My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 104KB

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111111211131114111511161117111811191120112111221123112411251126112711281129113011311132113311341135113611371138113911401141114211431144114511461147114811491150115111521153115411551156115711581159116011611162116311641165116611671168116911701171117211731174117511761177117811791180118111821183118411851186118711881189119011911192119311941195119611971198119912001201120212031204120512061207120812091210121112121213121412151216121712181219122012211222122312241225122612271228122912301231123212331234123512361237123812391240124112421243124412451246124712481249125012511252125312541255125612571258125912601261126212631264126512661267126812691270127112721273127412751276127712781279128012811282128312841285128612871288128912901291129212931294129512961297129812991300130113021303130413051306130713081309131013111312131313141315131613171318131913201321132213231324132513261327132813291330133113321333133413351336133713381339134013411342134313441345134613471348134913501351135213531354135513561357135813591360136113621363136413651366136713681369137013711372137313741375137613771378137913801381138213831384138513861387138813891390139113921393139413951396139713981399140014011402140314041405140614071408140914101411141214131414141514161417141814191420142114221423142414251426142714281429143014311432143314341435143614371438143914401441144214431444144514461447144814491450145114521453145414551456145714581459146014611462146314641465146614671468146914701471147214731474147514761477147814791480148114821483148414851486148714881489149014911492149314941495149614971498149915001501150215031504150515061507150815091510151115121513151415151516151715181519152015211522152315241525152615271528152915301531153215331534153515361537153815391540154115421543154415451546154715481549155015511552155315541555155615571558155915601561156215631564156515661567156815691570157115721573157415751576157715781579158015811582158315841585158615871588158915901591159215931594159515961597159815991600160116021603160416051606160716081609161016111612161316141615161616171618161916201621162216231624162516261627162816291630163116321633163416351636163716381639164016411642164316441645164616471648164916501651165216531654165516561657165816591660166116621663166416651666166716681669167016711672167316741675167616771678167916801681168216831684168516861687168816891690169116921693169416951696169716981699170017011702170317041705170617071708170917101711171217131714171517161717171817191720172117221723172417251726172717281729173017311732173317341735173617371738173917401741174217431744174517461747174817491750175117521753175417551756175717581759176017611762176317641765176617671768176917701771177217731774177517761777177817791780178117821783178417851786178717881789179017911792179317941795179617971798179918001801180218031804180518061807180818091810181118121813181418151816181718181819182018211822182318241825182618271828182918301831183218331834183518361837183818391840184118421843184418451846184718481849185018511852185318541855185618571858185918601861186218631864186518661867186818691870187118721873187418751876187718781879188018811882188318841885188618871888188918901891189218931894189518961897189818991900190119021903190419051906190719081909191019111912191319141915191619171918191919201921192219231924192519261927192819291930193119321933193419351936193719381939194019411942194319441945194619471948194919501951195219531954195519561957195819591960196119621963196419651966196719681969197019711972197319741975197619771978197919801981198219831984198519861987198819891990199119921993199419951996199719981999200020012002200320042005200620072008200920102011201220132014201520162017201820192020202120222023202420252026202720282029203020312032203320342035203620372038203920402041204220432044204520462047204820492050205120522053205420552056205720582059206020612062206320642065206620672068206920702071207220732074207520762077207820792080208120822083208420852086208720882089209020912092209320942095209620972098209921002101210221032104210521062107210821092110211121122113211421152116211721182119212021212122212321242125212621272128212921302131213221332134213521362137213821392140214121422143214421452146214721482149215021512152215321542155215621572158215921602161216221632164216521662167216821692170217121722173217421752176217721782179218021812182218321842185218621872188218921902191219221932194219521962197219821992200220122022203220422052206220722082209221022112212221322142215221622172218221922202221222222232224222522262227222822292230223122322233223422352236223722382239224022412242224322442245224622472248224922502251225222532254225522562257225822592260226122622263226422652266226722682269227022712272227322742275227622772278227922802281228222832284228522862287228822892290229122922293229422952296229722982299230023012302230323042305230623072308230923102311231223132314231523162317231823192320232123222323232423252326232723282329233023312332233323342335233623372338233923402341234223432344234523462347234823492350235123522353235423552356235723582359236023612362236323642365236623672368236923702371237223732374237523762377237823792380238123822383238423852386238723882389239023912392239323942395239623972398239924002401240224032404240524062407240824092410241124122413241424152416241724182419242024212422242324242425242624272428242924302431243224332434243524362437243824392440244124422443244424452446244724482449245024512452245324542455245624572458245924602461246224632464246524662467246824692470247124722473247424752476247724782479248024812482248324842485248624872488248924902491249224932494249524962497249824992500250125022503250425052506250725082509251025112512251325142515251625172518251925202521252225232524252525262527252825292530253125322533253425352536253725382539254025412542254325442545254625472548254925502551255225532554255525562557255825592560256125622563256425652566256725682569257025712572257325742575257625772578257925802581258225832584258525862587258825892590259125922593259425952596259725982599260026012602260326042605260626072608260926102611261226132614261526162617261826192620262126222623262426252626262726282629263026312632263326342635263626372638263926402641264226432644264526462647264826492650265126522653265426552656265726582659266026612662266326642665266626672668266926702671267226732674267526762677267826792680268126822683268426852686268726882689269026912692269326942695269626972698269927002701270227032704270527062707270827092710271127122713271427152716271727182719272027212722272327242725272627272728272927302731273227332734273527362737273827392740274127422743274427452746274727482749275027512752275327542755275627572758275927602761276227632764276527662767276827692770277127722773277427752776277727782779278027812782278327842785278627872788278927902791279227932794279527962797279827992800280128022803280428052806280728082809281028112812281328142815281628172818281928202821282228232824282528262827282828292830283128322833283428352836283728382839284028412842284328442845284628472848284928502851285228532854285528562857285828592860286128622863286428652866286728682869287028712872287328742875287628772878287928802881288228832884288528862887288828892890289128922893289428952896289728982899290029012902290329042905290629072908290929102911291229132914291529162917291829192920292129222923292429252926292729282929293029312932293329342935293629372938293929402941294229432944294529462947294829492950295129522953295429552956295729582959296029612962296329642965296629672968296929702971297229732974297529762977297829792980298129822983298429852986298729882989299029912992299329942995299629972998299930003001300230033004300530063007300830093010301130123013301430153016301730183019302030213022302330243025302630273028302930303031303230333034303530363037303830393040304130423043304430453046304730483049305030513052305330543055305630573058305930603061306230633064306530663067306830693070307130723073307430753076307730783079308030813082308330843085308630873088308930903091309230933094309530963097309830993100310131023103310431053106310731083109311031113112311331143115311631173118311931203121312231233124312531263127312831293130
  1. /* -*- c++ -*- */
  2. /*
  3. Reprap firmware based on Sprinter and grbl.
  4. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  5. This program is free software: you can redistribute it and/or modify
  6. it under the terms of the GNU General Public License as published by
  7. the Free Software Foundation, either version 3 of the License, or
  8. (at your option) any later version.
  9. This program is distributed in the hope that it will be useful,
  10. but WITHOUT ANY WARRANTY; without even the implied warranty of
  11. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  12. GNU General Public License for more details.
  13. You should have received a copy of the GNU General Public License
  14. along with this program. If not, see <http://www.gnu.org/licenses/>.
  15. */
  16. /*
  17. This firmware is a mashup between Sprinter and grbl.
  18. (https://github.com/kliment/Sprinter)
  19. (https://github.com/simen/grbl/tree)
  20. It has preliminary support for Matthew Roberts advance algorithm
  21. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  22. */
  23. #include "Marlin.h"
  24. #ifdef ENABLE_AUTO_BED_LEVELING
  25. #include "vector_3.h"
  26. #endif // ENABLE_AUTO_BED_LEVELING
  27. #include "ultralcd.h"
  28. #include "planner.h"
  29. #include "stepper.h"
  30. #include "temperature.h"
  31. #include "motion_control.h"
  32. #include "cardreader.h"
  33. #include "watchdog.h"
  34. #include "ConfigurationStore.h"
  35. #include "language.h"
  36. #include "pins_arduino.h"
  37. #ifdef BLINKM
  38. #include "BlinkM.h"
  39. #include "Wire.h"
  40. #endif
  41. #if NUM_SERVOS > 0
  42. #include "Servo.h"
  43. #endif
  44. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  45. #include <SPI.h>
  46. #endif
  47. #define VERSION_STRING "1.0.0"
  48. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  49. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  50. //Implemented Codes
  51. //-------------------
  52. // G0 -> G1
  53. // G1 - Coordinated Movement X Y Z E
  54. // G2 - CW ARC
  55. // G3 - CCW ARC
  56. // G4 - Dwell S<seconds> or P<milliseconds>
  57. // G10 - retract filament according to settings of M207
  58. // G11 - retract recover filament according to settings of M208
  59. // G28 - Home all Axis
  60. // G29 - Detailed Z-Probe, probes the bed at 3 points. You must de at the home position for this to work correctly.
  61. // G30 - Single Z Probe, probes bed at current XY location.
  62. // G90 - Use Absolute Coordinates
  63. // G91 - Use Relative Coordinates
  64. // G92 - Set current position to cordinates given
  65. // M Codes
  66. // M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  67. // M1 - Same as M0
  68. // M17 - Enable/Power all stepper motors
  69. // M18 - Disable all stepper motors; same as M84
  70. // M20 - List SD card
  71. // M21 - Init SD card
  72. // M22 - Release SD card
  73. // M23 - Select SD file (M23 filename.g)
  74. // M24 - Start/resume SD print
  75. // M25 - Pause SD print
  76. // M26 - Set SD position in bytes (M26 S12345)
  77. // M27 - Report SD print status
  78. // M28 - Start SD write (M28 filename.g)
  79. // M29 - Stop SD write
  80. // M30 - Delete file from SD (M30 filename.g)
  81. // M31 - Output time since last M109 or SD card start to serial
  82. // M32 - Select file and start SD print (Can be used when printing from SD card)
  83. // M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  84. // M80 - Turn on Power Supply
  85. // M81 - Turn off Power Supply
  86. // M82 - Set E codes absolute (default)
  87. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  88. // M84 - Disable steppers until next move,
  89. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  90. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  91. // M92 - Set axis_steps_per_unit - same syntax as G92
  92. // M104 - Set extruder target temp
  93. // M105 - Read current temp
  94. // M106 - Fan on
  95. // M107 - Fan off
  96. // M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  97. // Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  98. // M114 - Output current position to serial port
  99. // M115 - Capabilities string
  100. // M117 - display message
  101. // M119 - Output Endstop status to serial port
  102. // M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  103. // M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  104. // M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  105. // M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  106. // M140 - Set bed target temp
  107. // M150 - Set BlinkM Colour Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  108. // M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  109. // Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  110. // M200 - Set filament diameter
  111. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  112. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  113. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  114. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  115. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
  116. // M206 - set additional homeing offset
  117. // M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  118. // M208 - set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  119. // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  120. // M218 - set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  121. // M220 S<factor in percent>- set speed factor override percentage
  122. // M221 S<factor in percent>- set extrude factor override percentage
  123. // M240 - Trigger a camera to take a photograph
  124. // M250 - Set LCD contrast C<contrast value> (value 0..63)
  125. // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  126. // M300 - Play beepsound S<frequency Hz> P<duration ms>
  127. // M301 - Set PID parameters P I and D
  128. // M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  129. // M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  130. // M304 - Set bed PID parameters P I and D
  131. // M400 - Finish all moves
  132. // M401 - Lower z-probe if present
  133. // M402 - Raise z-probe if present
  134. // M500 - stores paramters in EEPROM
  135. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  136. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  137. // M503 - print the current settings (from memory not from eeprom)
  138. // M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  139. // M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  140. // M666 - set delta endstop adjustemnt
  141. // M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  142. // M907 - Set digital trimpot motor current using axis codes.
  143. // M908 - Control digital trimpot directly.
  144. // M350 - Set microstepping mode.
  145. // M351 - Toggle MS1 MS2 pins directly.
  146. // M928 - Start SD logging (M928 filename.g) - ended by M29
  147. // M999 - Restart after being stopped by error
  148. //Stepper Movement Variables
  149. //===========================================================================
  150. //=============================imported variables============================
  151. //===========================================================================
  152. //===========================================================================
  153. //=============================public variables=============================
  154. //===========================================================================
  155. #ifdef SDSUPPORT
  156. CardReader card;
  157. #endif
  158. float homing_feedrate[] = HOMING_FEEDRATE;
  159. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  160. int feedmultiply=100; //100->1 200->2
  161. int saved_feedmultiply;
  162. int extrudemultiply=100; //100->1 200->2
  163. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0 };
  164. float add_homeing[3]={0,0,0};
  165. #ifdef DELTA
  166. float endstop_adj[3]={0,0,0};
  167. #endif
  168. float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  169. float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  170. // Extruder offset
  171. #if EXTRUDERS > 1
  172. #ifndef DUAL_X_CARRIAGE
  173. #define NUM_EXTRUDER_OFFSETS 2 // only in XY plane
  174. #else
  175. #define NUM_EXTRUDER_OFFSETS 3 // supports offsets in XYZ plane
  176. #endif
  177. float extruder_offset[NUM_EXTRUDER_OFFSETS][EXTRUDERS] = {
  178. #if defined(EXTRUDER_OFFSET_X) && defined(EXTRUDER_OFFSET_Y)
  179. EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y
  180. #endif
  181. };
  182. #endif
  183. uint8_t active_extruder = 0;
  184. int fanSpeed=0;
  185. #ifdef SERVO_ENDSTOPS
  186. int servo_endstops[] = SERVO_ENDSTOPS;
  187. int servo_endstop_angles[] = SERVO_ENDSTOP_ANGLES;
  188. #endif
  189. #ifdef BARICUDA
  190. int ValvePressure=0;
  191. int EtoPPressure=0;
  192. #endif
  193. #ifdef FWRETRACT
  194. bool autoretract_enabled=true;
  195. bool retracted=false;
  196. float retract_length=3, retract_feedrate=17*60, retract_zlift=0.8;
  197. float retract_recover_length=0, retract_recover_feedrate=8*60;
  198. #endif
  199. #ifdef ULTIPANEL
  200. bool powersupply = true;
  201. #endif
  202. #ifdef DELTA
  203. float delta[3] = {0.0, 0.0, 0.0};
  204. #endif
  205. //===========================================================================
  206. //=============================private variables=============================
  207. //===========================================================================
  208. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  209. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  210. static float offset[3] = {0.0, 0.0, 0.0};
  211. static bool home_all_axis = true;
  212. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  213. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  214. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  215. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  216. static bool fromsd[BUFSIZE];
  217. static int bufindr = 0;
  218. static int bufindw = 0;
  219. static int buflen = 0;
  220. //static int i = 0;
  221. static char serial_char;
  222. static int serial_count = 0;
  223. static boolean comment_mode = false;
  224. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  225. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  226. //static float tt = 0;
  227. //static float bt = 0;
  228. //Inactivity shutdown variables
  229. static unsigned long previous_millis_cmd = 0;
  230. static unsigned long max_inactive_time = 0;
  231. static unsigned long stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME*1000l;
  232. unsigned long starttime=0;
  233. unsigned long stoptime=0;
  234. static uint8_t tmp_extruder;
  235. bool Stopped=false;
  236. #if NUM_SERVOS > 0
  237. Servo servos[NUM_SERVOS];
  238. #endif
  239. bool CooldownNoWait = true;
  240. bool target_direction;
  241. //===========================================================================
  242. //=============================ROUTINES=============================
  243. //===========================================================================
  244. void get_arc_coordinates();
  245. bool setTargetedHotend(int code);
  246. void serial_echopair_P(const char *s_P, float v)
  247. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  248. void serial_echopair_P(const char *s_P, double v)
  249. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  250. void serial_echopair_P(const char *s_P, unsigned long v)
  251. { serialprintPGM(s_P); SERIAL_ECHO(v); }
  252. extern "C"{
  253. extern unsigned int __bss_end;
  254. extern unsigned int __heap_start;
  255. extern void *__brkval;
  256. int freeMemory() {
  257. int free_memory;
  258. if((int)__brkval == 0)
  259. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  260. else
  261. free_memory = ((int)&free_memory) - ((int)__brkval);
  262. return free_memory;
  263. }
  264. }
  265. //adds an command to the main command buffer
  266. //thats really done in a non-safe way.
