My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537
  1. /*
  2. temperature.c - temperature control
  3. Part of Marlin
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #include "ultralcd.h"
  25. #include "temperature.h"
  26. #include "watchdog.h"
  27. #include "language.h"
  28. #include "Sd2PinMap.h"
  29. //===========================================================================
  30. //================================== macros =================================
  31. //===========================================================================
  32. #ifdef K1 // Defined in Configuration.h in the PID settings
  33. #define K2 (1.0-K1)
  34. #endif
  35. //===========================================================================
  36. //============================= public variables ============================
  37. //===========================================================================
  38. int target_temperature[EXTRUDERS] = { 0 };
  39. int target_temperature_bed = 0;
  40. int current_temperature_raw[EXTRUDERS] = { 0 };
  41. float current_temperature[EXTRUDERS] = { 0.0 };
  42. int current_temperature_bed_raw = 0;
  43. float current_temperature_bed = 0.0;
  44. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  45. int redundant_temperature_raw = 0;
  46. float redundant_temperature = 0.0;
  47. #endif
  48. #ifdef PIDTEMPBED
  49. float bedKp=DEFAULT_bedKp;
  50. float bedKi=(DEFAULT_bedKi*PID_dT);
  51. float bedKd=(DEFAULT_bedKd/PID_dT);
  52. #endif //PIDTEMPBED
  53. #ifdef FAN_SOFT_PWM
  54. unsigned char fanSpeedSoftPwm;
  55. #endif
  56. unsigned char soft_pwm_bed;
  57. #ifdef BABYSTEPPING
  58. volatile int babystepsTodo[3] = { 0 };
  59. #endif
  60. #ifdef FILAMENT_SENSOR
  61. int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
  62. #endif
  63. //===========================================================================
  64. //=============================private variables============================
  65. //===========================================================================
  66. static volatile bool temp_meas_ready = false;
  67. #ifdef PIDTEMP
  68. //static cannot be external:
  69. static float temp_iState[EXTRUDERS] = { 0 };
  70. static float temp_dState[EXTRUDERS] = { 0 };
  71. static float pTerm[EXTRUDERS];
  72. static float iTerm[EXTRUDERS];
  73. static float dTerm[EXTRUDERS];
  74. //int output;
  75. static float pid_error[EXTRUDERS];
  76. static float temp_iState_min[EXTRUDERS];
  77. static float temp_iState_max[EXTRUDERS];
  78. static bool pid_reset[EXTRUDERS];
  79. #endif //PIDTEMP
  80. #ifdef PIDTEMPBED
  81. //static cannot be external:
  82. static float temp_iState_bed = { 0 };
  83. static float temp_dState_bed = { 0 };
  84. static float pTerm_bed;
  85. static float iTerm_bed;
  86. static float dTerm_bed;
  87. //int output;
  88. static float pid_error_bed;
  89. static float temp_iState_min_bed;
  90. static float temp_iState_max_bed;
  91. #else //PIDTEMPBED
  92. static unsigned long previous_millis_bed_heater;
  93. #endif //PIDTEMPBED
  94. static unsigned char soft_pwm[EXTRUDERS];
  95. #ifdef FAN_SOFT_PWM
  96. static unsigned char soft_pwm_fan;
  97. #endif
  98. #if HAS_AUTO_FAN
  99. static unsigned long extruder_autofan_last_check;
  100. #endif
  101. #ifdef PIDTEMP
  102. #ifdef PID_PARAMS_PER_EXTRUDER
  103. float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp, DEFAULT_Kp);
  104. float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT, DEFAULT_Ki*PID_dT);
  105. float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT, DEFAULT_Kd / PID_dT);
  106. #ifdef PID_ADD_EXTRUSION_RATE
  107. float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS(DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc, DEFAULT_Kc);
  108. #endif // PID_ADD_EXTRUSION_RATE
  109. #else //PID_PARAMS_PER_EXTRUDER
  110. float Kp = DEFAULT_Kp;
  111. float Ki = DEFAULT_Ki * PID_dT;
  112. float Kd = DEFAULT_Kd / PID_dT;
  113. #ifdef PID_ADD_EXTRUSION_RATE
  114. float Kc = DEFAULT_Kc;
  115. #endif // PID_ADD_EXTRUSION_RATE
  116. #endif // PID_PARAMS_PER_EXTRUDER
  117. #endif //PIDTEMP
  118. // Init min and max temp with extreme values to prevent false errors during startup
  119. static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
  120. static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
  121. static int minttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 0, 0, 0, 0 );
  122. static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS( 16383, 16383, 16383, 16383 );
  123. //static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP; /* No bed mintemp error implemented?!? */
  124. #ifdef BED_MAXTEMP
  125. static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
  126. #endif
  127. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  128. static void *heater_ttbl_map[2] = {(void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE };
  129. static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
  130. #else
  131. static void *heater_ttbl_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( (void *)HEATER_0_TEMPTABLE, (void *)HEATER_1_TEMPTABLE, (void *)HEATER_2_TEMPTABLE, (void *)HEATER_3_TEMPTABLE );
  132. static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS( HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN );
  133. #endif
  134. static float analog2temp(int raw, uint8_t e);
  135. static float analog2tempBed(int raw);
  136. static void updateTemperaturesFromRawValues();
  137. #ifdef WATCH_TEMP_PERIOD
  138. int watch_start_temp[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
  139. unsigned long watchmillis[EXTRUDERS] = ARRAY_BY_EXTRUDERS(0,0,0,0);
  140. #endif //WATCH_TEMP_PERIOD
  141. #ifndef SOFT_PWM_SCALE
  142. #define SOFT_PWM_SCALE 0
  143. #endif
  144. #ifdef FILAMENT_SENSOR
  145. static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
  146. #endif
  147. #ifdef HEATER_0_USES_MAX6675
  148. static int read_max6675();
  149. #endif
  150. //===========================================================================
  151. //============================= functions ============================
  152. //===========================================================================
  153. void PID_autotune(float temp, int extruder, int ncycles)
  154. {
  155. float input = 0.0;
  156. int cycles = 0;
  157. bool heating = true;
  158. unsigned long temp_millis = millis(), t1 = temp_millis, t2 = temp_millis;
  159. long t_high = 0, t_low = 0;
  160. long bias, d;
  161. float Ku, Tu;
  162. float Kp, Ki, Kd;
  163. float max = 0, min = 10000;
  164. #if HAS_AUTO_FAN
  165. unsigned long extruder_autofan_last_check = temp_millis;
  166. #endif
  167. if (extruder >= EXTRUDERS
  168. #if !HAS_TEMP_BED
  169. || extruder < 0
  170. #endif
  171. ) {
  172. SERIAL_ECHOLN(MSG_PID_BAD_EXTRUDER_NUM);
  173. return;
  174. }
  175. SERIAL_ECHOLN(MSG_PID_AUTOTUNE_START);
  176. disable_heater(); // switch off all heaters.
