My Marlin configs for Fabrikator Mini and CTC i3 Pro B
您最多选择25个主题 主题必须以字母或数字开头,可以包含连字符 (-),并且长度不得超过35个字符

G26_Mesh_Validation_Tool.cpp 35KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Marlin Firmware -- G26 - Mesh Validation Tool
  24. */
  25. #include "MarlinConfig.h"
  26. #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(UBL_G26_MESH_EDITING)
  27. #include "ubl.h"
  28. #include "Marlin.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "ultralcd.h"
  33. #define EXTRUSION_MULTIPLIER 1.0
  34. #define RETRACTION_MULTIPLIER 1.0
  35. #define NOZZLE 0.3
  36. #define FILAMENT 1.75
  37. #define LAYER_HEIGHT 0.2
  38. #define PRIME_LENGTH 10.0
  39. #define BED_TEMP 60.0
  40. #define HOTEND_TEMP 205.0
  41. #define OOZE_AMOUNT 0.3
  42. #define SIZE_OF_INTERSECTION_CIRCLES 5
  43. #define SIZE_OF_CROSSHAIRS 3
  44. #if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES
  45. #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES."
  46. #endif
  47. /**
  48. * G26 Mesh Validation Tool
  49. *
  50. * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System.
  51. * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must
  52. * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will
  53. * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and
  54. * the intersections of those lines (respectively).
  55. *
  56. * This action allows the user to immediately see where the Mesh is properly defined and where it needs to
  57. * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively
  58. * the user can specify the X and Y position of interest with command parameters. This allows the user to
  59. * focus on a particular area of the Mesh where attention is needed.
  60. *
  61. * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed.
  62. *
  63. * C Current When searching for Mesh Intersection points to draw, use the current nozzle location
  64. * as the base for any distance comparison.
  65. *
  66. * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this
  67. * command to see how well a Mesh as been adjusted to match a print surface. In order to do
  68. * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter
  69. * alters the command's normal behaviour and disables the Unified Bed Leveling System even if
  70. * it is on.
  71. *
  72. * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed.
  73. *
  74. * F # Filament Used to specify the diameter of the filament being used. If not specified
  75. * 1.75mm filament is assumed. If you are not getting acceptable results by using the
  76. * 'correct' numbers, you can scale this number up or down a little bit to change the amount
  77. * of filament that is being extruded during the printing of the various lines on the bed.
  78. *
  79. * K Keep-On Keep the heaters turned on at the end of the command.
  80. *
  81. * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used.
  82. *
  83. * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and
  84. * un-retraction is at 1.2mm These numbers will be scaled by the specified amount
  85. *
  86. * N # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed.
  87. *
  88. * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This
  89. * is over kill, but using this parameter will let you get the very first 'cicle' perfect
  90. * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your
  91. * Mesh calibrated. If not specified, a filament length of .3mm is assumed.
  92. *
  93. * P # Prime Prime the nozzle with specified length of filament. If this parameter is not
  94. * given, no prime action will take place. If the parameter specifies an amount, that much
  95. * will be purged before continuing. If no amount is specified the command will start
  96. * purging filament until the user provides an LCD Click and then it will continue with
  97. * printing the Mesh. You can carefully remove the spent filament with a needle nose
  98. * pliers while holding the LCD Click wheel in a depressed state.
  99. *
  100. * R # Random Randomize the order that the circles are drawn on the bed. The search for the closest
  101. * undrawn cicle is still done. But the distance to the location for each circle has a
  102. * random number of the size specified added to it. Specifying R50 will give an interesting
  103. * deviation from the normal behaviour on a 10 x 10 Mesh.
  104. *
  105. * X # X coordinate Specify the starting location of the drawing activity.
  106. *
  107. * Y # Y coordinate Specify the starting location of the drawing activity.