  267. //needs overworking someday
  268. void enquecommand(const char *cmd)
  269. {
  270. if(buflen < BUFSIZE)
  271. {
  272. //this is dangerous if a mixing of serial and this happsens
  273. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  274. SERIAL_ECHO_START;
  275. SERIAL_ECHOPGM("enqueing \"");
  276. SERIAL_ECHO(cmdbuffer[bufindw]);
  277. SERIAL_ECHOLNPGM("\"");
  278. bufindw= (bufindw + 1)%BUFSIZE;
  279. buflen += 1;
  280. }
  281. }
  282. void enquecommand_P(const char *cmd)
  283. {
  284. if(buflen < BUFSIZE)
  285. {
  286. //this is dangerous if a mixing of serial and this happsens
  287. strcpy_P(&(cmdbuffer[bufindw][0]),cmd);
  288. SERIAL_ECHO_START;
  289. SERIAL_ECHOPGM("enqueing \"");
  290. SERIAL_ECHO(cmdbuffer[bufindw]);
  291. SERIAL_ECHOLNPGM("\"");
  292. bufindw= (bufindw + 1)%BUFSIZE;
  293. buflen += 1;
  294. }
  295. }
  296. void setup_killpin()
  297. {
  298. #if defined(KILL_PIN) && KILL_PIN > -1
  299. pinMode(KILL_PIN,INPUT);
  300. WRITE(KILL_PIN,HIGH);
  301. #endif
  302. }
  303. void setup_photpin()
  304. {
  305. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  306. SET_OUTPUT(PHOTOGRAPH_PIN);
  307. WRITE(PHOTOGRAPH_PIN, LOW);
  308. #endif
  309. }
  310. void setup_powerhold()
  311. {
  312. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  313. SET_OUTPUT(SUICIDE_PIN);
  314. WRITE(SUICIDE_PIN, HIGH);
  315. #endif
  316. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  317. SET_OUTPUT(PS_ON_PIN);
  318. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  319. #endif
  320. }
  321. void suicide()
  322. {
  323. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  324. SET_OUTPUT(SUICIDE_PIN);
  325. WRITE(SUICIDE_PIN, LOW);
  326. #endif
  327. }
  328. void servo_init()
  329. {
  330. #if (NUM_SERVOS >= 1) && defined(SERVO0_PIN) && (SERVO0_PIN > -1)
  331. servos[0].attach(SERVO0_PIN);
  332. #endif
  333. #if (NUM_SERVOS >= 2) && defined(SERVO1_PIN) && (SERVO1_PIN > -1)
  334. servos[1].attach(SERVO1_PIN);
  335. #endif
  336. #if (NUM_SERVOS >= 3) && defined(SERVO2_PIN) && (SERVO2_PIN > -1)
  337. servos[2].attach(SERVO2_PIN);
  338. #endif
  339. #if (NUM_SERVOS >= 4) && defined(SERVO3_PIN) && (SERVO3_PIN > -1)
  340. servos[3].attach(SERVO3_PIN);
  341. #endif
  342. #if (NUM_SERVOS >= 5)
  343. #error "TODO: enter initalisation code for more servos"
  344. #endif
  345. // Set position of Servo Endstops that are defined
  346. #ifdef SERVO_ENDSTOPS
  347. for(int8_t i = 0; i < 3; i++)
  348. {
  349. if(servo_endstops[i] > -1) {
  350. servos[servo_endstops[i]].write(servo_endstop_angles[i * 2 + 1]);
  351. }
  352. }
  353. #endif
  354. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  355. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  356. servos[servo_endstops[Z_AXIS]].detach();
  357. #endif
  358. }
  359. void setup()
  360. {
  361. setup_killpin();
  362. setup_powerhold();
  363. MYSERIAL.begin(BAUDRATE);
  364. SERIAL_PROTOCOLLNPGM("start");
  365. SERIAL_ECHO_START;
  366. // Check startup - does nothing if bootloader sets MCUSR to 0
  367. byte mcu = MCUSR;
  368. if(mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  369. if(mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  370. if(mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  371. if(mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  372. if(mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  373. MCUSR=0;
  374. SERIAL_ECHOPGM(MSG_MARLIN);
  375. SERIAL_ECHOLNPGM(VERSION_STRING);
  376. #ifdef STRING_VERSION_CONFIG_H
  377. #ifdef STRING_CONFIG_H_AUTHOR
  378. SERIAL_ECHO_START;
  379. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  380. SERIAL_ECHOPGM(STRING_VERSION_CONFIG_H);
  381. SERIAL_ECHOPGM(MSG_AUTHOR);
  382. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  383. SERIAL_ECHOPGM("Compiled: ");
  384. SERIAL_ECHOLNPGM(__DATE__);
  385. #endif
  386. #endif
  387. SERIAL_ECHO_START;
  388. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  389. SERIAL_ECHO(freeMemory());
  390. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  391. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  392. for(int8_t i = 0; i < BUFSIZE; i++)
  393. {
  394. fromsd[i] = false;
  395. }
  396. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  397. Config_RetrieveSettings();
  398. tp_init(); // Initialize temperature loop
  399. plan_init(); // Initialize planner;
  400. watchdog_init();
  401. st_init(); // Initialize stepper, this enables interrupts!
  402. setup_photpin();
  403. servo_init();
  404. lcd_init();
  405. _delay_ms(1000); // wait 1sec to display the splash screen
  406. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  407. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  408. #endif
  409. }
  410. void loop()
  411. {
  412. if(buflen < (BUFSIZE-1))
  413. get_command();
  414. #ifdef SDSUPPORT
  415. card.checkautostart(false);
  416. #endif
  417. if(buflen)
  418. {
  419. #ifdef SDSUPPORT
  420. if(card.saving)
  421. {
  422. if(strstr_P(cmdbuffer[bufindr], PSTR("M29")) == NULL)
  423. {
  424. card.write_command(cmdbuffer[bufindr]);
  425. if(card.logging)
  426. {
  427. process_commands();
  428. }
  429. else
  430. {
  431. SERIAL_PROTOCOLLNPGM(MSG_OK);
  432. }
  433. }
  434. else
  435. {
  436. card.closefile();
  437. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  438. }
  439. }
  440. else
  441. {
  442. process_commands();
  443. }
  444. #else
  445. process_commands();
  446. #endif //SDSUPPORT
  447. buflen = (buflen-1);
  448. bufindr = (bufindr + 1)%BUFSIZE;
  449. }
  450. //check heater every n milliseconds
  451. manage_heater();
  452. manage_inactivity();
  453. checkHitEndstops();
  454. lcd_update();
  455. }
  456. void get_command()
  457. {
  458. while( MYSERIAL.available() > 0 && buflen < BUFSIZE) {
  459. serial_char = MYSERIAL.read();
  460. if(serial_char == '\n' ||
  461. serial_char == '\r' ||
  462. (serial_char == ':' && comment_mode == false) ||
  463. serial_count >= (MAX_CMD_SIZE - 1) )
  464. {
  465. if(!serial_count) { //if empty line
  466. comment_mode = false; //for new command
  467. return;
  468. }
  469. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  470. if(!comment_mode){
  471. comment_mode = false; //for new command
  472. fromsd[bufindw] = false;
  473. if(strchr(cmdbuffer[bufindw], 'N') != NULL)
  474. {
  475. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  476. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  477. if(gcode_N != gcode_LastN+1 && (strstr_P(cmdbuffer[bufindw], PSTR("M110")) == NULL) ) {
  478. SERIAL_ERROR_START;
  479. SERIAL_ERRORPGM(MSG_ERR_LINE_NO);
  480. SERIAL_ERRORLN(gcode_LastN);
  481. //Serial.println(gcode_N);
  482. FlushSerialRequestResend();
  483. serial_count = 0;
  484. return;
  485. }
  486. if(strchr(cmdbuffer[bufindw], '*') != NULL)
  487. {
  488. byte checksum = 0;
  489. byte count = 0;
  490. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  491. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  492. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  493. SERIAL_ERROR_START;
  494. SERIAL_ERRORPGM(MSG_ERR_CHECKSUM_MISMATCH);
  495. SERIAL_ERRORLN(gcode_LastN);
  496. FlushSerialRequestResend();
  497. serial_count = 0;
  498. return;
  499. }
  500. //if no errors, continue parsing
  501. }
  502. else
  503. {
  504. SERIAL_ERROR_START;
  505. SERIAL_ERRORPGM(MSG_ERR_NO_CHECKSUM);
  506. SERIAL_ERRORLN(gcode_LastN);
  507. FlushSerialRequestResend();
  508. serial_count = 0;
  509. return;
  510. }
  511. gcode_LastN = gcode_N;
  512. //if no errors, continue parsing
  513. }
  514. else // if we don't receive 'N' but still see '*'
  515. {
  516. if((strchr(cmdbuffer[bufindw], '*') != NULL))
  517. {
  518. SERIAL_ERROR_START;
  519. SERIAL_ERRORPGM(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM);
  520. SERIAL_ERRORLN(gcode_LastN);
  521. serial_count = 0;
  522. return;
  523. }
  524. }
  525. if((strchr(cmdbuffer[bufindw], 'G') != NULL)){
  526. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  527. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  528. case 0:
  529. case 1:
  530. case 2:
  531. case 3:
  532. if(Stopped == false) { // If printer is stopped by an error the G[0-3] codes are ignored.
  533. #ifdef SDSUPPORT
  534. if(card.saving)
  535. break;
  536. #endif //SDSUPPORT
  537. SERIAL_PROTOCOLLNPGM(MSG_OK);
  538. }
  539. else {
  540. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  541. LCD_MESSAGEPGM(MSG_STOPPED);
  542. }
  543. break;
  544. default:
  545. break;
  546. }
  547. }
  548. bufindw = (bufindw + 1)%BUFSIZE;
  549. buflen += 1;
  550. }
  551. serial_count = 0; //clear buffer
  552. }
  553. else
  554. {
  555. if(serial_char == ';') comment_mode = true;
  556. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  557. }
  558. }
  559. #ifdef SDSUPPORT
  560. if(!card.sdprinting || serial_count!=0){
  561. return;
  562. }
  563. while( !card.eof() && buflen < BUFSIZE) {
  564. int16_t n=card.get();
  565. serial_char = (char)n;
  566. if(serial_char == '\n' ||
  567. serial_char == '\r' ||
  568. (serial_char == ':' && comment_mode == false) ||
  569. serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  570. {
  571. if(card.eof()){
  572. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  573. stoptime=millis();
  574. char time[30];
  575. unsigned long t=(stoptime-starttime)/1000;
  576. int hours, minutes;
  577. minutes=(t/60)%60;
  578. hours=t/60/60;
  579. sprintf_P(time, PSTR("%i hours %i minutes"),hours, minutes);
  580. SERIAL_ECHO_START;
  581. SERIAL_ECHOLN(time);
  582. lcd_setstatus(time);
  583. card.printingHasFinished();
  584. card.checkautostart(true);
  585. }
  586. if(!serial_count)
  587. {
  588. comment_mode = false; //for new command
  589. return; //if empty line
  590. }
  591. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  592. // if(!comment_mode){
  593. fromsd[bufindw] = true;
  594. buflen += 1;
  595. bufindw = (bufindw + 1)%BUFSIZE;
  596. // }
  597. comment_mode = false; //for new command
  598. serial_count = 0; //clear buffer
  599. }
  600. else
  601. {
  602. if(serial_char == ';') comment_mode = true;
  603. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  604. }
  605. }
  606. #endif //SDSUPPORT
  607. }
  608. float code_value()
  609. {
  610. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  611. }
  612. long code_value_long()
  613. {
  614. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  615. }
  616. bool code_seen(char code)
  617. {
  618. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  619. return (strchr_pointer != NULL); //Return True if a character was found
  620. }
  621. #define DEFINE_PGM_READ_ANY(type, reader) \
  622. static inline type pgm_read_any(const type *p) \
  623. { return pgm_read_##reader##_near(p); }
  624. DEFINE_PGM_READ_ANY(float, float);
  625. DEFINE_PGM_READ_ANY(signed char, byte);
  626. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  627. static const PROGMEM type array##_P[3] = \
  628. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  629. static inline type array(int axis) \
  630. { return pgm_read_any(&array##_P[axis]); }
  631. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  632. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  633. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  634. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  635. XYZ_CONSTS_FROM_CONFIG(float, home_retract_mm, HOME_RETRACT_MM);
  636. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  637. #ifdef DUAL_X_CARRIAGE
  638. #if EXTRUDERS == 1 || defined(COREXY) \
  639. || !defined(X2_ENABLE_PIN) || !defined(X2_STEP_PIN) || !defined(X2_DIR_PIN) \
  640. || !defined(X2_HOME_POS) || !defined(X2_MIN_POS) || !defined(X2_MAX_POS) \
  641. || !defined(X_MAX_PIN) || X_MAX_PIN < 0
  642. #error "Missing or invalid definitions for DUAL_X_CARRIAGE mode."
