My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 111KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. *
  36. */
  37. // Change EEPROM version if the structure changes
  38. #define EEPROM_VERSION "V81"
  39. #define EEPROM_OFFSET 100
  40. // Check the integrity of data offsets.
  41. // Can be disabled for production build.
  42. //#define DEBUG_EEPROM_READWRITE
  43. #include "settings.h"
  44. #include "endstops.h"
  45. #include "planner.h"
  46. #include "stepper.h"
  47. #include "temperature.h"
  48. #if ENABLED(DWIN_CREALITY_LCD)
  49. #include "../lcd/dwin/e3v2/dwin.h"
  50. #endif
  51. #include "../lcd/ultralcd.h"
  52. #include "../libs/vector_3.h" // for matrix_3x3
  53. #include "../gcode/gcode.h"
  54. #include "../MarlinCore.h"
  55. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  56. #include "../HAL/shared/eeprom_api.h"
  57. #endif
  58. #include "probe.h"
  59. #if HAS_LEVELING
  60. #include "../feature/bedlevel/bedlevel.h"
  61. #endif
  62. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  63. #include "../feature/z_stepper_align.h"
  64. #endif
  65. #if ENABLED(EXTENSIBLE_UI)
  66. #include "../lcd/extui/ui_api.h"
  67. #endif
  68. #if HAS_SERVOS
  69. #include "servo.h"
  70. #endif
  71. #if HAS_SERVOS && HAS_SERVO_ANGLES
  72. #define EEPROM_NUM_SERVOS NUM_SERVOS
  73. #else
  74. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  75. #endif
  76. #include "../feature/fwretract.h"
  77. #if ENABLED(POWER_LOSS_RECOVERY)
  78. #include "../feature/powerloss.h"
  79. #endif
  80. #if HAS_POWER_MONITOR
  81. #include "../feature/power_monitor.h"
  82. #endif
  83. #include "../feature/pause.h"
  84. #if ENABLED(BACKLASH_COMPENSATION)
  85. #include "../feature/backlash.h"
  86. #endif
  87. #if HAS_FILAMENT_SENSOR
  88. #include "../feature/runout.h"
  89. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  90. #define FIL_RUNOUT_ENABLED_DEFAULT true
  91. #endif
  92. #endif
  93. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  94. extern float other_extruder_advance_K[EXTRUDERS];
  95. #endif
  96. #if EXTRUDERS > 1
  97. #include "tool_change.h"
  98. void M217_report(const bool eeprom);
  99. #endif
  100. #if ENABLED(BLTOUCH)
  101. #include "../feature/bltouch.h"
  102. #endif
  103. #if HAS_TRINAMIC_CONFIG
  104. #include "stepper/indirection.h"
  105. #include "../feature/tmc_util.h"
  106. #endif
  107. #if ENABLED(PROBE_TEMP_COMPENSATION)
  108. #include "../feature/probe_temp_comp.h"
  109. #endif
  110. #include "../feature/controllerfan.h"
  111. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  112. void M710_report(const bool forReplay);
  113. #endif
  114. #if ENABLED(CASE_LIGHT_MENU) && DISABLED(CASE_LIGHT_NO_BRIGHTNESS)
  115. #include "../feature/caselight.h"
  116. #define HAS_CASE_LIGHT_BRIGHTNESS 1
  117. #endif
  118. #if ENABLED(PASSWORD_FEATURE)
  119. #include "../feature/password/password.h"
  120. #endif
  121. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  122. #include "../lcd/tft/touch.h"
  123. #endif
  124. #pragma pack(push, 1) // No padding between variables
  125. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  126. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  127. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  128. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  129. // Limit an index to an array size
  130. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  131. // Defaults for reset / fill in on load
  132. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  133. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  134. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  135. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  136. /**
  137. * Current EEPROM Layout
  138. *
  139. * Keep this data structure up to date so
  140. * EEPROM size is known at compile time!
  141. */
  142. typedef struct SettingsDataStruct {
  143. char version[4]; // Vnn\0
  144. uint16_t crc; // Data Checksum
  145. //
  146. // DISTINCT_E_FACTORS
  147. //
  148. uint8_t esteppers; // XYZE_N - XYZ
  149. planner_settings_t planner_settings;
  150. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  151. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  152. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  153. #if HAS_HOTEND_OFFSET
  154. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  155. #endif
  156. //
  157. // FILAMENT_RUNOUT_SENSOR
  158. //
  159. bool runout_sensor_enabled; // M412 S
  160. float runout_distance_mm; // M412 D
  161. //
  162. // ENABLE_LEVELING_FADE_HEIGHT
  163. //
  164. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  165. //
  166. // MESH_BED_LEVELING
  167. //
  168. float mbl_z_offset; // mbl.z_offset
  169. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  170. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  171. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  172. //
  173. // HAS_BED_PROBE
  174. //
  175. xyz_pos_t probe_offset;
  176. //
  177. // ABL_PLANAR
  178. //
  179. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  180. //
  181. // AUTO_BED_LEVELING_BILINEAR
  182. //
  183. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  184. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  185. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  186. bed_mesh_t z_values; // G29
  187. #else
  188. float z_values[3][3];
  189. #endif
  190. //
  191. // AUTO_BED_LEVELING_UBL
  192. //
  193. bool planner_leveling_active; // M420 S planner.leveling_active
  194. int8_t ubl_storage_slot; // ubl.storage_slot
  195. //
  196. // SERVO_ANGLES
  197. //
  198. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  199. //
  200. // Temperature first layer compensation values
  201. //
  202. #if ENABLED(PROBE_TEMP_COMPENSATION)
  203. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  204. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  205. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  206. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  207. #endif
  208. ;
  209. #endif
  210. //
  211. // BLTOUCH
  212. //
  213. bool bltouch_last_written_mode;
  214. //
  215. // DELTA / [XYZ]_DUAL_ENDSTOPS
  216. //
  217. #if ENABLED(DELTA)
  218. float delta_height; // M666 H
  219. abc_float_t delta_endstop_adj; // M666 X Y Z
  220. float delta_radius, // M665 R
  221. delta_diagonal_rod, // M665 L
  222. delta_segments_per_second; // M665 S
  223. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  224. delta_diagonal_rod_trim; // M665 A B C
  225. #elif HAS_EXTRA_ENDSTOPS
  226. float x2_endstop_adj, // M666 X
  227. y2_endstop_adj, // M666 Y
  228. z2_endstop_adj, // M666 (S2) Z
  229. z3_endstop_adj, // M666 (S3) Z
  230. z4_endstop_adj; // M666 (S4) Z
  231. #endif
  232. //
  233. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  234. //
  235. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  236. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  237. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  238. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  239. #endif
  240. #endif
  241. //
  242. // Material Presets
  243. //
  244. #if PREHEAT_COUNT
  245. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  246. #endif
  247. //
  248. // PIDTEMP
  249. //
  250. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  251. int16_t lpq_len; // M301 L
  252. //
  253. // PIDTEMPBED
  254. //
  255. PID_t bedPID; // M304 PID / M303 E-1 U
  256. //
  257. // User-defined Thermistors
  258. //
  259. #if HAS_USER_THERMISTORS
  260. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  261. #endif
  262. //
  263. // Power monitor
  264. //
  265. uint8_t power_monitor_flags; // M430 I V W
  266. //
  267. // HAS_LCD_CONTRAST
  268. //
  269. int16_t lcd_contrast; // M250 C
  270. //
  271. // Controller fan settings
  272. //
  273. controllerFan_settings_t controllerFan_settings; // M710
  274. //
  275. // POWER_LOSS_RECOVERY
  276. //
  277. bool recovery_enabled; // M413 S
  278. //
  279. // FWRETRACT
  280. //
  281. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  282. bool autoretract_enabled; // M209 S
  283. //
  284. // !NO_VOLUMETRIC
  285. //
  286. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  287. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  288. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  289. //
  290. // HAS_TRINAMIC_CONFIG
  291. //
  292. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  293. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  294. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  295. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  296. //
  297. // LIN_ADVANCE
  298. //
  299. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  300. //
  301. // HAS_MOTOR_CURRENT_PWM
  302. //
  303. uint32_t motor_current_setting[3]; // M907 X Z E
  304. //
  305. // CNC_COORDINATE_SYSTEMS
  306. //
  307. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  308. //
  309. // SKEW_CORRECTION
  310. //
  311. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  312. //
  313. // ADVANCED_PAUSE_FEATURE
  314. //
  315. #if EXTRUDERS
  316. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  317. #endif
  318. //
  319. // Tool-change settings
  320. //
  321. #if EXTRUDERS > 1
  322. toolchange_settings_t toolchange_settings; // M217 S P R
  323. #endif
  324. //
  325. // BACKLASH_COMPENSATION
  326. //
  327. xyz_float_t backlash_distance_mm; // M425 X Y Z
  328. uint8_t backlash_correction; // M425 F
  329. float backlash_smoothing_mm; // M425 S
  330. //
  331. // EXTENSIBLE_UI
  332. //
  333. #if ENABLED(EXTENSIBLE_UI)
  334. // This is a significant hardware change; don't reserve space when not present
  335. uint8_t extui_data[ExtUI::eeprom_data_size];
  336. #endif
  337. //
  338. // HAS_CASE_LIGHT_BRIGHTNESS
  339. //
  340. #if HAS_CASE_LIGHT_BRIGHTNESS
  341. uint8_t caselight_brightness; // M355 P
  342. #endif
  343. //
  344. // PASSWORD_FEATURE
  345. //
  346. #if ENABLED(PASSWORD_FEATURE)
  347. bool password_is_set;
  348. uint32_t password_value;
  349. #endif
  350. //
  351. // TOUCH_SCREEN_CALIBRATION
  352. //
  353. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  354. touch_calibration_t touch_calibration;
  355. #endif
  356. } SettingsData;
  357. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  358. MarlinSettings settings;
  359. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  360. /**
  361. * Post-process after Retrieve or Reset
  362. */
  363. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  364. float new_z_fade_height;
  365. #endif
  366. void MarlinSettings::postprocess() {
  367. xyze_pos_t oldpos = current_position;
  368. // steps per s2 needs to be updated to agree with units per s2
  369. planner.reset_acceleration_rates();
  370. // Make sure delta kinematics are updated before refreshing the
  371. // planner position so the stepper counts will be set correctly.
