12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649 |
- /**
- * Marlin 3D Printer Firmware
- * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
- *
- * Based on Sprinter and grbl.
- * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <http://www.gnu.org/licenses/>.
- *
- */
-
- /**
- * stepper.cpp - A singleton object to execute motion plans using stepper motors
- * Marlin Firmware
- *
- * Derived from Grbl
- * Copyright (c) 2009-2011 Simen Svale Skogsrud
- *
- * Grbl is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * Grbl is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with Grbl. If not, see <http://www.gnu.org/licenses/>.
- */
-
- /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
- and Philipp Tiefenbacher. */
-
- #include "Marlin.h"
- #include "stepper.h"
- #include "endstops.h"
- #include "planner.h"
- #include "temperature.h"
- #include "ultralcd.h"
- #include "language.h"
- #include "cardreader.h"
- #include "speed_lookuptable.h"
-
- #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
- #include "ubl.h"
- #endif
-
- #if HAS_DIGIPOTSS
- #include <SPI.h>
- #endif
-
- Stepper stepper; // Singleton
-
- // public:
-
- block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced
-
- #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
- bool Stepper::abort_on_endstop_hit = false;
- #endif
-
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::performing_homing = false;
- #endif
-
- #if HAS_MOTOR_CURRENT_PWM
- uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load()
- #endif
-
- // private:
-
- uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output
- uint16_t Stepper::cleaning_buffer_counter = 0;
-
- #if ENABLED(X_DUAL_ENDSTOPS)
- bool Stepper::locked_x_motor = false, Stepper::locked_x2_motor = false;
- #endif
- #if ENABLED(Y_DUAL_ENDSTOPS)
- bool Stepper::locked_y_motor = false, Stepper::locked_y2_motor = false;
- #endif
- #if ENABLED(Z_DUAL_ENDSTOPS)
- bool Stepper::locked_z_motor = false, Stepper::locked_z2_motor = false;
- #endif
-
- long Stepper::counter_X = 0,
- Stepper::counter_Y = 0,
- Stepper::counter_Z = 0,
- Stepper::counter_E = 0;
-
- volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
-
- #if ENABLED(LIN_ADVANCE)
-
- constexpr uint16_t ADV_NEVER = 65535;
-
- uint16_t Stepper::nextMainISR = 0,
- Stepper::nextAdvanceISR = ADV_NEVER,
- Stepper::eISR_Rate = ADV_NEVER;
-
- volatile int Stepper::e_steps[E_STEPPERS];
- int Stepper::final_estep_rate,
- Stepper::current_estep_rate[E_STEPPERS],
- Stepper::current_adv_steps[E_STEPPERS];
-
- /**
- * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
- *
- * This fix isn't perfect and may lose steps - but better than locking up completely
- * in future the planner should slow down if advance stepping rate would be too high
- */
- FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) {
- if (steps) {
- const uint16_t rate = (timer * loops) / abs(steps);
- //return constrain(rate, 1, ADV_NEVER - 1)
- return rate ? rate : 1;
- }
- return ADV_NEVER;
- }
-
- #endif // LIN_ADVANCE
-
- long Stepper::acceleration_time, Stepper::deceleration_time;
-
- volatile long Stepper::count_position[NUM_AXIS] = { 0 };
- volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
-
- #if ENABLED(MIXING_EXTRUDER)
- long Stepper::counter_m[MIXING_STEPPERS];
- #endif
-
- unsigned short Stepper::acc_step_rate; // needed for deceleration start point
- uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
- unsigned short Stepper::OCR1A_nominal;
-
- volatile long Stepper::endstops_trigsteps[XYZ];
-
- #if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
- #define LOCKED_X_MOTOR locked_x_motor
- #define LOCKED_Y_MOTOR locked_y_motor
- #define LOCKED_Z_MOTOR locked_z_motor
- #define LOCKED_X2_MOTOR locked_x2_motor
- #define LOCKED_Y2_MOTOR locked_y2_motor
- #define LOCKED_Z2_MOTOR locked_z2_motor
- #define DUAL_ENDSTOP_APPLY_STEP(AXIS,v) \
- if (performing_homing) { \
- if (AXIS##_HOME_DIR < 0) { \
- if (!(TEST(endstops.old_endstop_bits, AXIS##_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, AXIS##2_MIN) && (count_direction[AXIS##_AXIS] < 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
- } \
- else { \
- if (!(TEST(endstops.old_endstop_bits, AXIS##_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##_MOTOR) AXIS##_STEP_WRITE(v); \
- if (!(TEST(endstops.old_endstop_bits, AXIS##2_MAX) && (count_direction[AXIS##_AXIS] > 0)) && !LOCKED_##AXIS##2_MOTOR) AXIS##2_STEP_WRITE(v); \
- } \
- } \
- else { \
- AXIS##_STEP_WRITE(v); \
- AXIS##2_STEP_WRITE(v); \
- }
- #endif
-
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0)
- #if ENABLED(DUAL_X_CARRIAGE)
- #define X_APPLY_DIR(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_DIR_WRITE(v); \
- X2_DIR_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \
- }
- #define X_APPLY_STEP(v,ALWAYS) \
- if (extruder_duplication_enabled || ALWAYS) { \
- X_STEP_WRITE(v); \
- X2_STEP_WRITE(v); \
- } \
- else { \
- if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \
- }
- #elif ENABLED(X_DUAL_ENDSTOPS)
- #define X_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(X,v)
- #else
- #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v)
- #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0)
- #if ENABLED(Y_DUAL_ENDSTOPS)
- #define Y_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Y,v)
- #else
- #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v)
- #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v)
- #endif
-
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0)
- #if ENABLED(Z_DUAL_ENDSTOPS)
- #define Z_APPLY_STEP(v,Q) DUAL_ENDSTOP_APPLY_STEP(Z,v)
- #else
- #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0)
- #endif
- #else
- #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v)
- #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
- #endif
-
- #if DISABLED(MIXING_EXTRUDER)
- #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
- #endif
-
- // intRes = longIn1 * longIn2 >> 24
- // uses:
- // r26 to store 0
- // r27 to store bits 16-23 of the 48bit result. The top bit is used to round the two byte result.
