My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

G26_Mesh_Validation_Tool.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_VALIDATION)
  27. #include "ubl.h"
  28. #include "Marlin.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "ultralcd.h"
  33. #include "gcode.h"
  34. #define EXTRUSION_MULTIPLIER 1.0
  35. #define RETRACTION_MULTIPLIER 1.0
  36. #define NOZZLE 0.4
  37. #define FILAMENT 1.75
  38. #define LAYER_HEIGHT 0.2
  39. #define PRIME_LENGTH 10.0
  40. #define BED_TEMP 60.0
  41. #define HOTEND_TEMP 205.0
  42. #define OOZE_AMOUNT 0.3
  43. #define SIZE_OF_INTERSECTION_CIRCLES 5
  44. #define SIZE_OF_CROSSHAIRS 3
  45. #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
  46. #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
  47. #endif
  48. /**
  49. * G26 Mesh Validation Tool
  50. *
  51. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  52. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  53. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  54. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  55. * the intersections of those lines (respectively).
  56. *
  57. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  58. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  59. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  60. * focus on a particular area of the Mesh where attention is needed.
  61. *
  62. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  63. *
  64. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  65. * as the base for any distance comparison.
  66. *
  67. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  68. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  69. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  70. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  71. * it is on.
  72. *
  73. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  74. *
  75. * F # Filament Used to specify the diameter of the filament being used. If not specified
  76. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  77. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  78. * of filament that is being extruded during the printing of the various lines on the bed.
  79. *
  80. * K Keep-On Keep the heaters turned on at the end of the command.
  81. *
  82. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  83. *
  84. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  85. * is over kill, but using this parameter will let you get the very first 'circle' perfect
  86. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  87. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  88. *
  89. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  90. * given, no prime action will take place. If the parameter specifies an amount, that much
  91. * will be purged before continuing. If no amount is specified the command will start
  92. * purging filament until the user provides an LCD Click and then it will continue with
  93. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  94. * pliers while holding the LCD Click wheel in a depressed state. If you do not have
  95. * an LCD, you must specify a value if you use P.
  96. *
  97. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  98. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  99. *
  100. * R # Repeat Prints the number of patterns given as a parameter, starting at the current location.
  101. * If a parameter isn't given, every point will be printed unless G26 is interrupted.
  102. * This works the same way that the UBL G29 P4 R parameter works.
  103. *
  104. * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are
  105. * aware that there's some risk associated with printing without the ability to abort in
  106. * cases where mesh point Z value may be inaccurate. As above, if you do not include a
  107. * parameter, every point will be printed.
  108. *
  109. * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  110. *
  111. * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  112. * undrawn cicle is still done. But the distance to the location for each circle has a
  113. * random number of the size specified added to it. Specifying S50 will give an interesting
  114. * deviation from the normal behaviour on a 10 x 10 Mesh.
  115. *
  116. * X # X Coord. Specify the starting location of the drawing activity.
  117. *
  118. * Y # Y Coord. Specify the starting location of the drawing activity.
  119. */
  120. // External references
  121. extern float feedrate_mm_s; // must set before calling prepare_move_to_destination
  122. extern Planner planner;
  123. #if ENABLED(ULTRA_LCD)
  124. extern char lcd_status_message[];
  125. #endif
  126. extern float destination[XYZE];
  127. void set_destination_to_current();
  128. void prepare_move_to_destination();
  129. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  130. inline void set_current_to_destination() { COPY(current_position, destination); }
  131. #if ENABLED(NEWPANEL)
  132. void lcd_setstatusPGM(const char* const message, const int8_t level);
  133. void chirp_at_user();
  134. #endif
  135. // Private functions
  136. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16];
  137. float g26_e_axis_feedrate = 0.020,
  138. random_deviation = 0.0;
  139. static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched
  140. // retracts/recovers won't result in a bad state.
