My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

stepper.cpp 41KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388
  1. /*
  2. stepper.c - stepper motor driver: executes motion plans using stepper motors
  3. Part of Grbl
  4. Copyright (c) 2009-2011 Simen Svale Skogsrud
  5. Grbl is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. Grbl is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with Grbl. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith
  17. and Philipp Tiefenbacher. */
  18. #include "Marlin.h"
  19. #include "stepper.h"
  20. #include "planner.h"
  21. #include "temperature.h"
  22. #include "ultralcd.h"
  23. #include "language.h"
  24. #include "cardreader.h"
  25. #include "speed_lookuptable.h"
  26. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  27. #include <SPI.h>
  28. #endif
  29. //===========================================================================
  30. //=============================public variables ============================
  31. //===========================================================================
  32. block_t *current_block; // A pointer to the block currently being traced
  33. //===========================================================================
  34. //=============================private variables ============================
  35. //===========================================================================
  36. //static makes it impossible to be called from outside of this file by extern.!
  37. // Variables used by The Stepper Driver Interrupt
  38. static unsigned char out_bits; // The next stepping-bits to be output
  39. static long counter_x, // Counter variables for the bresenham line tracer
  40. counter_y,
  41. counter_z,
  42. counter_e;
  43. volatile static unsigned long step_events_completed; // The number of step events executed in the current block
  44. #ifdef ADVANCE
  45. static long advance_rate, advance, final_advance = 0;
  46. static long old_advance = 0;
  47. static long e_steps[4];
  48. #endif
  49. static long acceleration_time, deceleration_time;
  50. //static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
  51. static unsigned short acc_step_rate; // needed for deccelaration start point
  52. static char step_loops;
  53. static unsigned short OCR1A_nominal;
  54. static unsigned short step_loops_nominal;
  55. volatile long endstops_trigsteps[3]={0,0,0};
  56. volatile long endstops_stepsTotal,endstops_stepsDone;
  57. static volatile bool endstop_x_hit=false;
  58. static volatile bool endstop_y_hit=false;
  59. static volatile bool endstop_z_hit=false;
  60. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  61. bool abort_on_endstop_hit = false;
  62. #endif
  63. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  64. int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
  65. #endif
  66. static bool old_x_min_endstop=false;
  67. static bool old_x_max_endstop=false;
  68. static bool old_y_min_endstop=false;
  69. static bool old_y_max_endstop=false;
  70. static bool old_z_min_endstop=false;
  71. static bool old_z_max_endstop=false;
  72. static bool check_endstops = true;
  73. volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
  74. volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
  75. //===========================================================================
  76. //=============================functions ============================
  77. //===========================================================================
  78. #define CHECK_ENDSTOPS if(check_endstops)
  79. // intRes = intIn1 * intIn2 >> 16
  80. // uses:
  81. // r26 to store 0
  82. // r27 to store the byte 1 of the 24 bit result
  83. #define MultiU16X8toH16(intRes, charIn1, intIn2) \
  84. asm volatile ( \
  85. "clr r26 \n\t" \
  86. "mul %A1, %B2 \n\t" \
  87. "movw %A0, r0 \n\t" \
  88. "mul %A1, %A2 \n\t" \
  89. "add %A0, r1 \n\t" \
  90. "adc %B0, r26 \n\t" \
  91. "lsr r0 \n\t" \
  92. "adc %A0, r26 \n\t" \
  93. "adc %B0, r26 \n\t" \
  94. "clr r1 \n\t" \
  95. : \
  96. "=&r" (intRes) \
  97. : \
  98. "d" (charIn1), \
  99. "d" (intIn2) \
  100. : \
  101. "r26" \
  102. )
  103. // intRes = longIn1 * longIn2 >> 24
  104. // uses:
  105. // r26 to store 0
  106. // r27 to store the byte 1 of the 48bit result
  107. #define MultiU24X24toH16(intRes, longIn1, longIn2) \
  108. asm volatile ( \
  109. "clr r26 \n\t" \
  110. "mul %A1, %B2 \n\t" \
  111. "mov r27, r1 \n\t" \
  112. "mul %B1, %C2 \n\t" \
  113. "movw %A0, r0 \n\t" \
  114. "mul %C1, %C2 \n\t" \
  115. "add %B0, r0 \n\t" \
  116. "mul %C1, %B2 \n\t" \
  117. "add %A0, r0 \n\t" \
  118. "adc %B0, r1 \n\t" \
  119. "mul %A1, %C2 \n\t" \
  120. "add r27, r0 \n\t" \
  121. "adc %A0, r1 \n\t" \
  122. "adc %B0, r26 \n\t" \
  123. "mul %B1, %B2 \n\t" \
  124. "add r27, r0 \n\t" \
  125. "adc %A0, r1 \n\t" \
  126. "adc %B0, r26 \n\t" \
  127. "mul %C1, %A2 \n\t" \
  128. "add r27, r0 \n\t" \
  129. "adc %A0, r1 \n\t" \
  130. "adc %B0, r26 \n\t" \
  131. "mul %B1, %A2 \n\t" \
  132. "add r27, r1 \n\t" \
  133. "adc %A0, r26 \n\t" \
  134. "adc %B0, r26 \n\t" \
  135. "lsr r27 \n\t" \
  136. "adc %A0, r26 \n\t" \
  137. "adc %B0, r26 \n\t" \
  138. "clr r1 \n\t" \
  139. : \
  140. "=&r" (intRes) \
  141. : \
  142. "d" (longIn1), \
  143. "d" (longIn2) \
  144. : \
  145. "r26" , "r27" \
  146. )
  147. // Some useful constants
  148. #define ENABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 |= (1<<OCIE1A)
  149. #define DISABLE_STEPPER_DRIVER_INTERRUPT() TIMSK1 &= ~(1<<OCIE1A)
  150. void checkHitEndstops()
  151. {
  152. if( endstop_x_hit || endstop_y_hit || endstop_z_hit) {
  153. SERIAL_ECHO_START;
  154. SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
  155. if(endstop_x_hit) {
  156. SERIAL_ECHOPAIR(" X:",(float)endstops_trigsteps[X_AXIS]/axis_steps_per_unit[X_AXIS]);
  157. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "X");
  158. }
  159. if(endstop_y_hit) {
  160. SERIAL_ECHOPAIR(" Y:",(float)endstops_trigsteps[Y_AXIS]/axis_steps_per_unit[Y_AXIS]);
  161. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Y");
  162. }
  163. if(endstop_z_hit) {
  164. SERIAL_ECHOPAIR(" Z:",(float)endstops_trigsteps[Z_AXIS]/axis_steps_per_unit[Z_AXIS]);
  165. LCD_MESSAGEPGM(MSG_ENDSTOPS_HIT "Z");
  166. }
  167. SERIAL_ECHOLN("");
  168. endstop_x_hit=false;
  169. endstop_y_hit=false;
  170. endstop_z_hit=false;
  171. #if defined(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && defined(SDSUPPORT)
  172. if (abort_on_endstop_hit)
  173. {
  174. card.sdprinting = false;
  175. card.closefile();
  176. quickStop();
  177. setTargetHotend0(0);
  178. setTargetHotend1(0);
  179. setTargetHotend2(0);
  180. setTargetHotend3(0);
  181. setTargetBed(0);
  182. }
  183. #endif
  184. }
  185. }
  186. void endstops_hit_on_purpose()
  187. {
  188. endstop_x_hit=false;
  189. endstop_y_hit=false;
  190. endstop_z_hit=false;
  191. }
  192. void enable_endstops(bool check)
  193. {
  194. check_endstops = check;
  195. }
  196. // __________________________
  197. // /| |\ _________________ ^
  198. // / | | \ /| |\ |
  199. // / | | \ / | | \ s
  200. // / | | | | | \ p
  201. // / | | | | | \ e
  202. // +-----+------------------------+---+--+---------------+----+ e
  203. // | BLOCK 1 | BLOCK 2 | d
  204. //
  205. // time ----->
  206. //
  207. // The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates
  208. // first block->accelerate_until step_events_completed, then keeps going at constant speed until
  209. // step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset.
