My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

settings.cpp 116KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (c) 2020 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <https://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * settings.cpp
  24. *
  25. * Settings and EEPROM storage
  26. *
  27. * IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
  28. * in the functions below, also increment the version number. This makes sure that
  29. * the default values are used whenever there is a change to the data, to prevent
  30. * wrong data being written to the variables.
  31. *
  32. * ALSO: Variables in the Store and Retrieve sections must be in the same order.
  33. * If a feature is disabled, some data must still be written that, when read,
  34. * either sets a Sane Default, or results in No Change to the existing value.
  35. */
  36. // Change EEPROM version if the structure changes
  37. #define EEPROM_VERSION "V82"
  38. #define EEPROM_OFFSET 100
  39. // Check the integrity of data offsets.
  40. // Can be disabled for production build.
  41. //#define DEBUG_EEPROM_READWRITE
  42. #include "settings.h"
  43. #include "endstops.h"
  44. #include "planner.h"
  45. #include "stepper.h"
  46. #include "temperature.h"
  47. #if ENABLED(DWIN_CREALITY_LCD)
  48. #include "../lcd/dwin/e3v2/dwin.h"
  49. #endif
  50. #include "../lcd/marlinui.h"
  51. #include "../libs/vector_3.h" // for matrix_3x3
  52. #include "../gcode/gcode.h"
  53. #include "../MarlinCore.h"
  54. #if EITHER(EEPROM_SETTINGS, SD_FIRMWARE_UPDATE)
  55. #include "../HAL/shared/eeprom_api.h"
  56. #endif
  57. #include "probe.h"
  58. #if HAS_LEVELING
  59. #include "../feature/bedlevel/bedlevel.h"
  60. #endif
  61. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  62. #include "../feature/z_stepper_align.h"
  63. #endif
  64. #if ENABLED(EXTENSIBLE_UI)
  65. #include "../lcd/extui/ui_api.h"
  66. #endif
  67. #if HAS_SERVOS
  68. #include "servo.h"
  69. #endif
  70. #if HAS_SERVOS && HAS_SERVO_ANGLES
  71. #define EEPROM_NUM_SERVOS NUM_SERVOS
  72. #else
  73. #define EEPROM_NUM_SERVOS NUM_SERVO_PLUGS
  74. #endif
  75. #include "../feature/fwretract.h"
  76. #if ENABLED(POWER_LOSS_RECOVERY)
  77. #include "../feature/powerloss.h"
  78. #endif
  79. #if HAS_POWER_MONITOR
  80. #include "../feature/power_monitor.h"
  81. #endif
  82. #include "../feature/pause.h"
  83. #if ENABLED(BACKLASH_COMPENSATION)
  84. #include "../feature/backlash.h"
  85. #endif
  86. #if HAS_FILAMENT_SENSOR
  87. #include "../feature/runout.h"
  88. #ifndef FIL_RUNOUT_ENABLED_DEFAULT
  89. #define FIL_RUNOUT_ENABLED_DEFAULT true
  90. #endif
  91. #endif
  92. #if ENABLED(EXTRA_LIN_ADVANCE_K)
  93. extern float other_extruder_advance_K[EXTRUDERS];
  94. #endif
  95. #if HAS_MULTI_EXTRUDER
  96. #include "tool_change.h"
  97. void M217_report(const bool eeprom);
  98. #endif
  99. #if ENABLED(BLTOUCH)
  100. #include "../feature/bltouch.h"
  101. #endif
  102. #if HAS_TRINAMIC_CONFIG
  103. #include "stepper/indirection.h"
  104. #include "../feature/tmc_util.h"
  105. #endif
  106. #if ENABLED(PROBE_TEMP_COMPENSATION)
  107. #include "../feature/probe_temp_comp.h"
  108. #endif
  109. #include "../feature/controllerfan.h"
  110. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  111. void M710_report(const bool forReplay);
