grid_points_x][abl_grid_points_y],
  3311. probePointCounter = -1;
  3312. float eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  3313. eqnBVector[abl2], // "B" vector of Z points
  3314. mean = 0.0;
  3315. #endif // AUTO_BED_LEVELING_LINEAR
  3316. #if ENABLED(PROBE_Y_FIRST)
  3317. #define PR_OUTER_VAR xCount
  3318. #define PR_OUTER_END abl_grid_points_x
  3319. #define PR_INNER_VAR yCount
  3320. #define PR_INNER_END abl_grid_points_y
  3321. #else
  3322. #define PR_OUTER_VAR yCount
  3323. #define PR_OUTER_END abl_grid_points_y
  3324. #define PR_INNER_VAR xCount
  3325. #define PR_INNER_END abl_grid_points_x
  3326. #endif
  3327. bool zig = PR_OUTER_END & 1; // Always end at RIGHT and BACK_PROBE_BED_POSITION
  3328. // Outer loop is Y with PROBE_Y_FIRST disabled
  3329. for (uint8_t PR_OUTER_VAR = 0; PR_OUTER_VAR < PR_OUTER_END; PR_OUTER_VAR++) {
  3330. int8_t inStart, inStop, inInc;
  3331. if (zig) { // away from origin
  3332. inStart = 0;
  3333. inStop = PR_INNER_END;
  3334. inInc = 1;
  3335. }
  3336. else { // towards origin
  3337. inStart = PR_INNER_END - 1;
  3338. inStop = -1;
  3339. inInc = -1;
  3340. }
  3341. zig = !zig; // zag
  3342. // Inner loop is Y with PROBE_Y_FIRST enabled
  3343. for (int8_t PR_INNER_VAR = inStart; PR_INNER_VAR != inStop; PR_INNER_VAR += inInc) {
  3344. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  3345. yBase = front_probe_bed_position + yGridSpacing * yCount;
  3346. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  3347. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  3348. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3349. indexIntoAB[xCount][yCount] = ++probePointCounter;
  3350. #endif
  3351. #if IS_KINEMATIC
  3352. // Avoid probing outside the round or hexagonal area
  3353. float pos[XYZ] = { xProbe, yProbe, 0 };
  3354. if (!position_is_reachable(pos, true)) continue;
  3355. #endif
  3356. measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3357. if (measured_z == NAN) {
  3358. planner.abl_enabled = abl_should_enable;
  3359. return;
  3360. }
  3361. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3362. mean += measured_z;
  3363. eqnBVector[probePointCounter] = measured_z;
  3364. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  3365. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  3366. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  3367. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3368. bed_level_grid[xCount][yCount] = measured_z + zoffset;
  3369. #endif
  3370. idle();
  3371. } //xProbe
  3372. } //yProbe
  3373. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  3374. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3375. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  3376. #endif
  3377. // Probe at 3 arbitrary points
  3378. vector_3 points[3] = {
  3379. vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, 0),
  3380. vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, 0),
  3381. vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, 0)
  3382. };
  3383. for (uint8_t i = 0; i < 3; ++i) {
  3384. // Retain the last probe position
  3385. xProbe = LOGICAL_X_POSITION(points[i].x);
  3386. yProbe = LOGICAL_Y_POSITION(points[i].y);
  3387. measured_z = points[i].z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  3388. }
  3389. if (measured_z == NAN) {
  3390. planner.abl_enabled = abl_should_enable;
  3391. return;
  3392. }
  3393. if (!dryrun) {
  3394. vector_3 planeNormal = vector_3::cross(points[0] - points[1], points[2] - points[1]).get_normal();
  3395. if (planeNormal.z < 0) {
  3396. planeNormal.x *= -1;
  3397. planeNormal.y *= -1;
  3398. planeNormal.z *= -1;
  3399. }
  3400. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3401. // Can't re-enable (on error) until the new grid is written
  3402. abl_should_enable = false;
  3403. }
  3404. #endif // AUTO_BED_LEVELING_3POINT
  3405. // Raise to _Z_CLEARANCE_DEPLOY_PROBE. Stow the probe.
  3406. if (STOW_PROBE()) {
  3407. planner.abl_enabled = abl_should_enable;
  3408. return;
  3409. }
  3410. //
  3411. // Unless this is a dry run, auto bed leveling will
  3412. // definitely be enabled after this point
  3413. //
  3414. // Restore state after probing
  3415. clean_up_after_endstop_or_probe_move();
  3416. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3417. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3418. #endif
  3419. // Calculate leveling, print reports, correct the position
  3420. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3421. if (!dryrun) extrapolate_unprobed_bed_level();
  3422. print_bed_level();
  3423. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3424. // For LINEAR leveling calculate matrix, print reports, correct the position
  3425. // solve lsq problem
  3426. float plane_equation_coefficients[3];
  3427. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3428. mean /= abl2;
  3429. if (verbose_level) {
  3430. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3431. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3432. SERIAL_PROTOCOLPGM(" b: ");
  3433. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3434. SERIAL_PROTOCOLPGM(" d: ");
  3435. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3436. SERIAL_EOL;
  3437. if (verbose_level > 2) {
  3438. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3439. SERIAL_PROTOCOL_F(mean, 8);
  3440. SERIAL_EOL;
  3441. }
  3442. }
  3443. // Create the matrix but don't correct the position yet
  3444. if (!dryrun) {
  3445. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3446. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3447. );
  3448. }
  3449. // Show the Topography map if enabled
  3450. if (do_topography_map) {
  3451. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3452. " +--- BACK --+\n"
  3453. " | |\n"
  3454. " L | (+) | R\n"
  3455. " E | | I\n"
  3456. " F | (-) N (+) | G\n"
  3457. " T | | H\n"
  3458. " | (-) | T\n"
  3459. " | |\n"
  3460. " O-- FRONT --+\n"
  3461. " (0,0)");
  3462. float min_diff = 999;
  3463. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3464. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3465. int ind = indexIntoAB[xx][yy];
  3466. float diff = eqnBVector[ind] - mean,
  3467. x_tmp = eqnAMatrix[ind + 0 * abl2],
  3468. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3469. z_tmp = 0;
  3470. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3471. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3472. if (diff >= 0.0)
  3473. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3474. else
  3475. SERIAL_PROTOCOLCHAR(' ');
  3476. SERIAL_PROTOCOL_F(diff, 5);
  3477. } // xx
  3478. SERIAL_EOL;
  3479. } // yy
  3480. SERIAL_EOL;
  3481. if (verbose_level > 3) {
  3482. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3483. for (int8_t yy = abl_grid_points_y - 1; yy >= 0; yy--) {
  3484. for (uint8_t xx = 0; xx < abl_grid_points_x; xx++) {
  3485. int ind = indexIntoAB[xx][yy];
  3486. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3487. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3488. z_tmp = 0;
  3489. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3490. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3491. if (diff >= 0.0)
  3492. SERIAL_PROTOCOLPGM(" +");
  3493. // Include + for column alignment
  3494. else
  3495. SERIAL_PROTOCOLCHAR(' ');
  3496. SERIAL_PROTOCOL_F(diff, 5);
  3497. } // xx
  3498. SERIAL_EOL;
  3499. } // yy
  3500. SERIAL_EOL;
  3501. }
  3502. } //do_topography_map
  3503. #endif // AUTO_BED_LEVELING_LINEAR
  3504. #if ABL_PLANAR
  3505. // For LINEAR and 3POINT leveling correct the current position
  3506. if (verbose_level > 0)
  3507. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3508. if (!dryrun) {
  3509. //
  3510. // Correct the current XYZ position based on the tilted plane.
  3511. //
  3512. // 1. Get the distance from the current position to the reference point.
  3513. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3514. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3515. z_real = current_position[Z_AXIS],
  3516. z_zero = 0;
  3517. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3518. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 uncorrected XYZ", current_position);
  3519. #endif
  3520. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  3521. // 2. Apply the inverse matrix to the distance
  3522. // from the reference point to X, Y, and zero.
  3523. apply_rotation_xyz(inverse, x_dist, y_dist, z_zero);
  3524. // 3. Get the matrix-based corrected Z.
  3525. // (Even if not used, get it for comparison.)
  3526. float new_z = z_real + z_zero;
  3527. // 4. Use the last measured distance to the bed, if possible
  3528. if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
  3529. && NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
  3530. ) {
  3531. float simple_z = z_real - (measured_z - (-zprobe_zoffset));
  3532. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3533. if (DEBUGGING(LEVELING)) {
  3534. SERIAL_ECHOPAIR("Z from Probe:", simple_z);
  3535. SERIAL_ECHOPAIR(" Matrix:", new_z);
  3536. SERIAL_ECHOLNPAIR(" Discrepancy:", simple_z - new_z);
  3537. }
  3538. #endif
  3539. new_z = simple_z;
  3540. }
  3541. // 5. The rotated XY and corrected Z are now current_position
  3542. current_position[X_AXIS] = LOGICAL_X_POSITION(x_dist) + X_TILT_FULCRUM;
  3543. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y_dist) + Y_TILT_FULCRUM;
  3544. current_position[Z_AXIS] = new_z;
  3545. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3546. if (DEBUGGING(LEVELING)) DEBUG_POS("G29 corrected XYZ", current_position);
  3547. #endif
  3548. }
  3549. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  3550. if (!dryrun) {
  3551. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3552. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("G29 uncorrected Z:", current_position[Z_AXIS]);
  3553. #endif
  3554. // Unapply the offset because it is going to be immediately applied
  3555. // and cause compensation movement in Z
  3556. current_position[Z_AXIS] -= bilinear_z_offset(current_position);
  3557. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3558. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR(" corrected Z:", current_position[Z_AXIS]);
  3559. #endif
  3560. }
  3561. #endif // ABL_PLANAR
  3562. #ifdef Z_PROBE_END_SCRIPT
  3563. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3564. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("Z Probe End Script: ", Z_PROBE_END_SCRIPT);
  3565. #endif
  3566. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3567. stepper.synchronize();
  3568. #endif
  3569. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3570. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3571. #endif
  3572. report_current_position();
  3573. KEEPALIVE_STATE(IN_HANDLER);
  3574. // Auto Bed Leveling is complete! Enable if possible.
  3575. planner.abl_enabled = dryrun ? abl_should_enable : true;
  3576. if (planner.abl_enabled)
  3577. SYNC_PLAN_POSITION_KINEMATIC();
  3578. }
  3579. #endif // HAS_ABL
  3580. #if HAS_BED_PROBE
  3581. /**
  3582. * G30: Do a single Z probe at the current XY
  3583. * Usage:
  3584. * G30 <X#> <Y#> <S#>
  3585. * X = Probe X position (default=current probe position)
  3586. * Y = Probe Y position (default=current probe position)
  3587. * S = Stows the probe if 1 (default=1)
  3588. */
  3589. inline void gcode_G30() {
  3590. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3591. Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3592. float pos[XYZ] = { X_probe_location, Y_probe_location, LOGICAL_Z_POSITION(0) };
  3593. if (!position_is_reachable(pos, true)) return;
  3594. bool stow = code_seen('S') ? code_value_bool() : true;
  3595. // Disable leveling so the planner won't mess with us
  3596. #if PLANNER_LEVELING
  3597. set_bed_leveling_enabled(false);
  3598. #endif
  3599. setup_for_endstop_or_probe_move();
  3600. float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
  3601. SERIAL_PROTOCOLPGM("Bed X: ");
  3602. SERIAL_PROTOCOL(X_probe_location + 0.0001);
  3603. SERIAL_PROTOCOLPGM(" Y: ");
  3604. SERIAL_PROTOCOL(Y_probe_location + 0.0001);
  3605. SERIAL_PROTOCOLPGM(" Z: ");
  3606. SERIAL_PROTOCOLLN(measured_z + 0.0001);
  3607. clean_up_after_endstop_or_probe_move();
  3608. report_current_position();
  3609. }
  3610. #if ENABLED(Z_PROBE_SLED)
  3611. /**
  3612. * G31: Deploy the Z probe
  3613. */
  3614. inline void gcode_G31() { DEPLOY_PROBE(); }
  3615. /**
  3616. * G32: Stow the Z probe
  3617. */
  3618. inline void gcode_G32() { STOW_PROBE(); }
  3619. #endif // Z_PROBE_SLED
  3620. #endif // HAS_BED_PROBE
  3621. #if ENABLED(G38_PROBE_TARGET)
  3622. static bool G38_run_probe() {
  3623. bool G38_pass_fail = false;
  3624. // Get direction of move and retract
  3625. float retract_mm[XYZ];
  3626. LOOP_XYZ(i) {
  3627. float dist = destination[i] - current_position[i];
  3628. retract_mm[i] = fabs(dist) < G38_MINIMUM_MOVE ? 0 : home_bump_mm((AxisEnum)i) * (dist > 0 ? -1 : 1);
  3629. }
  3630. stepper.synchronize(); // wait until the machine is idle
  3631. // Move until destination reached or target hit
  3632. endstops.enable(true);
  3633. G38_move = true;
  3634. G38_endstop_hit = false;
  3635. prepare_move_to_destination();
  3636. stepper.synchronize();
  3637. G38_move = false;
  3638. endstops.hit_on_purpose();
  3639. set_current_from_steppers_for_axis(ALL_AXES);
  3640. SYNC_PLAN_POSITION_KINEMATIC();
  3641. // Only do remaining moves if target was hit
  3642. if (G38_endstop_hit) {
  3643. G38_pass_fail = true;
  3644. // Move away by the retract distance
  3645. set_destination_to_current();
  3646. LOOP_XYZ(i) destination[i] += retract_mm[i];
  3647. endstops.enable(false);
  3648. prepare_move_to_destination();
  3649. stepper.synchronize();
  3650. feedrate_mm_s /= 4;
  3651. // Bump the target more slowly
  3652. LOOP_XYZ(i) destination[i] -= retract_mm[i] * 2;
  3653. endstops.enable(true);
  3654. G38_move = true;
  3655. prepare_move_to_destination();
  3656. stepper.synchronize();
  3657. G38_move = false;
  3658. set_current_from_steppers_for_axis(ALL_AXES);
  3659. SYNC_PLAN_POSITION_KINEMATIC();
  3660. }
  3661. endstops.hit_on_purpose();
  3662. endstops.not_homing();
  3663. return G38_pass_fail;
  3664. }
  3665. /**
  3666. * G38.2 - probe toward workpiece, stop on contact, signal error if failure
  3667. * G38.3 - probe toward workpiece, stop on contact
  3668. *
  3669. * Like G28 except uses Z min endstop for all axes
  3670. */
  3671. inline void gcode_G38(bool is_38_2) {
  3672. // Get X Y Z E F
  3673. gcode_get_destination();
  3674. setup_for_endstop_or_probe_move();
  3675. // If any axis has enough movement, do the move
  3676. LOOP_XYZ(i)
  3677. if (fabs(destination[i] - current_position[i]) >= G38_MINIMUM_MOVE) {
  3678. if (!code_seen('F')) feedrate_mm_s = homing_feedrate_mm_s[i];
  3679. // If G38.2 fails throw an error
  3680. if (!G38_run_probe() && is_38_2) {
  3681. SERIAL_ERROR_START;
  3682. SERIAL_ERRORLNPGM("Failed to reach target");
  3683. }
  3684. break;
  3685. }
  3686. clean_up_after_endstop_or_probe_move();
  3687. }
  3688. #endif // G38_PROBE_TARGET
  3689. /**
  3690. * G92: Set current position to given X Y Z E
  3691. */
  3692. inline void gcode_G92() {
  3693. bool didXYZ = false,
  3694. didE = code_seen('E');
  3695. if (!didE) stepper.synchronize();
  3696. LOOP_XYZE(i) {
  3697. if (code_seen(axis_codes[i])) {
  3698. #if IS_SCARA
  3699. current_position[i] = code_value_axis_units(i);
  3700. if (i != E_AXIS) didXYZ = true;
  3701. #else
  3702. float p = current_position[i],
  3703. v = code_value_axis_units(i);
  3704. current_position[i] = v;
  3705. if (i != E_AXIS) {
  3706. didXYZ = true;
  3707. position_shift[i] += v - p; // Offset the coordinate space
  3708. update_software_endstops((AxisEnum)i);
  3709. }
  3710. #endif
  3711. }
  3712. }
  3713. if (didXYZ)
  3714. SYNC_PLAN_POSITION_KINEMATIC();
  3715. else if (didE)
  3716. sync_plan_position_e();
  3717. report_current_position();
  3718. }
  3719. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3720. /**
  3721. * M0: Unconditional stop - Wait for user button press on LCD
  3722. * M1: Conditional stop - Wait for user button press on LCD
  3723. */
  3724. inline void gcode_M0_M1() {
  3725. char* args = current_command_args;
  3726. millis_t codenum = 0;
  3727. bool hasP = false, hasS = false;
  3728. if (code_seen('P')) {
  3729. codenum = code_value_millis(); // milliseconds to wait
  3730. hasP = codenum > 0;
  3731. }
  3732. if (code_seen('S')) {
  3733. codenum = code_value_millis_from_seconds(); // seconds to wait
  3734. hasS = codenum > 0;
  3735. }
  3736. #if ENABLED(ULTIPANEL)
  3737. if (!hasP && !hasS && *args != '\0')
  3738. lcd_setstatus(args, true);
  3739. else {
  3740. LCD_MESSAGEPGM(MSG_USERWAIT);
  3741. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3742. dontExpireStatus();
  3743. #endif
  3744. }
  3745. #else
  3746. if (!hasP && !hasS && *args != '\0') {
  3747. SERIAL_ECHO_START;
  3748. SERIAL_ECHOLN(args);
  3749. }
  3750. #endif
  3751. wait_for_user = true;
  3752. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3753. stepper.synchronize();
  3754. refresh_cmd_timeout();
  3755. if (codenum > 0) {
  3756. codenum += previous_cmd_ms; // wait until this time for a click
  3757. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3758. }
  3759. else {
  3760. #if ENABLED(ULTIPANEL)
  3761. if (lcd_detected()) {
  3762. while (wait_for_user) idle();
  3763. IS_SD_PRINTING ? LCD_MESSAGEPGM(MSG_RESUMING) : LCD_MESSAGEPGM(WELCOME_MSG);
  3764. }
  3765. #else
  3766. while (wait_for_user) idle();
  3767. #endif
  3768. }
  3769. wait_for_user = false;
  3770. KEEPALIVE_STATE(IN_HANDLER);
  3771. }
  3772. #endif // EMERGENCY_PARSER || ULTIPANEL
  3773. /**
  3774. * M17: Enable power on all stepper motors
  3775. */
  3776. inline void gcode_M17() {
  3777. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3778. enable_all_steppers();
  3779. }
  3780. #if ENABLED(SDSUPPORT)
  3781. /**
  3782. * M20: List SD card to serial output
  3783. */
  3784. inline void gcode_M20() {
  3785. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3786. card.ls();
  3787. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3788. }
  3789. /**
  3790. * M21: Init SD Card
  3791. */
  3792. inline void gcode_M21() { card.initsd(); }
  3793. /**
  3794. * M22: Release SD Card
  3795. */
  3796. inline void gcode_M22() { card.release(); }
  3797. /**
  3798. * M23: Open a file
  3799. */
  3800. inline void gcode_M23() { card.openFile(current_command_args, true); }
  3801. /**
  3802. * M24: Start SD Print
  3803. */
  3804. inline void gcode_M24() {
  3805. card.startFileprint();
  3806. print_job_timer.start();
  3807. }
  3808. /**
  3809. * M25: Pause SD Print
  3810. */
  3811. inline void gcode_M25() { card.pauseSDPrint(); }
  3812. /**
  3813. * M26: Set SD Card file index
  3814. */
  3815. inline void gcode_M26() {
  3816. if (card.cardOK && code_seen('S'))
  3817. card.setIndex(code_value_long());
  3818. }
  3819. /**
  3820. * M27: Get SD Card status
  3821. */
  3822. inline void gcode_M27() { card.getStatus(); }
  3823. /**
  3824. * M28: Start SD Write
  3825. */
  3826. inline void gcode_M28() { card.openFile(current_command_args, false); }
  3827. /**
  3828. * M29: Stop SD Write
  3829. * Processed in write to file routine above
  3830. */
  3831. inline void gcode_M29() {
  3832. // card.saving = false;
  3833. }
  3834. /**
  3835. * M30 <filename>: Delete SD Card file
  3836. */
  3837. inline void gcode_M30() {
  3838. if (card.cardOK) {
  3839. card.closefile();
  3840. card.removeFile(current_command_args);
  3841. }
  3842. }
  3843. #endif // SDSUPPORT
  3844. /**
  3845. * M31: Get the time since the start of SD Print (or last M109)
  3846. */
  3847. inline void gcode_M31() {
  3848. char buffer[21];
  3849. duration_t elapsed = print_job_timer.duration();
  3850. elapsed.toString(buffer);
  3851. lcd_setstatus(buffer);
  3852. SERIAL_ECHO_START;
  3853. SERIAL_ECHOLNPAIR("Print time: ", buffer);
  3854. #if ENABLED(AUTOTEMP)
  3855. thermalManager.autotempShutdown();
  3856. #endif
  3857. }
  3858. #if ENABLED(SDSUPPORT)
  3859. /**
  3860. * M32: Select file and start SD Print
  3861. */
  3862. inline void gcode_M32() {
  3863. if (card.sdprinting)
  3864. stepper.synchronize();
  3865. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3866. if (!namestartpos)
  3867. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3868. else
  3869. namestartpos++; //to skip the '!'
  3870. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3871. if (card.cardOK) {
  3872. card.openFile(namestartpos, true, call_procedure);
  3873. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3874. card.setIndex(code_value_long());
  3875. card.startFileprint();
  3876. // Procedure calls count as normal print time.
  3877. if (!call_procedure) print_job_timer.start();
  3878. }
  3879. }
  3880. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3881. /**
  3882. * M33: Get the long full path of a file or folder
  3883. *
  3884. * Parameters:
  3885. * <dospath> Case-insensitive DOS-style path to a file or folder
  3886. *
  3887. * Example:
  3888. * M33 miscel~1/armchair/armcha~1.gco
  3889. *
  3890. * Output:
  3891. * /Miscellaneous/Armchair/Armchair.gcode
  3892. */
  3893. inline void gcode_M33() {
  3894. card.printLongPath(current_command_args);
  3895. }
  3896. #endif
  3897. /**
  3898. * M928: Start SD Write
  3899. */
  3900. inline void gcode_M928() {
  3901. card.openLogFile(current_command_args);
  3902. }
  3903. #endif // SDSUPPORT
  3904. /**
  3905. * Sensitive pin test for M42, M226
  3906. */
  3907. static bool pin_is_protected(uint8_t pin) {
  3908. static const int sensitive_pins[] = SENSITIVE_PINS;
  3909. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3910. if (sensitive_pins[i] == pin) return true;
  3911. return false;
  3912. }
  3913. /**
  3914. * M42: Change pin status via GCode
  3915. *
  3916. * P<pin> Pin number (LED if omitted)
  3917. * S<byte> Pin status from 0 - 255
  3918. */
  3919. inline void gcode_M42() {
  3920. if (!code_seen('S')) return;
  3921. int pin_status = code_value_int();
  3922. if (pin_status < 0 || pin_status > 255) return;
  3923. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3924. if (pin_number < 0) return;
  3925. if (pin_is_protected(pin_number)) {
  3926. SERIAL_ERROR_START;
  3927. SERIAL_ERRORLNPGM(MSG_ERR_PROTECTED_PIN);
  3928. return;
  3929. }
  3930. pinMode(pin_number, OUTPUT);
  3931. digitalWrite(pin_number, pin_status);
  3932. analogWrite(pin_number, pin_status);
  3933. #if FAN_COUNT > 0
  3934. switch (pin_number) {
  3935. #if HAS_FAN0
  3936. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3937. #endif
  3938. #if HAS_FAN1
  3939. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3940. #endif
  3941. #if HAS_FAN2
  3942. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3943. #endif
  3944. }
  3945. #endif
  3946. }
  3947. #if ENABLED(PINS_DEBUGGING)
  3948. #include "pinsDebug.h"
  3949. /**
  3950. * M43: Pin report and debug
  3951. *
  3952. * E<bool> Enable / disable background endstop monitoring
  3953. * - Machine continues to operate
  3954. * - Reports changes to endstops
  3955. * - Toggles LED when an endstop changes
  3956. *
  3957. * or
  3958. *
  3959. * P<pin> Pin to read or watch. If omitted, read/watch all pins.