  108. */
  109. extern float feedrate;
  110. extern Planner planner;
  111. //#if ENABLED(ULTRA_LCD)
  112. extern char lcd_status_message[];
  113. //#endif
  114. extern float destination[XYZE];
  115. extern void set_destination_to_current();
  116. extern void set_current_to_destination();
  117. extern float code_value_float();
  118. extern bool code_value_bool();
  119. extern bool code_has_value();
  120. extern void lcd_init();
  121. extern void lcd_setstatuspgm(const char* const message, const uint8_t level);
  122. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])) //bob
  123. bool prepare_move_to_destination_cartesian();
  124. void line_to_destination();
  125. void line_to_destination(float );
  126. void gcode_G28();
  127. void sync_plan_position_e();
  128. void un_retract_filament(float where[XYZE]);
  129. void retract_filament(float where[XYZE]);
  130. void look_for_lines_to_connect();
  131. bool parse_G26_parameters();
  132. void move_to(const float&, const float&, const float&, const float&) ;
  133. void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
  134. bool turn_on_heaters();
  135. bool prime_nozzle();
  136. void chirp_at_user();
  137. static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16], continue_with_closest = 0;
  138. float g26_e_axis_feedrate = 0.020,
  139. random_deviation = 0.0,
  140. layer_height = LAYER_HEIGHT;
  141. bool g26_retracted = false; // We keep track of the state of the nozzle to know if it
  142. // is currently retracted or not. This allows us to be
  143. // less careful because mis-matched retractions and un-retractions
  144. // won't leave us in a bad state.
  145. float valid_trig_angle(float);
  146. mesh_index_pair find_closest_circle_to_print(const float&, const float&);
  147. static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
  148. retraction_multiplier = RETRACTION_MULTIPLIER,
  149. nozzle = NOZZLE,
  150. filament_diameter = FILAMENT,
  151. prime_length = PRIME_LENGTH,
  152. x_pos, y_pos,
  153. bed_temp = BED_TEMP,
  154. hotend_temp = HOTEND_TEMP,
  155. ooze_amount = OOZE_AMOUNT;
  156. int8_t prime_flag = 0;
  157. bool keep_heaters_on = false;
  158. /**
  159. * G26: Mesh Validation Pattern generation.
  160. *
  161. * Used to interactively edit UBL's Mesh by placing the
  162. * nozzle in a problem area and doing a G29 P4 R command.
  163. */
  164. void gcode_G26() {
  165. float tmp, start_angle, end_angle;
  166. int i, xi, yi;
  167. mesh_index_pair location;
  168. // Don't allow Mesh Validation without homing first,
  169. // or if the parameter parsing did not go OK, abort
  170. if (axis_unhomed_error(true, true, true) || parse_G26_parameters()) return;
  171. if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) {
  172. do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
  173. stepper.synchronize();
  174. set_current_to_destination();
  175. }
  176. if (turn_on_heaters()) goto LEAVE;
  177. current_position[E_AXIS] = 0.0;
  178. sync_plan_position_e();
  179. if (prime_flag && prime_nozzle()) goto LEAVE;
  180. /**
  181. * Bed is preheated
  182. *
  183. * Nozzle is at temperature
  184. *
  185. * Filament is primed!
  186. *
  187. * It's "Show Time" !!!
  188. */
  189. ZERO(circle_flags);
  190. ZERO(horizontal_mesh_line_flags);
  191. ZERO(vertical_mesh_line_flags);
  192. // Move nozzle to the specified height for the first layer
  193. set_destination_to_current();
  194. destination[Z_AXIS] = layer_height;
  195. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0.0);
  196. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], ooze_amount);
  197. ubl.has_control_of_lcd_panel = true;
  198. //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern."));
  199. /**
  200. * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten
  201. * the CPU load and make the arc drawing faster and more smooth
  202. */
  203. float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1];
  204. for (i = 0; i <= 360 / 30; i++) {
  205. cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0)));
  206. sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0)));
  207. }
  208. do {
  209. if (ubl_lcd_clicked()) { // Check if the user wants to stop the Mesh Validation
  210. #if ENABLED(ULTRA_LCD)
  211. lcd_setstatuspgm(PSTR("Mesh Validation Stopped."), 99);
  212. lcd_quick_feedback();
  213. #endif
  214. while (!ubl_lcd_clicked()) { // Wait until the user is done pressing the
  215. idle(); // Encoder Wheel if that is why we are leaving
  216. lcd_reset_alert_level();
  217. lcd_setstatuspgm(PSTR(""));
  218. }
  219. while (ubl_lcd_clicked()) { // Wait until the user is done pressing the
  220. idle(); // Encoder Wheel if that is why we are leaving
  221. lcd_setstatuspgm(PSTR("Unpress Wheel"), 99);
  222. }
  223. goto LEAVE;
  224. }
  225. location = continue_with_closest
  226. ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS])
  227. : find_closest_circle_to_print(x_pos, y_pos); // Find the closest Mesh Intersection to where we are now.