  372. TERN_(DELTA, recalc_delta_settings());
  373. TERN_(PIDTEMP, thermalManager.updatePID());
  374. #if DISABLED(NO_VOLUMETRICS)
  375. planner.calculate_volumetric_multipliers();
  376. #elif EXTRUDERS
  377. for (uint8_t i = COUNT(planner.e_factor); i--;)
  378. planner.refresh_e_factor(i);
  379. #endif
  380. // Software endstops depend on home_offset
  381. LOOP_XYZ(i) {
  382. update_workspace_offset((AxisEnum)i);
  383. update_software_endstops((AxisEnum)i);
  384. }
  385. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  386. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  387. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  388. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  389. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  390. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.update_brightness());
  391. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  392. // and init stepper.count[], planner.position[] with current_position
  393. planner.refresh_positioning();
  394. // Various factors can change the current position
  395. if (oldpos != current_position)
  396. report_current_position();
  397. }
  398. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  399. #include "printcounter.h"
  400. static_assert(
  401. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  402. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  403. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  404. );
  405. #endif
  406. #if ENABLED(SD_FIRMWARE_UPDATE)
  407. #if ENABLED(EEPROM_SETTINGS)
  408. static_assert(
  409. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  410. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  411. );
  412. #endif
  413. bool MarlinSettings::sd_update_status() {
  414. uint8_t val;
  415. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  416. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  417. }
  418. bool MarlinSettings::set_sd_update_status(const bool enable) {
  419. if (enable != sd_update_status())
  420. persistentStore.write_data(
  421. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  422. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  423. );
  424. return true;
  425. }
  426. #endif // SD_FIRMWARE_UPDATE
  427. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  428. static_assert(
  429. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  430. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  431. );
  432. #endif
  433. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  434. #include "../core/debug_out.h"
  435. #if ENABLED(EEPROM_SETTINGS)
  436. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  437. int eeprom_index = EEPROM_OFFSET
  438. #define EEPROM_FINISH() persistentStore.access_finish()
  439. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  440. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  441. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  442. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  443. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  444. #if ENABLED(DEBUG_EEPROM_READWRITE)
  445. #define _FIELD_TEST(FIELD) \
  446. EEPROM_ASSERT( \
  447. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  448. "Field " STRINGIFY(FIELD) " mismatch." \
  449. )
  450. #else
  451. #define _FIELD_TEST(FIELD) NOOP
  452. #endif
  453. const char version[4] = EEPROM_VERSION;
  454. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  455. bool MarlinSettings::size_error(const uint16_t size) {
  456. if (size != datasize()) {
  457. DEBUG_ERROR_MSG("EEPROM datasize error.");
  458. return true;
  459. }
  460. return false;
  461. }
  462. /**
  463. * M500 - Store Configuration
  464. */
  465. bool MarlinSettings::save() {
  466. float dummyf = 0;
  467. char ver[4] = "ERR";
  468. uint16_t working_crc = 0;
  469. EEPROM_START();
  470. eeprom_error = false;
  471. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  472. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  473. EEPROM_SKIP(working_crc); // Skip the checksum slot
  474. working_crc = 0; // clear before first "real data"
  475. _FIELD_TEST(esteppers);
  476. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  477. EEPROM_WRITE(esteppers);
  478. //
  479. // Planner Motion
  480. //
  481. {
  482. EEPROM_WRITE(planner.settings);
  483. #if HAS_CLASSIC_JERK
  484. EEPROM_WRITE(planner.max_jerk);
  485. #if HAS_LINEAR_E_JERK
  486. dummyf = float(DEFAULT_EJERK);
  487. EEPROM_WRITE(dummyf);
  488. #endif
  489. #else
  490. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  491. EEPROM_WRITE(planner_max_jerk);
  492. #endif
  493. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  494. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  495. }
  496. //
  497. // Home Offset
  498. //
  499. {
  500. _FIELD_TEST(home_offset);
  501. #if HAS_SCARA_OFFSET
  502. EEPROM_WRITE(scara_home_offset);
  503. #else
  504. #if !HAS_HOME_OFFSET
  505. const xyz_pos_t home_offset{0};
  506. #endif
  507. EEPROM_WRITE(home_offset);
  508. #endif
  509. }
  510. //
  511. // Hotend Offsets, if any
  512. //
  513. {
  514. #if HAS_HOTEND_OFFSET
  515. // Skip hotend 0 which must be 0
  516. LOOP_S_L_N(e, 1, HOTENDS)
  517. EEPROM_WRITE(hotend_offset[e]);
  518. #endif
  519. }
  520. //
  521. // Filament Runout Sensor
  522. //
  523. {
  524. #if HAS_FILAMENT_SENSOR
  525. const bool &runout_sensor_enabled = runout.enabled;
  526. #else
  527. constexpr int8_t runout_sensor_enabled = -1;
  528. #endif
  529. _FIELD_TEST(runout_sensor_enabled);
  530. EEPROM_WRITE(runout_sensor_enabled);
  531. #if HAS_FILAMENT_RUNOUT_DISTANCE
  532. const float &runout_distance_mm = runout.runout_distance();
  533. #else
  534. constexpr float runout_distance_mm = 0;
  535. #endif
  536. EEPROM_WRITE(runout_distance_mm);
  537. }
  538. //
  539. // Global Leveling
  540. //
  541. {
  542. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  543. EEPROM_WRITE(zfh);
  544. }
  545. //
  546. // Mesh Bed Leveling
  547. //
  548. {
  549. #if ENABLED(MESH_BED_LEVELING)
  550. static_assert(
  551. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  552. "MBL Z array is the wrong size."
  553. );
  554. #else
  555. dummyf = 0;
  556. #endif
  557. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  558. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  559. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  560. EEPROM_WRITE(mesh_num_x);
  561. EEPROM_WRITE(mesh_num_y);
  562. #if ENABLED(MESH_BED_LEVELING)
  563. EEPROM_WRITE(mbl.z_values);
  564. #else
  565. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  566. #endif
  567. }
  568. //
  569. // Probe XYZ Offsets
  570. //
  571. {
  572. _FIELD_TEST(probe_offset);
  573. #if HAS_BED_PROBE
  574. const xyz_pos_t &zpo = probe.offset;
  575. #else
  576. constexpr xyz_pos_t zpo{0};
  577. #endif
  578. EEPROM_WRITE(zpo);
  579. }
  580. //
  581. // Planar Bed Leveling matrix
  582. //
  583. {
  584. #if ABL_PLANAR
  585. EEPROM_WRITE(planner.bed_level_matrix);
  586. #else
  587. dummyf = 0;
  588. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  589. #endif
  590. }
  591. //
  592. // Bilinear Auto Bed Leveling
  593. //
  594. {
  595. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  596. static_assert(
  597. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  598. "Bilinear Z array is the wrong size."
  599. );
  600. #else
  601. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  602. #endif
  603. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  604. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  605. EEPROM_WRITE(grid_max_x);
  606. EEPROM_WRITE(grid_max_y);
  607. EEPROM_WRITE(bilinear_grid_spacing);
  608. EEPROM_WRITE(bilinear_start);
  609. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  610. EEPROM_WRITE(z_values); // 9-256 floats
  611. #else
  612. dummyf = 0;
  613. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  614. #endif
  615. }
  616. //
  617. // Unified Bed Leveling
  618. //
  619. {
  620. _FIELD_TEST(planner_leveling_active);
  621. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  622. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  623. EEPROM_WRITE(ubl_active);
  624. EEPROM_WRITE(storage_slot);
  625. }
  626. //
  627. // Servo Angles
  628. //
  629. {
  630. _FIELD_TEST(servo_angles);
  631. #if !HAS_SERVO_ANGLES
  632. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  633. #endif
  634. EEPROM_WRITE(servo_angles);
  635. }
  636. //
  637. // Thermal first layer compensation values
  638. //
  639. #if ENABLED(PROBE_TEMP_COMPENSATION)
  640. EEPROM_WRITE(temp_comp.z_offsets_probe);
  641. EEPROM_WRITE(temp_comp.z_offsets_bed);
  642. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  643. EEPROM_WRITE(temp_comp.z_offsets_ext);
  644. #endif
  645. #else
  646. // No placeholder data for this feature
  647. #endif
  648. //
  649. // BLTOUCH
  650. //
  651. {
  652. _FIELD_TEST(bltouch_last_written_mode);
  653. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  654. EEPROM_WRITE(bltouch_last_written_mode);
  655. }
  656. //
  657. // DELTA Geometry or Dual Endstops offsets
  658. //
  659. {
  660. #if ENABLED(DELTA)
  661. _FIELD_TEST(delta_height);
  662. EEPROM_WRITE(delta_height); // 1 float
  663. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  664. EEPROM_WRITE(delta_radius); // 1 float
  665. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  666. EEPROM_WRITE(delta_segments_per_second); // 1 float
  667. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  668. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  669. #elif HAS_EXTRA_ENDSTOPS
  670. _FIELD_TEST(x2_endstop_adj);
  671. // Write dual endstops in X, Y, Z order. Unused = 0.0
  672. dummyf = 0;
  673. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  674. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  675. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  676. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  677. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  678. #else
  679. EEPROM_WRITE(dummyf);
  680. #endif
  681. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  682. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  683. #else
  684. EEPROM_WRITE(dummyf);
  685. #endif
  686. #endif
  687. }
  688. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  689. EEPROM_WRITE(z_stepper_align.xy);
  690. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  691. EEPROM_WRITE(z_stepper_align.stepper_xy);
  692. #endif
  693. #endif
  694. //
  695. // LCD Preheat settings
  696. //
  697. #if PREHEAT_COUNT
  698. _FIELD_TEST(ui_material_preset);
  699. EEPROM_WRITE(ui.material_preset);
  700. #endif
  701. //
  702. // PIDTEMP
  703. //
  704. {
  705. _FIELD_TEST(hotendPID);
  706. HOTEND_LOOP() {
  707. PIDCF_t pidcf = {
  708. #if DISABLED(PIDTEMP)
  709. NAN, NAN, NAN,
  710. NAN, NAN
  711. #else
  712. PID_PARAM(Kp, e),
  713. unscalePID_i(PID_PARAM(Ki, e)),
  714. unscalePID_d(PID_PARAM(Kd, e)),
  715. PID_PARAM(Kc, e),
  716. PID_PARAM(Kf, e)
  717. #endif
  718. };
  719. EEPROM_WRITE(pidcf);
  720. }
  721. _FIELD_TEST(lpq_len);
  722. #if DISABLED(PID_EXTRUSION_SCALING)
  723. const int16_t lpq_len = 20;
  724. #endif
  725. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  726. }
  727. //
  728. // PIDTEMPBED
  729. //
  730. {
  731. _FIELD_TEST(bedPID);
  732. const PID_t bed_pid = {
  733. #if DISABLED(PIDTEMPBED)
  734. NAN, NAN, NAN
  735. #else
  736. // Store the unscaled PID values
  737. thermalManager.temp_bed.pid.Kp,
  738. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  739. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  740. #endif
  741. };
  742. EEPROM_WRITE(bed_pid);
  743. }
  744. //
  745. // User-defined Thermistors
  746. //
  747. #if HAS_USER_THERMISTORS
  748. {
  749. _FIELD_TEST(user_thermistor);
  750. EEPROM_WRITE(thermalManager.user_thermistor);
  751. }
  752. #endif
  753. //
  754. // Power monitor
  755. //
  756. {
  757. #if HAS_POWER_MONITOR
  758. const uint8_t &power_monitor_flags = power_monitor.flags;
  759. #else
  760. constexpr uint8_t power_monitor_flags = 0x00;
  761. #endif
  762. _FIELD_TEST(power_monitor_flags);
  763. EEPROM_WRITE(power_monitor_flags);
  764. }
  765. //
  766. // LCD Contrast
  767. //
  768. {
  769. _FIELD_TEST(lcd_contrast);
  770. const int16_t lcd_contrast =
  771. #if HAS_LCD_CONTRAST
  772. ui.contrast
  773. #else
  774. 127
  775. #endif
  776. ;
  777. EEPROM_WRITE(lcd_contrast);
  778. }
  779. //
  780. // Controller Fan
  781. //
  782. {
  783. _FIELD_TEST(controllerFan_settings);
  784. #if ENABLED(USE_CONTROLLER_FAN)
  785. const controllerFan_settings_t &cfs = controllerFan.settings;
  786. #else
  787. controllerFan_settings_t cfs = controllerFan_defaults;
  788. #endif
  789. EEPROM_WRITE(cfs);
  790. }
  791. //
  792. // Power-Loss Recovery
  793. //
  794. {
  795. _FIELD_TEST(recovery_enabled);
  796. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  797. EEPROM_WRITE(recovery_enabled);
  798. }
  799. //
  800. // Firmware Retraction
  801. //
  802. {
  803. _FIELD_TEST(fwretract_settings);
  804. #if DISABLED(FWRETRACT)
  805. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  806. #endif
  807. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  808. #if DISABLED(FWRETRACT_AUTORETRACT)
  809. const bool autoretract_enabled = false;
  810. #endif
  811. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  812. }
  813. //
  814. // Volumetric & Filament Size
  815. //
  816. {
  817. _FIELD_TEST(parser_volumetric_enabled);
  818. #if DISABLED(NO_VOLUMETRICS)
  819. EEPROM_WRITE(parser.volumetric_enabled);
  820. EEPROM_WRITE(planner.filament_size);
  821. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  822. EEPROM_WRITE(planner.volumetric_extruder_limit);
  823. #else
  824. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  825. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  826. #endif
  827. #else
  828. const bool volumetric_enabled = false;
  829. EEPROM_WRITE(volumetric_enabled);
  830. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  831. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  832. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  833. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  834. #endif