  643. #endif
  644. #if X_HOME_DIR != -1 || X2_HOME_DIR != 1
  645. #error "Please use canonical x-carriage assignment" // the x-carriages are defined by their homing directions
  646. #endif
  647. #define DXC_FULL_CONTROL_MODE 0
  648. #define DXC_AUTO_PARK_MODE 1
  649. #define DXC_DUPLICATION_MODE 2
  650. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  651. static float x_home_pos(int extruder) {
  652. if (extruder == 0)
  653. return base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  654. else
  655. // In dual carriage mode the extruder offset provides an override of the
  656. // second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  657. // This allow soft recalibration of the second extruder offset position without firmware reflash
  658. // (through the M218 command).
  659. return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
  660. }
  661. static int x_home_dir(int extruder) {
  662. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  663. }
  664. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  665. static bool active_extruder_parked = false; // used in mode 1 & 2
  666. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  667. static unsigned long delayed_move_time = 0; // used in mode 1
  668. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  669. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  670. bool extruder_duplication_enabled = false; // used in mode 2
  671. #endif //DUAL_X_CARRIAGE
  672. static void axis_is_at_home(int axis) {
  673. #ifdef DUAL_X_CARRIAGE
  674. if (axis == X_AXIS) {
  675. if (active_extruder != 0) {
  676. current_position[X_AXIS] = x_home_pos(active_extruder);
  677. min_pos[X_AXIS] = X2_MIN_POS;
  678. max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
  679. return;
  680. }
  681. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  682. current_position[X_AXIS] = base_home_pos(X_AXIS) + add_homeing[X_AXIS];
  683. min_pos[X_AXIS] = base_min_pos(X_AXIS) + add_homeing[X_AXIS];
  684. max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + add_homeing[X_AXIS],
  685. max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
  686. return;
  687. }
  688. }
  689. #endif
  690. current_position[axis] = base_home_pos(axis) + add_homeing[axis];
  691. min_pos[axis] = base_min_pos(axis) + add_homeing[axis];
  692. max_pos[axis] = base_max_pos(axis) + add_homeing[axis];
  693. }
  694. #ifdef ENABLE_AUTO_BED_LEVELING
  695. static void set_bed_level_equation(float z_at_xLeft_yFront, float z_at_xRight_yFront, float z_at_xLeft_yBack) {
  696. plan_bed_level_matrix.set_to_identity();
  697. vector_3 xLeftyFront = vector_3(LEFT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xLeft_yFront);
  698. vector_3 xLeftyBack = vector_3(LEFT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION, z_at_xLeft_yBack);
  699. vector_3 xRightyFront = vector_3(RIGHT_PROBE_BED_POSITION, FRONT_PROBE_BED_POSITION, z_at_xRight_yFront);
  700. vector_3 xPositive = (xRightyFront - xLeftyFront).get_normal();
  701. vector_3 yPositive = (xLeftyBack - xLeftyFront).get_normal();
  702. vector_3 planeNormal = vector_3::cross(yPositive, xPositive).get_normal();
  703. //planeNormal.debug("planeNormal");
  704. //yPositive.debug("yPositive");
  705. matrix_3x3 bedLevel = matrix_3x3::create_look_at(planeNormal, yPositive);
  706. //bedLevel.debug("bedLevel");
  707. //plan_bed_level_matrix.debug("bed level before");
  708. //vector_3 uncorrected_position = plan_get_position_mm();
  709. //uncorrected_position.debug("position before");
  710. // and set our bed level equation to do the right thing
  711. plan_bed_level_matrix = matrix_3x3::create_inverse(bedLevel);
  712. //plan_bed_level_matrix.debug("bed level after");
  713. vector_3 corrected_position = plan_get_position();
  714. //corrected_position.debug("position after");
  715. current_position[X_AXIS] = corrected_position.x;
  716. current_position[Y_AXIS] = corrected_position.y;
  717. current_position[Z_AXIS] = corrected_position.z;
  718. // but the bed at 0 so we don't go below it.
  719. current_position[Z_AXIS] = -Z_PROBE_OFFSET_FROM_EXTRUDER;
  720. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  721. }
  722. static void run_z_probe() {
  723. plan_bed_level_matrix.set_to_identity();
  724. feedrate = homing_feedrate[Z_AXIS];
  725. // move down until you find the bed
  726. float zPosition = -10;
  727. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  728. st_synchronize();
  729. // we have to let the planner know where we are right now as it is not where we said to go.
  730. zPosition = st_get_position_mm(Z_AXIS);
  731. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
  732. // move up the retract distance
  733. zPosition += home_retract_mm(Z_AXIS);
  734. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  735. st_synchronize();
  736. // move back down slowly to find bed
  737. feedrate = homing_feedrate[Z_AXIS]/4;
  738. zPosition -= home_retract_mm(Z_AXIS) * 2;
  739. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
  740. st_synchronize();
  741. current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
  742. // make sure the planner knows where we are as it may be a bit different than we last said to move to
  743. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  744. }
  745. static void do_blocking_move_to(float x, float y, float z) {
  746. float oldFeedRate = feedrate;
  747. feedrate = XY_TRAVEL_SPEED;
  748. current_position[X_AXIS] = x;
  749. current_position[Y_AXIS] = y;
  750. current_position[Z_AXIS] = z;
  751. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
  752. st_synchronize();
  753. feedrate = oldFeedRate;
  754. }
  755. static void do_blocking_move_relative(float offset_x, float offset_y, float offset_z) {
  756. do_blocking_move_to(current_position[X_AXIS] + offset_x, current_position[Y_AXIS] + offset_y, current_position[Z_AXIS] + offset_z);
  757. }
  758. static void setup_for_endstop_move() {
  759. saved_feedrate = feedrate;
  760. saved_feedmultiply = feedmultiply;
  761. feedmultiply = 100;
  762. previous_millis_cmd = millis();
  763. enable_endstops(true);
  764. }
  765. static void clean_up_after_endstop_move() {
  766. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  767. enable_endstops(false);
  768. #endif
  769. feedrate = saved_feedrate;
  770. feedmultiply = saved_feedmultiply;
  771. previous_millis_cmd = millis();
  772. }
  773. static void engage_z_probe() {
  774. // Engage Z Servo endstop if enabled
  775. #ifdef SERVO_ENDSTOPS
  776. if (servo_endstops[Z_AXIS] > -1) {
  777. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  778. servos[servo_endstops[Z_AXIS]].attach(0);
  779. #endif
  780. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2]);
  781. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  782. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  783. servos[servo_endstops[Z_AXIS]].detach();
  784. #endif
  785. }
  786. #endif
  787. }
  788. static void retract_z_probe() {
  789. // Retract Z Servo endstop if enabled
  790. #ifdef SERVO_ENDSTOPS
  791. if (servo_endstops[Z_AXIS] > -1) {
  792. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  793. servos[servo_endstops[Z_AXIS]].attach(0);
  794. #endif
  795. servos[servo_endstops[Z_AXIS]].write(servo_endstop_angles[Z_AXIS * 2 + 1]);
  796. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  797. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  798. servos[servo_endstops[Z_AXIS]].detach();
  799. #endif
  800. }
  801. #endif
  802. }
  803. #endif // #ifdef ENABLE_AUTO_BED_LEVELING
  804. static void homeaxis(int axis) {
  805. #define HOMEAXIS_DO(LETTER) \
  806. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  807. if (axis==X_AXIS ? HOMEAXIS_DO(X) :
  808. axis==Y_AXIS ? HOMEAXIS_DO(Y) :
  809. axis==Z_AXIS ? HOMEAXIS_DO(Z) :
  810. 0) {
  811. int axis_home_dir = home_dir(axis);
  812. #ifdef DUAL_X_CARRIAGE
  813. if (axis == X_AXIS)
  814. axis_home_dir = x_home_dir(active_extruder);
  815. #endif
  816. current_position[axis] = 0;
  817. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  818. // Engage Servo endstop if enabled
  819. #ifdef SERVO_ENDSTOPS
  820. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  821. if (axis==Z_AXIS) {
  822. #if defined (Z_RAISE_BEFORE_HOMING) && (Z_RAISE_BEFORE_HOMING > 0)
  823. destination[axis] = Z_RAISE_BEFORE_HOMING * axis_home_dir * (-1); // Set destination away from bed
  824. feedrate = max_feedrate[axis];
  825. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate, active_extruder);
  826. st_synchronize();
  827. #endif
  828. engage_z_probe();
  829. }
  830. else
  831. #endif
  832. if (servo_endstops[axis] > -1) {
  833. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2]);
  834. }
  835. #endif
  836. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  837. feedrate = homing_feedrate[axis];
  838. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  839. st_synchronize();
  840. current_position[axis] = 0;
  841. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  842. destination[axis] = -home_retract_mm(axis) * axis_home_dir;
  843. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  844. st_synchronize();
  845. destination[axis] = 2*home_retract_mm(axis) * axis_home_dir;
  846. #ifdef DELTA
  847. feedrate = homing_feedrate[axis]/10;
  848. #else
  849. feedrate = homing_feedrate[axis]/2 ;
  850. #endif
  851. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  852. st_synchronize();
  853. #ifdef DELTA
  854. // retrace by the amount specified in endstop_adj
  855. if (endstop_adj[axis] * axis_home_dir < 0) {
  856. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  857. destination[axis] = endstop_adj[axis];
  858. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  859. st_synchronize();
  860. }
  861. #endif
  862. axis_is_at_home(axis);
  863. destination[axis] = current_position[axis];
  864. feedrate = 0.0;
  865. endstops_hit_on_purpose();
  866. // Retract Servo endstop if enabled
  867. #ifdef SERVO_ENDSTOPS
  868. if (servo_endstops[axis] > -1) {
  869. servos[servo_endstops[axis]].write(servo_endstop_angles[axis * 2 + 1]);
  870. }
  871. #endif
  872. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  873. if (axis==Z_AXIS) retract_z_probe();
  874. #endif
  875. }
  876. }
  877. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  878. void process_commands()
  879. {
  880. unsigned long codenum; //throw away variable
  881. char *starpos = NULL;
  882. #ifdef ENABLE_AUTO_BED_LEVELING
  883. float x_tmp, y_tmp, z_tmp, real_z;
  884. #endif
  885. if(code_seen('G'))
  886. {
  887. switch((int)code_value())
  888. {
  889. case 0: // G0 -> G1
  890. case 1: // G1
  891. if(Stopped == false) {
  892. get_coordinates(); // For X Y Z E F
  893. prepare_move();
  894. //ClearToSend();
  895. return;
  896. }
  897. //break;
  898. case 2: // G2 - CW ARC
  899. if(Stopped == false) {
  900. get_arc_coordinates();
  901. prepare_arc_move(true);
  902. return;
  903. }
  904. case 3: // G3 - CCW ARC
  905. if(Stopped == false) {
  906. get_arc_coordinates();
  907. prepare_arc_move(false);
  908. return;
  909. }
  910. case 4: // G4 dwell
  911. LCD_MESSAGEPGM(MSG_DWELL);
  912. codenum = 0;
  913. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  914. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  915. st_synchronize();
  916. codenum += millis(); // keep track of when we started waiting
  917. previous_millis_cmd = millis();
  918. while(millis() < codenum ){
  919. manage_heater();
  920. manage_inactivity();
  921. lcd_update();
  922. }
  923. break;
  924. #ifdef FWRETRACT
  925. case 10: // G10 retract
  926. if(!retracted)
  927. {
  928. destination[X_AXIS]=current_position[X_AXIS];
  929. destination[Y_AXIS]=current_position[Y_AXIS];
  930. destination[Z_AXIS]=current_position[Z_AXIS];
  931. current_position[Z_AXIS]+=-retract_zlift;
  932. destination[E_AXIS]=current_position[E_AXIS]-retract_length;
  933. feedrate=retract_feedrate;
  934. retracted=true;
  935. prepare_move();
  936. }
  937. break;
  938. case 11: // G10 retract_recover
  939. if(!retracted)
  940. {
  941. destination[X_AXIS]=current_position[X_AXIS];
  942. destination[Y_AXIS]=current_position[Y_AXIS];
  943. destination[Z_AXIS]=current_position[Z_AXIS];
  944. current_position[Z_AXIS]+=retract_zlift;
  945. current_position[E_AXIS]+=-retract_recover_length;
  946. feedrate=retract_recover_feedrate;
  947. retracted=false;
  948. prepare_move();
  949. }
  950. break;
  951. #endif //FWRETRACT
  952. case 28: //G28 Home all Axis one at a time
  953. #ifdef ENABLE_AUTO_BED_LEVELING
  954. plan_bed_level_matrix.set_to_identity(); //Reset the plane ("erase" all leveling data)
  955. #endif //ENABLE_AUTO_BED_LEVELING
  956. saved_feedrate = feedrate;
  957. saved_feedmultiply = feedmultiply;
  958. feedmultiply = 100;
  959. previous_millis_cmd = millis();
  960. enable_endstops(true);
  961. for(int8_t i=0; i < NUM_AXIS; i++) {
  962. destination[i] = current_position[i];
  963. }
  964. feedrate = 0.0;
  965. #ifdef DELTA
  966. // A delta can only safely home all axis at the same time
  967. // all axis have to home at the same time
  968. // Move all carriages up together until the first endstop is hit.