  228. if (location.x_index >= 0 && location.y_index >= 0) {
  229. const float circle_x = ubl.mesh_index_to_xpos[location.x_index],
  230. circle_y = ubl.mesh_index_to_ypos[location.y_index];
  231. // Let's do a couple of quick sanity checks. We can pull this code out later if we never see it catch a problem
  232. #ifdef DELTA
  233. if (HYPOT2(circle_x, circle_y) > sq(DELTA_PRINTABLE_RADIUS)) {
  234. SERIAL_ERROR_START;
  235. SERIAL_ERRORLNPGM("Attempt to print outside of DELTA_PRINTABLE_RADIUS.");
  236. goto LEAVE;
  237. }
  238. #endif
  239. // TODO: Change this to use `position_is_reachable`
  240. if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
  241. SERIAL_ERROR_START;
  242. SERIAL_ERRORLNPGM("Attempt to print off the bed.");
  243. goto LEAVE;
  244. }
  245. xi = location.x_index; // Just to shrink the next few lines and make them easier to understand
  246. yi = location.y_index;
  247. if (ubl.g26_debug_flag) {
  248. SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi);
  249. SERIAL_ECHOPAIR(", yi=", yi);
  250. SERIAL_CHAR(')');
  251. SERIAL_EOL;
  252. }
  253. start_angle = 0.0; // assume it is going to be a full circle
  254. end_angle = 360.0;
  255. if (xi == 0) { // Check for bottom edge
  256. start_angle = -90.0;
  257. end_angle = 90.0;
  258. if (yi == 0) // it is an edge, check for the two left corners
  259. start_angle = 0.0;
  260. else if (yi == GRID_MAX_POINTS_Y - 1)
  261. end_angle = 0.0;
  262. }
  263. else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge
  264. start_angle = 90.0;
  265. end_angle = 270.0;
  266. if (yi == 0) // it is an edge, check for the two right corners
  267. end_angle = 180.0;
  268. else if (yi == GRID_MAX_POINTS_Y - 1)
  269. start_angle = 180.0;
  270. }
  271. else if (yi == 0) {
  272. start_angle = 0.0; // only do the top side of the cirlce
  273. end_angle = 180.0;
  274. }
  275. else if (yi == GRID_MAX_POINTS_Y - 1) {
  276. start_angle = 180.0; // only do the bottom side of the cirlce
  277. end_angle = 360.0;
  278. }
  279. for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) {
  280. int tmp_div_30 = tmp / 30.0;
  281. if (tmp_div_30 < 0) tmp_div_30 += 360 / 30;
  282. if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30;
  283. float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry
  284. y = circle_y + sin_table[tmp_div_30],
  285. xe = circle_x + cos_table[tmp_div_30 + 1],
  286. ye = circle_y + sin_table[tmp_div_30 + 1];
  287. #ifdef DELTA
  288. if (HYPOT2(x, y) > sq(DELTA_PRINTABLE_RADIUS)) // Check to make sure this part of
  289. continue; // the 'circle' is on the bed. If
  290. #else // not, we need to skip
  291. x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
  292. y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1);
  293. xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1);
  294. ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1);
  295. #endif
  296. //if (ubl.g26_debug_flag) {
  297. // char ccc, *cptr, seg_msg[50], seg_num[10];
  298. // strcpy(seg_msg, " segment: ");
  299. // strcpy(seg_num, " \n");
  300. // cptr = (char*) "01234567890ABCDEF????????";
  301. // ccc = cptr[tmp_div_30];
  302. // seg_num[1] = ccc;
  303. // strcat(seg_msg, seg_num);
  304. // debug_current_and_destination(seg_msg);
  305. //}
  306. print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), layer_height);
  307. }
  308. //debug_current_and_destination(PSTR("Looking for lines to connect."));
  309. look_for_lines_to_connect();
  310. //debug_current_and_destination(PSTR("Done with line connect."));
  311. }
  312. //debug_current_and_destination(PSTR("Done with current circle."));
  313. } while (location.x_index >= 0 && location.y_index >= 0);
  314. LEAVE:
  315. lcd_reset_alert_level();
  316. lcd_setstatuspgm(PSTR("Leaving G26"));
  317. retract_filament(destination);
  318. destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
  319. //debug_current_and_destination(PSTR("ready to do Z-Raise."));
  320. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Raise the nozzle
  321. //debug_current_and_destination(PSTR("done doing Z-Raise."));
  322. destination[X_AXIS] = x_pos; // Move back to the starting position
  323. destination[Y_AXIS] = y_pos;
  324. //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is
  325. move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 0); // Move back to the starting position
  326. //debug_current_and_destination(PSTR("done doing X/Y move."));
  327. ubl.has_control_of_lcd_panel = false; // Give back control of the LCD Panel!