  112. #endif
  113. #if ENABLED(CASE_LIGHT_ENABLE)
  114. #include "../feature/caselight.h"
  115. #endif
  116. #if ENABLED(PASSWORD_FEATURE)
  117. #include "../feature/password/password.h"
  118. #endif
  119. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  120. #include "../lcd/tft/touch.h"
  121. #endif
  122. #if HAS_ETHERNET
  123. #include "../feature/ethernet.h"
  124. #endif
  125. #if ENABLED(SOUND_MENU_ITEM)
  126. #include "../libs/buzzer.h"
  127. #endif
  128. #pragma pack(push, 1) // No padding between variables
  129. #if HAS_ETHERNET
  130. void ETH0_report();
  131. void MAC_report();
  132. void M552_report();
  133. void M553_report();
  134. void M554_report();
  135. #endif
  136. typedef struct { uint16_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stepper_current_t;
  137. typedef struct { uint32_t X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_hybrid_threshold_t;
  138. typedef struct { int16_t X, Y, Z, X2, Y2, Z2, Z3, Z4; } tmc_sgt_t;
  139. typedef struct { bool X, Y, Z, X2, Y2, Z2, Z3, Z4, E0, E1, E2, E3, E4, E5, E6, E7; } tmc_stealth_enabled_t;
  140. // Limit an index to an array size
  141. #define ALIM(I,ARR) _MIN(I, (signed)COUNT(ARR) - 1)
  142. // Defaults for reset / fill in on load
  143. static const uint32_t _DMA[] PROGMEM = DEFAULT_MAX_ACCELERATION;
  144. static const float _DASU[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT;
  145. static const feedRate_t _DMF[] PROGMEM = DEFAULT_MAX_FEEDRATE;
  146. extern const char SP_X_STR[], SP_Y_STR[], SP_Z_STR[], SP_E_STR[];
  147. /**
  148. * Current EEPROM Layout
  149. *
  150. * Keep this data structure up to date so
  151. * EEPROM size is known at compile time!
  152. */
  153. typedef struct SettingsDataStruct {
  154. char version[4]; // Vnn\0
  155. uint16_t crc; // Data Checksum
  156. //
  157. // DISTINCT_E_FACTORS
  158. //
  159. uint8_t esteppers; // XYZE_N - XYZ
  160. planner_settings_t planner_settings;
  161. xyze_float_t planner_max_jerk; // M205 XYZE planner.max_jerk
  162. float planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
  163. xyz_pos_t home_offset; // M206 XYZ / M665 TPZ
  164. #if HAS_HOTEND_OFFSET
  165. xyz_pos_t hotend_offset[HOTENDS - 1]; // M218 XYZ
  166. #endif
  167. //
  168. // FILAMENT_RUNOUT_SENSOR
  169. //
  170. bool runout_sensor_enabled; // M412 S
  171. float runout_distance_mm; // M412 D
  172. //
  173. // ENABLE_LEVELING_FADE_HEIGHT
  174. //
  175. float planner_z_fade_height; // M420 Zn planner.z_fade_height
  176. //
  177. // MESH_BED_LEVELING
  178. //
  179. float mbl_z_offset; // mbl.z_offset
  180. uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  181. float mbl_z_values[TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3)] // mbl.z_values
  182. [TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3)];
  183. //
  184. // HAS_BED_PROBE
  185. //
  186. xyz_pos_t probe_offset;
  187. //
  188. // ABL_PLANAR
  189. //
  190. matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
  191. //
  192. // AUTO_BED_LEVELING_BILINEAR
  193. //
  194. uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
  195. xy_pos_t bilinear_grid_spacing, bilinear_start; // G29 L F
  196. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  197. bed_mesh_t z_values; // G29
  198. #else