  177. if (extruder < 0)
  178. soft_pwm_bed = bias = d = MAX_BED_POWER / 2;
  179. else
  180. soft_pwm[extruder] = bias = d = PID_MAX / 2;
  181. // PID Tuning loop
  182. for(;;) {
  183. unsigned long ms = millis();
  184. if (temp_meas_ready == true) { // temp sample ready
  185. updateTemperaturesFromRawValues();
  186. input = (extruder<0)?current_temperature_bed:current_temperature[extruder];
  187. max = max(max, input);
  188. min = min(min, input);
  189. #if HAS_AUTO_FAN
  190. if (ms > extruder_autofan_last_check + 2500) {
  191. checkExtruderAutoFans();
  192. extruder_autofan_last_check = ms;
  193. }
  194. #endif
  195. if (heating == true && input > temp) {
  196. if (ms - t2 > 5000) {
  197. heating = false;
  198. if (extruder < 0)
  199. soft_pwm_bed = (bias - d) >> 1;
  200. else
  201. soft_pwm[extruder] = (bias - d) >> 1;
  202. t1 = ms;
  203. t_high = t1 - t2;
  204. max = temp;
  205. }
  206. }
  207. if (heating == false && input < temp) {
  208. if (ms - t1 > 5000) {
  209. heating = true;
  210. t2 = ms;
  211. t_low = t2 - t1;
  212. if (cycles > 0) {
  213. long max_pow = extruder < 0 ? MAX_BED_POWER : PID_MAX;
  214. bias += (d*(t_high - t_low))/(t_low + t_high);
  215. bias = constrain(bias, 20, max_pow - 20);
  216. d = (bias > max_pow / 2) ? max_pow - 1 - bias : bias;
  217. SERIAL_PROTOCOLPGM(MSG_BIAS); SERIAL_PROTOCOL(bias);
  218. SERIAL_PROTOCOLPGM(MSG_D); SERIAL_PROTOCOL(d);
  219. SERIAL_PROTOCOLPGM(MSG_T_MIN); SERIAL_PROTOCOL(min);
  220. SERIAL_PROTOCOLPGM(MSG_T_MAX); SERIAL_PROTOCOLLN(max);
  221. if (cycles > 2) {
  222. Ku = (4.0 * d) / (3.14159265 * (max - min) / 2.0);
  223. Tu = ((float)(t_low + t_high) / 1000.0);
  224. SERIAL_PROTOCOLPGM(MSG_KU); SERIAL_PROTOCOL(Ku);
  225. SERIAL_PROTOCOLPGM(MSG_TU); SERIAL_PROTOCOLLN(Tu);
  226. Kp = 0.6 * Ku;
  227. Ki = 2 * Kp / Tu;
  228. Kd = Kp * Tu / 8;
  229. SERIAL_PROTOCOLLNPGM(MSG_CLASSIC_PID);
  230. SERIAL_PROTOCOLPGM(MSG_KP); SERIAL_PROTOCOLLN(Kp);
  231. SERIAL_PROTOCOLPGM(MSG_KI); SERIAL_PROTOCOLLN(Ki);
  232. SERIAL_PROTOCOLPGM(MSG_KD); SERIAL_PROTOCOLLN(Kd);
  233. /*
  234. Kp = 0.33*Ku;
  235. Ki = Kp/Tu;
  236. Kd = Kp*Tu/3;
  237. SERIAL_PROTOCOLLNPGM(" Some overshoot ");
  238. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  239. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  240. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  241. Kp = 0.2*Ku;
  242. Ki = 2*Kp/Tu;
  243. Kd = Kp*Tu/3;
  244. SERIAL_PROTOCOLLNPGM(" No overshoot ");
  245. SERIAL_PROTOCOLPGM(" Kp: "); SERIAL_PROTOCOLLN(Kp);
  246. SERIAL_PROTOCOLPGM(" Ki: "); SERIAL_PROTOCOLLN(Ki);
  247. SERIAL_PROTOCOLPGM(" Kd: "); SERIAL_PROTOCOLLN(Kd);
  248. */
  249. }
  250. }
  251. if (extruder < 0)
  252. soft_pwm_bed = (bias + d) >> 1;
  253. else
  254. soft_pwm[extruder] = (bias + d) >> 1;
  255. cycles++;
  256. min = temp;
  257. }
  258. }
  259. }
  260. if (input > temp + 20) {
  261. SERIAL_PROTOCOLLNPGM(MSG_PID_TEMP_TOO_HIGH);
  262. return;
  263. }
  264. // Every 2 seconds...
  265. if (ms > temp_millis + 2000) {
  266. int p;
  267. if (extruder < 0) {
  268. p = soft_pwm_bed;
  269. SERIAL_PROTOCOLPGM(MSG_OK_B);
  270. }
  271. else {
  272. p = soft_pwm[extruder];
  273. SERIAL_PROTOCOLPGM(MSG_OK_T);
  274. }
  275. SERIAL_PROTOCOL(input);
  276. SERIAL_PROTOCOLPGM(MSG_AT);
  277. SERIAL_PROTOCOLLN(p);
  278. temp_millis = ms;
  279. } // every 2 seconds
  280. // Over 2 minutes?
  281. if (((ms - t1) + (ms - t2)) > (10L*60L*1000L*2L)) {
  282. SERIAL_PROTOCOLLNPGM(MSG_PID_TIMEOUT);
  283. return;
  284. }
  285. if (cycles > ncycles) {
  286. SERIAL_PROTOCOLLNPGM(MSG_PID_AUTOTUNE_FINISHED);
  287. return;
  288. }
  289. lcd_update();
  290. }
  291. }
  292. void updatePID() {
  293. #ifdef PIDTEMP
  294. for (int e = 0; e < EXTRUDERS; e++) {
  295. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  296. }
  297. #endif
  298. #ifdef PIDTEMPBED
  299. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  300. #endif
  301. }
  302. int getHeaterPower(int heater) {
  303. return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
  304. }
  305. #if HAS_AUTO_FAN
  306. void setExtruderAutoFanState(int pin, bool state)
  307. {
  308. unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0;
  309. // this idiom allows both digital and PWM fan outputs (see M42 handling).
  310. pinMode(pin, OUTPUT);
  311. digitalWrite(pin, newFanSpeed);
  312. analogWrite(pin, newFanSpeed);
  313. }
  314. void checkExtruderAutoFans()
  315. {
  316. uint8_t fanState = 0;
  317. // which fan pins need to be turned on?
