My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Nevar pievienot vairāk kā 25 tēmas Tēmai ir jāsākas ar burtu vai ciparu, tā var saturēt domu zīmes ('-') un var būt līdz 35 simboliem gara.

temperature.h 24KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. #pragma once
  23. /**
  24. * temperature.h - temperature controller
  25. */
  26. #include "thermistor/thermistors.h"
  27. #include "../inc/MarlinConfig.h"
  28. #if ENABLED(AUTO_POWER_CONTROL)
  29. #include "../feature/power.h"
  30. #endif
  31. #ifndef SOFT_PWM_SCALE
  32. #define SOFT_PWM_SCALE 0
  33. #endif
  34. #if HOTENDS <= 1
  35. #define HOTEND_INDEX 0
  36. #define E_NAME
  37. #else
  38. #define HOTEND_INDEX e
  39. #define E_NAME e
  40. #endif
  41. // Identifiers for other heaters
  42. typedef enum : int8_t {
  43. INDEX_NONE = -4,
  44. H_REDUNDANT, H_CHAMBER, H_BED,
  45. H_E0, H_E1, H_E2, H_E3, H_E4, H_E5
  46. } heater_ind_t;
  47. // PID storage
  48. typedef struct { float Kp, Ki, Kd; } PID_t;
  49. typedef struct { float Kp, Ki, Kd, Kc; } PIDC_t;
  50. typedef struct { float Kp, Ki, Kd, Kf; } PIDF_t;
  51. typedef struct { float Kp, Ki, Kd, Kc, Kf; } PIDCF_t;
  52. typedef
  53. #if BOTH(PID_EXTRUSION_SCALING, PID_FAN_SCALING)
  54. PIDCF_t
  55. #elif ENABLED(PID_EXTRUSION_SCALING)
  56. PIDC_t
  57. #elif ENABLED(PID_FAN_SCALING)
  58. PIDF_t
  59. #else
  60. PID_t
  61. #endif
  62. hotend_pid_t;
  63. #if ENABLED(PID_EXTRUSION_SCALING)
  64. typedef IF<(LPQ_MAX_LEN > 255), uint16_t, uint8_t>::type lpq_ptr_t;
  65. #endif
  66. #define DUMMY_PID_VALUE 3000.0f
  67. #if ENABLED(PIDTEMP)
  68. #define _PID_Kp(H) Temperature::temp_hotend[H].pid.Kp
  69. #define _PID_Ki(H) Temperature::temp_hotend[H].pid.Ki
  70. #define _PID_Kd(H) Temperature::temp_hotend[H].pid.Kd
  71. #if ENABLED(PID_EXTRUSION_SCALING)
  72. #define _PID_Kc(H) Temperature::temp_hotend[H].pid.Kc
  73. #else
  74. #define _PID_Kc(H) 1
  75. #endif
  76. #if ENABLED(PID_FAN_SCALING)
  77. #define _PID_Kf(H) Temperature::temp_hotend[H].pid.Kf
  78. #else
  79. #define _PID_Kf(H) 0
  80. #endif
  81. #else
  82. #define _PID_Kp(H) DUMMY_PID_VALUE
  83. #define _PID_Ki(H) DUMMY_PID_VALUE
  84. #define _PID_Kd(H) DUMMY_PID_VALUE
  85. #define _PID_Kc(H) 1
  86. #endif
  87. #define PID_PARAM(F,H) _PID_##F(H)
  88. /**
  89. * States for ADC reading in the ISR
  90. */
  91. enum ADCSensorState : char {
  92. StartSampling,
  93. #if HAS_TEMP_ADC_0
  94. PrepareTemp_0, MeasureTemp_0,
  95. #endif
  96. #if HAS_HEATED_BED
  97. PrepareTemp_BED, MeasureTemp_BED,
  98. #endif
  99. #if HAS_TEMP_CHAMBER
  100. PrepareTemp_CHAMBER, MeasureTemp_CHAMBER,
  101. #endif
  102. #if HAS_TEMP_ADC_1
  103. PrepareTemp_1, MeasureTemp_1,
  104. #endif
  105. #if HAS_TEMP_ADC_2
  106. PrepareTemp_2, MeasureTemp_2,
  107. #endif
  108. #if HAS_TEMP_ADC_3