  835. }
  836. //
  837. // TMC Configuration
  838. //
  839. {
  840. _FIELD_TEST(tmc_stepper_current);
  841. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  842. #if HAS_TRINAMIC_CONFIG
  843. #if AXIS_IS_TMC(X)
  844. tmc_stepper_current.X = stepperX.getMilliamps();
  845. #endif
  846. #if AXIS_IS_TMC(Y)
  847. tmc_stepper_current.Y = stepperY.getMilliamps();
  848. #endif
  849. #if AXIS_IS_TMC(Z)
  850. tmc_stepper_current.Z = stepperZ.getMilliamps();
  851. #endif
  852. #if AXIS_IS_TMC(X2)
  853. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  854. #endif
  855. #if AXIS_IS_TMC(Y2)
  856. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  857. #endif
  858. #if AXIS_IS_TMC(Z2)
  859. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  860. #endif
  861. #if AXIS_IS_TMC(Z3)
  862. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  863. #endif
  864. #if AXIS_IS_TMC(Z4)
  865. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  866. #endif
  867. #if MAX_EXTRUDERS
  868. #if AXIS_IS_TMC(E0)
  869. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  870. #endif
  871. #if MAX_EXTRUDERS > 1
  872. #if AXIS_IS_TMC(E1)
  873. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  874. #endif
  875. #if MAX_EXTRUDERS > 2
  876. #if AXIS_IS_TMC(E2)
  877. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  878. #endif
  879. #if MAX_EXTRUDERS > 3
  880. #if AXIS_IS_TMC(E3)
  881. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  882. #endif
  883. #if MAX_EXTRUDERS > 4
  884. #if AXIS_IS_TMC(E4)
  885. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  886. #endif
  887. #if MAX_EXTRUDERS > 5
  888. #if AXIS_IS_TMC(E5)
  889. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  890. #endif
  891. #if MAX_EXTRUDERS > 6
  892. #if AXIS_IS_TMC(E6)
  893. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  894. #endif
  895. #if MAX_EXTRUDERS > 7
  896. #if AXIS_IS_TMC(E7)
  897. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  898. #endif
  899. #endif // MAX_EXTRUDERS > 7
  900. #endif // MAX_EXTRUDERS > 6
  901. #endif // MAX_EXTRUDERS > 5
  902. #endif // MAX_EXTRUDERS > 4
  903. #endif // MAX_EXTRUDERS > 3
  904. #endif // MAX_EXTRUDERS > 2
  905. #endif // MAX_EXTRUDERS > 1
  906. #endif // MAX_EXTRUDERS
  907. #endif
  908. EEPROM_WRITE(tmc_stepper_current);
  909. }
  910. //
  911. // TMC Hybrid Threshold, and placeholder values
  912. //
  913. {
  914. _FIELD_TEST(tmc_hybrid_threshold);
  915. #if ENABLED(HYBRID_THRESHOLD)
  916. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  917. #if AXIS_HAS_STEALTHCHOP(X)
  918. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  919. #endif
  920. #if AXIS_HAS_STEALTHCHOP(Y)
  921. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  922. #endif
  923. #if AXIS_HAS_STEALTHCHOP(Z)
  924. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  925. #endif
  926. #if AXIS_HAS_STEALTHCHOP(X2)
  927. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  928. #endif
  929. #if AXIS_HAS_STEALTHCHOP(Y2)
  930. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  931. #endif
  932. #if AXIS_HAS_STEALTHCHOP(Z2)
  933. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  934. #endif
  935. #if AXIS_HAS_STEALTHCHOP(Z3)
  936. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  937. #endif
  938. #if AXIS_HAS_STEALTHCHOP(Z4)
  939. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  940. #endif
  941. #if MAX_EXTRUDERS
  942. #if AXIS_HAS_STEALTHCHOP(E0)
  943. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  944. #endif
  945. #if MAX_EXTRUDERS > 1
  946. #if AXIS_HAS_STEALTHCHOP(E1)
  947. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  948. #endif
  949. #if MAX_EXTRUDERS > 2
  950. #if AXIS_HAS_STEALTHCHOP(E2)
  951. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  952. #endif
  953. #if MAX_EXTRUDERS > 3
  954. #if AXIS_HAS_STEALTHCHOP(E3)
  955. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  956. #endif
  957. #if MAX_EXTRUDERS > 4
  958. #if AXIS_HAS_STEALTHCHOP(E4)
  959. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  960. #endif
  961. #if MAX_EXTRUDERS > 5
  962. #if AXIS_HAS_STEALTHCHOP(E5)
  963. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  964. #endif
  965. #if MAX_EXTRUDERS > 6
  966. #if AXIS_HAS_STEALTHCHOP(E6)
  967. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  968. #endif
  969. #if MAX_EXTRUDERS > 7
  970. #if AXIS_HAS_STEALTHCHOP(E7)
  971. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  972. #endif
  973. #endif // MAX_EXTRUDERS > 7
  974. #endif // MAX_EXTRUDERS > 6
  975. #endif // MAX_EXTRUDERS > 5
  976. #endif // MAX_EXTRUDERS > 4
  977. #endif // MAX_EXTRUDERS > 3
  978. #endif // MAX_EXTRUDERS > 2
  979. #endif // MAX_EXTRUDERS > 1
  980. #endif // MAX_EXTRUDERS
  981. #else
  982. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  983. .X = 100, .Y = 100, .Z = 3,
  984. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  985. .E0 = 30, .E1 = 30, .E2 = 30,
  986. .E3 = 30, .E4 = 30, .E5 = 30
  987. };
  988. #endif
  989. EEPROM_WRITE(tmc_hybrid_threshold);
  990. }
  991. //
  992. // TMC StallGuard threshold
  993. //
  994. {
  995. tmc_sgt_t tmc_sgt{0};
  996. #if USE_SENSORLESS
  997. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  998. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  999. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1000. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1001. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1002. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1003. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1004. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1005. #endif
  1006. EEPROM_WRITE(tmc_sgt);
  1007. }
  1008. //
  1009. // TMC stepping mode
  1010. //
  1011. {
  1012. _FIELD_TEST(tmc_stealth_enabled);
  1013. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  1014. #if HAS_STEALTHCHOP
  1015. #if AXIS_HAS_STEALTHCHOP(X)
  1016. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop_status();
  1017. #endif
  1018. #if AXIS_HAS_STEALTHCHOP(Y)
  1019. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop_status();
  1020. #endif
  1021. #if AXIS_HAS_STEALTHCHOP(Z)
  1022. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop_status();
  1023. #endif
  1024. #if AXIS_HAS_STEALTHCHOP(X2)
  1025. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop_status();
  1026. #endif
  1027. #if AXIS_HAS_STEALTHCHOP(Y2)
  1028. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop_status();
  1029. #endif
  1030. #if AXIS_HAS_STEALTHCHOP(Z2)
  1031. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop_status();
  1032. #endif
  1033. #if AXIS_HAS_STEALTHCHOP(Z3)
  1034. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop_status();
  1035. #endif
  1036. #if AXIS_HAS_STEALTHCHOP(Z4)
  1037. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop_status();
  1038. #endif
  1039. #if MAX_EXTRUDERS
  1040. #if AXIS_HAS_STEALTHCHOP(E0)
  1041. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop_status();
  1042. #endif
  1043. #if MAX_EXTRUDERS > 1
  1044. #if AXIS_HAS_STEALTHCHOP(E1)
  1045. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop_status();
  1046. #endif
  1047. #if MAX_EXTRUDERS > 2
  1048. #if AXIS_HAS_STEALTHCHOP(E2)
  1049. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop_status();
  1050. #endif
  1051. #if MAX_EXTRUDERS > 3
  1052. #if AXIS_HAS_STEALTHCHOP(E3)
  1053. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop_status();
  1054. #endif
  1055. #if MAX_EXTRUDERS > 4
  1056. #if AXIS_HAS_STEALTHCHOP(E4)
  1057. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop_status();
  1058. #endif
  1059. #if MAX_EXTRUDERS > 5
  1060. #if AXIS_HAS_STEALTHCHOP(E5)
  1061. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop_status();
  1062. #endif
  1063. #if MAX_EXTRUDERS > 6
  1064. #if AXIS_HAS_STEALTHCHOP(E6)
  1065. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop_status();
  1066. #endif
  1067. #if MAX_EXTRUDERS > 7
  1068. #if AXIS_HAS_STEALTHCHOP(E7)
  1069. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop_status();
  1070. #endif
  1071. #endif // MAX_EXTRUDERS > 7
  1072. #endif // MAX_EXTRUDERS > 6
  1073. #endif // MAX_EXTRUDERS > 5
  1074. #endif // MAX_EXTRUDERS > 4
  1075. #endif // MAX_EXTRUDERS > 3
  1076. #endif // MAX_EXTRUDERS > 2
  1077. #endif // MAX_EXTRUDERS > 1
  1078. #endif // MAX_EXTRUDERS
  1079. #endif
  1080. EEPROM_WRITE(tmc_stealth_enabled);
  1081. }
  1082. //
  1083. // Linear Advance
  1084. //
  1085. {
  1086. _FIELD_TEST(planner_extruder_advance_K);
  1087. #if ENABLED(LIN_ADVANCE)
  1088. EEPROM_WRITE(planner.extruder_advance_K);
  1089. #else
  1090. dummyf = 0;
  1091. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1092. #endif
  1093. }
  1094. //
  1095. // Motor Current PWM
  1096. //
  1097. {
  1098. _FIELD_TEST(motor_current_setting);
  1099. #if HAS_MOTOR_CURRENT_PWM
  1100. EEPROM_WRITE(stepper.motor_current_setting);
  1101. #else
  1102. const uint32_t no_current[3] = { 0 };
  1103. EEPROM_WRITE(no_current);
  1104. #endif
  1105. }
  1106. //
  1107. // CNC Coordinate Systems
  1108. //
  1109. _FIELD_TEST(coordinate_system);
  1110. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1111. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1112. #endif
  1113. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1114. //
  1115. // Skew correction factors
  1116. //
  1117. _FIELD_TEST(planner_skew_factor);
  1118. EEPROM_WRITE(planner.skew_factor);
  1119. //
  1120. // Advanced Pause filament load & unload lengths
  1121. //
  1122. #if EXTRUDERS
  1123. {
  1124. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1125. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1126. #endif
  1127. _FIELD_TEST(fc_settings);
  1128. EEPROM_WRITE(fc_settings);
  1129. }
  1130. #endif
  1131. //
  1132. // Multiple Extruders
  1133. //
  1134. #if EXTRUDERS > 1
  1135. _FIELD_TEST(toolchange_settings);
  1136. EEPROM_WRITE(toolchange_settings);
  1137. #endif
  1138. //
  1139. // Backlash Compensation
  1140. //
  1141. {
  1142. #if ENABLED(BACKLASH_GCODE)
  1143. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1144. const uint8_t &backlash_correction = backlash.correction;
  1145. #else
  1146. const xyz_float_t backlash_distance_mm{0};
  1147. const uint8_t backlash_correction = 0;
  1148. #endif
  1149. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1150. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1151. #else
  1152. const float backlash_smoothing_mm = 3;
  1153. #endif
  1154. _FIELD_TEST(backlash_distance_mm);
  1155. EEPROM_WRITE(backlash_distance_mm);
  1156. EEPROM_WRITE(backlash_correction);
  1157. EEPROM_WRITE(backlash_smoothing_mm);
  1158. }
  1159. //
  1160. // Extensible UI User Data
  1161. //
  1162. #if ENABLED(EXTENSIBLE_UI)
  1163. {
  1164. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1165. ExtUI::onStoreSettings(extui_data);
  1166. _FIELD_TEST(extui_data);
  1167. EEPROM_WRITE(extui_data);
  1168. }
  1169. #endif
  1170. //
  1171. // Case Light Brightness
  1172. //
  1173. #if HAS_CASE_LIGHT_BRIGHTNESS
  1174. EEPROM_WRITE(caselight.brightness);
  1175. #endif
  1176. //
  1177. // Password feature
  1178. //
  1179. #if ENABLED(PASSWORD_FEATURE)
  1180. EEPROM_WRITE(password.is_set);
  1181. EEPROM_WRITE(password.value);
  1182. #endif
  1183. //
  1184. // TOUCH_SCREEN_CALIBRATION
  1185. //
  1186. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1187. EEPROM_WRITE(touch.calibration);
  1188. #endif
  1189. //
  1190. // Validate CRC and Data Size
  1191. //
  1192. if (!eeprom_error) {
  1193. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1194. final_crc = working_crc;
  1195. // Write the EEPROM header
  1196. eeprom_index = EEPROM_OFFSET;
  1197. EEPROM_WRITE(version);
  1198. EEPROM_WRITE(final_crc);
  1199. // Report storage size
  1200. DEBUG_ECHO_START();
  1201. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1202. eeprom_error |= size_error(eeprom_size);
  1203. }
  1204. EEPROM_FINISH();
  1205. //
  1206. // UBL Mesh
  1207. //
  1208. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1209. if (ubl.storage_slot >= 0)
  1210. store_mesh(ubl.storage_slot);
  1211. #endif
  1212. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1213. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1214. return !eeprom_error;
  1215. }
  1216. /**
  1217. * M501 - Retrieve Configuration
  1218. */
  1219. bool MarlinSettings::_load() {
  1220. uint16_t working_crc = 0;
  1221. EEPROM_START();
  1222. char stored_ver[4];
  1223. EEPROM_READ_ALWAYS(stored_ver);
  1224. uint16_t stored_crc;
  1225. EEPROM_READ_ALWAYS(stored_crc);
  1226. // Version has to match or defaults are used
  1227. if (strncmp(version, stored_ver, 3) != 0) {
  1228. if (stored_ver[3] != '\0') {
  1229. stored_ver[0] = '?';
  1230. stored_ver[1] = '\0';
  1231. }
  1232. DEBUG_ECHO_START();
  1233. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1234. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
  1235. eeprom_error = true;
  1236. }
  1237. else {
  1238. float dummyf = 0;
  1239. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1240. _FIELD_TEST(esteppers);
  1241. // Number of esteppers may change
  1242. uint8_t esteppers;
  1243. EEPROM_READ_ALWAYS(esteppers);
  1244. //
  1245. // Planner Motion
  1246. //
  1247. {
  1248. // Get only the number of E stepper parameters previously stored
  1249. // Any steppers added later are set to their defaults
  1250. uint32_t tmp1[XYZ + esteppers];
  1251. float tmp2[XYZ + esteppers];
  1252. feedRate_t tmp3[XYZ + esteppers];
  1253. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1254. EEPROM_READ(planner.settings.min_segment_time_us);
  1255. EEPROM_READ(tmp2); // axis_steps_per_mm
  1256. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1257. if (!validating) LOOP_XYZE_N(i) {
  1258. const bool in = (i < esteppers + XYZ);
  1259. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1260. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1261. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1262. }
  1263. EEPROM_READ(planner.settings.acceleration);
  1264. EEPROM_READ(planner.settings.retract_acceleration);