  328. if (!keep_heaters_on) {
  329. #if HAS_TEMP_BED
  330. thermalManager.setTargetBed(0.0);
  331. #endif
  332. thermalManager.setTargetHotend(0.0, 0);
  333. }
  334. }
  335. float valid_trig_angle(float d) {
  336. while (d > 360.0) d -= 360.0;
  337. while (d < 0.0) d += 360.0;
  338. return d;
  339. }
  340. mesh_index_pair find_closest_circle_to_print(const float &X, const float &Y) {
  341. float closest = 99999.99;
  342. mesh_index_pair return_val;
  343. return_val.x_index = return_val.y_index = -1;
  344. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  345. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  346. if (!is_bit_set(circle_flags, i, j)) {
  347. const float mx = ubl.mesh_index_to_xpos[i], // We found a circle that needs to be printed
  348. my = ubl.mesh_index_to_ypos[j];
  349. // Get the distance to this intersection
  350. float f = HYPOT(X - mx, Y - my);
  351. // It is possible that we are being called with the values
  352. // to let us find the closest circle to the start position.
  353. // But if this is not the case, add a small weighting to the
  354. // distance calculation to help it choose a better place to continue.
  355. f += HYPOT(x_pos - mx, y_pos - my) / 15.0;
  356. // Add in the specified amount of Random Noise to our search
  357. if (random_deviation > 1.0)
  358. f += random(0.0, random_deviation);
  359. if (f < closest) {
  360. closest = f; // We found a closer location that is still
  361. return_val.x_index = i; // un-printed --- save the data for it
  362. return_val.y_index = j;
  363. return_val.distance = closest;
  364. }
  365. }
  366. }
  367. }
  368. bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done.
  369. return return_val;
  370. }
  371. void look_for_lines_to_connect() {
  372. float sx, sy, ex, ey;
  373. for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) {
  374. for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) {
  375. if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X.
  376. // This is already a half circle because we are at the edge of the bed.
  377. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left
  378. if (!is_bit_set(horizontal_mesh_line_flags, i, j)) {
  379. //
  380. // We found two circles that need a horizontal line to connect them
  381. // Print it!
  382. //
  383. sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
  384. ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
  385. sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
  386. sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1);
  387. ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
  388. if (ubl.g26_debug_flag) {
  389. SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
  390. SERIAL_ECHOPAIR(", sy=", sy);
  391. SERIAL_ECHOPAIR(") -> (ex=", ex);
  392. SERIAL_ECHOPAIR(", ey=", ey);
  393. SERIAL_CHAR(')');
  394. SERIAL_EOL;
  395. //debug_current_and_destination(PSTR("Connecting horizontal line."));
  396. }
  397. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  398. bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  399. }
  400. }
  401. if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y.
  402. // This is already a half circle because we are at the edge of the bed.
  403. if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down
  404. if (!is_bit_set( vertical_mesh_line_flags, i, j)) {
  405. //
  406. // We found two circles that need a vertical line to connect them
  407. // Print it!