- // note that the lower two bytes and the upper byte of the 48bit result are not calculated.
- // this can cause the result to be out by one as the lower bytes may cause carries into the upper ones.
- // B0 A0 are bits 24-39 and are the returned value
- // C1 B1 A1 is longIn1
- // D2 C2 B2 A2 is longIn2
- //
- #define MultiU24X32toH16(intRes, longIn1, longIn2) \
- asm volatile ( \
- "clr r26 \n\t" \
- "mul %A1, %B2 \n\t" \
- "mov r27, r1 \n\t" \
- "mul %B1, %C2 \n\t" \
- "movw %A0, r0 \n\t" \
- "mul %C1, %C2 \n\t" \
- "add %B0, r0 \n\t" \
- "mul %C1, %B2 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %A1, %C2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %B2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %C1, %A2 \n\t" \
- "add r27, r0 \n\t" \
- "adc %A0, r1 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %B1, %A2 \n\t" \
- "add r27, r1 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "lsr r27 \n\t" \
- "adc %A0, r26 \n\t" \
- "adc %B0, r26 \n\t" \
- "mul %D2, %A1 \n\t" \
- "add %A0, r0 \n\t" \
- "adc %B0, r1 \n\t" \
- "mul %D2, %B1 \n\t" \
- "add %B0, r0 \n\t" \
- "clr r1 \n\t" \
- : \
- "=&r" (intRes) \
- : \
- "d" (longIn1), \
- "d" (longIn2) \
- : \
- "r26" , "r27" \
- )
-
- // Some useful constants
-
- #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
- #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)
-
- /**
- * __________________________
- * /| |\ _________________ ^
- * / | | \ /| |\ |
- * / | | \ / | | \ s
- * / | | | | | \ p
- * / | | | | | \ e
- * +-----+------------------------+---+--+---------------+----+ e
- * | BLOCK 1 | BLOCK 2 | d
- *
- * time ----->
- *
- * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
- * first block->accelerate_until step_events_completed, then keeps going at constant speed until
- * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
- * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far.
- */
- void Stepper::wake_up() {
- // TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- }
-
- /**
- * Set the stepper direction of each axis
- *
- * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS
- * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS
- * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS
- */
- void Stepper::set_directions() {
-
- #define SET_STEP_DIR(AXIS) \
- if (motor_direction(AXIS ##_AXIS)) { \
- AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = -1; \
- } \
- else { \
- AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \
- count_direction[AXIS ##_AXIS] = 1; \
- }
-
- #if HAS_X_DIR
- SET_STEP_DIR(X); // A
- #endif
- #if HAS_Y_DIR
- SET_STEP_DIR(Y); // B
- #endif
- #if HAS_Z_DIR
- SET_STEP_DIR(Z); // C
- #endif
-
- #if DISABLED(LIN_ADVANCE)
- if (motor_direction(E_AXIS)) {
- REV_E_DIR();
- count_direction[E_AXIS] = -1;
- }
- else {
- NORM_E_DIR();
- count_direction[E_AXIS] = 1;
- }
- #endif // !LIN_ADVANCE
- }
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- extern volatile uint8_t e_hit;
- #endif
-
- /**
- * Stepper Driver Interrupt
- *
- * Directly pulses the stepper motors at high frequency.
- * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode.
- *
- * OCR1A Frequency
- * 1 2 MHz
- * 50 40 KHz
- * 100 20 KHz - capped max rate
- * 200 10 KHz - nominal max rate
- * 2000 1 KHz - sleep rate
- * 4000 500 Hz - init rate
- */
- ISR(TIMER1_COMPA_vect) {
- #if ENABLED(LIN_ADVANCE)
- Stepper::advance_isr_scheduler();
- #else
- Stepper::isr();
- #endif
- }
-
- #define _ENABLE_ISRs() do { cli(); if (thermalManager.in_temp_isr) CBI(TIMSK0, OCIE0B); else SBI(TIMSK0, OCIE0B); ENABLE_STEPPER_DRIVER_INTERRUPT(); } while(0)
-
- void Stepper::isr() {
-
- uint16_t ocr_val;
-
- #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
- #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
-
- #if DISABLED(LIN_ADVANCE)
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- CBI(TIMSK0, OCIE0B); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
- #endif
-
- #define _SPLIT(L) (ocr_val = (uint16_t)L)
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- #define SPLIT(L) _SPLIT(L)
- #else // sample endstops in between step pulses
- static uint32_t step_remaining = 0;
- #define SPLIT(L) do { \
- _SPLIT(L); \
- if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \
- const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \
- ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \
- step_remaining = (uint16_t)L - ocr_val; \
- } \
- }while(0)
-
- if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step
- endstops.update();
- if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) {
- step_remaining -= ENDSTOP_NOMINAL_OCR_VAL;
- ocr_val = ENDSTOP_NOMINAL_OCR_VAL;
- }
- else {
- ocr_val = step_remaining;
- step_remaining = 0; // last one before the ISR that does the step
- }
-
- _NEXT_ISR(ocr_val);
-
- NOLESS(OCR1A, TCNT1 + 16);
-
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- #endif
-
- if (cleaning_buffer_counter) {
- --cleaning_buffer_counter;
- current_block = NULL;
- planner.discard_current_block();
- #ifdef SD_FINISHED_RELEASECOMMAND
- if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
- #endif
- _NEXT_ISR(200); // Run at max speed - 10 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
-
- // If there is no current block, attempt to pop one from the buffer
- if (!current_block) {
- // Anything in the buffer?