  1265. EEPROM_READ(planner.settings.travel_acceleration);
  1266. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1267. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1268. #if HAS_CLASSIC_JERK
  1269. EEPROM_READ(planner.max_jerk);
  1270. #if HAS_LINEAR_E_JERK
  1271. EEPROM_READ(dummyf);
  1272. #endif
  1273. #else
  1274. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1275. #endif
  1276. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1277. }
  1278. //
  1279. // Home Offset (M206 / M665)
  1280. //
  1281. {
  1282. _FIELD_TEST(home_offset);
  1283. #if HAS_SCARA_OFFSET
  1284. EEPROM_READ(scara_home_offset);
  1285. #else
  1286. #if !HAS_HOME_OFFSET
  1287. xyz_pos_t home_offset;
  1288. #endif
  1289. EEPROM_READ(home_offset);
  1290. #endif
  1291. }
  1292. //
  1293. // Hotend Offsets, if any
  1294. //
  1295. {
  1296. #if HAS_HOTEND_OFFSET
  1297. // Skip hotend 0 which must be 0
  1298. LOOP_S_L_N(e, 1, HOTENDS)
  1299. EEPROM_READ(hotend_offset[e]);
  1300. #endif
  1301. }
  1302. //
  1303. // Filament Runout Sensor
  1304. //
  1305. {
  1306. int8_t runout_sensor_enabled;
  1307. _FIELD_TEST(runout_sensor_enabled);
  1308. EEPROM_READ(runout_sensor_enabled);
  1309. #if HAS_FILAMENT_SENSOR
  1310. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1311. #endif
  1312. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1313. float runout_distance_mm;
  1314. EEPROM_READ(runout_distance_mm);
  1315. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1316. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1317. #endif
  1318. }
  1319. //
  1320. // Global Leveling
  1321. //
  1322. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1323. //
  1324. // Mesh (Manual) Bed Leveling
  1325. //
  1326. {
  1327. uint8_t mesh_num_x, mesh_num_y;
  1328. EEPROM_READ(dummyf);
  1329. EEPROM_READ_ALWAYS(mesh_num_x);
  1330. EEPROM_READ_ALWAYS(mesh_num_y);
  1331. #if ENABLED(MESH_BED_LEVELING)
  1332. if (!validating) mbl.z_offset = dummyf;
  1333. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1334. // EEPROM data fits the current mesh
  1335. EEPROM_READ(mbl.z_values);
  1336. }
  1337. else {
  1338. // EEPROM data is stale
  1339. if (!validating) mbl.reset();
  1340. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1341. }
  1342. #else
  1343. // MBL is disabled - skip the stored data
  1344. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1345. #endif // MESH_BED_LEVELING
  1346. }
  1347. //
  1348. // Probe Z Offset
  1349. //
  1350. {
  1351. _FIELD_TEST(probe_offset);
  1352. #if HAS_BED_PROBE
  1353. const xyz_pos_t &zpo = probe.offset;
  1354. #else
  1355. xyz_pos_t zpo;
  1356. #endif
  1357. EEPROM_READ(zpo);
  1358. }
  1359. //
  1360. // Planar Bed Leveling matrix
  1361. //
  1362. {
  1363. #if ABL_PLANAR
  1364. EEPROM_READ(planner.bed_level_matrix);
  1365. #else
  1366. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1367. #endif
  1368. }
  1369. //
  1370. // Bilinear Auto Bed Leveling
  1371. //
  1372. {
  1373. uint8_t grid_max_x, grid_max_y;
  1374. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1375. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1376. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1377. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1378. if (!validating) set_bed_leveling_enabled(false);
  1379. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1380. EEPROM_READ(bilinear_start); // 2 ints
  1381. EEPROM_READ(z_values); // 9 to 256 floats
  1382. }
  1383. else // EEPROM data is stale
  1384. #endif // AUTO_BED_LEVELING_BILINEAR
  1385. {
  1386. // Skip past disabled (or stale) Bilinear Grid data
  1387. xy_pos_t bgs, bs;
  1388. EEPROM_READ(bgs);
  1389. EEPROM_READ(bs);
  1390. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1391. }
  1392. }
  1393. //
  1394. // Unified Bed Leveling active state
  1395. //
  1396. {
  1397. _FIELD_TEST(planner_leveling_active);
  1398. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1399. const bool &planner_leveling_active = planner.leveling_active;
  1400. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1401. #else
  1402. bool planner_leveling_active;
  1403. int8_t ubl_storage_slot;
  1404. #endif
  1405. EEPROM_READ(planner_leveling_active);
  1406. EEPROM_READ(ubl_storage_slot);
  1407. }
  1408. //
  1409. // SERVO_ANGLES
  1410. //
  1411. {
  1412. _FIELD_TEST(servo_angles);
  1413. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1414. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1415. #else
  1416. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1417. #endif
  1418. EEPROM_READ(servo_angles_arr);
  1419. }
  1420. //
  1421. // Thermal first layer compensation values
  1422. //
  1423. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1424. EEPROM_READ(temp_comp.z_offsets_probe);
  1425. EEPROM_READ(temp_comp.z_offsets_bed);
  1426. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1427. EEPROM_READ(temp_comp.z_offsets_ext);
  1428. #endif
  1429. temp_comp.reset_index();
  1430. #else
  1431. // No placeholder data for this feature
  1432. #endif
  1433. //
  1434. // BLTOUCH
  1435. //
  1436. {
  1437. _FIELD_TEST(bltouch_last_written_mode);
  1438. #if ENABLED(BLTOUCH)
  1439. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1440. #else
  1441. bool bltouch_last_written_mode;
  1442. #endif
  1443. EEPROM_READ(bltouch_last_written_mode);
  1444. }
  1445. //
  1446. // DELTA Geometry or Dual Endstops offsets
  1447. //
  1448. {
  1449. #if ENABLED(DELTA)
  1450. _FIELD_TEST(delta_height);
  1451. EEPROM_READ(delta_height); // 1 float
  1452. EEPROM_READ(delta_endstop_adj); // 3 floats
  1453. EEPROM_READ(delta_radius); // 1 float
  1454. EEPROM_READ(delta_diagonal_rod); // 1 float
  1455. EEPROM_READ(delta_segments_per_second); // 1 float
  1456. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1457. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1458. #elif HAS_EXTRA_ENDSTOPS
  1459. _FIELD_TEST(x2_endstop_adj);
  1460. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1461. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1462. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1463. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1464. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1465. #else
  1466. EEPROM_READ(dummyf);
  1467. #endif
  1468. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1469. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1470. #else
  1471. EEPROM_READ(dummyf);
  1472. #endif
  1473. #endif
  1474. }
  1475. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1476. EEPROM_READ(z_stepper_align.xy);
  1477. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1478. EEPROM_READ(z_stepper_align.stepper_xy);
  1479. #endif
  1480. #endif
  1481. //
  1482. // LCD Preheat settings
  1483. //
  1484. #if PREHEAT_COUNT
  1485. _FIELD_TEST(ui_material_preset);
  1486. EEPROM_READ(ui.material_preset);
  1487. #endif
  1488. //
  1489. // Hotend PID
  1490. //
  1491. {
  1492. HOTEND_LOOP() {
  1493. PIDCF_t pidcf;
  1494. EEPROM_READ(pidcf);
  1495. #if ENABLED(PIDTEMP)
  1496. if (!validating && !isnan(pidcf.Kp)) {
  1497. // Scale PID values since EEPROM values are unscaled
  1498. PID_PARAM(Kp, e) = pidcf.Kp;
  1499. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1500. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1501. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1502. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1503. }
  1504. #endif
  1505. }
  1506. }
  1507. //
  1508. // PID Extrusion Scaling
  1509. //
  1510. {
  1511. _FIELD_TEST(lpq_len);
  1512. #if ENABLED(PID_EXTRUSION_SCALING)
  1513. const int16_t &lpq_len = thermalManager.lpq_len;
  1514. #else
  1515. int16_t lpq_len;
  1516. #endif
  1517. EEPROM_READ(lpq_len);
  1518. }
  1519. //
  1520. // Heated Bed PID
  1521. //
  1522. {
  1523. PID_t pid;
  1524. EEPROM_READ(pid);
  1525. #if ENABLED(PIDTEMPBED)
  1526. if (!validating && !isnan(pid.Kp)) {
  1527. // Scale PID values since EEPROM values are unscaled
  1528. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1529. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1530. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1531. }
  1532. #endif
  1533. }
  1534. //
  1535. // User-defined Thermistors
  1536. //
  1537. #if HAS_USER_THERMISTORS
  1538. {
  1539. _FIELD_TEST(user_thermistor);
  1540. EEPROM_READ(thermalManager.user_thermistor);
  1541. }
  1542. #endif
  1543. //
  1544. // Power monitor
  1545. //
  1546. {
  1547. #if HAS_POWER_MONITOR
  1548. uint8_t &power_monitor_flags = power_monitor.flags;
  1549. #else
  1550. uint8_t power_monitor_flags;
  1551. #endif
  1552. _FIELD_TEST(power_monitor_flags);
  1553. EEPROM_READ(power_monitor_flags);
  1554. }
  1555. //
  1556. // LCD Contrast
  1557. //
  1558. {
  1559. _FIELD_TEST(lcd_contrast);
  1560. int16_t lcd_contrast;
  1561. EEPROM_READ(lcd_contrast);
  1562. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1563. }
  1564. //
  1565. // Controller Fan
  1566. //
  1567. {
  1568. _FIELD_TEST(controllerFan_settings);
  1569. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1570. const controllerFan_settings_t &cfs = controllerFan.settings;
  1571. #else
  1572. controllerFan_settings_t cfs = { 0 };
  1573. #endif
  1574. EEPROM_READ(cfs);
  1575. }
  1576. //
  1577. // Power-Loss Recovery
  1578. //
  1579. {
  1580. _FIELD_TEST(recovery_enabled);
  1581. #if ENABLED(POWER_LOSS_RECOVERY)
  1582. const bool &recovery_enabled = recovery.enabled;
  1583. #else
  1584. bool recovery_enabled;
  1585. #endif
  1586. EEPROM_READ(recovery_enabled);
  1587. }
  1588. //
  1589. // Firmware Retraction
  1590. //
  1591. {
  1592. _FIELD_TEST(fwretract_settings);
  1593. #if ENABLED(FWRETRACT)
  1594. EEPROM_READ(fwretract.settings);
  1595. #else
  1596. fwretract_settings_t fwretract_settings;
  1597. EEPROM_READ(fwretract_settings);
  1598. #endif
  1599. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1600. EEPROM_READ(fwretract.autoretract_enabled);
  1601. #else
  1602. bool autoretract_enabled;
  1603. EEPROM_READ(autoretract_enabled);
  1604. #endif
  1605. }
  1606. //
  1607. // Volumetric & Filament Size
  1608. //
  1609. {
  1610. struct {
  1611. bool volumetric_enabled;
  1612. float filament_size[EXTRUDERS];
  1613. float volumetric_extruder_limit[EXTRUDERS];
  1614. } storage;
  1615. _FIELD_TEST(parser_volumetric_enabled);
  1616. EEPROM_READ(storage);
  1617. #if DISABLED(NO_VOLUMETRICS)
  1618. if (!validating) {
  1619. parser.volumetric_enabled = storage.volumetric_enabled;
  1620. COPY(planner.filament_size, storage.filament_size);
  1621. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1622. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1623. #endif
  1624. }
  1625. #endif
  1626. }
  1627. //
  1628. // TMC Stepper Settings
  1629. //
  1630. if (!validating) reset_stepper_drivers();
  1631. // TMC Stepper Current
  1632. {
  1633. _FIELD_TEST(tmc_stepper_current);
  1634. tmc_stepper_current_t currents;
  1635. EEPROM_READ(currents);
  1636. #if HAS_TRINAMIC_CONFIG
  1637. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1638. if (!validating) {
  1639. #if AXIS_IS_TMC(X)
  1640. SET_CURR(X);
  1641. #endif
  1642. #if AXIS_IS_TMC(Y)
  1643. SET_CURR(Y);
  1644. #endif
  1645. #if AXIS_IS_TMC(Z)
  1646. SET_CURR(Z);
  1647. #endif
  1648. #if AXIS_IS_TMC(X2)
  1649. SET_CURR(X2);
  1650. #endif
  1651. #if AXIS_IS_TMC(Y2)
  1652. SET_CURR(Y2);
  1653. #endif
  1654. #if AXIS_IS_TMC(Z2)
  1655. SET_CURR(Z2);
  1656. #endif
  1657. #if AXIS_IS_TMC(Z3)
  1658. SET_CURR(Z3);
  1659. #endif
  1660. #if AXIS_IS_TMC(Z4)
  1661. SET_CURR(Z4);
  1662. #endif
  1663. #if AXIS_IS_TMC(E0)
  1664. SET_CURR(E0);
  1665. #endif
  1666. #if AXIS_IS_TMC(E1)
  1667. SET_CURR(E1);
  1668. #endif
  1669. #if AXIS_IS_TMC(E2)
  1670. SET_CURR(E2);
  1671. #endif
  1672. #if AXIS_IS_TMC(E3)
  1673. SET_CURR(E3);
  1674. #endif
  1675. #if AXIS_IS_TMC(E4)
  1676. SET_CURR(E4);
  1677. #endif
  1678. #if AXIS_IS_TMC(E5)
  1679. SET_CURR(E5);
  1680. #endif
  1681. #if AXIS_IS_TMC(E6)
  1682. SET_CURR(E6);
  1683. #endif
  1684. #if AXIS_IS_TMC(E7)
  1685. SET_CURR(E7);
  1686. #endif
  1687. }
  1688. #endif
  1689. }
  1690. // TMC Hybrid Threshold
  1691. {
  1692. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1693. _FIELD_TEST(tmc_hybrid_threshold);
  1694. EEPROM_READ(tmc_hybrid_threshold);
  1695. #if ENABLED(HYBRID_THRESHOLD)
  1696. if (!validating) {
  1697. #if AXIS_HAS_STEALTHCHOP(X)
  1698. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1699. #endif
  1700. #if AXIS_HAS_STEALTHCHOP(Y)
  1701. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1702. #endif
  1703. #if AXIS_HAS_STEALTHCHOP(Z)
  1704. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1705. #endif
  1706. #if AXIS_HAS_STEALTHCHOP(X2)
  1707. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1708. #endif
  1709. #if AXIS_HAS_STEALTHCHOP(Y2)
  1710. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1711. #endif
  1712. #if AXIS_HAS_STEALTHCHOP(Z2)
  1713. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1714. #endif
  1715. #if AXIS_HAS_STEALTHCHOP(Z3)
  1716. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1717. #endif
  1718. #if AXIS_HAS_STEALTHCHOP(Z4)
  1719. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1720. #endif
  1721. #if AXIS_HAS_STEALTHCHOP(E0)
  1722. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1723. #endif
  1724. #if AXIS_HAS_STEALTHCHOP(E1)
  1725. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1726. #endif
  1727. #if AXIS_HAS_STEALTHCHOP(E2)
  1728. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1729. #endif
  1730. #if AXIS_HAS_STEALTHCHOP(E3)
  1731. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1732. #endif
  1733. #if AXIS_HAS_STEALTHCHOP(E4)
  1734. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1735. #endif
  1736. #if AXIS_HAS_STEALTHCHOP(E5)
  1737. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1738. #endif
  1739. #if AXIS_HAS_STEALTHCHOP(E6)
  1740. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1741. #endif
  1742. #if AXIS_HAS_STEALTHCHOP(E7)
  1743. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1744. #endif
  1745. }
  1746. #endif
  1747. }
  1748. //
  1749. // TMC StallGuard threshold.