  318. #if HAS_AUTO_FAN_0
  319. if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  320. fanState |= 1;
  321. #endif
  322. #if HAS_AUTO_FAN_1
  323. if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  324. {
  325. if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  326. fanState |= 1;
  327. else
  328. fanState |= 2;
  329. }
  330. #endif
  331. #if HAS_AUTO_FAN_2
  332. if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  333. {
  334. if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  335. fanState |= 1;
  336. else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  337. fanState |= 2;
  338. else
  339. fanState |= 4;
  340. }
  341. #endif
  342. #if HAS_AUTO_FAN_3
  343. if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE)
  344. {
  345. if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
  346. fanState |= 1;
  347. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
  348. fanState |= 2;
  349. else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
  350. fanState |= 4;
  351. else
  352. fanState |= 8;
  353. }
  354. #endif
  355. // update extruder auto fan states
  356. #if HAS_AUTO_FAN_0
  357. setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
  358. #endif
  359. #if HAS_AUTO_FAN_1
  360. if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
  361. setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
  362. #endif
  363. #if HAS_AUTO_FAN_2
  364. if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  365. && EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
  366. setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
  367. #endif
  368. #if HAS_AUTO_FAN_3
  369. if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
  370. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
  371. && EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
  372. setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
  373. #endif
  374. }
  375. #endif // any extruder auto fan pins set
  376. //
  377. // Temperature Error Handlers
  378. //
  379. inline void _temp_error(int e, const char *msg1, const char *msg2) {
  380. if (!IsStopped()) {
  381. SERIAL_ERROR_START;
  382. if (e >= 0) SERIAL_ERRORLN((int)e);
  383. serialprintPGM(msg1);
  384. MYSERIAL.write('\n');
  385. #ifdef ULTRA_LCD
  386. lcd_setalertstatuspgm(msg2);
  387. #endif
  388. }
  389. #ifndef BOGUS_TEMPERATURE_FAILSAFE_OVERRIDE
  390. Stop();
  391. #endif
  392. }
  393. void max_temp_error(uint8_t e) {
  394. disable_heater();
  395. _temp_error(e, PSTR(MSG_MAXTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MAXTEMP));
  396. }
  397. void min_temp_error(uint8_t e) {
  398. disable_heater();
  399. _temp_error(e, PSTR(MSG_MINTEMP_EXTRUDER_OFF), PSTR(MSG_ERR_MINTEMP));
  400. }
  401. void bed_max_temp_error(void) {
  402. #if HAS_HEATER_BED
  403. WRITE_HEATER_BED(0);
  404. #endif
  405. _temp_error(-1, PSTR(MSG_MAXTEMP_BED_OFF), PSTR(MSG_ERR_MAXTEMP_BED));
  406. }
  407. float get_pid_output(int e) {
  408. float pid_output;
  409. #ifdef PIDTEMP
  410. #ifndef PID_OPENLOOP
  411. pid_error[e] = target_temperature[e] - current_temperature[e];
  412. if (pid_error[e] > PID_FUNCTIONAL_RANGE) {
  413. pid_output = BANG_MAX;
  414. pid_reset[e] = true;
  415. }
  416. else if (pid_error[e] < -PID_FUNCTIONAL_RANGE || target_temperature[e] == 0) {
  417. pid_output = 0;
  418. pid_reset[e] = true;
  419. }
  420. else {
  421. if (pid_reset[e]) {
  422. temp_iState[e] = 0.0;
  423. pid_reset[e] = false;
  424. }
  425. pTerm[e] = PID_PARAM(Kp,e) * pid_error[e];
  426. temp_iState[e] += pid_error[e];
  427. temp_iState[e] = constrain(temp_iState[e], temp_iState_min[e], temp_iState_max[e]);
  428. iTerm[e] = PID_PARAM(Ki,e) * temp_iState[e];
  429. dTerm[e] = K2 * PID_PARAM(Kd,e) * (current_temperature[e] - temp_dState[e]) + K1 * dTerm[e];
  430. pid_output = pTerm[e] + iTerm[e] - dTerm[e];
  431. if (pid_output > PID_MAX) {
  432. if (pid_error[e] > 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  433. pid_output = PID_MAX;
  434. }
  435. else if (pid_output < 0) {
  436. if (pid_error[e] < 0) temp_iState[e] -= pid_error[e]; // conditional un-integration
  437. pid_output = 0;
  438. }
  439. }
  440. temp_dState[e] = current_temperature[e];
  441. #else
  442. pid_output = constrain(target_temperature[e], 0, PID_MAX);
  443. #endif //PID_OPENLOOP
  444. #ifdef PID_DEBUG
  445. SERIAL_ECHO_START;
  446. SERIAL_ECHO(MSG_PID_DEBUG);
  447. SERIAL_ECHO(e);
  448. SERIAL_ECHO(MSG_PID_DEBUG_INPUT);
  449. SERIAL_ECHO(current_temperature[e]);
  450. SERIAL_ECHO(MSG_PID_DEBUG_OUTPUT);
  451. SERIAL_ECHO(pid_output);
  452. SERIAL_ECHO(MSG_PID_DEBUG_PTERM);
  453. SERIAL_ECHO(pTerm[e]);
  454. SERIAL_ECHO(MSG_PID_DEBUG_ITERM);
  455. SERIAL_ECHO(iTerm[e]);
  456. SERIAL_ECHO(MSG_PID_DEBUG_DTERM);
  457. SERIAL_ECHOLN(dTerm[e]);
  458. #endif //PID_DEBUG
  459. #else /* PID off */
  460. pid_output = (current_temperature[e] < target_temperature[e]) ? PID_MAX : 0;
  461. #endif
  462. return pid_output;
  463. }
  464. #ifdef PIDTEMPBED
  465. float get_pid_output_bed() {
  466. float pid_output;
  467. #ifndef PID_OPENLOOP
  468. pid_error_bed = target_temperature_bed - current_temperature_bed;
  469. pTerm_bed = bedKp * pid_error_bed;
  470. temp_iState_bed += pid_error_bed;
  471. temp_iState_bed = constrain(temp_iState_bed, temp_iState_min_bed, temp_iState_max_bed);
  472. iTerm_bed = bedKi * temp_iState_bed;
  473. dTerm_bed = K2 * bedKd * (current_temperature_bed - temp_dState_bed) + K1 * dTerm_bed;
  474. temp_dState_bed = current_temperature_bed;
  475. pid_output = pTerm_bed + iTerm_bed - dTerm_bed;
  476. if (pid_output > MAX_BED_POWER) {
  477. if (pid_error_bed > 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  478. pid_output = MAX_BED_POWER;
  479. }
  480. else if (pid_output < 0) {
  481. if (pid_error_bed < 0) temp_iState_bed -= pid_error_bed; // conditional un-integration
  482. pid_output = 0;
  483. }
  484. #else
  485. pid_output = constrain(target_temperature_bed, 0, MAX_BED_POWER);
  486. #endif // PID_OPENLOOP
  487. return pid_output;
  488. }
  489. #endif
  490. void manage_heater() {
  491. if (!temp_meas_ready) return;
  492. updateTemperaturesFromRawValues();
  493. #ifdef HEATER_0_USES_MAX6675
  494. float ct = current_temperature[0];
  495. if (ct > min(HEATER_0_MAXTEMP, 1023)) max_temp_error(0);
  496. if (ct < max(HEATER_0_MINTEMP, 0.01)) min_temp_error(0);
  497. #endif //HEATER_0_USES_MAX6675
  498. unsigned long ms = millis();
  499. // Loop through all extruders
  500. for (int e = 0; e < EXTRUDERS; e++) {
