My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kan inte välja fler än 25 ämnen Ämnen måste starta med en bokstav eller siffra, kan innehålla bindestreck ('-') och vara max 35 tecken långa.

stepper.cpp 42KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[4];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. #endif
  66. static bool old_x_min_endstop=false;
  67. static bool old_x_max_endstop=false;
  68. static bool old_y_min_endstop=false;
  69. static bool old_y_max_endstop=false;
  70. static bool old_z_min_endstop=false;
  71. static bool old_z_max_endstop=false;
  72. static bool check_endstops = true;
  73. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  74. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  75. //===========================================================================
  76. //=============================functions ============================
  77. //===========================================================================
  78. #define CHECK_ENDSTOPS if(check_endstops)
  79. // intRes = intIn1 * intIn2 >> 16
  80. // uses:
  81. // r26 to store 0
  82. // r27 to store the byte 1 of the 24 bit result
  83. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  84. asm volatile ( \
  85. "clr r26 \n\t" \
  86. "mul %A1, %B2 \n\t" \
  87. "movw %A0, r0 \n\t" \
  88. "mul %A1, %A2 \n\t" \
  89. "add %A0, r1 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "lsr r0 \n\t" \
  92. "adc %A0, r26 \n\t" \
  93. "adc %B0, r26 \n\t" \
  94. "clr r1 \n\t" \
  95. : \
  96. "=&r" (intRes) \
  97. : \
  98. "d" (charIn1), \
  99. "d" (intIn2) \
  100. : \
  101. "r26" \
  102. )
  103. // intRes = longIn1 * longIn2 >> 24
  104. // uses:
  105. // r26 to store 0
  106. // r27 to store the byte 1 of the 48bit result
  107. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  108. asm volatile ( \
  109. "clr r26 \n\t" \
  110. "mul %A1, %B2 \n\t" \
  111. "mov r27, r1 \n\t" \
  112. "mul %B1, %C2 \n\t" \
  113. "movw %A0, r0 \n\t" \
  114. "mul %C1, %C2 \n\t" \
  115. "add %B0, r0 \n\t" \
  116. "mul %C1, %B2 \n\t" \
  117. "add %A0, r0 \n\t" \
  118. "adc %B0, r1 \n\t" \
  119. "mul %A1, %C2 \n\t" \
  120. "add r27, r0 \n\t" \
  121. "adc %A0, r1 \n\t" \
  122. "adc %B0, r26 \n\t" \
  123. "mul %B1, %B2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %C1, %A2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %B1, %A2 \n\t" \
  132. "add r27, r1 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "lsr r27 \n\t" \
  136. "adc %A0, r26 \n\t" \
  137. "adc %B0, r26 \n\t" \
  138. "clr r1 \n\t" \
  139. : \
  140. "=&r" (intRes) \
  141. : \
  142. "d" (longIn1), \
  143. "d" (longIn2) \
  144. : \
  145. "r26" , "r27" \
  146. )
  147. // Some useful constants
  148. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  149. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  150. void checkHitEndstops()
  151. {
  152. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  153. SERIAL_ECHO_START;
  154. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  155. if(endstop_x_hit) {
  156. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  157. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  158. }
  159. if(endstop_y_hit) {
  160. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  161. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  162. }
  163. if(endstop_z_hit) {
  164. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  165. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  166. }
  167. SERIAL_ECHOLN("");
  168. endstop_x_hit=false;
  169. endstop_y_hit=false;
  170. endstop_z_hit=false;
  171. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  172. if (abort_on_endstop_hit)
  173. {
  174. card.sdprinting = false;
  175. card.closefile();
  176. quickStop();
  177. setTargetHotend0(0);
  178. setTargetHotend1(0);
  179. setTargetHotend2(0);
  180. setTargetHotend3(0);
  181. setTargetBed(0);
  182. }
  183. #endif
  184. }
  185. }
  186. void endstops_hit_on_purpose()
  187. {
  188. endstop_x_hit=false;
  189. endstop_y_hit=false;
  190. endstop_z_hit=false;
  191. }
  192. void enable_endstops(bool check)
  193. {
  194. check_endstops = check;
  195. }
  196. // __________________________
  197. // /| |\ _________________ ^
  198. // / | | \ /| |\ |
  199. // / | | \ / | | \ s
  200. // / | | | | | \ p
  201. // / | | | | | \ e
  202. // +-----+------------------------+---+--+---------------+----+ e
  203. // | BLOCK 1 | BLOCK 2 | d
  204. //
  205. // time ----->
  206. //
  207. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  208. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  209. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  210. // The slope of acceleration is calculated with the leib ramp alghorithm.