- current_block = planner.get_current_block();
- if (current_block) {
- trapezoid_generator_reset();
-
- // Initialize Bresenham counters to 1/2 the ceiling
- counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
-
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(i)
- counter_m[i] = -(current_block->mix_event_count[i] >> 1);
- #endif
-
- step_events_completed = 0;
-
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins.
- // No 'change' can be detected.
- #endif
-
- #if ENABLED(Z_LATE_ENABLE)
- if (current_block->steps[Z_AXIS] > 0) {
- enable_Z();
- _NEXT_ISR(2000); // Run at slow speed - 1 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- #endif
- }
- else {
- _NEXT_ISR(2000); // Run at slow speed - 1 KHz
- _ENABLE_ISRs(); // re-enable ISRs
- return;
- }
- }
-
- // Update endstops state, if enabled
- #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
- if (e_hit && ENDSTOPS_ENABLED) {
- endstops.update();
- e_hit--;
- }
- #else
- if (ENDSTOPS_ENABLED) endstops.update();
- #endif
-
- // Take multiple steps per interrupt (For high speed moves)
- bool all_steps_done = false;
- for (uint8_t i = step_loops; i--;) {
- #if ENABLED(LIN_ADVANCE)
-
- counter_E += current_block->steps[E_AXIS];
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- #if DISABLED(MIXING_EXTRUDER)
- // Don't step E here for mixing extruder
- count_position[E_AXIS] += count_direction[E_AXIS];
- motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
- #endif
- }
-
- #if ENABLED(MIXING_EXTRUDER)
- // Step mixing steppers proportionally
- const bool dir = motor_direction(E_AXIS);
- MIXING_STEPPERS_LOOP(j) {
- counter_m[j] += current_block->steps[E_AXIS];
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- dir ? --e_steps[j] : ++e_steps[j];
- }
- }
- #endif
-
- #endif // LIN_ADVANCE
-
- #define _COUNTER(AXIS) counter_## AXIS
- #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
- #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
-
- // Advance the Bresenham counter; start a pulse if the axis needs a step
- #define PULSE_START(AXIS) \
- _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \
- if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); }
-
- // Stop an active pulse, reset the Bresenham counter, update the position
- #define PULSE_STOP(AXIS) \
- if (_COUNTER(AXIS) > 0) { \
- _COUNTER(AXIS) -= current_block->step_event_count; \
- count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \
- }
-
- /**
- * Estimate the number of cycles that the stepper logic already takes
- * up between the start and stop of the X stepper pulse.
- *
- * Currently this uses very modest estimates of around 5 cycles.
- * True values may be derived by careful testing.
- *
- * Once any delay is added, the cost of the delay code itself
- * may be subtracted from this value to get a more accurate delay.
- * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs.
- * Longer delays use a loop. The resolution is 8 cycles.
- */
- #if HAS_X_STEP
- #define _CYCLE_APPROX_1 5
- #else
- #define _CYCLE_APPROX_1 0
- #endif
- #if ENABLED(X_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4
- #else
- #define _CYCLE_APPROX_2 _CYCLE_APPROX_1
- #endif
- #if HAS_Y_STEP
- #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5
- #else
- #define _CYCLE_APPROX_3 _CYCLE_APPROX_2
- #endif
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4
- #else
- #define _CYCLE_APPROX_4 _CYCLE_APPROX_3
- #endif
- #if HAS_Z_STEP
- #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5
- #else
- #define _CYCLE_APPROX_5 _CYCLE_APPROX_4
- #endif
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4
- #else
- #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
- #endif
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
- #else
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5
- #endif
- #else
- #define _CYCLE_APPROX_7 _CYCLE_APPROX_6
- #endif
-
- #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7
- #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE))
-
- /**
- * If a minimum pulse time was specified get the timer 0 value.
- *
- * TCNT0 has an 8x prescaler, so it increments every 8 cycles.
- * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
- * 20 counts of TCNT0 -by itself- is a good pulse delay.
- * 10µs = 160 or 200 cycles.