  1750. //
  1751. {
  1752. tmc_sgt_t tmc_sgt;
  1753. _FIELD_TEST(tmc_sgt);
  1754. EEPROM_READ(tmc_sgt);
  1755. #if USE_SENSORLESS
  1756. if (!validating) {
  1757. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1758. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1759. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1760. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1761. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1762. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1763. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1764. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1765. }
  1766. #endif
  1767. }
  1768. // TMC stepping mode
  1769. {
  1770. _FIELD_TEST(tmc_stealth_enabled);
  1771. tmc_stealth_enabled_t tmc_stealth_enabled;
  1772. EEPROM_READ(tmc_stealth_enabled);
  1773. #if HAS_TRINAMIC_CONFIG
  1774. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1775. if (!validating) {
  1776. #if AXIS_HAS_STEALTHCHOP(X)
  1777. SET_STEPPING_MODE(X);
  1778. #endif
  1779. #if AXIS_HAS_STEALTHCHOP(Y)
  1780. SET_STEPPING_MODE(Y);
  1781. #endif
  1782. #if AXIS_HAS_STEALTHCHOP(Z)
  1783. SET_STEPPING_MODE(Z);
  1784. #endif
  1785. #if AXIS_HAS_STEALTHCHOP(X2)
  1786. SET_STEPPING_MODE(X2);
  1787. #endif
  1788. #if AXIS_HAS_STEALTHCHOP(Y2)
  1789. SET_STEPPING_MODE(Y2);
  1790. #endif
  1791. #if AXIS_HAS_STEALTHCHOP(Z2)
  1792. SET_STEPPING_MODE(Z2);
  1793. #endif
  1794. #if AXIS_HAS_STEALTHCHOP(Z3)
  1795. SET_STEPPING_MODE(Z3);
  1796. #endif
  1797. #if AXIS_HAS_STEALTHCHOP(Z4)
  1798. SET_STEPPING_MODE(Z4);
  1799. #endif
  1800. #if AXIS_HAS_STEALTHCHOP(E0)
  1801. SET_STEPPING_MODE(E0);
  1802. #endif
  1803. #if AXIS_HAS_STEALTHCHOP(E1)
  1804. SET_STEPPING_MODE(E1);
  1805. #endif
  1806. #if AXIS_HAS_STEALTHCHOP(E2)
  1807. SET_STEPPING_MODE(E2);
  1808. #endif
  1809. #if AXIS_HAS_STEALTHCHOP(E3)
  1810. SET_STEPPING_MODE(E3);
  1811. #endif
  1812. #if AXIS_HAS_STEALTHCHOP(E4)
  1813. SET_STEPPING_MODE(E4);
  1814. #endif
  1815. #if AXIS_HAS_STEALTHCHOP(E5)
  1816. SET_STEPPING_MODE(E5);
  1817. #endif
  1818. #if AXIS_HAS_STEALTHCHOP(E6)
  1819. SET_STEPPING_MODE(E6);
  1820. #endif
  1821. #if AXIS_HAS_STEALTHCHOP(E7)
  1822. SET_STEPPING_MODE(E7);
  1823. #endif
  1824. }
  1825. #endif
  1826. }
  1827. //
  1828. // Linear Advance
  1829. //
  1830. {
  1831. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1832. _FIELD_TEST(planner_extruder_advance_K);
  1833. EEPROM_READ(extruder_advance_K);
  1834. #if ENABLED(LIN_ADVANCE)
  1835. if (!validating)
  1836. COPY(planner.extruder_advance_K, extruder_advance_K);
  1837. #endif
  1838. }
  1839. //
  1840. // Motor Current PWM
  1841. //
  1842. {
  1843. uint32_t motor_current_setting[3];
  1844. _FIELD_TEST(motor_current_setting);
  1845. EEPROM_READ(motor_current_setting);
  1846. #if HAS_MOTOR_CURRENT_PWM
  1847. if (!validating)
  1848. COPY(stepper.motor_current_setting, motor_current_setting);
  1849. #endif
  1850. }
  1851. //
  1852. // CNC Coordinate System
  1853. //
  1854. {
  1855. _FIELD_TEST(coordinate_system);
  1856. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1857. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1858. EEPROM_READ(gcode.coordinate_system);
  1859. #else
  1860. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1861. EEPROM_READ(coordinate_system);
  1862. #endif
  1863. }
  1864. //
  1865. // Skew correction factors
  1866. //
  1867. {
  1868. skew_factor_t skew_factor;
  1869. _FIELD_TEST(planner_skew_factor);
  1870. EEPROM_READ(skew_factor);
  1871. #if ENABLED(SKEW_CORRECTION_GCODE)
  1872. if (!validating) {
  1873. planner.skew_factor.xy = skew_factor.xy;
  1874. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1875. planner.skew_factor.xz = skew_factor.xz;
  1876. planner.skew_factor.yz = skew_factor.yz;
  1877. #endif
  1878. }
  1879. #endif
  1880. }
  1881. //
  1882. // Advanced Pause filament load & unload lengths
  1883. //
  1884. #if EXTRUDERS
  1885. {
  1886. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1887. fil_change_settings_t fc_settings[EXTRUDERS];
  1888. #endif
  1889. _FIELD_TEST(fc_settings);
  1890. EEPROM_READ(fc_settings);
  1891. }
  1892. #endif
  1893. //
  1894. // Tool-change settings
  1895. //
  1896. #if EXTRUDERS > 1
  1897. _FIELD_TEST(toolchange_settings);
  1898. EEPROM_READ(toolchange_settings);
  1899. #endif
  1900. //
  1901. // Backlash Compensation
  1902. //
  1903. {
  1904. #if ENABLED(BACKLASH_GCODE)
  1905. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1906. const uint8_t &backlash_correction = backlash.correction;
  1907. #else
  1908. float backlash_distance_mm[XYZ];
  1909. uint8_t backlash_correction;
  1910. #endif
  1911. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1912. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1913. #else
  1914. float backlash_smoothing_mm;
  1915. #endif
  1916. _FIELD_TEST(backlash_distance_mm);
  1917. EEPROM_READ(backlash_distance_mm);
  1918. EEPROM_READ(backlash_correction);
  1919. EEPROM_READ(backlash_smoothing_mm);
  1920. }
  1921. //
  1922. // Extensible UI User Data
  1923. //
  1924. #if ENABLED(EXTENSIBLE_UI)
  1925. // This is a significant hardware change; don't reserve EEPROM space when not present
  1926. {
  1927. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1928. _FIELD_TEST(extui_data);
  1929. EEPROM_READ(extui_data);
  1930. if (!validating) ExtUI::onLoadSettings(extui_data);
  1931. }
  1932. #endif
  1933. //
  1934. // Case Light Brightness
  1935. //
  1936. #if HAS_CASE_LIGHT_BRIGHTNESS
  1937. _FIELD_TEST(caselight_brightness);
  1938. EEPROM_READ(caselight.brightness);
  1939. #endif
  1940. //
  1941. // Password feature
  1942. //
  1943. #if ENABLED(PASSWORD_FEATURE)
  1944. _FIELD_TEST(password_is_set);
  1945. EEPROM_READ(password.is_set);
  1946. EEPROM_READ(password.value);
  1947. #endif
  1948. //
  1949. // TOUCH_SCREEN_CALIBRATION
  1950. //
  1951. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1952. _FIELD_TEST(touch.calibration);
  1953. EEPROM_READ(touch.calibration);
  1954. #endif
  1955. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  1956. if (eeprom_error) {
  1957. DEBUG_ECHO_START();
  1958. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  1959. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
  1960. }
  1961. else if (working_crc != stored_crc) {
  1962. eeprom_error = true;
  1963. DEBUG_ERROR_START();
  1964. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  1965. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
  1966. }
  1967. else if (!validating) {
  1968. DEBUG_ECHO_START();
  1969. DEBUG_ECHO(version);
  1970. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  1971. }
  1972. if (!validating && !eeprom_error) postprocess();
  1973. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1974. if (!validating) {
  1975. ubl.report_state();
  1976. if (!ubl.sanity_check()) {
  1977. SERIAL_EOL();
  1978. #if ENABLED(EEPROM_CHITCHAT)
  1979. ubl.echo_name();
  1980. DEBUG_ECHOLNPGM(" initialized.\n");
  1981. #endif
  1982. }
  1983. else {
  1984. eeprom_error = true;
  1985. #if ENABLED(EEPROM_CHITCHAT)
  1986. DEBUG_ECHOPGM("?Can't enable ");
  1987. ubl.echo_name();
  1988. DEBUG_ECHOLNPGM(".");
  1989. #endif
  1990. ubl.reset();
  1991. }
  1992. if (ubl.storage_slot >= 0) {
  1993. load_mesh(ubl.storage_slot);
  1994. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  1995. }
  1996. else {
  1997. ubl.reset();
  1998. DEBUG_ECHOLNPGM("UBL reset");
  1999. }
  2000. }
  2001. #endif
  2002. }
  2003. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2004. // Report the EEPROM settings
  2005. if (!validating && (DISABLED(EEPROM_BOOT_SILENT) || IsRunning())) report();
  2006. #endif
  2007. EEPROM_FINISH();
  2008. return !eeprom_error;
  2009. }
  2010. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2011. extern bool restoreEEPROM();
  2012. #endif
  2013. bool MarlinSettings::validate() {
  2014. validating = true;
  2015. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2016. bool success = _load();
  2017. if (!success && restoreEEPROM()) {
  2018. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2019. success = _load();
  2020. }
  2021. #else
  2022. const bool success = _load();
  2023. #endif
  2024. validating = false;
  2025. return success;
  2026. }
  2027. bool MarlinSettings::load() {
  2028. if (validate()) {
  2029. const bool success = _load();
  2030. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2031. return success;
  2032. }
  2033. reset();
  2034. #if ENABLED(EEPROM_AUTO_INIT)
  2035. (void)save();
  2036. SERIAL_ECHO_MSG("EEPROM Initialized");
  2037. #endif
  2038. return false;
  2039. }
  2040. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2041. inline void ubl_invalid_slot(const int s) {
  2042. #if ENABLED(EEPROM_CHITCHAT)
  2043. DEBUG_ECHOLNPGM("?Invalid slot.");
  2044. DEBUG_ECHO(s);
  2045. DEBUG_ECHOLNPGM(" mesh slots available.");
  2046. #else
  2047. UNUSED(s);
  2048. #endif
  2049. }
  2050. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2051. // is a placeholder for the size of the MAT; the MAT will always
  2052. // live at the very end of the eeprom
  2053. uint16_t MarlinSettings::meshes_start_index() {
  2054. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2055. // or down a little bit without disrupting the mesh data
  2056. }
  2057. uint16_t MarlinSettings::calc_num_meshes() {
  2058. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2059. }
  2060. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2061. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2062. }
  2063. void MarlinSettings::store_mesh(const int8_t slot) {
  2064. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2065. const int16_t a = calc_num_meshes();
  2066. if (!WITHIN(slot, 0, a - 1)) {
  2067. ubl_invalid_slot(a);
  2068. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2069. DEBUG_EOL();
  2070. return;
  2071. }
  2072. int pos = mesh_slot_offset(slot);
  2073. uint16_t crc = 0;
  2074. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2075. persistentStore.access_start();
  2076. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2077. persistentStore.access_finish();
  2078. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2079. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2080. #else
  2081. // Other mesh types
  2082. #endif
  2083. }
  2084. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2085. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2086. const int16_t a = settings.calc_num_meshes();
  2087. if (!WITHIN(slot, 0, a - 1)) {
  2088. ubl_invalid_slot(a);
  2089. return;
  2090. }
  2091. int pos = mesh_slot_offset(slot);
  2092. uint16_t crc = 0;
  2093. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2094. persistentStore.access_start();
  2095. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2096. persistentStore.access_finish();
  2097. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2098. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2099. EEPROM_FINISH();
  2100. #else
  2101. // Other mesh types
  2102. #endif
  2103. }
  2104. //void MarlinSettings::delete_mesh() { return; }
  2105. //void MarlinSettings::defrag_meshes() { return; }
  2106. #endif // AUTO_BED_LEVELING_UBL
  2107. #else // !EEPROM_SETTINGS
  2108. bool MarlinSettings::save() {
  2109. DEBUG_ERROR_MSG("EEPROM disabled");
  2110. return false;
  2111. }
  2112. #endif // !EEPROM_SETTINGS
  2113. /**
  2114. * M502 - Reset Configuration
  2115. */
  2116. void MarlinSettings::reset() {
  2117. LOOP_XYZE_N(i) {
  2118. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2119. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2120. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2121. }
  2122. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2123. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2124. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2125. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2126. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2127. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2128. #if HAS_CLASSIC_JERK
  2129. #ifndef DEFAULT_XJERK
  2130. #define DEFAULT_XJERK 0
  2131. #endif
  2132. #ifndef DEFAULT_YJERK
  2133. #define DEFAULT_YJERK 0
  2134. #endif
  2135. #ifndef DEFAULT_ZJERK
  2136. #define DEFAULT_ZJERK 0
  2137. #endif
  2138. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2139. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2140. #endif
  2141. #if HAS_JUNCTION_DEVIATION
  2142. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2143. #endif
  2144. #if HAS_SCARA_OFFSET
  2145. scara_home_offset.reset();
  2146. #elif HAS_HOME_OFFSET
  2147. home_offset.reset();
  2148. #endif
  2149. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2150. //