  141. float valid_trig_angle(float);
  142. float unified_bed_leveling::g26_extrusion_multiplier,
  143. unified_bed_leveling::g26_retraction_multiplier,
  144. unified_bed_leveling::g26_nozzle,
  145. unified_bed_leveling::g26_filament_diameter,
  146. unified_bed_leveling::g26_layer_height,
  147. unified_bed_leveling::g26_prime_length,
  148. unified_bed_leveling::g26_x_pos,
  149. unified_bed_leveling::g26_y_pos,
  150. unified_bed_leveling::g26_ooze_amount;
  151. int16_t unified_bed_leveling::g26_bed_temp,
  152. unified_bed_leveling::g26_hotend_temp;
  153. int8_t unified_bed_leveling::g26_prime_flag;
  154. bool unified_bed_leveling::g26_continue_with_closest,
  155. unified_bed_leveling::g26_keep_heaters_on;
  156. int16_t unified_bed_leveling::g26_repeats;
  157. void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) {
  158. const float save_feedrate = feedrate_mm_s;
  159. feedrate_mm_s = feed_rate; // use specified feed rate
  160. prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA
  161. feedrate_mm_s = save_feedrate; // restore global feed rate
  162. }
  163. #if ENABLED(NEWPANEL)
  164. /**
  165. * Detect ubl_lcd_clicked, debounce it, and return true for cancel
  166. */
  167. bool user_canceled() {
  168. if (!ubl_lcd_clicked()) return false;
  169. safe_delay(10); // Wait for click to settle
  170. #if ENABLED(ULTRA_LCD)
  171. lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99);
  172. lcd_quick_feedback();
  173. #endif
  174. while (!ubl_lcd_clicked()) idle(); // Wait for button release
  175. // If the button is suddenly pressed again,
  176. // ask the user to resolve the issue
  177. lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear...
  178. while (ubl_lcd_clicked()) idle(); // unless this loop happens
  179. lcd_reset_status();
  180. return true;
  181. }
  182. #endif
  183. /**
  184. * G26: Mesh Validation Pattern generation.
  185. *
  186. * Used to interactively edit UBL's Mesh by placing the
  187. * nozzle in a problem area and doing a G29 P4 R command.
  188. */
  189. void unified_bed_leveling::G26() {
  190. SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s).");
  191. float tmp, start_angle, end_angle;
  192. int i, xi, yi;
  193. mesh_index_pair location;
  194. // Don't allow Mesh Validation without homing first,
  195. // or if the parameter parsing did not go OK, abort
  196. if (axis_unhomed_error() || parse_G26_parameters()) return;
  197. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  198. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  199. stepper.synchronize();
  200. set_current_to_destination();
  201. }
  202. if (turn_on_heaters()) goto LEAVE;
  203. current_position[E_AXIS] = 0.0;
  204. sync_plan_position_e();
  205. if (g26_prime_flag && prime_nozzle()) goto LEAVE;
  206. /**
  207. * Bed is preheated
  208. *
  209. * Nozzle is at temperature
  210. *
  211. * Filament is primed!
  212. *
  213. * It's "Show Time" !!!
  214. */
  215. ZERO(circle_flags);
  216. ZERO(horizontal_mesh_line_flags);
  217. ZERO(vertical_mesh_line_flags);
  218. // Move nozzle to the specified height for the first layer
  219. set_destination_to_current();
  220. destination[Z_AXIS] = g26_layer_height;
  221. move_to(destination, 0.0);
  222. move_to(destination, g26_ooze_amount);
  223. has_control_of_lcd_panel = true;
  224. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  225. /**
  226. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  227. * the CPU load and make the arc drawing faster and more smooth
  228. */
  229. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  230. for (i = 0; i <= 360 / 30; i++) {
  231. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  232. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  233. }
  234. do {
  235. location = g26_continue_with_closest
  236. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  237. : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now.
  238. if (location.x_index >= 0 && location.y_index >= 0) {
  239. const float circle_x = mesh_index_to_xpos(location.x_index),
  240. circle_y = mesh_index_to_ypos(location.y_index);
  241. // If this mesh location is outside the printable_radius, skip it.