- */
- #if EXTRA_CYCLES_XYZE > 20
- uint32_t pulse_start = TCNT0;
- #endif
-
- #if HAS_X_STEP
- PULSE_START(X);
- #endif
- #if HAS_Y_STEP
- PULSE_START(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_START(Z);
- #endif
-
- // For non-advance use linear interpolation for E also
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- // Keep updating the single E axis
- counter_E += current_block->steps[E_AXIS];
- // Tick the counters used for this mix
- MIXING_STEPPERS_LOOP(j) {
- // Step mixing steppers (proportionally)
- counter_m[j] += current_block->steps[E_AXIS];
- // Step when the counter goes over zero
- if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
- }
- #else // !MIXING_EXTRUDER
- PULSE_START(E);
- #endif
- #endif // !LIN_ADVANCE
-
- // For minimum pulse time wait before stopping pulses
- #if EXTRA_CYCLES_XYZE > 20
- while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- pulse_start = TCNT0;
- #elif EXTRA_CYCLES_XYZE > 0
- DELAY_NOPS(EXTRA_CYCLES_XYZE);
- #endif
-
- #if HAS_X_STEP
- PULSE_STOP(X);
- #endif
- #if HAS_Y_STEP
- PULSE_STOP(Y);
- #endif
- #if HAS_Z_STEP
- PULSE_STOP(Z);
- #endif
-
- #if DISABLED(LIN_ADVANCE)
- #if ENABLED(MIXING_EXTRUDER)
- // Always step the single E axis
- if (counter_E > 0) {
- counter_E -= current_block->step_event_count;
- count_position[E_AXIS] += count_direction[E_AXIS];
- }
- MIXING_STEPPERS_LOOP(j) {
- if (counter_m[j] > 0) {
- counter_m[j] -= current_block->mix_event_count[j];
- En_STEP_WRITE(j, INVERT_E_STEP_PIN);
- }
- }
- #else // !MIXING_EXTRUDER
- PULSE_STOP(E);
- #endif
- #endif // !LIN_ADVANCE
-
- if (++step_events_completed >= current_block->step_event_count) {
- all_steps_done = true;
- break;
- }
-
- // For minimum pulse time wait after stopping pulses also
- #if EXTRA_CYCLES_XYZE > 20
- if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- #elif EXTRA_CYCLES_XYZE > 0
- if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE);
- #endif
-
- } // steps_loop
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
- current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
- #if ENABLED(MIXING_EXTRUDER)
- // Mixing extruders apply advance lead proportionally
- MIXING_STEPPERS_LOOP(j)
- e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
- #else
- // For most extruders, advance the single E stepper
- e_steps[TOOL_E_INDEX] += delta_adv_steps;
- #endif
- }
- // If we have esteps to execute, fire the next advance_isr "now"
- if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
-
- #endif // LIN_ADVANCE
-
- // Calculate new timer value
- if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
-
- MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
- acc_step_rate += current_block->initial_rate;
-
- // upper limit
- NOMORE(acc_step_rate, current_block->nominal_rate);
-
- // step_rate to timer interval
- const uint16_t timer = calc_timer(acc_step_rate);
-
- SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- acceleration_time += timer;
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
- #else
- current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
- eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
-
- #endif // LIN_ADVANCE
- }
- else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
- uint16_t step_rate;
- MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
-
- if (step_rate < acc_step_rate) { // Still decelerating?
- step_rate = acc_step_rate - step_rate;
- NOLESS(step_rate, current_block->final_rate);
- }
- else
- step_rate = current_block->final_rate;
-
- // step_rate to timer interval
- const uint16_t timer = calc_timer(step_rate);
-
- SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- deceleration_time += timer;
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead) {
- #if ENABLED(MIXING_EXTRUDER)
- MIXING_STEPPERS_LOOP(j)
- current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17;
- #else
- current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
- #endif
- }
- eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
-
- #endif // LIN_ADVANCE
- }
- else {
-
- #if ENABLED(LIN_ADVANCE)
-
- if (current_block->use_advance_lead)
- current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
-
- eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal);
-
- #endif
-
- SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
- _NEXT_ISR(ocr_val);
-
- // ensure we're running at the correct step rate, even if we just came off an acceleration
- step_loops = step_loops_nominal;
- }
-
- #if DISABLED(LIN_ADVANCE)
- NOLESS(OCR1A, TCNT1 + 16);
- #endif
-
- // If current block is finished, reset pointer
- if (all_steps_done) {
- current_block = NULL;
- planner.discard_current_block();
- }
- #if DISABLED(LIN_ADVANCE)
- _ENABLE_ISRs(); // re-enable ISRs
- #endif
- }
-
- #if ENABLED(LIN_ADVANCE)
-
- #define CYCLES_EATEN_E (E_STEPPERS * 5)
- #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
-
- // Timer interrupt for E. e_steps is set in the main routine;
-
- void Stepper::advance_isr() {
-
- nextAdvanceISR = eISR_Rate;
-
- #if ENABLED(MK2_MULTIPLEXER)
- // Even-numbered steppers are reversed
- #define SET_E_STEP_DIR(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0))
- #else
- #define SET_E_STEP_DIR(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR)
- #endif
-
- #define START_E_PULSE(INDEX) \
- if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN)
-
- #define STOP_E_PULSE(INDEX) \
- if (e_steps[INDEX]) { \
- e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \
- E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \
- }
-
- SET_E_STEP_DIR(0);
- #if E_STEPPERS > 1
- SET_E_STEP_DIR(1);
- #if E_STEPPERS > 2
- SET_E_STEP_DIR(2);
- #if E_STEPPERS > 3
- SET_E_STEP_DIR(3);
- #if E_STEPPERS > 4
- SET_E_STEP_DIR(4);
- #endif
- #endif
- #endif
- #endif
-
- // Step all E steppers that have steps
- for (uint8_t i = step_loops; i--;) {
-
- #if EXTRA_CYCLES_E > 20
- uint32_t pulse_start = TCNT0;
- #endif
-
- START_E_PULSE(0);
- #if E_STEPPERS > 1
- START_E_PULSE(1);
- #if E_STEPPERS > 2
- START_E_PULSE(2);
- #if E_STEPPERS > 3
- START_E_PULSE(3);
- #if E_STEPPERS > 4
- START_E_PULSE(4);
- #endif
- #endif
- #endif
- #endif
-
- // For minimum pulse time wait before stopping pulses
- #if EXTRA_CYCLES_E > 20
- while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- pulse_start = TCNT0;
- #elif EXTRA_CYCLES_E > 0
- DELAY_NOPS(EXTRA_CYCLES_E);
- #endif
-
- STOP_E_PULSE(0);
- #if E_STEPPERS > 1
- STOP_E_PULSE(1);
- #if E_STEPPERS > 2
- STOP_E_PULSE(2);
- #if E_STEPPERS > 3
- STOP_E_PULSE(3);
- #if E_STEPPERS > 4
- STOP_E_PULSE(4);
- #endif
- #endif
- #endif
- #endif
-
- // For minimum pulse time wait before looping
- #if EXTRA_CYCLES_E > 20
- if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- #elif EXTRA_CYCLES_E > 0
- if (i) DELAY_NOPS(EXTRA_CYCLES_E);
- #endif
-
- } // steps_loop
- }
-
- void Stepper::advance_isr_scheduler() {
- // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
- CBI(TIMSK0, OCIE0B); // Temperature ISR
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- sei();
-
- // Run main stepping ISR if flagged
- if (!nextMainISR) isr();
-
- // Run Advance stepping ISR if flagged
- if (!nextAdvanceISR) advance_isr();
-
- // Is the next advance ISR scheduled before the next main ISR?
