My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Du kannst nicht mehr als 25 Themen auswählen Themen müssen mit entweder einem Buchstaben oder einer Ziffer beginnen. Sie können Bindestriche („-“) enthalten und bis zu 35 Zeichen lang sein.

Marlin.pde 41KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include "Marlin.h"
  23. #include "ultralcd.h"
  24. #include "planner.h"
  25. #include "stepper.h"
  26. #include "temperature.h"
  27. #include "motion_control.h"
  28. #include "cardreader.h"
  29. #include "watchdog.h"
  30. #include "EEPROMwrite.h"
  31. #define VERSION_STRING "1.0.0 RC1"
  32. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  33. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  34. //Implemented Codes
  35. //-------------------
  36. // G0 -> G1
  37. // G1 - Coordinated Movement X Y Z E
  38. // G2 - CW ARC
  39. // G3 - CCW ARC
  40. // G4 - Dwell S<seconds> or P<milliseconds>
  41. // G28 - Home all Axis
  42. // G90 - Use Absolute Coordinates
  43. // G91 - Use Relative Coordinates
  44. // G92 - Set current position to cordinates given
  45. //RepRap M Codes
  46. // M104 - Set extruder target temp
  47. // M105 - Read current temp
  48. // M106 - Fan on
  49. // M107 - Fan off
  50. // M109 - Wait for extruder current temp to reach target temp.
  51. // M114 - Display current position
  52. //Custom M Codes
  53. // M17 - Enable/Power all stepper motors
  54. // M18 - Disable all stepper motors; same as M84
  55. // M20 - List SD card
  56. // M21 - Init SD card
  57. // M22 - Release SD card
  58. // M23 - Select SD file (M23 filename.g)
  59. // M24 - Start/resume SD print
  60. // M25 - Pause SD print
  61. // M26 - Set SD position in bytes (M26 S12345)
  62. // M27 - Report SD print status
  63. // M28 - Start SD write (M28 filename.g)
  64. // M29 - Stop SD write
  65. // M30 - Output time since last M109 or SD card start to serial
  66. // M42 - Change pin status via gcode
  67. // M80 - Turn on Power Supply
  68. // M81 - Turn off Power Supply
  69. // M82 - Set E codes absolute (default)
  70. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  71. // M84 - Disable steppers until next move,
  72. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  73. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  74. // M92 - Set axis_steps_per_unit - same syntax as G92
  75. // M114 - Output current position to serial port
  76. // M115 - Capabilities string
  77. // M117 - display message
  78. // M119 - Output Endstop status to serial port
  79. // M140 - Set bed target temp
  80. // M190 - Wait for bed current temp to reach target temp.
  81. // M200 - Set filament diameter
  82. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  83. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  84. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  85. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  86. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  87. // M206 - set additional homeing offset
  88. // M220 - set speed factor override percentage S:factor in percent
  89. // M240 - Trigger a camera to take a photograph
  90. // M301 - Set PID parameters P I and D
  91. // M302 - Allow cold extrudes
  92. // M400 - Finish all moves
  93. // M500 - stores paramters in EEPROM
  94. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  95. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  96. // M503 - print the current settings (from memory not from eeprom)
  97. //Stepper Movement Variables
  98. //===========================================================================
  99. //=============================imported variables============================
  100. //===========================================================================
  101. //===========================================================================
  102. //=============================public variables=============================
  103. //===========================================================================
  104. #ifdef SDSUPPORT
  105. CardReader card;
  106. #endif
  107. float homing_feedrate[] = HOMING_FEEDRATE;
  108. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  109. volatile int feedmultiply=100; //100->1 200->2
  110. int saved_feedmultiply;
  111. volatile bool feedmultiplychanged=false;
  112. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  113. float add_homeing[3]={0,0,0};
  114. uint8_t active_extruder = 0;
  115. bool stop_heating_wait=false;
  116. //===========================================================================
  117. //=============================private variables=============================
  118. //===========================================================================
  119. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  120. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  121. static float offset[3] = {0.0, 0.0, 0.0};
  122. static bool home_all_axis = true;
  123. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  124. static long gcode_N, gcode_LastN;
  125. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  126. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  127. static uint8_t fanpwm=0;
  128. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  129. static bool fromsd[BUFSIZE];
  130. static int bufindr = 0;
  131. static int bufindw = 0;
  132. static int buflen = 0;
  133. //static int i = 0;
  134. static char serial_char;
  135. static int serial_count = 0;
  136. static boolean comment_mode = false;
  137. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  138. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  139. //static float tt = 0;
  140. //static float bt = 0;
  141. //Inactivity shutdown variables
  142. static unsigned long previous_millis_cmd = 0;
  143. static unsigned long max_inactive_time = 0;
  144. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000;
  145. static unsigned long last_stepperdisabled_time=30*1000; //first release check after 30 seconds
  146. static unsigned long starttime=0;
  147. static unsigned long stoptime=0;
  148. static uint8_t tmp_extruder;
  149. //===========================================================================
  150. //=============================ROUTINES=============================
  151. //===========================================================================
  152. void get_arc_coordinates();
  153. extern "C"{
  154. extern unsigned int __bss_end;
  155. extern unsigned int __heap_start;
  156. extern void *__brkval;
  157. int freeMemory() {
  158. int free_memory;
  159. if((int)__brkval == 0)
  160. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  161. else
  162. free_memory = ((int)&free_memory) - ((int)__brkval);
  163. return free_memory;
  164. }
  165. }
  166. //adds an command to the main command buffer
  167. //thats really done in a non-safe way.