  242. if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue;
  243. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  244. yi = location.y_index;
  245. if (g26_debug_flag) {
  246. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  247. SERIAL_ECHOPAIR(", yi=", yi);
  248. SERIAL_CHAR(')');
  249. SERIAL_EOL();
  250. }
  251. start_angle = 0.0; // assume it is going to be a full circle
  252. end_angle = 360.0;
  253. if (xi == 0) { // Check for bottom edge
  254. start_angle = -90.0;
  255. end_angle = 90.0;
  256. if (yi == 0) // it is an edge, check for the two left corners
  257. start_angle = 0.0;
  258. else if (yi == GRID_MAX_POINTS_Y - 1)
  259. end_angle = 0.0;
  260. }
  261. else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
  262. start_angle = 90.0;
  263. end_angle = 270.0;
  264. if (yi == 0) // it is an edge, check for the two right corners
  265. end_angle = 180.0;
  266. else if (yi == GRID_MAX_POINTS_Y - 1)
  267. start_angle = 180.0;
  268. }
  269. else if (yi == 0) {
  270. start_angle = 0.0; // only do the top side of the cirlce
  271. end_angle = 180.0;
  272. }
  273. else if (yi == GRID_MAX_POINTS_Y - 1) {
  274. start_angle = 180.0; // only do the bottom side of the cirlce
  275. end_angle = 360.0;
  276. }
  277. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  278. #if ENABLED(NEWPANEL)
  279. if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation
  280. #endif
  281. int tmp_div_30 = tmp / 30.0;
  282. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  283. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  284. float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
  285. y = circle_y + sin_table[tmp_div_30],
  286. xe = circle_x + cos_table[tmp_div_30 + 1],
  287. ye = circle_y + sin_table[tmp_div_30 + 1];
  288. #if IS_KINEMATIC
  289. // Check to make sure this segment is entirely on the bed, skip if not.
  290. if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue;
  291. #else // not, we need to skip
  292. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  293. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  294. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  295. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  296. #endif
  297. //if (g26_debug_flag) {
  298. // char ccc, *cptr, seg_msg[50], seg_num[10];
  299. // strcpy(seg_msg, " segment: ");
  300. // strcpy(seg_num, " \n");
  301. // cptr = (char*) "01234567890ABCDEF????????";
  302. // ccc = cptr[tmp_div_30];
  303. // seg_num[1] = ccc;
  304. // strcat(seg_msg, seg_num);
  305. // debug_current_and_destination(seg_msg);
  306. //}
  307. print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height);
  308. }
  309. if (look_for_lines_to_connect())
  310. goto LEAVE;
  311. }
  312. } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0);
  313. LEAVE:
  314. lcd_setstatusPGM(PSTR("Leaving G26"), -1);
  315. retract_filament(destination);
  316. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  317. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  318. move_to(destination, 0); // Raise the nozzle
  319. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  320. destination[X_AXIS] = g26_x_pos; // Move back to the starting position
  321. destination[Y_AXIS] = g26_y_pos;
  322. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  323. move_to(destination, 0); // Move back to the starting position
  324. //debug_current_and_destination(PSTR("done doing X/Y move."));
  325. has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  326. if (!g26_keep_heaters_on) {
  327. #if HAS_TEMP_BED
  328. thermalManager.setTargetBed(0);
  329. #endif
  330. thermalManager.setTargetHotend(0, 0);
  331. }
  332. }
  333. float valid_trig_angle(float d) {
  334. while (d > 360.0) d -= 360.0;
  335. while (d < 0.0) d += 360.0;
  336. return d;
  337. }
  338. mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) {
  339. float closest = 99999.99;
  340. mesh_index_pair return_val;
  341. return_val.x_index = return_val.y_index = -1;
  342. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  343. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  344. if (!is_bit_set(circle_flags, i, j)) {
  345. const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed
  346. my = mesh_index_to_ypos(j);
  347. // Get the distance to this intersection
  348. float f = HYPOT(X - mx, Y - my);
  349. // It is possible that we are being called with the values
  350. // to let us find the closest circle to the start position.
  351. // But if this is not the case, add a small weighting to the
  352. // distance calculation to help it choose a better place to continue.
  353. f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0;
  354. // Add in the specified amount of Random Noise to our search
  355. if (random_deviation > 1.0)
  356. f += random(0.0, random_deviation);
  357. if (f < closest) {
  358. closest = f; // We found a closer location that is still
  359. return_val.x_index = i; // un-printed --- save the data for it
  360. return_val.y_index = j;
  361. return_val.distance = closest;
  362. }
  363. }
  364. }
  365. }
  366. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  367. return return_val;
  368. }
  369. bool unified_bed_leveling::look_for_lines_to_connect() {
  370. float sx, sy, ex, ey;
  371. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  372. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  373. #if ENABLED(NEWPANEL)
  374. if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation
  375. #endif
  376. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  377. // This is already a half circle because we are at the edge of the bed.