  3960. * W<bool> Watch pins -reporting changes- until reset, click, or M108.
  3961. * I<bool> Flag to ignore Marlin's pin protection.
  3962. *
  3963. */
  3964. inline void gcode_M43() {
  3965. // Enable or disable endstop monitoring
  3966. if (code_seen('E')) {
  3967. endstop_monitor_flag = code_value_bool();
  3968. SERIAL_PROTOCOLPGM("endstop monitor ");
  3969. SERIAL_PROTOCOL(endstop_monitor_flag ? "en" : "dis");
  3970. SERIAL_PROTOCOLLNPGM("abled");
  3971. return;
  3972. }
  3973. // Get the range of pins to test or watch
  3974. int first_pin = 0, last_pin = NUM_DIGITAL_PINS - 1;
  3975. if (code_seen('P')) {
  3976. first_pin = last_pin = code_value_byte();
  3977. if (first_pin > NUM_DIGITAL_PINS - 1) return;
  3978. }
  3979. bool ignore_protection = code_seen('I') ? code_value_bool() : false;
  3980. // Watch until click, M108, or reset
  3981. if (code_seen('W') && code_value_bool()) { // watch digital pins
  3982. byte pin_state[last_pin - first_pin + 1];
  3983. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3984. if (pin_is_protected(pin) && !ignore_protection) continue;
  3985. pinMode(pin, INPUT_PULLUP);
  3986. // if (IS_ANALOG(pin))
  3987. // pin_state[pin - first_pin] = analogRead(pin - analogInputToDigitalPin(0)); // int16_t pin_state[...]
  3988. // else
  3989. pin_state[pin - first_pin] = digitalRead(pin);
  3990. }
  3991. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  3992. wait_for_user = true;
  3993. #endif
  3994. for(;;) {
  3995. for (int8_t pin = first_pin; pin <= last_pin; pin++) {
  3996. if (pin_is_protected(pin)) continue;
  3997. byte val;
  3998. // if (IS_ANALOG(pin))
  3999. // val = analogRead(pin - analogInputToDigitalPin(0)); // int16_t val
  4000. // else
  4001. val = digitalRead(pin);
  4002. if (val != pin_state[pin - first_pin]) {
  4003. report_pin_state(pin);
  4004. pin_state[pin - first_pin] = val;
  4005. }
  4006. }
  4007. #if ENABLED(EMERGENCY_PARSER) || ENABLED(ULTIPANEL)
  4008. if (!wait_for_user) break;
  4009. #endif
  4010. safe_delay(500);
  4011. }
  4012. return;
  4013. }
  4014. // Report current state of selected pin(s)
  4015. for (uint8_t pin = first_pin; pin <= last_pin; pin++)
  4016. report_pin_state_extended(pin, ignore_protection);
  4017. }
  4018. #endif // PINS_DEBUGGING
  4019. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  4020. /**
  4021. * M48: Z probe repeatability measurement function.
  4022. *
  4023. * Usage:
  4024. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  4025. * P = Number of sampled points (4-50, default 10)
  4026. * X = Sample X position
  4027. * Y = Sample Y position
  4028. * V = Verbose level (0-4, default=1)
  4029. * E = Engage Z probe for each reading
  4030. * L = Number of legs of movement before probe
  4031. * S = Schizoid (Or Star if you prefer)
  4032. *
  4033. * This function assumes the bed has been homed. Specifically, that a G28 command
  4034. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  4035. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  4036. * regenerated.
  4037. */
  4038. inline void gcode_M48() {
  4039. if (axis_unhomed_error(true, true, true)) return;
  4040. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  4041. if (verbose_level < 0 || verbose_level > 4) {
  4042. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  4043. return;
  4044. }
  4045. if (verbose_level > 0)
  4046. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
  4047. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  4048. if (n_samples < 4 || n_samples > 50) {
  4049. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  4050. return;
  4051. }
  4052. float X_current = current_position[X_AXIS],
  4053. Y_current = current_position[Y_AXIS];
  4054. bool stow_probe_after_each = code_seen('E');
  4055. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  4056. #if DISABLED(DELTA)
  4057. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  4058. out_of_range_error(PSTR("X"));
  4059. return;
  4060. }
  4061. #endif
  4062. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  4063. #if DISABLED(DELTA)
  4064. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  4065. out_of_range_error(PSTR("Y"));
  4066. return;
  4067. }
  4068. #else
  4069. float pos[XYZ] = { X_probe_location, Y_probe_location, 0 };
  4070. if (!position_is_reachable(pos, true)) {
  4071. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  4072. return;
  4073. }
  4074. #endif
  4075. bool seen_L = code_seen('L');
  4076. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  4077. if (n_legs > 15) {
  4078. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  4079. return;
  4080. }
  4081. if (n_legs == 1) n_legs = 2;
  4082. bool schizoid_flag = code_seen('S');
  4083. if (schizoid_flag && !seen_L) n_legs = 7;
  4084. /**
  4085. * Now get everything to the specified probe point So we can safely do a
  4086. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  4087. * we don't want to use that as a starting point for each probe.
  4088. */
  4089. if (verbose_level > 2)
  4090. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  4091. // Disable bed level correction in M48 because we want the raw data when we probe
  4092. #if HAS_ABL
  4093. reset_bed_level();
  4094. #endif
  4095. setup_for_endstop_or_probe_move();
  4096. // Move to the first point, deploy, and probe
  4097. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  4098. randomSeed(millis());
  4099. double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
  4100. for (uint8_t n = 0; n < n_samples; n++) {
  4101. if (n_legs) {
  4102. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  4103. float angle = random(0.0, 360.0),
  4104. radius = random(
  4105. #if ENABLED(DELTA)
  4106. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  4107. #else
  4108. 5, X_MAX_LENGTH / 8
  4109. #endif
  4110. );
  4111. if (verbose_level > 3) {
  4112. SERIAL_ECHOPAIR("Starting radius: ", radius);
  4113. SERIAL_ECHOPAIR(" angle: ", angle);
  4114. SERIAL_ECHOPGM(" Direction: ");
  4115. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  4116. SERIAL_ECHOLNPGM("Clockwise");
  4117. }
  4118. for (uint8_t l = 0; l < n_legs - 1; l++) {
  4119. double delta_angle;
  4120. if (schizoid_flag)
  4121. // The points of a 5 point star are 72 degrees apart. We need to
  4122. // skip a point and go to the next one on the star.
  4123. delta_angle = dir * 2.0 * 72.0;
  4124. else
  4125. // If we do this line, we are just trying to move further
  4126. // around the circle.
  4127. delta_angle = dir * (float) random(25, 45);
  4128. angle += delta_angle;
  4129. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  4130. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  4131. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  4132. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  4133. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  4134. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  4135. #if DISABLED(DELTA)
  4136. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  4137. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  4138. #else
  4139. // If we have gone out too far, we can do a simple fix and scale the numbers
  4140. // back in closer to the origin.
  4141. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  4142. X_current /= 1.25;
  4143. Y_current /= 1.25;
  4144. if (verbose_level > 3) {
  4145. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  4146. SERIAL_ECHOLNPAIR(", ", Y_current);
  4147. }
  4148. }
  4149. #endif
  4150. if (verbose_level > 3) {
  4151. SERIAL_PROTOCOLPGM("Going to:");
  4152. SERIAL_ECHOPAIR(" X", X_current);
  4153. SERIAL_ECHOPAIR(" Y", Y_current);
  4154. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  4155. }
  4156. do_blocking_move_to_xy(X_current, Y_current);
  4157. } // n_legs loop
  4158. } // n_legs
  4159. // Probe a single point
  4160. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
  4161. /**
  4162. * Get the current mean for the data points we have so far
  4163. */
  4164. double sum = 0.0;
  4165. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  4166. mean = sum / (n + 1);
  4167. NOMORE(min, sample_set[n]);
  4168. NOLESS(max, sample_set[n]);
  4169. /**
  4170. * Now, use that mean to calculate the standard deviation for the
  4171. * data points we have so far
  4172. */
  4173. sum = 0.0;
  4174. for (uint8_t j = 0; j <= n; j++)
  4175. sum += sq(sample_set[j] - mean);
  4176. sigma = sqrt(sum / (n + 1));
  4177. if (verbose_level > 0) {
  4178. if (verbose_level > 1) {
  4179. SERIAL_PROTOCOL(n + 1);
  4180. SERIAL_PROTOCOLPGM(" of ");
  4181. SERIAL_PROTOCOL((int)n_samples);
  4182. SERIAL_PROTOCOLPGM(": z: ");
  4183. SERIAL_PROTOCOL_F(sample_set[n], 3);
  4184. if (verbose_level > 2) {
  4185. SERIAL_PROTOCOLPGM(" mean: ");
  4186. SERIAL_PROTOCOL_F(mean, 4);
  4187. SERIAL_PROTOCOLPGM(" sigma: ");
  4188. SERIAL_PROTOCOL_F(sigma, 6);
  4189. SERIAL_PROTOCOLPGM(" min: ");
  4190. SERIAL_PROTOCOL_F(min, 3);
  4191. SERIAL_PROTOCOLPGM(" max: ");
  4192. SERIAL_PROTOCOL_F(max, 3);
  4193. SERIAL_PROTOCOLPGM(" range: ");
  4194. SERIAL_PROTOCOL_F(max-min, 3);
  4195. }
  4196. }
  4197. SERIAL_EOL;
  4198. }
  4199. } // End of probe loop
  4200. if (STOW_PROBE()) return;
  4201. SERIAL_PROTOCOLPGM("Finished!");
  4202. SERIAL_EOL;
  4203. if (verbose_level > 0) {
  4204. SERIAL_PROTOCOLPGM("Mean: ");
  4205. SERIAL_PROTOCOL_F(mean, 6);
  4206. SERIAL_PROTOCOLPGM(" Min: ");
  4207. SERIAL_PROTOCOL_F(min, 3);
  4208. SERIAL_PROTOCOLPGM(" Max: ");
  4209. SERIAL_PROTOCOL_F(max, 3);
  4210. SERIAL_PROTOCOLPGM(" Range: ");
  4211. SERIAL_PROTOCOL_F(max-min, 3);
  4212. SERIAL_EOL;
  4213. }
  4214. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  4215. SERIAL_PROTOCOL_F(sigma, 6);
  4216. SERIAL_EOL;
  4217. SERIAL_EOL;
  4218. clean_up_after_endstop_or_probe_move();
  4219. report_current_position();
  4220. }
  4221. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  4222. /**
  4223. * M75: Start print timer
  4224. */
  4225. inline void gcode_M75() { print_job_timer.start(); }
  4226. /**
  4227. * M76: Pause print timer
  4228. */
  4229. inline void gcode_M76() { print_job_timer.pause(); }
  4230. /**
  4231. * M77: Stop print timer
  4232. */
  4233. inline void gcode_M77() { print_job_timer.stop(); }
  4234. #if ENABLED(PRINTCOUNTER)
  4235. /**
  4236. * M78: Show print statistics
  4237. */
  4238. inline void gcode_M78() {
  4239. // "M78 S78" will reset the statistics
  4240. if (code_seen('S') && code_value_int() == 78)
  4241. print_job_timer.initStats();
  4242. else
  4243. print_job_timer.showStats();
  4244. }
  4245. #endif
  4246. /**
  4247. * M104: Set hot end temperature
  4248. */
  4249. inline void gcode_M104() {
  4250. if (get_target_extruder_from_command(104)) return;
  4251. if (DEBUGGING(DRYRUN)) return;
  4252. #if ENABLED(SINGLENOZZLE)
  4253. if (target_extruder != active_extruder) return;
  4254. #endif
  4255. if (code_seen('S')) {
  4256. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4257. #if ENABLED(DUAL_X_CARRIAGE)
  4258. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4259. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4260. #endif
  4261. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4262. /**
  4263. * Stop the timer at the end of print, starting is managed by
  4264. * 'heat and wait' M109.
  4265. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4266. * stand by mode, for instance in a dual extruder setup, without affecting
  4267. * the running print timer.
  4268. */
  4269. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4270. print_job_timer.stop();
  4271. LCD_MESSAGEPGM(WELCOME_MSG);
  4272. }
  4273. #endif
  4274. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4275. }
  4276. }
  4277. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4278. void print_heaterstates() {
  4279. #if HAS_TEMP_HOTEND
  4280. SERIAL_PROTOCOLPGM(" T:");
  4281. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  4282. SERIAL_PROTOCOLPGM(" /");
  4283. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  4284. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4285. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  4286. SERIAL_CHAR(')');
  4287. #endif
  4288. #endif
  4289. #if HAS_TEMP_BED
  4290. SERIAL_PROTOCOLPGM(" B:");
  4291. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  4292. SERIAL_PROTOCOLPGM(" /");
  4293. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  4294. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4295. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  4296. SERIAL_CHAR(')');
  4297. #endif
  4298. #endif
  4299. #if HOTENDS > 1
  4300. HOTEND_LOOP() {
  4301. SERIAL_PROTOCOLPAIR(" T", e);
  4302. SERIAL_PROTOCOLCHAR(':');
  4303. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  4304. SERIAL_PROTOCOLPGM(" /");
  4305. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  4306. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  4307. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  4308. SERIAL_CHAR(')');
  4309. #endif
  4310. }
  4311. #endif
  4312. SERIAL_PROTOCOLPGM(" @:");
  4313. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  4314. #if HAS_TEMP_BED
  4315. SERIAL_PROTOCOLPGM(" B@:");
  4316. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  4317. #endif
  4318. #if HOTENDS > 1
  4319. HOTEND_LOOP() {
  4320. SERIAL_PROTOCOLPAIR(" @", e);
  4321. SERIAL_PROTOCOLCHAR(':');
  4322. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  4323. }
  4324. #endif
  4325. }
  4326. #endif
  4327. /**
  4328. * M105: Read hot end and bed temperature
  4329. */
  4330. inline void gcode_M105() {
  4331. if (get_target_extruder_from_command(105)) return;
  4332. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  4333. SERIAL_PROTOCOLPGM(MSG_OK);
  4334. print_heaterstates();
  4335. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  4336. SERIAL_ERROR_START;
  4337. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  4338. #endif
  4339. SERIAL_EOL;
  4340. }
  4341. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  4342. static uint8_t auto_report_temp_interval;
  4343. static millis_t next_temp_report_ms;
  4344. /**
  4345. * M155: Set temperature auto-report interval. M155 S<seconds>
  4346. */
  4347. inline void gcode_M155() {
  4348. if (code_seen('S')) {
  4349. auto_report_temp_interval = code_value_byte();
  4350. NOMORE(auto_report_temp_interval, 60);
  4351. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4352. }
  4353. }
  4354. inline void auto_report_temperatures() {
  4355. if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) {
  4356. next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval;
  4357. print_heaterstates();
  4358. }
  4359. }
  4360. #endif // AUTO_REPORT_TEMPERATURES
  4361. #if FAN_COUNT > 0
  4362. /**
  4363. * M106: Set Fan Speed
  4364. *
  4365. * S<int> Speed between 0-255
  4366. * P<index> Fan index, if more than one fan
  4367. */
  4368. inline void gcode_M106() {
  4369. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  4370. p = code_seen('P') ? code_value_ushort() : 0;
  4371. NOMORE(s, 255);
  4372. if (p < FAN_COUNT) fanSpeeds[p] = s;
  4373. }
  4374. /**
  4375. * M107: Fan Off
  4376. */
  4377. inline void gcode_M107() {
  4378. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  4379. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  4380. }
  4381. #endif // FAN_COUNT > 0
  4382. #if DISABLED(EMERGENCY_PARSER)
  4383. /**
  4384. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  4385. */
  4386. inline void gcode_M108() { wait_for_heatup = false; }
  4387. /**
  4388. * M112: Emergency Stop
  4389. */
  4390. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  4391. /**
  4392. * M410: Quickstop - Abort all planned moves
  4393. *
  4394. * This will stop the carriages mid-move, so most likely they
  4395. * will be out of sync with the stepper position after this.
  4396. */
  4397. inline void gcode_M410() { quickstop_stepper(); }
  4398. #endif
  4399. #ifndef MIN_COOLING_SLOPE_DEG
  4400. #define MIN_COOLING_SLOPE_DEG 1.50
  4401. #endif
  4402. #ifndef MIN_COOLING_SLOPE_TIME
  4403. #define MIN_COOLING_SLOPE_TIME 60
  4404. #endif
  4405. /**
  4406. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  4407. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  4408. */
  4409. inline void gcode_M109() {
  4410. if (get_target_extruder_from_command(109)) return;
  4411. if (DEBUGGING(DRYRUN)) return;
  4412. #if ENABLED(SINGLENOZZLE)
  4413. if (target_extruder != active_extruder) return;
  4414. #endif
  4415. bool no_wait_for_cooling = code_seen('S');
  4416. if (no_wait_for_cooling || code_seen('R')) {
  4417. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  4418. #if ENABLED(DUAL_X_CARRIAGE)
  4419. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  4420. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  4421. #endif
  4422. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4423. /**
  4424. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  4425. * stand by mode, for instance in a dual extruder setup, without affecting
  4426. * the running print timer.
  4427. */
  4428. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  4429. print_job_timer.stop();
  4430. LCD_MESSAGEPGM(WELCOME_MSG);
  4431. }
  4432. /**
  4433. * We do not check if the timer is already running because this check will
  4434. * be done for us inside the Stopwatch::start() method thus a running timer
  4435. * will not restart.
  4436. */
  4437. else print_job_timer.start();
  4438. #endif
  4439. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  4440. }
  4441. #if ENABLED(AUTOTEMP)
  4442. planner.autotemp_M109();
  4443. #endif
  4444. #if TEMP_RESIDENCY_TIME > 0
  4445. millis_t residency_start_ms = 0;
  4446. // Loop until the temperature has stabilized
  4447. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  4448. #else
  4449. // Loop until the temperature is very close target
  4450. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  4451. #endif //TEMP_RESIDENCY_TIME > 0
  4452. float theTarget = -1.0, old_temp = 9999.0;
  4453. bool wants_to_cool = false;
  4454. wait_for_heatup = true;
  4455. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4456. KEEPALIVE_STATE(NOT_BUSY);
  4457. do {
  4458. // Target temperature might be changed during the loop
  4459. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  4460. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  4461. theTarget = thermalManager.degTargetHotend(target_extruder);
  4462. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4463. if (no_wait_for_cooling && wants_to_cool) break;
  4464. }
  4465. now = millis();
  4466. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  4467. next_temp_ms = now + 1000UL;
  4468. print_heaterstates();
  4469. #if TEMP_RESIDENCY_TIME > 0
  4470. SERIAL_PROTOCOLPGM(" W:");
  4471. if (residency_start_ms) {
  4472. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4473. SERIAL_PROTOCOLLN(rem);
  4474. }
  4475. else {
  4476. SERIAL_PROTOCOLLNPGM("?");
  4477. }
  4478. #else
  4479. SERIAL_EOL;
  4480. #endif
  4481. }
  4482. idle();
  4483. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4484. float temp = thermalManager.degHotend(target_extruder);
  4485. #if TEMP_RESIDENCY_TIME > 0
  4486. float temp_diff = fabs(theTarget - temp);
  4487. if (!residency_start_ms) {
  4488. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  4489. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  4490. }
  4491. else if (temp_diff > TEMP_HYSTERESIS) {
  4492. // Restart the timer whenever the temperature falls outside the hysteresis.
  4493. residency_start_ms = now;
  4494. }
  4495. #endif //TEMP_RESIDENCY_TIME > 0
  4496. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  4497. if (wants_to_cool) {
  4498. // break after MIN_COOLING_SLOPE_TIME seconds
  4499. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  4500. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4501. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  4502. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  4503. old_temp = temp;
  4504. }
  4505. }
  4506. } while (wait_for_heatup && TEMP_CONDITIONS);
  4507. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  4508. KEEPALIVE_STATE(IN_HANDLER);
  4509. }
  4510. #if HAS_TEMP_BED
  4511. #ifndef MIN_COOLING_SLOPE_DEG_BED
  4512. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  4513. #endif
  4514. #ifndef MIN_COOLING_SLOPE_TIME_BED
  4515. #define MIN_COOLING_SLOPE_TIME_BED 60
  4516. #endif
  4517. /**
  4518. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  4519. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  4520. */
  4521. inline void gcode_M190() {
  4522. if (DEBUGGING(DRYRUN)) return;
  4523. LCD_MESSAGEPGM(MSG_BED_HEATING);
  4524. bool no_wait_for_cooling = code_seen('S');
  4525. if (no_wait_for_cooling || code_seen('R')) {
  4526. thermalManager.setTargetBed(code_value_temp_abs());
  4527. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  4528. if (code_value_temp_abs() > BED_MINTEMP) {
  4529. /**
  4530. * We start the timer when 'heating and waiting' command arrives, LCD
  4531. * functions never wait. Cooling down managed by extruders.
  4532. *
  4533. * We do not check if the timer is already running because this check will
  4534. * be done for us inside the Stopwatch::start() method thus a running timer
  4535. * will not restart.
  4536. */
  4537. print_job_timer.start();
  4538. }
  4539. #endif
  4540. }
  4541. #if TEMP_BED_RESIDENCY_TIME > 0
  4542. millis_t residency_start_ms = 0;
  4543. // Loop until the temperature has stabilized
  4544. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  4545. #else
  4546. // Loop until the temperature is very close target
  4547. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  4548. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4549. float theTarget = -1.0, old_temp = 9999.0;
  4550. bool wants_to_cool = false;
  4551. wait_for_heatup = true;
  4552. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  4553. KEEPALIVE_STATE(NOT_BUSY);
  4554. target_extruder = active_extruder; // for print_heaterstates
  4555. do {
  4556. // Target temperature might be changed during the loop
  4557. if (theTarget != thermalManager.degTargetBed()) {
  4558. wants_to_cool = thermalManager.isCoolingBed();
  4559. theTarget = thermalManager.degTargetBed();
  4560. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  4561. if (no_wait_for_cooling && wants_to_cool) break;
  4562. }
  4563. now = millis();
  4564. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  4565. next_temp_ms = now + 1000UL;
  4566. print_heaterstates();
  4567. #if TEMP_BED_RESIDENCY_TIME > 0
  4568. SERIAL_PROTOCOLPGM(" W:");
  4569. if (residency_start_ms) {
  4570. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  4571. SERIAL_PROTOCOLLN(rem);
  4572. }
  4573. else {
  4574. SERIAL_PROTOCOLLNPGM("?");
  4575. }
  4576. #else
  4577. SERIAL_EOL;
  4578. #endif
  4579. }
  4580. idle();
  4581. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  4582. float temp = thermalManager.degBed();
  4583. #if TEMP_BED_RESIDENCY_TIME > 0
  4584. float temp_diff = fabs(theTarget - temp);
  4585. if (!residency_start_ms) {
  4586. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  4587. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  4588. }
  4589. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  4590. // Restart the timer whenever the temperature falls outside the hysteresis.
