My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

temperature.h 16KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * temperature.h - temperature controller
  24. */
  25. #ifndef TEMPERATURE_H
  26. #define TEMPERATURE_H
  27. #include "thermistortables.h"
  28. #include "MarlinConfig.h"
  29. #if ENABLED(PID_EXTRUSION_SCALING)
  30. #include "stepper.h"
  31. #endif
  32. #ifndef SOFT_PWM_SCALE
  33. #define SOFT_PWM_SCALE 0
  34. #endif
  35. #define HOTEND_LOOP() for (int8_t e = 0; e < HOTENDS; e++)
  36. #if HOTENDS == 1
  37. #define HOTEND_INDEX 0
  38. #define EXTRUDER_IDX 0
  39. #else
  40. #define HOTEND_INDEX e
  41. #define EXTRUDER_IDX active_extruder
  42. #endif
  43. /**
  44. * States for ADC reading in the ISR
  45. */
  46. enum ADCSensorState {
  47. #if HAS_TEMP_0
  48. PrepareTemp_0,
  49. MeasureTemp_0,
  50. #endif
  51. #if HAS_TEMP_1
  52. PrepareTemp_1,
  53. MeasureTemp_1,
  54. #endif
  55. #if HAS_TEMP_2
  56. PrepareTemp_2,
  57. MeasureTemp_2,
  58. #endif
  59. #if HAS_TEMP_3
  60. PrepareTemp_3,
  61. MeasureTemp_3,
  62. #endif
  63. #if HAS_TEMP_4
  64. PrepareTemp_4,
  65. MeasureTemp_4,
  66. #endif
  67. #if HAS_TEMP_BED
  68. PrepareTemp_BED,
  69. MeasureTemp_BED,
  70. #endif
  71. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  72. Prepare_FILWIDTH,
  73. Measure_FILWIDTH,
  74. #endif
  75. #if ENABLED(ADC_KEYPAD)
  76. Prepare_ADC_KEY,
  77. Measure_ADC_KEY,
  78. #endif
  79. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  80. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  81. };
  82. // Minimum number of Temperature::ISR loops between sensor readings.
  83. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  84. // get all oversampled sensor readings
  85. #define MIN_ADC_ISR_LOOPS 10
  86. #define ACTUAL_ADC_SAMPLES max(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  87. #if !HAS_HEATER_BED
  88. constexpr int16_t target_temperature_bed = 0;
  89. #endif
  90. class Temperature {
  91. public:
  92. static float current_temperature[HOTENDS],
  93. current_temperature_bed;
  94. static int16_t current_temperature_raw[HOTENDS],
  95. target_temperature[HOTENDS],
  96. current_temperature_bed_raw;
  97. #if HAS_HEATER_BED
  98. static int16_t target_temperature_bed;
  99. #endif
  100. static volatile bool in_temp_isr;
  101. static uint8_t soft_pwm_amount[HOTENDS],
  102. soft_pwm_amount_bed;
  103. #if ENABLED(FAN_SOFT_PWM)
  104. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  105. soft_pwm_count_fan[FAN_COUNT];
  106. #endif
  107. #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
  108. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / (F_CPU / 64.0 / 256.0))
  109. #endif
  110. #if ENABLED(PIDTEMP)
  111. #if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
  112. static float Kp[HOTENDS], Ki[HOTENDS], Kd[HOTENDS];
  113. #if ENABLED(PID_EXTRUSION_SCALING)
  114. static float Kc[HOTENDS];
  115. #endif
  116. #define PID_PARAM(param, h) Temperature::param[h]
  117. #else
  118. static float Kp, Ki, Kd;
  119. #if ENABLED(PID_EXTRUSION_SCALING)
  120. static float Kc;
  121. #endif
  122. #define PID_PARAM(param, h) Temperature::param
  123. #endif // PID_PARAMS_PER_HOTEND
  124. // Apply the scale factors to the PID values
  125. #define scalePID_i(i) ( (i) * PID_dT )
  126. #define unscalePID_i(i) ( (i) / PID_dT )
  127. #define scalePID_d(d) ( (d) / PID_dT )
  128. #define unscalePID_d(d) ( (d) * PID_dT )
  129. #endif
  130. #if ENABLED(PIDTEMPBED)
  131. static float bedKp, bedKi, bedKd;
  132. #endif
  133. #if ENABLED(BABYSTEPPING)
  134. static volatile int babystepsTodo[3];
  135. #endif
  136. #if WATCH_HOTENDS
  137. static uint16_t watch_target_temp[HOTENDS];
  138. static millis_t watch_heater_next_ms[HOTENDS];
  139. #endif
  140. #if WATCH_THE_BED
  141. static uint16_t watch_target_bed_temp;
  142. static millis_t watch_bed_next_ms;
  143. #endif
  144. #if ENABLED(PREVENT_COLD_EXTRUSION)
  145. static bool allow_cold_extrude;
  146. static int16_t extrude_min_temp;
  147. static bool tooColdToExtrude(uint8_t e) {
  148. #if HOTENDS == 1
  149. UNUSED(e);
  150. #endif