  109. PrepareTemp_3, MeasureTemp_3,
  110. #endif
  111. #if HAS_TEMP_ADC_4
  112. PrepareTemp_4, MeasureTemp_4,
  113. #endif
  114. #if HAS_TEMP_ADC_5
  115. PrepareTemp_5, MeasureTemp_5,
  116. #endif
  117. #if HAS_JOY_ADC_X
  118. PrepareJoy_X, MeasureJoy_X,
  119. #endif
  120. #if HAS_JOY_ADC_Y
  121. PrepareJoy_Y, MeasureJoy_Y,
  122. #endif
  123. #if HAS_JOY_ADC_Z
  124. PrepareJoy_Z, MeasureJoy_Z,
  125. #endif
  126. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  127. Prepare_FILWIDTH, Measure_FILWIDTH,
  128. #endif
  129. #if HAS_ADC_BUTTONS
  130. Prepare_ADC_KEY, Measure_ADC_KEY,
  131. #endif
  132. SensorsReady, // Temperatures ready. Delay the next round of readings to let ADC pins settle.
  133. StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
  134. };
  135. // Minimum number of Temperature::ISR loops between sensor readings.
  136. // Multiplied by 16 (OVERSAMPLENR) to obtain the total time to
  137. // get all oversampled sensor readings
  138. #define MIN_ADC_ISR_LOOPS 10
  139. #define ACTUAL_ADC_SAMPLES _MAX(int(MIN_ADC_ISR_LOOPS), int(SensorsReady))
  140. #if HAS_PID_HEATING
  141. #define PID_K2 (1-float(PID_K1))
  142. #define PID_dT ((OVERSAMPLENR * float(ACTUAL_ADC_SAMPLES)) / TEMP_TIMER_FREQUENCY)
  143. // Apply the scale factors to the PID values
  144. #define scalePID_i(i) ( float(i) * PID_dT )
  145. #define unscalePID_i(i) ( float(i) / PID_dT )
  146. #define scalePID_d(d) ( float(d) / PID_dT )
  147. #define unscalePID_d(d) ( float(d) * PID_dT )
  148. #endif
  149. #define G26_CLICK_CAN_CANCEL (HAS_LCD_MENU && ENABLED(G26_MESH_VALIDATION))
  150. // A temperature sensor
  151. typedef struct TempInfo {
  152. uint16_t acc;
  153. int16_t raw;
  154. float celsius;
  155. inline void reset() { acc = 0; }
  156. inline void sample(const uint16_t s) { acc += s; }
  157. inline void update() { raw = acc; }
  158. } temp_info_t;
  159. // A PWM heater with temperature sensor
  160. typedef struct HeaterInfo : public TempInfo {
  161. int16_t target;
  162. uint8_t soft_pwm_amount;
  163. } heater_info_t;
  164. // A heater with PID stabilization
  165. template<typename T>
  166. struct PIDHeaterInfo : public HeaterInfo {
  167. T pid; // Initialized by settings.load()
  168. };
  169. #if ENABLED(PIDTEMP)
  170. typedef struct PIDHeaterInfo<hotend_pid_t> hotend_info_t;
  171. #else
  172. typedef heater_info_t hotend_info_t;
  173. #endif
  174. #if HAS_HEATED_BED
  175. #if ENABLED(PIDTEMPBED)
  176. typedef struct PIDHeaterInfo<PID_t> bed_info_t;
  177. #else
  178. typedef heater_info_t bed_info_t;
  179. #endif
  180. #endif
  181. #if HAS_HEATED_CHAMBER
  182. typedef heater_info_t chamber_info_t;
  183. #elif HAS_TEMP_CHAMBER
  184. typedef temp_info_t chamber_info_t;
  185. #endif
  186. // Heater idle handling
  187. typedef struct {
  188. millis_t timeout_ms;