  210. // The slope of acceleration is calculated with the leib ramp alghorithm.
  211. void st_wake_up() {
  212. // TCNT1 = 0;
  213. ENABLE_STEPPER_DRIVER_INTERRUPT();
  214. }
  215. FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
  216. unsigned short timer;
  217. if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
  218. if(step_rate > 20000) { // If steprate > 20kHz >> step 4 times
  219. step_rate = (step_rate >> 2)&0x3fff;
  220. step_loops = 4;
  221. }
  222. else if(step_rate > 10000) { // If steprate > 10kHz >> step 2 times
  223. step_rate = (step_rate >> 1)&0x7fff;
  224. step_loops = 2;
  225. }
  226. else {
  227. step_loops = 1;
  228. }
  229. if(step_rate < (F_CPU/500000)) step_rate = (F_CPU/500000);
  230. step_rate -= (F_CPU/500000); // Correct for minimal speed
  231. if(step_rate >= (8*256)){ // higher step rate
  232. unsigned short table_address = (unsigned short)&speed_lookuptable_fast[(unsigned char)(step_rate>>8)][0];
  233. unsigned char tmp_step_rate = (step_rate & 0x00ff);
  234. unsigned short gain = (unsigned short)pgm_read_word_near(table_address+2);
  235. MultiU16X8toH16(timer, tmp_step_rate, gain);
  236. timer = (unsigned short)pgm_read_word_near(table_address) - timer;
  237. }
  238. else { // lower step rates
  239. unsigned short table_address = (unsigned short)&speed_lookuptable_slow[0][0];
  240. table_address += ((step_rate)>>1) & 0xfffc;
  241. timer = (unsigned short)pgm_read_word_near(table_address);
  242. timer -= (((unsigned short)pgm_read_word_near(table_address+2) * (unsigned char)(step_rate & 0x0007))>>3);
  243. }
  244. if(timer < 100) { timer = 100; MYSERIAL.print(MSG_STEPPER_TOO_HIGH); MYSERIAL.println(step_rate); }//(20kHz this should never happen)
  245. return timer;
  246. }
  247. // Initializes the trapezoid generator from the current block. Called whenever a new
  248. // block begins.
  249. FORCE_INLINE void trapezoid_generator_reset() {
  250. #ifdef ADVANCE
  251. advance = current_block->initial_advance;
  252. final_advance = current_block->final_advance;
  253. // Do E steps + advance steps
  254. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  255. old_advance = advance >>8;
  256. #endif
  257. deceleration_time = 0;
  258. // step_rate to timer interval
  259. OCR1A_nominal = calc_timer(current_block->nominal_rate);
  260. // make a note of the number of step loops required at nominal speed
  261. step_loops_nominal = step_loops;
  262. acc_step_rate = current_block->initial_rate;
  263. acceleration_time = calc_timer(acc_step_rate);
  264. OCR1A = acceleration_time;
  265. // SERIAL_ECHO_START;
  266. // SERIAL_ECHOPGM("advance :");
  267. // SERIAL_ECHO(current_block->advance/256.0);
  268. // SERIAL_ECHOPGM("advance rate :");
  269. // SERIAL_ECHO(current_block->advance_rate/256.0);
  270. // SERIAL_ECHOPGM("initial advance :");
  271. // SERIAL_ECHO(current_block->initial_advance/256.0);
  272. // SERIAL_ECHOPGM("final advance :");
  273. // SERIAL_ECHOLN(current_block->final_advance/256.0);
  274. }
  275. // "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
  276. // It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
  277. ISR(TIMER1_COMPA_vect)
  278. {
  279. // If there is no current block, attempt to pop one from the buffer
  280. if (current_block == NULL) {
  281. // Anything in the buffer?
  282. current_block = plan_get_current_block();
  283. if (current_block != NULL) {
  284. current_block->busy = true;
  285. trapezoid_generator_reset();
  286. counter_x = -(current_block->step_event_count >> 1);
  287. counter_y = counter_x;
  288. counter_z = counter_x;
  289. counter_e = counter_x;
  290. step_events_completed = 0;
  291. #ifdef Z_LATE_ENABLE
  292. if(current_block->steps_z > 0) {
  293. enable_z();
  294. OCR1A = 2000; //1ms wait
  295. return;
  296. }
  297. #endif
  298. // #ifdef ADVANCE
  299. // e_steps[current_block->active_extruder] = 0;