  199. float z_values[3][3];
  200. #endif
  201. //
  202. // AUTO_BED_LEVELING_UBL
  203. //
  204. bool planner_leveling_active; // M420 S planner.leveling_active
  205. int8_t ubl_storage_slot; // ubl.storage_slot
  206. //
  207. // SERVO_ANGLES
  208. //
  209. uint16_t servo_angles[EEPROM_NUM_SERVOS][2]; // M281 P L U
  210. //
  211. // Temperature first layer compensation values
  212. //
  213. #if ENABLED(PROBE_TEMP_COMPENSATION)
  214. int16_t z_offsets_probe[COUNT(temp_comp.z_offsets_probe)], // M871 P I V
  215. z_offsets_bed[COUNT(temp_comp.z_offsets_bed)] // M871 B I V
  216. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  217. , z_offsets_ext[COUNT(temp_comp.z_offsets_ext)] // M871 E I V
  218. #endif
  219. ;
  220. #endif
  221. //
  222. // BLTOUCH
  223. //
  224. bool bltouch_last_written_mode;
  225. //
  226. // DELTA / [XYZ]_DUAL_ENDSTOPS
  227. //
  228. #if ENABLED(DELTA)
  229. float delta_height; // M666 H
  230. abc_float_t delta_endstop_adj; // M666 X Y Z
  231. float delta_radius, // M665 R
  232. delta_diagonal_rod, // M665 L
  233. delta_segments_per_second; // M665 S
  234. abc_float_t delta_tower_angle_trim, // M665 X Y Z
  235. delta_diagonal_rod_trim; // M665 A B C
  236. #elif HAS_EXTRA_ENDSTOPS
  237. float x2_endstop_adj, // M666 X
  238. y2_endstop_adj, // M666 Y
  239. z2_endstop_adj, // M666 (S2) Z
  240. z3_endstop_adj, // M666 (S3) Z
  241. z4_endstop_adj; // M666 (S4) Z
  242. #endif
  243. //
  244. // Z_STEPPER_AUTO_ALIGN, Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS
  245. //
  246. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  247. xy_pos_t z_stepper_align_xy[NUM_Z_STEPPER_DRIVERS]; // M422 S X Y
  248. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  249. xy_pos_t z_stepper_align_stepper_xy[NUM_Z_STEPPER_DRIVERS]; // M422 W X Y
  250. #endif
  251. #endif
  252. //
  253. // Material Presets
  254. //
  255. #if PREHEAT_COUNT
  256. preheat_t ui_material_preset[PREHEAT_COUNT]; // M145 S0 H B F
  257. #endif
  258. //
  259. // PIDTEMP
  260. //
  261. PIDCF_t hotendPID[HOTENDS]; // M301 En PIDCF / M303 En U
  262. int16_t lpq_len; // M301 L
  263. //
  264. // PIDTEMPBED
  265. //
  266. PID_t bedPID; // M304 PID / M303 E-1 U
  267. //
  268. // User-defined Thermistors
  269. //
  270. #if HAS_USER_THERMISTORS
  271. user_thermistor_t user_thermistor[USER_THERMISTORS]; // M305 P0 R4700 T100000 B3950
  272. #endif
  273. //
  274. // Power monitor
  275. //
  276. uint8_t power_monitor_flags; // M430 I V W
  277. //
  278. // HAS_LCD_CONTRAST
  279. //
  280. int16_t lcd_contrast; // M250 C
  281. //
  282. // Controller fan settings
  283. //
  284. controllerFan_settings_t controllerFan_settings; // M710
  285. //
  286. // POWER_LOSS_RECOVERY
  287. //
  288. bool recovery_enabled; // M413 S
  289. //
  290. // FWRETRACT
  291. //
  292. fwretract_settings_t fwretract_settings; // M207 S F Z W, M208 S F W R
  293. bool autoretract_enabled; // M209 S
  294. //
  295. // !NO_VOLUMETRIC
  296. //
  297. bool parser_volumetric_enabled; // M200 S parser.volumetric_enabled
  298. float planner_filament_size[EXTRUDERS]; // M200 T D planner.filament_size[]
  299. float planner_volumetric_extruder_limit[EXTRUDERS]; // M200 T L planner.volumetric_extruder_limit[]
  300. //
  301. // HAS_TRINAMIC_CONFIG