  189. bool timed_out;
  190. inline void update(const millis_t &ms) { if (!timed_out && timeout_ms && ELAPSED(ms, timeout_ms)) timed_out = true; }
  191. inline void start(const millis_t &ms) { timeout_ms = millis() + ms; timed_out = false; }
  192. inline void reset() { timeout_ms = 0; timed_out = false; }
  193. inline void expire() { start(0); }
  194. } heater_idle_t;
  195. // Heater watch handling
  196. typedef struct {
  197. uint16_t target;
  198. millis_t next_ms;
  199. inline bool elapsed(const millis_t &ms) { return next_ms && ELAPSED(ms, next_ms); }
  200. inline bool elapsed() { return elapsed(millis()); }
  201. } heater_watch_t;
  202. // Temperature sensor read value ranges
  203. typedef struct { int16_t raw_min, raw_max; } raw_range_t;
  204. typedef struct { int16_t mintemp, maxtemp; } celsius_range_t;
  205. typedef struct { int16_t raw_min, raw_max, mintemp, maxtemp; } temp_range_t;
  206. #define THERMISTOR_ABS_ZERO_C -273.15f // bbbbrrrrr cold !
  207. #define THERMISTOR_RESISTANCE_NOMINAL_C 25.0f // mmmmm comfortable
  208. #if HAS_USER_THERMISTORS
  209. enum CustomThermistorIndex : uint8_t {
  210. #if ENABLED(HEATER_0_USER_THERMISTOR)
  211. CTI_HOTEND_0,
  212. #endif
  213. #if ENABLED(HEATER_1_USER_THERMISTOR)
  214. CTI_HOTEND_1,
  215. #endif
  216. #if ENABLED(HEATER_2_USER_THERMISTOR)
  217. CTI_HOTEND_2,
  218. #endif
  219. #if ENABLED(HEATER_3_USER_THERMISTOR)
  220. CTI_HOTEND_3,
  221. #endif
  222. #if ENABLED(HEATER_4_USER_THERMISTOR)
  223. CTI_HOTEND_4,
  224. #endif
  225. #if ENABLED(HEATER_5_USER_THERMISTOR)
  226. CTI_HOTEND_5,
  227. #endif
  228. #if ENABLED(HEATER_BED_USER_THERMISTOR)
  229. CTI_BED,
  230. #endif
  231. #if ENABLED(HEATER_CHAMBER_USER_THERMISTOR)
  232. CTI_CHAMBER,
  233. #endif
  234. USER_THERMISTORS
  235. };
  236. // User-defined thermistor
  237. typedef struct {
  238. bool pre_calc; // true if pre-calculations update needed
  239. float sh_c_coeff, // Steinhart-Hart C coefficient .. defaults to '0.0'
  240. sh_alpha,
  241. series_res,
  242. res_25, res_25_recip,
  243. res_25_log,
  244. beta, beta_recip;
  245. } user_thermistor_t;
  246. #endif
  247. class Temperature {
  248. public:
  249. #if HOTENDS
  250. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  251. #define HOTEND_TEMPS (HOTENDS + 1)
  252. #else
  253. #define HOTEND_TEMPS HOTENDS
  254. #endif
  255. static hotend_info_t temp_hotend[HOTEND_TEMPS];
  256. #endif
  257. #if HAS_HEATED_BED
  258. static bed_info_t temp_bed;
  259. #endif
  260. #if HAS_TEMP_CHAMBER
  261. static chamber_info_t temp_chamber;
  262. #endif
  263. #if ENABLED(AUTO_POWER_E_FANS)
  264. static uint8_t autofan_speed[HOTENDS];
  265. #endif
  266. #if ENABLED(AUTO_POWER_CHAMBER_FAN)
  267. static uint8_t chamberfan_speed;
  268. #endif
  269. #if ENABLED(FAN_SOFT_PWM)
