My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

abl.cpp 14KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #include "../../../inc/MarlinConfig.h"
  23. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  24. #include "../bedlevel.h"
  25. #include "../../../module/motion.h"
  26. #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
  27. #include "../../../core/debug_out.h"
  28. #if ENABLED(EXTENSIBLE_UI)
  29. #include "../../../lcd/extui/ui_api.h"
  30. #endif
  31. xy_pos_t bilinear_grid_spacing, bilinear_start;
  32. xy_float_t bilinear_grid_factor;
  33. bed_mesh_t z_values;
  34. /**
  35. * Extrapolate a single point from its neighbors
  36. */
  37. static void extrapolate_one_point(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir) {
  38. if (!isnan(z_values[x][y])) return;
  39. if (DEBUGGING(LEVELING)) {
  40. DEBUG_ECHOPGM("Extrapolate [");
  41. if (x < 10) DEBUG_CHAR(' ');
  42. DEBUG_ECHO((int)x);
  43. DEBUG_CHAR(xdir ? (xdir > 0 ? '+' : '-') : ' ');
  44. DEBUG_CHAR(' ');
  45. if (y < 10) DEBUG_CHAR(' ');
  46. DEBUG_ECHO((int)y);
  47. DEBUG_CHAR(ydir ? (ydir > 0 ? '+' : '-') : ' ');
  48. DEBUG_ECHOLNPGM("]");
  49. }
  50. // Get X neighbors, Y neighbors, and XY neighbors
  51. const uint8_t x1 = x + xdir, y1 = y + ydir, x2 = x1 + xdir, y2 = y1 + ydir;
  52. float a1 = z_values[x1][y ], a2 = z_values[x2][y ],
  53. b1 = z_values[x ][y1], b2 = z_values[x ][y2],
  54. c1 = z_values[x1][y1], c2 = z_values[x2][y2];
  55. // Treat far unprobed points as zero, near as equal to far
  56. if (isnan(a2)) a2 = 0.0;
  57. if (isnan(a1)) a1 = a2;
  58. if (isnan(b2)) b2 = 0.0;
  59. if (isnan(b1)) b1 = b2;
  60. if (isnan(c2)) c2 = 0.0;
  61. if (isnan(c1)) c1 = c2;
  62. const float a = 2 * a1 - a2, b = 2 * b1 - b2, c = 2 * c1 - c2;
  63. // Take the average instead of the median
  64. z_values[x][y] = (a + b + c) / 3.0;
  65. TERN_(EXTENSIBLE_UI, ExtUI::onMeshUpdate(x, y, z_values[x][y]));
  66. // Median is robust (ignores outliers).
  67. // z_values[x][y] = (a < b) ? ((b < c) ? b : (c < a) ? a : c)
  68. // : ((c < b) ? b : (a < c) ? a : c);
  69. }
  70. //Enable this if your SCARA uses 180° of total area
  71. //#define EXTRAPOLATE_FROM_EDGE
  72. #if ENABLED(EXTRAPOLATE_FROM_EDGE)
  73. #if GRID_MAX_POINTS_X < GRID_MAX_POINTS_Y
  74. #define HALF_IN_X
  75. #elif GRID_MAX_POINTS_Y < GRID_MAX_POINTS_X
  76. #define HALF_IN_Y
  77. #endif
  78. #endif
  79. /**
  80. * Fill in the unprobed points (corners of circular print surface)
  81. * using linear extrapolation, away from the center.