  302. //
  303. tmc_stepper_current_t tmc_stepper_current; // M906 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  304. tmc_hybrid_threshold_t tmc_hybrid_threshold; // M913 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  305. tmc_sgt_t tmc_sgt; // M914 X Y Z X2 Y2 Z2 Z3 Z4
  306. tmc_stealth_enabled_t tmc_stealth_enabled; // M569 X Y Z X2 Y2 Z2 Z3 Z4 E0 E1 E2 E3 E4 E5
  307. //
  308. // LIN_ADVANCE
  309. //
  310. float planner_extruder_advance_K[_MAX(EXTRUDERS, 1)]; // M900 K planner.extruder_advance_K
  311. //
  312. // HAS_MOTOR_CURRENT_PWM
  313. //
  314. #ifndef MOTOR_CURRENT_COUNT
  315. #define MOTOR_CURRENT_COUNT 3
  316. #endif
  317. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]; // M907 X Z E
  318. //
  319. // CNC_COORDINATE_SYSTEMS
  320. //
  321. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS]; // G54-G59.3
  322. //
  323. // SKEW_CORRECTION
  324. //
  325. skew_factor_t planner_skew_factor; // M852 I J K planner.skew_factor
  326. //
  327. // ADVANCED_PAUSE_FEATURE
  328. //
  329. #if EXTRUDERS
  330. fil_change_settings_t fc_settings[EXTRUDERS]; // M603 T U L
  331. #endif
  332. //
  333. // Tool-change settings
  334. //
  335. #if HAS_MULTI_EXTRUDER
  336. toolchange_settings_t toolchange_settings; // M217 S P R
  337. #endif
  338. //
  339. // BACKLASH_COMPENSATION
  340. //
  341. xyz_float_t backlash_distance_mm; // M425 X Y Z
  342. uint8_t backlash_correction; // M425 F
  343. float backlash_smoothing_mm; // M425 S
  344. //
  345. // EXTENSIBLE_UI
  346. //
  347. #if ENABLED(EXTENSIBLE_UI)
  348. // This is a significant hardware change; don't reserve space when not present
  349. uint8_t extui_data[ExtUI::eeprom_data_size];
  350. #endif
  351. //
  352. // CASELIGHT_USES_BRIGHTNESS
  353. //
  354. #if CASELIGHT_USES_BRIGHTNESS
  355. uint8_t caselight_brightness; // M355 P
  356. #endif
  357. //
  358. // PASSWORD_FEATURE
  359. //
  360. #if ENABLED(PASSWORD_FEATURE)
  361. bool password_is_set;
  362. uint32_t password_value;
  363. #endif
  364. //
  365. // TOUCH_SCREEN_CALIBRATION
  366. //
  367. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  368. touch_calibration_t touch_calibration;
  369. #endif
  370. // Ethernet settings
  371. #if HAS_ETHERNET
  372. bool ethernet_hardware_enabled; // M552 S
  373. uint32_t ethernet_ip, // M552 P
  374. ethernet_dns,
  375. ethernet_gateway, // M553 P
  376. ethernet_subnet; // M554 P
  377. #endif
  378. //
  379. // Buzzer enable/disable
  380. //
  381. #if ENABLED(SOUND_MENU_ITEM)
  382. bool buzzer_enabled;
  383. #endif
  384. } SettingsData;
  385. //static_assert(sizeof(SettingsData) <= MARLIN_EEPROM_SIZE, "EEPROM too small to contain SettingsData!");
  386. MarlinSettings settings;
  387. uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
  388. /**
  389. * Post-process after Retrieve or Reset
  390. */
  391. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  392. float new_z_fade_height;
  393. #endif
  394. void MarlinSettings::postprocess() {
  395. xyze_pos_t oldpos = current_position;
  396. // steps per s2 needs to be updated to agree with units per s2
  397. planner.reset_acceleration_rates();
  398. // Make sure delta kinematics are updated before refreshing the
  399. // planner position so the stepper counts will be set correctly.