  2151. // Filament Runout Sensor
  2152. //
  2153. #if HAS_FILAMENT_SENSOR
  2154. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2155. runout.reset();
  2156. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2157. #endif
  2158. //
  2159. // Tool-change Settings
  2160. //
  2161. #if EXTRUDERS > 1
  2162. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2163. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2164. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2165. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2166. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2167. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2168. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2169. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2170. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2171. #endif
  2172. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2173. enable_first_prime = false;
  2174. #endif
  2175. #if ENABLED(TOOLCHANGE_PARK)
  2176. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2177. toolchange_settings.enable_park = true;
  2178. toolchange_settings.change_point = tpxy;
  2179. #endif
  2180. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2181. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2182. migration = migration_defaults;
  2183. #endif
  2184. #endif
  2185. #if ENABLED(BACKLASH_GCODE)
  2186. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2187. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2188. backlash.distance_mm = tmp;
  2189. #ifdef BACKLASH_SMOOTHING_MM
  2190. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2191. #endif
  2192. #endif
  2193. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2194. //
  2195. // Case Light Brightness
  2196. //
  2197. TERN_(HAS_CASE_LIGHT_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2198. //
  2199. // TOUCH_SCREEN_CALIBRATION
  2200. //
  2201. TERN_(TOUCH_SCREEN_CALIBRATION, touch.calibration_reset());
  2202. //
  2203. // Magnetic Parking Extruder
  2204. //
  2205. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2206. //
  2207. // Global Leveling
  2208. //
  2209. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2210. TERN_(HAS_LEVELING, reset_bed_level());
  2211. #if HAS_BED_PROBE
  2212. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2213. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2214. #if HAS_PROBE_XY_OFFSET
  2215. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2216. #else
  2217. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2218. #endif
  2219. #endif
  2220. //
  2221. // Z Stepper Auto-alignment points
  2222. //
  2223. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2224. //
  2225. // Servo Angles
  2226. //
  2227. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2228. //
  2229. // BLTOUCH
  2230. //
  2231. //#if ENABLED(BLTOUCH)
  2232. // bltouch.last_written_mode;
  2233. //#endif
  2234. //
  2235. // Endstop Adjustments
  2236. //
  2237. #if ENABLED(DELTA)
  2238. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2239. delta_height = DELTA_HEIGHT;
  2240. delta_endstop_adj = adj;
  2241. delta_radius = DELTA_RADIUS;
  2242. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2243. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2244. delta_tower_angle_trim = dta;
  2245. delta_diagonal_rod_trim = ddr;
  2246. #endif
  2247. #if ENABLED(X_DUAL_ENDSTOPS)
  2248. #ifndef X2_ENDSTOP_ADJUSTMENT
  2249. #define X2_ENDSTOP_ADJUSTMENT 0
  2250. #endif
  2251. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2252. #endif
  2253. #if ENABLED(Y_DUAL_ENDSTOPS)
  2254. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2255. #define Y2_ENDSTOP_ADJUSTMENT 0
  2256. #endif
  2257. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2258. #endif
  2259. #if ENABLED(Z_MULTI_ENDSTOPS)
  2260. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2261. #define Z2_ENDSTOP_ADJUSTMENT 0
  2262. #endif
  2263. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2264. #if NUM_Z_STEPPER_DRIVERS >= 3
  2265. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2266. #define Z3_ENDSTOP_ADJUSTMENT 0
  2267. #endif
  2268. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2269. #endif
  2270. #if NUM_Z_STEPPER_DRIVERS >= 4
  2271. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2272. #define Z4_ENDSTOP_ADJUSTMENT 0
  2273. #endif
  2274. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2275. #endif
  2276. #endif
  2277. //
  2278. // Preheat parameters
  2279. //
  2280. #if PREHEAT_COUNT
  2281. #if HAS_HOTEND
  2282. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2283. #endif
  2284. #if HAS_HEATED_BED
  2285. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2286. #endif
  2287. #if HAS_FAN
  2288. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2289. #endif
  2290. LOOP_L_N(i, PREHEAT_COUNT) {
  2291. #if HAS_HOTEND
  2292. ui.material_preset[i].hotend_temp = hpre[i];
  2293. #endif
  2294. #if HAS_HEATED_BED
  2295. ui.material_preset[i].bed_temp = bpre[i];
  2296. #endif
  2297. #if HAS_FAN
  2298. ui.material_preset[i].fan_speed = fpre[i];
  2299. #endif
  2300. }
  2301. #endif
  2302. //
  2303. // Hotend PID
  2304. //
  2305. #if ENABLED(PIDTEMP)
  2306. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2307. constexpr float defKp[] =
  2308. #ifdef DEFAULT_Kp_LIST
  2309. DEFAULT_Kp_LIST
  2310. #else
  2311. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2312. #endif
  2313. , defKi[] =
  2314. #ifdef DEFAULT_Ki_LIST
  2315. DEFAULT_Ki_LIST
  2316. #else
  2317. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2318. #endif
  2319. , defKd[] =
  2320. #ifdef DEFAULT_Kd_LIST
  2321. DEFAULT_Kd_LIST
  2322. #else
  2323. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2324. #endif
  2325. ;
  2326. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2327. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2328. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2329. #if ENABLED(PID_EXTRUSION_SCALING)
  2330. constexpr float defKc[] =
  2331. #ifdef DEFAULT_Kc_LIST
  2332. DEFAULT_Kc_LIST
  2333. #else
  2334. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2335. #endif
  2336. ;
  2337. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2338. #endif
  2339. #if ENABLED(PID_FAN_SCALING)
  2340. constexpr float defKf[] =
  2341. #ifdef DEFAULT_Kf_LIST
  2342. DEFAULT_Kf_LIST
  2343. #else
  2344. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2345. #endif
  2346. ;
  2347. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2348. #endif
  2349. #define PID_DEFAULT(N,E) def##N[E]
  2350. #else
  2351. #define PID_DEFAULT(N,E) DEFAULT_##N
  2352. #endif
  2353. HOTEND_LOOP() {
  2354. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2355. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2356. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2357. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2358. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2359. }
  2360. #endif
  2361. //
  2362. // PID Extrusion Scaling
  2363. //
  2364. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2365. //
  2366. // Heated Bed PID
  2367. //
  2368. #if ENABLED(PIDTEMPBED)
  2369. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2370. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2371. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2372. #endif
  2373. //
  2374. // User-Defined Thermistors
  2375. //
  2376. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2377. //
  2378. // Power Monitor
  2379. //
  2380. TERN_(POWER_MONITOR, power_monitor.reset());
  2381. //
  2382. // LCD Contrast
  2383. //
  2384. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2385. //
  2386. // Controller Fan
  2387. //
  2388. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2389. //
  2390. // Power-Loss Recovery
  2391. //
  2392. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2393. //
  2394. // Firmware Retraction
  2395. //
  2396. TERN_(FWRETRACT, fwretract.reset());
  2397. //
  2398. // Volumetric & Filament Size
  2399. //
  2400. #if DISABLED(NO_VOLUMETRICS)
  2401. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2402. LOOP_L_N(q, COUNT(planner.filament_size))
  2403. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2404. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2405. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2406. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2407. #endif
  2408. #endif
  2409. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2410. reset_stepper_drivers();
  2411. //
  2412. // Linear Advance
  2413. //
  2414. #if ENABLED(LIN_ADVANCE)
  2415. LOOP_L_N(i, EXTRUDERS) {
  2416. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2417. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2418. }
  2419. #endif
  2420. //
  2421. // Motor Current PWM
  2422. //
  2423. #if HAS_MOTOR_CURRENT_PWM
  2424. constexpr uint32_t tmp_motor_current_setting[3] = PWM_MOTOR_CURRENT;
  2425. LOOP_L_N(q, 3)
  2426. stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2427. #endif
  2428. //
  2429. // CNC Coordinate System
  2430. //
  2431. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2432. //
  2433. // Skew Correction
  2434. //
  2435. #if ENABLED(SKEW_CORRECTION_GCODE)
  2436. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2437. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2438. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2439. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2440. #endif
  2441. #endif
  2442. //
  2443. // Advanced Pause filament load & unload lengths
  2444. //
  2445. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2446. LOOP_L_N(e, EXTRUDERS) {
  2447. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2448. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2449. }
  2450. #endif
  2451. #if ENABLED(PASSWORD_FEATURE)
  2452. #ifdef PASSWORD_DEFAULT_VALUE
  2453. password.is_set = true;
  2454. password.value = PASSWORD_DEFAULT_VALUE;
  2455. #else
  2456. password.is_set = false;
  2457. #endif
  2458. #endif
  2459. postprocess();
  2460. DEBUG_ECHO_START();
  2461. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2462. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2463. }
  2464. #if DISABLED(DISABLE_M503)
  2465. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2466. if (!repl) {
  2467. SERIAL_ECHO_START();
  2468. SERIAL_ECHOPGM("; ");
  2469. serialprintPGM(pstr);
  2470. if (eol) SERIAL_EOL();
  2471. }
  2472. }
  2473. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2474. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2475. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2476. #if HAS_TRINAMIC_CONFIG
  2477. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2478. #if HAS_STEALTHCHOP
  2479. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2480. CONFIG_ECHO_START();
  2481. SERIAL_ECHOPGM(" M569 S1");
  2482. if (etc) {
  2483. SERIAL_CHAR(' ');
  2484. serialprintPGM(etc);
  2485. }
  2486. if (newLine) SERIAL_EOL();
  2487. }
  2488. #endif
  2489. #if ENABLED(HYBRID_THRESHOLD)
  2490. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2491. #endif
  2492. #if USE_SENSORLESS
  2493. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2494. #endif
  2495. #endif
  2496. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2497. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2498. #endif
  2499. inline void say_units(const bool colon) {
  2500. serialprintPGM(
  2501. #if ENABLED(INCH_MODE_SUPPORT)
  2502. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2503. #endif
  2504. PSTR(" (mm)")
  2505. );
  2506. if (colon) SERIAL_ECHOLNPGM(":");
  2507. }
  2508. void report_M92(const bool echo=true, const int8_t e=-1);
  2509. /**
  2510. * M503 - Report current settings in RAM
  2511. *
  2512. * Unless specifically disabled, M503 is available even without EEPROM
  2513. */
  2514. void MarlinSettings::report(const bool forReplay) {
  2515. /**
  2516. * Announce current units, in case inches are being displayed
  2517. */
  2518. CONFIG_ECHO_START();
  2519. #if ENABLED(INCH_MODE_SUPPORT)
  2520. SERIAL_ECHOPGM(" G2");
  2521. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2522. SERIAL_ECHOPGM(" ;");
  2523. say_units(false);
  2524. #else
  2525. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2526. say_units(false);
  2527. #endif
  2528. SERIAL_EOL();
  2529. #if HAS_LCD_MENU
  2530. // Temperature units - for Ultipanel temperature options
  2531. CONFIG_ECHO_START();
  2532. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2533. SERIAL_ECHOPGM(" M149 ");
  2534. SERIAL_CHAR(parser.temp_units_code());
  2535. SERIAL_ECHOPGM(" ; Units in ");
  2536. serialprintPGM(parser.temp_units_name());
  2537. #else