  4591. residency_start_ms = now;
  4592. }
  4593. #endif //TEMP_BED_RESIDENCY_TIME > 0
  4594. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  4595. if (wants_to_cool) {
  4596. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  4597. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  4598. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  4599. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  4600. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  4601. old_temp = temp;
  4602. }
  4603. }
  4604. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  4605. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  4606. KEEPALIVE_STATE(IN_HANDLER);
  4607. }
  4608. #endif // HAS_TEMP_BED
  4609. /**
  4610. * M110: Set Current Line Number
  4611. */
  4612. inline void gcode_M110() {
  4613. if (code_seen('N')) gcode_N = code_value_long();
  4614. }
  4615. /**
  4616. * M111: Set the debug level
  4617. */
  4618. inline void gcode_M111() {
  4619. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4620. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4621. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4622. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4623. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4624. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4625. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4626. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4627. #endif
  4628. const static char* const debug_strings[] PROGMEM = {
  4629. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4630. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4631. str_debug_32
  4632. #endif
  4633. };
  4634. SERIAL_ECHO_START;
  4635. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4636. if (marlin_debug_flags) {
  4637. uint8_t comma = 0;
  4638. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4639. if (TEST(marlin_debug_flags, i)) {
  4640. if (comma++) SERIAL_CHAR(',');
  4641. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4642. }
  4643. }
  4644. }
  4645. else {
  4646. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4647. }
  4648. SERIAL_EOL;
  4649. }
  4650. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4651. /**
  4652. * M113: Get or set Host Keepalive interval (0 to disable)
  4653. *
  4654. * S<seconds> Optional. Set the keepalive interval.
  4655. */
  4656. inline void gcode_M113() {
  4657. if (code_seen('S')) {
  4658. host_keepalive_interval = code_value_byte();
  4659. NOMORE(host_keepalive_interval, 60);
  4660. }
  4661. else {
  4662. SERIAL_ECHO_START;
  4663. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4664. }
  4665. }
  4666. #endif
  4667. #if ENABLED(BARICUDA)
  4668. #if HAS_HEATER_1
  4669. /**
  4670. * M126: Heater 1 valve open
  4671. */
  4672. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4673. /**
  4674. * M127: Heater 1 valve close
  4675. */
  4676. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4677. #endif
  4678. #if HAS_HEATER_2
  4679. /**
  4680. * M128: Heater 2 valve open
  4681. */
  4682. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4683. /**
  4684. * M129: Heater 2 valve close
  4685. */
  4686. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4687. #endif
  4688. #endif //BARICUDA
  4689. /**
  4690. * M140: Set bed temperature
  4691. */
  4692. inline void gcode_M140() {
  4693. if (DEBUGGING(DRYRUN)) return;
  4694. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4695. }
  4696. #if ENABLED(ULTIPANEL)
  4697. /**
  4698. * M145: Set the heatup state for a material in the LCD menu
  4699. * S<material> (0=PLA, 1=ABS)
  4700. * H<hotend temp>
  4701. * B<bed temp>
  4702. * F<fan speed>
  4703. */
  4704. inline void gcode_M145() {
  4705. uint8_t material = code_seen('S') ? (uint8_t)code_value_int() : 0;
  4706. if (material >= COUNT(lcd_preheat_hotend_temp)) {
  4707. SERIAL_ERROR_START;
  4708. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4709. }
  4710. else {
  4711. int v;
  4712. if (code_seen('H')) {
  4713. v = code_value_int();
  4714. lcd_preheat_hotend_temp[material] = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4715. }
  4716. if (code_seen('F')) {
  4717. v = code_value_int();
  4718. lcd_preheat_fan_speed[material] = constrain(v, 0, 255);
  4719. }
  4720. #if TEMP_SENSOR_BED != 0
  4721. if (code_seen('B')) {
  4722. v = code_value_int();
  4723. lcd_preheat_bed_temp[material] = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4724. }
  4725. #endif
  4726. }
  4727. }
  4728. #endif // ULTIPANEL
  4729. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4730. /**
  4731. * M149: Set temperature units
  4732. */
  4733. inline void gcode_M149() {
  4734. if (code_seen('C')) set_input_temp_units(TEMPUNIT_C);
  4735. else if (code_seen('K')) set_input_temp_units(TEMPUNIT_K);
  4736. else if (code_seen('F')) set_input_temp_units(TEMPUNIT_F);
  4737. }
  4738. #endif
  4739. #if HAS_POWER_SWITCH
  4740. /**
  4741. * M80: Turn on Power Supply
  4742. */
  4743. inline void gcode_M80() {
  4744. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4745. /**
  4746. * If you have a switch on suicide pin, this is useful
  4747. * if you want to start another print with suicide feature after
  4748. * a print without suicide...
  4749. */
  4750. #if HAS_SUICIDE
  4751. OUT_WRITE(SUICIDE_PIN, HIGH);
  4752. #endif
  4753. #if ENABLED(ULTIPANEL)
  4754. powersupply = true;
  4755. LCD_MESSAGEPGM(WELCOME_MSG);
  4756. lcd_update();
  4757. #endif
  4758. }
  4759. #endif // HAS_POWER_SWITCH
  4760. /**
  4761. * M81: Turn off Power, including Power Supply, if there is one.
  4762. *
  4763. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4764. */
  4765. inline void gcode_M81() {
  4766. thermalManager.disable_all_heaters();
  4767. stepper.finish_and_disable();
  4768. #if FAN_COUNT > 0
  4769. #if FAN_COUNT > 1
  4770. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4771. #else
  4772. fanSpeeds[0] = 0;
  4773. #endif
  4774. #endif
  4775. delay(1000); // Wait 1 second before switching off
  4776. #if HAS_SUICIDE
  4777. stepper.synchronize();
  4778. suicide();
  4779. #elif HAS_POWER_SWITCH
  4780. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4781. #endif
  4782. #if ENABLED(ULTIPANEL)
  4783. #if HAS_POWER_SWITCH
  4784. powersupply = false;
  4785. #endif
  4786. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4787. lcd_update();
  4788. #endif
  4789. }
  4790. /**
  4791. * M82: Set E codes absolute (default)
  4792. */
  4793. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4794. /**
  4795. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4796. */
  4797. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4798. /**
  4799. * M18, M84: Disable all stepper motors
  4800. */
  4801. inline void gcode_M18_M84() {
  4802. if (code_seen('S')) {
  4803. stepper_inactive_time = code_value_millis_from_seconds();
  4804. }
  4805. else {
  4806. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4807. if (all_axis) {
  4808. stepper.finish_and_disable();
  4809. }
  4810. else {
  4811. stepper.synchronize();
  4812. if (code_seen('X')) disable_x();
  4813. if (code_seen('Y')) disable_y();
  4814. if (code_seen('Z')) disable_z();
  4815. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4816. if (code_seen('E')) {
  4817. disable_e0();
  4818. disable_e1();
  4819. disable_e2();
  4820. disable_e3();
  4821. }
  4822. #endif
  4823. }
  4824. }
  4825. }
  4826. /**
  4827. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4828. */
  4829. inline void gcode_M85() {
  4830. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4831. }
  4832. /**
  4833. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4834. * (Follows the same syntax as G92)
  4835. */
  4836. inline void gcode_M92() {
  4837. LOOP_XYZE(i) {
  4838. if (code_seen(axis_codes[i])) {
  4839. if (i == E_AXIS) {
  4840. float value = code_value_per_axis_unit(i);
  4841. if (value < 20.0) {
  4842. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4843. planner.max_jerk[E_AXIS] *= factor;
  4844. planner.max_feedrate_mm_s[E_AXIS] *= factor;
  4845. planner.max_acceleration_steps_per_s2[E_AXIS] *= factor;
  4846. }
  4847. planner.axis_steps_per_mm[E_AXIS] = value;
  4848. }
  4849. else {
  4850. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4851. }
  4852. }
  4853. }
  4854. planner.refresh_positioning();
  4855. }
  4856. /**
  4857. * Output the current position to serial
  4858. */
  4859. static void report_current_position() {
  4860. SERIAL_PROTOCOLPGM("X:");
  4861. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4862. SERIAL_PROTOCOLPGM(" Y:");
  4863. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4864. SERIAL_PROTOCOLPGM(" Z:");
  4865. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4866. SERIAL_PROTOCOLPGM(" E:");
  4867. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4868. stepper.report_positions();
  4869. #if IS_SCARA
  4870. SERIAL_PROTOCOLPAIR("SCARA Theta:", stepper.get_axis_position_degrees(A_AXIS));
  4871. SERIAL_PROTOCOLLNPAIR(" Psi+Theta:", stepper.get_axis_position_degrees(B_AXIS));
  4872. SERIAL_EOL;
  4873. #endif
  4874. }
  4875. /**
  4876. * M114: Output current position to serial port
  4877. */
  4878. inline void gcode_M114() { report_current_position(); }
  4879. /**
  4880. * M115: Capabilities string
  4881. */
  4882. inline void gcode_M115() {
  4883. SERIAL_PROTOCOLLNPGM(MSG_M115_REPORT);
  4884. #if ENABLED(EXTENDED_CAPABILITIES_REPORT)
  4885. // EEPROM (M500, M501)
  4886. SERIAL_PROTOCOLPGM("Cap:");
  4887. #if ENABLED(EEPROM_SETTINGS)
  4888. SERIAL_PROTOCOLLNPGM("EEPROM:1");
  4889. #else
  4890. SERIAL_PROTOCOLLNPGM("EEPROM:0");
  4891. #endif
  4892. // AUTOREPORT_TEMP (M155)
  4893. SERIAL_PROTOCOLPGM("Cap:");
  4894. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  4895. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:1");
  4896. #else
  4897. SERIAL_PROTOCOLLNPGM("AUTOREPORT_TEMP:0");
  4898. #endif
  4899. // PROGRESS (M530 S L, M531 <file>, M532 X L)
  4900. SERIAL_PROTOCOLPGM("Cap:");
  4901. SERIAL_PROTOCOLPGM("PROGRESS:0");
  4902. // AUTOLEVEL (G29)
  4903. SERIAL_PROTOCOLPGM("Cap:");
  4904. #if HAS_ABL
  4905. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:1");
  4906. #else
  4907. SERIAL_PROTOCOLLNPGM("AUTOLEVEL:0");
  4908. #endif
  4909. // Z_PROBE (G30)
  4910. SERIAL_PROTOCOLPGM("Cap:");
  4911. #if HAS_BED_PROBE
  4912. SERIAL_PROTOCOLLNPGM("Z_PROBE:1");
  4913. #else
  4914. SERIAL_PROTOCOLLNPGM("Z_PROBE:0");
  4915. #endif
  4916. // SOFTWARE_POWER (G30)
  4917. SERIAL_PROTOCOLPGM("Cap:");
  4918. #if HAS_POWER_SWITCH
  4919. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:1");
  4920. #else
  4921. SERIAL_PROTOCOLLNPGM("SOFTWARE_POWER:0");
  4922. #endif
  4923. // TOGGLE_LIGHTS (M355)
  4924. SERIAL_PROTOCOLPGM("Cap:");
  4925. #if HAS_CASE_LIGHT
  4926. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:1");
  4927. #else
  4928. SERIAL_PROTOCOLLNPGM("TOGGLE_LIGHTS:0");
  4929. #endif
  4930. // EMERGENCY_PARSER (M108, M112, M410)
  4931. SERIAL_PROTOCOLPGM("Cap:");
  4932. #if ENABLED(EMERGENCY_PARSER)
  4933. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:1");
  4934. #else
  4935. SERIAL_PROTOCOLLNPGM("EMERGENCY_PARSER:0");
  4936. #endif
  4937. #endif // EXTENDED_CAPABILITIES_REPORT
  4938. }
  4939. /**
  4940. * M117: Set LCD Status Message
  4941. */
  4942. inline void gcode_M117() {
  4943. lcd_setstatus(current_command_args);
  4944. }
  4945. /**
  4946. * M119: Output endstop states to serial output
  4947. */
  4948. inline void gcode_M119() { endstops.M119(); }
  4949. /**
  4950. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4951. */
  4952. inline void gcode_M120() { endstops.enable_globally(true); }
  4953. /**
  4954. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4955. */
  4956. inline void gcode_M121() { endstops.enable_globally(false); }
  4957. #if ENABLED(BLINKM)
  4958. /**
  4959. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4960. */
  4961. inline void gcode_M150() {
  4962. SendColors(
  4963. code_seen('R') ? code_value_byte() : 0,
  4964. code_seen('U') ? code_value_byte() : 0,
  4965. code_seen('B') ? code_value_byte() : 0
  4966. );
  4967. }
  4968. #endif // BLINKM
  4969. /**
  4970. * M200: Set filament diameter and set E axis units to cubic units
  4971. *
  4972. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4973. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4974. */
  4975. inline void gcode_M200() {
  4976. if (get_target_extruder_from_command(200)) return;
  4977. if (code_seen('D')) {
  4978. // setting any extruder filament size disables volumetric on the assumption that
  4979. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4980. // for all extruders
  4981. volumetric_enabled = (code_value_linear_units() != 0.0);
  4982. if (volumetric_enabled) {
  4983. filament_size[target_extruder] = code_value_linear_units();
  4984. // make sure all extruders have some sane value for the filament size
  4985. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4986. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4987. }
  4988. }
  4989. else {
  4990. //reserved for setting filament diameter via UFID or filament measuring device
  4991. return;
  4992. }
  4993. calculate_volumetric_multipliers();
  4994. }
  4995. /**
  4996. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4997. */
  4998. inline void gcode_M201() {
  4999. LOOP_XYZE(i) {
  5000. if (code_seen(axis_codes[i])) {
  5001. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  5002. }
  5003. }
  5004. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  5005. planner.reset_acceleration_rates();
  5006. }
  5007. #if 0 // Not used for Sprinter/grbl gen6
  5008. inline void gcode_M202() {
  5009. LOOP_XYZE(i) {
  5010. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  5011. }
  5012. }
  5013. #endif
  5014. /**
  5015. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  5016. */
  5017. inline void gcode_M203() {
  5018. LOOP_XYZE(i)
  5019. if (code_seen(axis_codes[i]))
  5020. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  5021. }
  5022. /**
  5023. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  5024. *
  5025. * P = Printing moves
  5026. * R = Retract only (no X, Y, Z) moves
  5027. * T = Travel (non printing) moves
  5028. *
  5029. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  5030. */
  5031. inline void gcode_M204() {
  5032. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  5033. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  5034. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  5035. }
  5036. if (code_seen('P')) {
  5037. planner.acceleration = code_value_linear_units();
  5038. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  5039. }
  5040. if (code_seen('R')) {
  5041. planner.retract_acceleration = code_value_linear_units();
  5042. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  5043. }
  5044. if (code_seen('T')) {
  5045. planner.travel_acceleration = code_value_linear_units();
  5046. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  5047. }
  5048. }
  5049. /**
  5050. * M205: Set Advanced Settings
  5051. *
  5052. * S = Min Feed Rate (units/s)
  5053. * T = Min Travel Feed Rate (units/s)
  5054. * B = Min Segment Time (µs)
  5055. * X = Max X Jerk (units/sec^2)
  5056. * Y = Max Y Jerk (units/sec^2)
  5057. * Z = Max Z Jerk (units/sec^2)
  5058. * E = Max E Jerk (units/sec^2)
  5059. */
  5060. inline void gcode_M205() {
  5061. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  5062. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  5063. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  5064. if (code_seen('X')) planner.max_jerk[X_AXIS] = code_value_axis_units(X_AXIS);
  5065. if (code_seen('Y')) planner.max_jerk[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5066. if (code_seen('Z')) planner.max_jerk[Z_AXIS] = code_value_axis_units(Z_AXIS);
  5067. if (code_seen('E')) planner.max_jerk[E_AXIS] = code_value_axis_units(E_AXIS);
  5068. }
  5069. /**
  5070. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  5071. */
  5072. inline void gcode_M206() {
  5073. LOOP_XYZ(i)
  5074. if (code_seen(axis_codes[i]))
  5075. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  5076. #if ENABLED(MORGAN_SCARA)
  5077. if (code_seen('T')) set_home_offset(A_AXIS, code_value_axis_units(A_AXIS)); // Theta
  5078. if (code_seen('P')) set_home_offset(B_AXIS, code_value_axis_units(B_AXIS)); // Psi
  5079. #endif
  5080. SYNC_PLAN_POSITION_KINEMATIC();
  5081. report_current_position();
  5082. }
  5083. #if ENABLED(DELTA)
  5084. /**
  5085. * M665: Set delta configurations
  5086. *
  5087. * L = diagonal rod
  5088. * R = delta radius
  5089. * S = segments per second
  5090. * A = Alpha (Tower 1) diagonal rod trim
  5091. * B = Beta (Tower 2) diagonal rod trim
  5092. * C = Gamma (Tower 3) diagonal rod trim
  5093. */
  5094. inline void gcode_M665() {
  5095. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  5096. if (code_seen('R')) delta_radius = code_value_linear_units();
  5097. if (code_seen('S')) delta_segments_per_second = code_value_float();
  5098. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  5099. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  5100. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  5101. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  5102. }
  5103. /**
  5104. * M666: Set delta endstop adjustment
  5105. */
  5106. inline void gcode_M666() {
  5107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5108. if (DEBUGGING(LEVELING)) {
  5109. SERIAL_ECHOLNPGM(">>> gcode_M666");
  5110. }
  5111. #endif
  5112. LOOP_XYZ(i) {
  5113. if (code_seen(axis_codes[i])) {
  5114. endstop_adj[i] = code_value_axis_units(i);
  5115. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5116. if (DEBUGGING(LEVELING)) {
  5117. SERIAL_ECHOPAIR("endstop_adj[", axis_codes[i]);
  5118. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  5119. }
  5120. #endif
  5121. }
  5122. }
  5123. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5124. if (DEBUGGING(LEVELING)) {
  5125. SERIAL_ECHOLNPGM("<<< gcode_M666");
  5126. }
  5127. #endif
  5128. }
  5129. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  5130. /**
  5131. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  5132. */
  5133. inline void gcode_M666() {
  5134. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  5135. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  5136. }
  5137. #endif // !DELTA && Z_DUAL_ENDSTOPS
  5138. #if ENABLED(FWRETRACT)
  5139. /**
  5140. * M207: Set firmware retraction values
  5141. *
  5142. * S[+units] retract_length
  5143. * W[+units] retract_length_swap (multi-extruder)
  5144. * F[units/min] retract_feedrate_mm_s
  5145. * Z[units] retract_zlift
  5146. */
  5147. inline void gcode_M207() {
  5148. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  5149. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5150. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  5151. #if EXTRUDERS > 1
  5152. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  5153. #endif
  5154. }
  5155. /**
  5156. * M208: Set firmware un-retraction values
  5157. *
  5158. * S[+units] retract_recover_length (in addition to M207 S*)
  5159. * W[+units] retract_recover_length_swap (multi-extruder)
  5160. * F[units/min] retract_recover_feedrate_mm_s
  5161. */
  5162. inline void gcode_M208() {
  5163. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  5164. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  5165. #if EXTRUDERS > 1
  5166. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  5167. #endif
  5168. }
  5169. /**
  5170. * M209: Enable automatic retract (M209 S1)
  5171. * For slicers that don't support G10/11, reversed extrude-only
  5172. * moves will be classified as retraction.
  5173. */
  5174. inline void gcode_M209() {
  5175. if (code_seen('S')) {
  5176. autoretract_enabled = code_value_bool();
  5177. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  5178. }
  5179. }
  5180. #endif // FWRETRACT
  5181. /**
  5182. * M211: Enable, Disable, and/or Report software endstops
  5183. *
  5184. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  5185. */
  5186. inline void gcode_M211() {
  5187. SERIAL_ECHO_START;
  5188. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5189. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  5190. #endif
  5191. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  5192. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5193. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  5194. #else
  5195. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS);
  5196. SERIAL_ECHOPGM(MSG_OFF);
  5197. #endif
  5198. SERIAL_ECHOPGM(MSG_SOFT_MIN);
  5199. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  5200. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  5201. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  5202. SERIAL_ECHOPGM(MSG_SOFT_MAX);
  5203. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  5204. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  5205. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  5206. }
  5207. #if HOTENDS > 1
  5208. /**
  5209. * M218 - set hotend offset (in linear units)
  5210. *
  5211. * T<tool>
  5212. * X<xoffset>
  5213. * Y<yoffset>
  5214. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  5215. */
  5216. inline void gcode_M218() {
  5217. if (get_target_extruder_from_command(218) || target_extruder == 0) return;
  5218. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  5219. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  5220. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5221. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  5222. #endif
  5223. SERIAL_ECHO_START;
  5224. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5225. HOTEND_LOOP() {
  5226. SERIAL_CHAR(' ');
  5227. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  5228. SERIAL_CHAR(',');
  5229. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  5230. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  5231. SERIAL_CHAR(',');
  5232. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  5233. #endif
  5234. }
  5235. SERIAL_EOL;
  5236. }
  5237. #endif // HOTENDS > 1
  5238. /**
  5239. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  5240. */
  5241. inline void gcode_M220() {
  5242. if (code_seen('S')) feedrate_percentage = code_value_int();
  5243. }
  5244. /**
  5245. * M221: Set extrusion percentage (M221 T0 S95)
  5246. */
  5247. inline void gcode_M221() {
  5248. if (get_target_extruder_from_command(221)) return;
  5249. if (code_seen('S'))
  5250. flow_percentage[target_extruder] = code_value_int();
  5251. }
  5252. /**
  5253. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  5254. */
  5255. inline void gcode_M226() {
  5256. if (code_seen('P')) {
  5257. int pin_number = code_value_int(),
  5258. pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  5259. if (pin_state >= -1 && pin_state <= 1 && pin_number > -1 && !pin_is_protected(pin_number)) {
  5260. int target = LOW;
  5261. stepper.synchronize();
  5262. pinMode(pin_number, INPUT);
  5263. switch (pin_state) {
  5264. case 1:
  5265. target = HIGH;
  5266. break;
  5267. case 0:
  5268. target = LOW;
  5269. break;
  5270. case -1:
  5271. target = !digitalRead(pin_number);
  5272. break;
  5273. }
  5274. while (digitalRead(pin_number) != target) idle();
  5275. } // pin_state -1 0 1 && pin_number > -1
  5276. } // code_seen('P')
  5277. }
  5278. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5279. /**
  5280. * M260: Send data to a I2C slave device
  5281. *
  5282. * This is a PoC, the formating and arguments for the GCODE will
  5283. * change to be more compatible, the current proposal is:
  5284. *
  5285. * M260 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  5286. *
  5287. * M260 B<byte-1 value in base 10>
  5288. * M260 B<byte-2 value in base 10>
  5289. * M260 B<byte-3 value in base 10>
  5290. *
  5291. * M260 S1 ; Send the buffered data and reset the buffer
  5292. * M260 R1 ; Reset the buffer without sending data
  5293. *
  5294. */
  5295. inline void gcode_M260() {
  5296. // Set the target address
  5297. if (code_seen('A')) i2c.address(code_value_byte());
  5298. // Add a new byte to the buffer
  5299. if (code_seen('B')) i2c.addbyte(code_value_byte());
  5300. // Flush the buffer to the bus
  5301. if (code_seen('S')) i2c.send();
  5302. // Reset and rewind the buffer
  5303. else if (code_seen('R')) i2c.reset();
  5304. }
  5305. /**
  5306. * M261: Request X bytes from I2C slave device
  5307. *
  5308. * Usage: M261 A<slave device address base 10> B<number of bytes>
  5309. */
  5310. inline void gcode_M261() {
  5311. if (code_seen('A')) i2c.address(code_value_byte());
  5312. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  5313. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  5314. i2c.relay(bytes);
  5315. }
  5316. else {
  5317. SERIAL_ERROR_START;
  5318. SERIAL_ERRORLN("Bad i2c request");
  5319. }
  5320. }
  5321. #endif // EXPERIMENTAL_I2CBUS
  5322. #if HAS_SERVOS
  5323. /**
  5324. * M280: Get or set servo position. P<index> [S<angle>]
  5325. */
  5326. inline void gcode_M280() {
  5327. if (!code_seen('P')) return;
  5328. int servo_index = code_value_int();
  5329. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  5330. if (code_seen('S'))
  5331. MOVE_SERVO(servo_index, code_value_int());
  5332. else {
  5333. SERIAL_ECHO_START;
  5334. SERIAL_ECHOPAIR(" Servo ", servo_index);
  5335. SERIAL_ECHOLNPAIR(": ", servo[servo_index].read());
  5336. }
  5337. }
  5338. else {
  5339. SERIAL_ERROR_START;
  5340. SERIAL_ECHOPAIR("Servo ", servo_index);
  5341. SERIAL_ECHOLNPGM(" out of range");
  5342. }
  5343. }
  5344. #endif // HAS_SERVOS
  5345. #if HAS_BUZZER
  5346. /**
  5347. * M300: Play beep sound S<frequency Hz> P<duration ms>
  5348. */
  5349. inline void gcode_M300() {
  5350. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  5351. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  5352. // Limits the tone duration to 0-5 seconds.