  400. TERN_(DELTA, recalc_delta_settings());
  401. TERN_(PIDTEMP, thermalManager.updatePID());
  402. #if DISABLED(NO_VOLUMETRICS)
  403. planner.calculate_volumetric_multipliers();
  404. #elif EXTRUDERS
  405. for (uint8_t i = COUNT(planner.e_factor); i--;)
  406. planner.refresh_e_factor(i);
  407. #endif
  408. // Software endstops depend on home_offset
  409. LOOP_XYZ(i) {
  410. update_workspace_offset((AxisEnum)i);
  411. update_software_endstops((AxisEnum)i);
  412. }
  413. TERN_(ENABLE_LEVELING_FADE_HEIGHT, set_z_fade_height(new_z_fade_height, false)); // false = no report
  414. TERN_(AUTO_BED_LEVELING_BILINEAR, refresh_bed_level());
  415. TERN_(HAS_MOTOR_CURRENT_PWM, stepper.refresh_motor_power());
  416. TERN_(FWRETRACT, fwretract.refresh_autoretract());
  417. TERN_(HAS_LINEAR_E_JERK, planner.recalculate_max_e_jerk());
  418. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.update_brightness());
  419. // Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
  420. // and init stepper.count[], planner.position[] with current_position
  421. planner.refresh_positioning();
  422. // Various factors can change the current position
  423. if (oldpos != current_position)
  424. report_current_position();
  425. }
  426. #if BOTH(PRINTCOUNTER, EEPROM_SETTINGS)
  427. #include "printcounter.h"
  428. static_assert(
  429. !WITHIN(STATS_EEPROM_ADDRESS, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)) &&
  430. !WITHIN(STATS_EEPROM_ADDRESS + sizeof(printStatistics), EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  431. "STATS_EEPROM_ADDRESS collides with EEPROM settings storage."
  432. );
  433. #endif
  434. #if ENABLED(SD_FIRMWARE_UPDATE)
  435. #if ENABLED(EEPROM_SETTINGS)
  436. static_assert(
  437. !WITHIN(SD_FIRMWARE_UPDATE_EEPROM_ADDR, EEPROM_OFFSET, EEPROM_OFFSET + sizeof(SettingsData)),
  438. "SD_FIRMWARE_UPDATE_EEPROM_ADDR collides with EEPROM settings storage."
  439. );
  440. #endif
  441. bool MarlinSettings::sd_update_status() {
  442. uint8_t val;
  443. persistentStore.read_data(SD_FIRMWARE_UPDATE_EEPROM_ADDR, &val);
  444. return (val == SD_FIRMWARE_UPDATE_ACTIVE_VALUE);
  445. }
  446. bool MarlinSettings::set_sd_update_status(const bool enable) {
  447. if (enable != sd_update_status())
  448. persistentStore.write_data(
  449. SD_FIRMWARE_UPDATE_EEPROM_ADDR,
  450. enable ? SD_FIRMWARE_UPDATE_ACTIVE_VALUE : SD_FIRMWARE_UPDATE_INACTIVE_VALUE
  451. );
  452. return true;
  453. }
  454. #endif // SD_FIRMWARE_UPDATE
  455. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  456. static_assert(
  457. EEPROM_OFFSET + sizeof(SettingsData) < ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE,
  458. "ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE is insufficient to capture all EEPROM data."
  459. );
  460. #endif
  461. #define DEBUG_OUT ENABLED(EEPROM_CHITCHAT)
  462. #include "../core/debug_out.h"
  463. #if ENABLED(EEPROM_SETTINGS)
  464. #define EEPROM_START() if (!persistentStore.access_start()) { SERIAL_ECHO_MSG("No EEPROM."); return false; } \
  465. int eeprom_index = EEPROM_OFFSET
  466. #define EEPROM_FINISH() persistentStore.access_finish()
  467. #define EEPROM_SKIP(VAR) (eeprom_index += sizeof(VAR))
  468. #define EEPROM_WRITE(VAR) do{ persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  469. #define EEPROM_READ(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating); }while(0)
  470. #define EEPROM_READ_ALWAYS(VAR) do{ persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc); }while(0)
  471. #define EEPROM_ASSERT(TST,ERR) do{ if (!(TST)) { SERIAL_ERROR_MSG(ERR); eeprom_error = true; } }while(0)
  472. #if ENABLED(DEBUG_EEPROM_READWRITE)
  473. #define _FIELD_TEST(FIELD) \
  474. EEPROM_ASSERT( \
  475. eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
  476. "Field " STRINGIFY(FIELD) " mismatch." \
  477. )
  478. #else
  479. #define _FIELD_TEST(FIELD) NOOP
  480. #endif
  481. const char version[4] = EEPROM_VERSION;
  482. bool MarlinSettings::eeprom_error, MarlinSettings::validating;
  483. bool MarlinSettings::size_error(const uint16_t size) {
  484. if (size != datasize()) {
  485. DEBUG_ERROR_MSG("EEPROM datasize error.");
  486. return true;
  487. }
  488. return false;
  489. }
  490. /**
  491. * M500 - Store Configuration
  492. */
  493. bool MarlinSettings::save() {
  494. float dummyf = 0;
  495. char ver[4] = "ERR";
  496. uint16_t working_crc = 0;
  497. EEPROM_START();
  498. eeprom_error = false;
  499. // Write or Skip version. (Flash doesn't allow rewrite without erase.)