  300. // #endif
  301. }
  302. else {
  303. OCR1A=2000; // 1kHz.
  304. }
  305. }
  306. if (current_block != NULL) {
  307. // Set directions TO DO This should be done once during init of trapezoid. Endstops -> interrupt
  308. out_bits = current_block->direction_bits;
  309. // Set the direction bits (X_AXIS=A_AXIS and Y_AXIS=B_AXIS for COREXY)
  310. if((out_bits & (1<<X_AXIS))!=0){
  311. #ifdef DUAL_X_CARRIAGE
  312. if (extruder_duplication_enabled){
  313. WRITE(X_DIR_PIN, INVERT_X_DIR);
  314. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  315. }
  316. else{
  317. if (current_block->active_extruder != 0)
  318. WRITE(X2_DIR_PIN, INVERT_X_DIR);
  319. else
  320. WRITE(X_DIR_PIN, INVERT_X_DIR);
  321. }
  322. #else
  323. WRITE(X_DIR_PIN, INVERT_X_DIR);
  324. #endif
  325. count_direction[X_AXIS]=-1;
  326. }
  327. else{
  328. #ifdef DUAL_X_CARRIAGE
  329. if (extruder_duplication_enabled){
  330. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  331. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  332. }
  333. else{
  334. if (current_block->active_extruder != 0)
  335. WRITE(X2_DIR_PIN, !INVERT_X_DIR);
  336. else
  337. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  338. }
  339. #else
  340. WRITE(X_DIR_PIN, !INVERT_X_DIR);
  341. #endif
  342. count_direction[X_AXIS]=1;
  343. }
  344. if((out_bits & (1<<Y_AXIS))!=0){
  345. WRITE(Y_DIR_PIN, INVERT_Y_DIR);
  346. #ifdef Y_DUAL_STEPPER_DRIVERS
  347. WRITE(Y2_DIR_PIN, !(INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  348. #endif
  349. count_direction[Y_AXIS]=-1;
  350. }
  351. else{
  352. WRITE(Y_DIR_PIN, !INVERT_Y_DIR);
  353. #ifdef Y_DUAL_STEPPER_DRIVERS
  354. WRITE(Y2_DIR_PIN, (INVERT_Y_DIR == INVERT_Y2_VS_Y_DIR));
  355. #endif
  356. count_direction[Y_AXIS]=1;
  357. }
  358. // Set direction en check limit switches
  359. #ifndef COREXY
  360. if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis
  361. #else
  362. if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
  363. #endif
  364. {
  365. CHECK_ENDSTOPS
  366. {
  367. #ifdef DUAL_X_CARRIAGE
  368. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  369. if ((current_block->active_extruder == 0 && X_HOME_DIR == -1)
  370. || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
  371. #endif
  372. {
  373. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  374. bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
  375. if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
  376. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  377. endstop_x_hit=true;
  378. step_events_completed = current_block->step_event_count;
  379. }
  380. old_x_min_endstop = x_min_endstop;
  381. #endif
  382. }
  383. }
  384. }
  385. else
  386. { // +direction
  387. CHECK_ENDSTOPS
  388. {
  389. #ifdef DUAL_X_CARRIAGE
  390. // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
  391. if ((current_block->active_extruder == 0 && X_HOME_DIR == 1)
  392. || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
  393. #endif
  394. {
  395. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  396. bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
  397. if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
  398. endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
  399. endstop_x_hit=true;
  400. step_events_completed = current_block->step_event_count;
  401. }
  402. old_x_max_endstop = x_max_endstop;
  403. #endif
  404. }
  405. }
  406. }
  407. #ifndef COREXY
  408. if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
  409. #else
  410. if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
  411. #endif
  412. {
  413. CHECK_ENDSTOPS
  414. {
  415. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  416. bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
  417. if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
  418. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  419. endstop_y_hit=true;
  420. step_events_completed = current_block->step_event_count;
  421. }
  422. old_y_min_endstop = y_min_endstop;
  423. #endif
  424. }
  425. }
  426. else
  427. { // +direction
  428. CHECK_ENDSTOPS
  429. {
  430. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  431. bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
  432. if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
  433. endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
  434. endstop_y_hit=true;
  435. step_events_completed = current_block->step_event_count;
  436. }
  437. old_y_max_endstop = y_max_endstop;
  438. #endif
  439. }
  440. }
  441. if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
  442. WRITE(Z_DIR_PIN,INVERT_Z_DIR);
  443. #ifdef Z_DUAL_STEPPER_DRIVERS
  444. WRITE(Z2_DIR_PIN,INVERT_Z_DIR);
  445. #endif
  446. count_direction[Z_AXIS]=-1;
  447. CHECK_ENDSTOPS
  448. {
  449. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  450. bool z_min_endstop=(READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
  451. if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
  452. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  453. endstop_z_hit=true;
  454. step_events_completed = current_block->step_event_count;
  455. }
  456. old_z_min_endstop = z_min_endstop;
  457. #endif
  458. }
  459. }
  460. else { // +direction
  461. WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
  462. #ifdef Z_DUAL_STEPPER_DRIVERS
  463. WRITE(Z2_DIR_PIN,!INVERT_Z_DIR);
  464. #endif
  465. count_direction[Z_AXIS]=1;
  466. CHECK_ENDSTOPS
  467. {
  468. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  469. bool z_max_endstop=(READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING);
  470. if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
  471. endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
  472. endstop_z_hit=true;
  473. step_events_completed = current_block->step_event_count;
  474. }
  475. old_z_max_endstop = z_max_endstop;
  476. #endif
  477. }
  478. }
  479. #ifndef ADVANCE
  480. if ((out_bits & (1<<E_AXIS)) != 0) { // -direction
  481. REV_E_DIR();
  482. count_direction[E_AXIS]=-1;
  483. }
  484. else { // +direction
  485. NORM_E_DIR();
  486. count_direction[E_AXIS]=1;