  501. #if defined (THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  502. thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_RUNAWAY_PROTECTION_PERIOD, THERMAL_RUNAWAY_PROTECTION_HYSTERESIS);
  503. #endif
  504. float pid_output = get_pid_output(e);
  505. // Check if temperature is within the correct range
  506. soft_pwm[e] = current_temperature[e] > minttemp[e] && current_temperature[e] < maxttemp[e] ? (int)pid_output >> 1 : 0;
  507. #ifdef WATCH_TEMP_PERIOD
  508. if (watchmillis[e] && ms > watchmillis[e] + WATCH_TEMP_PERIOD) {
  509. if (degHotend(e) < watch_start_temp[e] + WATCH_TEMP_INCREASE) {
  510. setTargetHotend(0, e);
  511. LCD_MESSAGEPGM(MSG_HEATING_FAILED_LCD); // translatable
  512. SERIAL_ECHO_START;
  513. SERIAL_ECHOLNPGM(MSG_HEATING_FAILED);
  514. }
  515. else {
  516. watchmillis[e] = 0;
  517. }
  518. }
  519. #endif //WATCH_TEMP_PERIOD
  520. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  521. if (fabs(current_temperature[0] - redundant_temperature) > MAX_REDUNDANT_TEMP_SENSOR_DIFF) {
  522. disable_heater();
  523. _temp_error(-1, MSG_EXTRUDER_SWITCHED_OFF, MSG_ERR_REDUNDANT_TEMP);
  524. }
  525. #endif //TEMP_SENSOR_1_AS_REDUNDANT
  526. } // Extruders Loop
  527. #if HAS_AUTO_FAN
  528. if (ms > extruder_autofan_last_check + 2500) { // only need to check fan state very infrequently
  529. checkExtruderAutoFans();
  530. extruder_autofan_last_check = ms;
  531. }
  532. #endif
  533. #ifndef PIDTEMPBED
  534. if (ms < previous_millis_bed_heater + BED_CHECK_INTERVAL) return;
  535. previous_millis_bed_heater = ms;
  536. #endif //PIDTEMPBED
  537. #if TEMP_SENSOR_BED != 0
  538. #if defined(THERMAL_RUNAWAY_PROTECTION_BED_PERIOD) && THERMAL_RUNAWAY_PROTECTION_BED_PERIOD > 0
  539. thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, 9, THERMAL_RUNAWAY_PROTECTION_BED_PERIOD, THERMAL_RUNAWAY_PROTECTION_BED_HYSTERESIS);
  540. #endif
  541. #ifdef PIDTEMPBED
  542. float pid_output = get_pid_output_bed();
  543. soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
  544. #elif !defined(BED_LIMIT_SWITCHING)
  545. // Check if temperature is within the correct range
  546. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  547. soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
  548. }
  549. else {
  550. soft_pwm_bed = 0;
  551. WRITE_HEATER_BED(LOW);
  552. }
  553. #else //#ifdef BED_LIMIT_SWITCHING
  554. // Check if temperature is within the correct band
  555. if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
  556. if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
  557. soft_pwm_bed = 0;
  558. else if (current_temperature_bed <= target_temperature_bed - BED_HYSTERESIS)
  559. soft_pwm_bed = MAX_BED_POWER >> 1;
  560. }
  561. else {
  562. soft_pwm_bed = 0;
  563. WRITE_HEATER_BED(LOW);
  564. }
  565. #endif
  566. #endif //TEMP_SENSOR_BED != 0
  567. // Control the extruder rate based on the width sensor
  568. #ifdef FILAMENT_SENSOR
  569. if (filament_sensor) {
  570. meas_shift_index = delay_index1 - meas_delay_cm;
  571. if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
  572. // Get the delayed info and add 100 to reconstitute to a percent of
  573. // the nominal filament diameter then square it to get an area
  574. meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
  575. float vm = pow((measurement_delay[meas_shift_index] + 100.0) / 100.0, 2);
  576. if (vm < 0.01) vm = 0.01;
  577. volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vm;
  578. }
  579. #endif //FILAMENT_SENSOR
  580. }
  581. #define PGM_RD_W(x) (short)pgm_read_word(&x)
  582. // Derived from RepRap FiveD extruder::getTemperature()
  583. // For hot end temperature measurement.
  584. static float analog2temp(int raw, uint8_t e) {
  585. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  586. if (e > EXTRUDERS)
  587. #else
  588. if (e >= EXTRUDERS)
  589. #endif
  590. {
  591. SERIAL_ERROR_START;
  592. SERIAL_ERROR((int)e);
  593. SERIAL_ERRORLNPGM(MSG_INVALID_EXTRUDER_NUM);
  594. kill();
  595. return 0.0;
  596. }
  597. #ifdef HEATER_0_USES_MAX6675
  598. if (e == 0)
  599. {
  600. return 0.25 * raw;
  601. }
  602. #endif
  603. if(heater_ttbl_map[e] != NULL)
  604. {
  605. float celsius = 0;
  606. uint8_t i;
  607. short (*tt)[][2] = (short (*)[][2])(heater_ttbl_map[e]);
  608. for (i=1; i<heater_ttbllen_map[e]; i++)
  609. {
  610. if (PGM_RD_W((*tt)[i][0]) > raw)
  611. {
  612. celsius = PGM_RD_W((*tt)[i-1][1]) +
  613. (raw - PGM_RD_W((*tt)[i-1][0])) *
  614. (float)(PGM_RD_W((*tt)[i][1]) - PGM_RD_W((*tt)[i-1][1])) /
  615. (float)(PGM_RD_W((*tt)[i][0]) - PGM_RD_W((*tt)[i-1][0]));
  616. break;
  617. }
  618. }
  619. // Overflow: Set to last value in the table
  620. if (i == heater_ttbllen_map[e]) celsius = PGM_RD_W((*tt)[i-1][1]);
  621. return celsius;
  622. }
  623. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  624. }
  625. // Derived from RepRap FiveD extruder::getTemperature()
  626. // For bed temperature measurement.
  627. static float analog2tempBed(int raw) {
  628. #ifdef BED_USES_THERMISTOR
  629. float celsius = 0;
  630. byte i;
  631. for (i=1; i<BEDTEMPTABLE_LEN; i++)
  632. {
  633. if (PGM_RD_W(BEDTEMPTABLE[i][0]) > raw)
  634. {
  635. celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]) +
  636. (raw - PGM_RD_W(BEDTEMPTABLE[i-1][0])) *
  637. (float)(PGM_RD_W(BEDTEMPTABLE[i][1]) - PGM_RD_W(BEDTEMPTABLE[i-1][1])) /
  638. (float)(PGM_RD_W(BEDTEMPTABLE[i][0]) - PGM_RD_W(BEDTEMPTABLE[i-1][0]));
  639. break;
  640. }
  641. }
  642. // Overflow: Set to last value in the table
  643. if (i == BEDTEMPTABLE_LEN) celsius = PGM_RD_W(BEDTEMPTABLE[i-1][1]);
  644. return celsius;
  645. #elif defined BED_USES_AD595
  646. return ((raw * ((5.0 * 100.0) / 1024.0) / OVERSAMPLENR) * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET;
  647. #else
  648. return 0;
  649. #endif
  650. }
  651. /* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context,
  652. and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */
  653. static void updateTemperaturesFromRawValues() {
  654. #ifdef HEATER_0_USES_MAX6675
  655. current_temperature_raw[0] = read_max6675();
  656. #endif
  657. for(uint8_t e = 0; e < EXTRUDERS; e++) {
  658. current_temperature[e] = analog2temp(current_temperature_raw[e], e);
  659. }
  660. current_temperature_bed = analog2tempBed(current_temperature_bed_raw);
  661. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  662. redundant_temperature = analog2temp(redundant_temperature_raw, 1);
  663. #endif
  664. #if HAS_FILAMENT_SENSOR
  665. filament_width_meas = analog2widthFil();
  666. #endif
  667. //Reset the watchdog after we know we have a temperature measurement.