  5353. NOMORE(duration, 5000);
  5354. BUZZ(duration, frequency);
  5355. }
  5356. #endif // HAS_BUZZER
  5357. #if ENABLED(PIDTEMP)
  5358. /**
  5359. * M301: Set PID parameters P I D (and optionally C, L)
  5360. *
  5361. * P[float] Kp term
  5362. * I[float] Ki term (unscaled)
  5363. * D[float] Kd term (unscaled)
  5364. *
  5365. * With PID_EXTRUSION_SCALING:
  5366. *
  5367. * C[float] Kc term
  5368. * L[float] LPQ length
  5369. */
  5370. inline void gcode_M301() {
  5371. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  5372. // default behaviour (omitting E parameter) is to update for extruder 0 only
  5373. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  5374. if (e < HOTENDS) { // catch bad input value
  5375. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  5376. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  5377. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  5378. #if ENABLED(PID_EXTRUSION_SCALING)
  5379. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  5380. if (code_seen('L')) lpq_len = code_value_float();
  5381. NOMORE(lpq_len, LPQ_MAX_LEN);
  5382. #endif
  5383. thermalManager.updatePID();
  5384. SERIAL_ECHO_START;
  5385. #if ENABLED(PID_PARAMS_PER_HOTEND)
  5386. SERIAL_ECHOPAIR(" e:", e); // specify extruder in serial output
  5387. #endif // PID_PARAMS_PER_HOTEND
  5388. SERIAL_ECHOPAIR(" p:", PID_PARAM(Kp, e));
  5389. SERIAL_ECHOPAIR(" i:", unscalePID_i(PID_PARAM(Ki, e)));
  5390. SERIAL_ECHOPAIR(" d:", unscalePID_d(PID_PARAM(Kd, e)));
  5391. #if ENABLED(PID_EXTRUSION_SCALING)
  5392. //Kc does not have scaling applied above, or in resetting defaults
  5393. SERIAL_ECHOPAIR(" c:", PID_PARAM(Kc, e));
  5394. #endif
  5395. SERIAL_EOL;
  5396. }
  5397. else {
  5398. SERIAL_ERROR_START;
  5399. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  5400. }
  5401. }
  5402. #endif // PIDTEMP
  5403. #if ENABLED(PIDTEMPBED)
  5404. inline void gcode_M304() {
  5405. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  5406. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  5407. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  5408. thermalManager.updatePID();
  5409. SERIAL_ECHO_START;
  5410. SERIAL_ECHOPAIR(" p:", thermalManager.bedKp);
  5411. SERIAL_ECHOPAIR(" i:", unscalePID_i(thermalManager.bedKi));
  5412. SERIAL_ECHOLNPAIR(" d:", unscalePID_d(thermalManager.bedKd));
  5413. }
  5414. #endif // PIDTEMPBED
  5415. #if defined(CHDK) || HAS_PHOTOGRAPH
  5416. /**
  5417. * M240: Trigger a camera by emulating a Canon RC-1
  5418. * See http://www.doc-diy.net/photo/rc-1_hacked/
  5419. */
  5420. inline void gcode_M240() {
  5421. #ifdef CHDK
  5422. OUT_WRITE(CHDK, HIGH);
  5423. chdkHigh = millis();
  5424. chdkActive = true;
  5425. #elif HAS_PHOTOGRAPH
  5426. const uint8_t NUM_PULSES = 16;
  5427. const float PULSE_LENGTH = 0.01524;
  5428. for (int i = 0; i < NUM_PULSES; i++) {
  5429. WRITE(PHOTOGRAPH_PIN, HIGH);
  5430. _delay_ms(PULSE_LENGTH);
  5431. WRITE(PHOTOGRAPH_PIN, LOW);
  5432. _delay_ms(PULSE_LENGTH);
  5433. }
  5434. delay(7.33);
  5435. for (int i = 0; i < NUM_PULSES; i++) {
  5436. WRITE(PHOTOGRAPH_PIN, HIGH);
  5437. _delay_ms(PULSE_LENGTH);
  5438. WRITE(PHOTOGRAPH_PIN, LOW);
  5439. _delay_ms(PULSE_LENGTH);
  5440. }
  5441. #endif // !CHDK && HAS_PHOTOGRAPH
  5442. }
  5443. #endif // CHDK || PHOTOGRAPH_PIN
  5444. #if HAS_LCD_CONTRAST
  5445. /**
  5446. * M250: Read and optionally set the LCD contrast
  5447. */
  5448. inline void gcode_M250() {
  5449. if (code_seen('C')) set_lcd_contrast(code_value_int());
  5450. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  5451. SERIAL_PROTOCOL(lcd_contrast);
  5452. SERIAL_EOL;
  5453. }
  5454. #endif // HAS_LCD_CONTRAST
  5455. #if ENABLED(PREVENT_COLD_EXTRUSION)
  5456. /**
  5457. * M302: Allow cold extrudes, or set the minimum extrude temperature
  5458. *
  5459. * S<temperature> sets the minimum extrude temperature
  5460. * P<bool> enables (1) or disables (0) cold extrusion
  5461. *
  5462. * Examples:
  5463. *
  5464. * M302 ; report current cold extrusion state
  5465. * M302 P0 ; enable cold extrusion checking
  5466. * M302 P1 ; disables cold extrusion checking
  5467. * M302 S0 ; always allow extrusion (disables checking)
  5468. * M302 S170 ; only allow extrusion above 170
  5469. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  5470. */
  5471. inline void gcode_M302() {
  5472. bool seen_S = code_seen('S');
  5473. if (seen_S) {
  5474. thermalManager.extrude_min_temp = code_value_temp_abs();
  5475. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  5476. }
  5477. if (code_seen('P'))
  5478. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  5479. else if (!seen_S) {
  5480. // Report current state
  5481. SERIAL_ECHO_START;
  5482. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  5483. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  5484. SERIAL_ECHOLNPGM("C)");
  5485. }
  5486. }
  5487. #endif // PREVENT_COLD_EXTRUSION
  5488. /**
  5489. * M303: PID relay autotune
  5490. *
  5491. * S<temperature> sets the target temperature. (default 150C)
  5492. * E<extruder> (-1 for the bed) (default 0)
  5493. * C<cycles>
  5494. * U<bool> with a non-zero value will apply the result to current settings
  5495. */
  5496. inline void gcode_M303() {
  5497. #if HAS_PID_HEATING
  5498. int e = code_seen('E') ? code_value_int() : 0;
  5499. int c = code_seen('C') ? code_value_int() : 5;
  5500. bool u = code_seen('U') && code_value_bool();
  5501. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  5502. if (e >= 0 && e < HOTENDS)
  5503. target_extruder = e;
  5504. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  5505. thermalManager.PID_autotune(temp, e, c, u);
  5506. KEEPALIVE_STATE(IN_HANDLER);
  5507. #else
  5508. SERIAL_ERROR_START;
  5509. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  5510. #endif
  5511. }
  5512. #if ENABLED(MORGAN_SCARA)
  5513. bool SCARA_move_to_cal(uint8_t delta_a, uint8_t delta_b) {
  5514. if (IsRunning()) {
  5515. forward_kinematics_SCARA(delta_a, delta_b);
  5516. destination[X_AXIS] = LOGICAL_X_POSITION(cartes[X_AXIS]);
  5517. destination[Y_AXIS] = LOGICAL_Y_POSITION(cartes[Y_AXIS]);
  5518. destination[Z_AXIS] = current_position[Z_AXIS];
  5519. prepare_move_to_destination();
  5520. return true;
  5521. }
  5522. return false;
  5523. }
  5524. /**
  5525. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  5526. */
  5527. inline bool gcode_M360() {
  5528. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  5529. return SCARA_move_to_cal(0, 120);
  5530. }
  5531. /**
  5532. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  5533. */
  5534. inline bool gcode_M361() {
  5535. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  5536. return SCARA_move_to_cal(90, 130);
  5537. }
  5538. /**
  5539. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  5540. */
  5541. inline bool gcode_M362() {
  5542. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  5543. return SCARA_move_to_cal(60, 180);
  5544. }
  5545. /**
  5546. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  5547. */
  5548. inline bool gcode_M363() {
  5549. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  5550. return SCARA_move_to_cal(50, 90);
  5551. }
  5552. /**
  5553. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  5554. */
  5555. inline bool gcode_M364() {
  5556. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  5557. return SCARA_move_to_cal(45, 135);
  5558. }
  5559. #endif // SCARA
  5560. #if ENABLED(EXT_SOLENOID)
  5561. void enable_solenoid(uint8_t num) {
  5562. switch (num) {
  5563. case 0:
  5564. OUT_WRITE(SOL0_PIN, HIGH);
  5565. break;
  5566. #if HAS_SOLENOID_1
  5567. case 1:
  5568. OUT_WRITE(SOL1_PIN, HIGH);
  5569. break;
  5570. #endif
  5571. #if HAS_SOLENOID_2
  5572. case 2:
  5573. OUT_WRITE(SOL2_PIN, HIGH);
  5574. break;
  5575. #endif
  5576. #if HAS_SOLENOID_3
  5577. case 3:
  5578. OUT_WRITE(SOL3_PIN, HIGH);
  5579. break;
  5580. #endif
  5581. default:
  5582. SERIAL_ECHO_START;
  5583. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  5584. break;
  5585. }
  5586. }
  5587. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  5588. void disable_all_solenoids() {
  5589. OUT_WRITE(SOL0_PIN, LOW);
  5590. OUT_WRITE(SOL1_PIN, LOW);
  5591. OUT_WRITE(SOL2_PIN, LOW);
  5592. OUT_WRITE(SOL3_PIN, LOW);
  5593. }
  5594. /**
  5595. * M380: Enable solenoid on the active extruder
  5596. */
  5597. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5598. /**
  5599. * M381: Disable all solenoids
  5600. */
  5601. inline void gcode_M381() { disable_all_solenoids(); }
  5602. #endif // EXT_SOLENOID
  5603. /**
  5604. * M400: Finish all moves
  5605. */
  5606. inline void gcode_M400() { stepper.synchronize(); }
  5607. #if HAS_BED_PROBE
  5608. /**
  5609. * M401: Engage Z Servo endstop if available
  5610. */
  5611. inline void gcode_M401() { DEPLOY_PROBE(); }
  5612. /**
  5613. * M402: Retract Z Servo endstop if enabled
  5614. */
  5615. inline void gcode_M402() { STOW_PROBE(); }
  5616. #endif // HAS_BED_PROBE
  5617. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5618. /**
  5619. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5620. */
  5621. inline void gcode_M404() {
  5622. if (code_seen('W')) {
  5623. filament_width_nominal = code_value_linear_units();
  5624. }
  5625. else {
  5626. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5627. SERIAL_PROTOCOLLN(filament_width_nominal);
  5628. }
  5629. }
  5630. /**
  5631. * M405: Turn on filament sensor for control
  5632. */
  5633. inline void gcode_M405() {
  5634. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5635. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5636. if (code_seen('D')) meas_delay_cm = code_value_int();
  5637. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5638. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5639. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5640. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5641. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5642. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5643. }
  5644. filament_sensor = true;
  5645. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5646. //SERIAL_PROTOCOL(filament_width_meas);
  5647. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5648. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5649. }
  5650. /**
  5651. * M406: Turn off filament sensor for control
  5652. */
  5653. inline void gcode_M406() { filament_sensor = false; }
  5654. /**
  5655. * M407: Get measured filament diameter on serial output
  5656. */
  5657. inline void gcode_M407() {
  5658. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5659. SERIAL_PROTOCOLLN(filament_width_meas);
  5660. }
  5661. #endif // FILAMENT_WIDTH_SENSOR
  5662. void quickstop_stepper() {
  5663. stepper.quick_stop();
  5664. stepper.synchronize();
  5665. set_current_from_steppers_for_axis(ALL_AXES);
  5666. SYNC_PLAN_POSITION_KINEMATIC();
  5667. }
  5668. #if PLANNER_LEVELING
  5669. /**
  5670. * M420: Enable/Disable Bed Leveling
  5671. */
  5672. inline void gcode_M420() { if (code_seen('S')) set_bed_leveling_enabled(code_value_bool()); }
  5673. #endif
  5674. #if ENABLED(MESH_BED_LEVELING)
  5675. /**
  5676. * M421: Set a single Mesh Bed Leveling Z coordinate
  5677. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5678. */
  5679. inline void gcode_M421() {
  5680. int8_t px = 0, py = 0;
  5681. float z = 0;
  5682. bool hasX, hasY, hasZ, hasI, hasJ;
  5683. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5684. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5685. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5686. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5687. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5688. if (hasX && hasY && hasZ) {
  5689. if (px >= 0 && py >= 0)
  5690. mbl.set_z(px, py, z);
  5691. else {
  5692. SERIAL_ERROR_START;
  5693. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5694. }
  5695. }
  5696. else if (hasI && hasJ && hasZ) {
  5697. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5698. mbl.set_z(px, py, z);
  5699. else {
  5700. SERIAL_ERROR_START;
  5701. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5702. }
  5703. }
  5704. else {
  5705. SERIAL_ERROR_START;
  5706. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5707. }
  5708. }
  5709. #endif
  5710. /**
  5711. * M428: Set home_offset based on the distance between the
  5712. * current_position and the nearest "reference point."
  5713. * If an axis is past center its endstop position
  5714. * is the reference-point. Otherwise it uses 0. This allows
  5715. * the Z offset to be set near the bed when using a max endstop.
  5716. *
  5717. * M428 can't be used more than 2cm away from 0 or an endstop.
  5718. *
  5719. * Use M206 to set these values directly.
  5720. */
  5721. inline void gcode_M428() {
  5722. bool err = false;
  5723. LOOP_XYZ(i) {
  5724. if (axis_homed[i]) {
  5725. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
  5726. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5727. if (diff > -20 && diff < 20) {
  5728. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5729. }
  5730. else {
  5731. SERIAL_ERROR_START;
  5732. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5733. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5734. BUZZ(200, 40);
  5735. err = true;
  5736. break;
  5737. }
  5738. }
  5739. }
  5740. if (!err) {
  5741. SYNC_PLAN_POSITION_KINEMATIC();
  5742. report_current_position();
  5743. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5744. BUZZ(200, 659);
  5745. BUZZ(200, 698);
  5746. }
  5747. }
  5748. /**
  5749. * M500: Store settings in EEPROM
  5750. */
  5751. inline void gcode_M500() {
  5752. Config_StoreSettings();
  5753. }
  5754. /**
  5755. * M501: Read settings from EEPROM
  5756. */
  5757. inline void gcode_M501() {
  5758. Config_RetrieveSettings();
  5759. }
  5760. /**
  5761. * M502: Revert to default settings
  5762. */
  5763. inline void gcode_M502() {
  5764. Config_ResetDefault();
  5765. }
  5766. /**
  5767. * M503: print settings currently in memory
  5768. */
  5769. inline void gcode_M503() {
  5770. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5771. }
  5772. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5773. /**
  5774. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5775. */
  5776. inline void gcode_M540() {
  5777. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5778. }
  5779. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5780. #if HAS_BED_PROBE
  5781. inline void gcode_M851() {
  5782. SERIAL_ECHO_START;
  5783. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5784. SERIAL_CHAR(' ');
  5785. if (code_seen('Z')) {
  5786. float value = code_value_axis_units(Z_AXIS);
  5787. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5788. zprobe_zoffset = value;
  5789. SERIAL_ECHO(zprobe_zoffset);
  5790. }
  5791. else {
  5792. SERIAL_ECHOPAIR(MSG_Z_MIN, Z_PROBE_OFFSET_RANGE_MIN);
  5793. SERIAL_CHAR(' ');
  5794. SERIAL_ECHOPAIR(MSG_Z_MAX, Z_PROBE_OFFSET_RANGE_MAX);
  5795. }
  5796. }
  5797. else {
  5798. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5799. }
  5800. SERIAL_EOL;
  5801. }
  5802. #endif // HAS_BED_PROBE
  5803. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5804. /**
  5805. * M600: Pause for filament change
  5806. *
  5807. * E[distance] - Retract the filament this far (negative value)
  5808. * Z[distance] - Move the Z axis by this distance
  5809. * X[position] - Move to this X position, with Y
  5810. * Y[position] - Move to this Y position, with X
  5811. * L[distance] - Retract distance for removal (manual reload)
  5812. *
  5813. * Default values are used for omitted arguments.
  5814. *
  5815. */
  5816. inline void gcode_M600() {
  5817. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5818. SERIAL_ERROR_START;
  5819. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5820. return;
  5821. }
  5822. // Show initial message and wait for synchronize steppers
  5823. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5824. stepper.synchronize();
  5825. float lastpos[NUM_AXIS];
  5826. // Save current position of all axes
  5827. LOOP_XYZE(i)
  5828. lastpos[i] = destination[i] = current_position[i];
  5829. // Define runplan for move axes
  5830. #if IS_KINEMATIC
  5831. #define RUNPLAN(RATE_MM_S) planner.buffer_line_kinematic(destination, RATE_MM_S, active_extruder);
  5832. #else
  5833. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5834. #endif
  5835. KEEPALIVE_STATE(IN_HANDLER);
  5836. // Initial retract before move to filament change position
  5837. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5838. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5839. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5840. #endif
  5841. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5842. // Lift Z axis
  5843. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5844. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5845. FILAMENT_CHANGE_Z_ADD
  5846. #else
  5847. 0
  5848. #endif
  5849. ;
  5850. if (z_lift > 0) {
  5851. destination[Z_AXIS] += z_lift;
  5852. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5853. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5854. }
  5855. // Move XY axes to filament exchange position
  5856. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5857. #ifdef FILAMENT_CHANGE_X_POS
  5858. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5859. #endif
  5860. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5861. #ifdef FILAMENT_CHANGE_Y_POS
  5862. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5863. #endif
  5864. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5865. stepper.synchronize();
  5866. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5867. // Unload filament
  5868. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5869. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5870. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5871. #endif
  5872. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5873. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5874. stepper.synchronize();
  5875. disable_e0();
  5876. disable_e1();
  5877. disable_e2();
  5878. disable_e3();
  5879. delay(100);
  5880. #if HAS_BUZZER
  5881. millis_t next_buzz = 0;
  5882. #endif
  5883. // Wait for filament insert by user and press button
  5884. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5885. // LCD click or M108 will clear this
  5886. wait_for_user = true;
  5887. while (wait_for_user) {
  5888. #if HAS_BUZZER
  5889. millis_t ms = millis();
  5890. if (ms >= next_buzz) {
  5891. BUZZ(300, 2000);
  5892. next_buzz = ms + 2500; // Beep every 2.5s while waiting
  5893. }
  5894. #endif
  5895. idle(true);
  5896. }
  5897. // Show load message
  5898. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5899. // Load filament
  5900. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5901. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5902. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5903. #endif
  5904. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5905. stepper.synchronize();
  5906. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5907. do {
  5908. // Extrude filament to get into hotend
  5909. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5910. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5911. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5912. stepper.synchronize();
  5913. // Ask user if more filament should be extruded
  5914. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5915. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5916. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5917. KEEPALIVE_STATE(IN_HANDLER);
  5918. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5919. #endif
  5920. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5921. KEEPALIVE_STATE(IN_HANDLER);
  5922. // Set extruder to saved position
  5923. destination[E_AXIS] = current_position[E_AXIS] = lastpos[E_AXIS];
  5924. planner.set_e_position_mm(current_position[E_AXIS]);
  5925. #if IS_KINEMATIC
  5926. // Move XYZ to starting position
  5927. planner.buffer_line_kinematic(lastpos, FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5928. #else
  5929. // Move XY to starting position, then Z
  5930. destination[X_AXIS] = lastpos[X_AXIS];
  5931. destination[Y_AXIS] = lastpos[Y_AXIS];
  5932. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5933. destination[Z_AXIS] = lastpos[Z_AXIS];
  5934. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5935. #endif
  5936. stepper.synchronize();
  5937. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5938. filament_ran_out = false;
  5939. #endif
  5940. // Show status screen
  5941. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5942. }
  5943. #endif // FILAMENT_CHANGE_FEATURE
  5944. #if ENABLED(DUAL_X_CARRIAGE)
  5945. /**
  5946. * M605: Set dual x-carriage movement mode
  5947. *
  5948. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5949. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5950. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5951. * units x-offset and an optional differential hotend temperature of
  5952. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5953. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5954. *
  5955. * Note: the X axis should be homed after changing dual x-carriage mode.
  5956. */
  5957. inline void gcode_M605() {
  5958. stepper.synchronize();
  5959. if (code_seen('S')) dual_x_carriage_mode = (DualXMode)code_value_byte();
  5960. switch (dual_x_carriage_mode) {
  5961. case DXC_FULL_CONTROL_MODE:
  5962. case DXC_AUTO_PARK_MODE:
  5963. break;
  5964. case DXC_DUPLICATION_MODE:
  5965. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5966. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5967. SERIAL_ECHO_START;
  5968. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5969. SERIAL_CHAR(' ');
  5970. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5971. SERIAL_CHAR(',');
  5972. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5973. SERIAL_CHAR(' ');
  5974. SERIAL_ECHO(duplicate_extruder_x_offset);
  5975. SERIAL_CHAR(',');
  5976. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5977. break;
  5978. default:
  5979. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5980. break;
  5981. }
  5982. active_extruder_parked = false;
  5983. extruder_duplication_enabled = false;
  5984. delayed_move_time = 0;
  5985. }
  5986. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5987. inline void gcode_M605() {
  5988. stepper.synchronize();
  5989. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5990. SERIAL_ECHO_START;
  5991. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5992. }
  5993. #endif // M605
  5994. #if ENABLED(LIN_ADVANCE)
  5995. /**
  5996. * M905: Set advance factor
  5997. */
  5998. inline void gcode_M905() {
  5999. stepper.synchronize();
  6000. planner.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  6001. }
  6002. #endif
  6003. /**
  6004. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  6005. */
  6006. inline void gcode_M907() {
  6007. #if HAS_DIGIPOTSS
  6008. LOOP_XYZE(i)
  6009. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  6010. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  6011. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  6012. #elif HAS_MOTOR_CURRENT_PWM
  6013. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  6014. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  6015. #endif
  6016. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  6017. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  6018. #endif
  6019. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  6020. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  6021. #endif
  6022. #endif
  6023. #if ENABLED(DIGIPOT_I2C)
  6024. // this one uses actual amps in floating point
  6025. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  6026. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  6027. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  6028. #endif
  6029. #if ENABLED(DAC_STEPPER_CURRENT)
  6030. if (code_seen('S')) {
  6031. float dac_percent = code_value_float();
  6032. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  6033. }
  6034. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  6035. #endif
  6036. }
  6037. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6038. /**
  6039. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  6040. */
  6041. inline void gcode_M908() {
  6042. #if HAS_DIGIPOTSS
  6043. stepper.digitalPotWrite(
  6044. code_seen('P') ? code_value_int() : 0,
  6045. code_seen('S') ? code_value_int() : 0
  6046. );
  6047. #endif
  6048. #ifdef DAC_STEPPER_CURRENT
  6049. dac_current_raw(
  6050. code_seen('P') ? code_value_byte() : -1,
  6051. code_seen('S') ? code_value_ushort() : 0
  6052. );
  6053. #endif
  6054. }
  6055. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6056. inline void gcode_M909() { dac_print_values(); }
  6057. inline void gcode_M910() { dac_commit_eeprom(); }
  6058. #endif
  6059. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6060. #if HAS_MICROSTEPS
  6061. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6062. inline void gcode_M350() {
  6063. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  6064. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  6065. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  6066. stepper.microstep_readings();
  6067. }
  6068. /**
  6069. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  6070. * S# determines MS1 or MS2, X# sets the pin high/low.