  2538. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2539. #endif
  2540. #endif
  2541. SERIAL_EOL();
  2542. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2543. /**
  2544. * Volumetric extrusion M200
  2545. */
  2546. if (!forReplay) {
  2547. config_heading(forReplay, PSTR("Filament settings:"), false);
  2548. if (parser.volumetric_enabled)
  2549. SERIAL_EOL();
  2550. else
  2551. SERIAL_ECHOLNPGM(" Disabled");
  2552. }
  2553. #if EXTRUDERS == 1
  2554. CONFIG_ECHO_START();
  2555. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
  2556. , " D", LINEAR_UNIT(planner.filament_size[0])
  2557. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2558. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2559. #endif
  2560. );
  2561. #else
  2562. LOOP_L_N(i, EXTRUDERS) {
  2563. CONFIG_ECHO_START();
  2564. SERIAL_ECHOLNPAIR(" M200 T", int(i)
  2565. , " D", LINEAR_UNIT(planner.filament_size[i])
  2566. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2567. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2568. #endif
  2569. );
  2570. }
  2571. CONFIG_ECHO_START();
  2572. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
  2573. #endif
  2574. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2575. CONFIG_ECHO_HEADING("Steps per unit:");
  2576. report_M92(!forReplay);
  2577. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2578. CONFIG_ECHO_START();
  2579. SERIAL_ECHOLNPAIR_P(
  2580. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2581. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2582. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2583. #if DISABLED(DISTINCT_E_FACTORS)
  2584. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2585. #endif
  2586. );
  2587. #if ENABLED(DISTINCT_E_FACTORS)
  2588. LOOP_L_N(i, E_STEPPERS) {
  2589. CONFIG_ECHO_START();
  2590. SERIAL_ECHOLNPAIR_P(
  2591. PSTR(" M203 T"), (int)i
  2592. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2593. );
  2594. }
  2595. #endif
  2596. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2597. CONFIG_ECHO_START();
  2598. SERIAL_ECHOLNPAIR_P(
  2599. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2600. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2601. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2602. #if DISABLED(DISTINCT_E_FACTORS)
  2603. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2604. #endif
  2605. );
  2606. #if ENABLED(DISTINCT_E_FACTORS)
  2607. LOOP_L_N(i, E_STEPPERS) {
  2608. CONFIG_ECHO_START();
  2609. SERIAL_ECHOLNPAIR_P(
  2610. PSTR(" M201 T"), (int)i
  2611. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2612. );
  2613. }
  2614. #endif
  2615. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2616. CONFIG_ECHO_START();
  2617. SERIAL_ECHOLNPAIR_P(
  2618. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2619. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2620. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2621. );
  2622. CONFIG_ECHO_HEADING(
  2623. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2624. #if HAS_JUNCTION_DEVIATION
  2625. " J<junc_dev>"
  2626. #endif
  2627. #if HAS_CLASSIC_JERK
  2628. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2629. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2630. #endif
  2631. );
  2632. CONFIG_ECHO_START();
  2633. SERIAL_ECHOLNPAIR_P(
  2634. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2635. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2636. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2637. #if HAS_JUNCTION_DEVIATION
  2638. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2639. #endif
  2640. #if HAS_CLASSIC_JERK
  2641. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2642. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2643. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2644. #if HAS_CLASSIC_E_JERK
  2645. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2646. #endif
  2647. #endif
  2648. );
  2649. #if HAS_M206_COMMAND
  2650. CONFIG_ECHO_HEADING("Home offset:");
  2651. CONFIG_ECHO_START();
  2652. SERIAL_ECHOLNPAIR_P(
  2653. #if IS_CARTESIAN
  2654. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2655. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2656. , SP_Z_STR
  2657. #else
  2658. PSTR(" M206 Z")
  2659. #endif
  2660. , LINEAR_UNIT(home_offset.z)
  2661. );
  2662. #endif
  2663. #if HAS_HOTEND_OFFSET
  2664. CONFIG_ECHO_HEADING("Hotend offsets:");
  2665. CONFIG_ECHO_START();
  2666. LOOP_S_L_N(e, 1, HOTENDS) {
  2667. SERIAL_ECHOPAIR_P(
  2668. PSTR(" M218 T"), (int)e,
  2669. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2670. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2671. );
  2672. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2673. }
  2674. #endif
  2675. /**
  2676. * Bed Leveling
  2677. */
  2678. #if HAS_LEVELING
  2679. #if ENABLED(MESH_BED_LEVELING)
  2680. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2681. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2682. config_heading(forReplay, PSTR(""), false);
  2683. if (!forReplay) {
  2684. ubl.echo_name();
  2685. SERIAL_CHAR(':');
  2686. SERIAL_EOL();
  2687. }
  2688. #elif HAS_ABL_OR_UBL
  2689. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2690. #endif
  2691. CONFIG_ECHO_START();
  2692. SERIAL_ECHOLNPAIR_P(
  2693. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2694. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2695. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2696. #endif
  2697. );
  2698. #if ENABLED(MESH_BED_LEVELING)
  2699. if (leveling_is_valid()) {
  2700. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2701. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2702. CONFIG_ECHO_START();
  2703. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2704. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2705. }
  2706. }
  2707. CONFIG_ECHO_START();
  2708. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2709. }
  2710. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2711. if (!forReplay) {
  2712. SERIAL_EOL();
  2713. ubl.report_state();
  2714. SERIAL_EOL();
  2715. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2716. SERIAL_ECHOLN(ubl.storage_slot);
  2717. config_heading(false, PSTR("EEPROM can hold "), false);
  2718. SERIAL_ECHO(calc_num_meshes());
  2719. SERIAL_ECHOLNPGM(" meshes.\n");
  2720. }
  2721. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2722. // solution needs to be found.
  2723. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2724. if (leveling_is_valid()) {
  2725. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2726. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2727. CONFIG_ECHO_START();
  2728. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2729. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2730. }
  2731. }
  2732. }
  2733. #endif
  2734. #endif // HAS_LEVELING
  2735. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2736. CONFIG_ECHO_HEADING("Servo Angles:");
  2737. LOOP_L_N(i, NUM_SERVOS) {
  2738. switch (i) {
  2739. #if ENABLED(SWITCHING_EXTRUDER)
  2740. case SWITCHING_EXTRUDER_SERVO_NR:
  2741. #if EXTRUDERS > 3
  2742. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2743. #endif
  2744. #elif ENABLED(SWITCHING_NOZZLE)
  2745. case SWITCHING_NOZZLE_SERVO_NR:
  2746. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2747. case Z_PROBE_SERVO_NR:
  2748. #endif
  2749. CONFIG_ECHO_START();
  2750. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2751. default: break;
  2752. }
  2753. }
  2754. #endif // EDITABLE_SERVO_ANGLES
  2755. #if HAS_SCARA_OFFSET
  2756. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2757. CONFIG_ECHO_START();
  2758. SERIAL_ECHOLNPAIR_P(
  2759. PSTR(" M665 S"), delta_segments_per_second
  2760. , SP_P_STR, scara_home_offset.a
  2761. , SP_T_STR, scara_home_offset.b
  2762. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2763. );
  2764. #elif ENABLED(DELTA)
  2765. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2766. CONFIG_ECHO_START();
  2767. SERIAL_ECHOLNPAIR_P(
  2768. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2769. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2770. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2771. );
  2772. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2773. CONFIG_ECHO_START();
  2774. SERIAL_ECHOLNPAIR_P(
  2775. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2776. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2777. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2778. , PSTR(" S"), delta_segments_per_second
  2779. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2780. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2781. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2782. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2783. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2784. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2785. );
  2786. #elif HAS_EXTRA_ENDSTOPS
  2787. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2788. CONFIG_ECHO_START();
  2789. SERIAL_ECHOPGM(" M666");
  2790. #if ENABLED(X_DUAL_ENDSTOPS)
  2791. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2792. #endif
  2793. #if ENABLED(Y_DUAL_ENDSTOPS)
  2794. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2795. #endif
  2796. #if ENABLED(Z_MULTI_ENDSTOPS)
  2797. #if NUM_Z_STEPPER_DRIVERS >= 3
  2798. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2799. CONFIG_ECHO_START();
  2800. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2801. #if NUM_Z_STEPPER_DRIVERS >= 4
  2802. CONFIG_ECHO_START();
  2803. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2804. #endif
  2805. #else
  2806. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2807. #endif
  2808. #endif
  2809. #endif // [XYZ]_DUAL_ENDSTOPS
  2810. #if PREHEAT_COUNT
  2811. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2812. LOOP_L_N(i, PREHEAT_COUNT) {
  2813. CONFIG_ECHO_START();
  2814. SERIAL_ECHOLNPAIR_P(
  2815. PSTR(" M145 S"), (int)i
  2816. #if HAS_HOTEND
  2817. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2818. #endif
  2819. #if HAS_HEATED_BED
  2820. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2821. #endif
  2822. #if HAS_FAN
  2823. , PSTR(" F"), ui.material_preset[i].fan_speed
  2824. #endif
  2825. );
  2826. }
  2827. #endif
  2828. #if HAS_PID_HEATING
  2829. CONFIG_ECHO_HEADING("PID settings:");
  2830. #if ENABLED(PIDTEMP)
  2831. HOTEND_LOOP() {
  2832. CONFIG_ECHO_START();
  2833. SERIAL_ECHOPAIR_P(
  2834. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2835. PSTR(" M301 E"), e,
  2836. SP_P_STR
  2837. #else
  2838. PSTR(" M301 P")
  2839. #endif
  2840. , PID_PARAM(Kp, e)
  2841. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2842. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2843. );
  2844. #if ENABLED(PID_EXTRUSION_SCALING)
  2845. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2846. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2847. #endif
  2848. #if ENABLED(PID_FAN_SCALING)
  2849. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2850. #endif
  2851. SERIAL_EOL();
  2852. }
  2853. #endif // PIDTEMP
  2854. #if ENABLED(PIDTEMPBED)
  2855. CONFIG_ECHO_START();
  2856. SERIAL_ECHOLNPAIR(
  2857. " M304 P", thermalManager.temp_bed.pid.Kp
  2858. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2859. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2860. );
  2861. #endif
  2862. #endif // PIDTEMP || PIDTEMPBED
  2863. #if HAS_USER_THERMISTORS
  2864. CONFIG_ECHO_HEADING("User thermistors:");
  2865. LOOP_L_N(i, USER_THERMISTORS)
  2866. thermalManager.log_user_thermistor(i, true);
  2867. #endif
  2868. #if HAS_LCD_CONTRAST
  2869. CONFIG_ECHO_HEADING("LCD Contrast:");
  2870. CONFIG_ECHO_START();
  2871. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2872. #endif
  2873. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2874. #if ENABLED(POWER_LOSS_RECOVERY)
  2875. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2876. CONFIG_ECHO_START();
  2877. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2878. #endif
  2879. #if ENABLED(FWRETRACT)
  2880. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2881. CONFIG_ECHO_START();
  2882. SERIAL_ECHOLNPAIR_P(
  2883. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2884. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2885. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2886. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2887. );
  2888. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2889. CONFIG_ECHO_START();
  2890. SERIAL_ECHOLNPAIR(
  2891. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2892. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2893. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2894. );
  2895. #if ENABLED(FWRETRACT_AUTORETRACT)