  500. TERN(FLASH_EEPROM_EMULATION, EEPROM_SKIP, EEPROM_WRITE)(ver);
  501. EEPROM_SKIP(working_crc); // Skip the checksum slot
  502. working_crc = 0; // clear before first "real data"
  503. _FIELD_TEST(esteppers);
  504. const uint8_t esteppers = COUNT(planner.settings.axis_steps_per_mm) - XYZ;
  505. EEPROM_WRITE(esteppers);
  506. //
  507. // Planner Motion
  508. //
  509. {
  510. EEPROM_WRITE(planner.settings);
  511. #if HAS_CLASSIC_JERK
  512. EEPROM_WRITE(planner.max_jerk);
  513. #if HAS_LINEAR_E_JERK
  514. dummyf = float(DEFAULT_EJERK);
  515. EEPROM_WRITE(dummyf);
  516. #endif
  517. #else
  518. const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
  519. EEPROM_WRITE(planner_max_jerk);
  520. #endif
  521. TERN_(CLASSIC_JERK, dummyf = 0.02f);
  522. EEPROM_WRITE(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  523. }
  524. //
  525. // Home Offset
  526. //
  527. {
  528. _FIELD_TEST(home_offset);
  529. #if HAS_SCARA_OFFSET
  530. EEPROM_WRITE(scara_home_offset);
  531. #else
  532. #if !HAS_HOME_OFFSET
  533. const xyz_pos_t home_offset{0};
  534. #endif
  535. EEPROM_WRITE(home_offset);
  536. #endif
  537. }
  538. //
  539. // Hotend Offsets, if any
  540. //
  541. {
  542. #if HAS_HOTEND_OFFSET
  543. // Skip hotend 0 which must be 0
  544. LOOP_S_L_N(e, 1, HOTENDS)
  545. EEPROM_WRITE(hotend_offset[e]);
  546. #endif
  547. }
  548. //
  549. // Filament Runout Sensor
  550. //
  551. {
  552. #if HAS_FILAMENT_SENSOR
  553. const bool &runout_sensor_enabled = runout.enabled;
  554. #else
  555. constexpr int8_t runout_sensor_enabled = -1;
  556. #endif
  557. _FIELD_TEST(runout_sensor_enabled);
  558. EEPROM_WRITE(runout_sensor_enabled);
  559. #if HAS_FILAMENT_RUNOUT_DISTANCE
  560. const float &runout_distance_mm = runout.runout_distance();
  561. #else
  562. constexpr float runout_distance_mm = 0;
  563. #endif
  564. EEPROM_WRITE(runout_distance_mm);
  565. }
  566. //
  567. // Global Leveling
  568. //
  569. {
  570. const float zfh = TERN(ENABLE_LEVELING_FADE_HEIGHT, planner.z_fade_height, 10.0f);
  571. EEPROM_WRITE(zfh);
  572. }
  573. //
  574. // Mesh Bed Leveling
  575. //
  576. {
  577. #if ENABLED(MESH_BED_LEVELING)
  578. static_assert(
  579. sizeof(mbl.z_values) == (GRID_MAX_POINTS) * sizeof(mbl.z_values[0][0]),
  580. "MBL Z array is the wrong size."