  168. //needs overworking someday
  169. void enquecommand(const char *cmd)
  170. {
  171. if(buflen < BUFSIZE)
  172. {
  173. //this is dangerous if a mixing of serial and this happsens
  174. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  175. SERIAL_ECHO_START;
  176. SERIAL_ECHOPGM("enqueing \"");
  177. SERIAL_ECHO(cmdbuffer[bufindw]);
  178. SERIAL_ECHOLNPGM("\"");
  179. bufindw= (bufindw + 1)%BUFSIZE;
  180. buflen += 1;
  181. }
  182. }
  183. void setup_photpin()
  184. {
  185. #ifdef PHOTOGRAPH_PIN
  186. #if (PHOTOGRAPH_PIN > -1)
  187. SET_OUTPUT(PHOTOGRAPH_PIN);
  188. WRITE(PHOTOGRAPH_PIN, LOW);
  189. #endif
  190. #endif
  191. }
  192. void setup_powerhold()
  193. {
  194. #ifdef SUICIDE_PIN
  195. #if (SUICIDE_PIN> -1)
  196. SET_OUTPUT(SUICIDE_PIN);
  197. WRITE(SUICIDE_PIN, HIGH);
  198. #endif
  199. #endif
  200. }
  201. void suicide()
  202. {
  203. #ifdef SUICIDE_PIN
  204. #if (SUICIDE_PIN> -1)
  205. SET_OUTPUT(SUICIDE_PIN);
  206. WRITE(SUICIDE_PIN, LOW);
  207. #endif
  208. #endif
  209. }
  210. void setup()
  211. {
  212. setup_powerhold();
  213. MSerial.begin(BAUDRATE);
  214. SERIAL_ECHO_START;
  215. SERIAL_ECHOLNPGM(VERSION_STRING);
  216. SERIAL_PROTOCOLLNPGM("start");
  217. SERIAL_ECHO_START;
  218. SERIAL_ECHOPGM("Free Memory:");
  219. SERIAL_ECHO(freeMemory());
  220. SERIAL_ECHOPGM(" PlannerBufferBytes:");
  221. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  222. for(int8_t i = 0; i < BUFSIZE; i++)
  223. {
  224. fromsd[i] = false;
  225. }
  226. EEPROM_RetrieveSettings(); // loads data from EEPROM if available
  227. for(int8_t i=0; i < NUM_AXIS; i++)
  228. {
  229. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  230. }
  231. tp_init(); // Initialize temperature loop
  232. plan_init(); // Initialize planner;
  233. st_init(); // Initialize stepper;
  234. wd_init();
  235. setup_photpin();
  236. }
  237. void loop()
  238. {
  239. if(buflen<3)
  240. get_command();
  241. #ifdef SDSUPPORT
  242. card.checkautostart(false);
  243. #endif
  244. if(buflen)
  245. {
  246. #ifdef SDSUPPORT
  247. if(card.saving)
  248. {
  249. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  250. {
  251. card.write_command(cmdbuffer[bufindr]);
  252. SERIAL_PROTOCOLLNPGM("ok");
  253. }
  254. else
  255. {
  256. card.closefile();
  257. SERIAL_PROTOCOLLNPGM("Done saving file.");
  258. }
  259. }
  260. else
  261. {
  262. process_commands();
  263. }
  264. #else
  265. process_commands();
  266. #endif //SDSUPPORT
  267. buflen = (buflen-1);
  268. bufindr = (bufindr + 1)%BUFSIZE;
  269. }
  270. //check heater every n milliseconds
  271. manage_heater();
  272. manage_inactivity(1);
  273. checkHitEndstops();
  274. LCD_STATUS;
  275. }
  276. void get_command()
  277. {
  278. while( MSerial.available() > 0 && buflen < BUFSIZE) {
  279. serial_char = MSerial.read();
  280. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  281. {
  282. if(!serial_count) return; //if empty line
  283. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  284. if(!comment_mode){
  285. fromsd[bufindw] = false;
  286. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  287. {
  288. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  289. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  290. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  291. SERIAL_ERROR_START;
  292. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  293. SERIAL_ERRORLN(gcode_LastN);
  294. //Serial.println(gcode_N);
  295. FlushSerialRequestResend();
  296. serial_count = 0;
  297. return;
  298. }
  299. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  300. {
  301. byte checksum = 0;
  302. byte count = 0;
  303. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  304. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  305. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  306. SERIAL_ERROR_START;
  307. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  308. SERIAL_ERRORLN(gcode_LastN);
  309. FlushSerialRequestResend();
  310. serial_count = 0;
  311. return;
  312. }
  313. //if no errors, continue parsing
  314. }
  315. else
  316. {
  317. SERIAL_ERROR_START;
  318. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  319. SERIAL_ERRORLN(gcode_LastN);
  320. FlushSerialRequestResend();
  321. serial_count = 0;
  322. return;
  323. }
  324. gcode_LastN = gcode_N;
  325. //if no errors, continue parsing
  326. }
  327. else // if we don't receive 'N' but still see '*'
  328. {
  329. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  330. {
  331. SERIAL_ERROR_START;
  332. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  333. SERIAL_ERRORLN(gcode_LastN);
  334. serial_count = 0;
  335. return;
  336. }
  337. }