- if (nextAdvanceISR <= nextMainISR) {
- // Set up the next interrupt
- OCR1A = nextAdvanceISR;
- // New interval for the next main ISR
- if (nextMainISR) nextMainISR -= nextAdvanceISR;
- // Will call Stepper::advance_isr on the next interrupt
- nextAdvanceISR = 0;
- }
- else {
- // The next main ISR comes first
- OCR1A = nextMainISR;
- // New interval for the next advance ISR, if any
- if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER)
- nextAdvanceISR -= nextMainISR;
- // Will call Stepper::isr on the next interrupt
- nextMainISR = 0;
- }
-
- // Don't run the ISR faster than possible
- NOLESS(OCR1A, TCNT1 + 16);
-
- // Restore original ISR settings
- _ENABLE_ISRs();
- }
-
- #endif // LIN_ADVANCE
-
- void Stepper::init() {
-
- // Init Digipot Motor Current
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
- digipot_init();
- #endif
-
- // Init Microstepping Pins
- #if HAS_MICROSTEPS
- microstep_init();
- #endif
-
- // Init TMC Steppers
- #if ENABLED(HAVE_TMCDRIVER)
- tmc_init();
- #endif
-
- // Init TMC2130 Steppers
- #if ENABLED(HAVE_TMC2130)
- tmc2130_init();
- #endif
-
- // Init L6470 Steppers
- #if ENABLED(HAVE_L6470DRIVER)
- L6470_init();
- #endif
-
- // Init Dir Pins
- #if HAS_X_DIR
- X_DIR_INIT;
- #endif
- #if HAS_X2_DIR
- X2_DIR_INIT;
- #endif
- #if HAS_Y_DIR
- Y_DIR_INIT;
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR
- Y2_DIR_INIT;
- #endif
- #endif
- #if HAS_Z_DIR
- Z_DIR_INIT;
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR
- Z2_DIR_INIT;
- #endif
- #endif
- #if HAS_E0_DIR
- E0_DIR_INIT;
- #endif
- #if HAS_E1_DIR
- E1_DIR_INIT;
- #endif
- #if HAS_E2_DIR
- E2_DIR_INIT;
- #endif
- #if HAS_E3_DIR
- E3_DIR_INIT;
- #endif
- #if HAS_E4_DIR
- E4_DIR_INIT;
- #endif
-
- // Init Enable Pins - steppers default to disabled.
- #if HAS_X_ENABLE
- X_ENABLE_INIT;
- if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH);
- #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE
- X2_ENABLE_INIT;
- if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Y_ENABLE
- Y_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH);
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE
- Y2_ENABLE_INIT;
- if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_Z_ENABLE
- Z_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH);
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE
- Z2_ENABLE_INIT;
- if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH);
- #endif
- #endif
- #if HAS_E0_ENABLE
- E0_ENABLE_INIT;
- if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E1_ENABLE
- E1_ENABLE_INIT;
- if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E2_ENABLE
- E2_ENABLE_INIT;
- if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E3_ENABLE
- E3_ENABLE_INIT;
- if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH);
- #endif
- #if HAS_E4_ENABLE
- E4_ENABLE_INIT;
- if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH);
- #endif
-
- // Init endstops and pullups
- endstops.init();
-
- #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT
- #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW)
- #define _DISABLE(AXIS) disable_## AXIS()
-
- #define AXIS_INIT(AXIS, PIN) \
- _STEP_INIT(AXIS); \
- _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \
- _DISABLE(AXIS)
-
- #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E)
-
- // Init Step Pins
- #if HAS_X_STEP
- #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE)
- X2_STEP_INIT;
- X2_STEP_WRITE(INVERT_X_STEP_PIN);
- #endif
- AXIS_INIT(X, X);
- #endif
-
- #if HAS_Y_STEP
- #if ENABLED(Y_DUAL_STEPPER_DRIVERS)
- Y2_STEP_INIT;
- Y2_STEP_WRITE(INVERT_Y_STEP_PIN);
- #endif
- AXIS_INIT(Y, Y);
- #endif
-
- #if HAS_Z_STEP
- #if ENABLED(Z_DUAL_STEPPER_DRIVERS)
- Z2_STEP_INIT;
- Z2_STEP_WRITE(INVERT_Z_STEP_PIN);
- #endif
- AXIS_INIT(Z, Z);
- #endif
-
- #if HAS_E0_STEP
- E_AXIS_INIT(0);
- #endif
- #if HAS_E1_STEP
- E_AXIS_INIT(1);
- #endif
- #if HAS_E2_STEP
- E_AXIS_INIT(2);
- #endif
- #if HAS_E3_STEP
- E_AXIS_INIT(3);
- #endif
- #if HAS_E4_STEP
- E_AXIS_INIT(4);
- #endif
-
- // waveform generation = 0100 = CTC
- SET_WGM(1, CTC_OCRnA);
-
- // output mode = 00 (disconnected)
- SET_COMA(1, NORMAL);
-
- // Set the timer pre-scaler
- // Generally we use a divider of 8, resulting in a 2MHz timer
- // frequency on a 16MHz MCU. If you are going to change this, be
- // sure to regenerate speed_lookuptable.h with
- // create_speed_lookuptable.py
- SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler
-