  6071. */
  6072. inline void gcode_M351() {
  6073. if (code_seen('S')) switch (code_value_byte()) {
  6074. case 1:
  6075. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  6076. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  6077. break;
  6078. case 2:
  6079. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  6080. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  6081. break;
  6082. }
  6083. stepper.microstep_readings();
  6084. }
  6085. #endif // HAS_MICROSTEPS
  6086. #if HAS_CASE_LIGHT
  6087. /**
  6088. * M355: Turn case lights on/off and set brightness
  6089. *
  6090. * S<bool> Turn case light on or off
  6091. * P<byte> Set case light brightness (PWM pin required)
  6092. */
  6093. inline void gcode_M355() {
  6094. static bool case_light_on
  6095. #if ENABLED(CASE_LIGHT_DEFAULT_ON)
  6096. = true
  6097. #else
  6098. ;
  6099. #endif
  6100. static uint8_t case_light_brightness = 255;
  6101. if (code_seen('P')) case_light_brightness = code_value_byte();
  6102. if (code_seen('S')) {
  6103. case_light_on = code_value_bool();
  6104. digitalWrite(CASE_LIGHT_PIN, case_light_on ? HIGH : LOW);
  6105. analogWrite(CASE_LIGHT_PIN, case_light_on ? case_light_brightness : 0);
  6106. }
  6107. SERIAL_ECHO_START;
  6108. SERIAL_ECHOPGM("Case lights ");
  6109. case_light_on ? SERIAL_ECHOLNPGM("on") : SERIAL_ECHOLNPGM("off");
  6110. }
  6111. #endif // HAS_CASE_LIGHT
  6112. #if ENABLED(MIXING_EXTRUDER)
  6113. /**
  6114. * M163: Set a single mix factor for a mixing extruder
  6115. * This is called "weight" by some systems.
  6116. *
  6117. * S[index] The channel index to set
  6118. * P[float] The mix value
  6119. *
  6120. */
  6121. inline void gcode_M163() {
  6122. int mix_index = code_seen('S') ? code_value_int() : 0;
  6123. if (mix_index < MIXING_STEPPERS) {
  6124. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  6125. NOLESS(mix_value, 0.0);
  6126. mixing_factor[mix_index] = RECIPROCAL(mix_value);
  6127. }
  6128. }
  6129. #if MIXING_VIRTUAL_TOOLS > 1
  6130. /**
  6131. * M164: Store the current mix factors as a virtual tool.
  6132. *
  6133. * S[index] The virtual tool to store
  6134. *
  6135. */
  6136. inline void gcode_M164() {
  6137. int tool_index = code_seen('S') ? code_value_int() : 0;
  6138. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  6139. normalize_mix();
  6140. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  6141. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  6142. }
  6143. }
  6144. #endif
  6145. #if ENABLED(DIRECT_MIXING_IN_G1)
  6146. /**
  6147. * M165: Set multiple mix factors for a mixing extruder.
  6148. * Factors that are left out will be set to 0.
  6149. * All factors together must add up to 1.0.
  6150. *
  6151. * A[factor] Mix factor for extruder stepper 1
  6152. * B[factor] Mix factor for extruder stepper 2
  6153. * C[factor] Mix factor for extruder stepper 3
  6154. * D[factor] Mix factor for extruder stepper 4
  6155. * H[factor] Mix factor for extruder stepper 5
  6156. * I[factor] Mix factor for extruder stepper 6
  6157. *
  6158. */
  6159. inline void gcode_M165() { gcode_get_mix(); }
  6160. #endif
  6161. #endif // MIXING_EXTRUDER
  6162. /**
  6163. * M999: Restart after being stopped
  6164. *
  6165. * Default behaviour is to flush the serial buffer and request
  6166. * a resend to the host starting on the last N line received.
  6167. *
  6168. * Sending "M999 S1" will resume printing without flushing the
  6169. * existing command buffer.
  6170. *
  6171. */
  6172. inline void gcode_M999() {
  6173. Running = true;
  6174. lcd_reset_alert_level();
  6175. if (code_seen('S') && code_value_bool()) return;
  6176. // gcode_LastN = Stopped_gcode_LastN;
  6177. FlushSerialRequestResend();
  6178. }
  6179. #if ENABLED(SWITCHING_EXTRUDER)
  6180. inline void move_extruder_servo(uint8_t e) {
  6181. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  6182. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  6183. }
  6184. #endif
  6185. inline void invalid_extruder_error(const uint8_t &e) {
  6186. SERIAL_ECHO_START;
  6187. SERIAL_CHAR('T');
  6188. SERIAL_PROTOCOL_F(e, DEC);
  6189. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  6190. }
  6191. /**
  6192. * Perform a tool-change, which may result in moving the
  6193. * previous tool out of the way and the new tool into place.
  6194. */
  6195. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  6196. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  6197. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  6198. invalid_extruder_error(tmp_extruder);
  6199. return;
  6200. }
  6201. // T0-Tnnn: Switch virtual tool by changing the mix
  6202. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  6203. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  6204. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6205. #if HOTENDS > 1
  6206. if (tmp_extruder >= EXTRUDERS) {
  6207. invalid_extruder_error(tmp_extruder);
  6208. return;
  6209. }
  6210. float old_feedrate_mm_s = feedrate_mm_s;
  6211. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  6212. if (tmp_extruder != active_extruder) {
  6213. if (!no_move && axis_unhomed_error(true, true, true)) {
  6214. SERIAL_ECHOLNPGM("No move on toolchange");
  6215. no_move = true;
  6216. }
  6217. // Save current position to destination, for use later
  6218. set_destination_to_current();
  6219. #if ENABLED(DUAL_X_CARRIAGE)
  6220. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6221. if (DEBUGGING(LEVELING)) {
  6222. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  6223. switch (dual_x_carriage_mode) {
  6224. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  6225. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  6226. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  6227. }
  6228. }
  6229. #endif
  6230. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  6231. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  6232. ) {
  6233. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6234. if (DEBUGGING(LEVELING)) {
  6235. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  6236. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  6237. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  6238. }
  6239. #endif
  6240. // Park old head: 1) raise 2) move to park position 3) lower
  6241. for (uint8_t i = 0; i < 3; i++)
  6242. planner.buffer_line(
  6243. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  6244. current_position[Y_AXIS],
  6245. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  6246. current_position[E_AXIS],
  6247. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  6248. active_extruder
  6249. );
  6250. stepper.synchronize();
  6251. }
  6252. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  6253. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  6254. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  6255. active_extruder = tmp_extruder;
  6256. // This function resets the max/min values - the current position may be overwritten below.
  6257. set_axis_is_at_home(X_AXIS);
  6258. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6259. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  6260. #endif
  6261. switch (dual_x_carriage_mode) {
  6262. case DXC_FULL_CONTROL_MODE:
  6263. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6264. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6265. break;
  6266. case DXC_AUTO_PARK_MODE:
  6267. // record raised toolhead position for use by unpark
  6268. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  6269. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  6270. #if ENABLED(max_software_endstops)
  6271. NOMORE(raised_parked_position[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6272. #endif
  6273. active_extruder_parked = true;
  6274. delayed_move_time = 0;
  6275. break;
  6276. case DXC_DUPLICATION_MODE:
  6277. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  6278. if (active_extruder_parked)
  6279. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  6280. else
  6281. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  6282. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  6283. extruder_duplication_enabled = false;
  6284. break;
  6285. }
  6286. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6287. if (DEBUGGING(LEVELING)) {
  6288. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  6289. DEBUG_POS("New extruder (parked)", current_position);
  6290. }
  6291. #endif
  6292. // No extra case for HAS_ABL in DUAL_X_CARRIAGE. Does that mean they don't work together?
  6293. #else // !DUAL_X_CARRIAGE
  6294. #if ENABLED(SWITCHING_EXTRUDER)
  6295. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  6296. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  6297. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  6298. set_destination_to_current();
  6299. // Always raise by some amount
  6300. destination[Z_AXIS] += z_raise;
  6301. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6302. stepper.synchronize();
  6303. move_extruder_servo(active_extruder);
  6304. delay(500);
  6305. // Move back down, if needed
  6306. if (z_raise != z_diff) {
  6307. destination[Z_AXIS] = current_position[Z_AXIS] + z_diff;
  6308. planner.buffer_line_kinematic(destination, planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6309. stepper.synchronize();
  6310. }
  6311. #endif
  6312. /**
  6313. * Set current_position to the position of the new nozzle.
  6314. * Offsets are based on linear distance, so we need to get
  6315. * the resulting position in coordinate space.
  6316. *
  6317. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  6318. * - With mesh leveling, update Z for the new position
  6319. * - Otherwise, just use the raw linear distance
  6320. *
  6321. * Software endstops are altered here too. Consider a case where:
  6322. * E0 at X=0 ... E1 at X=10
  6323. * When we switch to E1 now X=10, but E1 can't move left.
  6324. * To express this we apply the change in XY to the software endstops.
  6325. * E1 can move farther right than E0, so the right limit is extended.
  6326. *
  6327. * Note that we don't adjust the Z software endstops. Why not?
  6328. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  6329. * because the bed is 1mm lower at the new position. As long as
  6330. * the first nozzle is out of the way, the carriage should be
  6331. * allowed to move 1mm lower. This technically "breaks" the
  6332. * Z software endstop. But this is technically correct (and
  6333. * there is no viable alternative).
  6334. */
  6335. #if ABL_PLANAR
  6336. // Offset extruder, make sure to apply the bed level rotation matrix
  6337. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  6338. hotend_offset[Y_AXIS][tmp_extruder],
  6339. 0),
  6340. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  6341. hotend_offset[Y_AXIS][active_extruder],
  6342. 0),
  6343. offset_vec = tmp_offset_vec - act_offset_vec;
  6344. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6345. if (DEBUGGING(LEVELING)) {
  6346. tmp_offset_vec.debug("tmp_offset_vec");
  6347. act_offset_vec.debug("act_offset_vec");
  6348. offset_vec.debug("offset_vec (BEFORE)");
  6349. }
  6350. #endif
  6351. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  6352. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6353. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  6354. #endif
  6355. // Adjustments to the current position
  6356. float xydiff[2] = { offset_vec.x, offset_vec.y };
  6357. current_position[Z_AXIS] += offset_vec.z;
  6358. #else // !ABL_PLANAR
  6359. float xydiff[2] = {
  6360. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  6361. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  6362. };
  6363. #if ENABLED(MESH_BED_LEVELING)
  6364. if (mbl.active()) {
  6365. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6366. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  6367. #endif
  6368. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  6369. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  6370. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  6371. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6372. if (DEBUGGING(LEVELING))
  6373. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  6374. #endif
  6375. }
  6376. #endif // MESH_BED_LEVELING
  6377. #endif // !HAS_ABL
  6378. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6379. if (DEBUGGING(LEVELING)) {
  6380. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  6381. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  6382. SERIAL_ECHOLNPGM(" }");
  6383. }
  6384. #endif
  6385. // The newly-selected extruder XY is actually at...
  6386. current_position[X_AXIS] += xydiff[X_AXIS];
  6387. current_position[Y_AXIS] += xydiff[Y_AXIS];
  6388. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  6389. position_shift[i] += xydiff[i];
  6390. update_software_endstops((AxisEnum)i);
  6391. }
  6392. // Set the new active extruder
  6393. active_extruder = tmp_extruder;
  6394. #endif // !DUAL_X_CARRIAGE
  6395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6396. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  6397. #endif
  6398. // Tell the planner the new "current position"
  6399. SYNC_PLAN_POSITION_KINEMATIC();
  6400. // Move to the "old position" (move the extruder into place)
  6401. if (!no_move && IsRunning()) {
  6402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6403. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  6404. #endif
  6405. prepare_move_to_destination();
  6406. }
  6407. } // (tmp_extruder != active_extruder)
  6408. stepper.synchronize();
  6409. #if ENABLED(EXT_SOLENOID)
  6410. disable_all_solenoids();
  6411. enable_solenoid_on_active_extruder();
  6412. #endif // EXT_SOLENOID
  6413. feedrate_mm_s = old_feedrate_mm_s;
  6414. #else // HOTENDS <= 1
  6415. // Set the new active extruder
  6416. active_extruder = tmp_extruder;
  6417. UNUSED(fr_mm_s);
  6418. UNUSED(no_move);
  6419. #endif // HOTENDS <= 1
  6420. SERIAL_ECHO_START;
  6421. SERIAL_ECHOLNPAIR(MSG_ACTIVE_EXTRUDER, (int)active_extruder);
  6422. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  6423. }
  6424. /**
  6425. * T0-T3: Switch tool, usually switching extruders
  6426. *
  6427. * F[units/min] Set the movement feedrate
  6428. * S1 Don't move the tool in XY after change
  6429. */
  6430. inline void gcode_T(uint8_t tmp_extruder) {
  6431. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6432. if (DEBUGGING(LEVELING)) {
  6433. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  6434. SERIAL_CHAR(')');
  6435. SERIAL_EOL;
  6436. DEBUG_POS("BEFORE", current_position);
  6437. }
  6438. #endif
  6439. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  6440. tool_change(tmp_extruder);
  6441. #elif HOTENDS > 1
  6442. tool_change(
  6443. tmp_extruder,
  6444. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  6445. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  6446. );
  6447. #endif
  6448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  6449. if (DEBUGGING(LEVELING)) {
  6450. DEBUG_POS("AFTER", current_position);
  6451. SERIAL_ECHOLNPGM("<<< gcode_T");
  6452. }
  6453. #endif
  6454. }
  6455. /**
  6456. * Process a single command and dispatch it to its handler
  6457. * This is called from the main loop()
  6458. */
  6459. void process_next_command() {
  6460. current_command = command_queue[cmd_queue_index_r];
  6461. if (DEBUGGING(ECHO)) {
  6462. SERIAL_ECHO_START;
  6463. SERIAL_ECHOLN(current_command);
  6464. }
  6465. // Sanitize the current command:
  6466. // - Skip leading spaces
  6467. // - Bypass N[-0-9][0-9]*[ ]*
  6468. // - Overwrite * with nul to mark the end
  6469. while (*current_command == ' ') ++current_command;
  6470. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  6471. current_command += 2; // skip N[-0-9]
  6472. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  6473. while (*current_command == ' ') ++current_command; // skip [ ]*
  6474. }
  6475. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  6476. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  6477. char *cmd_ptr = current_command;
  6478. // Get the command code, which must be G, M, or T
  6479. char command_code = *cmd_ptr++;
  6480. // Skip spaces to get the numeric part
  6481. while (*cmd_ptr == ' ') cmd_ptr++;
  6482. // Allow for decimal point in command
  6483. #if ENABLED(G38_PROBE_TARGET)
  6484. uint8_t subcode = 0;
  6485. #endif
  6486. uint16_t codenum = 0; // define ahead of goto
  6487. // Bail early if there's no code
  6488. bool code_is_good = NUMERIC(*cmd_ptr);
  6489. if (!code_is_good) goto ExitUnknownCommand;
  6490. // Get and skip the code number
  6491. do {
  6492. codenum = (codenum * 10) + (*cmd_ptr - '0');
  6493. cmd_ptr++;
  6494. } while (NUMERIC(*cmd_ptr));
  6495. // Allow for decimal point in command
  6496. #if ENABLED(G38_PROBE_TARGET)
  6497. if (*cmd_ptr == '.') {
  6498. cmd_ptr++;
  6499. while (NUMERIC(*cmd_ptr))
  6500. subcode = (subcode * 10) + (*cmd_ptr++ - '0');
  6501. }
  6502. #endif
  6503. // Skip all spaces to get to the first argument, or nul
  6504. while (*cmd_ptr == ' ') cmd_ptr++;
  6505. // The command's arguments (if any) start here, for sure!
  6506. current_command_args = cmd_ptr;
  6507. KEEPALIVE_STATE(IN_HANDLER);
  6508. // Handle a known G, M, or T
  6509. switch (command_code) {
  6510. case 'G': switch (codenum) {
  6511. // G0, G1
  6512. case 0:
  6513. case 1:
  6514. #if IS_SCARA
  6515. gcode_G0_G1(codenum == 0);
  6516. #else
  6517. gcode_G0_G1();
  6518. #endif
  6519. break;
  6520. // G2, G3
  6521. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  6522. case 2: // G2 - CW ARC
  6523. case 3: // G3 - CCW ARC
  6524. gcode_G2_G3(codenum == 2);
  6525. break;
  6526. #endif
  6527. // G4 Dwell
  6528. case 4:
  6529. gcode_G4();
  6530. break;
  6531. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6532. // G5
  6533. case 5: // G5 - Cubic B_spline
  6534. gcode_G5();
  6535. break;
  6536. #endif // BEZIER_CURVE_SUPPORT
  6537. #if ENABLED(FWRETRACT)
  6538. case 10: // G10: retract
  6539. case 11: // G11: retract_recover
  6540. gcode_G10_G11(codenum == 10);
  6541. break;
  6542. #endif // FWRETRACT
  6543. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  6544. case 12:
  6545. gcode_G12(); // G12: Nozzle Clean
  6546. break;
  6547. #endif // NOZZLE_CLEAN_FEATURE
  6548. #if ENABLED(INCH_MODE_SUPPORT)
  6549. case 20: //G20: Inch Mode
  6550. gcode_G20();
  6551. break;
  6552. case 21: //G21: MM Mode
  6553. gcode_G21();
  6554. break;
  6555. #endif // INCH_MODE_SUPPORT
  6556. #if ENABLED(NOZZLE_PARK_FEATURE)
  6557. case 27: // G27: Nozzle Park
  6558. gcode_G27();
  6559. break;
  6560. #endif // NOZZLE_PARK_FEATURE
  6561. case 28: // G28: Home all axes, one at a time
  6562. gcode_G28();
  6563. break;
  6564. #if PLANNER_LEVELING
  6565. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  6566. gcode_G29();
  6567. break;
  6568. #endif // PLANNER_LEVELING
  6569. #if HAS_BED_PROBE
  6570. case 30: // G30 Single Z probe
  6571. gcode_G30();
  6572. break;
  6573. #if ENABLED(Z_PROBE_SLED)
  6574. case 31: // G31: dock the sled
  6575. gcode_G31();
  6576. break;
  6577. case 32: // G32: undock the sled
  6578. gcode_G32();
  6579. break;
  6580. #endif // Z_PROBE_SLED
  6581. #endif // HAS_BED_PROBE
  6582. #if ENABLED(G38_PROBE_TARGET)
  6583. case 38: // G38.2 & G38.3
  6584. if (subcode == 2 || subcode == 3)
  6585. gcode_G38(subcode == 2);
  6586. break;
  6587. #endif
  6588. case 90: // G90
  6589. relative_mode = false;
  6590. break;
  6591. case 91: // G91
  6592. relative_mode = true;
  6593. break;
  6594. case 92: // G92
  6595. gcode_G92();
  6596. break;
  6597. }
  6598. break;
  6599. case 'M': switch (codenum) {
  6600. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  6601. case 0: // M0: Unconditional stop - Wait for user button press on LCD
  6602. case 1: // M1: Conditional stop - Wait for user button press on LCD
  6603. gcode_M0_M1();
  6604. break;
  6605. #endif // ULTIPANEL
  6606. case 17: // M17: Enable all stepper motors
  6607. gcode_M17();
  6608. break;
  6609. #if ENABLED(SDSUPPORT)
  6610. case 20: // M20: list SD card
  6611. gcode_M20(); break;
  6612. case 21: // M21: init SD card
  6613. gcode_M21(); break;
  6614. case 22: // M22: release SD card
  6615. gcode_M22(); break;
  6616. case 23: // M23: Select file
  6617. gcode_M23(); break;
  6618. case 24: // M24: Start SD print
  6619. gcode_M24(); break;
  6620. case 25: // M25: Pause SD print
  6621. gcode_M25(); break;
  6622. case 26: // M26: Set SD index
  6623. gcode_M26(); break;
  6624. case 27: // M27: Get SD status
  6625. gcode_M27(); break;
  6626. case 28: // M28: Start SD write
  6627. gcode_M28(); break;
  6628. case 29: // M29: Stop SD write
  6629. gcode_M29(); break;
  6630. case 30: // M30 <filename> Delete File
  6631. gcode_M30(); break;
  6632. case 32: // M32: Select file and start SD print
  6633. gcode_M32(); break;
  6634. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  6635. case 33: // M33: Get the long full path to a file or folder
  6636. gcode_M33(); break;
  6637. #endif
  6638. case 928: // M928: Start SD write
  6639. gcode_M928(); break;
  6640. #endif //SDSUPPORT
  6641. case 31: // M31: Report time since the start of SD print or last M109
  6642. gcode_M31(); break;
  6643. case 42: // M42: Change pin state
  6644. gcode_M42(); break;
  6645. #if ENABLED(PINS_DEBUGGING)
  6646. case 43: // M43: Read pin state
  6647. gcode_M43(); break;
  6648. #endif
  6649. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6650. case 48: // M48: Z probe repeatability test
  6651. gcode_M48();
  6652. break;
  6653. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6654. case 75: // M75: Start print timer
  6655. gcode_M75(); break;
  6656. case 76: // M76: Pause print timer
  6657. gcode_M76(); break;
  6658. case 77: // M77: Stop print timer
  6659. gcode_M77(); break;
  6660. #if ENABLED(PRINTCOUNTER)
  6661. case 78: // M78: Show print statistics
  6662. gcode_M78(); break;
  6663. #endif
  6664. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6665. case 100: // M100: Free Memory Report
  6666. gcode_M100();
  6667. break;
  6668. #endif
  6669. case 104: // M104: Set hot end temperature
  6670. gcode_M104();
  6671. break;
  6672. case 110: // M110: Set Current Line Number
  6673. gcode_M110();
  6674. break;
  6675. case 111: // M111: Set debug level
  6676. gcode_M111();
  6677. break;
  6678. #if DISABLED(EMERGENCY_PARSER)
  6679. case 108: // M108: Cancel Waiting
  6680. gcode_M108();
  6681. break;
  6682. case 112: // M112: Emergency Stop
  6683. gcode_M112();
  6684. break;
  6685. case 410: // M410 quickstop - Abort all the planned moves.