  969. current_position[X_AXIS] = 0;
  970. current_position[Y_AXIS] = 0;
  971. current_position[Z_AXIS] = 0;
  972. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  973. destination[X_AXIS] = 3 * Z_MAX_LENGTH;
  974. destination[Y_AXIS] = 3 * Z_MAX_LENGTH;
  975. destination[Z_AXIS] = 3 * Z_MAX_LENGTH;
  976. feedrate = 1.732 * homing_feedrate[X_AXIS];
  977. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  978. st_synchronize();
  979. endstops_hit_on_purpose();
  980. current_position[X_AXIS] = destination[X_AXIS];
  981. current_position[Y_AXIS] = destination[Y_AXIS];
  982. current_position[Z_AXIS] = destination[Z_AXIS];
  983. // take care of back off and rehome now we are all at the top
  984. HOMEAXIS(X);
  985. HOMEAXIS(Y);
  986. HOMEAXIS(Z);
  987. calculate_delta(current_position);
  988. plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  989. #else // NOT DELTA
  990. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  991. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  992. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  993. HOMEAXIS(Z);
  994. }
  995. #endif
  996. #ifdef QUICK_HOME
  997. if((home_all_axis)||( code_seen(axis_codes[X_AXIS]) && code_seen(axis_codes[Y_AXIS])) ) //first diagonal move
  998. {
  999. current_position[X_AXIS] = 0;current_position[Y_AXIS] = 0;
  1000. #ifndef DUAL_X_CARRIAGE
  1001. int x_axis_home_dir = home_dir(X_AXIS);
  1002. #else
  1003. int x_axis_home_dir = x_home_dir(active_extruder);
  1004. extruder_duplication_enabled = false;
  1005. #endif
  1006. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1007. destination[X_AXIS] = 1.5 * max_length(X_AXIS) * x_axis_home_dir;destination[Y_AXIS] = 1.5 * max_length(Y_AXIS) * home_dir(Y_AXIS);
  1008. feedrate = homing_feedrate[X_AXIS];
  1009. if(homing_feedrate[Y_AXIS]<feedrate)
  1010. feedrate =homing_feedrate[Y_AXIS];
  1011. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1012. st_synchronize();
  1013. axis_is_at_home(X_AXIS);
  1014. axis_is_at_home(Y_AXIS);
  1015. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1016. destination[X_AXIS] = current_position[X_AXIS];
  1017. destination[Y_AXIS] = current_position[Y_AXIS];
  1018. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  1019. feedrate = 0.0;
  1020. st_synchronize();
  1021. endstops_hit_on_purpose();
  1022. current_position[X_AXIS] = destination[X_AXIS];
  1023. current_position[Y_AXIS] = destination[Y_AXIS];
  1024. current_position[Z_AXIS] = destination[Z_AXIS];
  1025. }
  1026. #endif
  1027. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  1028. {
  1029. #ifdef DUAL_X_CARRIAGE
  1030. int tmp_extruder = active_extruder;
  1031. extruder_duplication_enabled = false;
  1032. active_extruder = !active_extruder;
  1033. HOMEAXIS(X);
  1034. inactive_extruder_x_pos = current_position[X_AXIS];
  1035. active_extruder = tmp_extruder;
  1036. HOMEAXIS(X);
  1037. // reset state used by the different modes
  1038. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  1039. delayed_move_time = 0;
  1040. active_extruder_parked = true;
  1041. #else
  1042. HOMEAXIS(X);
  1043. #endif
  1044. }
  1045. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  1046. HOMEAXIS(Y);
  1047. }
  1048. #if Z_HOME_DIR < 0 // If homing towards BED do Z last
  1049. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  1050. HOMEAXIS(Z);
  1051. }
  1052. #endif
  1053. if(code_seen(axis_codes[X_AXIS]))
  1054. {
  1055. if(code_value_long() != 0) {
  1056. current_position[X_AXIS]=code_value()+add_homeing[0];
  1057. }
  1058. }
  1059. if(code_seen(axis_codes[Y_AXIS])) {
  1060. if(code_value_long() != 0) {
  1061. current_position[Y_AXIS]=code_value()+add_homeing[1];
  1062. }
  1063. }
  1064. if(code_seen(axis_codes[Z_AXIS])) {
  1065. if(code_value_long() != 0) {
  1066. current_position[Z_AXIS]=code_value()+add_homeing[2];
  1067. }
  1068. }
  1069. #ifdef ENABLE_AUTO_BED_LEVELING
  1070. current_position[Z_AXIS] -= Z_PROBE_OFFSET_FROM_EXTRUDER; //Add Z_Probe offset (the distance is negative)
  1071. #endif
  1072. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1073. #endif // else DELTA
  1074. #ifdef ENDSTOPS_ONLY_FOR_HOMING
  1075. enable_endstops(false);
  1076. #endif
  1077. feedrate = saved_feedrate;
  1078. feedmultiply = saved_feedmultiply;
  1079. previous_millis_cmd = millis();
  1080. endstops_hit_on_purpose();
  1081. break;
  1082. #ifdef ENABLE_AUTO_BED_LEVELING
  1083. case 29: // G29 Detailed Z-Probe, probes the bed at 3 points.
  1084. {
  1085. #if Z_MIN_PIN == -1
  1086. #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
  1087. #endif
  1088. st_synchronize();
  1089. // make sure the bed_level_rotation_matrix is identity or the planner will get it incorectly
  1090. //vector_3 corrected_position = plan_get_position_mm();
  1091. //corrected_position.debug("position before G29");
  1092. plan_bed_level_matrix.set_to_identity();
  1093. vector_3 uncorrected_position = plan_get_position();
  1094. //uncorrected_position.debug("position durring G29");
  1095. current_position[X_AXIS] = uncorrected_position.x;
  1096. current_position[Y_AXIS] = uncorrected_position.y;
  1097. current_position[Z_AXIS] = uncorrected_position.z;
  1098. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1099. setup_for_endstop_move();
  1100. feedrate = homing_feedrate[Z_AXIS];
  1101. // prob 1
  1102. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], Z_RAISE_BEFORE_PROBING);
  1103. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, BACK_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1104. engage_z_probe(); // Engage Z Servo endstop if available
  1105. run_z_probe();
  1106. float z_at_xLeft_yBack = current_position[Z_AXIS];
  1107. SERIAL_PROTOCOLPGM("Bed x: ");
  1108. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1109. SERIAL_PROTOCOLPGM(" y: ");
  1110. SERIAL_PROTOCOL(BACK_PROBE_BED_POSITION);
  1111. SERIAL_PROTOCOLPGM(" z: ");
  1112. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1113. SERIAL_PROTOCOLPGM("\n");
  1114. // prob 2
  1115. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1116. do_blocking_move_to(LEFT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1117. run_z_probe();
  1118. float z_at_xLeft_yFront = current_position[Z_AXIS];
  1119. SERIAL_PROTOCOLPGM("Bed x: ");
  1120. SERIAL_PROTOCOL(LEFT_PROBE_BED_POSITION);
  1121. SERIAL_PROTOCOLPGM(" y: ");
  1122. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1123. SERIAL_PROTOCOLPGM(" z: ");
  1124. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1125. SERIAL_PROTOCOLPGM("\n");
  1126. // prob 3
  1127. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
  1128. // the current position will be updated by the blocking move so the head will not lower on this next call.
  1129. do_blocking_move_to(RIGHT_PROBE_BED_POSITION - X_PROBE_OFFSET_FROM_EXTRUDER, FRONT_PROBE_BED_POSITION - Y_PROBE_OFFSET_FROM_EXTRUDER, current_position[Z_AXIS]);
  1130. run_z_probe();
  1131. float z_at_xRight_yFront = current_position[Z_AXIS];
  1132. SERIAL_PROTOCOLPGM("Bed x: ");
  1133. SERIAL_PROTOCOL(RIGHT_PROBE_BED_POSITION);
  1134. SERIAL_PROTOCOLPGM(" y: ");
  1135. SERIAL_PROTOCOL(FRONT_PROBE_BED_POSITION);
  1136. SERIAL_PROTOCOLPGM(" z: ");
  1137. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1138. SERIAL_PROTOCOLPGM("\n");
  1139. clean_up_after_endstop_move();
  1140. set_bed_level_equation(z_at_xLeft_yFront, z_at_xRight_yFront, z_at_xLeft_yBack);
  1141. retract_z_probe(); // Retract Z Servo endstop if available
  1142. st_synchronize();
  1143. // The following code correct the Z height difference from z-probe position and hotend tip position.
  1144. // The Z height on homing is measured by Z-Probe, but the probe is quite far from the hotend.
  1145. // When the bed is uneven, this height must be corrected.
  1146. real_z = float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]; //get the real Z (since the auto bed leveling is already correcting the plane)
  1147. x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER;
  1148. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER;
  1149. z_tmp = current_position[Z_AXIS];
  1150. apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); //Apply the correction sending the probe offset
  1151. current_position[Z_AXIS] = z_tmp - real_z + current_position[Z_AXIS]; //The difference is added to current position and sent to planner.
  1152. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1153. }
  1154. break;
  1155. case 30: // G30 Single Z Probe
  1156. {
  1157. engage_z_probe(); // Engage Z Servo endstop if available
  1158. st_synchronize();
  1159. // TODO: make sure the bed_level_rotation_matrix is identity or the planner will get set incorectly
  1160. setup_for_endstop_move();
  1161. feedrate = homing_feedrate[Z_AXIS];
  1162. run_z_probe();
  1163. SERIAL_PROTOCOLPGM("Bed Position X: ");
  1164. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1165. SERIAL_PROTOCOLPGM(" Y: ");
  1166. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1167. SERIAL_PROTOCOLPGM(" Z: ");
  1168. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1169. SERIAL_PROTOCOLPGM("\n");
  1170. clean_up_after_endstop_move();
  1171. retract_z_probe(); // Retract Z Servo endstop if available
  1172. }
  1173. break;
  1174. #endif // ENABLE_AUTO_BED_LEVELING
  1175. case 90: // G90
  1176. relative_mode = false;
  1177. break;
  1178. case 91: // G91
  1179. relative_mode = true;
  1180. break;
  1181. case 92: // G92
  1182. if(!code_seen(axis_codes[E_AXIS]))
  1183. st_synchronize();
  1184. for(int8_t i=0; i < NUM_AXIS; i++) {
  1185. if(code_seen(axis_codes[i])) {
  1186. if(i == E_AXIS) {
  1187. current_position[i] = code_value();
  1188. plan_set_e_position(current_position[E_AXIS]);
  1189. }
  1190. else {
  1191. current_position[i] = code_value()+add_homeing[i];
  1192. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1193. }
  1194. }
  1195. }
  1196. break;
  1197. }
  1198. }
  1199. else if(code_seen('M'))
  1200. {
  1201. switch( (int)code_value() )
  1202. {
  1203. #ifdef ULTIPANEL
  1204. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  1205. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  1206. {
  1207. LCD_MESSAGEPGM(MSG_USERWAIT);
  1208. codenum = 0;
  1209. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  1210. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  1211. st_synchronize();
  1212. previous_millis_cmd = millis();
  1213. if (codenum > 0){
  1214. codenum += millis(); // keep track of when we started waiting
  1215. while(millis() < codenum && !lcd_clicked()){
  1216. manage_heater();
  1217. manage_inactivity();
  1218. lcd_update();
  1219. }
  1220. }else{
  1221. while(!lcd_clicked()){
  1222. manage_heater();
  1223. manage_inactivity();
  1224. lcd_update();
  1225. }
  1226. }
  1227. LCD_MESSAGEPGM(MSG_RESUMING);
  1228. }
  1229. break;
  1230. #endif
  1231. case 17:
  1232. LCD_MESSAGEPGM(MSG_NO_MOVE);
  1233. enable_x();
  1234. enable_y();
  1235. enable_z();
  1236. enable_e0();
  1237. enable_e1();
  1238. enable_e2();
  1239. break;
  1240. #ifdef SDSUPPORT
  1241. case 20: // M20 - list SD card
  1242. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  1243. card.ls();
  1244. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  1245. break;
  1246. case 21: // M21 - init SD card
  1247. card.initsd();
  1248. break;
  1249. case 22: //M22 - release SD card
  1250. card.release();
  1251. break;
  1252. case 23: //M23 - Select file
  1253. starpos = (strchr(strchr_pointer + 4,'*'));
  1254. if(starpos!=NULL)
  1255. *(starpos-1)='\0';
  1256. card.openFile(strchr_pointer + 4,true);
  1257. break;
  1258. case 24: //M24 - Start SD print
  1259. card.startFileprint();
  1260. starttime=millis();
  1261. break;
  1262. case 25: //M25 - Pause SD print
  1263. card.pauseSDPrint();
  1264. break;
  1265. case 26: //M26 - Set SD index
  1266. if(card.cardOK && code_seen('S')) {
  1267. card.setIndex(code_value_long());
  1268. }
  1269. break;
  1270. case 27: //M27 - Get SD status
  1271. card.getStatus();
  1272. break;
  1273. case 28: //M28 - Start SD write
  1274. starpos = (strchr(strchr_pointer + 4,'*'));
  1275. if(starpos != NULL){
  1276. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1277. strchr_pointer = strchr(npos,' ') + 1;
  1278. *(starpos-1) = '\0';
  1279. }
  1280. card.openFile(strchr_pointer+4,false);
  1281. break;
  1282. case 29: //M29 - Stop SD write
  1283. //processed in write to file routine above
  1284. //card,saving = false;
  1285. break;
  1286. case 30: //M30 <filename> Delete File
  1287. if (card.cardOK){
  1288. card.closefile();
  1289. starpos = (strchr(strchr_pointer + 4,'*'));
  1290. if(starpos != NULL){
  1291. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1292. strchr_pointer = strchr(npos,' ') + 1;
  1293. *(starpos-1) = '\0';
  1294. }
  1295. card.removeFile(strchr_pointer + 4);
  1296. }
  1297. break;
  1298. case 32: //M32 - Select file and start SD print
  1299. if(card.sdprinting) {
  1300. st_synchronize();
  1301. card.closefile();
  1302. card.sdprinting = false;
  1303. }
  1304. starpos = (strchr(strchr_pointer + 4,'*'));
  1305. if(starpos!=NULL)
  1306. *(starpos-1)='\0';
  1307. card.openFile(strchr_pointer + 4,true);
  1308. card.startFileprint();
  1309. starttime=millis();
  1310. break;
  1311. case 928: //M928 - Start SD write
  1312. starpos = (strchr(strchr_pointer + 5,'*'));
  1313. if(starpos != NULL){
  1314. char* npos = strchr(cmdbuffer[bufindr], 'N');
  1315. strchr_pointer = strchr(npos,' ') + 1;
  1316. *(starpos-1) = '\0';
  1317. }
  1318. card.openLogFile(strchr_pointer+5);
  1319. break;
  1320. #endif //SDSUPPORT
  1321. case 31: //M31 take time since the start of the SD print or an M109 command
  1322. {
  1323. stoptime=millis();
  1324. char time[30];
  1325. unsigned long t=(stoptime-starttime)/1000;
  1326. int sec,min;
  1327. min=t/60;
  1328. sec=t%60;
  1329. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  1330. SERIAL_ECHO_START;
  1331. SERIAL_ECHOLN(time);
  1332. lcd_setstatus(time);
  1333. autotempShutdown();
  1334. }
  1335. break;
  1336. case 42: //M42 -Change pin status via gcode
  1337. if (code_seen('S'))
  1338. {
  1339. int pin_status = code_value();
  1340. int pin_number = LED_PIN;
  1341. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  1342. pin_number = code_value();
  1343. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  1344. {
  1345. if (sensitive_pins[i] == pin_number)
  1346. {
  1347. pin_number = -1;
  1348. break;
  1349. }
  1350. }
  1351. #if defined(FAN_PIN) && FAN_PIN > -1
  1352. if (pin_number == FAN_PIN)
  1353. fanSpeed = pin_status;
  1354. #endif
  1355. if (pin_number > -1)
  1356. {
  1357. pinMode(pin_number, OUTPUT);
  1358. digitalWrite(pin_number, pin_status);
  1359. analogWrite(pin_number, pin_status);
  1360. }
  1361. }
  1362. break;
  1363. case 104: // M104
  1364. if(setTargetedHotend(104)){
  1365. break;
  1366. }
  1367. if (code_seen('S')) setTargetHotend(code_value(), tmp_extruder);
  1368. #ifdef DUAL_X_CARRIAGE
  1369. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1370. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1371. #endif
  1372. setWatch();
  1373. break;
  1374. case 140: // M140 set bed temp
  1375. if (code_seen('S')) setTargetBed(code_value());
  1376. break;
  1377. case 105 : // M105
  1378. if(setTargetedHotend(105)){
  1379. break;
  1380. }
  1381. #if defined(TEMP_0_PIN) && TEMP_0_PIN > -1
  1382. SERIAL_PROTOCOLPGM("ok T:");
  1383. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1384. SERIAL_PROTOCOLPGM(" /");
  1385. SERIAL_PROTOCOL_F(degTargetHotend(tmp_extruder),1);
  1386. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1387. SERIAL_PROTOCOLPGM(" B:");
  1388. SERIAL_PROTOCOL_F(degBed(),1);
  1389. SERIAL_PROTOCOLPGM(" /");
  1390. SERIAL_PROTOCOL_F(degTargetBed(),1);
  1391. #endif //TEMP_BED_PIN
  1392. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1393. SERIAL_PROTOCOLPGM(" T");
  1394. SERIAL_PROTOCOL(cur_extruder);
  1395. SERIAL_PROTOCOLPGM(":");
  1396. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1397. SERIAL_PROTOCOLPGM(" /");
  1398. SERIAL_PROTOCOL_F(degTargetHotend(cur_extruder),1);
  1399. }
  1400. #else
  1401. SERIAL_ERROR_START;
  1402. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  1403. #endif
  1404. SERIAL_PROTOCOLPGM(" @:");
  1405. SERIAL_PROTOCOL(getHeaterPower(tmp_extruder));
  1406. SERIAL_PROTOCOLPGM(" B@:");
  1407. SERIAL_PROTOCOL(getHeaterPower(-1));
  1408. #ifdef SHOW_TEMP_ADC_VALUES
  1409. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1410. SERIAL_PROTOCOLPGM(" ADC B:");
  1411. SERIAL_PROTOCOL_F(degBed(),1);
  1412. SERIAL_PROTOCOLPGM("C->");
  1413. SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
  1414. #endif
  1415. for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
  1416. SERIAL_PROTOCOLPGM(" T");
  1417. SERIAL_PROTOCOL(cur_extruder);
  1418. SERIAL_PROTOCOLPGM(":");
  1419. SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
  1420. SERIAL_PROTOCOLPGM("C->");
  1421. SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
  1422. }
  1423. #endif
  1424. SERIAL_PROTOCOLLN("");
  1425. return;
  1426. break;
  1427. case 109:
  1428. {// M109 - Wait for extruder heater to reach target.