- // Init Stepper ISR to 122 Hz for quick starting
- OCR1A = 0x4000;
- TCNT1 = 0;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
-
- #if ENABLED(LIN_ADVANCE)
- for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
- ZERO(current_adv_steps);
- #endif
-
- endstops.enable(true); // Start with endstops active. After homing they can be disabled
- sei();
-
- set_directions(); // Init directions to last_direction_bits = 0
- }
-
-
- /**
- * Block until all buffered steps are executed
- */
- void Stepper::synchronize() { while (planner.blocks_queued()) idle(); }
-
- /**
- * Set the stepper positions directly in steps
- *
- * The input is based on the typical per-axis XYZ steps.
- * For CORE machines XYZ needs to be translated to ABC.
- *
- * This allows get_axis_position_mm to correctly
- * derive the current XYZ position later on.
- */
- void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) {
-
- synchronize(); // Bad to set stepper counts in the middle of a move
-
- CRITICAL_SECTION_START;
-
- #if CORE_IS_XY
- // corexy positioning
- // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html
- count_position[A_AXIS] = a + b;
- count_position[B_AXIS] = CORESIGN(a - b);
- count_position[Z_AXIS] = c;
- #elif CORE_IS_XZ
- // corexz planning
- count_position[A_AXIS] = a + c;
- count_position[Y_AXIS] = b;
- count_position[C_AXIS] = CORESIGN(a - c);
- #elif CORE_IS_YZ
- // coreyz planning
- count_position[X_AXIS] = a;
- count_position[B_AXIS] = b + c;
- count_position[C_AXIS] = CORESIGN(b - c);
- #else
- // default non-h-bot planning
- count_position[X_AXIS] = a;
- count_position[Y_AXIS] = b;
- count_position[Z_AXIS] = c;
- #endif
-
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_position(const AxisEnum &axis, const long &v) {
- CRITICAL_SECTION_START;
- count_position[axis] = v;
- CRITICAL_SECTION_END;
- }
-
- void Stepper::set_e_position(const long &e) {
- CRITICAL_SECTION_START;
- count_position[E_AXIS] = e;
- CRITICAL_SECTION_END;
- }
-
- /**
- * Get a stepper's position in steps.
- */
- long Stepper::position(AxisEnum axis) {
- CRITICAL_SECTION_START;
- const long count_pos = count_position[axis];
- CRITICAL_SECTION_END;
- return count_pos;
- }
-
- /**
- * Get an axis position according to stepper position(s)
- * For CORE machines apply translation from ABC to XYZ.
- */
- float Stepper::get_axis_position_mm(AxisEnum axis) {
- float axis_steps;
- #if IS_CORE
- // Requesting one of the "core" axes?
- if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) {
- CRITICAL_SECTION_START;
- // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1
- // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2
- axis_steps = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
- CRITICAL_SECTION_END;
- }
- else
- axis_steps = position(axis);
- #else
- axis_steps = position(axis);
- #endif
- return axis_steps * planner.steps_to_mm[axis];
- }
-
- void Stepper::finish_and_disable() {
- synchronize();
- disable_all_steppers();
- }
-
- void Stepper::quick_stop() {
- #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL)
- if (!ubl.lcd_map_control)
- cleaning_buffer_counter = 5000;
- #else
- cleaning_buffer_counter = 5000;
- #endif
- DISABLE_STEPPER_DRIVER_INTERRUPT();
- while (planner.blocks_queued()) planner.discard_current_block();
- current_block = NULL;
- ENABLE_STEPPER_DRIVER_INTERRUPT();
- #if ENABLED(ULTRA_LCD)
- planner.clear_block_buffer_runtime();
- #endif
- }
-
- void Stepper::endstop_triggered(AxisEnum axis) {
-
- #if IS_CORE
-
- endstops_trigsteps[axis] = 0.5f * (
- axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2])
- : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2]
- );
-
- #else // !COREXY && !COREXZ && !COREYZ
-
- endstops_trigsteps[axis] = count_position[axis];
-
- #endif // !COREXY && !COREXZ && !COREYZ
-
- kill_current_block();
- }
-
- void Stepper::report_positions() {
- CRITICAL_SECTION_START;
- const long xpos = count_position[X_AXIS],
- ypos = count_position[Y_AXIS],
- zpos = count_position[Z_AXIS];
- CRITICAL_SECTION_END;
-
- #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA
- SERIAL_PROTOCOLPGM(MSG_COUNT_A);
- #else
- SERIAL_PROTOCOLPGM(MSG_COUNT_X);
- #endif
- SERIAL_PROTOCOL(xpos);
-
- #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA
- SERIAL_PROTOCOLPGM(" B:");
- #else
- SERIAL_PROTOCOLPGM(" Y:");
- #endif
- SERIAL_PROTOCOL(ypos);
-
- #if CORE_IS_XZ || CORE_IS_YZ
- SERIAL_PROTOCOLPGM(" C:");
- #else
- SERIAL_PROTOCOLPGM(" Z:");