  6686. gcode_M410();
  6687. break;
  6688. #endif
  6689. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6690. case 113: // M113: Set Host Keepalive interval
  6691. gcode_M113();
  6692. break;
  6693. #endif
  6694. case 140: // M140: Set bed temperature
  6695. gcode_M140();
  6696. break;
  6697. case 105: // M105: Report current temperature
  6698. gcode_M105();
  6699. KEEPALIVE_STATE(NOT_BUSY);
  6700. return; // "ok" already printed
  6701. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  6702. case 155: // M155: Set temperature auto-report interval
  6703. gcode_M155();
  6704. break;
  6705. #endif
  6706. case 109: // M109: Wait for hotend temperature to reach target
  6707. gcode_M109();
  6708. break;
  6709. #if HAS_TEMP_BED
  6710. case 190: // M190: Wait for bed temperature to reach target
  6711. gcode_M190();
  6712. break;
  6713. #endif // HAS_TEMP_BED
  6714. #if FAN_COUNT > 0
  6715. case 106: // M106: Fan On
  6716. gcode_M106();
  6717. break;
  6718. case 107: // M107: Fan Off
  6719. gcode_M107();
  6720. break;
  6721. #endif // FAN_COUNT > 0
  6722. #if ENABLED(BARICUDA)
  6723. // PWM for HEATER_1_PIN
  6724. #if HAS_HEATER_1
  6725. case 126: // M126: valve open
  6726. gcode_M126();
  6727. break;
  6728. case 127: // M127: valve closed
  6729. gcode_M127();
  6730. break;
  6731. #endif // HAS_HEATER_1
  6732. // PWM for HEATER_2_PIN
  6733. #if HAS_HEATER_2
  6734. case 128: // M128: valve open
  6735. gcode_M128();
  6736. break;
  6737. case 129: // M129: valve closed
  6738. gcode_M129();
  6739. break;
  6740. #endif // HAS_HEATER_2
  6741. #endif // BARICUDA
  6742. #if HAS_POWER_SWITCH
  6743. case 80: // M80: Turn on Power Supply
  6744. gcode_M80();
  6745. break;
  6746. #endif // HAS_POWER_SWITCH
  6747. case 81: // M81: Turn off Power, including Power Supply, if possible
  6748. gcode_M81();
  6749. break;
  6750. case 82: // M83: Set E axis normal mode (same as other axes)
  6751. gcode_M82();
  6752. break;
  6753. case 83: // M83: Set E axis relative mode
  6754. gcode_M83();
  6755. break;
  6756. case 18: // M18 => M84
  6757. case 84: // M84: Disable all steppers or set timeout
  6758. gcode_M18_M84();
  6759. break;
  6760. case 85: // M85: Set inactivity stepper shutdown timeout
  6761. gcode_M85();
  6762. break;
  6763. case 92: // M92: Set the steps-per-unit for one or more axes
  6764. gcode_M92();
  6765. break;
  6766. case 115: // M115: Report capabilities
  6767. gcode_M115();
  6768. break;
  6769. case 117: // M117: Set LCD message text, if possible
  6770. gcode_M117();
  6771. break;
  6772. case 114: // M114: Report current position
  6773. gcode_M114();
  6774. break;
  6775. case 120: // M120: Enable endstops
  6776. gcode_M120();
  6777. break;
  6778. case 121: // M121: Disable endstops
  6779. gcode_M121();
  6780. break;
  6781. case 119: // M119: Report endstop states
  6782. gcode_M119();
  6783. break;
  6784. #if ENABLED(ULTIPANEL)
  6785. case 145: // M145: Set material heatup parameters
  6786. gcode_M145();
  6787. break;
  6788. #endif
  6789. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6790. case 149: // M149: Set temperature units
  6791. gcode_M149();
  6792. break;
  6793. #endif
  6794. #if ENABLED(BLINKM)
  6795. case 150: // M150: Set the BlinkM LCD color
  6796. gcode_M150();
  6797. break;
  6798. #endif // BLINKM
  6799. #if ENABLED(MIXING_EXTRUDER)
  6800. case 163: // M163: Set a component weight for mixing extruder
  6801. gcode_M163();
  6802. break;
  6803. #if MIXING_VIRTUAL_TOOLS > 1
  6804. case 164: // M164: Save current mix as a virtual extruder
  6805. gcode_M164();
  6806. break;
  6807. #endif
  6808. #if ENABLED(DIRECT_MIXING_IN_G1)
  6809. case 165: // M165: Set multiple mix weights
  6810. gcode_M165();
  6811. break;
  6812. #endif
  6813. #endif
  6814. case 200: // M200: Set filament diameter, E to cubic units
  6815. gcode_M200();
  6816. break;
  6817. case 201: // M201: Set max acceleration for print moves (units/s^2)
  6818. gcode_M201();
  6819. break;
  6820. #if 0 // Not used for Sprinter/grbl gen6
  6821. case 202: // M202
  6822. gcode_M202();
  6823. break;
  6824. #endif
  6825. case 203: // M203: Set max feedrate (units/sec)
  6826. gcode_M203();
  6827. break;
  6828. case 204: // M204: Set acceleration
  6829. gcode_M204();
  6830. break;
  6831. case 205: //M205: Set advanced settings
  6832. gcode_M205();
  6833. break;
  6834. case 206: // M206: Set home offsets
  6835. gcode_M206();
  6836. break;
  6837. #if ENABLED(DELTA)
  6838. case 665: // M665: Set delta configurations
  6839. gcode_M665();
  6840. break;
  6841. #endif
  6842. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6843. case 666: // M666: Set delta or dual endstop adjustment
  6844. gcode_M666();
  6845. break;
  6846. #endif
  6847. #if ENABLED(FWRETRACT)
  6848. case 207: // M207: Set Retract Length, Feedrate, and Z lift
  6849. gcode_M207();
  6850. break;
  6851. case 208: // M208: Set Recover (unretract) Additional Length and Feedrate
  6852. gcode_M208();
  6853. break;
  6854. case 209: // M209: Turn Automatic Retract Detection on/off
  6855. gcode_M209();
  6856. break;
  6857. #endif // FWRETRACT
  6858. case 211: // M211: Enable, Disable, and/or Report software endstops
  6859. gcode_M211();
  6860. break;
  6861. #if HOTENDS > 1
  6862. case 218: // M218: Set a tool offset
  6863. gcode_M218();
  6864. break;
  6865. #endif
  6866. case 220: // M220: Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6867. gcode_M220();
  6868. break;
  6869. case 221: // M221: Set Flow Percentage
  6870. gcode_M221();
  6871. break;
  6872. case 226: // M226: Wait until a pin reaches a state
  6873. gcode_M226();
  6874. break;
  6875. #if HAS_SERVOS
  6876. case 280: // M280: Set servo position absolute
  6877. gcode_M280();
  6878. break;
  6879. #endif // HAS_SERVOS
  6880. #if HAS_BUZZER
  6881. case 300: // M300: Play beep tone
  6882. gcode_M300();
  6883. break;
  6884. #endif // HAS_BUZZER
  6885. #if ENABLED(PIDTEMP)
  6886. case 301: // M301: Set hotend PID parameters
  6887. gcode_M301();
  6888. break;
  6889. #endif // PIDTEMP
  6890. #if ENABLED(PIDTEMPBED)
  6891. case 304: // M304: Set bed PID parameters
  6892. gcode_M304();
  6893. break;
  6894. #endif // PIDTEMPBED
  6895. #if defined(CHDK) || HAS_PHOTOGRAPH
  6896. case 240: // M240: Trigger a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6897. gcode_M240();
  6898. break;
  6899. #endif // CHDK || PHOTOGRAPH_PIN
  6900. #if HAS_LCD_CONTRAST
  6901. case 250: // M250: Set LCD contrast
  6902. gcode_M250();
  6903. break;
  6904. #endif // HAS_LCD_CONTRAST
  6905. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6906. case 260: // M260: Send data to an i2c slave
  6907. gcode_M260();
  6908. break;
  6909. case 261: // M261: Request data from an i2c slave
  6910. gcode_M261();
  6911. break;
  6912. #endif // EXPERIMENTAL_I2CBUS
  6913. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6914. case 302: // M302: Allow cold extrudes (set the minimum extrude temperature)
  6915. gcode_M302();
  6916. break;
  6917. #endif // PREVENT_COLD_EXTRUSION
  6918. case 303: // M303: PID autotune
  6919. gcode_M303();
  6920. break;
  6921. #if ENABLED(MORGAN_SCARA)
  6922. case 360: // M360: SCARA Theta pos1
  6923. if (gcode_M360()) return;
  6924. break;
  6925. case 361: // M361: SCARA Theta pos2
  6926. if (gcode_M361()) return;
  6927. break;
  6928. case 362: // M362: SCARA Psi pos1
  6929. if (gcode_M362()) return;
  6930. break;
  6931. case 363: // M363: SCARA Psi pos2
  6932. if (gcode_M363()) return;
  6933. break;
  6934. case 364: // M364: SCARA Psi pos3 (90 deg to Theta)
  6935. if (gcode_M364()) return;
  6936. break;
  6937. #endif // SCARA
  6938. case 400: // M400: Finish all moves
  6939. gcode_M400();
  6940. break;
  6941. #if HAS_BED_PROBE
  6942. case 401: // M401: Deploy probe
  6943. gcode_M401();
  6944. break;
  6945. case 402: // M402: Stow probe
  6946. gcode_M402();
  6947. break;
  6948. #endif // HAS_BED_PROBE
  6949. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6950. case 404: // M404: Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6951. gcode_M404();
  6952. break;
  6953. case 405: // M405: Turn on filament sensor for control
  6954. gcode_M405();
  6955. break;
  6956. case 406: // M406: Turn off filament sensor for control
  6957. gcode_M406();
  6958. break;
  6959. case 407: // M407: Display measured filament diameter
  6960. gcode_M407();
  6961. break;
  6962. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6963. #if PLANNER_LEVELING
  6964. case 420: // M420: Enable/Disable Bed Leveling
  6965. gcode_M420();
  6966. break;
  6967. #endif
  6968. #if ENABLED(MESH_BED_LEVELING)
  6969. case 421: // M421: Set a Mesh Bed Leveling Z coordinate
  6970. gcode_M421();
  6971. break;
  6972. #endif
  6973. case 428: // M428: Apply current_position to home_offset
  6974. gcode_M428();
  6975. break;
  6976. case 500: // M500: Store settings in EEPROM
  6977. gcode_M500();
  6978. break;
  6979. case 501: // M501: Read settings from EEPROM
  6980. gcode_M501();
  6981. break;
  6982. case 502: // M502: Revert to default settings
  6983. gcode_M502();
  6984. break;
  6985. case 503: // M503: print settings currently in memory
  6986. gcode_M503();
  6987. break;
  6988. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6989. case 540:
  6990. gcode_M540();
  6991. break;
  6992. #endif
  6993. #if HAS_BED_PROBE
  6994. case 851: // M851: Set Z Probe Z Offset
  6995. gcode_M851();
  6996. break;
  6997. #endif // HAS_BED_PROBE
  6998. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6999. case 600: // M600: Pause for filament change
  7000. gcode_M600();
  7001. break;
  7002. #endif // FILAMENT_CHANGE_FEATURE
  7003. #if ENABLED(DUAL_X_CARRIAGE)
  7004. case 605: // M605: Set Dual X Carriage movement mode
  7005. gcode_M605();
  7006. break;
  7007. #endif // DUAL_X_CARRIAGE
  7008. #if ENABLED(LIN_ADVANCE)
  7009. case 905: // M905: Set advance K factor.
  7010. gcode_M905();
  7011. break;
  7012. #endif
  7013. case 907: // M907: Set digital trimpot motor current using axis codes.
  7014. gcode_M907();
  7015. break;
  7016. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  7017. case 908: // M908: Control digital trimpot directly.
  7018. gcode_M908();
  7019. break;
  7020. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  7021. case 909: // M909: Print digipot/DAC current value
  7022. gcode_M909();
  7023. break;
  7024. case 910: // M910: Commit digipot/DAC value to external EEPROM
  7025. gcode_M910();
  7026. break;
  7027. #endif
  7028. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  7029. #if HAS_MICROSTEPS
  7030. case 350: // M350: Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  7031. gcode_M350();
  7032. break;
  7033. case 351: // M351: Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  7034. gcode_M351();
  7035. break;
  7036. #endif // HAS_MICROSTEPS
  7037. #if HAS_CASE_LIGHT
  7038. case 355: // M355 Turn case lights on/off
  7039. gcode_M355();
  7040. break;
  7041. #endif // HAS_CASE_LIGHT
  7042. case 999: // M999: Restart after being Stopped
  7043. gcode_M999();
  7044. break;
  7045. }
  7046. break;
  7047. case 'T':
  7048. gcode_T(codenum);
  7049. break;
  7050. default: code_is_good = false;
  7051. }
  7052. KEEPALIVE_STATE(NOT_BUSY);
  7053. ExitUnknownCommand:
  7054. // Still unknown command? Throw an error
  7055. if (!code_is_good) unknown_command_error();
  7056. ok_to_send();
  7057. }
  7058. /**
  7059. * Send a "Resend: nnn" message to the host to
  7060. * indicate that a command needs to be re-sent.
  7061. */
  7062. void FlushSerialRequestResend() {
  7063. //char command_queue[cmd_queue_index_r][100]="Resend:";
  7064. MYSERIAL.flush();
  7065. SERIAL_PROTOCOLPGM(MSG_RESEND);
  7066. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  7067. ok_to_send();
  7068. }
  7069. /**
  7070. * Send an "ok" message to the host, indicating
  7071. * that a command was successfully processed.
  7072. *
  7073. * If ADVANCED_OK is enabled also include:
  7074. * N<int> Line number of the command, if any
  7075. * P<int> Planner space remaining
  7076. * B<int> Block queue space remaining
  7077. */
  7078. void ok_to_send() {
  7079. refresh_cmd_timeout();
  7080. if (!send_ok[cmd_queue_index_r]) return;
  7081. SERIAL_PROTOCOLPGM(MSG_OK);
  7082. #if ENABLED(ADVANCED_OK)
  7083. char* p = command_queue[cmd_queue_index_r];
  7084. if (*p == 'N') {
  7085. SERIAL_PROTOCOL(' ');
  7086. SERIAL_ECHO(*p++);
  7087. while (NUMERIC_SIGNED(*p))
  7088. SERIAL_ECHO(*p++);
  7089. }
  7090. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  7091. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  7092. #endif
  7093. SERIAL_EOL;
  7094. }
  7095. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  7096. /**
  7097. * Constrain the given coordinates to the software endstops.
  7098. */
  7099. void clamp_to_software_endstops(float target[XYZ]) {
  7100. #if ENABLED(min_software_endstops)
  7101. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  7102. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  7103. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  7104. #endif
  7105. #if ENABLED(max_software_endstops)
  7106. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  7107. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  7108. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  7109. #endif
  7110. }
  7111. #endif
  7112. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7113. // Get the Z adjustment for non-linear bed leveling
  7114. float bilinear_z_offset(float cartesian[XYZ]) {
  7115. // XY relative to the probed area
  7116. const float x = RAW_X_POSITION(cartesian[X_AXIS]) - bilinear_start[X_AXIS],
  7117. y = RAW_Y_POSITION(cartesian[Y_AXIS]) - bilinear_start[Y_AXIS];
  7118. // Convert to grid box units
  7119. float ratio_x = x / bilinear_grid_spacing[X_AXIS],
  7120. ratio_y = y / bilinear_grid_spacing[Y_AXIS];
  7121. // Whole units for the grid line indices. Constrained within bounds.
  7122. const int gridx = constrain(floor(ratio_x), 0, ABL_GRID_POINTS_X - 1),
  7123. gridy = constrain(floor(ratio_y), 0, ABL_GRID_POINTS_Y - 1),
  7124. nextx = min(gridx + 1, ABL_GRID_POINTS_X - 1),
  7125. nexty = min(gridy + 1, ABL_GRID_POINTS_Y - 1);
  7126. // Subtract whole to get the ratio within the grid box
  7127. ratio_x -= gridx; ratio_y -= gridy;
  7128. // Never less than 0.0. (Over 1.0 is fine due to previous contraints.)
  7129. NOLESS(ratio_x, 0); NOLESS(ratio_y, 0);
  7130. // Z at the box corners
  7131. const float z1 = bed_level_grid[gridx][gridy], // left-front
  7132. z2 = bed_level_grid[gridx][nexty], // left-back
  7133. z3 = bed_level_grid[nextx][gridy], // right-front
  7134. z4 = bed_level_grid[nextx][nexty], // right-back
  7135. // Bilinear interpolate
  7136. L = z1 + (z2 - z1) * ratio_y, // Linear interp. LF -> LB
  7137. R = z3 + (z4 - z3) * ratio_y, // Linear interp. RF -> RB
  7138. offset = L + ratio_x * (R - L);
  7139. /*
  7140. static float last_offset = 0;
  7141. if (fabs(last_offset - offset) > 0.2) {
  7142. SERIAL_ECHOPGM("Sudden Shift at ");
  7143. SERIAL_ECHOPAIR("x=", x);
  7144. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[X_AXIS]);
  7145. SERIAL_ECHOLNPAIR(" -> gridx=", gridx);
  7146. SERIAL_ECHOPAIR(" y=", y);
  7147. SERIAL_ECHOPAIR(" / ", bilinear_grid_spacing[Y_AXIS]);
  7148. SERIAL_ECHOLNPAIR(" -> gridy=", gridy);
  7149. SERIAL_ECHOPAIR(" ratio_x=", ratio_x);
  7150. SERIAL_ECHOLNPAIR(" ratio_y=", ratio_y);
  7151. SERIAL_ECHOPAIR(" z1=", z1);
  7152. SERIAL_ECHOPAIR(" z2=", z2);
  7153. SERIAL_ECHOPAIR(" z3=", z3);
  7154. SERIAL_ECHOLNPAIR(" z4=", z4);
  7155. SERIAL_ECHOPAIR(" L=", L);
  7156. SERIAL_ECHOPAIR(" R=", R);
  7157. SERIAL_ECHOLNPAIR(" offset=", offset);
  7158. }
  7159. last_offset = offset;
  7160. //*/
  7161. return offset;
  7162. }
  7163. #endif // AUTO_BED_LEVELING_BILINEAR
  7164. #if ENABLED(DELTA)
  7165. /**
  7166. * Recalculate factors used for delta kinematics whenever
  7167. * settings have been changed (e.g., by M665).
  7168. */
  7169. void recalc_delta_settings(float radius, float diagonal_rod) {
  7170. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  7171. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  7172. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  7173. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  7174. delta_tower3_x = 0.0; // back middle tower
  7175. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  7176. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  7177. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  7178. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  7179. }
  7180. #if ENABLED(DELTA_FAST_SQRT)
  7181. /**
  7182. * Fast inverse sqrt from Quake III Arena
  7183. * See: https://en.wikipedia.org/wiki/Fast_inverse_square_root
  7184. */
  7185. float Q_rsqrt(float number) {
  7186. long i;
  7187. float x2, y;
  7188. const float threehalfs = 1.5f;
  7189. x2 = number * 0.5f;
  7190. y = number;
  7191. i = * ( long * ) &y; // evil floating point bit level hacking
  7192. i = 0x5f3759df - ( i >> 1 ); // what the f***?
  7193. y = * ( float * ) &i;
  7194. y = y * ( threehalfs - ( x2 * y * y ) ); // 1st iteration
  7195. // y = y * ( threehalfs - ( x2 * y * y ) ); // 2nd iteration, this can be removed
  7196. return y;
  7197. }
  7198. #define _SQRT(n) (1.0f / Q_rsqrt(n))
  7199. #else
  7200. #define _SQRT(n) sqrt(n)
  7201. #endif
  7202. /**
  7203. * Delta Inverse Kinematics
  7204. *
  7205. * Calculate the tower positions for a given logical
  7206. * position, storing the result in the delta[] array.
  7207. *
  7208. * This is an expensive calculation, requiring 3 square
  7209. * roots per segmented linear move, and strains the limits
  7210. * of a Mega2560 with a Graphical Display.
  7211. *
  7212. * Suggested optimizations include:
  7213. *
  7214. * - Disable the home_offset (M206) and/or position_shift (G92)
  7215. * features to remove up to 12 float additions.
  7216. *
  7217. * - Use a fast-inverse-sqrt function and add the reciprocal.
  7218. * (see above)
  7219. */
  7220. // Macro to obtain the Z position of an individual tower
  7221. #define DELTA_Z(T) raw[Z_AXIS] + _SQRT( \
  7222. delta_diagonal_rod_2_tower_##T - HYPOT2( \
  7223. delta_tower##T##_x - raw[X_AXIS], \
  7224. delta_tower##T##_y - raw[Y_AXIS] \
  7225. ) \
  7226. )
  7227. #define DELTA_RAW_IK() do { \
  7228. delta[A_AXIS] = DELTA_Z(1); \
  7229. delta[B_AXIS] = DELTA_Z(2); \
  7230. delta[C_AXIS] = DELTA_Z(3); \
  7231. } while(0)
  7232. #define DELTA_LOGICAL_IK() do { \
  7233. const float raw[XYZ] = { \
  7234. RAW_X_POSITION(logical[X_AXIS]), \
  7235. RAW_Y_POSITION(logical[Y_AXIS]), \
  7236. RAW_Z_POSITION(logical[Z_AXIS]) \
  7237. }; \
  7238. DELTA_RAW_IK(); \
  7239. } while(0)
  7240. #define DELTA_DEBUG() do { \
  7241. SERIAL_ECHOPAIR("cartesian X:", raw[X_AXIS]); \
  7242. SERIAL_ECHOPAIR(" Y:", raw[Y_AXIS]); \
  7243. SERIAL_ECHOLNPAIR(" Z:", raw[Z_AXIS]); \
  7244. SERIAL_ECHOPAIR("delta A:", delta[A_AXIS]); \
  7245. SERIAL_ECHOPAIR(" B:", delta[B_AXIS]); \
  7246. SERIAL_ECHOLNPAIR(" C:", delta[C_AXIS]); \
  7247. } while(0)
  7248. void inverse_kinematics(const float logical[XYZ]) {
  7249. DELTA_LOGICAL_IK();
  7250. // DELTA_DEBUG();
  7251. }
  7252. /**
  7253. * Calculate the highest Z position where the
  7254. * effector has the full range of XY motion.
  7255. */
  7256. float delta_safe_distance_from_top() {
  7257. float cartesian[XYZ] = {
  7258. LOGICAL_X_POSITION(0),
  7259. LOGICAL_Y_POSITION(0),
  7260. LOGICAL_Z_POSITION(0)
  7261. };
  7262. inverse_kinematics(cartesian);
  7263. float distance = delta[A_AXIS];
  7264. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  7265. inverse_kinematics(cartesian);
  7266. return abs(distance - delta[A_AXIS]);
  7267. }
  7268. /**
  7269. * Delta Forward Kinematics
  7270. *
  7271. * See the Wikipedia article "Trilateration"
  7272. * https://en.wikipedia.org/wiki/Trilateration
  7273. *
  7274. * Establish a new coordinate system in the plane of the
  7275. * three carriage points. This system has its origin at
  7276. * tower1, with tower2 on the X axis. Tower3 is in the X-Y
  7277. * plane with a Z component of zero.
  7278. * We will define unit vectors in this coordinate system
  7279. * in our original coordinate system. Then when we calculate
  7280. * the Xnew, Ynew and Znew values, we can translate back into
  7281. * the original system by moving along those unit vectors
  7282. * by the corresponding values.
  7283. *
  7284. * Variable names matched to Marlin, c-version, and avoid the
  7285. * use of any vector library.
  7286. *
  7287. * by Andreas Hardtung 2016-06-07
  7288. * based on a Java function from "Delta Robot Kinematics V3"
  7289. * by Steve Graves
  7290. *
  7291. * The result is stored in the cartes[] array.