  211. void st_wake_up() {
  212. // TCNT1 = 0;
  213. ENABLE_STEPPER_DRIVER_INTERRUPT();
  214. }
  215. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  216. unsigned short timer;
  217. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  218. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  219. step_rate = (step_rate >> 2)&0x3fff;
  220. step_loops = 4;
  221. }
  222. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  223. step_rate = (step_rate >> 1)&0x7fff;
  224. step_loops = 2;
  225. }
  226. else {
  227. step_loops = 1;
  228. }
  229. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  230. step_rate -= (F_CPU/500000); // Correct for minimal speed
  231. if(step_rate >= (8*256)){ // higher step rate
  232. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  233. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  234. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  235. MultiU16X8toH16(timer, tmp_step_rate, gain);
  236. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  237. }
  238. else { // lower step rates
  239. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  240. table_address += ((step_rate)>>1) & 0xfffc;
  241. timer = (unsigned short)pgm_read_word_near(table_address);
  242. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  243. }
  244. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  245. return timer;
  246. }
  247. // Initializes the trapezoid generator from the current block. Called whenever a new
  248. // block begins.
  249. FORCE_INLINE void trapezoid_generator_reset() {
  250. #ifdef ADVANCE
  251. advance = current_block->initial_advance;
  252. final_advance = current_block->final_advance;
  253. // Do E steps + advance steps
  254. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  255. old_advance = advance >>8;
  256. #endif
  257. deceleration_time = 0;
  258. // step_rate to timer interval
  259. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  260. // make a note of the number of step loops required at nominal speed
  261. step_loops_nominal = step_loops;
  262. acc_step_rate = current_block->initial_rate;
  263. acceleration_time = calc_timer(acc_step_rate);
  264. OCR1A = acceleration_time;
  265. // SERIAL_ECHO_START;
  266. // SERIAL_ECHOPGM("advance :");
  267. // SERIAL_ECHO(current_block->advance/256.0);
  268. // SERIAL_ECHOPGM("advance rate :");
  269. // SERIAL_ECHO(current_block->advance_rate/256.0);
  270. // SERIAL_ECHOPGM("initial advance :");
  271. // SERIAL_ECHO(current_block->initial_advance/256.0);
  272. // SERIAL_ECHOPGM("final advance :");
  273. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  274. }
  275. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  276. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  277. ISR(TIMER1_COMPA_vect)
  278. {
  279. // If there is no current block, attempt to pop one from the buffer
  280. if (current_block == NULL) {
  281. // Anything in the buffer?
  282. current_block = plan_get_current_block();
  283. if (current_block != NULL) {
  284. current_block->busy = true;
  285. trapezoid_generator_reset();
  286. counter_x = -(current_block->step_event_count >> 1);
  287. counter_y = counter_x;
  288. counter_z = counter_x;
  289. counter_e = counter_x;
  290. step_events_completed = 0;
  291. #ifdef Z_LATE_ENABLE
  292. if(current_block->steps_z > 0) {
  293. enable_z();
  294. OCR1A = 2000; //1ms wait
  295. return;
  296. }
  297. #endif
  298. // #ifdef ADVANCE
  299. // e_steps[current_block->active_extruder] = 0;