  1429. if(setTargetedHotend(109)){
  1430. break;
  1431. }
  1432. LCD_MESSAGEPGM(MSG_HEATING);
  1433. #ifdef AUTOTEMP
  1434. autotemp_enabled=false;
  1435. #endif
  1436. if (code_seen('S')) {
  1437. setTargetHotend(code_value(), tmp_extruder);
  1438. #ifdef DUAL_X_CARRIAGE
  1439. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1440. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1441. #endif
  1442. CooldownNoWait = true;
  1443. } else if (code_seen('R')) {
  1444. setTargetHotend(code_value(), tmp_extruder);
  1445. #ifdef DUAL_X_CARRIAGE
  1446. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && tmp_extruder == 0)
  1447. setTargetHotend1(code_value() == 0.0 ? 0.0 : code_value() + duplicate_extruder_temp_offset);
  1448. #endif
  1449. CooldownNoWait = false;
  1450. }
  1451. #ifdef AUTOTEMP
  1452. if (code_seen('S')) autotemp_min=code_value();
  1453. if (code_seen('B')) autotemp_max=code_value();
  1454. if (code_seen('F'))
  1455. {
  1456. autotemp_factor=code_value();
  1457. autotemp_enabled=true;
  1458. }
  1459. #endif
  1460. setWatch();
  1461. codenum = millis();
  1462. /* See if we are heating up or cooling down */
  1463. target_direction = isHeatingHotend(tmp_extruder); // true if heating, false if cooling
  1464. #ifdef TEMP_RESIDENCY_TIME
  1465. long residencyStart;
  1466. residencyStart = -1;
  1467. /* continue to loop until we have reached the target temp
  1468. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  1469. while((residencyStart == -1) ||
  1470. (residencyStart >= 0 && (((unsigned int) (millis() - residencyStart)) < (TEMP_RESIDENCY_TIME * 1000UL))) ) {
  1471. #else
  1472. while ( target_direction ? (isHeatingHotend(tmp_extruder)) : (isCoolingHotend(tmp_extruder)&&(CooldownNoWait==false)) ) {
  1473. #endif //TEMP_RESIDENCY_TIME
  1474. if( (millis() - codenum) > 1000UL )
  1475. { //Print Temp Reading and remaining time every 1 second while heating up/cooling down
  1476. SERIAL_PROTOCOLPGM("T:");
  1477. SERIAL_PROTOCOL_F(degHotend(tmp_extruder),1);
  1478. SERIAL_PROTOCOLPGM(" E:");
  1479. SERIAL_PROTOCOL((int)tmp_extruder);
  1480. #ifdef TEMP_RESIDENCY_TIME
  1481. SERIAL_PROTOCOLPGM(" W:");
  1482. if(residencyStart > -1)
  1483. {
  1484. codenum = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residencyStart)) / 1000UL;
  1485. SERIAL_PROTOCOLLN( codenum );
  1486. }
  1487. else
  1488. {
  1489. SERIAL_PROTOCOLLN( "?" );
  1490. }
  1491. #else
  1492. SERIAL_PROTOCOLLN("");
  1493. #endif
  1494. codenum = millis();
  1495. }
  1496. manage_heater();
  1497. manage_inactivity();
  1498. lcd_update();
  1499. #ifdef TEMP_RESIDENCY_TIME
  1500. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  1501. or when current temp falls outside the hysteresis after target temp was reached */
  1502. if ((residencyStart == -1 && target_direction && (degHotend(tmp_extruder) >= (degTargetHotend(tmp_extruder)-TEMP_WINDOW))) ||
  1503. (residencyStart == -1 && !target_direction && (degHotend(tmp_extruder) <= (degTargetHotend(tmp_extruder)+TEMP_WINDOW))) ||
  1504. (residencyStart > -1 && labs(degHotend(tmp_extruder) - degTargetHotend(tmp_extruder)) > TEMP_HYSTERESIS) )
  1505. {
  1506. residencyStart = millis();
  1507. }
  1508. #endif //TEMP_RESIDENCY_TIME
  1509. }
  1510. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  1511. starttime=millis();
  1512. previous_millis_cmd = millis();
  1513. }
  1514. break;
  1515. case 190: // M190 - Wait for bed heater to reach target.
  1516. #if defined(TEMP_BED_PIN) && TEMP_BED_PIN > -1
  1517. LCD_MESSAGEPGM(MSG_BED_HEATING);
  1518. if (code_seen('S')) {
  1519. setTargetBed(code_value());
  1520. CooldownNoWait = true;
  1521. } else if (code_seen('R')) {
  1522. setTargetBed(code_value());
  1523. CooldownNoWait = false;
  1524. }
  1525. codenum = millis();
  1526. target_direction = isHeatingBed(); // true if heating, false if cooling
  1527. while ( target_direction ? (isHeatingBed()) : (isCoolingBed()&&(CooldownNoWait==false)) )
  1528. {
  1529. if(( millis() - codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  1530. {
  1531. float tt=degHotend(active_extruder);
  1532. SERIAL_PROTOCOLPGM("T:");
  1533. SERIAL_PROTOCOL(tt);
  1534. SERIAL_PROTOCOLPGM(" E:");
  1535. SERIAL_PROTOCOL((int)active_extruder);
  1536. SERIAL_PROTOCOLPGM(" B:");
  1537. SERIAL_PROTOCOL_F(degBed(),1);
  1538. SERIAL_PROTOCOLLN("");
  1539. codenum = millis();
  1540. }
  1541. manage_heater();
  1542. manage_inactivity();
  1543. lcd_update();
  1544. }
  1545. LCD_MESSAGEPGM(MSG_BED_DONE);
  1546. previous_millis_cmd = millis();
  1547. #endif
  1548. break;
  1549. #if defined(FAN_PIN) && FAN_PIN > -1
  1550. case 106: //M106 Fan On
  1551. if (code_seen('S')){
  1552. fanSpeed=constrain(code_value(),0,255);
  1553. }
  1554. else {
  1555. fanSpeed=255;
  1556. }
  1557. break;
  1558. case 107: //M107 Fan Off
  1559. fanSpeed = 0;
  1560. break;
  1561. #endif //FAN_PIN
  1562. #ifdef BARICUDA
  1563. // PWM for HEATER_1_PIN
  1564. #if defined(HEATER_1_PIN) && HEATER_1_PIN > -1
  1565. case 126: //M126 valve open
  1566. if (code_seen('S')){
  1567. ValvePressure=constrain(code_value(),0,255);
  1568. }
  1569. else {
  1570. ValvePressure=255;
  1571. }
  1572. break;
  1573. case 127: //M127 valve closed
  1574. ValvePressure = 0;
  1575. break;
  1576. #endif //HEATER_1_PIN
  1577. // PWM for HEATER_2_PIN
  1578. #if defined(HEATER_2_PIN) && HEATER_2_PIN > -1
  1579. case 128: //M128 valve open
  1580. if (code_seen('S')){
  1581. EtoPPressure=constrain(code_value(),0,255);
  1582. }
  1583. else {
  1584. EtoPPressure=255;
  1585. }
  1586. break;
  1587. case 129: //M129 valve closed
  1588. EtoPPressure = 0;
  1589. break;
  1590. #endif //HEATER_2_PIN
  1591. #endif
  1592. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  1593. case 80: // M80 - Turn on Power Supply
  1594. SET_OUTPUT(PS_ON_PIN); //GND
  1595. WRITE(PS_ON_PIN, PS_ON_AWAKE);
  1596. #ifdef ULTIPANEL
  1597. powersupply = true;
  1598. LCD_MESSAGEPGM(WELCOME_MSG);
  1599. lcd_update();
  1600. #endif
  1601. break;
  1602. #endif
  1603. case 81: // M81 - Turn off Power Supply
  1604. disable_heater();
  1605. st_synchronize();
  1606. disable_e0();
  1607. disable_e1();
  1608. disable_e2();
  1609. finishAndDisableSteppers();
  1610. fanSpeed = 0;
  1611. delay(1000); // Wait a little before to switch off
  1612. #if defined(SUICIDE_PIN) && SUICIDE_PIN > -1
  1613. st_synchronize();
  1614. suicide();
  1615. #elif defined(PS_ON_PIN) && PS_ON_PIN > -1
  1616. SET_OUTPUT(PS_ON_PIN);
  1617. WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  1618. #endif
  1619. #ifdef ULTIPANEL
  1620. powersupply = false;
  1621. LCD_MESSAGEPGM(MACHINE_NAME" "MSG_OFF".");
  1622. lcd_update();
  1623. #endif
  1624. break;
  1625. case 82:
  1626. axis_relative_modes[3] = false;
  1627. break;
  1628. case 83:
  1629. axis_relative_modes[3] = true;
  1630. break;
  1631. case 18: //compatibility
  1632. case 84: // M84
  1633. if(code_seen('S')){
  1634. stepper_inactive_time = code_value() * 1000;
  1635. }
  1636. else
  1637. {
  1638. bool all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))|| (code_seen(axis_codes[3])));
  1639. if(all_axis)
  1640. {
  1641. st_synchronize();
  1642. disable_e0();
  1643. disable_e1();
  1644. disable_e2();
  1645. finishAndDisableSteppers();
  1646. }
  1647. else
  1648. {
  1649. st_synchronize();
  1650. if(code_seen('X')) disable_x();
  1651. if(code_seen('Y')) disable_y();
  1652. if(code_seen('Z')) disable_z();
  1653. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  1654. if(code_seen('E')) {
  1655. disable_e0();
  1656. disable_e1();
  1657. disable_e2();
  1658. }
  1659. #endif
  1660. }
  1661. }
  1662. break;
  1663. case 85: // M85
  1664. code_seen('S');
  1665. max_inactive_time = code_value() * 1000;
  1666. break;
  1667. case 92: // M92
  1668. for(int8_t i=0; i < NUM_AXIS; i++)
  1669. {
  1670. if(code_seen(axis_codes[i]))
  1671. {
  1672. if(i == 3) { // E
  1673. float value = code_value();
  1674. if(value < 20.0) {
  1675. float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
  1676. max_e_jerk *= factor;
  1677. max_feedrate[i] *= factor;
  1678. axis_steps_per_sqr_second[i] *= factor;
  1679. }
  1680. axis_steps_per_unit[i] = value;
  1681. }
  1682. else {
  1683. axis_steps_per_unit[i] = code_value();
  1684. }
  1685. }
  1686. }
  1687. break;
  1688. case 115: // M115
  1689. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  1690. break;
  1691. case 117: // M117 display message
  1692. starpos = (strchr(strchr_pointer + 5,'*'));
  1693. if(starpos!=NULL)
  1694. *(starpos-1)='\0';
  1695. lcd_setstatus(strchr_pointer + 5);
  1696. break;
  1697. case 114: // M114
  1698. SERIAL_PROTOCOLPGM("X:");
  1699. SERIAL_PROTOCOL(current_position[X_AXIS]);
  1700. SERIAL_PROTOCOLPGM("Y:");
  1701. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  1702. SERIAL_PROTOCOLPGM("Z:");
  1703. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  1704. SERIAL_PROTOCOLPGM("E:");
  1705. SERIAL_PROTOCOL(current_position[E_AXIS]);
  1706. SERIAL_PROTOCOLPGM(MSG_COUNT_X);
  1707. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  1708. SERIAL_PROTOCOLPGM("Y:");
  1709. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  1710. SERIAL_PROTOCOLPGM("Z:");
  1711. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  1712. SERIAL_PROTOCOLLN("");
  1713. break;
  1714. case 120: // M120
  1715. enable_endstops(false) ;
  1716. break;
  1717. case 121: // M121
  1718. enable_endstops(true) ;
  1719. break;
  1720. case 119: // M119
  1721. SERIAL_PROTOCOLLN(MSG_M119_REPORT);
  1722. #if defined(X_MIN_PIN) && X_MIN_PIN > -1
  1723. SERIAL_PROTOCOLPGM(MSG_X_MIN);
  1724. SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1725. #endif
  1726. #if defined(X_MAX_PIN) && X_MAX_PIN > -1
  1727. SERIAL_PROTOCOLPGM(MSG_X_MAX);
  1728. SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1729. #endif
  1730. #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
  1731. SERIAL_PROTOCOLPGM(MSG_Y_MIN);
  1732. SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1733. #endif
  1734. #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
  1735. SERIAL_PROTOCOLPGM(MSG_Y_MAX);
  1736. SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1737. #endif
  1738. #if defined(Z_MIN_PIN) && Z_MIN_PIN > -1
  1739. SERIAL_PROTOCOLPGM(MSG_Z_MIN);
  1740. SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1741. #endif
  1742. #if defined(Z_MAX_PIN) && Z_MAX_PIN > -1
  1743. SERIAL_PROTOCOLPGM(MSG_Z_MAX);
  1744. SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
  1745. #endif
  1746. break;
  1747. //TODO: update for all axis, use for loop
  1748. #ifdef BLINKM
  1749. case 150: // M150
  1750. {
  1751. byte red;
  1752. byte grn;
  1753. byte blu;
  1754. if(code_seen('R')) red = code_value();
  1755. if(code_seen('U')) grn = code_value();
  1756. if(code_seen('B')) blu = code_value();
  1757. SendColors(red,grn,blu);
  1758. }
  1759. break;
  1760. #endif //BLINKM
  1761. case 201: // M201
  1762. for(int8_t i=0; i < NUM_AXIS; i++)
  1763. {
  1764. if(code_seen(axis_codes[i]))
  1765. {
  1766. max_acceleration_units_per_sq_second[i] = code_value();
  1767. }
  1768. }
  1769. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  1770. reset_acceleration_rates();