  668. watchdog_reset();
  669. CRITICAL_SECTION_START;
  670. temp_meas_ready = false;
  671. CRITICAL_SECTION_END;
  672. }
  673. #ifdef FILAMENT_SENSOR
  674. // Convert raw Filament Width to millimeters
  675. float analog2widthFil() {
  676. return current_raw_filwidth / 16383.0 * 5.0;
  677. //return current_raw_filwidth;
  678. }
  679. // Convert raw Filament Width to a ratio
  680. int widthFil_to_size_ratio() {
  681. float temp = filament_width_meas;
  682. if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
  683. else if (temp > MEASURED_UPPER_LIMIT) temp = MEASURED_UPPER_LIMIT;
  684. return filament_width_nominal / temp * 100;
  685. }
  686. #endif
  687. void tp_init()
  688. {
  689. #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
  690. //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
  691. MCUCR=BIT(JTD);
  692. MCUCR=BIT(JTD);
  693. #endif
  694. // Finish init of mult extruder arrays
  695. for (int e = 0; e < EXTRUDERS; e++) {
  696. // populate with the first value
  697. maxttemp[e] = maxttemp[0];
  698. #ifdef PIDTEMP
  699. temp_iState_min[e] = 0.0;
  700. temp_iState_max[e] = PID_INTEGRAL_DRIVE_MAX / PID_PARAM(Ki,e);
  701. #endif //PIDTEMP
  702. #ifdef PIDTEMPBED
  703. temp_iState_min_bed = 0.0;
  704. temp_iState_max_bed = PID_INTEGRAL_DRIVE_MAX / bedKi;
  705. #endif //PIDTEMPBED
  706. }
  707. #if HAS_HEATER_0
  708. SET_OUTPUT(HEATER_0_PIN);
  709. #endif
  710. #if HAS_HEATER_1
  711. SET_OUTPUT(HEATER_1_PIN);
  712. #endif
  713. #if HAS_HEATER_2
  714. SET_OUTPUT(HEATER_2_PIN);
  715. #endif
  716. #if HAS_HEATER_3
  717. SET_OUTPUT(HEATER_3_PIN);
  718. #endif
  719. #if HAS_HEATER_BED
  720. SET_OUTPUT(HEATER_BED_PIN);
  721. #endif
  722. #if HAS_FAN
  723. SET_OUTPUT(FAN_PIN);
  724. #ifdef FAST_PWM_FAN
  725. setPwmFrequency(FAN_PIN, 1); // No prescaling. Pwm frequency = F_CPU/256/8
  726. #endif
  727. #ifdef FAN_SOFT_PWM
  728. soft_pwm_fan = fanSpeedSoftPwm / 2;
  729. #endif
  730. #endif
  731. #ifdef HEATER_0_USES_MAX6675
  732. #ifndef SDSUPPORT
  733. OUT_WRITE(SCK_PIN, LOW);
  734. OUT_WRITE(MOSI_PIN, HIGH);
  735. OUT_WRITE(MISO_PIN, HIGH);
  736. #else
  737. pinMode(SS_PIN, OUTPUT);
  738. digitalWrite(SS_PIN, HIGH);
  739. #endif
  740. OUT_WRITE(MAX6675_SS,HIGH);
  741. #endif //HEATER_0_USES_MAX6675
  742. #ifdef DIDR2
  743. #define ANALOG_SELECT(pin) do{ if (pin < 8) DIDR0 |= BIT(pin); else DIDR2 |= BIT(pin - 8); }while(0)
  744. #else
  745. #define ANALOG_SELECT(pin) do{ DIDR0 |= BIT(pin); }while(0)
  746. #endif
  747. // Set analog inputs
  748. ADCSRA = BIT(ADEN) | BIT(ADSC) | BIT(ADIF) | 0x07;
  749. DIDR0 = 0;
  750. #ifdef DIDR2
  751. DIDR2 = 0;
  752. #endif
  753. #if HAS_TEMP_0
  754. ANALOG_SELECT(TEMP_0_PIN);
  755. #endif
  756. #if HAS_TEMP_1
  757. ANALOG_SELECT(TEMP_1_PIN);
  758. #endif
  759. #if HAS_TEMP_2
  760. ANALOG_SELECT(TEMP_2_PIN);
  761. #endif
  762. #if HAS_TEMP_3
  763. ANALOG_SELECT(TEMP_3_PIN);
  764. #endif
  765. #if HAS_TEMP_BED
  766. ANALOG_SELECT(TEMP_BED_PIN);
  767. #endif
  768. #if HAS_FILAMENT_SENSOR
  769. ANALOG_SELECT(FILWIDTH_PIN);
  770. #endif
  771. // Use timer0 for temperature measurement
  772. // Interleave temperature interrupt with millies interrupt
  773. OCR0B = 128;
  774. TIMSK0 |= BIT(OCIE0B);
  775. // Wait for temperature measurement to settle
  776. delay(250);
  777. #define TEMP_MIN_ROUTINE(NR) \
  778. minttemp[NR] = HEATER_ ## NR ## _MINTEMP; \
  779. while(analog2temp(minttemp_raw[NR], NR) < HEATER_ ## NR ## _MINTEMP) { \
  780. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  781. minttemp_raw[NR] += OVERSAMPLENR; \
  782. else \
  783. minttemp_raw[NR] -= OVERSAMPLENR; \
  784. }
  785. #define TEMP_MAX_ROUTINE(NR) \
  786. maxttemp[NR] = HEATER_ ## NR ## _MAXTEMP; \
  787. while(analog2temp(maxttemp_raw[NR], NR) > HEATER_ ## NR ## _MAXTEMP) { \
  788. if (HEATER_ ## NR ## _RAW_LO_TEMP < HEATER_ ## NR ## _RAW_HI_TEMP) \
  789. maxttemp_raw[NR] -= OVERSAMPLENR; \
  790. else \
  791. maxttemp_raw[NR] += OVERSAMPLENR; \
  792. }
  793. #ifdef HEATER_0_MINTEMP
  794. TEMP_MIN_ROUTINE(0);
  795. #endif
  796. #ifdef HEATER_0_MAXTEMP
  797. TEMP_MAX_ROUTINE(0);
  798. #endif
  799. #if EXTRUDERS > 1
  800. #ifdef HEATER_1_MINTEMP
  801. TEMP_MIN_ROUTINE(1);
  802. #endif
  803. #ifdef HEATER_1_MAXTEMP
  804. TEMP_MAX_ROUTINE(1);
  805. #endif
  806. #if EXTRUDERS > 2
  807. #ifdef HEATER_2_MINTEMP
  808. TEMP_MIN_ROUTINE(2);
  809. #endif
  810. #ifdef HEATER_2_MAXTEMP
  811. TEMP_MAX_ROUTINE(2);
  812. #endif
  813. #if EXTRUDERS > 3
  814. #ifdef HEATER_3_MINTEMP
  815. TEMP_MIN_ROUTINE(3);
  816. #endif
  817. #ifdef HEATER_3_MAXTEMP
  818. TEMP_MAX_ROUTINE(3);
  819. #endif
  820. #endif // EXTRUDERS > 3
  821. #endif // EXTRUDERS > 2
  822. #endif // EXTRUDERS > 1
  823. #ifdef BED_MINTEMP
  824. /* No bed MINTEMP error implemented?!? */ /*
  825. while(analog2tempBed(bed_minttemp_raw) < BED_MINTEMP) {
  826. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  827. bed_minttemp_raw += OVERSAMPLENR;
  828. #else
  829. bed_minttemp_raw -= OVERSAMPLENR;
  830. #endif
  831. }
  832. */
  833. #endif //BED_MINTEMP
  834. #ifdef BED_MAXTEMP
  835. while(analog2tempBed(bed_maxttemp_raw) > BED_MAXTEMP) {
  836. #if HEATER_BED_RAW_LO_TEMP < HEATER_BED_RAW_HI_TEMP
  837. bed_maxttemp_raw -= OVERSAMPLENR;
  838. #else
  839. bed_maxttemp_raw += OVERSAMPLENR;
  840. #endif
  841. }
  842. #endif //BED_MAXTEMP
  843. }
  844. void setWatch() {
  845. #ifdef WATCH_TEMP_PERIOD
  846. unsigned long ms = millis();