  300. // #endif
  301. }
  302. else {
  303. OCR1A=2000; // 1kHz.
  304. }
  305. }
  306. if (current_block != NULL) {
  307. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  308. out_bits = current_block->direction_bits;
  309. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  310. if((out_bits & (1<<X_AXIS))!=0){
  311. #ifdef DUAL_X_CARRIAGE
  312. if (extruder_duplication_enabled){
  313. WRITE(X_DIR_PIN, INVERT_X_DIR);
  314. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  315. }
  316. else{
  317. if (current_block->active_extruder != 0)
  318. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  319. else
  320. WRITE(X_DIR_PIN, INVERT_X_DIR);
  321. }
  322. #else
  323. WRITE(X_DIR_PIN, INVERT_X_DIR);
  324. #endif
  325. count_direction[X_AXIS]=-1;
  326. }
  327. else{
  328. #ifdef DUAL_X_CARRIAGE
  329. if (extruder_duplication_enabled){
  330. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  331. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  332. }
  333. else{
  334. if (current_block->active_extruder != 0)
  335. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  336. else
  337. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  338. }
  339. #else
  340. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  341. #endif
  342. count_direction[X_AXIS]=1;
  343. }
  344. if((out_bits & (1<<Y_AXIS))!=0){
  345. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  346. #ifdef Y_DUAL_STEPPER_DRIVERS
  347. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  348. #endif
  349. count_direction[Y_AXIS]=-1;
  350. }
  351. else{
  352. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  353. #ifdef Y_DUAL_STEPPER_DRIVERS
  354. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  355. #endif
  356. count_direction[Y_AXIS]=1;
  357. }
  358. if(check_endstops) // check X and Y Endstops
  359. {
  360. #ifndef COREXY
  361. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
  362. #else
  363. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
  364. if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
  365. #endif
  366. { // -direction
  367. #ifdef DUAL_X_CARRIAGE
  368. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  369. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  370. #endif
  371. {
  372. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  373. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  374. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
  375. {
  376. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  377. endstop_x_hit=true;
  378. step_events_completed = current_block->step_event_count;
  379. }
  380. old_x_min_endstop = x_min_endstop;
  381. #endif
  382. }
  383. }
  384. else
  385. { // +direction
  386. #ifdef DUAL_X_CARRIAGE
  387. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  388. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  389. #endif
  390. {
  391. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  392. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  393. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
  394. {
  395. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  396. endstop_x_hit=true;
  397. step_events_completed = current_block->step_event_count;
  398. }
  399. old_x_max_endstop = x_max_endstop;
  400. #endif
  401. }
  402. }
  403. #ifndef COREXY
  404. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  405. #else
  406. if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
  407. if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
  408. #endif
  409. { // -direction
  410. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  411. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  412. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
  413. {
  414. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  415. endstop_y_hit=true;
  416. step_events_completed = current_block->step_event_count;
  417. }
  418. old_y_min_endstop = y_min_endstop;
  419. #endif
  420. }
  421. else
  422. { // +direction
  423. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  424. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  425. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
  426. {
  427. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  428. endstop_y_hit=true;
  429. step_events_completed = current_block->step_event_count;
  430. }
  431. old_y_max_endstop = y_max_endstop;
  432. #endif
  433. }
  434. }
  435. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  436. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  437. #ifdef Z_DUAL_STEPPER_DRIVERS
  438. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  439. #endif
  440. count_direction[Z_AXIS]=-1;
  441. CHECK_ENDSTOPS
  442. {
  443. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  444. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  445. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  446. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  447. endstop_z_hit=true;
  448. step_events_completed = current_block->step_event_count;
  449. }
  450. old_z_min_endstop = z_min_endstop;
  451. #endif
  452. }
  453. }
  454. else { // +direction
  455. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  456. #ifdef Z_DUAL_STEPPER_DRIVERS
  457. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  458. #endif
  459. count_direction[Z_AXIS]=1;
  460. CHECK_ENDSTOPS
  461. {
  462. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  463. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  464. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  465. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  466. endstop_z_hit=true;
  467. step_events_completed = current_block->step_event_count;
  468. }
  469. old_z_max_endstop = z_max_endstop;
  470. #endif
  471. }
  472. }
  473. #ifndef ADVANCE
  474. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  475. REV_E_DIR();
  476. count_direction[E_AXIS]=-1;
  477. }
  478. else { // +direction
  479. NORM_E_DIR();
  480. count_direction[E_AXIS]=1;