- #endif
- SERIAL_PROTOCOL(zpos);
-
- SERIAL_EOL();
- }
-
- #if ENABLED(BABYSTEPPING)
-
- #if ENABLED(DELTA)
- #define CYCLES_EATEN_BABYSTEP (2 * 15)
- #else
- #define CYCLES_EATEN_BABYSTEP 0
- #endif
- #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP))
-
- #define _ENABLE(AXIS) enable_## AXIS()
- #define _READ_DIR(AXIS) AXIS ##_DIR_READ
- #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR
- #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
-
- #if EXTRA_CYCLES_BABYSTEP > 20
- #define _SAVE_START const uint32_t pulse_start = TCNT0
- #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
- #else
- #define _SAVE_START NOOP
- #if EXTRA_CYCLES_BABYSTEP > 0
- #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP)
- #elif STEP_PULSE_CYCLES > 0
- #define _PULSE_WAIT NOOP
- #elif ENABLED(DELTA)
- #define _PULSE_WAIT delayMicroseconds(2);
- #else
- #define _PULSE_WAIT delayMicroseconds(4);
- #endif
- #endif
-
- #define BABYSTEP_AXIS(AXIS, INVERT) { \
- const uint8_t old_dir = _READ_DIR(AXIS); \
- _ENABLE(AXIS); \
- _SAVE_START; \
- _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \
- _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \
- _PULSE_WAIT; \
- _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \
- _APPLY_DIR(AXIS, old_dir); \
- }
-
- // MUST ONLY BE CALLED BY AN ISR,
- // No other ISR should ever interrupt this!
- void Stepper::babystep(const AxisEnum axis, const bool direction) {
- cli();
-
- switch (axis) {
-
- #if ENABLED(BABYSTEP_XY)
-
- case X_AXIS:
- BABYSTEP_AXIS(X, false);
- break;
-
- case Y_AXIS:
- BABYSTEP_AXIS(Y, false);
- break;
-
- #endif
-
- case Z_AXIS: {
-
- #if DISABLED(DELTA)
-
- BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z);
-
- #else // DELTA
-
- const bool z_direction = direction ^ BABYSTEP_INVERT_Z;
-
- enable_X();
- enable_Y();
- enable_Z();
-
- const uint8_t old_x_dir_pin = X_DIR_READ,
- old_y_dir_pin = Y_DIR_READ,
- old_z_dir_pin = Z_DIR_READ;
-
- X_DIR_WRITE(INVERT_X_DIR ^ z_direction);
- Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction);
- Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction);
-
- _SAVE_START;
-
- X_STEP_WRITE(!INVERT_X_STEP_PIN);
- Y_STEP_WRITE(!INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(!INVERT_Z_STEP_PIN);
-
- _PULSE_WAIT;
-
- X_STEP_WRITE(INVERT_X_STEP_PIN);
- Y_STEP_WRITE(INVERT_Y_STEP_PIN);
- Z_STEP_WRITE(INVERT_Z_STEP_PIN);
-
- // Restore direction bits
- X_DIR_WRITE(old_x_dir_pin);
- Y_DIR_WRITE(old_y_dir_pin);
- Z_DIR_WRITE(old_z_dir_pin);
-
- #endif
-
- } break;
-
- default: break;
- }
- sei();
- }
-
- #endif // BABYSTEPPING
-
- /**
- * Software-controlled Stepper Motor Current
- */
-
- #if HAS_DIGIPOTSS
-
- // From Arduino DigitalPotControl example
- void Stepper::digitalPotWrite(const int16_t address, const int16_t value) {
- WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip
- SPI.transfer(address); // Send the address and value via SPI
- SPI.transfer(value);
- WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip
- //delay(10);
- }
-
- #endif // HAS_DIGIPOTSS
-
- #if HAS_MOTOR_CURRENT_PWM
-
- void Stepper::refresh_motor_power() {
- for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) {
- switch (i) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0:
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1:
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2:
- #endif
- digipot_current(i, motor_current_setting[i]);
- default: break;
- }
- }
- }
-
- #endif // HAS_MOTOR_CURRENT_PWM
-
- #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
-
- void Stepper::digipot_current(const uint8_t driver, const int current) {
-
- #if HAS_DIGIPOTSS
-
- const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
- digitalPotWrite(digipot_ch[driver], current);
-
- #elif HAS_MOTOR_CURRENT_PWM
-
- if (WITHIN(driver, 0, 2))
- motor_current_setting[driver] = current; // update motor_current_setting
-
- #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE))
- switch (driver) {
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- case 0: _WRITE_CURRENT_PWM(XY); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- case 1: _WRITE_CURRENT_PWM(Z); break;
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- case 2: _WRITE_CURRENT_PWM(E); break;
- #endif
- }
- #endif
- }
-
- void Stepper::digipot_init() {
-
- #if HAS_DIGIPOTSS
-
- static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
-
- SPI.begin();
- SET_OUTPUT(DIGIPOTSS_PIN);
-