  847. for (int e = 0; e < EXTRUDERS; e++) {
  848. if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE * 2)) {
  849. watch_start_temp[e] = degHotend(e);
  850. watchmillis[e] = ms;
  851. }
  852. }
  853. #endif
  854. }
  855. #if defined(THERMAL_RUNAWAY_PROTECTION_PERIOD) && THERMAL_RUNAWAY_PROTECTION_PERIOD > 0
  856. void thermal_runaway_protection(int *state, unsigned long *timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc)
  857. {
  858. /*
  859. SERIAL_ECHO_START;
  860. SERIAL_ECHO("Thermal Thermal Runaway Running. Heater ID:");
  861. SERIAL_ECHO(heater_id);
  862. SERIAL_ECHO(" ; State:");
  863. SERIAL_ECHO(*state);
  864. SERIAL_ECHO(" ; Timer:");
  865. SERIAL_ECHO(*timer);
  866. SERIAL_ECHO(" ; Temperature:");
  867. SERIAL_ECHO(temperature);
  868. SERIAL_ECHO(" ; Target Temp:");
  869. SERIAL_ECHO(target_temperature);
  870. SERIAL_ECHOLN("");
  871. */
  872. if ((target_temperature == 0) || thermal_runaway)
  873. {
  874. *state = 0;
  875. *timer = 0;
  876. return;
  877. }
  878. switch (*state)
  879. {
  880. case 0: // "Heater Inactive" state
  881. if (target_temperature > 0) *state = 1;
  882. break;
  883. case 1: // "First Heating" state
  884. if (temperature >= target_temperature) *state = 2;
  885. break;
  886. case 2: // "Temperature Stable" state
  887. {
  888. unsigned long ms = millis();
  889. if (temperature >= (target_temperature - hysteresis_degc))
  890. {
  891. *timer = ms;
  892. }
  893. else if ( (ms - *timer) > ((unsigned long) period_seconds) * 1000)
  894. {
  895. SERIAL_ERROR_START;
  896. SERIAL_ERRORLNPGM(MSG_THERMAL_RUNAWAY_STOP);
  897. SERIAL_ERRORLN((int)heater_id);
  898. LCD_ALERTMESSAGEPGM(MSG_THERMAL_RUNAWAY); // translatable
  899. thermal_runaway = true;
  900. while(1)
  901. {
  902. disable_heater();
  903. disable_x();
  904. disable_y();
  905. disable_z();
  906. disable_e0();
  907. disable_e1();
  908. disable_e2();
  909. disable_e3();
  910. manage_heater();
  911. lcd_update();
  912. }
  913. }
  914. } break;
  915. }
  916. }
  917. #endif //THERMAL_RUNAWAY_PROTECTION_PERIOD
  918. void disable_heater() {
  919. for (int i=0; i<EXTRUDERS; i++) setTargetHotend(0, i);
  920. setTargetBed(0);
  921. #if HAS_TEMP_0
  922. target_temperature[0] = 0;
  923. soft_pwm[0] = 0;
  924. WRITE_HEATER_0P(LOW); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  925. #endif
  926. #if EXTRUDERS > 1 && HAS_TEMP_1
  927. target_temperature[1] = 0;
  928. soft_pwm[1] = 0;
  929. WRITE_HEATER_1(LOW);
  930. #endif
  931. #if EXTRUDERS > 2 && HAS_TEMP_2
  932. target_temperature[2] = 0;
  933. soft_pwm[2] = 0;
  934. WRITE_HEATER_2(LOW);
  935. #endif
  936. #if EXTRUDERS > 3 && HAS_TEMP_3
  937. target_temperature[3] = 0;
  938. soft_pwm[3] = 0;
  939. WRITE_HEATER_3(LOW);
  940. #endif
  941. #if HAS_TEMP_BED
  942. target_temperature_bed = 0;
  943. soft_pwm_bed = 0;
  944. #if HAS_HEATER_BED
  945. WRITE_HEATER_BED(LOW);
  946. #endif
  947. #endif
  948. }
  949. #ifdef HEATER_0_USES_MAX6675
  950. #define MAX6675_HEAT_INTERVAL 250
  951. long max6675_previous_millis = MAX6675_HEAT_INTERVAL;
  952. int max6675_temp = 2000;
  953. static int read_max6675() {
  954. unsigned long ms = millis();
  955. if (ms < max6675_previous_millis + MAX6675_HEAT_INTERVAL)
  956. return max6675_temp;
  957. max6675_previous_millis = ms;
  958. max6675_temp = 0;
  959. #ifdef PRR
  960. PRR &= ~BIT(PRSPI);
  961. #elif defined(PRR0)
  962. PRR0 &= ~BIT(PRSPI);
  963. #endif
  964. SPCR = BIT(MSTR) | BIT(SPE) | BIT(SPR0);
  965. // enable TT_MAX6675
  966. WRITE(MAX6675_SS, 0);
  967. // ensure 100ns delay - a bit extra is fine
  968. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  969. asm("nop");//50ns on 20Mhz, 62.5ns on 16Mhz
  970. // read MSB
  971. SPDR = 0;
  972. for (;(SPSR & BIT(SPIF)) == 0;);
  973. max6675_temp = SPDR;
  974. max6675_temp <<= 8;
  975. // read LSB
  976. SPDR = 0;
  977. for (;(SPSR & BIT(SPIF)) == 0;);
  978. max6675_temp |= SPDR;
  979. // disable TT_MAX6675
  980. WRITE(MAX6675_SS, 1);
  981. if (max6675_temp & 4) {
  982. // thermocouple open
  983. max6675_temp = 4000;
  984. }
  985. else {
  986. max6675_temp = max6675_temp >> 3;
  987. }
  988. return max6675_temp;
  989. }
  990. #endif //HEATER_0_USES_MAX6675
  991. /**
  992. * Stages in the ISR loop
  993. */
  994. enum TempState {
  995. PrepareTemp_0,
  996. MeasureTemp_0,
  997. PrepareTemp_BED,
  998. MeasureTemp_BED,
  999. PrepareTemp_1,
  1000. MeasureTemp_1,
  1001. PrepareTemp_2,
  1002. MeasureTemp_2,
  1003. PrepareTemp_3,
  1004. MeasureTemp_3,
  1005. Prepare_FILWIDTH,
  1006. Measure_FILWIDTH,
  1007. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  1008. };
  1009. //
  1010. // Timer 0 is shared with millies
  1011. //
  1012. ISR(TIMER0_COMPB_vect) {
  1013. //these variables are only accesible from the ISR, but static, so they don't lose their value
  1014. static unsigned char temp_count = 0;
  1015. static unsigned long raw_temp_0_value = 0;
  1016. static unsigned long raw_temp_1_value = 0;
  1017. static unsigned long raw_temp_2_value = 0;
  1018. static unsigned long raw_temp_3_value = 0;
  1019. static unsigned long raw_temp_bed_value = 0;
  1020. static TempState temp_state = StartupDelay;
  1021. static unsigned char pwm_count = BIT(SOFT_PWM_SCALE);
  1022. // Static members for each heater
  1023. #ifdef SLOW_PWM_HEATERS
  1024. static unsigned char slow_pwm_count = 0;
  1025. #define ISR_STATICS(n) \
  1026. static unsigned char soft_pwm_ ## n; \
  1027. static unsigned char state_heater_ ## n = 0; \