  338. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  339. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  340. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  341. case 0:
  342. case 1:
  343. case 2:
  344. case 3:
  345. #ifdef SDSUPPORT
  346. if(card.saving)
  347. break;
  348. #endif //SDSUPPORT
  349. SERIAL_PROTOCOLLNPGM("ok");
  350. break;
  351. default:
  352. break;
  353. }
  354. }
  355. bufindw = (bufindw + 1)%BUFSIZE;
  356. buflen += 1;
  357. }
  358. comment_mode = false; //for new command
  359. serial_count = 0; //clear buffer
  360. }
  361. else
  362. {
  363. if(serial_char == ';') comment_mode = true;
  364. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  365. }
  366. }
  367. #ifdef SDSUPPORT
  368. if(!card.sdprinting || serial_count!=0){
  369. return;
  370. }
  371. while( !card.eof() && buflen < BUFSIZE) {
  372. int16_t n=card.get();
  373. serial_char = (char)n;
  374. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  375. {
  376. if(card.eof()){
  377. SERIAL_PROTOCOLLNPGM("Done printing file");
  378. stoptime=millis();
  379. char time[30];
  380. unsigned long t=(stoptime-starttime)/1000;
  381. int sec,min;
  382. min=t/60;
  383. sec=t%60;
  384. sprintf(time,"%i min, %i sec",min,sec);
  385. SERIAL_ECHO_START;
  386. SERIAL_ECHOLN(time);
  387. LCD_MESSAGE(time);
  388. card.printingHasFinished();
  389. card.checkautostart(true);
  390. }
  391. if(serial_char=='\n')
  392. comment_mode = false; //for new command
  393. if(!serial_count)
  394. {
  395. return; //if empty line
  396. }
  397. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  398. if(!comment_mode){
  399. fromsd[bufindw] = true;
  400. buflen += 1;
  401. bufindw = (bufindw + 1)%BUFSIZE;
  402. }
  403. serial_count = 0; //clear buffer
  404. }
  405. else
  406. {
  407. if(serial_char == ';') comment_mode = true;
  408. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  409. }
  410. }
  411. #endif //SDSUPPORT
  412. }
  413. float code_value()
  414. {
  415. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  416. }
  417. long code_value_long()
  418. {
  419. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  420. }
  421. bool code_seen(char code_string[]) //Return True if the string was found
  422. {
  423. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  424. }
  425. bool code_seen(char code)
  426. {
  427. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  428. return (strchr_pointer != NULL); //Return True if a character was found
  429. }
  430. #define HOMEAXIS(LETTER) \
  431. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  432. { \
  433. current_position[LETTER##_AXIS] = 0; \
  434. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  435. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  436. feedrate = homing_feedrate[LETTER##_AXIS]; \
  437. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
  438. \
  439. current_position[LETTER##_AXIS] = 0;\
  440. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  441. destination[LETTER##_AXIS] = -LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  442. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
  443. \
  444. destination[LETTER##_AXIS] = 2*LETTER##_HOME_RETRACT_MM * LETTER##_HOME_DIR;\
  445. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  446. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder); \
  447. \
  448. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  449. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  450. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  451. feedrate = 0.0;\
  452. st_synchronize();\
  453. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  454. endstops_hit_on_purpose();\
  455. }
  456. void process_commands()
  457. {
  458. unsigned long codenum; //throw away variable
  459. char *starpos = NULL;
  460. if(code_seen('G'))
  461. {
  462. switch((int)code_value())
  463. {
  464. case 0: // G0 -> G1
  465. case 1: // G1
  466. get_coordinates(); // For X Y Z E F
  467. prepare_move();
  468. //ClearToSend();
  469. return;
  470. //break;
  471. case 2: // G2 - CW ARC
  472. get_arc_coordinates();
  473. prepare_arc_move(true);
  474. return;
  475. case 3: // G3 - CCW ARC
  476. get_arc_coordinates();
  477. prepare_arc_move(false);
  478. return;
  479. case 4: // G4 dwell
  480. LCD_MESSAGEPGM("DWELL...");
  481. codenum = 0;
  482. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  483. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  484. st_synchronize();
  485. codenum += millis(); // keep track of when we started waiting
  486. previous_millis_cmd = millis();
  487. while(millis() < codenum ){
  488. manage_heater();
  489. }
  490. break;
  491. case 28: //G28 Home all Axis one at a time
  492. saved_feedrate = feedrate;
  493. saved_feedmultiply = feedmultiply;
  494. feedmultiply = 100;