  408. //
  409. sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
  410. ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
  411. sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1);
  412. sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
  413. ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
  414. if (ubl.g26_debug_flag) {
  415. SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx);
  416. SERIAL_ECHOPAIR(", sy=", sy);
  417. SERIAL_ECHOPAIR(") -> (ex=", ex);
  418. SERIAL_ECHOPAIR(", ey=", ey);
  419. SERIAL_CHAR(')');
  420. SERIAL_EOL;
  421. debug_current_and_destination(PSTR("Connecting vertical line."));
  422. }
  423. print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
  424. bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
  425. }
  426. }
  427. }
  428. }
  429. }
  430. }
  431. }
  432. void move_to(const float &x, const float &y, const float &z, const float &e_delta) {
  433. float feed_value;
  434. static float last_z = -999.99;
  435. bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement.
  436. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() has_xy_component:", (int)has_xy_component);
  437. if (z != last_z) {
  438. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() changing Z to ", (int)z);
  439. last_z = z;
  440. feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate
  441. destination[X_AXIS] = current_position[X_AXIS];
  442. destination[Y_AXIS] = current_position[Y_AXIS];
  443. destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
  444. destination[E_AXIS] = current_position[E_AXIS];
  445. ubl_line_to_destination(feed_value, 0);
  446. stepper.synchronize();
  447. set_destination_to_current();
  448. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() done with Z move"));
  449. }
  450. // Check if X or Y is involved in the movement.
  451. // Yes: a 'normal' movement. No: a retract() or un_retract()
  452. feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5;
  453. if (ubl.g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value);
  454. destination[X_AXIS] = x;
  455. destination[Y_AXIS] = y;
  456. destination[E_AXIS] += e_delta;
  457. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() doing last move"));
  458. ubl_line_to_destination(feed_value, 0);
  459. //if (ubl.g26_debug_flag) debug_current_and_destination(PSTR(" in move_to() after last move"));
  460. stepper.synchronize();
  461. set_destination_to_current();
  462. }
  463. void retract_filament(float where[XYZE]) {
  464. if (!g26_retracted) { // Only retract if we are not already retracted!
  465. g26_retracted = true;
  466. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
  467. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
  468. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
  469. }
  470. }
  471. void un_retract_filament(float where[XYZE]) {
  472. if (g26_retracted) { // Only un-retract if we are retracted.
  473. move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
  474. g26_retracted = false;
  475. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
  476. }
  477. }
  478. /**
  479. * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one
  480. * to the other. But there are really three sets of coordinates involved. The first coordinate
  481. * is the present location of the nozzle. We don't necessarily want to print from this location.
  482. * We first need to move the nozzle to the start of line segment where we want to print. Once
  483. * there, we can use the two coordinates supplied to draw the line.
  484. *
  485. * Note: Although we assume the first set of coordinates is the start of the line and the second
  486. * set of coordinates is the end of the line, it does not always work out that way. This function
  487. * optimizes the movement to minimize the travel distance before it can start printing. This saves
  488. * a lot of time and eleminates a lot of non-sensical movement of the nozzle. However, it does
  489. * cause a lot of very little short retracement of th nozzle when it draws the very first line
  490. * segment of a 'circle'. The time this requires is very short and is easily saved by the other
  491. * cases where the optimization comes into play.
  492. */
  493. void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
  494. const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
  495. dy_s = current_position[Y_AXIS] - sy,
  496. dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
  497. // to save computation time
  498. dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment
  499. dy_e = current_position[Y_AXIS] - ey,
  500. dist_end = HYPOT2(dx_e, dy_e),
  501. line_length = HYPOT(ex - sx, ey - sy);
  502. // If the end point of the line is closer to the nozzle, flip the direction,
  503. // moving from the end to the start. On very small lines the optimization isn't worth it.
  504. if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
  505. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
  506. return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
  507. }
  508. // Decide whether to retract.