  1771. break;
  1772. #if 0 // Not used for Sprinter/grbl gen6
  1773. case 202: // M202
  1774. for(int8_t i=0; i < NUM_AXIS; i++) {
  1775. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  1776. }
  1777. break;
  1778. #endif
  1779. case 203: // M203 max feedrate mm/sec
  1780. for(int8_t i=0; i < NUM_AXIS; i++) {
  1781. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value();
  1782. }
  1783. break;
  1784. case 204: // M204 acclereration S normal moves T filmanent only moves
  1785. {
  1786. if(code_seen('S')) acceleration = code_value() ;
  1787. if(code_seen('T')) retract_acceleration = code_value() ;
  1788. }
  1789. break;
  1790. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  1791. {
  1792. if(code_seen('S')) minimumfeedrate = code_value();
  1793. if(code_seen('T')) mintravelfeedrate = code_value();
  1794. if(code_seen('B')) minsegmenttime = code_value() ;
  1795. if(code_seen('X')) max_xy_jerk = code_value() ;
  1796. if(code_seen('Z')) max_z_jerk = code_value() ;
  1797. if(code_seen('E')) max_e_jerk = code_value() ;
  1798. }
  1799. break;
  1800. case 206: // M206 additional homeing offset
  1801. for(int8_t i=0; i < 3; i++)
  1802. {
  1803. if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
  1804. }
  1805. break;
  1806. #ifdef DELTA
  1807. case 666: // M666 set delta endstop adjustemnt
  1808. for(int8_t i=0; i < 3; i++)
  1809. {
  1810. if(code_seen(axis_codes[i])) endstop_adj[i] = code_value();
  1811. }
  1812. break;
  1813. #endif
  1814. #ifdef FWRETRACT
  1815. case 207: //M207 - set retract length S[positive mm] F[feedrate mm/sec] Z[additional zlift/hop]
  1816. {
  1817. if(code_seen('S'))
  1818. {
  1819. retract_length = code_value() ;
  1820. }
  1821. if(code_seen('F'))
  1822. {
  1823. retract_feedrate = code_value() ;
  1824. }
  1825. if(code_seen('Z'))
  1826. {
  1827. retract_zlift = code_value() ;
  1828. }
  1829. }break;
  1830. case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/sec]
  1831. {
  1832. if(code_seen('S'))
  1833. {
  1834. retract_recover_length = code_value() ;
  1835. }
  1836. if(code_seen('F'))
  1837. {
  1838. retract_recover_feedrate = code_value() ;
  1839. }
  1840. }break;
  1841. case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  1842. {
  1843. if(code_seen('S'))
  1844. {
  1845. int t= code_value() ;
  1846. switch(t)
  1847. {
  1848. case 0: autoretract_enabled=false;retracted=false;break;
  1849. case 1: autoretract_enabled=true;retracted=false;break;
  1850. default:
  1851. SERIAL_ECHO_START;
  1852. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  1853. SERIAL_ECHO(cmdbuffer[bufindr]);
  1854. SERIAL_ECHOLNPGM("\"");
  1855. }
  1856. }
  1857. }break;
  1858. #endif // FWRETRACT
  1859. #if EXTRUDERS > 1
  1860. case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
  1861. {
  1862. if(setTargetedHotend(218)){
  1863. break;
  1864. }
  1865. if(code_seen('X'))
  1866. {
  1867. extruder_offset[X_AXIS][tmp_extruder] = code_value();
  1868. }
  1869. if(code_seen('Y'))
  1870. {
  1871. extruder_offset[Y_AXIS][tmp_extruder] = code_value();
  1872. }
  1873. #ifdef DUAL_X_CARRIAGE
  1874. if(code_seen('Z'))
  1875. {
  1876. extruder_offset[Z_AXIS][tmp_extruder] = code_value();
  1877. }
  1878. #endif
  1879. SERIAL_ECHO_START;
  1880. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  1881. for(tmp_extruder = 0; tmp_extruder < EXTRUDERS; tmp_extruder++)
  1882. {
  1883. SERIAL_ECHO(" ");
  1884. SERIAL_ECHO(extruder_offset[X_AXIS][tmp_extruder]);
  1885. SERIAL_ECHO(",");
  1886. SERIAL_ECHO(extruder_offset[Y_AXIS][tmp_extruder]);
  1887. #ifdef DUAL_X_CARRIAGE
  1888. SERIAL_ECHO(",");
  1889. SERIAL_ECHO(extruder_offset[Z_AXIS][tmp_extruder]);
  1890. #endif
  1891. }
  1892. SERIAL_ECHOLN("");
  1893. }break;
  1894. #endif
  1895. case 220: // M220 S<factor in percent>- set speed factor override percentage
  1896. {
  1897. if(code_seen('S'))
  1898. {
  1899. feedmultiply = code_value() ;
  1900. }
  1901. }
  1902. break;
  1903. case 221: // M221 S<factor in percent>- set extrude factor override percentage
  1904. {
  1905. if(code_seen('S'))
  1906. {
  1907. extrudemultiply = code_value() ;
  1908. }
  1909. }
  1910. break;
  1911. #if NUM_SERVOS > 0
  1912. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  1913. {
  1914. int servo_index = -1;
  1915. int servo_position = 0;
  1916. if (code_seen('P'))
  1917. servo_index = code_value();
  1918. if (code_seen('S')) {
  1919. servo_position = code_value();
  1920. if ((servo_index >= 0) && (servo_index < NUM_SERVOS)) {
  1921. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1922. servos[servo_index].attach(0);
  1923. #endif
  1924. servos[servo_index].write(servo_position);
  1925. #if defined (ENABLE_AUTO_BED_LEVELING) && (PROBE_SERVO_DEACTIVATION_DELAY > 0)
  1926. delay(PROBE_SERVO_DEACTIVATION_DELAY);
  1927. servos[servo_index].detach();
  1928. #endif
  1929. }
  1930. else {
  1931. SERIAL_ECHO_START;
  1932. SERIAL_ECHO("Servo ");
  1933. SERIAL_ECHO(servo_index);
  1934. SERIAL_ECHOLN(" out of range");
  1935. }
  1936. }
  1937. else if (servo_index >= 0) {
  1938. SERIAL_PROTOCOL(MSG_OK);
  1939. SERIAL_PROTOCOL(" Servo ");
  1940. SERIAL_PROTOCOL(servo_index);
  1941. SERIAL_PROTOCOL(": ");
  1942. SERIAL_PROTOCOL(servos[servo_index].read());
  1943. SERIAL_PROTOCOLLN("");
  1944. }
  1945. }
  1946. break;
  1947. #endif // NUM_SERVOS > 0
  1948. #if LARGE_FLASH == true && ( BEEPER > 0 || defined(ULTRALCD) )
  1949. case 300: // M300
  1950. {
  1951. int beepS = code_seen('S') ? code_value() : 110;
  1952. int beepP = code_seen('P') ? code_value() : 1000;
  1953. if (beepS > 0)
  1954. {
  1955. #if BEEPER > 0
  1956. tone(BEEPER, beepS);
  1957. delay(beepP);
  1958. noTone(BEEPER);
  1959. #elif defined(ULTRALCD)
  1960. lcd_buzz(beepS, beepP);
  1961. #endif
  1962. }
  1963. else
  1964. {
  1965. delay(beepP);
  1966. }
  1967. }
  1968. break;
  1969. #endif // M300
  1970. #ifdef PIDTEMP
  1971. case 301: // M301
  1972. {
  1973. if(code_seen('P')) Kp = code_value();
  1974. if(code_seen('I')) Ki = scalePID_i(code_value());
  1975. if(code_seen('D')) Kd = scalePID_d(code_value());
  1976. #ifdef PID_ADD_EXTRUSION_RATE
  1977. if(code_seen('C')) Kc = code_value();
  1978. #endif
  1979. updatePID();
  1980. SERIAL_PROTOCOL(MSG_OK);
  1981. SERIAL_PROTOCOL(" p:");
  1982. SERIAL_PROTOCOL(Kp);
  1983. SERIAL_PROTOCOL(" i:");
  1984. SERIAL_PROTOCOL(unscalePID_i(Ki));
  1985. SERIAL_PROTOCOL(" d:");
  1986. SERIAL_PROTOCOL(unscalePID_d(Kd));
  1987. #ifdef PID_ADD_EXTRUSION_RATE
  1988. SERIAL_PROTOCOL(" c:");
  1989. //Kc does not have scaling applied above, or in resetting defaults
  1990. SERIAL_PROTOCOL(Kc);
  1991. #endif
  1992. SERIAL_PROTOCOLLN("");
  1993. }
  1994. break;
  1995. #endif //PIDTEMP
  1996. #ifdef PIDTEMPBED
  1997. case 304: // M304
  1998. {
  1999. if(code_seen('P')) bedKp = code_value();
  2000. if(code_seen('I')) bedKi = scalePID_i(code_value());
  2001. if(code_seen('D')) bedKd = scalePID_d(code_value());
  2002. updatePID();
  2003. SERIAL_PROTOCOL(MSG_OK);
  2004. SERIAL_PROTOCOL(" p:");
  2005. SERIAL_PROTOCOL(bedKp);
  2006. SERIAL_PROTOCOL(" i:");
  2007. SERIAL_PROTOCOL(unscalePID_i(bedKi));
  2008. SERIAL_PROTOCOL(" d:");
  2009. SERIAL_PROTOCOL(unscalePID_d(bedKd));
  2010. SERIAL_PROTOCOLLN("");
  2011. }
  2012. break;
  2013. #endif //PIDTEMP
  2014. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  2015. {
  2016. #if defined(PHOTOGRAPH_PIN) && PHOTOGRAPH_PIN > -1
  2017. const uint8_t NUM_PULSES=16;
  2018. const float PULSE_LENGTH=0.01524;
  2019. for(int i=0; i < NUM_PULSES; i++) {
  2020. WRITE(PHOTOGRAPH_PIN, HIGH);
  2021. _delay_ms(PULSE_LENGTH);
  2022. WRITE(PHOTOGRAPH_PIN, LOW);
  2023. _delay_ms(PULSE_LENGTH);
  2024. }
  2025. delay(7.33);
  2026. for(int i=0; i < NUM_PULSES; i++) {
  2027. WRITE(PHOTOGRAPH_PIN, HIGH);
  2028. _delay_ms(PULSE_LENGTH);
  2029. WRITE(PHOTOGRAPH_PIN, LOW);
  2030. _delay_ms(PULSE_LENGTH);
  2031. }
  2032. #endif
  2033. }
  2034. break;
  2035. #ifdef DOGLCD
  2036. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  2037. {
  2038. if (code_seen('C')) {
  2039. lcd_setcontrast( ((int)code_value())&63 );
  2040. }
  2041. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  2042. SERIAL_PROTOCOL(lcd_contrast);
  2043. SERIAL_PROTOCOLLN("");
  2044. }
  2045. break;
  2046. #endif
  2047. #ifdef PREVENT_DANGEROUS_EXTRUDE
  2048. case 302: // allow cold extrudes, or set the minimum extrude temperature
  2049. {
  2050. float temp = .0;
  2051. if (code_seen('S')) temp=code_value();
  2052. set_extrude_min_temp(temp);
  2053. }
  2054. break;
  2055. #endif
  2056. case 303: // M303 PID autotune
  2057. {
  2058. float temp = 150.0;
  2059. int e=0;
  2060. int c=5;
  2061. if (code_seen('E')) e=code_value();
  2062. if (e<0)
  2063. temp=70;
  2064. if (code_seen('S')) temp=code_value();
  2065. if (code_seen('C')) c=code_value();
  2066. PID_autotune(temp, e, c);
  2067. }
  2068. break;
  2069. case 400: // M400 finish all moves
  2070. {
  2071. st_synchronize();
  2072. }
  2073. break;
  2074. #if defined(ENABLE_AUTO_BED_LEVELING) && defined(SERVO_ENDSTOPS)
  2075. case 401:
  2076. {
  2077. engage_z_probe(); // Engage Z Servo endstop if available
  2078. }
  2079. break;
  2080. case 402:
  2081. {
  2082. retract_z_probe(); // Retract Z Servo endstop if enabled
  2083. }
  2084. break;
  2085. #endif
  2086. case 500: // M500 Store settings in EEPROM
  2087. {
  2088. Config_StoreSettings();
  2089. }
  2090. break;
  2091. case 501: // M501 Read settings from EEPROM
  2092. {
  2093. Config_RetrieveSettings();
  2094. }
  2095. break;
  2096. case 502: // M502 Revert to default settings
  2097. {
  2098. Config_ResetDefault();
  2099. }
  2100. break;
  2101. case 503: // M503 print settings currently in memory
  2102. {
  2103. Config_PrintSettings();
  2104. }
  2105. break;
  2106. #ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  2107. case 540:
  2108. {
  2109. if(code_seen('S')) abort_on_endstop_hit = code_value() > 0;
  2110. }
  2111. break;
  2112. #endif
  2113. #ifdef FILAMENTCHANGEENABLE
  2114. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  2115. {
  2116. float target[4];
  2117. float lastpos[4];
  2118. target[X_AXIS]=current_position[X_AXIS];
  2119. target[Y_AXIS]=current_position[Y_AXIS];
  2120. target[Z_AXIS]=current_position[Z_AXIS];
  2121. target[E_AXIS]=current_position[E_AXIS];
  2122. lastpos[X_AXIS]=current_position[X_AXIS];
  2123. lastpos[Y_AXIS]=current_position[Y_AXIS];
  2124. lastpos[Z_AXIS]=current_position[Z_AXIS];
  2125. lastpos[E_AXIS]=current_position[E_AXIS];
  2126. //retract by E
  2127. if(code_seen('E'))
  2128. {
  2129. target[E_AXIS]+= code_value();
  2130. }
  2131. else
  2132. {
  2133. #ifdef FILAMENTCHANGE_FIRSTRETRACT
  2134. target[E_AXIS]+= FILAMENTCHANGE_FIRSTRETRACT ;
  2135. #endif
  2136. }
  2137. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2138. //lift Z
  2139. if(code_seen('Z'))
  2140. {
  2141. target[Z_AXIS]+= code_value();
  2142. }
  2143. else
  2144. {
  2145. #ifdef FILAMENTCHANGE_ZADD
  2146. target[Z_AXIS]+= FILAMENTCHANGE_ZADD ;
  2147. #endif
  2148. }
  2149. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2150. //move xy
  2151. if(code_seen('X'))