  495. enable_endstops(true);
  496. for(int8_t i=0; i < NUM_AXIS; i++) {
  497. destination[i] = current_position[i];
  498. }
  499. feedrate = 0.0;
  500. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  501. #ifdef QUICK_HOME
  502. if( code_seen(axis_codes[0]) && code_seen(axis_codes[1]) ) //first diagonal move
  503. {
  504. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  505. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  506. destination[X_AXIS] = 1.5 * X_MAX_LENGTH * X_HOME_DIR;destination[Y_AXIS] = 1.5 * Y_MAX_LENGTH * Y_HOME_DIR;
  507. feedrate = homing_feedrate[X_AXIS];
  508. if(homing_feedrate[Y_AXIS]<feedrate)
  509. feedrate =homing_feedrate[Y_AXIS];
  510. prepare_move();
  511. current_position[X_AXIS] = (X_HOME_DIR == -1) ? 0 : X_MAX_LENGTH;
  512. current_position[Y_AXIS] = (Y_HOME_DIR == -1) ? 0 : Y_MAX_LENGTH;
  513. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  514. destination[X_AXIS] = current_position[X_AXIS];
  515. destination[Y_AXIS] = current_position[Y_AXIS];
  516. feedrate = 0.0;
  517. st_synchronize();
  518. plan_set_position(0, 0, current_position[Z_AXIS], current_position[E_AXIS]);
  519. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  520. endstops_hit_on_purpose();
  521. }
  522. #endif
  523. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  524. {
  525. HOMEAXIS(X);
  526. }
  527. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  528. HOMEAXIS(Y);
  529. }
  530. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  531. HOMEAXIS(Z);
  532. }
  533. if(code_seen(axis_codes[X_AXIS]))
  534. {
  535. current_position[0]=code_value()+add_homeing[0];
  536. }
  537. if(code_seen(axis_codes[Y_AXIS])) {
  538. current_position[1]=code_value()+add_homeing[1];
  539. }
  540. if(code_seen(axis_codes[Z_AXIS])) {
  541. current_position[2]=code_value()+add_homeing[2];
  542. }
  543. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  544. enable_endstops(false);
  545. #endif
  546. feedrate = saved_feedrate;
  547. feedmultiply = saved_feedmultiply;
  548. previous_millis_cmd = millis();
  549. endstops_hit_on_purpose();
  550. break;
  551. case 90: // G90
  552. relative_mode = false;
  553. break;
  554. case 91: // G91
  555. relative_mode = true;
  556. break;
  557. case 92: // G92
  558. if(!code_seen(axis_codes[E_AXIS]))
  559. st_synchronize();
  560. for(int8_t i=0; i < NUM_AXIS; i++) {
  561. if(code_seen(axis_codes[i])) {
  562. current_position[i] = code_value()+add_homeing[i];
  563. if(i == E_AXIS) {
  564. current_position[i] = code_value();
  565. plan_set_e_position(current_position[E_AXIS]);
  566. }
  567. else {
  568. current_position[i] = code_value()+add_homeing[i];
  569. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  570. }
  571. }
  572. }
  573. break;
  574. }
  575. }
  576. else if(code_seen('M'))
  577. {
  578. switch( (int)code_value() )
  579. {
  580. case 17:
  581. LCD_MESSAGEPGM("No move.");
  582. enable_x();
  583. enable_y();
  584. enable_z();
  585. enable_e0();
  586. enable_e1();
  587. enable_e2();
  588. break;
  589. #ifdef SDSUPPORT
  590. case 20: // M20 - list SD card
  591. SERIAL_PROTOCOLLNPGM("Begin file list");
  592. card.ls();
  593. SERIAL_PROTOCOLLNPGM("End file list");
  594. break;
  595. case 21: // M21 - init SD card
  596. card.initsd();
  597. break;
  598. case 22: //M22 - release SD card
  599. card.release();
  600. break;
  601. case 23: //M23 - Select file
  602. starpos = (strchr(strchr_pointer + 4,'*'));
  603. if(starpos!=NULL)
  604. *(starpos-1)='\0';
  605. card.openFile(strchr_pointer + 4,true);
  606. break;
  607. case 24: //M24 - Start SD print
  608. card.startFileprint();
  609. starttime=millis();
  610. break;
  611. case 25: //M25 - Pause SD print
  612. card.pauseSDPrint();
  613. break;
  614. case 26: //M26 - Set SD index
  615. if(card.cardOK && code_seen('S')) {
  616. card.setIndex(code_value_long());
  617. }
  618. break;
  619. case 27: //M27 - Get SD status
  620. card.getStatus();
  621. break;
  622. case 28: //M28 - Start SD write
  623. starpos = (strchr(strchr_pointer + 4,'*'));
  624. if(starpos != NULL){
  625. char* npos = strchr(cmdbuffer[bufindr], 'N');
  626. strchr_pointer = strchr(npos,' ') + 1;
  627. *(starpos-1) = '\0';
  628. }
  629. card.openFile(strchr_pointer+4,false);
  630. break;
  631. case 29: //M29 - Stop SD write
  632. //processed in write to file routine above
  633. //card,saving = false;
  634. break;
  635. #endif //SDSUPPORT
  636. case 30: //M30 take time since the start of the SD print or an M109 command
  637. {
  638. stoptime=millis();
  639. char time[30];
  640. unsigned long t=(stoptime-starttime)/1000;
  641. int sec,min;
  642. min=t/60;
  643. sec=t%60;
  644. sprintf(time,"%i min, %i sec",min,sec);
  645. SERIAL_ECHO_START;
  646. SERIAL_ECHOLN(time);