  487. }
  488. #endif //!ADVANCE
  489. for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
  490. #ifndef AT90USB
  491. MSerial.checkRx(); // Check for serial chars.
  492. #endif
  493. #ifdef ADVANCE
  494. counter_e += current_block->steps_e;
  495. if (counter_e > 0) {
  496. counter_e -= current_block->step_event_count;
  497. if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
  498. e_steps[current_block->active_extruder]--;
  499. }
  500. else {
  501. e_steps[current_block->active_extruder]++;
  502. }
  503. }
  504. #endif //ADVANCE
  505. counter_x += current_block->steps_x;
  506. #ifdef CONFIG_STEPPERS_TOSHIBA
  507. /* The toshiba stepper controller require much longer pulses
  508. * tjerfore we 'stage' decompose the pulses between high, and
  509. * low instead of doing each in turn. The extra tests add enough
  510. * lag to allow it work with without needing NOPs */
  511. if (counter_x > 0) {
  512. WRITE(X_STEP_PIN, HIGH);
  513. }
  514. counter_y += current_block->steps_y;
  515. if (counter_y > 0) {
  516. WRITE(Y_STEP_PIN, HIGH);
  517. }
  518. counter_z += current_block->steps_z;
  519. if (counter_z > 0) {
  520. WRITE(Z_STEP_PIN, HIGH);
  521. }
  522. #ifndef ADVANCE
  523. counter_e += current_block->steps_e;
  524. if (counter_e > 0) {
  525. WRITE_E_STEP(HIGH);
  526. }
  527. #endif //!ADVANCE
  528. if (counter_x > 0) {
  529. counter_x -= current_block->step_event_count;
  530. count_position[X_AXIS]+=count_direction[X_AXIS];
  531. WRITE(X_STEP_PIN, LOW);
  532. }
  533. if (counter_y > 0) {
  534. counter_y -= current_block->step_event_count;
  535. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  536. WRITE(Y_STEP_PIN, LOW);
  537. }
  538. if (counter_z > 0) {
  539. counter_z -= current_block->step_event_count;
  540. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  541. WRITE(Z_STEP_PIN, LOW);
  542. }
  543. #ifndef ADVANCE
  544. if (counter_e > 0) {
  545. counter_e -= current_block->step_event_count;
  546. count_position[E_AXIS]+=count_direction[E_AXIS];
  547. WRITE_E_STEP(LOW);
  548. }
  549. #endif //!ADVANCE
  550. #else
  551. if (counter_x > 0) {
  552. #ifdef DUAL_X_CARRIAGE
  553. if (extruder_duplication_enabled){
  554. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  555. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  556. }
  557. else {
  558. if (current_block->active_extruder != 0)
  559. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  560. else
  561. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  562. }
  563. #else
  564. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  565. #endif
  566. counter_x -= current_block->step_event_count;
  567. count_position[X_AXIS]+=count_direction[X_AXIS];
  568. #ifdef DUAL_X_CARRIAGE
  569. if (extruder_duplication_enabled){
  570. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  571. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  572. }
  573. else {
  574. if (current_block->active_extruder != 0)
  575. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  576. else
  577. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  578. }
  579. #else
  580. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  581. #endif
  582. }
  583. counter_y += current_block->steps_y;
  584. if (counter_y > 0) {
  585. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  586. #ifdef Y_DUAL_STEPPER_DRIVERS
  587. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  588. #endif
  589. counter_y -= current_block->step_event_count;
  590. count_position[Y_AXIS]+=count_direction[Y_AXIS];
  591. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  592. #ifdef Y_DUAL_STEPPER_DRIVERS
  593. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  594. #endif
  595. }
  596. counter_z += current_block->steps_z;
  597. if (counter_z > 0) {
  598. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  599. #ifdef Z_DUAL_STEPPER_DRIVERS
  600. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  601. #endif
  602. counter_z -= current_block->step_event_count;
  603. count_position[Z_AXIS]+=count_direction[Z_AXIS];
  604. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  605. #ifdef Z_DUAL_STEPPER_DRIVERS
  606. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  607. #endif
  608. }
  609. #ifndef ADVANCE
  610. counter_e += current_block->steps_e;
  611. if (counter_e > 0) {
  612. WRITE_E_STEP(!INVERT_E_STEP_PIN);
  613. counter_e -= current_block->step_event_count;
  614. count_position[E_AXIS]+=count_direction[E_AXIS];
  615. WRITE_E_STEP(INVERT_E_STEP_PIN);
  616. }
  617. #endif //!ADVANCE
  618. #endif // CONFIG_STEPPERS_TOSHIBA
  619. step_events_completed += 1;
  620. if(step_events_completed >= current_block->step_event_count) break;
  621. }
  622. // Calculare new timer value
  623. unsigned short timer;
  624. unsigned short step_rate;
  625. if (step_events_completed <= (unsigned long int)current_block->accelerate_until) {
  626. MultiU24X24toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate);
  627. acc_step_rate += current_block->initial_rate;
  628. // upper limit
  629. if(acc_step_rate > current_block->nominal_rate)
  630. acc_step_rate = current_block->nominal_rate;
  631. // step_rate to timer interval
  632. timer = calc_timer(acc_step_rate);
  633. OCR1A = timer;
  634. acceleration_time += timer;
  635. #ifdef ADVANCE
  636. for(int8_t i=0; i < step_loops; i++) {
  637. advance += advance_rate;
  638. }
  639. //if(advance > current_block->advance) advance = current_block->advance;
  640. // Do E steps + advance steps
  641. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  642. old_advance = advance >>8;
  643. #endif
  644. }
  645. else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
  646. MultiU24X24toH16(step_rate, deceleration_time, current_block->acceleration_rate);
  647. if(step_rate > acc_step_rate) { // Check step_rate stays positive
  648. step_rate = current_block->final_rate;
  649. }
  650. else {