  378. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  379. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  380. //
  381. // We found two circles that need a horizontal line to connect them
  382. // Print it!
  383. //
  384. sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
  385. ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
  386. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  387. sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1);
  388. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  389. if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
  390. if (g26_debug_flag) {
  391. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  392. SERIAL_ECHOPAIR(", sy=", sy);
  393. SERIAL_ECHOPAIR(") -> (ex=", ex);
  394. SERIAL_ECHOPAIR(", ey=", ey);
  395. SERIAL_CHAR(')');
  396. SERIAL_EOL();
  397. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  398. }
  399. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
  400. }
  401. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it
  402. }
  403. }
  404. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  405. // This is already a half circle because we are at the edge of the bed.
  406. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  407. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  408. //
  409. // We found two circles that need a vertical line to connect them
  410. // Print it!
  411. //
  412. sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
  413. ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
  414. sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1);
  415. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  416. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  417. if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) {
  418. if (g26_debug_flag) {
  419. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  420. SERIAL_ECHOPAIR(", sy=", sy);
  421. SERIAL_ECHOPAIR(") -> (ex=", ex);
  422. SERIAL_ECHOPAIR(", ey=", ey);
  423. SERIAL_CHAR(')');
  424. SERIAL_EOL();
  425. debug_current_and_destination(PSTR("Connecting vertical line."));
  426. }
  427. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height);
  428. }
  429. bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped
  430. }
  431. }
  432. }
  433. }
  434. }
  435. }
  436. return false;
  437. }
  438. void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  439. float feed_value;
  440. static float last_z = -999.99;
  441. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  442. if (z != last_z) {
  443. last_z = z;
  444. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  445. destination[X_AXIS] = current_position[X_AXIS];
  446. destination[Y_AXIS] = current_position[Y_AXIS];
  447. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  448. destination[E_AXIS] = current_position[E_AXIS];
  449. G26_line_to_destination(feed_value);
  450. stepper.synchronize();
  451. set_destination_to_current();
  452. }
  453. // Check if X or Y is involved in the movement.
  454. // Yes: a 'normal' movement. No: a retract() or recover()
  455. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  456. if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  457. destination[X_AXIS] = x;
  458. destination[Y_AXIS] = y;
  459. destination[E_AXIS] += e_delta;
  460. G26_line_to_destination(feed_value);
  461. stepper.synchronize();
  462. set_destination_to_current();
  463. }
  464. void unified_bed_leveling::retract_filament(const float where[XYZE]) {
  465. if (!g26_retracted) { // Only retract if we are not already retracted!
  466. g26_retracted = true;
  467. move_to(where, -1.0 * g26_retraction_multiplier);
  468. }
  469. }
  470. void unified_bed_leveling::recover_filament(const float where[XYZE]) {
  471. if (g26_retracted) { // Only un-retract if we are retracted.
  472. move_to(where, 1.2 * g26_retraction_multiplier);
  473. g26_retracted = false;
  474. }
  475. }
  476. /**
  477. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  478. * to the other. But there are really three sets of coordinates involved. The first coordinate
  479. * is the present location of the nozzle. We don't necessarily want to print from this location.
  480. * We first need to move the nozzle to the start of line segment where we want to print. Once
  481. * there, we can use the two coordinates supplied to draw the line.
  482. *
  483. * Note: Although we assume the first set of coordinates is the start of the line and the second
  484. * set of coordinates is the end of the line, it does not always work out that way. This function
  485. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  486. * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does
  487. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  488. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  489. * cases where the optimization comes into play.
  490. */
  491. void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  492. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  493. dy_s = current_position[Y_AXIS] - sy,
  494. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  495. // to save computation time
  496. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  497. dy_e = current_position[Y_AXIS] - ey,
  498. dist_end = HYPOT2(dx_e, dy_e),
  499. line_length = HYPOT(ex - sx, ey - sy);
  500. // If the end point of the line is closer to the nozzle, flip the direction,
  501. // moving from the end to the start. On very small lines the optimization isn't worth it.