  82. */
  83. void extrapolate_unprobed_bed_level() {
  84. #ifdef HALF_IN_X
  85. constexpr uint8_t ctrx2 = 0, xlen = GRID_MAX_POINTS_X - 1;
  86. #else
  87. constexpr uint8_t ctrx1 = (GRID_MAX_POINTS_X - 1) / 2, // left-of-center
  88. ctrx2 = (GRID_MAX_POINTS_X) / 2, // right-of-center
  89. xlen = ctrx1;
  90. #endif
  91. #ifdef HALF_IN_Y
  92. constexpr uint8_t ctry2 = 0, ylen = GRID_MAX_POINTS_Y - 1;
  93. #else
  94. constexpr uint8_t ctry1 = (GRID_MAX_POINTS_Y - 1) / 2, // top-of-center
  95. ctry2 = (GRID_MAX_POINTS_Y) / 2, // bottom-of-center
  96. ylen = ctry1;
  97. #endif
  98. LOOP_LE_N(xo, xlen)
  99. LOOP_LE_N(yo, ylen) {
  100. uint8_t x2 = ctrx2 + xo, y2 = ctry2 + yo;
  101. #ifndef HALF_IN_X
  102. const uint8_t x1 = ctrx1 - xo;
  103. #endif
  104. #ifndef HALF_IN_Y
  105. const uint8_t y1 = ctry1 - yo;
  106. #ifndef HALF_IN_X
  107. extrapolate_one_point(x1, y1, +1, +1); // left-below + +
  108. #endif
  109. extrapolate_one_point(x2, y1, -1, +1); // right-below - +
  110. #endif
  111. #ifndef HALF_IN_X
  112. extrapolate_one_point(x1, y2, +1, -1); // left-above + -
  113. #endif
  114. extrapolate_one_point(x2, y2, -1, -1); // right-above - -
  115. }
  116. }
  117. void print_bilinear_leveling_grid() {
  118. SERIAL_ECHOLNPGM("Bilinear Leveling Grid:");
  119. print_2d_array(GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y, 3,
  120. [](const uint8_t ix, const uint8_t iy) { return z_values[ix][iy]; }
  121. );
  122. }
  123. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  124. #define ABL_GRID_POINTS_VIRT_X (GRID_MAX_POINTS_X - 1) * (BILINEAR_SUBDIVISIONS) + 1
  125. #define ABL_GRID_POINTS_VIRT_Y (GRID_MAX_POINTS_Y - 1) * (BILINEAR_SUBDIVISIONS) + 1
  126. #define ABL_TEMP_POINTS_X (GRID_MAX_POINTS_X + 2)
  127. #define ABL_TEMP_POINTS_Y (GRID_MAX_POINTS_Y + 2)
  128. float z_values_virt[ABL_GRID_POINTS_VIRT_X][ABL_GRID_POINTS_VIRT_Y];
  129. xy_pos_t bilinear_grid_spacing_virt;
  130. xy_float_t bilinear_grid_factor_virt;
  131. void print_bilinear_leveling_grid_virt() {
  132. SERIAL_ECHOLNPGM("Subdivided with CATMULL ROM Leveling Grid:");
  133. print_2d_array(ABL_GRID_POINTS_VIRT_X, ABL_GRID_POINTS_VIRT_Y, 5,
  134. [](const uint8_t ix, const uint8_t iy) { return z_values_virt[ix][iy]; }
  135. );
  136. }
  137. #define LINEAR_EXTRAPOLATION(E, I) ((E) * 2 - (I))
  138. float bed_level_virt_coord(const uint8_t x, const uint8_t y) {
  139. uint8_t ep = 0, ip = 1;
  140. if (!x || x == ABL_TEMP_POINTS_X - 1) {
  141. if (x) {
  142. ep = GRID_MAX_POINTS_X - 1;
  143. ip = GRID_MAX_POINTS_X - 2;
  144. }
  145. if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
  146. return LINEAR_EXTRAPOLATION(
  147. z_values[ep][y - 1],
  148. z_values[ip][y - 1]
  149. );
  150. else
  151. return LINEAR_EXTRAPOLATION(
  152. bed_level_virt_coord(ep + 1, y),
  153. bed_level_virt_coord(ip + 1, y)
  154. );
  155. }
  156. if (!y || y == ABL_TEMP_POINTS_Y - 1) {
  157. if (y) {
  158. ep = GRID_MAX_POINTS_Y - 1;