  1028. static unsigned char state_timer_heater_ ## n = 0
  1029. #else
  1030. #define ISR_STATICS(n) static unsigned char soft_pwm_ ## n
  1031. #endif
  1032. // Statics per heater
  1033. ISR_STATICS(0);
  1034. #if (EXTRUDERS > 1) || defined(HEATERS_PARALLEL)
  1035. ISR_STATICS(1);
  1036. #if EXTRUDERS > 2
  1037. ISR_STATICS(2);
  1038. #if EXTRUDERS > 3
  1039. ISR_STATICS(3);
  1040. #endif
  1041. #endif
  1042. #endif
  1043. #if HAS_HEATER_BED
  1044. ISR_STATICS(BED);
  1045. #endif
  1046. #if HAS_FILAMENT_SENSOR
  1047. static unsigned long raw_filwidth_value = 0;
  1048. #endif
  1049. #ifndef SLOW_PWM_HEATERS
  1050. /**
  1051. * standard PWM modulation
  1052. */
  1053. if (pwm_count == 0) {
  1054. soft_pwm_0 = soft_pwm[0];
  1055. if (soft_pwm_0 > 0) {
  1056. WRITE_HEATER_0(1);
  1057. }
  1058. else WRITE_HEATER_0P(0); // If HEATERS_PARALLEL should apply, change to WRITE_HEATER_0
  1059. #if EXTRUDERS > 1
  1060. soft_pwm_1 = soft_pwm[1];
  1061. WRITE_HEATER_1(soft_pwm_1 > 0 ? 1 : 0);
  1062. #if EXTRUDERS > 2
  1063. soft_pwm_2 = soft_pwm[2];
  1064. WRITE_HEATER_2(soft_pwm_2 > 0 ? 1 : 0);
  1065. #if EXTRUDERS > 3
  1066. soft_pwm_3 = soft_pwm[3];
  1067. WRITE_HEATER_3(soft_pwm_3 > 0 ? 1 : 0);
  1068. #endif
  1069. #endif
  1070. #endif
  1071. #if HAS_HEATER_BED
  1072. soft_pwm_BED = soft_pwm_bed;
  1073. WRITE_HEATER_BED(soft_pwm_BED > 0 ? 1 : 0);
  1074. #endif
  1075. #ifdef FAN_SOFT_PWM
  1076. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1077. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1078. #endif
  1079. }
  1080. if (soft_pwm_0 < pwm_count) { WRITE_HEATER_0(0); }
  1081. #if EXTRUDERS > 1
  1082. if (soft_pwm_1 < pwm_count) WRITE_HEATER_1(0);
  1083. #if EXTRUDERS > 2
  1084. if (soft_pwm_2 < pwm_count) WRITE_HEATER_2(0);
  1085. #if EXTRUDERS > 3
  1086. if (soft_pwm_3 < pwm_count) WRITE_HEATER_3(0);
  1087. #endif
  1088. #endif
  1089. #endif
  1090. #if HAS_HEATER_BED
  1091. if (soft_pwm_BED < pwm_count) WRITE_HEATER_BED(0);
  1092. #endif
  1093. #ifdef FAN_SOFT_PWM
  1094. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1095. #endif
  1096. pwm_count += BIT(SOFT_PWM_SCALE);
  1097. pwm_count &= 0x7f;
  1098. #else // SLOW_PWM_HEATERS
  1099. /*
  1100. * SLOW PWM HEATERS
  1101. *
  1102. * for heaters drived by relay
  1103. */
  1104. #ifndef MIN_STATE_TIME
  1105. #define MIN_STATE_TIME 16 // MIN_STATE_TIME * 65.5 = time in milliseconds
  1106. #endif
  1107. // Macros for Slow PWM timer logic - HEATERS_PARALLEL applies
  1108. #define _SLOW_PWM_ROUTINE(NR, src) \
  1109. soft_pwm_ ## NR = src; \
  1110. if (soft_pwm_ ## NR > 0) { \
  1111. if (state_timer_heater_ ## NR == 0) { \
  1112. if (state_heater_ ## NR == 0) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1113. state_heater_ ## NR = 1; \
  1114. WRITE_HEATER_ ## NR(1); \
  1115. } \
  1116. } \
  1117. else { \
  1118. if (state_timer_heater_ ## NR == 0) { \
  1119. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1120. state_heater_ ## NR = 0; \
  1121. WRITE_HEATER_ ## NR(0); \
  1122. } \
  1123. }
  1124. #define SLOW_PWM_ROUTINE(n) _SLOW_PWM_ROUTINE(n, soft_pwm[n])
  1125. #define PWM_OFF_ROUTINE(NR) \
  1126. if (soft_pwm_ ## NR < slow_pwm_count) { \
  1127. if (state_timer_heater_ ## NR == 0) { \
  1128. if (state_heater_ ## NR == 1) state_timer_heater_ ## NR = MIN_STATE_TIME; \
  1129. state_heater_ ## NR = 0; \
  1130. WRITE_HEATER_ ## NR (0); \
  1131. } \
  1132. }
  1133. if (slow_pwm_count == 0) {
  1134. SLOW_PWM_ROUTINE(0); // EXTRUDER 0
  1135. #if EXTRUDERS > 1
  1136. SLOW_PWM_ROUTINE(1); // EXTRUDER 1
  1137. #if EXTRUDERS > 2
  1138. SLOW_PWM_ROUTINE(2); // EXTRUDER 2
  1139. #if EXTRUDERS > 3
  1140. SLOW_PWM_ROUTINE(3); // EXTRUDER 3
  1141. #endif
  1142. #endif
  1143. #endif
  1144. #if HAS_HEATER_BED
  1145. _SLOW_PWM_ROUTINE(BED, soft_pwm_bed); // BED
  1146. #endif
  1147. } // slow_pwm_count == 0
  1148. PWM_OFF_ROUTINE(0); // EXTRUDER 0
  1149. #if EXTRUDERS > 1
  1150. PWM_OFF_ROUTINE(1); // EXTRUDER 1
  1151. #if EXTRUDERS > 2
  1152. PWM_OFF_ROUTINE(2); // EXTRUDER 2
  1153. #if EXTRUDERS > 3
  1154. PWM_OFF_ROUTINE(3); // EXTRUDER 3
  1155. #endif
  1156. #endif
  1157. #endif
  1158. #if HAS_HEATER_BED
  1159. PWM_OFF_ROUTINE(BED); // BED
  1160. #endif
  1161. #ifdef FAN_SOFT_PWM
  1162. if (pwm_count == 0) {
  1163. soft_pwm_fan = fanSpeedSoftPwm / 2;
  1164. WRITE_FAN(soft_pwm_fan > 0 ? 1 : 0);
  1165. }
  1166. if (soft_pwm_fan < pwm_count) WRITE_FAN(0);
  1167. #endif //FAN_SOFT_PWM
  1168. pwm_count += BIT(SOFT_PWM_SCALE);
  1169. pwm_count &= 0x7f;
  1170. // increment slow_pwm_count only every 64 pwm_count circa 65.5ms
  1171. if ((pwm_count % 64) == 0) {
  1172. slow_pwm_count++;
  1173. slow_pwm_count &= 0x7f;
  1174. // EXTRUDER 0
  1175. if (state_timer_heater_0 > 0) state_timer_heater_0--;
  1176. #if EXTRUDERS > 1 // EXTRUDER 1
  1177. if (state_timer_heater_1 > 0) state_timer_heater_1--;
  1178. #if EXTRUDERS > 2 // EXTRUDER 2
  1179. if (state_timer_heater_2 > 0) state_timer_heater_2--;
  1180. #if EXTRUDERS > 3 // EXTRUDER 3
  1181. if (state_timer_heater_3 > 0) state_timer_heater_3--;
  1182. #endif
  1183. #endif
  1184. #endif
  1185. #if HAS_HEATER_BED
  1186. if (state_timer_heater_BED > 0) state_timer_heater_BED--;
  1187. #endif
  1188. } // (pwm_count % 64) == 0
  1189. #endif // SLOW_PWM_HEATERS
  1190. #define SET_ADMUX_ADCSRA(pin) ADMUX = BIT(REFS0) | (pin & 0x07); ADCSRA |= BIT(ADSC)
  1191. #ifdef MUX5