  651. step_rate = acc_step_rate - step_rate; // Decelerate from aceleration end point.
  652. }
  653. // lower limit
  654. if(step_rate < current_block->final_rate)
  655. step_rate = current_block->final_rate;
  656. // step_rate to timer interval
  657. timer = calc_timer(step_rate);
  658. OCR1A = timer;
  659. deceleration_time += timer;
  660. #ifdef ADVANCE
  661. for(int8_t i=0; i < step_loops; i++) {
  662. advance -= advance_rate;
  663. }
  664. if(advance < final_advance) advance = final_advance;
  665. // Do E steps + advance steps
  666. e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
  667. old_advance = advance >>8;
  668. #endif //ADVANCE
  669. }
  670. else {
  671. OCR1A = OCR1A_nominal;
  672. // ensure we're running at the correct step rate, even if we just came off an acceleration
  673. step_loops = step_loops_nominal;
  674. }
  675. // If current block is finished, reset pointer
  676. if (step_events_completed >= current_block->step_event_count) {
  677. current_block = NULL;
  678. plan_discard_current_block();
  679. }
  680. }
  681. }
  682. #ifdef ADVANCE
  683. unsigned char old_OCR0A;
  684. // Timer interrupt for E. e_steps is set in the main routine;
  685. // Timer 0 is shared with millies
  686. ISR(TIMER0_COMPA_vect)
  687. {
  688. old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
  689. OCR0A = old_OCR0A;
  690. // Set E direction (Depends on E direction + advance)
  691. for(unsigned char i=0; i<4;i++) {
  692. if (e_steps[0] != 0) {
  693. WRITE(E0_STEP_PIN, INVERT_E_STEP_PIN);
  694. if (e_steps[0] < 0) {
  695. WRITE(E0_DIR_PIN, INVERT_E0_DIR);
  696. e_steps[0]++;
  697. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  698. }
  699. else if (e_steps[0] > 0) {
  700. WRITE(E0_DIR_PIN, !INVERT_E0_DIR);
  701. e_steps[0]--;
  702. WRITE(E0_STEP_PIN, !INVERT_E_STEP_PIN);
  703. }
  704. }
  705. #if EXTRUDERS > 1
  706. if (e_steps[1] != 0) {
  707. WRITE(E1_STEP_PIN, INVERT_E_STEP_PIN);
  708. if (e_steps[1] < 0) {
  709. WRITE(E1_DIR_PIN, INVERT_E1_DIR);
  710. e_steps[1]++;
  711. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  712. }
  713. else if (e_steps[1] > 0) {
  714. WRITE(E1_DIR_PIN, !INVERT_E1_DIR);
  715. e_steps[1]--;
  716. WRITE(E1_STEP_PIN, !INVERT_E_STEP_PIN);
  717. }
  718. }
  719. #endif
  720. #if EXTRUDERS > 2
  721. if (e_steps[2] != 0) {
  722. WRITE(E2_STEP_PIN, INVERT_E_STEP_PIN);
  723. if (e_steps[2] < 0) {
  724. WRITE(E2_DIR_PIN, INVERT_E2_DIR);
  725. e_steps[2]++;
  726. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  727. }
  728. else if (e_steps[2] > 0) {
  729. WRITE(E2_DIR_PIN, !INVERT_E2_DIR);
  730. e_steps[2]--;
  731. WRITE(E2_STEP_PIN, !INVERT_E_STEP_PIN);
  732. }
  733. }
  734. #endif
  735. #if EXTRUDERS > 3
  736. if (e_steps[3] != 0) {
  737. WRITE(E3_STEP_PIN, INVERT_E_STEP_PIN);
  738. if (e_steps[3] < 0) {
  739. WRITE(E3_DIR_PIN, INVERT_E3_DIR);
  740. e_steps[3]++;
  741. WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
  742. }
  743. else if (e_steps[3] > 0) {
  744. WRITE(E3_DIR_PIN, !INVERT_E3_DIR);
  745. e_steps[3]--;
  746. WRITE(E3_STEP_PIN, !INVERT_E_STEP_PIN);
  747. }
  748. }
  749. #endif
  750. }
  751. }
  752. #endif // ADVANCE
  753. void st_init()
  754. {
  755. digipot_init(); //Initialize Digipot Motor Current
  756. microstep_init(); //Initialize Microstepping Pins
  757. //Initialize Dir Pins
  758. #if defined(X_DIR_PIN) && X_DIR_PIN > -1
  759. SET_OUTPUT(X_DIR_PIN);
  760. #endif
  761. #if defined(X2_DIR_PIN) && X2_DIR_PIN > -1
  762. SET_OUTPUT(X2_DIR_PIN);
  763. #endif
  764. #if defined(Y_DIR_PIN) && Y_DIR_PIN > -1
  765. SET_OUTPUT(Y_DIR_PIN);
  766. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_DIR_PIN) && (Y2_DIR_PIN > -1)
  767. SET_OUTPUT(Y2_DIR_PIN);
  768. #endif
  769. #endif
  770. #if defined(Z_DIR_PIN) && Z_DIR_PIN > -1
  771. SET_OUTPUT(Z_DIR_PIN);
  772. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_DIR_PIN) && (Z2_DIR_PIN > -1)
  773. SET_OUTPUT(Z2_DIR_PIN);
  774. #endif
  775. #endif
  776. #if defined(E0_DIR_PIN) && E0_DIR_PIN > -1
  777. SET_OUTPUT(E0_DIR_PIN);
  778. #endif
  779. #if defined(E1_DIR_PIN) && (E1_DIR_PIN > -1)
  780. SET_OUTPUT(E1_DIR_PIN);
  781. #endif
  782. #if defined(E2_DIR_PIN) && (E2_DIR_PIN > -1)
  783. SET_OUTPUT(E2_DIR_PIN);
  784. #endif
  785. #if defined(E3_DIR_PIN) && (E3_DIR_PIN > -1)
  786. SET_OUTPUT(E3_DIR_PIN);
  787. #endif
  788. //Initialize Enable Pins - steppers default to disabled.
  789. #if defined(X_ENABLE_PIN) && X_ENABLE_PIN > -1
  790. SET_OUTPUT(X_ENABLE_PIN);
  791. if(!X_ENABLE_ON) WRITE(X_ENABLE_PIN,HIGH);
  792. #endif
  793. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  794. SET_OUTPUT(X2_ENABLE_PIN);
  795. if(!X_ENABLE_ON) WRITE(X2_ENABLE_PIN,HIGH);
  796. #endif
  797. #if defined(Y_ENABLE_PIN) && Y_ENABLE_PIN > -1
  798. SET_OUTPUT(Y_ENABLE_PIN);
  799. if(!Y_ENABLE_ON) WRITE(Y_ENABLE_PIN,HIGH);
  800. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_ENABLE_PIN) && (Y2_ENABLE_PIN > -1)
  801. SET_OUTPUT(Y2_ENABLE_PIN);
  802. if(!Y_ENABLE_ON) WRITE(Y2_ENABLE_PIN,HIGH);
  803. #endif
  804. #endif
  805. #if defined(Z_ENABLE_PIN) && Z_ENABLE_PIN > -1
  806. SET_OUTPUT(Z_ENABLE_PIN);
  807. if(!Z_ENABLE_ON) WRITE(Z_ENABLE_PIN,HIGH);
  808. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_ENABLE_PIN) && (Z2_ENABLE_PIN > -1)
  809. SET_OUTPUT(Z2_ENABLE_PIN);
  810. if(!Z_ENABLE_ON) WRITE(Z2_ENABLE_PIN,HIGH);
  811. #endif
  812. #endif
  813. #if defined(E0_ENABLE_PIN) && (E0_ENABLE_PIN > -1)
  814. SET_OUTPUT(E0_ENABLE_PIN);
  815. if(!E_ENABLE_ON) WRITE(E0_ENABLE_PIN,HIGH);
  816. #endif
  817. #if defined(E1_ENABLE_PIN) && (E1_ENABLE_PIN > -1)
  818. SET_OUTPUT(E1_ENABLE_PIN);
  819. if(!E_ENABLE_ON) WRITE(E1_ENABLE_PIN,HIGH);
  820. #endif
  821. #if defined(E2_ENABLE_PIN) && (E2_ENABLE_PIN > -1)
  822. SET_OUTPUT(E2_ENABLE_PIN);
  823. if(!E_ENABLE_ON) WRITE(E2_ENABLE_PIN,HIGH);
  824. #endif
  825. #if defined(E3_ENABLE_PIN) && (E3_ENABLE_PIN > -1)