  2896. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2897. CONFIG_ECHO_START();
  2898. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2899. #endif // FWRETRACT_AUTORETRACT
  2900. #endif // FWRETRACT
  2901. /**
  2902. * Probe Offset
  2903. */
  2904. #if HAS_BED_PROBE
  2905. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  2906. if (!forReplay) say_units(true);
  2907. CONFIG_ECHO_START();
  2908. SERIAL_ECHOLNPAIR_P(
  2909. #if HAS_PROBE_XY_OFFSET
  2910. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  2911. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  2912. SP_Z_STR
  2913. #else
  2914. PSTR(" M851 X0 Y0 Z")
  2915. #endif
  2916. , LINEAR_UNIT(probe.offset.z)
  2917. );
  2918. #endif
  2919. /**
  2920. * Bed Skew Correction
  2921. */
  2922. #if ENABLED(SKEW_CORRECTION_GCODE)
  2923. CONFIG_ECHO_HEADING("Skew Factor: ");
  2924. CONFIG_ECHO_START();
  2925. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2926. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2927. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  2928. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  2929. #else
  2930. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  2931. #endif
  2932. #endif
  2933. #if HAS_TRINAMIC_CONFIG
  2934. /**
  2935. * TMC stepper driver current
  2936. */
  2937. CONFIG_ECHO_HEADING("Stepper driver current:");
  2938. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  2939. say_M906(forReplay);
  2940. #if AXIS_IS_TMC(X)
  2941. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  2942. #endif
  2943. #if AXIS_IS_TMC(Y)
  2944. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  2945. #endif
  2946. #if AXIS_IS_TMC(Z)
  2947. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  2948. #endif
  2949. SERIAL_EOL();
  2950. #endif
  2951. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  2952. say_M906(forReplay);
  2953. SERIAL_ECHOPGM(" I1");
  2954. #if AXIS_IS_TMC(X2)
  2955. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  2956. #endif
  2957. #if AXIS_IS_TMC(Y2)
  2958. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  2959. #endif
  2960. #if AXIS_IS_TMC(Z2)
  2961. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  2962. #endif
  2963. SERIAL_EOL();
  2964. #endif
  2965. #if AXIS_IS_TMC(Z3)
  2966. say_M906(forReplay);
  2967. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  2968. #endif
  2969. #if AXIS_IS_TMC(Z4)
  2970. say_M906(forReplay);
  2971. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  2972. #endif
  2973. #if AXIS_IS_TMC(E0)
  2974. say_M906(forReplay);
  2975. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  2976. #endif
  2977. #if AXIS_IS_TMC(E1)
  2978. say_M906(forReplay);
  2979. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  2980. #endif
  2981. #if AXIS_IS_TMC(E2)
  2982. say_M906(forReplay);
  2983. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  2984. #endif
  2985. #if AXIS_IS_TMC(E3)
  2986. say_M906(forReplay);
  2987. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  2988. #endif
  2989. #if AXIS_IS_TMC(E4)
  2990. say_M906(forReplay);
  2991. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  2992. #endif
  2993. #if AXIS_IS_TMC(E5)
  2994. say_M906(forReplay);
  2995. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  2996. #endif
  2997. #if AXIS_IS_TMC(E6)
  2998. say_M906(forReplay);
  2999. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3000. #endif
  3001. #if AXIS_IS_TMC(E7)
  3002. say_M906(forReplay);
  3003. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3004. #endif
  3005. SERIAL_EOL();
  3006. /**
  3007. * TMC Hybrid Threshold
  3008. */
  3009. #if ENABLED(HYBRID_THRESHOLD)
  3010. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3011. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3012. say_M913(forReplay);
  3013. #if AXIS_HAS_STEALTHCHOP(X)
  3014. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3015. #endif
  3016. #if AXIS_HAS_STEALTHCHOP(Y)
  3017. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3018. #endif
  3019. #if AXIS_HAS_STEALTHCHOP(Z)
  3020. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3021. #endif
  3022. SERIAL_EOL();
  3023. #endif
  3024. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3025. say_M913(forReplay);
  3026. SERIAL_ECHOPGM(" I1");
  3027. #if AXIS_HAS_STEALTHCHOP(X2)
  3028. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3029. #endif
  3030. #if AXIS_HAS_STEALTHCHOP(Y2)
  3031. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3032. #endif
  3033. #if AXIS_HAS_STEALTHCHOP(Z2)
  3034. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3035. #endif
  3036. SERIAL_EOL();
  3037. #endif
  3038. #if AXIS_HAS_STEALTHCHOP(Z3)
  3039. say_M913(forReplay);
  3040. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3041. #endif
  3042. #if AXIS_HAS_STEALTHCHOP(Z4)
  3043. say_M913(forReplay);
  3044. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3045. #endif
  3046. #if AXIS_HAS_STEALTHCHOP(E0)
  3047. say_M913(forReplay);
  3048. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3049. #endif
  3050. #if AXIS_HAS_STEALTHCHOP(E1)
  3051. say_M913(forReplay);
  3052. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3053. #endif
  3054. #if AXIS_HAS_STEALTHCHOP(E2)
  3055. say_M913(forReplay);
  3056. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3057. #endif
  3058. #if AXIS_HAS_STEALTHCHOP(E3)
  3059. say_M913(forReplay);
  3060. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3061. #endif
  3062. #if AXIS_HAS_STEALTHCHOP(E4)
  3063. say_M913(forReplay);
  3064. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3065. #endif
  3066. #if AXIS_HAS_STEALTHCHOP(E5)
  3067. say_M913(forReplay);
  3068. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3069. #endif
  3070. #if AXIS_HAS_STEALTHCHOP(E6)
  3071. say_M913(forReplay);
  3072. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3073. #endif
  3074. #if AXIS_HAS_STEALTHCHOP(E7)
  3075. say_M913(forReplay);
  3076. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3077. #endif
  3078. SERIAL_EOL();
  3079. #endif // HYBRID_THRESHOLD
  3080. /**
  3081. * TMC Sensorless homing thresholds
  3082. */
  3083. #if USE_SENSORLESS
  3084. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3085. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3086. CONFIG_ECHO_START();
  3087. say_M914();
  3088. #if X_SENSORLESS
  3089. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3090. #endif
  3091. #if Y_SENSORLESS
  3092. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3093. #endif
  3094. #if Z_SENSORLESS
  3095. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3096. #endif
  3097. SERIAL_EOL();
  3098. #endif
  3099. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3100. CONFIG_ECHO_START();
  3101. say_M914();
  3102. SERIAL_ECHOPGM(" I1");
  3103. #if X2_SENSORLESS
  3104. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3105. #endif
  3106. #if Y2_SENSORLESS
  3107. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3108. #endif
  3109. #if Z2_SENSORLESS
  3110. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3111. #endif
  3112. SERIAL_EOL();
  3113. #endif
  3114. #if Z3_SENSORLESS
  3115. CONFIG_ECHO_START();
  3116. say_M914();
  3117. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3118. #endif
  3119. #if Z4_SENSORLESS
  3120. CONFIG_ECHO_START();
  3121. say_M914();
  3122. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3123. #endif
  3124. #endif // USE_SENSORLESS
  3125. /**
  3126. * TMC stepping mode
  3127. */
  3128. #if HAS_STEALTHCHOP
  3129. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3130. #if AXIS_HAS_STEALTHCHOP(X)
  3131. const bool chop_x = stepperX.get_stored_stealthChop_status();
  3132. #else
  3133. constexpr bool chop_x = false;
  3134. #endif
  3135. #if AXIS_HAS_STEALTHCHOP(Y)
  3136. const bool chop_y = stepperY.get_stored_stealthChop_status();
  3137. #else
  3138. constexpr bool chop_y = false;
  3139. #endif
  3140. #if AXIS_HAS_STEALTHCHOP(Z)
  3141. const bool chop_z = stepperZ.get_stored_stealthChop_status();
  3142. #else
  3143. constexpr bool chop_z = false;
  3144. #endif
  3145. if (chop_x || chop_y || chop_z) {
  3146. say_M569(forReplay);
  3147. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3148. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3149. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3150. SERIAL_EOL();
  3151. }
  3152. #if AXIS_HAS_STEALTHCHOP(X2)
  3153. const bool chop_x2 = stepperX2.get_stored_stealthChop_status();
  3154. #else
  3155. constexpr bool chop_x2 = false;
  3156. #endif
  3157. #if AXIS_HAS_STEALTHCHOP(Y2)
  3158. const bool chop_y2 = stepperY2.get_stored_stealthChop_status();
  3159. #else
  3160. constexpr bool chop_y2 = false;
  3161. #endif
  3162. #if AXIS_HAS_STEALTHCHOP(Z2)
  3163. const bool chop_z2 = stepperZ2.get_stored_stealthChop_status();
  3164. #else
  3165. constexpr bool chop_z2 = false;
  3166. #endif
  3167. if (chop_x2 || chop_y2 || chop_z2) {
  3168. say_M569(forReplay, PSTR("I1"));
  3169. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3170. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3171. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3172. SERIAL_EOL();
  3173. }
  3174. #if AXIS_HAS_STEALTHCHOP(Z3)
  3175. if (stepperZ3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3176. #endif
  3177. #if AXIS_HAS_STEALTHCHOP(Z4)
  3178. if (stepperZ4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3179. #endif
  3180. #if AXIS_HAS_STEALTHCHOP(E0)
  3181. if (stepperE0.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3182. #endif
  3183. #if AXIS_HAS_STEALTHCHOP(E1)
  3184. if (stepperE1.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3185. #endif
  3186. #if AXIS_HAS_STEALTHCHOP(E2)
  3187. if (stepperE2.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3188. #endif
  3189. #if AXIS_HAS_STEALTHCHOP(E3)
  3190. if (stepperE3.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3191. #endif
  3192. #if AXIS_HAS_STEALTHCHOP(E4)
  3193. if (stepperE4.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3194. #endif
  3195. #if AXIS_HAS_STEALTHCHOP(E5)
  3196. if (stepperE5.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3197. #endif
  3198. #if AXIS_HAS_STEALTHCHOP(E6)
  3199. if (stepperE6.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3200. #endif
  3201. #if AXIS_HAS_STEALTHCHOP(E7)
  3202. if (stepperE7.get_stored_stealthChop_status()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3203. #endif
  3204. #endif // HAS_STEALTHCHOP
  3205. #endif // HAS_TRINAMIC_CONFIG
  3206. /**
  3207. * Linear Advance
  3208. */
  3209. #if ENABLED(LIN_ADVANCE)
  3210. CONFIG_ECHO_HEADING("Linear Advance:");
  3211. #if EXTRUDERS < 2
  3212. CONFIG_ECHO_START();
  3213. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3214. #else
  3215. LOOP_L_N(i, EXTRUDERS) {
  3216. CONFIG_ECHO_START();
  3217. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3218. }
  3219. #endif
  3220. #endif
  3221. #if HAS_MOTOR_CURRENT_PWM
  3222. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3223. CONFIG_ECHO_START();
  3224. SERIAL_ECHOLNPAIR_P(
  3225. PSTR(" M907 X"), stepper.motor_current_setting[0]
  3226. , SP_Z_STR, stepper.motor_current_setting[1]
  3227. , SP_E_STR, stepper.motor_current_setting[2]
  3228. );
  3229. #endif
  3230. /**
  3231. * Advanced Pause filament load & unload lengths
  3232. */
  3233. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3234. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3235. #if EXTRUDERS == 1
  3236. say_M603(forReplay);
  3237. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3238. #else
  3239. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3240. REPEAT(EXTRUDERS, _ECHO_603)
  3241. #endif
  3242. #endif
  3243. #if EXTRUDERS > 1
  3244. CONFIG_ECHO_HEADING("Tool-changing:");
  3245. CONFIG_ECHO_START();
  3246. M217_report(true);
  3247. #endif
  3248. #if ENABLED(BACKLASH_GCODE)
  3249. CONFIG_ECHO_HEADING("Backlash compensation:");
  3250. CONFIG_ECHO_START();
  3251. SERIAL_ECHOLNPAIR_P(
  3252. PSTR(" M425 F"), backlash.get_correction()
  3253. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3254. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3255. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3256. #ifdef BACKLASH_SMOOTHING_MM
  3257. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3258. #endif
  3259. );
  3260. #endif
  3261. #if HAS_FILAMENT_SENSOR
  3262. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3263. CONFIG_ECHO_START();
  3264. SERIAL_ECHOLNPAIR(
  3265. " M412 S", int(runout.enabled)
  3266. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3267. , " D", LINEAR_UNIT(runout.runout_distance())
  3268. #endif
  3269. );
  3270. #endif
  3271. }
  3272. #endif // !DISABLE_M503
  3273. #pragma pack(pop)