  270. static uint8_t soft_pwm_amount_fan[FAN_COUNT],
  271. soft_pwm_count_fan[FAN_COUNT];
  272. #endif
  273. #if ENABLED(PREVENT_COLD_EXTRUSION)
  274. static bool allow_cold_extrude;
  275. static int16_t extrude_min_temp;
  276. FORCE_INLINE static bool tooCold(const int16_t temp) { return allow_cold_extrude ? false : temp < extrude_min_temp; }
  277. FORCE_INLINE static bool tooColdToExtrude(const uint8_t E_NAME) {
  278. return tooCold(degHotend(HOTEND_INDEX));
  279. }
  280. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t E_NAME) {
  281. return tooCold(degTargetHotend(HOTEND_INDEX));
  282. }
  283. #else
  284. FORCE_INLINE static bool tooColdToExtrude(const uint8_t) { return false; }
  285. FORCE_INLINE static bool targetTooColdToExtrude(const uint8_t) { return false; }
  286. #endif
  287. FORCE_INLINE static bool hotEnoughToExtrude(const uint8_t e) { return !tooColdToExtrude(e); }
  288. FORCE_INLINE static bool targetHotEnoughToExtrude(const uint8_t e) { return !targetTooColdToExtrude(e); }
  289. #if HEATER_IDLE_HANDLER
  290. static heater_idle_t hotend_idle[HOTENDS];
  291. #if HAS_HEATED_BED
  292. static heater_idle_t bed_idle;
  293. #endif
  294. #if HAS_HEATED_CHAMBER
  295. static heater_idle_t chamber_idle;
  296. #endif
  297. #endif
  298. private:
  299. #if EARLY_WATCHDOG
  300. static bool inited; // If temperature controller is running
  301. #endif
  302. static volatile bool temp_meas_ready;
  303. #if WATCH_HOTENDS
  304. static heater_watch_t watch_hotend[HOTENDS];
  305. #endif
  306. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  307. static uint16_t redundant_temperature_raw;
  308. static float redundant_temperature;
  309. #endif
  310. #if ENABLED(PID_EXTRUSION_SCALING)
  311. static int32_t last_e_position, lpq[LPQ_MAX_LEN];
  312. static lpq_ptr_t lpq_ptr;
  313. #endif
  314. #if HOTENDS
  315. static temp_range_t temp_range[HOTENDS];
  316. #endif
  317. #if HAS_HEATED_BED
  318. #if WATCH_BED
  319. static heater_watch_t watch_bed;
  320. #endif
  321. #if DISABLED(PIDTEMPBED)
  322. static millis_t next_bed_check_ms;
  323. #endif
  324. #ifdef BED_MINTEMP
  325. static int16_t mintemp_raw_BED;
  326. #endif
  327. #ifdef BED_MAXTEMP
  328. static int16_t maxtemp_raw_BED;
  329. #endif
  330. #endif
  331. #if HAS_HEATED_CHAMBER
  332. #if WATCH_CHAMBER
  333. static heater_watch_t watch_chamber;
  334. #endif
  335. static millis_t next_chamber_check_ms;
  336. #ifdef CHAMBER_MINTEMP
  337. static int16_t mintemp_raw_CHAMBER;
  338. #endif
  339. #ifdef CHAMBER_MAXTEMP
  340. static int16_t maxtemp_raw_CHAMBER;
  341. #endif
  342. #endif
  343. #ifdef MAX_CONSECUTIVE_LOW_TEMPERATURE_ERROR_ALLOWED
  344. static uint8_t consecutive_low_temperature_error[HOTENDS];
  345. #endif
  346. #ifdef MILLISECONDS_PREHEAT_TIME