  1192. #define START_ADC(pin) if (pin > 7) ADCSRB = BIT(MUX5); else ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1193. #else
  1194. #define START_ADC(pin) ADCSRB = 0; SET_ADMUX_ADCSRA(pin)
  1195. #endif
  1196. switch(temp_state) {
  1197. case PrepareTemp_0:
  1198. #if HAS_TEMP_0
  1199. START_ADC(TEMP_0_PIN);
  1200. #endif
  1201. lcd_buttons_update();
  1202. temp_state = MeasureTemp_0;
  1203. break;
  1204. case MeasureTemp_0:
  1205. #if HAS_TEMP_0
  1206. raw_temp_0_value += ADC;
  1207. #endif
  1208. temp_state = PrepareTemp_BED;
  1209. break;
  1210. case PrepareTemp_BED:
  1211. #if HAS_TEMP_BED
  1212. START_ADC(TEMP_BED_PIN);
  1213. #endif
  1214. lcd_buttons_update();
  1215. temp_state = MeasureTemp_BED;
  1216. break;
  1217. case MeasureTemp_BED:
  1218. #if HAS_TEMP_BED
  1219. raw_temp_bed_value += ADC;
  1220. #endif
  1221. temp_state = PrepareTemp_1;
  1222. break;
  1223. case PrepareTemp_1:
  1224. #if HAS_TEMP_1
  1225. START_ADC(TEMP_1_PIN);
  1226. #endif
  1227. lcd_buttons_update();
  1228. temp_state = MeasureTemp_1;
  1229. break;
  1230. case MeasureTemp_1:
  1231. #if HAS_TEMP_1
  1232. raw_temp_1_value += ADC;
  1233. #endif
  1234. temp_state = PrepareTemp_2;
  1235. break;
  1236. case PrepareTemp_2:
  1237. #if HAS_TEMP_2
  1238. START_ADC(TEMP_2_PIN);
  1239. #endif
  1240. lcd_buttons_update();
  1241. temp_state = MeasureTemp_2;
  1242. break;
  1243. case MeasureTemp_2:
  1244. #if HAS_TEMP_2
  1245. raw_temp_2_value += ADC;
  1246. #endif
  1247. temp_state = PrepareTemp_3;
  1248. break;
  1249. case PrepareTemp_3:
  1250. #if HAS_TEMP_3
  1251. START_ADC(TEMP_3_PIN);
  1252. #endif
  1253. lcd_buttons_update();
  1254. temp_state = MeasureTemp_3;
  1255. break;
  1256. case MeasureTemp_3:
  1257. #if HAS_TEMP_3
  1258. raw_temp_3_value += ADC;
  1259. #endif
  1260. temp_state = Prepare_FILWIDTH;
  1261. break;
  1262. case Prepare_FILWIDTH:
  1263. #if HAS_FILAMENT_SENSOR
  1264. START_ADC(FILWIDTH_PIN);
  1265. #endif
  1266. lcd_buttons_update();
  1267. temp_state = Measure_FILWIDTH;
  1268. break;
  1269. case Measure_FILWIDTH:
  1270. #if HAS_FILAMENT_SENSOR
  1271. // raw_filwidth_value += ADC; //remove to use an IIR filter approach
  1272. if (ADC > 102) { //check that ADC is reading a voltage > 0.5 volts, otherwise don't take in the data.
  1273. raw_filwidth_value -= (raw_filwidth_value>>7); //multiply raw_filwidth_value by 127/128
  1274. raw_filwidth_value += ((unsigned long)ADC<<7); //add new ADC reading
  1275. }
  1276. #endif
  1277. temp_state = PrepareTemp_0;
  1278. temp_count++;
  1279. break;
  1280. case StartupDelay:
  1281. temp_state = PrepareTemp_0;
  1282. break;
  1283. // default:
  1284. // SERIAL_ERROR_START;
  1285. // SERIAL_ERRORLNPGM("Temp measurement error!");
  1286. // break;
  1287. } // switch(temp_state)
  1288. if (temp_count >= OVERSAMPLENR) { // 10 * 16 * 1/(16000000/64/256) = 164ms.
  1289. if (!temp_meas_ready) { //Only update the raw values if they have been read. Else we could be updating them during reading.
  1290. #ifndef HEATER_0_USES_MAX6675
  1291. current_temperature_raw[0] = raw_temp_0_value;
  1292. #endif
  1293. #if EXTRUDERS > 1
  1294. current_temperature_raw[1] = raw_temp_1_value;
  1295. #if EXTRUDERS > 2
  1296. current_temperature_raw[2] = raw_temp_2_value;
  1297. #if EXTRUDERS > 3
  1298. current_temperature_raw[3] = raw_temp_3_value;
  1299. #endif
  1300. #endif
  1301. #endif
  1302. #ifdef TEMP_SENSOR_1_AS_REDUNDANT
  1303. redundant_temperature_raw = raw_temp_1_value;
  1304. #endif
  1305. current_temperature_bed_raw = raw_temp_bed_value;
  1306. } //!temp_meas_ready
  1307. // Filament Sensor - can be read any time since IIR filtering is used
  1308. #if HAS_FILAMENT_SENSOR
  1309. current_raw_filwidth = raw_filwidth_value >> 10; // Divide to get to 0-16384 range since we used 1/128 IIR filter approach
  1310. #endif
  1311. temp_meas_ready = true;
  1312. temp_count = 0;
  1313. raw_temp_0_value = 0;
  1314. raw_temp_1_value = 0;
  1315. raw_temp_2_value = 0;
  1316. raw_temp_3_value = 0;
  1317. raw_temp_bed_value = 0;
  1318. #if HEATER_0_RAW_LO_TEMP > HEATER_0_RAW_HI_TEMP
  1319. #define MAXTEST <=
  1320. #define MINTEST >=
  1321. #else
  1322. #define MAXTEST >=
  1323. #define MINTEST <=
  1324. #endif
  1325. for (int i=0; i<EXTRUDERS; i++) {
  1326. if (current_temperature_raw[i] MAXTEST maxttemp_raw[i]) max_temp_error(i);
  1327. else if (current_temperature_raw[i] MINTEST minttemp_raw[i]) min_temp_error(i);
  1328. }
  1329. /* No bed MINTEMP error? */
  1330. #if defined(BED_MAXTEMP) && (TEMP_SENSOR_BED != 0)
  1331. if (current_temperature_bed_raw MAXTEST bed_maxttemp_raw) {
  1332. target_temperature_bed = 0;
  1333. bed_max_temp_error();
  1334. }
  1335. #endif
  1336. } // temp_count >= OVERSAMPLENR
  1337. #ifdef BABYSTEPPING
  1338. for (uint8_t axis=X_AXIS; axis<=Z_AXIS; axis++) {
  1339. int curTodo=babystepsTodo[axis]; //get rid of volatile for performance
  1340. if (curTodo > 0) {
  1341. babystep(axis,/*fwd*/true);
  1342. babystepsTodo[axis]--; //less to do next time
  1343. }
  1344. else if(curTodo < 0) {
  1345. babystep(axis,/*fwd*/false);
  1346. babystepsTodo[axis]++; //less to do next time
  1347. }
  1348. }
  1349. #endif //BABYSTEPPING
  1350. }
  1351. #ifdef PIDTEMP
  1352. // Apply the scale factors to the PID values
  1353. float scalePID_i(float i) { return i * PID_dT; }
  1354. float unscalePID_i(float i) { return i / PID_dT; }
  1355. float scalePID_d(float d) { return d / PID_dT; }
  1356. float unscalePID_d(float d) { return d * PID_dT; }
  1357. #endif //PIDTEMP