  481. }
  482. #endif //!ADVANCE
  483. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  484. #ifndef AT90USB
  485. MSerial.checkRx(); // Check for serial chars.
  486. #endif
  487. #ifdef ADVANCE
  488. counter_e += current_block->steps_e;
  489. if (counter_e > 0) {
  490. counter_e -= current_block->step_event_count;
  491. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  492. e_steps[current_block->active_extruder]--;
  493. }
  494. else {
  495. e_steps[current_block->active_extruder]++;
  496. }
  497. }
  498. #endif //ADVANCE
  499. counter_x += current_block->steps_x;
  500. #ifdef CONFIG_STEPPERS_TOSHIBA
  501. /* The toshiba stepper controller require much longer pulses
  502. * tjerfore we 'stage' decompose the pulses between high, and
  503. * low instead of doing each in turn. The extra tests add enough
  504. * lag to allow it work with without needing NOPs */
  505. if (counter_x > 0) {
  506. WRITE(X_STEP_PIN, HIGH);
  507. }
  508. counter_y += current_block->steps_y;
  509. if (counter_y > 0) {
  510. WRITE(Y_STEP_PIN, HIGH);
  511. }
  512. counter_z += current_block->steps_z;
  513. if (counter_z > 0) {
  514. WRITE(Z_STEP_PIN, HIGH);
  515. }
  516. #ifndef ADVANCE
  517. counter_e += current_block->steps_e;
  518. if (counter_e > 0) {
  519. WRITE_E_STEP(HIGH);
  520. }
  521. #endif //!ADVANCE
  522. if (counter_x > 0) {
  523. counter_x -= current_block->step_event_count;
  524. count_position[X_AXIS]+=count_direction[X_AXIS];
  525. WRITE(X_STEP_PIN, LOW);
  526. }
  527. if (counter_y > 0) {
  528. counter_y -= current_block->step_event_count;
  529. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  530. WRITE(Y_STEP_PIN, LOW);
  531. }
  532. if (counter_z > 0) {
  533. counter_z -= current_block->step_event_count;
  534. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  535. WRITE(Z_STEP_PIN, LOW);
  536. }
  537. #ifndef ADVANCE
  538. if (counter_e > 0) {
  539. counter_e -= current_block->step_event_count;
  540. count_position[E_AXIS]+=count_direction[E_AXIS];
  541. WRITE_E_STEP(LOW);
  542. }
  543. #endif //!ADVANCE
  544. #else
  545. if (counter_x > 0) {
  546. #ifdef DUAL_X_CARRIAGE
  547. if (extruder_duplication_enabled){
  548. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  549. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  550. }
  551. else {
  552. if (current_block->active_extruder != 0)
  553. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  554. else
  555. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  556. }
  557. #else
  558. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  559. #endif
  560. counter_x -= current_block->step_event_count;
  561. count_position[X_AXIS]+=count_direction[X_AXIS];
  562. #ifdef DUAL_X_CARRIAGE
  563. if (extruder_duplication_enabled){
  564. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  565. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  566. }
  567. else {
  568. if (current_block->active_extruder != 0)
  569. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  570. else
  571. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  572. }
  573. #else
  574. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  575. #endif
  576. }
  577. counter_y += current_block->steps_y;
  578. if (counter_y > 0) {
  579. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  580. #ifdef Y_DUAL_STEPPER_DRIVERS
  581. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  582. #endif
  583. counter_y -= current_block->step_event_count;
  584. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  585. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  586. #ifdef Y_DUAL_STEPPER_DRIVERS
  587. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  588. #endif
  589. }
  590. counter_z += current_block->steps_z;
  591. if (counter_z > 0) {
  592. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  593. #ifdef Z_DUAL_STEPPER_DRIVERS
  594. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  595. #endif
  596. counter_z -= current_block->step_event_count;
  597. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  598. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  599. #ifdef Z_DUAL_STEPPER_DRIVERS
  600. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  601. #endif
  602. }
  603. #ifndef ADVANCE
  604. counter_e += current_block->steps_e;
  605. if (counter_e > 0) {
  606. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  607. counter_e -= current_block->step_event_count;
  608. count_position[E_AXIS]+=count_direction[E_AXIS];
  609. WRITE_E_STEP(INVERT_E_STEP_PIN);
  610. }
  611. #endif //!ADVANCE
  612. #endif // CONFIG_STEPPERS_TOSHIBA
  613. step_events_completed += 1;
  614. if(step_events_completed >= current_block->step_event_count) break;
  615. }
  616. // Calculare new timer value
  617. unsigned short timer;
  618. unsigned short step_rate;
  619. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  620. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  621. acc_step_rate += current_block->initial_rate;
  622. // upper limit
  623. if(acc_step_rate > current_block->nominal_rate)
  624. acc_step_rate = current_block->nominal_rate;
  625. // step_rate to timer interval
  626. timer = calc_timer(acc_step_rate);
  627. OCR1A = timer;