  7292. */
  7293. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  7294. // Create a vector in old coordinates along x axis of new coordinate
  7295. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  7296. // Get the Magnitude of vector.
  7297. float d = sqrt( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
  7298. // Create unit vector by dividing by magnitude.
  7299. float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
  7300. // Get the vector from the origin of the new system to the third point.
  7301. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  7302. // Use the dot product to find the component of this vector on the X axis.
  7303. float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
  7304. // Create a vector along the x axis that represents the x component of p13.
  7305. float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
  7306. // Subtract the X component from the original vector leaving only Y. We use the
  7307. // variable that will be the unit vector after we scale it.
  7308. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
  7309. // The magnitude of Y component
  7310. float j = sqrt( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
  7311. // Convert to a unit vector
  7312. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  7313. // The cross product of the unit x and y is the unit z
  7314. // float[] ez = vectorCrossProd(ex, ey);
  7315. float ez[3] = {
  7316. ex[1] * ey[2] - ex[2] * ey[1],
  7317. ex[2] * ey[0] - ex[0] * ey[2],
  7318. ex[0] * ey[1] - ex[1] * ey[0]
  7319. };
  7320. // We now have the d, i and j values defined in Wikipedia.
  7321. // Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
  7322. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + sq(d)) / (d * 2),
  7323. Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + HYPOT2(i, j)) / 2 - i * Xnew) / j,
  7324. Znew = sqrt(delta_diagonal_rod_2_tower_1 - HYPOT2(Xnew, Ynew));
  7325. // Start from the origin of the old coordinates and add vectors in the
  7326. // old coords that represent the Xnew, Ynew and Znew to find the point
  7327. // in the old system.
  7328. cartes[X_AXIS] = delta_tower1_x + ex[0] * Xnew + ey[0] * Ynew - ez[0] * Znew;
  7329. cartes[Y_AXIS] = delta_tower1_y + ex[1] * Xnew + ey[1] * Ynew - ez[1] * Znew;
  7330. cartes[Z_AXIS] = z1 + ex[2] * Xnew + ey[2] * Ynew - ez[2] * Znew;
  7331. }
  7332. void forward_kinematics_DELTA(float point[ABC]) {
  7333. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  7334. }
  7335. #endif // DELTA
  7336. /**
  7337. * Get the stepper positions in the cartes[] array.
  7338. * Forward kinematics are applied for DELTA and SCARA.
  7339. *
  7340. * The result is in the current coordinate space with
  7341. * leveling applied. The coordinates need to be run through
  7342. * unapply_leveling to obtain the "ideal" coordinates
  7343. * suitable for current_position, etc.
  7344. */
  7345. void get_cartesian_from_steppers() {
  7346. #if ENABLED(DELTA)
  7347. forward_kinematics_DELTA(
  7348. stepper.get_axis_position_mm(A_AXIS),
  7349. stepper.get_axis_position_mm(B_AXIS),
  7350. stepper.get_axis_position_mm(C_AXIS)
  7351. );
  7352. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7353. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7354. cartes[Z_AXIS] += LOGICAL_Z_POSITION(0);
  7355. #elif IS_SCARA
  7356. forward_kinematics_SCARA(
  7357. stepper.get_axis_position_degrees(A_AXIS),
  7358. stepper.get_axis_position_degrees(B_AXIS)
  7359. );
  7360. cartes[X_AXIS] += LOGICAL_X_POSITION(0);
  7361. cartes[Y_AXIS] += LOGICAL_Y_POSITION(0);
  7362. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7363. #else
  7364. cartes[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  7365. cartes[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  7366. cartes[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  7367. #endif
  7368. }
  7369. /**
  7370. * Set the current_position for an axis based on
  7371. * the stepper positions, removing any leveling that
  7372. * may have been applied.
  7373. */
  7374. void set_current_from_steppers_for_axis(const AxisEnum axis) {
  7375. get_cartesian_from_steppers();
  7376. #if PLANNER_LEVELING
  7377. planner.unapply_leveling(cartes);
  7378. #endif
  7379. if (axis == ALL_AXES)
  7380. memcpy(current_position, cartes, sizeof(cartes));
  7381. else
  7382. current_position[axis] = cartes[axis];
  7383. }
  7384. #if ENABLED(MESH_BED_LEVELING)
  7385. /**
  7386. * Prepare a mesh-leveled linear move in a Cartesian setup,
  7387. * splitting the move where it crosses mesh borders.
  7388. */
  7389. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  7390. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  7391. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  7392. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  7393. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  7394. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  7395. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  7396. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  7397. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  7398. if (cx1 == cx2 && cy1 == cy2) {
  7399. // Start and end on same mesh square
  7400. line_to_destination(fr_mm_s);
  7401. set_current_to_destination();
  7402. return;
  7403. }
  7404. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7405. float normalized_dist, end[XYZE];
  7406. // Split at the left/front border of the right/top square
  7407. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7408. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7409. memcpy(end, destination, sizeof(end));
  7410. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  7411. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7412. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  7413. CBI(x_splits, gcx);
  7414. }
  7415. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7416. memcpy(end, destination, sizeof(end));
  7417. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  7418. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7419. destination[X_AXIS] = MBL_SEGMENT_END(X);
  7420. CBI(y_splits, gcy);
  7421. }
  7422. else {
  7423. // Already split on a border
  7424. line_to_destination(fr_mm_s);
  7425. set_current_to_destination();
  7426. return;
  7427. }
  7428. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  7429. destination[E_AXIS] = MBL_SEGMENT_END(E);
  7430. // Do the split and look for more borders
  7431. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7432. // Restore destination from stack
  7433. memcpy(destination, end, sizeof(end));
  7434. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  7435. }
  7436. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR) && !IS_KINEMATIC
  7437. #define CELL_INDEX(A,V) ((RAW_##A##_POSITION(V) - bilinear_start[A##_AXIS]) / bilinear_grid_spacing[A##_AXIS])
  7438. /**
  7439. * Prepare a bilinear-leveled linear move on Cartesian,
  7440. * splitting the move where it crosses grid borders.
  7441. */
  7442. void bilinear_line_to_destination(float fr_mm_s, uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF) {
  7443. int cx1 = CELL_INDEX(X, current_position[X_AXIS]),
  7444. cy1 = CELL_INDEX(Y, current_position[Y_AXIS]),
  7445. cx2 = CELL_INDEX(X, destination[X_AXIS]),
  7446. cy2 = CELL_INDEX(Y, destination[Y_AXIS]);
  7447. cx1 = constrain(cx1, 0, ABL_GRID_POINTS_X - 2);
  7448. cy1 = constrain(cy1, 0, ABL_GRID_POINTS_Y - 2);
  7449. cx2 = constrain(cx2, 0, ABL_GRID_POINTS_X - 2);
  7450. cy2 = constrain(cy2, 0, ABL_GRID_POINTS_Y - 2);
  7451. if (cx1 == cx2 && cy1 == cy2) {
  7452. // Start and end on same mesh square
  7453. line_to_destination(fr_mm_s);
  7454. set_current_to_destination();
  7455. return;
  7456. }
  7457. #define LINE_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  7458. float normalized_dist, end[XYZE];
  7459. // Split at the left/front border of the right/top square
  7460. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  7461. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  7462. memcpy(end, destination, sizeof(end));
  7463. destination[X_AXIS] = LOGICAL_X_POSITION(bilinear_start[X_AXIS] + bilinear_grid_spacing[X_AXIS] * gcx);
  7464. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  7465. destination[Y_AXIS] = LINE_SEGMENT_END(Y);
  7466. CBI(x_splits, gcx);
  7467. }
  7468. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  7469. memcpy(end, destination, sizeof(end));
  7470. destination[Y_AXIS] = LOGICAL_Y_POSITION(bilinear_start[Y_AXIS] + bilinear_grid_spacing[Y_AXIS] * gcy);
  7471. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  7472. destination[X_AXIS] = LINE_SEGMENT_END(X);
  7473. CBI(y_splits, gcy);
  7474. }
  7475. else {
  7476. // Already split on a border
  7477. line_to_destination(fr_mm_s);
  7478. set_current_to_destination();
  7479. return;
  7480. }
  7481. destination[Z_AXIS] = LINE_SEGMENT_END(Z);
  7482. destination[E_AXIS] = LINE_SEGMENT_END(E);
  7483. // Do the split and look for more borders
  7484. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7485. // Restore destination from stack
  7486. memcpy(destination, end, sizeof(end));
  7487. bilinear_line_to_destination(fr_mm_s, x_splits, y_splits);
  7488. }
  7489. #endif // AUTO_BED_LEVELING_BILINEAR
  7490. #if IS_KINEMATIC
  7491. /**
  7492. * Prepare a linear move in a DELTA or SCARA setup.
  7493. *
  7494. * This calls planner.buffer_line several times, adding
  7495. * small incremental moves for DELTA or SCARA.
  7496. */
  7497. inline bool prepare_kinematic_move_to(float ltarget[NUM_AXIS]) {
  7498. // Get the top feedrate of the move in the XY plane
  7499. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  7500. // If the move is only in Z/E don't split up the move
  7501. if (ltarget[X_AXIS] == current_position[X_AXIS] && ltarget[Y_AXIS] == current_position[Y_AXIS]) {
  7502. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7503. return true;
  7504. }
  7505. // Get the cartesian distances moved in XYZE
  7506. float difference[NUM_AXIS];
  7507. LOOP_XYZE(i) difference[i] = ltarget[i] - current_position[i];
  7508. // Get the linear distance in XYZ
  7509. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  7510. // If the move is very short, check the E move distance
  7511. if (UNEAR_ZERO(cartesian_mm)) cartesian_mm = abs(difference[E_AXIS]);
  7512. // No E move either? Game over.
  7513. if (UNEAR_ZERO(cartesian_mm)) return false;
  7514. // Minimum number of seconds to move the given distance
  7515. float seconds = cartesian_mm / _feedrate_mm_s;
  7516. // The number of segments-per-second times the duration
  7517. // gives the number of segments
  7518. uint16_t segments = delta_segments_per_second * seconds;
  7519. // For SCARA minimum segment size is 0.5mm
  7520. #if IS_SCARA
  7521. NOMORE(segments, cartesian_mm * 2);
  7522. #endif
  7523. // At least one segment is required
  7524. NOLESS(segments, 1);
  7525. // The approximate length of each segment
  7526. float segment_distance[XYZE] = {
  7527. difference[X_AXIS] / segments,
  7528. difference[Y_AXIS] / segments,
  7529. difference[Z_AXIS] / segments,
  7530. difference[E_AXIS] / segments
  7531. };
  7532. // SERIAL_ECHOPAIR("mm=", cartesian_mm);
  7533. // SERIAL_ECHOPAIR(" seconds=", seconds);
  7534. // SERIAL_ECHOLNPAIR(" segments=", segments);
  7535. // Drop one segment so the last move is to the exact target.
  7536. // If there's only 1 segment, loops will be skipped entirely.
  7537. --segments;
  7538. // Using "raw" coordinates saves 6 float subtractions
  7539. // per segment, saving valuable CPU cycles
  7540. #if ENABLED(USE_RAW_KINEMATICS)
  7541. // Get the raw current position as starting point
  7542. float raw[XYZE] = {
  7543. RAW_CURRENT_POSITION(X_AXIS),
  7544. RAW_CURRENT_POSITION(Y_AXIS),
  7545. RAW_CURRENT_POSITION(Z_AXIS),
  7546. current_position[E_AXIS]
  7547. };
  7548. #define DELTA_VAR raw
  7549. // Delta can inline its kinematics
  7550. #if ENABLED(DELTA)
  7551. #define DELTA_IK() DELTA_RAW_IK()
  7552. #else
  7553. #define DELTA_IK() inverse_kinematics(raw)
  7554. #endif
  7555. #else
  7556. // Get the logical current position as starting point
  7557. float logical[XYZE];
  7558. memcpy(logical, current_position, sizeof(logical));
  7559. #define DELTA_VAR logical
  7560. // Delta can inline its kinematics
  7561. #if ENABLED(DELTA)
  7562. #define DELTA_IK() DELTA_LOGICAL_IK()
  7563. #else
  7564. #define DELTA_IK() inverse_kinematics(logical)
  7565. #endif
  7566. #endif
  7567. #if ENABLED(USE_DELTA_IK_INTERPOLATION)
  7568. // Only interpolate XYZ. Advance E normally.
  7569. #define DELTA_NEXT(ADDEND) LOOP_XYZ(i) DELTA_VAR[i] += ADDEND;
  7570. // Get the starting delta if interpolation is possible
  7571. if (segments >= 2) {
  7572. DELTA_IK();
  7573. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7574. }
  7575. // Loop using decrement
  7576. for (uint16_t s = segments + 1; --s;) {
  7577. // Are there at least 2 moves left?
  7578. if (s >= 2) {
  7579. // Save the previous delta for interpolation
  7580. float prev_delta[ABC] = { delta[A_AXIS], delta[B_AXIS], delta[C_AXIS] };
  7581. // Get the delta 2 segments ahead (rather than the next)
  7582. DELTA_NEXT(segment_distance[i] + segment_distance[i]);
  7583. // Advance E normally
  7584. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7585. // Get the exact delta for the move after this
  7586. DELTA_IK();
  7587. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7588. // Move to the interpolated delta position first
  7589. planner.buffer_line(
  7590. (prev_delta[A_AXIS] + delta[A_AXIS]) * 0.5,
  7591. (prev_delta[B_AXIS] + delta[B_AXIS]) * 0.5,
  7592. (prev_delta[C_AXIS] + delta[C_AXIS]) * 0.5,
  7593. DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder
  7594. );
  7595. // Advance E once more for the next move
  7596. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7597. // Do an extra decrement of the loop
  7598. --s;
  7599. }
  7600. else {
  7601. // Get the last segment delta. (Used when segments is odd)
  7602. DELTA_NEXT(segment_distance[i]);
  7603. DELTA_VAR[E_AXIS] += segment_distance[E_AXIS];
  7604. DELTA_IK();
  7605. ADJUST_DELTA(DELTA_VAR); // Adjust Z if bed leveling is enabled
  7606. }
  7607. // Move to the non-interpolated position
  7608. planner.buffer_line(delta[A_AXIS], delta[B_AXIS], delta[C_AXIS], DELTA_VAR[E_AXIS], _feedrate_mm_s, active_extruder);
  7609. }
  7610. #else
  7611. #define DELTA_NEXT(ADDEND) LOOP_XYZE(i) DELTA_VAR[i] += ADDEND;
  7612. // For non-interpolated delta calculate every segment
  7613. for (uint16_t s = segments + 1; --s;) {
  7614. DELTA_NEXT(segment_distance[i]);
  7615. planner.buffer_line_kinematic(DELTA_VAR, _feedrate_mm_s, active_extruder);
  7616. }
  7617. #endif
  7618. // Since segment_distance is only approximate,
  7619. // the final move must be to the exact destination.
  7620. planner.buffer_line_kinematic(ltarget, _feedrate_mm_s, active_extruder);
  7621. return true;
  7622. }
  7623. #else // !IS_KINEMATIC
  7624. /**
  7625. * Prepare a linear move in a Cartesian setup.
  7626. * If Mesh Bed Leveling is enabled, perform a mesh move.
  7627. */
  7628. inline bool prepare_move_to_destination_cartesian() {
  7629. // Do not use feedrate_percentage for E or Z only moves
  7630. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  7631. line_to_destination();
  7632. }
  7633. else {
  7634. #if ENABLED(MESH_BED_LEVELING)
  7635. if (mbl.active()) {
  7636. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7637. return false;
  7638. }
  7639. else
  7640. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  7641. if (planner.abl_enabled) {
  7642. bilinear_line_to_destination(MMS_SCALED(feedrate_mm_s));
  7643. return false;
  7644. }
  7645. else
  7646. #endif
  7647. line_to_destination(MMS_SCALED(feedrate_mm_s));
  7648. }
  7649. return true;
  7650. }
  7651. #endif // !IS_KINEMATIC
  7652. #if ENABLED(DUAL_X_CARRIAGE)
  7653. /**
  7654. * Prepare a linear move in a dual X axis setup
  7655. */
  7656. inline bool prepare_move_to_destination_dualx() {
  7657. if (active_extruder_parked) {
  7658. switch (dual_x_carriage_mode) {
  7659. case DXC_FULL_CONTROL_MODE:
  7660. break;
  7661. case DXC_DUPLICATION_MODE:
  7662. if (active_extruder == 0) {
  7663. // move duplicate extruder into correct duplication position.
  7664. planner.set_position_mm(
  7665. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  7666. current_position[Y_AXIS],
  7667. current_position[Z_AXIS],
  7668. current_position[E_AXIS]
  7669. );
  7670. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  7671. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  7672. SYNC_PLAN_POSITION_KINEMATIC();
  7673. stepper.synchronize();
  7674. extruder_duplication_enabled = true;
  7675. active_extruder_parked = false;
  7676. }
  7677. break;
  7678. case DXC_AUTO_PARK_MODE:
  7679. if (current_position[E_AXIS] == destination[E_AXIS]) {
  7680. // This is a travel move (with no extrusion)
  7681. // Skip it, but keep track of the current position
  7682. // (so it can be used as the start of the next non-travel move)
  7683. if (delayed_move_time != 0xFFFFFFFFUL) {
  7684. set_current_to_destination();
  7685. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  7686. delayed_move_time = millis();
  7687. return false;
  7688. }
  7689. }
  7690. delayed_move_time = 0;
  7691. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  7692. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7693. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  7694. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  7695. active_extruder_parked = false;
  7696. break;
  7697. }
  7698. }
  7699. return true;
  7700. }
  7701. #endif // DUAL_X_CARRIAGE
  7702. /**
  7703. * Prepare a single move and get ready for the next one
  7704. *
  7705. * This may result in several calls to planner.buffer_line to
  7706. * do smaller moves for DELTA, SCARA, mesh moves, etc.
  7707. */
  7708. void prepare_move_to_destination() {
  7709. clamp_to_software_endstops(destination);
  7710. refresh_cmd_timeout();
  7711. #if ENABLED(PREVENT_COLD_EXTRUSION)
  7712. if (!DEBUGGING(DRYRUN)) {
  7713. if (destination[E_AXIS] != current_position[E_AXIS]) {
  7714. if (thermalManager.tooColdToExtrude(active_extruder)) {
  7715. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7716. SERIAL_ECHO_START;
  7717. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  7718. }
  7719. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  7720. if (labs(destination[E_AXIS] - current_position[E_AXIS]) > EXTRUDE_MAXLENGTH) {
  7721. current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
  7722. SERIAL_ECHO_START;
  7723. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  7724. }
  7725. #endif
  7726. }
  7727. }
  7728. #endif
  7729. #if IS_KINEMATIC
  7730. if (!prepare_kinematic_move_to(destination)) return;
  7731. #else
  7732. #if ENABLED(DUAL_X_CARRIAGE)
  7733. if (!prepare_move_to_destination_dualx()) return;
  7734. #endif
  7735. if (!prepare_move_to_destination_cartesian()) return;
  7736. #endif
  7737. set_current_to_destination();
  7738. }
  7739. #if ENABLED(ARC_SUPPORT)
  7740. /**
  7741. * Plan an arc in 2 dimensions
  7742. *
  7743. * The arc is approximated by generating many small linear segments.
  7744. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  7745. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  7746. * larger segments will tend to be more efficient. Your slicer should have
  7747. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  7748. */
  7749. void plan_arc(
  7750. float logical[NUM_AXIS], // Destination position
  7751. float* offset, // Center of rotation relative to current_position
  7752. uint8_t clockwise // Clockwise?
  7753. ) {
  7754. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  7755. center_X = current_position[X_AXIS] + offset[X_AXIS],
  7756. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  7757. linear_travel = logical[Z_AXIS] - current_position[Z_AXIS],
  7758. extruder_travel = logical[E_AXIS] - current_position[E_AXIS],
  7759. r_X = -offset[X_AXIS], // Radius vector from center to current location
  7760. r_Y = -offset[Y_AXIS],
  7761. rt_X = logical[X_AXIS] - center_X,
  7762. rt_Y = logical[Y_AXIS] - center_Y;
  7763. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  7764. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  7765. if (angular_travel < 0) angular_travel += RADIANS(360);
  7766. if (clockwise) angular_travel -= RADIANS(360);
  7767. // Make a circle if the angular rotation is 0
  7768. if (angular_travel == 0 && current_position[X_AXIS] == logical[X_AXIS] && current_position[Y_AXIS] == logical[Y_AXIS])
  7769. angular_travel += RADIANS(360);
  7770. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  7771. if (mm_of_travel < 0.001) return;
  7772. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  7773. if (segments == 0) segments = 1;
  7774. /**
  7775. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  7776. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  7777. * r_T = [cos(phi) -sin(phi);
  7778. * sin(phi) cos(phi)] * r ;
  7779. *
  7780. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  7781. * defined from the circle center to the initial position. Each line segment is formed by successive
  7782. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  7783. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  7784. * all double numbers are single precision on the Arduino. (True double precision will not have
  7785. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  7786. * tool precision in some cases. Therefore, arc path correction is implemented.
  7787. *
  7788. * Small angle approximation may be used to reduce computation overhead further. This approximation
  7789. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  7790. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  7791. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  7792. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  7793. * issue for CNC machines with the single precision Arduino calculations.
  7794. *
  7795. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  7796. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  7797. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  7798. * This is important when there are successive arc motions.
  7799. */
  7800. // Vector rotation matrix values
  7801. float arc_target[XYZE],
  7802. theta_per_segment = angular_travel / segments,
  7803. linear_per_segment = linear_travel / segments,
  7804. extruder_per_segment = extruder_travel / segments,
  7805. sin_T = theta_per_segment,
  7806. cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  7807. // Initialize the linear axis
  7808. arc_target[Z_AXIS] = current_position[Z_AXIS];
  7809. // Initialize the extruder axis
  7810. arc_target[E_AXIS] = current_position[E_AXIS];
  7811. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  7812. millis_t next_idle_ms = millis() + 200UL;
  7813. int8_t count = 0;
  7814. for (uint16_t i = 1; i < segments; i++) { // Iterate (segments-1) times
  7815. thermalManager.manage_heater();
  7816. if (ELAPSED(millis(), next_idle_ms)) {
  7817. next_idle_ms = millis() + 200UL;
  7818. idle();
  7819. }
  7820. if (++count < N_ARC_CORRECTION) {
  7821. // Apply vector rotation matrix to previous r_X / 1
  7822. float r_new_Y = r_X * sin_T + r_Y * cos_T;
  7823. r_X = r_X * cos_T - r_Y * sin_T;
  7824. r_Y = r_new_Y;
  7825. }
  7826. else {
  7827. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  7828. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  7829. // To reduce stuttering, the sin and cos could be computed at different times.
  7830. // For now, compute both at the same time.
  7831. float cos_Ti = cos(i * theta_per_segment),
  7832. sin_Ti = sin(i * theta_per_segment);
  7833. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  7834. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  7835. count = 0;
  7836. }
  7837. // Update arc_target location
  7838. arc_target[X_AXIS] = center_X + r_X;
  7839. arc_target[Y_AXIS] = center_Y + r_Y;
  7840. arc_target[Z_AXIS] += linear_per_segment;
  7841. arc_target[E_AXIS] += extruder_per_segment;
  7842. clamp_to_software_endstops(arc_target);
  7843. planner.buffer_line_kinematic(arc_target, fr_mm_s, active_extruder);
  7844. }
  7845. // Ensure last segment arrives at target location.
  7846. planner.buffer_line_kinematic(logical, fr_mm_s, active_extruder);
  7847. // As far as the parser is concerned, the position is now == target. In reality the
  7848. // motion control system might still be processing the action and the real tool position
  7849. // in any intermediate location.