  509. if (dist_start > 2.0) {
  510. retract_filament(destination);
  511. //if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
  512. }
  513. move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
  514. const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
  515. un_retract_filament(destination);
  516. //if (ubl.g26_debug_flag) {
  517. // SERIAL_ECHOLNPGM(" doing printing move.");
  518. // debug_current_and_destination(PSTR("doing final move_to() inside print_line_from_here_to_there()"));
  519. //}
  520. move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion
  521. }
  522. /**
  523. * This function used to be inline code in G26. But there are so many
  524. * parameters it made sense to turn them into static globals and get
  525. * this code out of sight of the main routine.
  526. */
  527. bool parse_G26_parameters() {
  528. extrusion_multiplier = EXTRUSION_MULTIPLIER;
  529. retraction_multiplier = RETRACTION_MULTIPLIER;
  530. nozzle = NOZZLE;
  531. filament_diameter = FILAMENT;
  532. layer_height = LAYER_HEIGHT;
  533. prime_length = PRIME_LENGTH;
  534. bed_temp = BED_TEMP;
  535. hotend_temp = HOTEND_TEMP;
  536. ooze_amount = OOZE_AMOUNT;
  537. prime_flag = 0;
  538. keep_heaters_on = false;
  539. if (code_seen('B')) {
  540. bed_temp = code_value_float();
  541. if (!WITHIN(bed_temp, 15.0, 140.0)) {
  542. SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
  543. return UBL_ERR;
  544. }
  545. }
  546. if (code_seen('C')) continue_with_closest++;
  547. if (code_seen('L')) {
  548. layer_height = code_value_float();
  549. if (!WITHIN(layer_height, 0.0, 2.0)) {
  550. SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
  551. return UBL_ERR;
  552. }
  553. }
  554. if (code_seen('Q')) {
  555. if (code_has_value()) {
  556. retraction_multiplier = code_value_float();
  557. if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
  558. SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
  559. return UBL_ERR;
  560. }
  561. }
  562. else {
  563. SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified.");
  564. return UBL_ERR;
  565. }
  566. }
  567. if (code_seen('N')) {
  568. nozzle = code_value_float();
  569. if (!WITHIN(nozzle, 0.1, 1.0)) {
  570. SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
  571. return UBL_ERR;
  572. }
  573. }
  574. if (code_seen('K')) keep_heaters_on++;
  575. if (code_seen('O') && code_has_value())
  576. ooze_amount = code_value_float();
  577. if (code_seen('P')) {
  578. if (!code_has_value())
  579. prime_flag = -1;
  580. else {
  581. prime_flag++;
  582. prime_length = code_value_float();
  583. if (!WITHIN(prime_length, 0.0, 25.0)) {
  584. SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
  585. return UBL_ERR;
  586. }
  587. }
  588. }
  589. if (code_seen('F')) {
  590. filament_diameter = code_value_float();
  591. if (!WITHIN(filament_diameter, 1.0, 4.0)) {
  592. SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
  593. return UBL_ERR;
  594. }
  595. }
  596. extrusion_multiplier *= sq(1.75) / sq(filament_diameter); // If we aren't using 1.75mm filament, we need to
  597. // scale up or down the length needed to get the
  598. // same volume of filament
  599. extrusion_multiplier *= filament_diameter * sq(nozzle) / sq(0.3); // Scale up by nozzle size
  600. if (code_seen('H')) {
  601. hotend_temp = code_value_float();
  602. if (!WITHIN(hotend_temp, 165.0, 280.0)) {
  603. SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
  604. return UBL_ERR;
  605. }
  606. }
  607. if (code_seen('R')) {
  608. randomSeed(millis());
  609. random_deviation = code_has_value() ? code_value_float() : 50.0;
  610. }
  611. x_pos = current_position[X_AXIS];
  612. y_pos = current_position[Y_AXIS];
  613. if (code_seen('X')) {
  614. x_pos = code_value_float();
  615. if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
  616. SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
  617. return UBL_ERR;
  618. }
  619. }
  620. else
  621. if (code_seen('Y')) {
  622. y_pos = code_value_float();
  623. if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
  624. SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
  625. return UBL_ERR;
  626. }
  627. }
  628. /**
  629. * We save the question of what to do with the Unified Bed Leveling System's Activation until the very
  630. * end. The reason is, if one of the parameters specified up above is incorrect, we don't want to
  631. * alter the system's status. We wait until we know everything is correct before altering the state
  632. * of the system.