  2152. {
  2153. target[X_AXIS]+= code_value();
  2154. }
  2155. else
  2156. {
  2157. #ifdef FILAMENTCHANGE_XPOS
  2158. target[X_AXIS]= FILAMENTCHANGE_XPOS ;
  2159. #endif
  2160. }
  2161. if(code_seen('Y'))
  2162. {
  2163. target[Y_AXIS]= code_value();
  2164. }
  2165. else
  2166. {
  2167. #ifdef FILAMENTCHANGE_YPOS
  2168. target[Y_AXIS]= FILAMENTCHANGE_YPOS ;
  2169. #endif
  2170. }
  2171. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2172. if(code_seen('L'))
  2173. {
  2174. target[E_AXIS]+= code_value();
  2175. }
  2176. else
  2177. {
  2178. #ifdef FILAMENTCHANGE_FINALRETRACT
  2179. target[E_AXIS]+= FILAMENTCHANGE_FINALRETRACT ;
  2180. #endif
  2181. }
  2182. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder);
  2183. //finish moves
  2184. st_synchronize();
  2185. //disable extruder steppers so filament can be removed
  2186. disable_e0();
  2187. disable_e1();
  2188. disable_e2();
  2189. delay(100);
  2190. LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
  2191. uint8_t cnt=0;
  2192. while(!lcd_clicked()){
  2193. cnt++;
  2194. manage_heater();
  2195. manage_inactivity();
  2196. lcd_update();
  2197. if(cnt==0)
  2198. {
  2199. #if BEEPER > 0
  2200. SET_OUTPUT(BEEPER);
  2201. WRITE(BEEPER,HIGH);
  2202. delay(3);
  2203. WRITE(BEEPER,LOW);
  2204. delay(3);
  2205. #else
  2206. lcd_buzz(1000/6,100);
  2207. #endif
  2208. }
  2209. }
  2210. //return to normal
  2211. if(code_seen('L'))
  2212. {
  2213. target[E_AXIS]+= -code_value();
  2214. }
  2215. else
  2216. {
  2217. #ifdef FILAMENTCHANGE_FINALRETRACT
  2218. target[E_AXIS]+=(-1)*FILAMENTCHANGE_FINALRETRACT ;
  2219. #endif
  2220. }
  2221. current_position[E_AXIS]=target[E_AXIS]; //the long retract of L is compensated by manual filament feeding
  2222. plan_set_e_position(current_position[E_AXIS]);
  2223. plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //should do nothing
  2224. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], target[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move xy back
  2225. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], target[E_AXIS], feedrate/60, active_extruder); //move z back
  2226. plan_buffer_line(lastpos[X_AXIS], lastpos[Y_AXIS], lastpos[Z_AXIS], lastpos[E_AXIS], feedrate/60, active_extruder); //final untretract
  2227. }
  2228. break;
  2229. #endif //FILAMENTCHANGEENABLE
  2230. #ifdef DUAL_X_CARRIAGE
  2231. case 605: // Set dual x-carriage movement mode:
  2232. // M605 S0: Full control mode. The slicer has full control over x-carriage movement
  2233. // M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  2234. // M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  2235. // millimeters x-offset and an optional differential hotend temperature of
  2236. // mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  2237. // the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  2238. //
  2239. // Note: the X axis should be homed after changing dual x-carriage mode.
  2240. {
  2241. st_synchronize();
  2242. if (code_seen('S'))
  2243. dual_x_carriage_mode = code_value();
  2244. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2245. {
  2246. if (code_seen('X'))
  2247. duplicate_extruder_x_offset = max(code_value(),X2_MIN_POS - x_home_pos(0));
  2248. if (code_seen('R'))
  2249. duplicate_extruder_temp_offset = code_value();
  2250. SERIAL_ECHO_START;
  2251. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  2252. SERIAL_ECHO(" ");
  2253. SERIAL_ECHO(extruder_offset[X_AXIS][0]);
  2254. SERIAL_ECHO(",");
  2255. SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
  2256. SERIAL_ECHO(" ");
  2257. SERIAL_ECHO(duplicate_extruder_x_offset);
  2258. SERIAL_ECHO(",");
  2259. SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
  2260. }
  2261. else if (dual_x_carriage_mode != DXC_FULL_CONTROL_MODE && dual_x_carriage_mode != DXC_AUTO_PARK_MODE)
  2262. {
  2263. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  2264. }
  2265. active_extruder_parked = false;
  2266. extruder_duplication_enabled = false;
  2267. delayed_move_time = 0;
  2268. }
  2269. break;
  2270. #endif //DUAL_X_CARRIAGE
  2271. case 907: // M907 Set digital trimpot motor current using axis codes.
  2272. {
  2273. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2274. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_current(i,code_value());
  2275. if(code_seen('B')) digipot_current(4,code_value());
  2276. if(code_seen('S')) for(int i=0;i<=4;i++) digipot_current(i,code_value());
  2277. #endif
  2278. }
  2279. break;
  2280. case 908: // M908 Control digital trimpot directly.
  2281. {
  2282. #if defined(DIGIPOTSS_PIN) && DIGIPOTSS_PIN > -1
  2283. uint8_t channel,current;
  2284. if(code_seen('P')) channel=code_value();
  2285. if(code_seen('S')) current=code_value();
  2286. digitalPotWrite(channel, current);
  2287. #endif
  2288. }
  2289. break;
  2290. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  2291. {
  2292. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2293. if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
  2294. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
  2295. if(code_seen('B')) microstep_mode(4,code_value());
  2296. microstep_readings();
  2297. #endif
  2298. }
  2299. break;
  2300. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  2301. {
  2302. #if defined(X_MS1_PIN) && X_MS1_PIN > -1
  2303. if(code_seen('S')) switch((int)code_value())
  2304. {
  2305. case 1:
  2306. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,code_value(),-1);
  2307. if(code_seen('B')) microstep_ms(4,code_value(),-1);
  2308. break;
  2309. case 2:
  2310. for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_ms(i,-1,code_value());
  2311. if(code_seen('B')) microstep_ms(4,-1,code_value());
  2312. break;
  2313. }
  2314. microstep_readings();
  2315. #endif
  2316. }
  2317. break;
  2318. case 999: // M999: Restart after being stopped
  2319. Stopped = false;
  2320. lcd_reset_alert_level();
  2321. gcode_LastN = Stopped_gcode_LastN;
  2322. FlushSerialRequestResend();
  2323. break;
  2324. }
  2325. }
  2326. else if(code_seen('T'))
  2327. {
  2328. tmp_extruder = code_value();
  2329. if(tmp_extruder >= EXTRUDERS) {
  2330. SERIAL_ECHO_START;
  2331. SERIAL_ECHO("T");
  2332. SERIAL_ECHO(tmp_extruder);
  2333. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  2334. }
  2335. else {
  2336. boolean make_move = false;
  2337. if(code_seen('F')) {
  2338. make_move = true;
  2339. next_feedrate = code_value();
  2340. if(next_feedrate > 0.0) {
  2341. feedrate = next_feedrate;
  2342. }
  2343. }
  2344. #if EXTRUDERS > 1
  2345. if(tmp_extruder != active_extruder) {
  2346. // Save current position to return to after applying extruder offset
  2347. memcpy(destination, current_position, sizeof(destination));
  2348. #ifdef DUAL_X_CARRIAGE
  2349. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && Stopped == false &&
  2350. (delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder)))
  2351. {
  2352. // Park old head: 1) raise 2) move to park position 3) lower
  2353. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2354. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2355. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  2356. current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
  2357. plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  2358. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2359. st_synchronize();
  2360. }
  2361. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  2362. current_position[Y_AXIS] = current_position[Y_AXIS] -
  2363. extruder_offset[Y_AXIS][active_extruder] +
  2364. extruder_offset[Y_AXIS][tmp_extruder];
  2365. current_position[Z_AXIS] = current_position[Z_AXIS] -
  2366. extruder_offset[Z_AXIS][active_extruder] +
  2367. extruder_offset[Z_AXIS][tmp_extruder];
  2368. active_extruder = tmp_extruder;
  2369. // This function resets the max/min values - the current position may be overwritten below.
  2370. axis_is_at_home(X_AXIS);
  2371. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE)
  2372. {
  2373. current_position[X_AXIS] = inactive_extruder_x_pos;
  2374. inactive_extruder_x_pos = destination[X_AXIS];
  2375. }
  2376. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE)
  2377. {
  2378. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  2379. if (active_extruder == 0 || active_extruder_parked)
  2380. current_position[X_AXIS] = inactive_extruder_x_pos;
  2381. else
  2382. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  2383. inactive_extruder_x_pos = destination[X_AXIS];
  2384. extruder_duplication_enabled = false;
  2385. }
  2386. else
  2387. {
  2388. // record raised toolhead position for use by unpark
  2389. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2390. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  2391. active_extruder_parked = true;
  2392. delayed_move_time = 0;
  2393. }
  2394. #else
  2395. // Offset extruder (only by XY)
  2396. int i;
  2397. for(i = 0; i < 2; i++) {
  2398. current_position[i] = current_position[i] -
  2399. extruder_offset[i][active_extruder] +
  2400. extruder_offset[i][tmp_extruder];
  2401. }
  2402. // Set the new active extruder and position
  2403. active_extruder = tmp_extruder;
  2404. #endif //else DUAL_X_CARRIAGE
  2405. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2406. // Move to the old position if 'F' was in the parameters
  2407. if(make_move && Stopped == false) {
  2408. prepare_move();
  2409. }
  2410. }
  2411. #endif
  2412. SERIAL_ECHO_START;
  2413. SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
  2414. SERIAL_PROTOCOLLN((int)active_extruder);
  2415. }
  2416. }
  2417. else
  2418. {
  2419. SERIAL_ECHO_START;
  2420. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2421. SERIAL_ECHO(cmdbuffer[bufindr]);
  2422. SERIAL_ECHOLNPGM("\"");
  2423. }
  2424. ClearToSend();
  2425. }
  2426. void FlushSerialRequestResend()
  2427. {
  2428. //char cmdbuffer[bufindr][100]="Resend:";
  2429. MYSERIAL.flush();
  2430. SERIAL_PROTOCOLPGM(MSG_RESEND);
  2431. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  2432. ClearToSend();
  2433. }
  2434. void ClearToSend()
  2435. {
  2436. previous_millis_cmd = millis();
  2437. #ifdef SDSUPPORT
  2438. if(fromsd[bufindr])
  2439. return;
  2440. #endif //SDSUPPORT
  2441. SERIAL_PROTOCOLLNPGM(MSG_OK);
  2442. }
  2443. void get_coordinates()
  2444. {
  2445. bool seen[4]={false,false,false,false};
  2446. for(int8_t i=0; i < NUM_AXIS; i++) {
  2447. if(code_seen(axis_codes[i]))
  2448. {
  2449. destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  2450. seen[i]=true;
  2451. }
  2452. else destination[i] = current_position[i]; //Are these else lines really needed?
  2453. }
  2454. if(code_seen('F')) {
  2455. next_feedrate = code_value();
  2456. if(next_feedrate > 0.0) feedrate = next_feedrate;
  2457. }
  2458. #ifdef FWRETRACT
  2459. if(autoretract_enabled)
  2460. if( !(seen[X_AXIS] || seen[Y_AXIS] || seen[Z_AXIS]) && seen[E_AXIS])
  2461. {
  2462. float echange=destination[E_AXIS]-current_position[E_AXIS];
  2463. if(echange<-MIN_RETRACT) //retract
  2464. {
  2465. if(!retracted)
  2466. {
  2467. destination[Z_AXIS]+=retract_zlift; //not sure why chaninging current_position negatively does not work.