  159. ip = GRID_MAX_POINTS_Y - 2;
  160. }
  161. if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
  162. return LINEAR_EXTRAPOLATION(
  163. z_values[x - 1][ep],
  164. z_values[x - 1][ip]
  165. );
  166. else
  167. return LINEAR_EXTRAPOLATION(
  168. bed_level_virt_coord(x, ep + 1),
  169. bed_level_virt_coord(x, ip + 1)
  170. );
  171. }
  172. return z_values[x - 1][y - 1];
  173. }
  174. static float bed_level_virt_cmr(const float p[4], const uint8_t i, const float t) {
  175. return (
  176. p[i-1] * -t * sq(1 - t)
  177. + p[i] * (2 - 5 * sq(t) + 3 * t * sq(t))
  178. + p[i+1] * t * (1 + 4 * t - 3 * sq(t))
  179. - p[i+2] * sq(t) * (1 - t)
  180. ) * 0.5f;
  181. }
  182. static float bed_level_virt_2cmr(const uint8_t x, const uint8_t y, const float &tx, const float &ty) {
  183. float row[4], column[4];
  184. LOOP_L_N(i, 4) {
  185. LOOP_L_N(j, 4) {
  186. column[j] = bed_level_virt_coord(i + x - 1, j + y - 1);
  187. }
  188. row[i] = bed_level_virt_cmr(column, 1, ty);
  189. }
  190. return bed_level_virt_cmr(row, 1, tx);
  191. }
  192. void bed_level_virt_interpolate() {
  193. bilinear_grid_spacing_virt = bilinear_grid_spacing / (BILINEAR_SUBDIVISIONS);
  194. bilinear_grid_factor_virt = bilinear_grid_spacing_virt.reciprocal();
  195. LOOP_L_N(y, GRID_MAX_POINTS_Y)
  196. LOOP_L_N(x, GRID_MAX_POINTS_X)
  197. LOOP_L_N(ty, BILINEAR_SUBDIVISIONS)
  198. LOOP_L_N(tx, BILINEAR_SUBDIVISIONS) {
  199. if ((ty && y == (GRID_MAX_POINTS_Y) - 1) || (tx && x == (GRID_MAX_POINTS_X) - 1))
  200. continue;
  201. z_values_virt[x * (BILINEAR_SUBDIVISIONS) + tx][y * (BILINEAR_SUBDIVISIONS) + ty] =
  202. bed_level_virt_2cmr(
  203. x + 1,
  204. y + 1,
  205. (float)tx / (BILINEAR_SUBDIVISIONS),
  206. (float)ty / (BILINEAR_SUBDIVISIONS)
  207. );
  208. }
  209. }
  210. #endif // ABL_BILINEAR_SUBDIVISION
  211. // Refresh after other values have been updated
  212. void refresh_bed_level() {
  213. bilinear_grid_factor = bilinear_grid_spacing.reciprocal();
  214. TERN_(ABL_BILINEAR_SUBDIVISION, bed_level_virt_interpolate());
  215. }
  216. #if ENABLED(ABL_BILINEAR_SUBDIVISION)
  217. #define ABL_BG_SPACING(A) bilinear_grid_spacing_virt.A
  218. #define ABL_BG_FACTOR(A) bilinear_grid_factor_virt.A
  219. #define ABL_BG_POINTS_X ABL_GRID_POINTS_VIRT_X
  220. #define ABL_BG_POINTS_Y ABL_GRID_POINTS_VIRT_Y
  221. #define ABL_BG_GRID(X,Y) z_values_virt[X][Y]
  222. #else
  223. #define ABL_BG_SPACING(A) bilinear_grid_spacing.A
  224. #define ABL_BG_FACTOR(A) bilinear_grid_factor.A
  225. #define ABL_BG_POINTS_X GRID_MAX_POINTS_X
  226. #define ABL_BG_POINTS_Y GRID_MAX_POINTS_Y
  227. #define ABL_BG_GRID(X,Y) z_values[X][Y]
  228. #endif
  229. // Get the Z adjustment for non-linear bed leveling
  230. float bilinear_z_offset(const xy_pos_t &raw) {
  231. static float z1, d2, z3, d4, L, D;
  232. static xy_pos_t prev { -999.999, -999.999 }, ratio;
  233. // Whole units for the grid line indices. Constrained within bounds.