  502. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) {
  503. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  504. }
  505. // Decide whether to retract & bump
  506. if (dist_start > 2.0) {
  507. retract_filament(destination);
  508. //todo: parameterize the bump height with a define
  509. move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping
  510. move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped
  511. }
  512. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump
  513. const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier;
  514. recover_filament(destination);
  515. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  516. }
  517. /**
  518. * This function used to be inline code in G26. But there are so many
  519. * parameters it made sense to turn them into static globals and get
  520. * this code out of sight of the main routine.
  521. */
  522. bool unified_bed_leveling::parse_G26_parameters() {
  523. g26_extrusion_multiplier = EXTRUSION_MULTIPLIER;
  524. g26_retraction_multiplier = RETRACTION_MULTIPLIER;
  525. g26_nozzle = NOZZLE;
  526. g26_filament_diameter = FILAMENT;
  527. g26_layer_height = LAYER_HEIGHT;
  528. g26_prime_length = PRIME_LENGTH;
  529. g26_bed_temp = BED_TEMP;
  530. g26_hotend_temp = HOTEND_TEMP;
  531. g26_prime_flag = 0;
  532. g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT);
  533. g26_keep_heaters_on = parser.boolval('K');
  534. g26_continue_with_closest = parser.boolval('C');
  535. if (parser.seenval('B')) {
  536. g26_bed_temp = parser.value_celsius();
  537. if (!WITHIN(g26_bed_temp, 15, 140)) {
  538. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  539. return UBL_ERR;
  540. }
  541. }
  542. if (parser.seenval('L')) {
  543. g26_layer_height = parser.value_linear_units();
  544. if (!WITHIN(g26_layer_height, 0.0, 2.0)) {
  545. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  546. return UBL_ERR;
  547. }
  548. }
  549. if (parser.seen('Q')) {
  550. if (parser.has_value()) {
  551. g26_retraction_multiplier = parser.value_float();
  552. if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) {
  553. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  554. return UBL_ERR;
  555. }
  556. }
  557. else {
  558. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  559. return UBL_ERR;
  560. }
  561. }
  562. if (parser.seenval('S')) {
  563. g26_nozzle = parser.value_float();
  564. if (!WITHIN(g26_nozzle, 0.1, 1.0)) {
  565. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  566. return UBL_ERR;
  567. }
  568. }
  569. if (parser.seen('P')) {
  570. if (!parser.has_value()) {
  571. #if ENABLED(NEWPANEL)
  572. g26_prime_flag = -1;
  573. #else
  574. SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD.");
  575. return UBL_ERR;
  576. #endif
  577. }
  578. else {
  579. g26_prime_flag++;
  580. g26_prime_length = parser.value_linear_units();
  581. if (!WITHIN(g26_prime_length, 0.0, 25.0)) {
  582. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  583. return UBL_ERR;
  584. }
  585. }
  586. }
  587. if (parser.seenval('F')) {
  588. g26_filament_diameter = parser.value_linear_units();
  589. if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) {
  590. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  591. return UBL_ERR;
  592. }
  593. }
  594. g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to
  595. // scale up or down the length needed to get the
  596. // same volume of filament
  597. g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size
  598. if (parser.seenval('H')) {
  599. g26_hotend_temp = parser.value_celsius();
  600. if (!WITHIN(g26_hotend_temp, 165, 280)) {
  601. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  602. return UBL_ERR;
  603. }
  604. }
  605. if (parser.seen('U')) {
  606. randomSeed(millis());
  607. // This setting will persist for the next G26
  608. random_deviation = parser.has_value() ? parser.value_float() : 50.0;
  609. }
  610. #if ENABLED(NEWPANEL)
  611. g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1);
  612. #else
  613. if (!parser.seen('R')) {
  614. SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD.");
  615. return UBL_ERR;
  616. }
  617. else
  618. g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1;
  619. #endif
  620. if (g26_repeats < 1) {
  621. SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1.");
  622. return UBL_ERR;
  623. }
  624. g26_x_pos = parser.linearval('X', current_position[X_AXIS]);
  625. g26_y_pos = parser.linearval('Y', current_position[Y_AXIS]);
  626. if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) {
  627. SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds.");
  628. return UBL_ERR;
  629. }
  630. /**
  631. * Wait until all parameters are verified before altering the state!