  826. SET_OUTPUT(E3_ENABLE_PIN);
  827. if(!E_ENABLE_ON) WRITE(E3_ENABLE_PIN,HIGH);
  828. #endif
  829. //endstops and pullups
  830. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  831. SET_INPUT(X_MIN_PIN);
  832. #ifdef ENDSTOPPULLUP_XMIN
  833. WRITE(X_MIN_PIN,HIGH);
  834. #endif
  835. #endif
  836. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  837. SET_INPUT(Y_MIN_PIN);
  838. #ifdef ENDSTOPPULLUP_YMIN
  839. WRITE(Y_MIN_PIN,HIGH);
  840. #endif
  841. #endif
  842. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  843. SET_INPUT(Z_MIN_PIN);
  844. #ifdef ENDSTOPPULLUP_ZMIN
  845. WRITE(Z_MIN_PIN,HIGH);
  846. #endif
  847. #endif
  848. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  849. SET_INPUT(X_MAX_PIN);
  850. #ifdef ENDSTOPPULLUP_XMAX
  851. WRITE(X_MAX_PIN,HIGH);
  852. #endif
  853. #endif
  854. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  855. SET_INPUT(Y_MAX_PIN);
  856. #ifdef ENDSTOPPULLUP_YMAX
  857. WRITE(Y_MAX_PIN,HIGH);
  858. #endif
  859. #endif
  860. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  861. SET_INPUT(Z_MAX_PIN);
  862. #ifdef ENDSTOPPULLUP_ZMAX
  863. WRITE(Z_MAX_PIN,HIGH);
  864. #endif
  865. #endif
  866. //Initialize Step Pins
  867. #if defined(X_STEP_PIN) && (X_STEP_PIN > -1)
  868. SET_OUTPUT(X_STEP_PIN);
  869. WRITE(X_STEP_PIN,INVERT_X_STEP_PIN);
  870. disable_x();
  871. #endif
  872. #if defined(X2_STEP_PIN) && (X2_STEP_PIN > -1)
  873. SET_OUTPUT(X2_STEP_PIN);
  874. WRITE(X2_STEP_PIN,INVERT_X_STEP_PIN);
  875. disable_x();
  876. #endif
  877. #if defined(Y_STEP_PIN) && (Y_STEP_PIN > -1)
  878. SET_OUTPUT(Y_STEP_PIN);
  879. WRITE(Y_STEP_PIN,INVERT_Y_STEP_PIN);
  880. #if defined(Y_DUAL_STEPPER_DRIVERS) && defined(Y2_STEP_PIN) && (Y2_STEP_PIN > -1)
  881. SET_OUTPUT(Y2_STEP_PIN);
  882. WRITE(Y2_STEP_PIN,INVERT_Y_STEP_PIN);
  883. #endif
  884. disable_y();
  885. #endif
  886. #if defined(Z_STEP_PIN) && (Z_STEP_PIN > -1)
  887. SET_OUTPUT(Z_STEP_PIN);
  888. WRITE(Z_STEP_PIN,INVERT_Z_STEP_PIN);
  889. #if defined(Z_DUAL_STEPPER_DRIVERS) && defined(Z2_STEP_PIN) && (Z2_STEP_PIN > -1)
  890. SET_OUTPUT(Z2_STEP_PIN);
  891. WRITE(Z2_STEP_PIN,INVERT_Z_STEP_PIN);
  892. #endif
  893. disable_z();
  894. #endif
  895. #if defined(E0_STEP_PIN) && (E0_STEP_PIN > -1)
  896. SET_OUTPUT(E0_STEP_PIN);
  897. WRITE(E0_STEP_PIN,INVERT_E_STEP_PIN);
  898. disable_e0();
  899. #endif
  900. #if defined(E1_STEP_PIN) && (E1_STEP_PIN > -1)
  901. SET_OUTPUT(E1_STEP_PIN);
  902. WRITE(E1_STEP_PIN,INVERT_E_STEP_PIN);
  903. disable_e1();
  904. #endif
  905. #if defined(E2_STEP_PIN) && (E2_STEP_PIN > -1)
  906. SET_OUTPUT(E2_STEP_PIN);
  907. WRITE(E2_STEP_PIN,INVERT_E_STEP_PIN);
  908. disable_e2();
  909. #endif
  910. #if defined(E3_STEP_PIN) && (E3_STEP_PIN > -1)
  911. SET_OUTPUT(E3_STEP_PIN);
  912. WRITE(E3_STEP_PIN,INVERT_E_STEP_PIN);
  913. disable_e3();
  914. #endif
  915. // waveform generation = 0100 = CTC
  916. TCCR1B &= ~(1<<WGM13);
  917. TCCR1B |= (1<<WGM12);
  918. TCCR1A &= ~(1<<WGM11);
  919. TCCR1A &= ~(1<<WGM10);
  920. // output mode = 00 (disconnected)
  921. TCCR1A &= ~(3<<COM1A0);
  922. TCCR1A &= ~(3<<COM1B0);
  923. // Set the timer pre-scaler
  924. // Generally we use a divider of 8, resulting in a 2MHz timer
  925. // frequency on a 16MHz MCU. If you are going to change this, be
  926. // sure to regenerate speed_lookuptable.h with
  927. // create_speed_lookuptable.py
  928. TCCR1B = (TCCR1B & ~(0x07<<CS10)) | (2<<CS10);
  929. OCR1A = 0x4000;
  930. TCNT1 = 0;
  931. ENABLE_STEPPER_DRIVER_INTERRUPT();
  932. #ifdef ADVANCE
  933. #if defined(TCCR0A) && defined(WGM01)
  934. TCCR0A &= ~(1<<WGM01);
  935. TCCR0A &= ~(1<<WGM00);
  936. #endif
  937. e_steps[0] = 0;
  938. e_steps[1] = 0;
  939. e_steps[2] = 0;
  940. e_steps[3] = 0;
  941. TIMSK0 |= (1<<OCIE0A);
  942. #endif //ADVANCE
  943. enable_endstops(true); // Start with endstops active. After homing they can be disabled
  944. sei();
  945. }
  946. // Block until all buffered steps are executed
  947. void st_synchronize()
  948. {
  949. while( blocks_queued()) {
  950. manage_heater();
  951. manage_inactivity();
  952. lcd_update();
  953. }
  954. }
  955. void st_set_position(const long &x, const long &y, const long &z, const long &e)
  956. {
  957. CRITICAL_SECTION_START;
  958. count_position[X_AXIS] = x;
  959. count_position[Y_AXIS] = y;
  960. count_position[Z_AXIS] = z;
  961. count_position[E_AXIS] = e;
  962. CRITICAL_SECTION_END;
  963. }
  964. void st_set_e_position(const long &e)
  965. {
  966. CRITICAL_SECTION_START;
  967. count_position[E_AXIS] = e;
  968. CRITICAL_SECTION_END;
  969. }
  970. long st_get_position(uint8_t axis)
  971. {
  972. long count_pos;
  973. CRITICAL_SECTION_START;
  974. count_pos = count_position[axis];
  975. CRITICAL_SECTION_END;
  976. return count_pos;
  977. }
  978. #ifdef ENABLE_AUTO_BED_LEVELING
  979. float st_get_position_mm(uint8_t axis)
  980. {
  981. float steper_position_in_steps = st_get_position(axis);
  982. return steper_position_in_steps / axis_steps_per_unit[axis];
  983. }
  984. #endif // ENABLE_AUTO_BED_LEVELING
  985. void finishAndDisableSteppers()
  986. {
  987. st_synchronize();
  988. disable_x();
  989. disable_y();
  990. disable_z();
  991. disable_e0();
  992. disable_e1();
  993. disable_e2();
  994. disable_e3();
  995. }
  996. void quickStop()
  997. {
  998. DISABLE_STEPPER_DRIVER_INTERRUPT();
  999. while(blocks_queued())
  1000. plan_discard_current_block();
  1001. current_block = NULL;
  1002. ENABLE_STEPPER_DRIVER_INTERRUPT();
  1003. }
  1004. #ifdef BABYSTEPPING
  1005. void babystep(const uint8_t axis,const bool direction)
  1006. {
  1007. //MUST ONLY BE CALLED BY A ISR, it depends on that no other ISR interrupts this
  1008. //store initial pin states
  1009. switch(axis)
  1010. {
  1011. case X_AXIS:
  1012. {
  1013. enable_x();
  1014. uint8_t old_x_dir_pin= READ(X_DIR_PIN); //if dualzstepper, both point to same direction.