  234. static xy_int8_t thisg, nextg, lastg { -99, -99 };
  235. // XY relative to the probed area
  236. xy_pos_t rel = raw - bilinear_start.asFloat();
  237. #if ENABLED(EXTRAPOLATE_BEYOND_GRID)
  238. #define FAR_EDGE_OR_BOX 2 // Keep using the last grid box
  239. #else
  240. #define FAR_EDGE_OR_BOX 1 // Just use the grid far edge
  241. #endif
  242. if (prev.x != rel.x) {
  243. prev.x = rel.x;
  244. ratio.x = rel.x * ABL_BG_FACTOR(x);
  245. const float gx = constrain(FLOOR(ratio.x), 0, ABL_BG_POINTS_X - (FAR_EDGE_OR_BOX));
  246. ratio.x -= gx; // Subtract whole to get the ratio within the grid box
  247. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  248. // Beyond the grid maintain height at grid edges
  249. NOLESS(ratio.x, 0); // Never <0 (>1 is ok when nextg.x==thisg.x)
  250. #endif
  251. thisg.x = gx;
  252. nextg.x = _MIN(thisg.x + 1, ABL_BG_POINTS_X - 1);
  253. }
  254. if (prev.y != rel.y || lastg.x != thisg.x) {
  255. if (prev.y != rel.y) {
  256. prev.y = rel.y;
  257. ratio.y = rel.y * ABL_BG_FACTOR(y);
  258. const float gy = constrain(FLOOR(ratio.y), 0, ABL_BG_POINTS_Y - (FAR_EDGE_OR_BOX));
  259. ratio.y -= gy;
  260. #if DISABLED(EXTRAPOLATE_BEYOND_GRID)
  261. // Beyond the grid maintain height at grid edges
  262. NOLESS(ratio.y, 0); // Never < 0.0. (> 1.0 is ok when nextg.y==thisg.y.)
  263. #endif
  264. thisg.y = gy;
  265. nextg.y = _MIN(thisg.y + 1, ABL_BG_POINTS_Y - 1);
  266. }
  267. if (lastg != thisg) {
  268. lastg = thisg;
  269. // Z at the box corners
  270. z1 = ABL_BG_GRID(thisg.x, thisg.y); // left-front
  271. d2 = ABL_BG_GRID(thisg.x, nextg.y) - z1; // left-back (delta)
  272. z3 = ABL_BG_GRID(nextg.x, thisg.y); // right-front
  273. d4 = ABL_BG_GRID(nextg.x, nextg.y) - z3; // right-back (delta)
  274. }
  275. // Bilinear interpolate. Needed since rel.y or thisg.x has changed.