  347. static millis_t preheat_end_time[HOTENDS];
  348. #endif
  349. #if HAS_AUTO_FAN
  350. static millis_t next_auto_fan_check_ms;
  351. #endif
  352. #if ENABLED(PROBING_HEATERS_OFF)
  353. static bool paused;
  354. #endif
  355. public:
  356. #if HAS_ADC_BUTTONS
  357. static uint32_t current_ADCKey_raw;
  358. static uint8_t ADCKey_count;
  359. #endif
  360. #if ENABLED(PID_EXTRUSION_SCALING)
  361. static int16_t lpq_len;
  362. #endif
  363. /**
  364. * Instance Methods
  365. */
  366. void init();
  367. /**
  368. * Static (class) methods
  369. */
  370. #if HAS_USER_THERMISTORS
  371. static user_thermistor_t user_thermistor[USER_THERMISTORS];
  372. static void log_user_thermistor(const uint8_t t_index, const bool eprom=false);
  373. static void reset_user_thermistors();
  374. static float user_thermistor_to_deg_c(const uint8_t t_index, const int raw);
  375. static bool set_pull_up_res(int8_t t_index, float value) {
  376. //if (!WITHIN(t_index, 0, USER_THERMISTORS - 1)) return false;
  377. if (!WITHIN(value, 1, 1000000)) return false;
  378. user_thermistor[t_index].series_res = value;
  379. return true;
  380. }
  381. static bool set_res25(int8_t t_index, float value) {
  382. if (!WITHIN(value, 1, 10000000)) return false;
  383. user_thermistor[t_index].res_25 = value;
  384. user_thermistor[t_index].pre_calc = true;
  385. return true;
  386. }
  387. static bool set_beta(int8_t t_index, float value) {
  388. if (!WITHIN(value, 1, 1000000)) return false;
  389. user_thermistor[t_index].beta = value;
  390. user_thermistor[t_index].pre_calc = true;
  391. return true;
  392. }
  393. static bool set_sh_coeff(int8_t t_index, float value) {
  394. if (!WITHIN(value, -0.01f, 0.01f)) return false;
  395. user_thermistor[t_index].sh_c_coeff = value;
  396. user_thermistor[t_index].pre_calc = true;
  397. return true;
  398. }
  399. #endif
  400. #if HOTENDS
  401. static float analog_to_celsius_hotend(const int raw, const uint8_t e);
  402. #endif
  403. #if HAS_HEATED_BED
  404. static float analog_to_celsius_bed(const int raw);
  405. #endif
  406. #if HAS_TEMP_CHAMBER
  407. static float analog_to_celsius_chamber(const int raw);
  408. #endif
  409. #if FAN_COUNT > 0
  410. static uint8_t fan_speed[FAN_COUNT];
  411. #define FANS_LOOP(I) LOOP_L_N(I, FAN_COUNT)
  412. static void set_fan_speed(const uint8_t target, const uint16_t speed);
  413. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  414. static bool fans_paused;
  415. static uint8_t saved_fan_speed[FAN_COUNT];
  416. #endif
  417. static constexpr inline uint8_t fanPercent(const uint8_t speed) { return ui8_to_percent(speed); }
  418. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  419. static uint8_t fan_speed_scaler[FAN_COUNT];
  420. #endif
  421. static inline uint8_t scaledFanSpeed(const uint8_t target, const uint8_t fs) {