  628. acceleration_time += timer;
  629. #ifdef ADVANCE
  630. for(int8_t i=0; i < step_loops; i++) {
  631. advance += advance_rate;
  632. }
  633. //if(advance > current_block->advance) advance = current_block->advance;
  634. // Do E steps + advance steps
  635. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  636. old_advance = advance >>8;
  637. #endif
  638. }
  639. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  640. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  641. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  642. step_rate = current_block->final_rate;
  643. }
  644. else {
  645. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  646. }
  647. // lower limit
  648. if(step_rate < current_block->final_rate)
  649. step_rate = current_block->final_rate;
  650. // step_rate to timer interval
  651. timer = calc_timer(step_rate);
  652. OCR1A = timer;
  653. deceleration_time += timer;
  654. #ifdef ADVANCE
  655. for(int8_t i=0; i < step_loops; i++) {
  656. advance -= advance_rate;
  657. }
  658. if(advance < final_advance) advance = final_advance;
  659. // Do E steps + advance steps
  660. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  661. old_advance = advance >>8;
  662. #endif //ADVANCE
  663. }
  664. else {
  665. OCR1A = OCR1A_nominal;
  666. // ensure we're running at the correct step rate, even if we just came off an acceleration
  667. step_loops = step_loops_nominal;
  668. }
  669. // If current block is finished, reset pointer
  670. if (step_events_completed >= current_block->step_event_count) {
  671. current_block = NULL;
  672. plan_discard_current_block();
  673. }
  674. }
  675. }
  676. #ifdef ADVANCE
  677. unsigned char old_OCR0A;
  678. // Timer interrupt for E. e_steps is set in the main routine;
  679. // Timer 0 is shared with millies
  680. ISR(TIMER0_COMPA_vect)
  681. {
  682. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  683. OCR0A = old_OCR0A;
  684. // Set E direction (Depends on E direction + advance)
  685. for(unsigned char i=0; i<4;i++) {
  686. if (e_steps[0] != 0) {
  687. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  688. if (e_steps[0] < 0) {
  689. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  690. e_steps[0]++;
  691. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  692. }
  693. else if (e_steps[0] > 0) {
  694. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  695. e_steps[0]--;
  696. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  697. }
  698. }
  699. #if EXTRUDERS > 1
  700. if (e_steps[1] != 0) {
  701. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  702. if (e_steps[1] < 0) {
  703. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  704. e_steps[1]++;
  705. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  706. }
  707. else if (e_steps[1] > 0) {
  708. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  709. e_steps[1]--;
  710. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  711. }
  712. }
  713. #endif
  714. #if EXTRUDERS > 2
  715. if (e_steps[2] != 0) {
  716. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  717. if (e_steps[2] < 0) {
  718. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  719. e_steps[2]++;
  720. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  721. }
  722. else if (e_steps[2] > 0) {
  723. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  724. e_steps[2]--;
  725. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  726. }
  727. }
  728. #endif
  729. #if EXTRUDERS > 3
  730. if (e_steps[3] != 0) {
  731. WRITE(E3_STEP_PIN, INVERT_E_STEP_PIN);
  732. if (e_steps[3] < 0) {
  733. WRITE(E3_DIR_PIN, INVERT_E3_DIR);
  734. e_steps[3]++;
  735. WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
  736. }
  737. else if (e_steps[3] > 0) {
  738. WRITE(E3_DIR_PIN, !INVERT_E3_DIR);
  739. e_steps[3]--;
  740. WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
  741. }
  742. }
  743. #endif
  744. }
  745. }
  746. #endif // ADVANCE
  747. void st_init()
  748. {
  749. digipot_init(); //Initialize Digipot Motor Current
  750. microstep_init(); //Initialize Microstepping Pins
  751. //Initialize Dir Pins
  752. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  753. SET_OUTPUT(X_DIR_PIN);
  754. #endif
  755. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  756. SET_OUTPUT(X2_DIR_PIN);
  757. #endif
  758. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  759. SET_OUTPUT(Y_DIR_PIN);
  760. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  761. SET_OUTPUT(Y2_DIR_PIN);
  762. #endif
  763. #endif
  764. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  765. SET_OUTPUT(Z_DIR_PIN);
  766. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  767. SET_OUTPUT(Z2_DIR_PIN);
  768. #endif
  769. #endif
  770. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  771. SET_OUTPUT(E0_DIR_PIN);
  772. #endif
  773. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  774. SET_OUTPUT(E1_DIR_PIN);
  775. #endif
  776. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  777. SET_OUTPUT(E2_DIR_PIN);
  778. #endif
  779. #if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
  780. SET_OUTPUT(E3_DIR_PIN);
  781. #endif
  782. //Initialize Enable Pins - steppers default to disabled.