  632. */
  633. set_bed_leveling_enabled(!parser.seen('D'));
  634. return UBL_OK;
  635. }
  636. #if ENABLED(NEWPANEL)
  637. bool unified_bed_leveling::exit_from_g26() {
  638. lcd_setstatusPGM(PSTR("Leaving G26"), -1);
  639. while (ubl_lcd_clicked()) idle();
  640. return UBL_ERR;
  641. }
  642. #endif
  643. /**
  644. * Turn on the bed and nozzle heat and
  645. * wait for them to get up to temperature.
  646. */
  647. bool unified_bed_leveling::turn_on_heaters() {
  648. millis_t next = millis() + 5000UL;
  649. #if HAS_TEMP_BED
  650. #if ENABLED(ULTRA_LCD)
  651. if (g26_bed_temp > 25) {
  652. lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99);
  653. lcd_quick_feedback();
  654. #endif
  655. has_control_of_lcd_panel = true;
  656. thermalManager.setTargetBed(g26_bed_temp);
  657. while (abs(thermalManager.degBed() - g26_bed_temp) > 3) {
  658. #if ENABLED(NEWPANEL)
  659. if (ubl_lcd_clicked()) return exit_from_g26();
  660. #endif
  661. if (ELAPSED(millis(), next)) {
  662. next = millis() + 5000UL;
  663. print_heaterstates();
  664. SERIAL_EOL();
  665. }
  666. idle();
  667. }
  668. #if ENABLED(ULTRA_LCD)
  669. }
  670. lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99);
  671. lcd_quick_feedback();
  672. #endif
  673. #endif
  674. // Start heating the nozzle and wait for it to reach temperature.
  675. thermalManager.setTargetHotend(g26_hotend_temp, 0);
  676. while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) {
  677. #if ENABLED(NEWPANEL)
  678. if (ubl_lcd_clicked()) return exit_from_g26();
  679. #endif
  680. if (ELAPSED(millis(), next)) {
  681. next = millis() + 5000UL;
  682. print_heaterstates();
  683. SERIAL_EOL();
  684. }
  685. idle();
  686. }
  687. #if ENABLED(ULTRA_LCD)
  688. lcd_reset_status();
  689. lcd_quick_feedback();
  690. #endif
  691. return UBL_OK;
  692. }
  693. /**
  694. * Prime the nozzle if needed. Return true on error.
  695. */
  696. bool unified_bed_leveling::prime_nozzle() {
  697. #if ENABLED(NEWPANEL)
  698. float Total_Prime = 0.0;
  699. if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged
  700. has_control_of_lcd_panel = true;
  701. lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99);
  702. chirp_at_user();
  703. set_destination_to_current();
  704. recover_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  705. while (!ubl_lcd_clicked()) {
  706. chirp_at_user();
  707. destination[E_AXIS] += 0.25;
  708. #ifdef PREVENT_LENGTHY_EXTRUDE
  709. Total_Prime += 0.25;
  710. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  711. #endif
  712. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  713. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  714. // but because the planner has a buffer, we won't be able
  715. // to stop as quickly. So we put up with the less smooth
  716. // action to give the user a more responsive 'Stop'.
  717. set_destination_to_current();
  718. idle();
  719. }
  720. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  721. #if ENABLED(ULTRA_LCD)
  722. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue;
  723. // So... We cheat to get a message up.
  724. lcd_setstatusPGM(PSTR("Done Priming"), 99);
  725. lcd_quick_feedback();
  726. #endif
  727. has_control_of_lcd_panel = false;
  728. }
  729. else {
  730. #else
  731. {
  732. #endif
  733. #if ENABLED(ULTRA_LCD)
  734. lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99);
  735. lcd_quick_feedback();
  736. #endif
  737. set_destination_to_current();
  738. destination[E_AXIS] += g26_prime_length;
  739. G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0);
  740. stepper.synchronize();
  741. set_destination_to_current();
  742. retract_filament(destination);
  743. }
  744. return UBL_OK;
  745. }
  746. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_VALIDATION