  647. LCD_MESSAGE(time);
  648. autotempShutdown();
  649. }
  650. break;
  651. case 42: //M42 -Change pin status via gcode
  652. if (code_seen('S'))
  653. {
  654. int pin_status = code_value();
  655. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  656. {
  657. int pin_number = code_value();
  658. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  659. {
  660. if (sensitive_pins[i] == pin_number)
  661. {
  662. pin_number = -1;
  663. break;
  664. }
  665. }
  666. if (pin_number > -1)
  667. {
  668. pinMode(pin_number, OUTPUT);
  669. digitalWrite(pin_number, pin_status);
  670. analogWrite(pin_number, pin_status);
  671. }
  672. }
  673. }
  674. break;
  675. case 104: // M104
  676. tmp_extruder = active_extruder;
  677. if(code_seen('T')) {
  678. tmp_extruder = code_value();
  679. if(tmp_extruder >= EXTRUDERS) {
  680. SERIAL_ECHO_START;
  681. SERIAL_ECHO("M104 Invalid extruder ");
  682. SERIAL_ECHOLN(tmp_extruder);
  683. break;
  684. }
  685. }
  686. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  687. setWatch();
  688. break;
  689. case 140: // M140 set bed temp
  690. if (code_seen('S')) setTargetBed(code_value());
  691. break;
  692. case 105 : // M105
  693. tmp_extruder = active_extruder;
  694. if(code_seen('T')) {
  695. tmp_extruder = code_value();
  696. if(tmp_extruder >= EXTRUDERS) {
  697. SERIAL_ECHO_START;
  698. SERIAL_ECHO("M105 Invalid extruder ");
  699. SERIAL_ECHOLN(tmp_extruder);
  700. break;
  701. }
  702. }
  703. #if (TEMP_0_PIN > -1)
  704. SERIAL_PROTOCOLPGM("ok T:");
  705. SERIAL_PROTOCOL(degHotend(tmp_extruder));
  706. #if TEMP_BED_PIN > -1
  707. SERIAL_PROTOCOLPGM(" B:");
  708. SERIAL_PROTOCOL(degBed());
  709. #endif //TEMP_BED_PIN
  710. #else
  711. SERIAL_ERROR_START;
  712. SERIAL_ERRORLNPGM("No thermistors - no temp");
  713. #endif
  714. #ifdef PIDTEMP
  715. SERIAL_PROTOCOLPGM(" @:");
  716. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  717. #endif
  718. SERIAL_PROTOCOLLN("");
  719. return;
  720. break;
  721. case 109:
  722. {// M109 - Wait for extruder heater to reach target.
  723. tmp_extruder = active_extruder;
  724. if(code_seen('T')) {
  725. tmp_extruder = code_value();
  726. if(tmp_extruder >= EXTRUDERS) {
  727. SERIAL_ECHO_START;
  728. SERIAL_ECHO("M109 Invalid extruder ");
  729. SERIAL_ECHOLN(tmp_extruder);
  730. break;
  731. }
  732. }
  733. LCD_MESSAGEPGM("Heating...");
  734. #ifdef AUTOTEMP
  735. autotemp_enabled=false;
  736. #endif
  737. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  738. #ifdef AUTOTEMP
  739. if (code_seen('S')) autotemp_min=code_value();
  740. if (code_seen('G')) autotemp_max=code_value();
  741. if (code_seen('F'))
  742. {
  743. autotemp_factor=code_value();
  744. autotemp_enabled=true;
  745. }
  746. #endif
  747. setWatch();
  748. codenum = millis();
  749. /* See if we are heating up or cooling down */
  750. bool target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  751. #ifdef TEMP_RESIDENCY_TIME
  752. long residencyStart;
  753. residencyStart = -1;
  754. /* continue to loop until we have reached the target temp
  755. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  756. while((residencyStart == -1) ||
  757. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  758. #else
  759. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  760. #endif //TEMP_RESIDENCY_TIME
  761. if((millis() - codenum) > 1000 )
  762. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  763. SERIAL_PROTOCOLPGM("T:");
  764. SERIAL_PROTOCOL( degHotend(tmp_extruder) );
  765. SERIAL_PROTOCOLPGM(" E:");
  766. SERIAL_PROTOCOL( (int)tmp_extruder );
  767. #ifdef TEMP_RESIDENCY_TIME
  768. SERIAL_PROTOCOLPGM(" W:");
  769. if(residencyStart > -1)
  770. {
  771. codenum = TEMP_RESIDENCY_TIME - ((millis() - residencyStart) / 1000);
  772. SERIAL_PROTOCOLLN( codenum );
  773. }
  774. else
  775. {
  776. SERIAL_PROTOCOLLN( "?" );
  777. }
  778. #else
  779. SERIAL_PROTOCOLLN("");
  780. #endif
  781. codenum = millis();
  782. }
  783. manage_heater();
  784. LCD_STATUS;
  785. if(stop_heating_wait) break;
  786. #ifdef TEMP_RESIDENCY_TIME
  787. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  788. or when current temp falls outside the hysteresis after target temp was reached */
  789. if ((residencyStart == -1 && target_direction && !isHeatingHotend(tmp_extruder)) ||
  790. (residencyStart == -1 && !target_direction && !isCoolingHotend(tmp_extruder)) ||
  791. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  792. {
  793. residencyStart = millis();
  794. }
  795. #endif //TEMP_RESIDENCY_TIME
  796. }
  797. LCD_MESSAGEPGM("Heating done.");
  798. starttime=millis();
  799. previous_millis_cmd = millis();
  800. }
  801. break;
  802. case 190: // M190 - Wait for bed heater to reach target.