  7850. set_current_to_destination();
  7851. }
  7852. #endif
  7853. #if ENABLED(BEZIER_CURVE_SUPPORT)
  7854. void plan_cubic_move(const float offset[4]) {
  7855. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  7856. // As far as the parser is concerned, the position is now == destination. In reality the
  7857. // motion control system might still be processing the action and the real tool position
  7858. // in any intermediate location.
  7859. set_current_to_destination();
  7860. }
  7861. #endif // BEZIER_CURVE_SUPPORT
  7862. #if HAS_CONTROLLERFAN
  7863. void controllerFan() {
  7864. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  7865. static millis_t nextMotorCheck = 0; // Last time the state was checked
  7866. millis_t ms = millis();
  7867. if (ELAPSED(ms, nextMotorCheck)) {
  7868. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  7869. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  7870. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  7871. #if E_STEPPERS > 1
  7872. || E1_ENABLE_READ == E_ENABLE_ON
  7873. #if HAS_X2_ENABLE
  7874. || X2_ENABLE_READ == X_ENABLE_ON
  7875. #endif
  7876. #if E_STEPPERS > 2
  7877. || E2_ENABLE_READ == E_ENABLE_ON
  7878. #if E_STEPPERS > 3
  7879. || E3_ENABLE_READ == E_ENABLE_ON
  7880. #endif
  7881. #endif
  7882. #endif
  7883. ) {
  7884. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  7885. }
  7886. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  7887. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  7888. // allows digital or PWM fan output to be used (see M42 handling)
  7889. digitalWrite(CONTROLLERFAN_PIN, speed);
  7890. analogWrite(CONTROLLERFAN_PIN, speed);
  7891. }
  7892. }
  7893. #endif // HAS_CONTROLLERFAN
  7894. #if ENABLED(MORGAN_SCARA)
  7895. /**
  7896. * Morgan SCARA Forward Kinematics. Results in cartes[].
  7897. * Maths and first version by QHARLEY.
  7898. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7899. */
  7900. void forward_kinematics_SCARA(const float &a, const float &b) {
  7901. float a_sin = sin(RADIANS(a)) * L1,
  7902. a_cos = cos(RADIANS(a)) * L1,
  7903. b_sin = sin(RADIANS(b)) * L2,
  7904. b_cos = cos(RADIANS(b)) * L2;
  7905. cartes[X_AXIS] = a_cos + b_cos + SCARA_OFFSET_X; //theta
  7906. cartes[Y_AXIS] = a_sin + b_sin + SCARA_OFFSET_Y; //theta+phi
  7907. /*
  7908. SERIAL_ECHOPAIR("SCARA FK Angle a=", a);
  7909. SERIAL_ECHOPAIR(" b=", b);
  7910. SERIAL_ECHOPAIR(" a_sin=", a_sin);
  7911. SERIAL_ECHOPAIR(" a_cos=", a_cos);
  7912. SERIAL_ECHOPAIR(" b_sin=", b_sin);
  7913. SERIAL_ECHOLNPAIR(" b_cos=", b_cos);
  7914. SERIAL_ECHOPAIR(" cartes[X_AXIS]=", cartes[X_AXIS]);
  7915. SERIAL_ECHOLNPAIR(" cartes[Y_AXIS]=", cartes[Y_AXIS]);
  7916. //*/
  7917. }
  7918. /**
  7919. * Morgan SCARA Inverse Kinematics. Results in delta[].
  7920. *
  7921. * See http://forums.reprap.org/read.php?185,283327
  7922. *
  7923. * Maths and first version by QHARLEY.
  7924. * Integrated into Marlin and slightly restructured by Joachim Cerny.
  7925. */
  7926. void inverse_kinematics(const float logical[XYZ]) {
  7927. static float C2, S2, SK1, SK2, THETA, PSI;
  7928. float sx = RAW_X_POSITION(logical[X_AXIS]) - SCARA_OFFSET_X, // Translate SCARA to standard X Y
  7929. sy = RAW_Y_POSITION(logical[Y_AXIS]) - SCARA_OFFSET_Y; // With scaling factor.
  7930. if (L1 == L2)
  7931. C2 = HYPOT2(sx, sy) / L1_2_2 - 1;
  7932. else
  7933. C2 = (HYPOT2(sx, sy) - (L1_2 + L2_2)) / (2.0 * L1 * L2);
  7934. S2 = sqrt(sq(C2) - 1);
  7935. // Unrotated Arm1 plus rotated Arm2 gives the distance from Center to End
  7936. SK1 = L1 + L2 * C2;
  7937. // Rotated Arm2 gives the distance from Arm1 to Arm2
  7938. SK2 = L2 * S2;
  7939. // Angle of Arm1 is the difference between Center-to-End angle and the Center-to-Elbow
  7940. THETA = atan2(SK1, SK2) - atan2(sx, sy);
  7941. // Angle of Arm2
  7942. PSI = atan2(S2, C2);
  7943. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7944. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7945. delta[C_AXIS] = logical[Z_AXIS];
  7946. /*
  7947. DEBUG_POS("SCARA IK", logical);
  7948. DEBUG_POS("SCARA IK", delta);
  7949. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7950. SERIAL_ECHOPAIR(",", sy);
  7951. SERIAL_ECHOPAIR(" C2=", C2);
  7952. SERIAL_ECHOPAIR(" S2=", S2);
  7953. SERIAL_ECHOPAIR(" Theta=", THETA);
  7954. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7955. //*/
  7956. }
  7957. #endif // MORGAN_SCARA
  7958. #if ENABLED(TEMP_STAT_LEDS)
  7959. static bool red_led = false;
  7960. static millis_t next_status_led_update_ms = 0;
  7961. void handle_status_leds(void) {
  7962. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7963. next_status_led_update_ms += 500; // Update every 0.5s
  7964. float max_temp = 0.0;
  7965. #if HAS_TEMP_BED
  7966. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7967. #endif
  7968. HOTEND_LOOP() {
  7969. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7970. }
  7971. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7972. if (new_led != red_led) {
  7973. red_led = new_led;
  7974. #if PIN_EXISTS(STAT_LED_RED)
  7975. WRITE(STAT_LED_RED_PIN, new_led ? HIGH : LOW);
  7976. #if PIN_EXISTS(STAT_LED_BLUE)
  7977. WRITE(STAT_LED_BLUE_PIN, new_led ? LOW : HIGH);
  7978. #endif
  7979. #else
  7980. WRITE(STAT_LED_BLUE_PIN, new_led ? HIGH : LOW);
  7981. #endif
  7982. }
  7983. }
  7984. }
  7985. #endif
  7986. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7987. void handle_filament_runout() {
  7988. if (!filament_ran_out) {
  7989. filament_ran_out = true;
  7990. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7991. stepper.synchronize();
  7992. }
  7993. }
  7994. #endif // FILAMENT_RUNOUT_SENSOR
  7995. #if ENABLED(FAST_PWM_FAN)
  7996. void setPwmFrequency(uint8_t pin, int val) {
  7997. val &= 0x07;
  7998. switch (digitalPinToTimer(pin)) {
  7999. #if defined(TCCR0A)
  8000. case TIMER0A:
  8001. case TIMER0B:
  8002. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  8003. // TCCR0B |= val;
  8004. break;
  8005. #endif
  8006. #if defined(TCCR1A)
  8007. case TIMER1A:
  8008. case TIMER1B:
  8009. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8010. // TCCR1B |= val;
  8011. break;
  8012. #endif
  8013. #if defined(TCCR2)
  8014. case TIMER2:
  8015. case TIMER2:
  8016. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  8017. TCCR2 |= val;
  8018. break;
  8019. #endif
  8020. #if defined(TCCR2A)
  8021. case TIMER2A:
  8022. case TIMER2B:
  8023. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  8024. TCCR2B |= val;
  8025. break;
  8026. #endif
  8027. #if defined(TCCR3A)
  8028. case TIMER3A:
  8029. case TIMER3B:
  8030. case TIMER3C:
  8031. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  8032. TCCR3B |= val;
  8033. break;
  8034. #endif
  8035. #if defined(TCCR4A)
  8036. case TIMER4A:
  8037. case TIMER4B:
  8038. case TIMER4C:
  8039. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  8040. TCCR4B |= val;
  8041. break;
  8042. #endif
  8043. #if defined(TCCR5A)
  8044. case TIMER5A:
  8045. case TIMER5B:
  8046. case TIMER5C:
  8047. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  8048. TCCR5B |= val;
  8049. break;
  8050. #endif
  8051. }
  8052. }
  8053. #endif // FAST_PWM_FAN
  8054. float calculate_volumetric_multiplier(float diameter) {
  8055. if (!volumetric_enabled || diameter == 0) return 1.0;
  8056. return 1.0 / (M_PI * diameter * 0.5 * diameter * 0.5);
  8057. }
  8058. void calculate_volumetric_multipliers() {
  8059. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  8060. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  8061. }
  8062. void enable_all_steppers() {
  8063. enable_x();
  8064. enable_y();
  8065. enable_z();
  8066. enable_e0();
  8067. enable_e1();
  8068. enable_e2();
  8069. enable_e3();
  8070. }
  8071. void disable_all_steppers() {
  8072. disable_x();
  8073. disable_y();
  8074. disable_z();
  8075. disable_e0();
  8076. disable_e1();
  8077. disable_e2();
  8078. disable_e3();
  8079. }
  8080. /**
  8081. * Manage several activities:
  8082. * - Check for Filament Runout
  8083. * - Keep the command buffer full
  8084. * - Check for maximum inactive time between commands
  8085. * - Check for maximum inactive time between stepper commands
  8086. * - Check if pin CHDK needs to go LOW
  8087. * - Check for KILL button held down
  8088. * - Check for HOME button held down
  8089. * - Check if cooling fan needs to be switched on
  8090. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  8091. */
  8092. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  8093. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8094. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  8095. handle_filament_runout();
  8096. #endif
  8097. if (commands_in_queue < BUFSIZE) get_available_commands();
  8098. millis_t ms = millis();
  8099. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  8100. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  8101. && !ignore_stepper_queue && !planner.blocks_queued()) {
  8102. #if ENABLED(DISABLE_INACTIVE_X)
  8103. disable_x();
  8104. #endif
  8105. #if ENABLED(DISABLE_INACTIVE_Y)
  8106. disable_y();
  8107. #endif
  8108. #if ENABLED(DISABLE_INACTIVE_Z)
  8109. disable_z();
  8110. #endif
  8111. #if ENABLED(DISABLE_INACTIVE_E)
  8112. disable_e0();
  8113. disable_e1();
  8114. disable_e2();
  8115. disable_e3();
  8116. #endif
  8117. }
  8118. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  8119. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  8120. chdkActive = false;
  8121. WRITE(CHDK, LOW);
  8122. }
  8123. #endif
  8124. #if HAS_KILL
  8125. // Check if the kill button was pressed and wait just in case it was an accidental
  8126. // key kill key press
  8127. // -------------------------------------------------------------------------------
  8128. static int killCount = 0; // make the inactivity button a bit less responsive
  8129. const int KILL_DELAY = 750;
  8130. if (!READ(KILL_PIN))
  8131. killCount++;
  8132. else if (killCount > 0)
  8133. killCount--;
  8134. // Exceeded threshold and we can confirm that it was not accidental
  8135. // KILL the machine
  8136. // ----------------------------------------------------------------
  8137. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  8138. #endif
  8139. #if HAS_HOME
  8140. // Check to see if we have to home, use poor man's debouncer
  8141. // ---------------------------------------------------------
  8142. static int homeDebounceCount = 0; // poor man's debouncing count
  8143. const int HOME_DEBOUNCE_DELAY = 2500;
  8144. if (!READ(HOME_PIN)) {
  8145. if (!homeDebounceCount) {
  8146. enqueue_and_echo_commands_P(PSTR("G28"));
  8147. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  8148. }
  8149. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  8150. homeDebounceCount++;
  8151. else
  8152. homeDebounceCount = 0;
  8153. }
  8154. #endif
  8155. #if HAS_CONTROLLERFAN
  8156. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  8157. #endif
  8158. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  8159. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  8160. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  8161. bool oldstatus;
  8162. #if ENABLED(SWITCHING_EXTRUDER)
  8163. oldstatus = E0_ENABLE_READ;
  8164. enable_e0();
  8165. #else // !SWITCHING_EXTRUDER
  8166. switch (active_extruder) {
  8167. case 0:
  8168. oldstatus = E0_ENABLE_READ;
  8169. enable_e0();
  8170. break;
  8171. #if E_STEPPERS > 1
  8172. case 1:
  8173. oldstatus = E1_ENABLE_READ;
  8174. enable_e1();
  8175. break;
  8176. #if E_STEPPERS > 2
  8177. case 2:
  8178. oldstatus = E2_ENABLE_READ;
  8179. enable_e2();
  8180. break;
  8181. #if E_STEPPERS > 3
  8182. case 3:
  8183. oldstatus = E3_ENABLE_READ;
  8184. enable_e3();
  8185. break;
  8186. #endif
  8187. #endif
  8188. #endif
  8189. }
  8190. #endif // !SWITCHING_EXTRUDER
  8191. previous_cmd_ms = ms; // refresh_cmd_timeout()
  8192. #if IS_KINEMATIC
  8193. inverse_kinematics(current_position);
  8194. ADJUST_DELTA(current_position);
  8195. planner.buffer_line(
  8196. delta[A_AXIS], delta[B_AXIS], delta[C_AXIS],
  8197. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8198. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8199. );
  8200. #else
  8201. planner.buffer_line(
  8202. current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  8203. current_position[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE,
  8204. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED), active_extruder
  8205. );
  8206. #endif
  8207. stepper.synchronize();
  8208. planner.set_e_position_mm(current_position[E_AXIS]);
  8209. #if ENABLED(SWITCHING_EXTRUDER)
  8210. E0_ENABLE_WRITE(oldstatus);
  8211. #else
  8212. switch (active_extruder) {
  8213. case 0:
  8214. E0_ENABLE_WRITE(oldstatus);
  8215. break;
  8216. #if E_STEPPERS > 1
  8217. case 1:
  8218. E1_ENABLE_WRITE(oldstatus);
  8219. break;
  8220. #if E_STEPPERS > 2
  8221. case 2:
  8222. E2_ENABLE_WRITE(oldstatus);
  8223. break;
  8224. #if E_STEPPERS > 3
  8225. case 3:
  8226. E3_ENABLE_WRITE(oldstatus);
  8227. break;
  8228. #endif
  8229. #endif
  8230. #endif
  8231. }
  8232. #endif // !SWITCHING_EXTRUDER
  8233. }
  8234. #endif // EXTRUDER_RUNOUT_PREVENT
  8235. #if ENABLED(DUAL_X_CARRIAGE)
  8236. // handle delayed move timeout
  8237. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  8238. // travel moves have been received so enact them
  8239. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  8240. set_destination_to_current();
  8241. prepare_move_to_destination();
  8242. }
  8243. #endif
  8244. #if ENABLED(TEMP_STAT_LEDS)
  8245. handle_status_leds();
  8246. #endif
  8247. planner.check_axes_activity();
  8248. }
  8249. /**
  8250. * Standard idle routine keeps the machine alive
  8251. */
  8252. void idle(
  8253. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8254. bool no_stepper_sleep/*=false*/
  8255. #endif
  8256. ) {
  8257. lcd_update();
  8258. host_keepalive();
  8259. #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED)
  8260. auto_report_temperatures();
  8261. #endif
  8262. manage_inactivity(
  8263. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  8264. no_stepper_sleep
  8265. #endif
  8266. );
  8267. thermalManager.manage_heater();
  8268. #if ENABLED(PRINTCOUNTER)
  8269. print_job_timer.tick();
  8270. #endif
  8271. #if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
  8272. buzzer.tick();
  8273. #endif
  8274. }
  8275. /**
  8276. * Kill all activity and lock the machine.
  8277. * After this the machine will need to be reset.
  8278. */
  8279. void kill(const char* lcd_msg) {
  8280. SERIAL_ERROR_START;
  8281. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  8282. #if ENABLED(ULTRA_LCD)
  8283. kill_screen(lcd_msg);
  8284. #else
  8285. UNUSED(lcd_msg);
  8286. #endif
  8287. delay(500); // Wait a short time
  8288. cli(); // Stop interrupts
  8289. thermalManager.disable_all_heaters();
  8290. disable_all_steppers();
  8291. #if HAS_POWER_SWITCH
  8292. pinMode(PS_ON_PIN, INPUT);
  8293. #endif
  8294. suicide();
  8295. while (1) {
  8296. #if ENABLED(USE_WATCHDOG)
  8297. watchdog_reset();
  8298. #endif
  8299. } // Wait for reset
  8300. }
  8301. /**
  8302. * Turn off heaters and stop the print in progress
  8303. * After a stop the machine may be resumed with M999
  8304. */
  8305. void stop() {
  8306. thermalManager.disable_all_heaters();
  8307. if (IsRunning()) {
  8308. Running = false;
  8309. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  8310. SERIAL_ERROR_START;
  8311. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  8312. LCD_MESSAGEPGM(MSG_STOPPED);
  8313. }
  8314. }
  8315. /**
  8316. * Marlin entry-point: Set up before the program loop
  8317. * - Set up the kill pin, filament runout, power hold
  8318. * - Start the serial port
  8319. * - Print startup messages and diagnostics
  8320. * - Get EEPROM or default settings
  8321. * - Initialize managers for:
  8322. * • temperature
  8323. * • planner
  8324. * • watchdog
  8325. * • stepper
  8326. * • photo pin
  8327. * • servos
  8328. * • LCD controller
  8329. * • Digipot I2C
  8330. * • Z probe sled
  8331. * • status LEDs
  8332. */
  8333. void setup() {
  8334. #ifdef DISABLE_JTAG
  8335. // Disable JTAG on AT90USB chips to free up pins for IO
  8336. MCUCR = 0x80;
  8337. MCUCR = 0x80;
  8338. #endif
  8339. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  8340. setup_filrunoutpin();
  8341. #endif
  8342. setup_killpin();
  8343. setup_powerhold();
  8344. #if HAS_STEPPER_RESET
  8345. disableStepperDrivers();
  8346. #endif
  8347. MYSERIAL.begin(BAUDRATE);
  8348. SERIAL_PROTOCOLLNPGM("start");
  8349. SERIAL_ECHO_START;
  8350. // Check startup - does nothing if bootloader sets MCUSR to 0
  8351. byte mcu = MCUSR;
  8352. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  8353. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  8354. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  8355. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  8356. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  8357. MCUSR = 0;
  8358. SERIAL_ECHOPGM(MSG_MARLIN);
  8359. SERIAL_CHAR(' ');
  8360. SERIAL_ECHOLNPGM(SHORT_BUILD_VERSION);
  8361. SERIAL_EOL;
  8362. #if defined(STRING_DISTRIBUTION_DATE) && defined(STRING_CONFIG_H_AUTHOR)
  8363. SERIAL_ECHO_START;
  8364. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  8365. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  8366. SERIAL_ECHOLNPGM(MSG_AUTHOR STRING_CONFIG_H_AUTHOR);
  8367. SERIAL_ECHOLNPGM("Compiled: " __DATE__);
  8368. #endif
  8369. SERIAL_ECHO_START;
  8370. SERIAL_ECHOPAIR(MSG_FREE_MEMORY, freeMemory());
  8371. SERIAL_ECHOLNPAIR(MSG_PLANNER_BUFFER_BYTES, (int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  8372. // Send "ok" after commands by default
  8373. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  8374. // Load data from EEPROM if available (or use defaults)
  8375. // This also updates variables in the planner, elsewhere
  8376. Config_RetrieveSettings();
  8377. // Initialize current position based on home_offset
  8378. memcpy(current_position, home_offset, sizeof(home_offset));
  8379. // Vital to init stepper/planner equivalent for current_position
  8380. SYNC_PLAN_POSITION_KINEMATIC();
  8381. thermalManager.init(); // Initialize temperature loop
  8382. #if ENABLED(USE_WATCHDOG)
  8383. watchdog_init();
  8384. #endif
  8385. stepper.init(); // Initialize stepper, this enables interrupts!
  8386. servo_init();
  8387. #if HAS_PHOTOGRAPH
  8388. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  8389. #endif
  8390. #if HAS_CASE_LIGHT
  8391. setup_case_light();
  8392. #endif
  8393. #if HAS_BED_PROBE
  8394. endstops.enable_z_probe(false);
  8395. #endif
  8396. #if HAS_CONTROLLERFAN
  8397. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  8398. #endif
  8399. #if HAS_STEPPER_RESET
  8400. enableStepperDrivers();
  8401. #endif
  8402. #if ENABLED(DIGIPOT_I2C)
  8403. digipot_i2c_init();
  8404. #endif
  8405. #if ENABLED(DAC_STEPPER_CURRENT)
  8406. dac_init();
  8407. #endif
  8408. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  8409. OUT_WRITE(SLED_PIN, LOW); // turn it off
  8410. #endif // Z_PROBE_SLED
  8411. setup_homepin();
  8412. #if PIN_EXISTS(STAT_LED_RED)
  8413. OUT_WRITE(STAT_LED_RED_PIN, LOW); // turn it off
  8414. #endif
  8415. #if PIN_EXISTS(STAT_LED_BLUE)
  8416. OUT_WRITE(STAT_LED_BLUE_PIN, LOW); // turn it off
  8417. #endif
  8418. lcd_init();
  8419. #if ENABLED(SHOW_BOOTSCREEN)
  8420. #if ENABLED(DOGLCD)
  8421. safe_delay(BOOTSCREEN_TIMEOUT);
  8422. #elif ENABLED(ULTRA_LCD)
  8423. bootscreen();
  8424. #if DISABLED(SDSUPPORT)
  8425. lcd_init();
  8426. #endif
  8427. #endif
  8428. #endif
  8429. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  8430. // Initialize mixing to 100% color 1
  8431. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8432. mixing_factor[i] = (i == 0) ? 1.0 : 0.0;
  8433. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  8434. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  8435. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  8436. #endif
  8437. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  8438. i2c.onReceive(i2c_on_receive);
  8439. i2c.onRequest(i2c_on_request);
  8440. #endif
  8441. }
  8442. /**
  8443. * The main Marlin program loop
  8444. *
  8445. * - Save or log commands to SD
  8446. * - Process available commands (if not saving)
  8447. * - Call heater manager
  8448. * - Call inactivity manager
  8449. * - Call endstop manager
  8450. * - Call LCD update
  8451. */
  8452. void loop() {
  8453. if (commands_in_queue < BUFSIZE) get_available_commands();
  8454. #if ENABLED(SDSUPPORT)
  8455. card.checkautostart(false);
  8456. #endif
  8457. if (commands_in_queue) {
  8458. #if ENABLED(SDSUPPORT)
  8459. if (card.saving) {
  8460. char* command = command_queue[cmd_queue_index_r];
  8461. if (strstr_P(command, PSTR("M29"))) {
  8462. // M29 closes the file
  8463. card.closefile();
  8464. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  8465. ok_to_send();
  8466. }
  8467. else {
  8468. // Write the string from the read buffer to SD
  8469. card.write_command(command);
  8470. if (card.logging)
  8471. process_next_command(); // The card is saving because it's logging
  8472. else
  8473. ok_to_send();
  8474. }
  8475. }
  8476. else
  8477. process_next_command();
  8478. #else
  8479. process_next_command();
  8480. #endif // SDSUPPORT
  8481. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  8482. if (commands_in_queue) {
  8483. --commands_in_queue;
  8484. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  8485. }
  8486. }
  8487. endstops.report_state();
  8488. idle();
  8489. }