  151. return allow_cold_extrude ? false : degHotend(HOTEND_INDEX) < extrude_min_temp;
  152. }
  153. #else
  154. static bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
  155. #endif
  156. private:
  157. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  158. static uint16_t redundant_temperature_raw;
  159. static float redundant_temperature;
  160. #endif
  161. static volatile bool temp_meas_ready;
  162. #if ENABLED(PIDTEMP)
  163. static float temp_iState[HOTENDS],
  164. temp_dState[HOTENDS],
  165. pTerm[HOTENDS],
  166. iTerm[HOTENDS],
  167. dTerm[HOTENDS];
  168. #if ENABLED(PID_EXTRUSION_SCALING)
  169. static float cTerm[HOTENDS];
  170. static long last_e_position;
  171. static long lpq[LPQ_MAX_LEN];
  172. static int lpq_ptr;
  173. #endif
  174. static float pid_error[HOTENDS];
  175. static bool pid_reset[HOTENDS];
  176. #endif
  177. #if ENABLED(PIDTEMPBED)
  178. static float temp_iState_bed,
  179. temp_dState_bed,
  180. pTerm_bed,
  181. iTerm_bed,
  182. dTerm_bed,
  183. pid_error_bed;
  184. #else
  185. static millis_t next_bed_check_ms;
  186. #endif
  187. static uint16_t raw_temp_value[MAX_EXTRUDERS],
  188. raw_temp_bed_value;
  189. // Init min and max temp with extreme values to prevent false errors during startup
  190. static int16_t minttemp_raw[HOTENDS],
  191. maxttemp_raw[HOTENDS],
  192. minttemp[HOTENDS],
  193. maxttemp[HOTENDS];
  194. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  195. static uint8_t consecutive_low_temperature_error[HOTENDS];
  196. #endif
  197. #ifdef MILLISECONDS_PREHEAT_TIME
  198. static millis_t preheat_end_time[HOTENDS];
  199. #endif
  200. #ifdef BED_MINTEMP
  201. static int16_t bed_minttemp_raw;
  202. #endif
  203. #ifdef BED_MAXTEMP
  204. static int16_t bed_maxttemp_raw;
  205. #endif
  206. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  207. static int8_t meas_shift_index; // Index of a delayed sample in buffer
  208. #endif
  209. #if HAS_AUTO_FAN
  210. static millis_t next_auto_fan_check_ms;
  211. #endif
  212. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  213. static uint16_t current_raw_filwidth; // Measured filament diameter - one extruder only
  214. #endif
  215. #if ENABLED(PROBING_HEATERS_OFF)
  216. static bool paused;
  217. #endif
  218. #if HEATER_IDLE_HANDLER
  219. static millis_t heater_idle_timeout_ms[HOTENDS];
  220. static bool heater_idle_timeout_exceeded[HOTENDS];
  221. #if HAS_TEMP_BED
  222. static millis_t bed_idle_timeout_ms;
  223. static bool bed_idle_timeout_exceeded;
  224. #endif
  225. #endif
  226. public:
  227. #if ENABLED(ADC_KEYPAD)
  228. static uint32_t current_ADCKey_raw;
  229. static uint8_t ADCKey_count;
  230. #endif
  231. /**
  232. * Instance Methods
  233. */
  234. Temperature();
  235. void init();
  236. /**
  237. * Static (class) methods
  238. */
  239. static float analog2temp(int raw, uint8_t e);
  240. static float analog2tempBed(int raw);
  241. /**
  242. * Called from the Temperature ISR
  243. */
  244. static void isr();
  245. /**
  246. * Call periodically to manage heaters
  247. */
  248. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  249. /**
  250. * Preheating hotends
  251. */
  252. #ifdef MILLISECONDS_PREHEAT_TIME
  253. static bool is_preheating(uint8_t e) {
  254. #if HOTENDS == 1
  255. UNUSED(e);
  256. #endif
  257. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  258. }
  259. static void start_preheat_time(uint8_t e) {
  260. #if HOTENDS == 1
  261. UNUSED(e);
  262. #endif
  263. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  264. }
  265. static void reset_preheat_time(uint8_t e) {
  266. #if HOTENDS == 1
  267. UNUSED(e);
  268. #endif
  269. preheat_end_time[HOTEND_INDEX] = 0;
  270. }
  271. #else
  272. #define is_preheating(n) (false)
  273. #endif
  274. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  275. static float analog2widthFil(); // Convert raw Filament Width to millimeters
  276. static int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
  277. #endif
  278. //high level conversion routines, for use outside of temperature.cpp
  279. //inline so that there is no performance decrease.