  422. UNUSED(target); // Potentially unused!
  423. return (fs * uint16_t(
  424. #if ENABLED(ADAPTIVE_FAN_SLOWING)
  425. fan_speed_scaler[target]
  426. #else
  427. 128
  428. #endif
  429. )) >> 7;
  430. }
  431. static inline uint8_t scaledFanSpeed(const uint8_t target) {
  432. return scaledFanSpeed(target, fan_speed[target]);
  433. }
  434. #if ENABLED(EXTRA_FAN_SPEED)
  435. static uint8_t old_fan_speed[FAN_COUNT], new_fan_speed[FAN_COUNT];
  436. static void set_temp_fan_speed(const uint8_t fan, const uint16_t tmp_temp);
  437. #endif
  438. #if EITHER(PROBING_FANS_OFF, ADVANCED_PAUSE_FANS_PAUSE)
  439. void set_fans_paused(const bool p);
  440. #endif
  441. #endif // FAN_COUNT > 0
  442. static inline void zero_fan_speeds() {
  443. #if FAN_COUNT > 0
  444. FANS_LOOP(i) set_fan_speed(i, 0);
  445. #endif
  446. }
  447. /**
  448. * Called from the Temperature ISR
  449. */
  450. static void readings_ready();
  451. static void tick();
  452. /**
  453. * Call periodically to manage heaters
  454. */
  455. static void manage_heater() _O2; // Added _O2 to work around a compiler error
  456. /**
  457. * Preheating hotends
  458. */
  459. #ifdef MILLISECONDS_PREHEAT_TIME
  460. static bool is_preheating(const uint8_t E_NAME) {
  461. return preheat_end_time[HOTEND_INDEX] && PENDING(millis(), preheat_end_time[HOTEND_INDEX]);
  462. }
  463. static void start_preheat_time(const uint8_t E_NAME) {
  464. preheat_end_time[HOTEND_INDEX] = millis() + MILLISECONDS_PREHEAT_TIME;
  465. }
  466. static void reset_preheat_time(const uint8_t E_NAME) {
  467. preheat_end_time[HOTEND_INDEX] = 0;
  468. }
  469. #else
  470. #define is_preheating(n) (false)
  471. #endif
  472. //high level conversion routines, for use outside of temperature.cpp
  473. //inline so that there is no performance decrease.
  474. //deg=degreeCelsius
  475. FORCE_INLINE static float degHotend(const uint8_t E_NAME) {
  476. return (0
  477. #if HOTENDS
  478. + temp_hotend[HOTEND_INDEX].celsius
  479. #endif
  480. );
  481. }
  482. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  483. FORCE_INLINE static int16_t rawHotendTemp(const uint8_t E_NAME) {
  484. return (0
  485. #if HOTENDS
  486. + temp_hotend[HOTEND_INDEX].raw
  487. #endif
  488. );
  489. }
  490. #endif
  491. FORCE_INLINE static int16_t degTargetHotend(const uint8_t E_NAME) {
  492. return (0
  493. #if HOTENDS
  494. + temp_hotend[HOTEND_INDEX].target
  495. #endif
  496. );
  497. }
  498. #if WATCH_HOTENDS
  499. static void start_watching_hotend(const uint8_t e=0);
  500. #else
  501. static inline void start_watching_hotend(const uint8_t=0) {}
  502. #endif
  503. #if HOTENDS
  504. static void setTargetHotend(const int16_t celsius, const uint8_t E_NAME) {
  505. const uint8_t ee = HOTEND_INDEX;
  506. #ifdef MILLISECONDS_PREHEAT_TIME
  507. if (celsius == 0)
  508. reset_preheat_time(ee);
  509. else if (temp_hotend[ee].target == 0)
  510. start_preheat_time(ee);
  511. #endif
  512. #if ENABLED(AUTO_POWER_CONTROL)
  513. powerManager.power_on();
  514. #endif
  515. temp_hotend[ee].target = _MIN(celsius, temp_range[ee].maxtemp - 15);
  516. start_watching_hotend(ee);
  517. }
  518. FORCE_INLINE static bool isHeatingHotend(const uint8_t E_NAME) {
  519. return temp_hotend[HOTEND_INDEX].target > temp_hotend[HOTEND_INDEX].celsius;
  520. }
  521. FORCE_INLINE static bool isCoolingHotend(const uint8_t E_NAME) {
  522. return temp_hotend[HOTEND_INDEX].target < temp_hotend[HOTEND_INDEX].celsius;
  523. }
  524. #if HAS_TEMP_HOTEND