  783. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  784. SET_OUTPUT(X_ENABLE_PIN);
  785. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  786. #endif
  787. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  788. SET_OUTPUT(X2_ENABLE_PIN);
  789. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  790. #endif
  791. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  792. SET_OUTPUT(Y_ENABLE_PIN);
  793. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  794. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  795. SET_OUTPUT(Y2_ENABLE_PIN);
  796. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  797. #endif
  798. #endif
  799. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  800. SET_OUTPUT(Z_ENABLE_PIN);
  801. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  802. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  803. SET_OUTPUT(Z2_ENABLE_PIN);
  804. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  805. #endif
  806. #endif
  807. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  808. SET_OUTPUT(E0_ENABLE_PIN);
  809. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  810. #endif
  811. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  812. SET_OUTPUT(E1_ENABLE_PIN);
  813. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  814. #endif
  815. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  816. SET_OUTPUT(E2_ENABLE_PIN);
  817. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  818. #endif
  819. #if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
  820. SET_OUTPUT(E3_ENABLE_PIN);
  821. if(!E_ENABLE_ON) WRITE(E3_ENABLE_PIN,HIGH);
  822. #endif
  823. //endstops and pullups
  824. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  825. SET_INPUT(X_MIN_PIN);
  826. #ifdef ENDSTOPPULLUP_XMIN
  827. WRITE(X_MIN_PIN,HIGH);
  828. #endif
  829. #endif
  830. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  831. SET_INPUT(Y_MIN_PIN);
  832. #ifdef ENDSTOPPULLUP_YMIN
  833. WRITE(Y_MIN_PIN,HIGH);
  834. #endif
  835. #endif
  836. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  837. SET_INPUT(Z_MIN_PIN);
  838. #ifdef ENDSTOPPULLUP_ZMIN
  839. WRITE(Z_MIN_PIN,HIGH);
  840. #endif
  841. #endif
  842. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  843. SET_INPUT(X_MAX_PIN);
  844. #ifdef ENDSTOPPULLUP_XMAX
  845. WRITE(X_MAX_PIN,HIGH);
  846. #endif
  847. #endif
  848. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  849. SET_INPUT(Y_MAX_PIN);
  850. #ifdef ENDSTOPPULLUP_YMAX
  851. WRITE(Y_MAX_PIN,HIGH);
  852. #endif
  853. #endif
  854. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  855. SET_INPUT(Z_MAX_PIN);
  856. #ifdef ENDSTOPPULLUP_ZMAX
  857. WRITE(Z_MAX_PIN,HIGH);
  858. #endif
  859. #endif
  860. //Initialize Step Pins
  861. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  862. SET_OUTPUT(X_STEP_PIN);
  863. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  864. disable_x();
  865. #endif
  866. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  867. SET_OUTPUT(X2_STEP_PIN);
  868. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  869. disable_x();
  870. #endif
  871. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  872. SET_OUTPUT(Y_STEP_PIN);
  873. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  874. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  875. SET_OUTPUT(Y2_STEP_PIN);
  876. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  877. #endif
  878. disable_y();
  879. #endif
  880. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  881. SET_OUTPUT(Z_STEP_PIN);
  882. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  883. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  884. SET_OUTPUT(Z2_STEP_PIN);
  885. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  886. #endif
  887. disable_z();
  888. #endif
  889. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  890. SET_OUTPUT(E0_STEP_PIN);
  891. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  892. disable_e0();
  893. #endif
  894. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  895. SET_OUTPUT(E1_STEP_PIN);
  896. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  897. disable_e1();
  898. #endif
  899. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  900. SET_OUTPUT(E2_STEP_PIN);
  901. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  902. disable_e2();
  903. #endif
  904. #if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
  905. SET_OUTPUT(E3_STEP_PIN);
  906. WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
  907. disable_e3();
  908. #endif
  909. // waveform generation = 0100 = CTC
  910. TCCR1B &= ~(1<<WGM13);
  911. TCCR1B |= (1<<WGM12);
  912. TCCR1A &= ~(1<<WGM11);
  913. TCCR1A &= ~(1<<WGM10);
  914. // output mode = 00 (disconnected)
  915. TCCR1A &= ~(3<<COM1A0);
  916. TCCR1A &= ~(3<<COM1B0);
  917. // Set the timer pre-scaler
  918. // Generally we use a divider of 8, resulting in a 2MHz timer