  803. #if TEMP_BED_PIN > -1
  804. LCD_MESSAGEPGM("Bed Heating.");
  805. if (code_seen('S')) setTargetBed(code_value());
  806. codenum = millis();
  807. while(isHeatingBed())
  808. {
  809. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  810. {
  811. float tt=degHotend(active_extruder);
  812. SERIAL_PROTOCOLPGM("T:");
  813. SERIAL_PROTOCOL(tt);
  814. SERIAL_PROTOCOLPGM(" E:");
  815. SERIAL_PROTOCOL( (int)active_extruder );
  816. SERIAL_PROTOCOLPGM(" B:");
  817. SERIAL_PROTOCOLLN(degBed());
  818. codenum = millis();
  819. }
  820. manage_heater();
  821. }
  822. LCD_MESSAGEPGM("Bed done.");
  823. previous_millis_cmd = millis();
  824. #endif
  825. break;
  826. #if FAN_PIN > -1
  827. case 106: //M106 Fan On
  828. if (code_seen('S')){
  829. WRITE(FAN_PIN,HIGH);
  830. fanpwm=constrain(code_value(),0,255);
  831. analogWrite(FAN_PIN, fanpwm);
  832. }
  833. else {
  834. WRITE(FAN_PIN,HIGH);
  835. fanpwm=255;
  836. analogWrite(FAN_PIN, fanpwm);
  837. }
  838. break;
  839. case 107: //M107 Fan Off
  840. WRITE(FAN_PIN,LOW);
  841. analogWrite(FAN_PIN, 0);
  842. break;
  843. #endif //FAN_PIN
  844. #if (PS_ON_PIN > -1)
  845. case 80: // M80 - ATX Power On
  846. SET_OUTPUT(PS_ON_PIN); //GND
  847. break;
  848. #endif
  849. case 81: // M81 - ATX Power Off
  850. #if (SUICIDE_PIN >-1)
  851. st_synchronize();
  852. suicide();
  853. #else
  854. #if (PS_ON_PIN > -1)
  855. SET_INPUT(PS_ON_PIN); //Floating
  856. #endif
  857. #endif
  858. case 82:
  859. axis_relative_modes[3] = false;
  860. break;
  861. case 83:
  862. axis_relative_modes[3] = true;
  863. break;
  864. case 18: //compatibility
  865. case 84: // M84
  866. if(code_seen('S')){
  867. stepper_inactive_time = code_value() * 1000;
  868. }
  869. else
  870. {
  871. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  872. if(all_axis)
  873. {
  874. st_synchronize();
  875. disable_e0();
  876. disable_e1();
  877. disable_e2();
  878. finishAndDisableSteppers();
  879. }
  880. else
  881. {
  882. st_synchronize();
  883. if(code_seen('X')) disable_x();
  884. if(code_seen('Y')) disable_y();
  885. if(code_seen('Z')) disable_z();
  886. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  887. if(code_seen('E')) {
  888. disable_e0();
  889. disable_e1();
  890. disable_e2();
  891. }
  892. #endif
  893. LCD_MESSAGEPGM("Partial Release");
  894. }
  895. }
  896. break;
  897. case 85: // M85
  898. code_seen('S');
  899. max_inactive_time = code_value() * 1000;
  900. break;
  901. case 92: // M92
  902. for(int8_t i=0; i < NUM_AXIS; i++)
  903. {
  904. if(code_seen(axis_codes[i]))
  905. axis_steps_per_unit[i] = code_value();
  906. }
  907. break;
  908. case 115: // M115
  909. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1\n");
  910. break;
  911. case 117: // M117 display message
  912. LCD_MESSAGE(cmdbuffer[bufindr]+5);
  913. break;
  914. case 114: // M114
  915. SERIAL_PROTOCOLPGM("X:");
  916. SERIAL_PROTOCOL(current_position[X_AXIS]);
  917. SERIAL_PROTOCOLPGM("Y:");
  918. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  919. SERIAL_PROTOCOLPGM("Z:");
  920. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  921. SERIAL_PROTOCOLPGM("E:");
  922. SERIAL_PROTOCOL(current_position[E_AXIS]);
  923. SERIAL_PROTOCOLPGM(" Count X:");
  924. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  925. SERIAL_PROTOCOLPGM("Y:");
  926. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  927. SERIAL_PROTOCOLPGM("Z:");
  928. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  929. SERIAL_PROTOCOLLN("");
  930. break;
  931. case 119: // M119
  932. #if (X_MIN_PIN > -1)
  933. SERIAL_PROTOCOLPGM("x_min:");
  934. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  935. #endif
  936. #if (X_MAX_PIN > -1)
  937. SERIAL_PROTOCOLPGM("x_max:");
  938. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  939. #endif
  940. #if (Y_MIN_PIN > -1)
  941. SERIAL_PROTOCOLPGM("y_min:");
  942. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  943. #endif
  944. #if (Y_MAX_PIN > -1)
  945. SERIAL_PROTOCOLPGM("y_max:");
  946. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  947. #endif
  948. #if (Z_MIN_PIN > -1)
  949. SERIAL_PROTOCOLPGM("z_min:");
  950. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  951. #endif
  952. #if (Z_MAX_PIN > -1)
  953. SERIAL_PROTOCOLPGM("z_max:");
  954. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  955. #endif