  525. static bool wait_for_hotend(const uint8_t target_extruder, const bool no_wait_for_cooling=true
  526. #if G26_CLICK_CAN_CANCEL
  527. , const bool click_to_cancel=false
  528. #endif
  529. );
  530. #endif
  531. FORCE_INLINE static bool still_heating(const uint8_t e) {
  532. return degTargetHotend(e) > TEMP_HYSTERESIS && ABS(degHotend(e) - degTargetHotend(e)) > TEMP_HYSTERESIS;
  533. }
  534. #endif // HOTENDS
  535. #if HAS_HEATED_BED
  536. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  537. FORCE_INLINE static int16_t rawBedTemp() { return temp_bed.raw; }
  538. #endif
  539. FORCE_INLINE static float degBed() { return temp_bed.celsius; }
  540. FORCE_INLINE static int16_t degTargetBed() { return temp_bed.target; }
  541. FORCE_INLINE static bool isHeatingBed() { return temp_bed.target > temp_bed.celsius; }
  542. FORCE_INLINE static bool isCoolingBed() { return temp_bed.target < temp_bed.celsius; }
  543. #if WATCH_BED
  544. static void start_watching_bed();
  545. #else
  546. static inline void start_watching_bed() {}
  547. #endif
  548. static void setTargetBed(const int16_t celsius) {
  549. #if ENABLED(AUTO_POWER_CONTROL)
  550. powerManager.power_on();
  551. #endif
  552. temp_bed.target =
  553. #ifdef BED_MAXTEMP
  554. _MIN(celsius, BED_MAXTEMP - 10)
  555. #else
  556. celsius
  557. #endif
  558. ;
  559. start_watching_bed();
  560. }
  561. static bool wait_for_bed(const bool no_wait_for_cooling=true
  562. #if G26_CLICK_CAN_CANCEL
  563. , const bool click_to_cancel=false
  564. #endif
  565. );
  566. #endif // HAS_HEATED_BED
  567. #if HAS_TEMP_CHAMBER
  568. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  569. FORCE_INLINE static int16_t rawChamberTemp() { return temp_chamber.raw; }
  570. #endif
  571. FORCE_INLINE static float degChamber() { return temp_chamber.celsius; }
  572. #if HAS_HEATED_CHAMBER
  573. FORCE_INLINE static int16_t degTargetChamber() { return temp_chamber.target; }
  574. FORCE_INLINE static bool isHeatingChamber() { return temp_chamber.target > temp_chamber.celsius; }
  575. FORCE_INLINE static bool isCoolingChamber() { return temp_chamber.target < temp_chamber.celsius; }
  576. static bool wait_for_chamber(const bool no_wait_for_cooling=true);
  577. #endif
  578. #endif // HAS_TEMP_CHAMBER
  579. #if WATCH_CHAMBER
  580. static void start_watching_chamber();
  581. #else
  582. static inline void start_watching_chamber() {}
  583. #endif
  584. #if HAS_HEATED_CHAMBER
  585. static void setTargetChamber(const int16_t celsius) {
  586. temp_chamber.target =
  587. #ifdef CHAMBER_MAXTEMP
  588. _MIN(celsius, CHAMBER_MAXTEMP)
  589. #else
  590. celsius
  591. #endif
  592. ;
  593. start_watching_chamber();
  594. }
  595. #endif // HAS_HEATED_CHAMBER
  596. /**
  597. * The software PWM power for a heater
  598. */
  599. static int16_t getHeaterPower(const heater_ind_t heater);
  600. /**
  601. * Switch off all heaters, set all target temperatures to 0
  602. */
  603. static void disable_all_heaters();
  604. /**
  605. * Perform auto-tuning for hotend or bed in response to M303
  606. */
  607. #if HAS_PID_HEATING
  608. static void PID_autotune(const float &target, const heater_ind_t hotend, const int8_t ncycles, const bool set_result=false);
  609. #if ENABLED(NO_FAN_SLOWING_IN_PID_TUNING)
  610. static bool adaptive_fan_slowing;
  611. #elif ENABLED(ADAPTIVE_FAN_SLOWING)
  612. static constexpr bool adaptive_fan_slowing = true;
  613. #endif
  614. /**
  615. * Update the temp manager when PID values change
  616. */