  280. //deg=degreeCelsius
  281. static float degHotend(uint8_t e) {
  282. #if HOTENDS == 1
  283. UNUSED(e);
  284. #endif
  285. return current_temperature[HOTEND_INDEX];
  286. }
  287. static float degBed() { return current_temperature_bed; }
  288. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  289. static int16_t rawHotendTemp(uint8_t e) {
  290. #if HOTENDS == 1
  291. UNUSED(e);
  292. #endif
  293. return current_temperature_raw[HOTEND_INDEX];
  294. }
  295. static int16_t rawBedTemp() { return current_temperature_bed_raw; }
  296. #endif
  297. static int16_t degTargetHotend(uint8_t e) {
  298. #if HOTENDS == 1
  299. UNUSED(e);
  300. #endif
  301. return target_temperature[HOTEND_INDEX];
  302. }
  303. static int16_t degTargetBed() { return target_temperature_bed; }
  304. #if WATCH_HOTENDS
  305. static void start_watching_heater(uint8_t e = 0);
  306. #endif
  307. #if WATCH_THE_BED
  308. static void start_watching_bed();
  309. #endif
  310. static void setTargetHotend(const int16_t celsius, uint8_t e) {
  311. #if HOTENDS == 1
  312. UNUSED(e);
  313. #endif
  314. #ifdef MILLISECONDS_PREHEAT_TIME
  315. if (celsius == 0)
  316. reset_preheat_time(HOTEND_INDEX);
  317. else if (target_temperature[HOTEND_INDEX] == 0)
  318. start_preheat_time(HOTEND_INDEX);
  319. #endif
  320. target_temperature[HOTEND_INDEX] = celsius;
  321. #if WATCH_HOTENDS
  322. start_watching_heater(HOTEND_INDEX);
  323. #endif
  324. }
  325. static void setTargetBed(const int16_t celsius) {
  326. #if HAS_HEATER_BED
  327. target_temperature_bed =
  328. #ifdef BED_MAXTEMP
  329. min(celsius, BED_MAXTEMP)
  330. #else
  331. celsius
  332. #endif
  333. ;
  334. #if WATCH_THE_BED
  335. start_watching_bed();
  336. #endif
  337. #endif
  338. }
  339. static bool isHeatingHotend(uint8_t e) {
  340. #if HOTENDS == 1
  341. UNUSED(e);
  342. #endif
  343. return target_temperature[HOTEND_INDEX] > current_temperature[HOTEND_INDEX];
  344. }
  345. static bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
  346. static bool isCoolingHotend(uint8_t e) {
  347. #if HOTENDS == 1
  348. UNUSED(e);
  349. #endif
  350. return target_temperature[HOTEND_INDEX] < current_temperature[HOTEND_INDEX];
  351. }
  352. static bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
  353. /**
  354. * The software PWM power for a heater
  355. */
  356. static int getHeaterPower(int heater);
  357. /**
  358. * Switch off all heaters, set all target temperatures to 0
  359. */
  360. static void disable_all_heaters();
  361. /**
  362. * Perform auto-tuning for hotend or bed in response to M303
  363. */
  364. #if HAS_PID_HEATING
  365. static void PID_autotune(const float temp, const int8_t hotend, const int8_t ncycles, const bool set_result=false);
  366. /**
  367. * Update the temp manager when PID values change
  368. */
  369. #if ENABLED(PIDTEMP)
  370. FORCE_INLINE static void updatePID() {
  371. #if ENABLED(PID_EXTRUSION_SCALING)
  372. last_e_position = 0;
  373. #endif
  374. }
  375. #endif
  376. #endif
  377. #if ENABLED(BABYSTEPPING)
  378. static void babystep_axis(const AxisEnum axis, const int distance) {
  379. if (axis_known_position[axis]) {
  380. #if IS_CORE
  381. #if ENABLED(BABYSTEP_XY)
  382. switch (axis) {
  383. case CORE_AXIS_1: // X on CoreXY and CoreXZ, Y on CoreYZ
  384. babystepsTodo[CORE_AXIS_1] += distance * 2;
  385. babystepsTodo[CORE_AXIS_2] += distance * 2;