  581. );
  582. #else
  583. dummyf = 0;
  584. #endif
  585. const uint8_t mesh_num_x = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_X, 3),
  586. mesh_num_y = TERN(MESH_BED_LEVELING, GRID_MAX_POINTS_Y, 3);
  587. EEPROM_WRITE(TERN(MESH_BED_LEVELING, mbl.z_offset, dummyf));
  588. EEPROM_WRITE(mesh_num_x);
  589. EEPROM_WRITE(mesh_num_y);
  590. #if ENABLED(MESH_BED_LEVELING)
  591. EEPROM_WRITE(mbl.z_values);
  592. #else
  593. for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
  594. #endif
  595. }
  596. //
  597. // Probe XYZ Offsets
  598. //
  599. {
  600. _FIELD_TEST(probe_offset);
  601. #if HAS_BED_PROBE
  602. const xyz_pos_t &zpo = probe.offset;
  603. #else
  604. constexpr xyz_pos_t zpo{0};
  605. #endif
  606. EEPROM_WRITE(zpo);
  607. }
  608. //
  609. // Planar Bed Leveling matrix
  610. //
  611. {
  612. #if ABL_PLANAR
  613. EEPROM_WRITE(planner.bed_level_matrix);
  614. #else
  615. dummyf = 0;
  616. for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
  617. #endif
  618. }
  619. //
  620. // Bilinear Auto Bed Leveling
  621. //
  622. {
  623. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  624. static_assert(
  625. sizeof(z_values) == (GRID_MAX_POINTS) * sizeof(z_values[0][0]),
  626. "Bilinear Z array is the wrong size."
  627. );
  628. #else
  629. const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
  630. #endif
  631. const uint8_t grid_max_x = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_X, 3),
  632. grid_max_y = TERN(AUTO_BED_LEVELING_BILINEAR, GRID_MAX_POINTS_Y, 3);
  633. EEPROM_WRITE(grid_max_x);
  634. EEPROM_WRITE(grid_max_y);
  635. EEPROM_WRITE(bilinear_grid_spacing);
  636. EEPROM_WRITE(bilinear_start);
  637. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  638. EEPROM_WRITE(z_values); // 9-256 floats
  639. #else
  640. dummyf = 0;
  641. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
  642. #endif
  643. }
  644. //
  645. // Unified Bed Leveling
  646. //
  647. {
  648. _FIELD_TEST(planner_leveling_active);
  649. const bool ubl_active = TERN(AUTO_BED_LEVELING_UBL, planner.leveling_active, false);
  650. const int8_t storage_slot = TERN(AUTO_BED_LEVELING_UBL, ubl.storage_slot, -1);
  651. EEPROM_WRITE(ubl_active);
  652. EEPROM_WRITE(storage_slot);
  653. }
  654. //
  655. // Servo Angles
  656. //
  657. {
  658. _FIELD_TEST(servo_angles);
  659. #if !HAS_SERVO_ANGLES
  660. uint16_t servo_angles[EEPROM_NUM_SERVOS][2] = { { 0, 0 } };
  661. #endif
  662. EEPROM_WRITE(servo_angles);
  663. }
  664. //
  665. // Thermal first layer compensation values
  666. //
  667. #if ENABLED(PROBE_TEMP_COMPENSATION)
  668. EEPROM_WRITE(temp_comp.z_offsets_probe);
  669. EEPROM_WRITE(temp_comp.z_offsets_bed);
  670. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  671. EEPROM_WRITE(temp_comp.z_offsets_ext);
  672. #endif
  673. #else
  674. // No placeholder data for this feature
  675. #endif
  676. //
  677. // BLTOUCH
  678. //
  679. {
  680. _FIELD_TEST(bltouch_last_written_mode);
  681. const bool bltouch_last_written_mode = TERN(BLTOUCH, bltouch.last_written_mode, false);
  682. EEPROM_WRITE(bltouch_last_written_mode);
  683. }
  684. //
  685. // DELTA Geometry or Dual Endstops offsets
  686. //
  687. {
  688. #if ENABLED(DELTA)
  689. _FIELD_TEST(delta_height);
  690. EEPROM_WRITE(delta_height); // 1 float
  691. EEPROM_WRITE(delta_endstop_adj); // 3 floats
  692. EEPROM_WRITE(delta_radius); // 1 float