  1015. //setup new step
  1016. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction);
  1017. #ifdef DUAL_X_CARRIAGE
  1018. WRITE(X2_DIR_PIN,(INVERT_X_DIR)^direction);
  1019. #endif
  1020. //perform step
  1021. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1022. #ifdef DUAL_X_CARRIAGE
  1023. WRITE(X2_STEP_PIN, !INVERT_X_STEP_PIN);
  1024. #endif
  1025. _delay_us(1U); // wait 1 microsecond
  1026. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1027. #ifdef DUAL_X_CARRIAGE
  1028. WRITE(X2_STEP_PIN, INVERT_X_STEP_PIN);
  1029. #endif
  1030. //get old pin state back.
  1031. WRITE(X_DIR_PIN,old_x_dir_pin);
  1032. #ifdef DUAL_X_CARRIAGE
  1033. WRITE(X2_DIR_PIN,old_x_dir_pin);
  1034. #endif
  1035. }
  1036. break;
  1037. case Y_AXIS:
  1038. {
  1039. enable_y();
  1040. uint8_t old_y_dir_pin= READ(Y_DIR_PIN); //if dualzstepper, both point to same direction.
  1041. //setup new step
  1042. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction);
  1043. #ifdef DUAL_Y_CARRIAGE
  1044. WRITE(Y2_DIR_PIN,(INVERT_Y_DIR)^direction);
  1045. #endif
  1046. //perform step
  1047. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1048. #ifdef DUAL_Y_CARRIAGE
  1049. WRITE(Y2_STEP_PIN, !INVERT_Y_STEP_PIN);
  1050. #endif
  1051. _delay_us(1U); // wait 1 microsecond
  1052. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1053. #ifdef DUAL_Y_CARRIAGE
  1054. WRITE(Y2_STEP_PIN, INVERT_Y_STEP_PIN);
  1055. #endif
  1056. //get old pin state back.
  1057. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1058. #ifdef DUAL_Y_CARRIAGE
  1059. WRITE(Y2_DIR_PIN,old_y_dir_pin);
  1060. #endif
  1061. }
  1062. break;
  1063. #ifndef DELTA
  1064. case Z_AXIS:
  1065. {
  1066. enable_z();
  1067. uint8_t old_z_dir_pin= READ(Z_DIR_PIN); //if dualzstepper, both point to same direction.
  1068. //setup new step
  1069. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1070. #ifdef Z_DUAL_STEPPER_DRIVERS
  1071. WRITE(Z2_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1072. #endif
  1073. //perform step
  1074. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1075. #ifdef Z_DUAL_STEPPER_DRIVERS
  1076. WRITE(Z2_STEP_PIN, !INVERT_Z_STEP_PIN);
  1077. #endif
  1078. _delay_us(1U); // wait 1 microsecond
  1079. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1080. #ifdef Z_DUAL_STEPPER_DRIVERS
  1081. WRITE(Z2_STEP_PIN, INVERT_Z_STEP_PIN);
  1082. #endif
  1083. //get old pin state back.
  1084. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1085. #ifdef Z_DUAL_STEPPER_DRIVERS
  1086. WRITE(Z2_DIR_PIN,old_z_dir_pin);
  1087. #endif
  1088. }
  1089. break;
  1090. #else //DELTA
  1091. case Z_AXIS:
  1092. {
  1093. enable_x();
  1094. enable_y();
  1095. enable_z();
  1096. uint8_t old_x_dir_pin= READ(X_DIR_PIN);
  1097. uint8_t old_y_dir_pin= READ(Y_DIR_PIN);
  1098. uint8_t old_z_dir_pin= READ(Z_DIR_PIN);
  1099. //setup new step
  1100. WRITE(X_DIR_PIN,(INVERT_X_DIR)^direction^BABYSTEP_INVERT_Z);
  1101. WRITE(Y_DIR_PIN,(INVERT_Y_DIR)^direction^BABYSTEP_INVERT_Z);
  1102. WRITE(Z_DIR_PIN,(INVERT_Z_DIR)^direction^BABYSTEP_INVERT_Z);
  1103. //perform step
  1104. WRITE(X_STEP_PIN, !INVERT_X_STEP_PIN);
  1105. WRITE(Y_STEP_PIN, !INVERT_Y_STEP_PIN);
  1106. WRITE(Z_STEP_PIN, !INVERT_Z_STEP_PIN);
  1107. _delay_us(1U); // wait 1 microsecond
  1108. WRITE(X_STEP_PIN, INVERT_X_STEP_PIN);
  1109. WRITE(Y_STEP_PIN, INVERT_Y_STEP_PIN);
  1110. WRITE(Z_STEP_PIN, INVERT_Z_STEP_PIN);
  1111. //get old pin state back.