  919. // frequency on a 16MHz MCU. If you are going to change this, be
  920. // sure to regenerate speed_lookuptable.h with
  921. // create_speed_lookuptable.py
  922. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  923. OCR1A = 0x4000;
  924. TCNT1 = 0;
  925. ENABLE_STEPPER_DRIVER_INTERRUPT();
  926. #ifdef ADVANCE
  927. #if defined(TCCR0A) && defined(WGM01)
  928. TCCR0A &= ~(1<<WGM01);
  929. TCCR0A &= ~(1<<WGM00);
  930. #endif
  931. e_steps[0] = 0;
  932. e_steps[1] = 0;
  933. e_steps[2] = 0;
  934. e_steps[3] = 0;
  935. TIMSK0 |= (1<<OCIE0A);
  936. #endif //ADVANCE
  937. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  938. sei();
  939. }
  940. // Block until all buffered steps are executed
  941. void st_synchronize()
  942. {
  943. while( blocks_queued()) {
  944. manage_heater();
  945. manage_inactivity();
  946. lcd_update();
  947. }
  948. }
  949. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  950. {
  951. CRITICAL_SECTION_START;
  952. count_position[X_AXIS] = x;
  953. count_position[Y_AXIS] = y;
  954. count_position[Z_AXIS] = z;
  955. count_position[E_AXIS] = e;
  956. CRITICAL_SECTION_END;
  957. }
  958. void st_set_e_position(const long &e)
  959. {
  960. CRITICAL_SECTION_START;
  961. count_position[E_AXIS] = e;
  962. CRITICAL_SECTION_END;
  963. }
  964. long st_get_position(uint8_t axis)
  965. {
  966. long count_pos;
  967. CRITICAL_SECTION_START;
  968. count_pos = count_position[axis];
  969. CRITICAL_SECTION_END;
  970. return count_pos;
  971. }
  972. #ifdef ENABLE_AUTO_BED_LEVELING
  973. float st_get_position_mm(uint8_t axis)
  974. {
  975. float steper_position_in_steps = st_get_position(axis);
  976. return steper_position_in_steps / axis_steps_per_unit[axis];
  977. }
  978. #endif // ENABLE_AUTO_BED_LEVELING
  979. void finishAndDisableSteppers()
  980. {
  981. st_synchronize();
  982. disable_x();
  983. disable_y();
  984. disable_z();
  985. disable_e0();
  986. disable_e1();
  987. disable_e2();
  988. disable_e3();
  989. }
  990. void quickStop()
  991. {
  992. DISABLE_STEPPER_DRIVER_INTERRUPT();
  993. while(blocks_queued())
  994. plan_discard_current_block();
  995. current_block = NULL;
  996. ENABLE_STEPPER_DRIVER_INTERRUPT();
  997. }
  998. #ifdef BABYSTEPPING
  999. void babystep(const uint8_t axis,const bool direction)
  1000. {
  1001. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1002. //store initial pin states
  1003. switch(axis)
  1004. {
  1005. case X_AXIS:
  1006. {
  1007. enable_x();
  1008. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1009. //setup new step
  1010. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1011. #ifdef DUAL_X_CARRIAGE
  1012. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  1013. #endif
  1014. //perform step
  1015. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1016. #ifdef DUAL_X_CARRIAGE
  1017. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  1018. #endif
  1019. _delay_us(1U); // wait 1 microsecond
  1020. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1021. #ifdef DUAL_X_CARRIAGE
  1022. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  1023. #endif
  1024. //get old pin state back.
  1025. WRITE(X_DIR_PIN,old_x_dir_pin);
  1026. #ifdef DUAL_X_CARRIAGE
  1027. WRITE(X2_DIR_PIN,old_x_dir_pin);
  1028. #endif
  1029. }
  1030. break;
  1031. case Y_AXIS:
  1032. {
  1033. enable_y();
  1034. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1035. //setup new step
  1036. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1037. #ifdef DUAL_Y_CARRIAGE
  1038. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1039. #endif
  1040. //perform step
  1041. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1042. #ifdef DUAL_Y_CARRIAGE
  1043. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1044. #endif
  1045. _delay_us(1U); // wait 1 microsecond
  1046. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1047. #ifdef DUAL_Y_CARRIAGE
  1048. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1049. #endif
  1050. //get old pin state back.
  1051. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1052. #ifdef DUAL_Y_CARRIAGE
  1053. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1054. #endif
  1055. }
  1056. break;
  1057. #ifndef DELTA
  1058. case Z_AXIS:
  1059. {
  1060. enable_z();
  1061. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1062. //setup new step
  1063. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1064. #ifdef Z_DUAL_STEPPER_DRIVERS
  1065. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1066. #endif
  1067. //perform step
  1068. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1069. #ifdef Z_DUAL_STEPPER_DRIVERS
  1070. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1071. #endif
  1072. _delay_us(1U); // wait 1 microsecond
  1073. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1074. #ifdef Z_DUAL_STEPPER_DRIVERS
  1075. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1076. #endif
  1077. //get old pin state back.