- for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) {
- //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
- digipot_current(i, digipot_motor_current[i]);
- }
-
- #elif HAS_MOTOR_CURRENT_PWM
-
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
- SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
- SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN);
- #endif
- #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
- SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN);
- #endif
-
- refresh_motor_power();
-
- // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
- SET_CS5(PRESCALER_1);
-
- #endif
- }
-
- #endif
-
- #if HAS_MICROSTEPS
-
- /**
- * Software-controlled Microstepping
- */
-
- void Stepper::microstep_init() {
- SET_OUTPUT(X_MS1_PIN);
- SET_OUTPUT(X_MS2_PIN);
- #if HAS_Y_MICROSTEPS
- SET_OUTPUT(Y_MS1_PIN);
- SET_OUTPUT(Y_MS2_PIN);
- #endif
- #if HAS_Z_MICROSTEPS
- SET_OUTPUT(Z_MS1_PIN);
- SET_OUTPUT(Z_MS2_PIN);
- #endif
- #if HAS_E0_MICROSTEPS
- SET_OUTPUT(E0_MS1_PIN);
- SET_OUTPUT(E0_MS2_PIN);
- #endif
- #if HAS_E1_MICROSTEPS
- SET_OUTPUT(E1_MS1_PIN);
- SET_OUTPUT(E1_MS2_PIN);
- #endif
- #if HAS_E2_MICROSTEPS
- SET_OUTPUT(E2_MS1_PIN);
- SET_OUTPUT(E2_MS2_PIN);
- #endif
- #if HAS_E3_MICROSTEPS
- SET_OUTPUT(E3_MS1_PIN);
- SET_OUTPUT(E3_MS2_PIN);
- #endif
- #if HAS_E4_MICROSTEPS
- SET_OUTPUT(E4_MS1_PIN);
- SET_OUTPUT(E4_MS2_PIN);
- #endif
- static const uint8_t microstep_modes[] = MICROSTEP_MODES;
- for (uint16_t i = 0; i < COUNT(microstep_modes); i++)
- microstep_mode(i, microstep_modes[i]);
- }
-
- void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) {
- if (ms1 >= 0) switch (driver) {
- case 0: WRITE(X_MS1_PIN, ms1); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS1_PIN, ms1); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS1_PIN, ms1); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS1_PIN, ms1); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS1_PIN, ms1); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS1_PIN, ms1); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS1_PIN, ms1); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS1_PIN, ms1); break;
- #endif
- }
- if (ms2 >= 0) switch (driver) {
- case 0: WRITE(X_MS2_PIN, ms2); break;
- #if HAS_Y_MICROSTEPS
- case 1: WRITE(Y_MS2_PIN, ms2); break;
- #endif
- #if HAS_Z_MICROSTEPS
- case 2: WRITE(Z_MS2_PIN, ms2); break;
- #endif
- #if HAS_E0_MICROSTEPS
- case 3: WRITE(E0_MS2_PIN, ms2); break;
- #endif
- #if HAS_E1_MICROSTEPS
- case 4: WRITE(E1_MS2_PIN, ms2); break;
- #endif
- #if HAS_E2_MICROSTEPS
- case 5: WRITE(E2_MS2_PIN, ms2); break;
- #endif
- #if HAS_E3_MICROSTEPS
- case 6: WRITE(E3_MS2_PIN, ms2); break;
- #endif
- #if HAS_E4_MICROSTEPS
- case 7: WRITE(E4_MS2_PIN, ms2); break;
- #endif
- }
- }
-
- void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) {
- switch (stepping_mode) {
- case 1: microstep_ms(driver, MICROSTEP1); break;
- case 2: microstep_ms(driver, MICROSTEP2); break;
- case 4: microstep_ms(driver, MICROSTEP4); break;
- case 8: microstep_ms(driver, MICROSTEP8); break;
- case 16: microstep_ms(driver, MICROSTEP16); break;
- }
- }
-
- void Stepper::microstep_readings() {
- SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins");
- SERIAL_PROTOCOLPGM("X: ");
- SERIAL_PROTOCOL(READ(X_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(X_MS2_PIN));
- #if HAS_Y_MICROSTEPS
- SERIAL_PROTOCOLPGM("Y: ");
- SERIAL_PROTOCOL(READ(Y_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Y_MS2_PIN));
- #endif
- #if HAS_Z_MICROSTEPS
- SERIAL_PROTOCOLPGM("Z: ");
- SERIAL_PROTOCOL(READ(Z_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(Z_MS2_PIN));
- #endif
- #if HAS_E0_MICROSTEPS
- SERIAL_PROTOCOLPGM("E0: ");
- SERIAL_PROTOCOL(READ(E0_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E0_MS2_PIN));
- #endif
- #if HAS_E1_MICROSTEPS
- SERIAL_PROTOCOLPGM("E1: ");
- SERIAL_PROTOCOL(READ(E1_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E1_MS2_PIN));
- #endif
- #if HAS_E2_MICROSTEPS
- SERIAL_PROTOCOLPGM("E2: ");
- SERIAL_PROTOCOL(READ(E2_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E2_MS2_PIN));
- #endif
- #if HAS_E3_MICROSTEPS
- SERIAL_PROTOCOLPGM("E3: ");
- SERIAL_PROTOCOL(READ(E3_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E3_MS2_PIN));
- #endif
- #if HAS_E4_MICROSTEPS
- SERIAL_PROTOCOLPGM("E4: ");
- SERIAL_PROTOCOL(READ(E4_MS1_PIN));
- SERIAL_PROTOCOLLN(READ(E4_MS2_PIN));
- #endif
- }
-
- #endif // HAS_MICROSTEPS
|