  2468. //if slicer retracted by echange=-1mm and you want to retract 3mm, corrrectede=-2mm additionally
  2469. float correctede=-echange-retract_length;
  2470. //to generate the additional steps, not the destination is changed, but inversely the current position
  2471. current_position[E_AXIS]+=-correctede;
  2472. feedrate=retract_feedrate;
  2473. retracted=true;
  2474. }
  2475. }
  2476. else
  2477. if(echange>MIN_RETRACT) //retract_recover
  2478. {
  2479. if(retracted)
  2480. {
  2481. //current_position[Z_AXIS]+=-retract_zlift;
  2482. //if slicer retracted_recovered by echange=+1mm and you want to retract_recover 3mm, corrrectede=2mm additionally
  2483. float correctede=-echange+1*retract_length+retract_recover_length; //total unretract=retract_length+retract_recover_length[surplus]
  2484. current_position[E_AXIS]+=correctede; //to generate the additional steps, not the destination is changed, but inversely the current position
  2485. feedrate=retract_recover_feedrate;
  2486. retracted=false;
  2487. }
  2488. }
  2489. }
  2490. #endif //FWRETRACT
  2491. }
  2492. void get_arc_coordinates()
  2493. {
  2494. #ifdef SF_ARC_FIX
  2495. bool relative_mode_backup = relative_mode;
  2496. relative_mode = true;
  2497. #endif
  2498. get_coordinates();
  2499. #ifdef SF_ARC_FIX
  2500. relative_mode=relative_mode_backup;
  2501. #endif
  2502. if(code_seen('I')) {
  2503. offset[0] = code_value();
  2504. }
  2505. else {
  2506. offset[0] = 0.0;
  2507. }
  2508. if(code_seen('J')) {
  2509. offset[1] = code_value();
  2510. }
  2511. else {
  2512. offset[1] = 0.0;
  2513. }
  2514. }
  2515. void clamp_to_software_endstops(float target[3])
  2516. {
  2517. if (min_software_endstops) {
  2518. if (target[X_AXIS] < min_pos[X_AXIS]) target[X_AXIS] = min_pos[X_AXIS];
  2519. if (target[Y_AXIS] < min_pos[Y_AXIS]) target[Y_AXIS] = min_pos[Y_AXIS];
  2520. if (target[Z_AXIS] < min_pos[Z_AXIS]) target[Z_AXIS] = min_pos[Z_AXIS];
  2521. }
  2522. if (max_software_endstops) {
  2523. if (target[X_AXIS] > max_pos[X_AXIS]) target[X_AXIS] = max_pos[X_AXIS];
  2524. if (target[Y_AXIS] > max_pos[Y_AXIS]) target[Y_AXIS] = max_pos[Y_AXIS];
  2525. if (target[Z_AXIS] > max_pos[Z_AXIS]) target[Z_AXIS] = max_pos[Z_AXIS];
  2526. }
  2527. }
  2528. #ifdef DELTA
  2529. void calculate_delta(float cartesian[3])
  2530. {
  2531. delta[X_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2532. - sq(DELTA_TOWER1_X-cartesian[X_AXIS])
  2533. - sq(DELTA_TOWER1_Y-cartesian[Y_AXIS])
  2534. ) + cartesian[Z_AXIS];
  2535. delta[Y_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2536. - sq(DELTA_TOWER2_X-cartesian[X_AXIS])
  2537. - sq(DELTA_TOWER2_Y-cartesian[Y_AXIS])
  2538. ) + cartesian[Z_AXIS];
  2539. delta[Z_AXIS] = sqrt(DELTA_DIAGONAL_ROD_2
  2540. - sq(DELTA_TOWER3_X-cartesian[X_AXIS])
  2541. - sq(DELTA_TOWER3_Y-cartesian[Y_AXIS])
  2542. ) + cartesian[Z_AXIS];
  2543. /*
  2544. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  2545. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  2546. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  2547. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  2548. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  2549. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  2550. */
  2551. }
  2552. #endif
  2553. void prepare_move()
  2554. {
  2555. clamp_to_software_endstops(destination);
  2556. previous_millis_cmd = millis();
  2557. #ifdef DELTA
  2558. float difference[NUM_AXIS];
  2559. for (int8_t i=0; i < NUM_AXIS; i++) {
  2560. difference[i] = destination[i] - current_position[i];
  2561. }
  2562. float cartesian_mm = sqrt(sq(difference[X_AXIS]) +
  2563. sq(difference[Y_AXIS]) +
  2564. sq(difference[Z_AXIS]));
  2565. if (cartesian_mm < 0.000001) { cartesian_mm = abs(difference[E_AXIS]); }
  2566. if (cartesian_mm < 0.000001) { return; }
  2567. float seconds = 6000 * cartesian_mm / feedrate / feedmultiply;
  2568. int steps = max(1, int(DELTA_SEGMENTS_PER_SECOND * seconds));
  2569. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  2570. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  2571. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  2572. for (int s = 1; s <= steps; s++) {
  2573. float fraction = float(s) / float(steps);
  2574. for(int8_t i=0; i < NUM_AXIS; i++) {
  2575. destination[i] = current_position[i] + difference[i] * fraction;
  2576. }
  2577. calculate_delta(destination);
  2578. plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS],
  2579. destination[E_AXIS], feedrate*feedmultiply/60/100.0,
  2580. active_extruder);
  2581. }
  2582. #else
  2583. #ifdef DUAL_X_CARRIAGE
  2584. if (active_extruder_parked)
  2585. {
  2586. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0)
  2587. {
  2588. // move duplicate extruder into correct duplication position.
  2589. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2590. plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS],
  2591. current_position[E_AXIS], max_feedrate[X_AXIS], 1);
  2592. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  2593. st_synchronize();
  2594. extruder_duplication_enabled = true;
  2595. active_extruder_parked = false;
  2596. }
  2597. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) // handle unparking of head
  2598. {
  2599. if (current_position[E_AXIS] == destination[E_AXIS])
  2600. {
  2601. // this is a travel move - skit it but keep track of current position (so that it can later
  2602. // be used as start of first non-travel move)
  2603. if (delayed_move_time != 0xFFFFFFFFUL)
  2604. {
  2605. memcpy(current_position, destination, sizeof(current_position));
  2606. if (destination[Z_AXIS] > raised_parked_position[Z_AXIS])
  2607. raised_parked_position[Z_AXIS] = destination[Z_AXIS];
  2608. delayed_move_time = millis();
  2609. return;
  2610. }
  2611. }
  2612. delayed_move_time = 0;
  2613. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  2614. plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2615. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS],
  2616. current_position[E_AXIS], min(max_feedrate[X_AXIS],max_feedrate[Y_AXIS]), active_extruder);
  2617. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2618. current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
  2619. active_extruder_parked = false;
  2620. }
  2621. }
  2622. #endif //DUAL_X_CARRIAGE
  2623. // Do not use feedmultiply for E or Z only moves
  2624. if( (current_position[X_AXIS] == destination [X_AXIS]) && (current_position[Y_AXIS] == destination [Y_AXIS])) {
  2625. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate/60, active_extruder);
  2626. }
  2627. else {
  2628. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0, active_extruder);
  2629. }
  2630. #endif //else DELTA
  2631. for(int8_t i=0; i < NUM_AXIS; i++) {
  2632. current_position[i] = destination[i];
  2633. }
  2634. }
  2635. void prepare_arc_move(char isclockwise) {
  2636. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  2637. // Trace the arc
  2638. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise, active_extruder);
  2639. // As far as the parser is concerned, the position is now == target. In reality the
  2640. // motion control system might still be processing the action and the real tool position
  2641. // in any intermediate location.
  2642. for(int8_t i=0; i < NUM_AXIS; i++) {
  2643. current_position[i] = destination[i];
  2644. }
  2645. previous_millis_cmd = millis();
  2646. }
  2647. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2648. #if defined(FAN_PIN)
  2649. #if CONTROLLERFAN_PIN == FAN_PIN
  2650. #error "You cannot set CONTROLLERFAN_PIN equal to FAN_PIN"
  2651. #endif
  2652. #endif
  2653. unsigned long lastMotor = 0; //Save the time for when a motor was turned on last
  2654. unsigned long lastMotorCheck = 0;
  2655. void controllerFan()
  2656. {
  2657. if ((millis() - lastMotorCheck) >= 2500) //Not a time critical function, so we only check every 2500ms
  2658. {
  2659. lastMotorCheck = millis();
  2660. if(!READ(X_ENABLE_PIN) || !READ(Y_ENABLE_PIN) || !READ(Z_ENABLE_PIN)
  2661. #if EXTRUDERS > 2
  2662. || !READ(E2_ENABLE_PIN)
  2663. #endif
  2664. #if EXTRUDER > 1
  2665. #if defined(X2_ENABLE_PIN) && X2_ENABLE_PIN > -1
  2666. || !READ(X2_ENABLE_PIN)
  2667. #endif
  2668. || !READ(E1_ENABLE_PIN)
  2669. #endif
  2670. || !READ(E0_ENABLE_PIN)) //If any of the drivers are enabled...
  2671. {
  2672. lastMotor = millis(); //... set time to NOW so the fan will turn on
  2673. }
  2674. if ((millis() - lastMotor) >= (CONTROLLERFAN_SECS*1000UL) || lastMotor == 0) //If the last time any driver was enabled, is longer since than CONTROLLERSEC...
  2675. {
  2676. digitalWrite(CONTROLLERFAN_PIN, 0);
  2677. analogWrite(CONTROLLERFAN_PIN, 0);
  2678. }
  2679. else
  2680. {
  2681. // allows digital or PWM fan output to be used (see M42 handling)
  2682. digitalWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2683. analogWrite(CONTROLLERFAN_PIN, CONTROLLERFAN_SPEED);
  2684. }
  2685. }
  2686. }
  2687. #endif
  2688. void manage_inactivity()
  2689. {
  2690. if( (millis() - previous_millis_cmd) > max_inactive_time )
  2691. if(max_inactive_time)
  2692. kill();
  2693. if(stepper_inactive_time) {
  2694. if( (millis() - previous_millis_cmd) > stepper_inactive_time )
  2695. {
  2696. if(blocks_queued() == false) {
  2697. disable_x();
  2698. disable_y();
  2699. disable_z();
  2700. disable_e0();
  2701. disable_e1();
  2702. disable_e2();
  2703. }
  2704. }
  2705. }
  2706. #if defined(KILL_PIN) && KILL_PIN > -1
  2707. if( 0 == READ(KILL_PIN) )
  2708. kill();
  2709. #endif
  2710. #if defined(CONTROLLERFAN_PIN) && CONTROLLERFAN_PIN > -1
  2711. controllerFan(); //Check if fan should be turned on to cool stepper drivers down
  2712. #endif
  2713. #ifdef EXTRUDER_RUNOUT_PREVENT
  2714. if( (millis() - previous_millis_cmd) > EXTRUDER_RUNOUT_SECONDS*1000 )
  2715. if(degHotend(active_extruder)>EXTRUDER_RUNOUT_MINTEMP)
  2716. {
  2717. bool oldstatus=READ(E0_ENABLE_PIN);
  2718. enable_e0();
  2719. float oldepos=current_position[E_AXIS];
  2720. float oldedes=destination[E_AXIS];
  2721. plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS],
  2722. current_position[E_AXIS]+EXTRUDER_RUNOUT_EXTRUDE*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS],
  2723. EXTRUDER_RUNOUT_SPEED/60.*EXTRUDER_RUNOUT_ESTEPS/axis_steps_per_unit[E_AXIS], active_extruder);
  2724. current_position[E_AXIS]=oldepos;
  2725. destination[E_AXIS]=oldedes;
  2726. plan_set_e_position(oldepos);
  2727. previous_millis_cmd=millis();
  2728. st_synchronize();
  2729. WRITE(E0_ENABLE_PIN,oldstatus);
  2730. }
  2731. #endif
  2732. #if defined(DUAL_X_CARRIAGE)
  2733. // handle delayed move timeout
  2734. if (delayed_move_time != 0 && (millis() - delayed_move_time) > 1000 && Stopped == false)
  2735. {
  2736. // travel moves have been received so enact them
  2737. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  2738. memcpy(destination,current_position,sizeof(destination));
  2739. prepare_move();
  2740. }
  2741. #endif
  2742. check_axes_activity();
  2743. }
  2744. void kill()
  2745. {
  2746. cli(); // Stop interrupts
  2747. disable_heater();
  2748. disable_x();
  2749. disable_y();
  2750. disable_z();
  2751. disable_e0();
  2752. disable_e1();
  2753. disable_e2();
  2754. #if defined(PS_ON_PIN) && PS_ON_PIN > -1
  2755. pinMode(PS_ON_PIN,INPUT);
  2756. #endif
  2757. SERIAL_ERROR_START;
  2758. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  2759. LCD_ALERTMESSAGEPGM(MSG_KILLED);
  2760. suicide();
  2761. while(1) { /* Intentionally left empty */ } // Wait for reset
  2762. }
  2763. void Stop()
  2764. {
  2765. disable_heater();
  2766. if(Stopped == false) {
  2767. Stopped = true;
  2768. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  2769. SERIAL_ERROR_START;
  2770. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  2771. LCD_MESSAGEPGM(MSG_STOPPED);
  2772. }
  2773. }
  2774. bool IsStopped() { return Stopped; };
  2775. #ifdef FAST_PWM_FAN
  2776. void setPwmFrequency(uint8_t pin, int val)
  2777. {
  2778. val &= 0x07;
  2779. switch(digitalPinToTimer(pin))
  2780. {
  2781. #if defined(TCCR0A)
  2782. case TIMER0A:
  2783. case TIMER0B:
  2784. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  2785. // TCCR0B |= val;
  2786. break;
  2787. #endif
  2788. #if defined(TCCR1A)
  2789. case TIMER1A:
  2790. case TIMER1B:
  2791. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2792. // TCCR1B |= val;
  2793. break;
  2794. #endif
  2795. #if defined(TCCR2)
  2796. case TIMER2:
  2797. case TIMER2:
  2798. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  2799. TCCR2 |= val;
  2800. break;
  2801. #endif
  2802. #if defined(TCCR2A)
  2803. case TIMER2A:
  2804. case TIMER2B:
  2805. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  2806. TCCR2B |= val;
  2807. break;
  2808. #endif
  2809. #if defined(TCCR3A)
  2810. case TIMER3A:
  2811. case TIMER3B:
  2812. case TIMER3C:
  2813. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  2814. TCCR3B |= val;
  2815. break;
  2816. #endif
  2817. #if defined(TCCR4A)
  2818. case TIMER4A:
  2819. case TIMER4B:
  2820. case TIMER4C:
  2821. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  2822. TCCR4B |= val;
  2823. break;
  2824. #endif
  2825. #if defined(TCCR5A)
  2826. case TIMER5A:
  2827. case TIMER5B:
  2828. case TIMER5C:
  2829. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  2830. TCCR5B |= val;
  2831. break;
  2832. #endif
  2833. }
  2834. }
  2835. #endif //FAST_PWM_FAN
  2836. bool setTargetedHotend(int code){
  2837. tmp_extruder = active_extruder;
  2838. if(code_seen('T')) {
  2839. tmp_extruder = code_value();
  2840. if(tmp_extruder >= EXTRUDERS) {
  2841. SERIAL_ECHO_START;
  2842. switch(code){
  2843. case 104:
  2844. SERIAL_ECHO(MSG_M104_INVALID_EXTRUDER);
  2845. break;
  2846. case 105:
  2847. SERIAL_ECHO(MSG_M105_INVALID_EXTRUDER);
  2848. break;
  2849. case 109:
  2850. SERIAL_ECHO(MSG_M109_INVALID_EXTRUDER);
  2851. break;
  2852. case 218:
  2853. SERIAL_ECHO(MSG_M218_INVALID_EXTRUDER);
  2854. break;
  2855. }
  2856. SERIAL_ECHOLN(tmp_extruder);
  2857. return true;
  2858. }
  2859. }
  2860. return false;
  2861. }