  1078. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1079. #ifdef Z_DUAL_STEPPER_DRIVERS
  1080. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1081. #endif
  1082. }
  1083. break;
  1084. #else //DELTA
  1085. case Z_AXIS:
  1086. {
  1087. enable_x();
  1088. enable_y();
  1089. enable_z();
  1090. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1091. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1092. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1093. //setup new step
  1094. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1095. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1096. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1097. //perform step
  1098. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1099. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1100. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1101. _delay_us(1U); // wait 1 microsecond
  1102. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1103. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1104. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1105. //get old pin state back.
  1106. WRITE(X_DIR_PIN,old_x_dir_pin);
  1107. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1108. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1109. }
  1110. break;
  1111. #endif
  1112. default: break;
  1113. }
  1114. }
  1115. #endif //BABYSTEPPING
  1116. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1117. {
  1118. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1119. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1120. SPI.transfer(address); // send in the address and value via SPI:
  1121. SPI.transfer(value);
  1122. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1123. //delay(10);
  1124. #endif
  1125. }
  1126. void digipot_init() //Initialize Digipot Motor Current
  1127. {
  1128. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1129. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1130. SPI.begin();
  1131. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1132. for(int i=0;i<=4;i++)
  1133. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1134. digipot_current(i,digipot_motor_current[i]);
  1135. #endif
  1136. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1137. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1138. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1139. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1140. digipot_current(0, motor_current_setting[0]);
  1141. digipot_current(1, motor_current_setting[1]);
  1142. digipot_current(2, motor_current_setting[2]);
  1143. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1144. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1145. #endif
  1146. }
  1147. void digipot_current(uint8_t driver, int current)
  1148. {
  1149. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1150. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1151. digitalPotWrite(digipot_ch[driver], current);
  1152. #endif
  1153. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1154. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1155. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1156. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1157. #endif
  1158. }
  1159. void microstep_init()
  1160. {
  1161. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1162. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1163. pinMode(E1_MS1_PIN,OUTPUT);
  1164. pinMode(E1_MS2_PIN,OUTPUT);
  1165. #endif
  1166. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1167. pinMode(X_MS1_PIN,OUTPUT);
  1168. pinMode(X_MS2_PIN,OUTPUT);
  1169. pinMode(Y_MS1_PIN,OUTPUT);
  1170. pinMode(Y_MS2_PIN,OUTPUT);
  1171. pinMode(Z_MS1_PIN,OUTPUT);
  1172. pinMode(Z_MS2_PIN,OUTPUT);
  1173. pinMode(E0_MS1_PIN,OUTPUT);
  1174. pinMode(E0_MS2_PIN,OUTPUT);
  1175. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1176. #endif
  1177. }
  1178. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1179. {
  1180. if(ms1 > -1) switch(driver)
  1181. {
  1182. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1183. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1184. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1185. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1186. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1187. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1188. #endif
  1189. }
  1190. if(ms2 > -1) switch(driver)
  1191. {
  1192. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1193. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1194. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1195. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1196. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1197. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1198. #endif
  1199. }
  1200. }
  1201. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1202. {
  1203. switch(stepping_mode)
  1204. {
  1205. case 1: microstep_ms(driver,MICROSTEP1); break;
  1206. case 2: microstep_ms(driver,MICROSTEP2); break;
  1207. case 4: microstep_ms(driver,MICROSTEP4); break;
  1208. case 8: microstep_ms(driver,MICROSTEP8); break;
  1209. case 16: microstep_ms(driver,MICROSTEP16); break;
  1210. }
  1211. }
  1212. void microstep_readings()
  1213. {
  1214. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1215. SERIAL_PROTOCOLPGM("X: ");
  1216. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1217. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1218. SERIAL_PROTOCOLPGM("Y: ");
  1219. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1220. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1221. SERIAL_PROTOCOLPGM("Z: ");
  1222. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1223. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1224. SERIAL_PROTOCOLPGM("E0: ");
  1225. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1226. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1227. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1228. SERIAL_PROTOCOLPGM("E1: ");
  1229. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1230. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1231. #endif
  1232. }