  956. SERIAL_PROTOCOLLN("");
  957. break;
  958. //TODO: update for all axis, use for loop
  959. case 201: // M201
  960. for(int8_t i=0; i < NUM_AXIS; i++)
  961. {
  962. if(code_seen(axis_codes[i]))
  963. {
  964. max_acceleration_units_per_sq_second[i] = code_value();
  965. axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  966. }
  967. }
  968. break;
  969. #if 0 // Not used for Sprinter/grbl gen6
  970. case 202: // M202
  971. for(int8_t i=0; i < NUM_AXIS; i++) {
  972. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  973. }
  974. break;
  975. #endif
  976. case 203: // M203 max feedrate mm/sec
  977. for(int8_t i=0; i < NUM_AXIS; i++) {
  978. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  979. }
  980. break;
  981. case 204: // M204 acclereration S normal moves T filmanent only moves
  982. {
  983. if(code_seen('S')) acceleration = code_value() ;
  984. if(code_seen('T')) retract_acceleration = code_value() ;
  985. }
  986. break;
  987. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  988. {
  989. if(code_seen('S')) minimumfeedrate = code_value();
  990. if(code_seen('T')) mintravelfeedrate = code_value();
  991. if(code_seen('B')) minsegmenttime = code_value() ;
  992. if(code_seen('X')) max_xy_jerk = code_value() ;
  993. if(code_seen('Z')) max_z_jerk = code_value() ;
  994. }
  995. break;
  996. case 206: // M206 additional homeing offset
  997. for(int8_t i=0; i < 3; i++)
  998. {
  999. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1000. }
  1001. break;
  1002. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1003. {
  1004. if(code_seen('S'))
  1005. {
  1006. feedmultiply = code_value() ;
  1007. feedmultiplychanged=true;
  1008. }
  1009. }
  1010. break;
  1011. #ifdef PIDTEMP
  1012. case 301: // M301
  1013. {
  1014. if(code_seen('P')) Kp = code_value();
  1015. if(code_seen('I')) Ki = code_value()*PID_dT;
  1016. if(code_seen('D')) Kd = code_value()/PID_dT;
  1017. #ifdef PID_ADD_EXTRUSION_RATE
  1018. if(code_seen('C')) Kc = code_value();
  1019. #endif
  1020. updatePID();
  1021. SERIAL_PROTOCOL("ok p:");
  1022. SERIAL_PROTOCOL(Kp);
  1023. SERIAL_PROTOCOL(" i:");
  1024. SERIAL_PROTOCOL(Ki/PID_dT);
  1025. SERIAL_PROTOCOL(" d:");
  1026. SERIAL_PROTOCOL(Kd*PID_dT);
  1027. #ifdef PID_ADD_EXTRUSION_RATE
  1028. SERIAL_PROTOCOL(" c:");
  1029. SERIAL_PROTOCOL(Kc*PID_dT);
  1030. #endif
  1031. SERIAL_PROTOCOLLN("");
  1032. }
  1033. break;
  1034. #endif //PIDTEMP
  1035. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  1036. {
  1037. #ifdef PHOTOGRAPH_PIN
  1038. #if (PHOTOGRAPH_PIN > -1)
  1039. const uint8_t NUM_PULSES=16;
  1040. const float PULSE_LENGTH=0.01524;
  1041. for(int i=0; i < NUM_PULSES; i++) {
  1042. WRITE(PHOTOGRAPH_PIN, HIGH);
  1043. _delay_ms(PULSE_LENGTH);
  1044. WRITE(PHOTOGRAPH_PIN, LOW);
  1045. _delay_ms(PULSE_LENGTH);
  1046. }
  1047. delay(7.33);
  1048. for(int i=0; i < NUM_PULSES; i++) {
  1049. WRITE(PHOTOGRAPH_PIN, HIGH);
  1050. _delay_ms(PULSE_LENGTH);
  1051. WRITE(PHOTOGRAPH_PIN, LOW);
  1052. _delay_ms(PULSE_LENGTH);
  1053. }
  1054. #endif
  1055. #endif
  1056. }
  1057. break;
  1058. case 302: // finish all moves
  1059. {
  1060. allow_cold_extrudes(true);
  1061. }
  1062. break;
  1063. case 400: // finish all moves
  1064. {
  1065. st_synchronize();
  1066. }
  1067. break;
  1068. case 500: // Store settings in EEPROM
  1069. {
  1070. EEPROM_StoreSettings();
  1071. }
  1072. break;
  1073. case 501: // Read settings from EEPROM
  1074. {
  1075. EEPROM_RetrieveSettings();
  1076. }
  1077. break;
  1078. case 502: // Revert to default settings
  1079. {
  1080. EEPROM_RetrieveSettings(true);
  1081. }
  1082. break;
  1083. case 503: // print settings currently in memory
  1084. {
  1085. EEPROM_printSettings();
  1086. }
  1087. break;
  1088. }
  1089. }
  1090. else if(code_seen('T'))
  1091. {
  1092. tmp_extruder = code_value();
  1093. if(tmp_extruder >= EXTRUDERS) {
  1094. SERIAL_ECHO_START;
  1095. SERIAL_ECHO("T");
  1096. SERIAL_ECHO(tmp_extruder);
  1097. SERIAL_ECHOLN("Invalid extruder");
  1098. }
  1099. else {
  1100. active_extruder = tmp_extruder;
  1101. SERIAL_ECHO_START;
  1102. SERIAL_ECHO("Active Extruder: ");
  1103. SERIAL_PROTOCOLLN((int)active_extruder);
  1104. }
  1105. }
  1106. else
  1107. {
  1108. SERIAL_ECHO_START;
  1109. SERIAL_ECHOPGM("Unknown command:\"");