  617. #if ENABLED(PIDTEMP)
  618. FORCE_INLINE static void updatePID() {
  619. #if ENABLED(PID_EXTRUSION_SCALING)
  620. last_e_position = 0;
  621. #endif
  622. }
  623. #endif
  624. #endif
  625. #if ENABLED(PROBING_HEATERS_OFF)
  626. static void pause(const bool p);
  627. FORCE_INLINE static bool is_paused() { return paused; }
  628. #endif
  629. #if HEATER_IDLE_HANDLER
  630. static void reset_heater_idle_timer(const uint8_t E_NAME) {
  631. hotend_idle[HOTEND_INDEX].reset();
  632. start_watching_hotend(HOTEND_INDEX);
  633. }
  634. #if HAS_HEATED_BED
  635. static void reset_bed_idle_timer() {
  636. bed_idle.reset();
  637. start_watching_bed();
  638. }
  639. #endif
  640. #endif // HEATER_IDLE_HANDLER
  641. #if HAS_TEMP_SENSOR
  642. static void print_heater_states(const uint8_t target_extruder
  643. #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
  644. , const bool include_r=false
  645. #endif
  646. );
  647. #if ENABLED(AUTO_REPORT_TEMPERATURES)
  648. static uint8_t auto_report_temp_interval;
  649. static millis_t next_temp_report_ms;
  650. static void auto_report_temperatures();
  651. static inline void set_auto_report_interval(uint8_t v) {
  652. NOMORE(v, 60);
  653. auto_report_temp_interval = v;
  654. next_temp_report_ms = millis() + 1000UL * v;
  655. }
  656. #endif
  657. #endif
  658. #if HAS_DISPLAY
  659. static void set_heating_message(const uint8_t e);
  660. #endif
  661. private:
  662. static void set_current_temp_raw();
  663. static void updateTemperaturesFromRawValues();
  664. #define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  665. #if HAS_MAX6675
  666. #if BOTH(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)
  667. #define COUNT_6675 2
  668. #else
  669. #define COUNT_6675 1
  670. #endif
  671. #if COUNT_6675 > 1
  672. #define READ_MAX6675(N) read_max6675(N)
  673. #else
  674. #define READ_MAX6675(N) read_max6675()
  675. #endif
  676. static int read_max6675(
  677. #if COUNT_6675 > 1
  678. const uint8_t hindex=0
  679. #endif
  680. );
  681. #endif
  682. static void checkExtruderAutoFans();
  683. static float get_pid_output_hotend(const uint8_t e);
  684. #if ENABLED(PIDTEMPBED)
  685. static float get_pid_output_bed();
  686. #endif
  687. #if HAS_HEATED_CHAMBER
  688. static float get_pid_output_chamber();
  689. #endif
  690. static void _temp_error(const heater_ind_t e, PGM_P const serial_msg, PGM_P const lcd_msg);
  691. static void min_temp_error(const heater_ind_t e);
  692. static void max_temp_error(const heater_ind_t e);
  693. #define HAS_THERMAL_PROTECTION (EITHER(THERMAL_PROTECTION_HOTENDS, THERMAL_PROTECTION_CHAMBER) || HAS_THERMALLY_PROTECTED_BED)
  694. #if HAS_THERMAL_PROTECTION
  695. enum TRState : char { TRInactive, TRFirstHeating, TRStable, TRRunaway };
  696. typedef struct {
  697. millis_t timer = 0;
  698. TRState state = TRInactive;
  699. } tr_state_machine_t;
  700. #if ENABLED(THERMAL_PROTECTION_HOTENDS)
  701. static tr_state_machine_t tr_state_machine[HOTENDS];
  702. #endif
  703. #if HAS_THERMALLY_PROTECTED_BED
  704. static tr_state_machine_t tr_state_machine_bed;
  705. #endif
  706. #if ENABLED(THERMAL_PROTECTION_CHAMBER)
  707. static tr_state_machine_t tr_state_machine_chamber;
  708. #endif
  709. static void thermal_runaway_protection(tr_state_machine_t &state, const float &current, const float &target, const heater_ind_t heater_id, const uint16_t period_seconds, const uint16_t hysteresis_degc);
  710. #endif // HAS_THERMAL_PROTECTION
  711. };
  712. extern Temperature thermalManager;