  633. */
  634. ubl.state.active = !code_seen('D');
  635. return UBL_OK;
  636. }
  637. bool exit_from_g26() {
  638. //strcpy(lcd_status_message, "Leaving G26"); // We can't do lcd_setstatus() without having it continue;
  639. lcd_reset_alert_level();
  640. lcd_setstatuspgm(PSTR("Leaving G26"));
  641. while (ubl_lcd_clicked()) idle();
  642. return UBL_ERR;
  643. }
  644. /**
  645. * Turn on the bed and nozzle heat and
  646. * wait for them to get up to temperature.
  647. */
  648. bool turn_on_heaters() {
  649. #if HAS_TEMP_BED
  650. #if ENABLED(ULTRA_LCD)
  651. if (bed_temp > 25) {
  652. lcd_setstatuspgm(PSTR("G26 Heating Bed."), 99);
  653. lcd_quick_feedback();
  654. #endif
  655. ubl.has_control_of_lcd_panel = true;
  656. thermalManager.setTargetBed(bed_temp);
  657. while (abs(thermalManager.degBed() - bed_temp) > 3) {
  658. if (ubl_lcd_clicked()) return exit_from_g26();
  659. idle();
  660. }
  661. #if ENABLED(ULTRA_LCD)
  662. }
  663. lcd_setstatuspgm(PSTR("G26 Heating Nozzle."), 99);
  664. lcd_quick_feedback();
  665. #endif
  666. #endif
  667. // Start heating the nozzle and wait for it to reach temperature.
  668. thermalManager.setTargetHotend(hotend_temp, 0);
  669. while (abs(thermalManager.degHotend(0) - hotend_temp) > 3) {
  670. if (ubl_lcd_clicked()) return exit_from_g26();
  671. idle();
  672. }
  673. #if ENABLED(ULTRA_LCD)
  674. lcd_reset_alert_level();
  675. lcd_setstatuspgm(PSTR(""));
  676. lcd_quick_feedback();
  677. #endif
  678. return UBL_OK;
  679. }
  680. /**
  681. * Prime the nozzle if needed. Return true on error.
  682. */
  683. bool prime_nozzle() {
  684. float Total_Prime = 0.0;
  685. if (prime_flag == -1) { // The user wants to control how much filament gets purged
  686. ubl.has_control_of_lcd_panel = true;
  687. lcd_setstatuspgm(PSTR("User-Controlled Prime"), 99);
  688. chirp_at_user();
  689. set_destination_to_current();
  690. un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
  691. while (!ubl_lcd_clicked()) {
  692. chirp_at_user();
  693. destination[E_AXIS] += 0.25;
  694. #ifdef PREVENT_LENGTHY_EXTRUDE
  695. Total_Prime += 0.25;
  696. if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
  697. #endif
  698. ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
  699. stepper.synchronize(); // Without this synchronize, the purge is more consistent,
  700. // but because the planner has a buffer, we won't be able
  701. // to stop as quickly. So we put up with the less smooth
  702. // action to give the user a more responsive 'Stop'.
  703. set_destination_to_current();
  704. idle();
  705. }
  706. while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel
  707. #if ENABLED(ULTRA_LCD)
  708. strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatuspgm() without having it continue;
  709. // So... We cheat to get a message up.
  710. lcd_setstatuspgm(PSTR("Done Priming"), 99);
  711. lcd_quick_feedback();
  712. #endif
  713. ubl.has_control_of_lcd_panel = false;
  714. }
  715. else {
  716. #if ENABLED(ULTRA_LCD)
  717. lcd_setstatuspgm(PSTR("Fixed Length Prime."), 99);
  718. lcd_quick_feedback();
  719. #endif
  720. set_destination_to_current();
  721. destination[E_AXIS] += prime_length;
  722. ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
  723. stepper.synchronize();
  724. set_destination_to_current();
  725. retract_filament(destination);
  726. }
  727. return UBL_OK;
  728. }
  729. #endif // AUTO_BED_LEVELING_UBL && UBL_G26_MESH_EDITING