  1110. SERIAL_ECHO(cmdbuffer[bufindr]);
  1111. SERIAL_ECHOLNPGM("\"");
  1112. }
  1113. ClearToSend();
  1114. }
  1115. void FlushSerialRequestResend()
  1116. {
  1117. //char cmdbuffer[bufindr][100]="Resend:";
  1118. MSerial.flush();
  1119. SERIAL_PROTOCOLPGM("Resend:");
  1120. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  1121. ClearToSend();
  1122. }
  1123. void ClearToSend()
  1124. {
  1125. previous_millis_cmd = millis();
  1126. #ifdef SDSUPPORT
  1127. if(fromsd[bufindr])
  1128. return;
  1129. #endif //SDSUPPORT
  1130. SERIAL_PROTOCOLLNPGM("ok");
  1131. }
  1132. void get_coordinates()
  1133. {
  1134. for(int8_t i=0; i < NUM_AXIS; i++) {
  1135. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  1136. else destination[i] = current_position[i]; //Are these else lines really needed?
  1137. }
  1138. if(code_seen('F')) {
  1139. next_feedrate = code_value();
  1140. if(next_feedrate > 0.0) feedrate = next_feedrate;
  1141. }
  1142. }
  1143. void get_arc_coordinates()
  1144. {
  1145. get_coordinates();
  1146. if(code_seen('I')) offset[0] = code_value();
  1147. if(code_seen('J')) offset[1] = code_value();
  1148. }
  1149. void prepare_move()
  1150. {
  1151. if (min_software_endstops) {
  1152. if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
  1153. if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
  1154. if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
  1155. }
  1156. if (max_software_endstops) {
  1157. if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
  1158. if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
  1159. if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
  1160. }
  1161. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  1162. for(int8_t i=0; i < NUM_AXIS; i++) {
  1163. current_position[i] = destination[i];
  1164. }
  1165. previous_millis_cmd = millis();
  1166. }
  1167. void prepare_arc_move(char isclockwise) {
  1168. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  1169. // Trace the arc
  1170. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  1171. // As far as the parser is concerned, the position is now == target. In reality the
  1172. // motion control system might still be processing the action and the real tool position
  1173. // in any intermediate location.
  1174. for(int8_t i=0; i < NUM_AXIS; i++) {
  1175. current_position[i] = destination[i];
  1176. }
  1177. previous_millis_cmd = millis();
  1178. }
  1179. void manage_inactivity(byte debug)
  1180. {
  1181. if( (millis() - previous_millis_cmd) > max_inactive_time )
  1182. if(max_inactive_time)
  1183. kill();
  1184. if(stepper_inactive_time)
  1185. if( (millis() - last_stepperdisabled_time) > stepper_inactive_time )
  1186. {
  1187. if(previous_millis_cmd>last_stepperdisabled_time)
  1188. last_stepperdisabled_time=previous_millis_cmd;
  1189. else
  1190. {
  1191. if( (X_ENABLE_ON && (READ(X_ENABLE_PIN)!=0)) || (!X_ENABLE_ON && READ(X_ENABLE_PIN)==0) )
  1192. enquecommand(DEFAULT_STEPPER_DEACTIVE_COMMAND);
  1193. last_stepperdisabled_time=millis();
  1194. }
  1195. }
  1196. #ifdef EXTRUDER_RUNOUT_PREVENT
  1197. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  1198. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  1199. {
  1200. bool oldstatus=READ(E0_ENABLE_PIN);
  1201. enable_e0();
  1202. float oldepos=current_position[E_AXIS];
  1203. float oldedes=destination[E_AXIS];
  1204. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  1205. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  1206. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  1207. current_position[E_AXIS]=oldepos;
  1208. destination[E_AXIS]=oldedes;
  1209. plan_set_e_position(oldepos);
  1210. previous_millis_cmd=millis();
  1211. //enquecommand(DEFAULT_STEPPER_DEACTIVE_COMMAND);
  1212. st_synchronize();
  1213. WRITE(E0_ENABLE_PIN,oldstatus);
  1214. }
  1215. #endif
  1216. check_axes_activity();
  1217. }
  1218. void kill()
  1219. {
  1220. cli(); // Stop interrupts
  1221. disable_heater();
  1222. disable_x();
  1223. disable_y();
  1224. disable_z();
  1225. disable_e0();
  1226. disable_e1();
  1227. disable_e2();
  1228. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  1229. SERIAL_ERROR_START;
  1230. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  1231. LCD_MESSAGEPGM("KILLED. ");
  1232. suicide();
  1233. while(1); // Wait for reset
  1234. }