  1112. WRITE(X_DIR_PIN,old_x_dir_pin);
  1113. WRITE(Y_DIR_PIN,old_y_dir_pin);
  1114. WRITE(Z_DIR_PIN,old_z_dir_pin);
  1115. }
  1116. break;
  1117. #endif
  1118. default: break;
  1119. }
  1120. }
  1121. #endif //BABYSTEPPING
  1122. void digitalPotWrite(int address, int value) // From Arduino DigitalPotControl example
  1123. {
  1124. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1125. digitalWrite(DIGIPOTSS_PIN,LOW); // take the SS pin low to select the chip
  1126. SPI.transfer(address); // send in the address and value via SPI:
  1127. SPI.transfer(value);
  1128. digitalWrite(DIGIPOTSS_PIN,HIGH); // take the SS pin high to de-select the chip:
  1129. //delay(10);
  1130. #endif
  1131. }
  1132. void digipot_init() //Initialize Digipot Motor Current
  1133. {
  1134. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1135. const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT;
  1136. SPI.begin();
  1137. pinMode(DIGIPOTSS_PIN, OUTPUT);
  1138. for(int i=0;i<=4;i++)
  1139. //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]);
  1140. digipot_current(i,digipot_motor_current[i]);
  1141. #endif
  1142. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1143. pinMode(MOTOR_CURRENT_PWM_XY_PIN, OUTPUT);
  1144. pinMode(MOTOR_CURRENT_PWM_Z_PIN, OUTPUT);
  1145. pinMode(MOTOR_CURRENT_PWM_E_PIN, OUTPUT);
  1146. digipot_current(0, motor_current_setting[0]);
  1147. digipot_current(1, motor_current_setting[1]);
  1148. digipot_current(2, motor_current_setting[2]);
  1149. //Set timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise)
  1150. TCCR5B = (TCCR5B & ~(_BV(CS50) | _BV(CS51) | _BV(CS52))) | _BV(CS50);
  1151. #endif
  1152. }
  1153. void digipot_current(uint8_t driver, int current)
  1154. {
  1155. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  1156. const uint8_t digipot_ch[] = DIGIPOT_CHANNELS;
  1157. digitalPotWrite(digipot_ch[driver], current);
  1158. #endif
  1159. #ifdef MOTOR_CURRENT_PWM_XY_PIN
  1160. if (driver == 0) analogWrite(MOTOR_CURRENT_PWM_XY_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1161. if (driver == 1) analogWrite(MOTOR_CURRENT_PWM_Z_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1162. if (driver == 2) analogWrite(MOTOR_CURRENT_PWM_E_PIN, (long)current * 255L / (long)MOTOR_CURRENT_PWM_RANGE);
  1163. #endif
  1164. }
  1165. void microstep_init()
  1166. {
  1167. const uint8_t microstep_modes[] = MICROSTEP_MODES;
  1168. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1169. pinMode(E1_MS1_PIN,OUTPUT);
  1170. pinMode(E1_MS2_PIN,OUTPUT);
  1171. #endif
  1172. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  1173. pinMode(X_MS1_PIN,OUTPUT);
  1174. pinMode(X_MS2_PIN,OUTPUT);
  1175. pinMode(Y_MS1_PIN,OUTPUT);
  1176. pinMode(Y_MS2_PIN,OUTPUT);
  1177. pinMode(Z_MS1_PIN,OUTPUT);
  1178. pinMode(Z_MS2_PIN,OUTPUT);
  1179. pinMode(E0_MS1_PIN,OUTPUT);
  1180. pinMode(E0_MS2_PIN,OUTPUT);
  1181. for(int i=0;i<=4;i++) microstep_mode(i,microstep_modes[i]);
  1182. #endif
  1183. }
  1184. void microstep_ms(uint8_t driver, int8_t ms1, int8_t ms2)
  1185. {
  1186. if(ms1 > -1) switch(driver)
  1187. {
  1188. case 0: digitalWrite( X_MS1_PIN,ms1); break;
  1189. case 1: digitalWrite( Y_MS1_PIN,ms1); break;
  1190. case 2: digitalWrite( Z_MS1_PIN,ms1); break;
  1191. case 3: digitalWrite(E0_MS1_PIN,ms1); break;
  1192. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1193. case 4: digitalWrite(E1_MS1_PIN,ms1); break;
  1194. #endif
  1195. }
  1196. if(ms2 > -1) switch(driver)
  1197. {
  1198. case 0: digitalWrite( X_MS2_PIN,ms2); break;
  1199. case 1: digitalWrite( Y_MS2_PIN,ms2); break;
  1200. case 2: digitalWrite( Z_MS2_PIN,ms2); break;
  1201. case 3: digitalWrite(E0_MS2_PIN,ms2); break;
  1202. #if defined(E1_MS2_PIN) && E1_MS2_PIN > -1
  1203. case 4: digitalWrite(E1_MS2_PIN,ms2); break;
  1204. #endif
  1205. }
  1206. }
  1207. void microstep_mode(uint8_t driver, uint8_t stepping_mode)
  1208. {
  1209. switch(stepping_mode)
  1210. {
  1211. case 1: microstep_ms(driver,MICROSTEP1); break;
  1212. case 2: microstep_ms(driver,MICROSTEP2); break;
  1213. case 4: microstep_ms(driver,MICROSTEP4); break;
  1214. case 8: microstep_ms(driver,MICROSTEP8); break;
  1215. case 16: microstep_ms(driver,MICROSTEP16); break;
  1216. }
  1217. }
  1218. void microstep_readings()
  1219. {
  1220. SERIAL_PROTOCOLPGM("MS1,MS2 Pins\n");
  1221. SERIAL_PROTOCOLPGM("X: ");
  1222. SERIAL_PROTOCOL( digitalRead(X_MS1_PIN));
  1223. SERIAL_PROTOCOLLN( digitalRead(X_MS2_PIN));
  1224. SERIAL_PROTOCOLPGM("Y: ");
  1225. SERIAL_PROTOCOL( digitalRead(Y_MS1_PIN));
  1226. SERIAL_PROTOCOLLN( digitalRead(Y_MS2_PIN));
  1227. SERIAL_PROTOCOLPGM("Z: ");
  1228. SERIAL_PROTOCOL( digitalRead(Z_MS1_PIN));
  1229. SERIAL_PROTOCOLLN( digitalRead(Z_MS2_PIN));
  1230. SERIAL_PROTOCOLPGM("E0: ");
  1231. SERIAL_PROTOCOL( digitalRead(E0_MS1_PIN));
  1232. SERIAL_PROTOCOLLN( digitalRead(E0_MS2_PIN));
  1233. #if defined(E1_MS1_PIN) && E1_MS1_PIN > -1
  1234. SERIAL_PROTOCOLPGM("E1: ");
  1235. SERIAL_PROTOCOL( digitalRead(E1_MS1_PIN));
  1236. SERIAL_PROTOCOLLN( digitalRead(E1_MS2_PIN));
  1237. #endif
  1238. }