  276. L = z1 + d2 * ratio.y; // Linear interp. LF -> LB
  277. const float R = z3 + d4 * ratio.y; // Linear interp. RF -> RB
  278. D = R - L;
  279. }
  280. const float offset = L + ratio.x * D; // the offset almost always changes
  281. /*
  282. static float last_offset = 0;
  283. if (ABS(last_offset - offset) > 0.2) {
  284. SERIAL_ECHOLNPAIR("Sudden Shift at x=", rel.x, " / ", bilinear_grid_spacing.x, " -> thisg.x=", thisg.x);
  285. SERIAL_ECHOLNPAIR(" y=", rel.y, " / ", bilinear_grid_spacing.y, " -> thisg.y=", thisg.y);
  286. SERIAL_ECHOLNPAIR(" ratio.x=", ratio.x, " ratio.y=", ratio.y);
  287. SERIAL_ECHOLNPAIR(" z1=", z1, " z2=", z2, " z3=", z3, " z4=", z4);
  288. SERIAL_ECHOLNPAIR(" L=", L, " R=", R, " offset=", offset);
  289. }
  290. last_offset = offset;
  291. //*/
  292. return offset;
  293. }
  294. #if IS_CARTESIAN && DISABLED(SEGMENT_LEVELED_MOVES)
  295. #define CELL_INDEX(A,V) ((V - bilinear_start.A) * ABL_BG_FACTOR(A))
  296. /**
  297. * Prepare a bilinear-leveled linear move on Cartesian,
  298. * splitting the move where it crosses grid borders.
  299. */
  300. void bilinear_line_to_destination(const feedRate_t &scaled_fr_mm_s, uint16_t x_splits, uint16_t y_splits) {
  301. // Get current and destination cells for this line
  302. xy_int_t c1 { CELL_INDEX(x, current_position.x), CELL_INDEX(y, current_position.y) },
  303. c2 { CELL_INDEX(x, destination.x), CELL_INDEX(y, destination.y) };
  304. LIMIT(c1.x, 0, ABL_BG_POINTS_X - 2);
  305. LIMIT(c1.y, 0, ABL_BG_POINTS_Y - 2);
  306. LIMIT(c2.x, 0, ABL_BG_POINTS_X - 2);
  307. LIMIT(c2.y, 0, ABL_BG_POINTS_Y - 2);
  308. // Start and end in the same cell? No split needed.
  309. if (c1 == c2) {
  310. current_position = destination;
  311. line_to_current_position(scaled_fr_mm_s);
  312. return;
  313. }
  314. #define LINE_SEGMENT_END(A) (current_position.A + (destination.A - current_position.A) * normalized_dist)
  315. float normalized_dist;
  316. xyze_pos_t end;
  317. const xy_int8_t gc { _MAX(c1.x, c2.x), _MAX(c1.y, c2.y) };
  318. // Crosses on the X and not already split on this X?
  319. // The x_splits flags are insurance against rounding errors.
  320. if (c2.x != c1.x && TEST(x_splits, gc.x)) {
  321. // Split on the X grid line
  322. CBI(x_splits, gc.x);
  323. end = destination;
  324. destination.x = bilinear_start.x + ABL_BG_SPACING(x) * gc.x;
  325. normalized_dist = (destination.x - current_position.x) / (end.x - current_position.x);
  326. destination.y = LINE_SEGMENT_END(y);
  327. }
  328. // Crosses on the Y and not already split on this Y?
  329. else if (c2.y != c1.y && TEST(y_splits, gc.y)) {
  330. // Split on the Y grid line
  331. CBI(y_splits, gc.y);
  332. end = destination;
  333. destination.y = bilinear_start.y + ABL_BG_SPACING(y) * gc.y;
  334. normalized_dist = (destination.y - current_position.y) / (end.y - current_position.y);
  335. destination.x = LINE_SEGMENT_END(x);
  336. }
  337. else {
  338. // Must already have been split on these border(s)
  339. // This should be a rare case.
  340. current_position = destination;
  341. line_to_current_position(scaled_fr_mm_s);
  342. return;
  343. }
  344. destination.z = LINE_SEGMENT_END(z);
  345. destination.e = LINE_SEGMENT_END(e);
  346. // Do the split and look for more borders
  347. bilinear_line_to_destination(scaled_fr_mm_s, x_splits, y_splits);
  348. // Restore destination from stack
  349. destination = end;
  350. bilinear_line_to_destination(scaled_fr_mm_s, x_splits, y_splits);
  351. }
  352. #endif // IS_CARTESIAN && !SEGMENT_LEVELED_MOVES
  353. #endif // AUTO_BED_LEVELING_BILINEAR