  386. break;
  387. case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ and CoreYZ
  388. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  389. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  390. break;
  391. case NORMAL_AXIS: // Z on CoreXY, Y on CoreXZ, X on CoreYZ
  392. babystepsTodo[NORMAL_AXIS] += distance;
  393. break;
  394. }
  395. #elif CORE_IS_XZ || CORE_IS_YZ
  396. // Only Z stepping needs to be handled here
  397. babystepsTodo[CORE_AXIS_1] += CORESIGN(distance * 2);
  398. babystepsTodo[CORE_AXIS_2] -= CORESIGN(distance * 2);
  399. #else
  400. babystepsTodo[Z_AXIS] += distance;
  401. #endif
  402. #else
  403. babystepsTodo[axis] += distance;
  404. #endif
  405. }
  406. }
  407. #endif // BABYSTEPPING
  408. #if ENABLED(PROBING_HEATERS_OFF)
  409. static void pause(const bool p);
  410. static bool is_paused() { return paused; }
  411. #endif
  412. #if HEATER_IDLE_HANDLER
  413. static void start_heater_idle_timer(uint8_t e, millis_t timeout_ms) {
  414. #if HOTENDS == 1
  415. UNUSED(e);
  416. #endif
  417. heater_idle_timeout_ms[HOTEND_INDEX] = millis() + timeout_ms;
  418. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  419. }
  420. static void reset_heater_idle_timer(uint8_t e) {
  421. #if HOTENDS == 1
  422. UNUSED(e);
  423. #endif
  424. heater_idle_timeout_ms[HOTEND_INDEX] = 0;
  425. heater_idle_timeout_exceeded[HOTEND_INDEX] = false;
  426. #if WATCH_HOTENDS
  427. start_watching_heater(HOTEND_INDEX);
  428. #endif
  429. }
  430. static bool is_heater_idle(uint8_t e) {
  431. #if HOTENDS == 1
  432. UNUSED(e);
  433. #endif
  434. return heater_idle_timeout_exceeded[HOTEND_INDEX];
  435. }
  436. #if HAS_TEMP_BED
  437. static void start_bed_idle_timer(millis_t timeout_ms) {
  438. bed_idle_timeout_ms = millis() + timeout_ms;
  439. bed_idle_timeout_exceeded = false;
  440. }
  441. static void reset_bed_idle_timer() {
  442. bed_idle_timeout_ms = 0;
  443. bed_idle_timeout_exceeded = false;
  444. #if WATCH_THE_BED
  445. start_watching_bed();
  446. #endif
  447. }
  448. static bool is_bed_idle() {
  449. return bed_idle_timeout_exceeded;
  450. }
  451. #endif
  452. #endif
  453. private:
  454. static void set_current_temp_raw();
  455. static void updateTemperaturesFromRawValues();
  456. #if ENABLED(HEATER_0_USES_MAX6675)
  457. static int read_max6675();
  458. #endif
  459. static void checkExtruderAutoFans();
  460. static float get_pid_output(const int8_t e);
  461. #if ENABLED(PIDTEMPBED)
  462. static float get_pid_output_bed();
  463. #endif
  464. static void _temp_error(const int8_t e, const char * const serial_msg, const char * const lcd_msg);
  465. static void min_temp_error(const int8_t e);
  466. static void max_temp_error(const int8_t e);
  467. #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
  468. typedef enum TRState { TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
  469. static void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
  470. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  471. static TRState thermal_runaway_state_machine[HOTENDS];
  472. static millis_t thermal_runaway_timer[HOTENDS];
  473. #endif
  474. #if HAS_THERMALLY_PROTECTED_BED
  475. static TRState thermal_runaway_bed_state_machine;
  476. static millis_t thermal_runaway_bed_timer;
  477. #endif
  478. #endif // THERMAL_PROTECTION
  479. };
  480. extern Temperature thermalManager;
  481. #endif // TEMPERATURE_H