  693. EEPROM_WRITE(delta_diagonal_rod); // 1 float
  694. EEPROM_WRITE(delta_segments_per_second); // 1 float
  695. EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
  696. EEPROM_WRITE(delta_diagonal_rod_trim); // 3 floats
  697. #elif HAS_EXTRA_ENDSTOPS
  698. _FIELD_TEST(x2_endstop_adj);
  699. // Write dual endstops in X, Y, Z order. Unused = 0.0
  700. dummyf = 0;
  701. EEPROM_WRITE(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  702. EEPROM_WRITE(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  703. EEPROM_WRITE(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  704. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  705. EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
  706. #else
  707. EEPROM_WRITE(dummyf);
  708. #endif
  709. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  710. EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
  711. #else
  712. EEPROM_WRITE(dummyf);
  713. #endif
  714. #endif
  715. }
  716. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  717. EEPROM_WRITE(z_stepper_align.xy);
  718. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  719. EEPROM_WRITE(z_stepper_align.stepper_xy);
  720. #endif
  721. #endif
  722. //
  723. // LCD Preheat settings
  724. //
  725. #if PREHEAT_COUNT
  726. _FIELD_TEST(ui_material_preset);
  727. EEPROM_WRITE(ui.material_preset);
  728. #endif
  729. //
  730. // PIDTEMP
  731. //
  732. {
  733. _FIELD_TEST(hotendPID);
  734. HOTEND_LOOP() {
  735. PIDCF_t pidcf = {
  736. #if DISABLED(PIDTEMP)
  737. NAN, NAN, NAN,
  738. NAN, NAN
  739. #else
  740. PID_PARAM(Kp, e),
  741. unscalePID_i(PID_PARAM(Ki, e)),
  742. unscalePID_d(PID_PARAM(Kd, e)),
  743. PID_PARAM(Kc, e),
  744. PID_PARAM(Kf, e)
  745. #endif
  746. };
  747. EEPROM_WRITE(pidcf);
  748. }
  749. _FIELD_TEST(lpq_len);
  750. #if DISABLED(PID_EXTRUSION_SCALING)
  751. const int16_t lpq_len = 20;
  752. #endif
  753. EEPROM_WRITE(TERN(PID_EXTRUSION_SCALING, thermalManager.lpq_len, lpq_len));
  754. }
  755. //
  756. // PIDTEMPBED
  757. //
  758. {
  759. _FIELD_TEST(bedPID);
  760. const PID_t bed_pid = {
  761. #if DISABLED(PIDTEMPBED)
  762. NAN, NAN, NAN
  763. #else
  764. // Store the unscaled PID values
  765. thermalManager.temp_bed.pid.Kp,
  766. unscalePID_i(thermalManager.temp_bed.pid.Ki),
  767. unscalePID_d(thermalManager.temp_bed.pid.Kd)
  768. #endif
  769. };
  770. EEPROM_WRITE(bed_pid);
  771. }
  772. //
  773. // User-defined Thermistors
  774. //
  775. #if HAS_USER_THERMISTORS
  776. {
  777. _FIELD_TEST(user_thermistor);
  778. EEPROM_WRITE(thermalManager.user_thermistor);
  779. }
  780. #endif
  781. //
  782. // Power monitor
  783. //
  784. {
  785. #if HAS_POWER_MONITOR
  786. const uint8_t &power_monitor_flags = power_monitor.flags;
  787. #else
  788. constexpr uint8_t power_monitor_flags = 0x00;
  789. #endif
  790. _FIELD_TEST(power_monitor_flags);
  791. EEPROM_WRITE(power_monitor_flags);
  792. }
  793. //
  794. // LCD Contrast
  795. //
  796. {
  797. _FIELD_TEST(lcd_contrast);
  798. const int16_t lcd_contrast =
  799. #if HAS_LCD_CONTRAST
  800. ui.contrast
  801. #else
  802. 127
  803. #endif
  804. ;
  805. EEPROM_WRITE(lcd_contrast);
  806. }
  807. //
  808. // Controller Fan
  809. //
  810. {
  811. _FIELD_TEST(controllerFan_settings);
  812. #if ENABLED(USE_CONTROLLER_FAN)
  813. const controllerFan_settings_t &cfs = controllerFan.settings;
  814. #else
  815. controllerFan_settings_t cfs = controllerFan_defaults;
  816. #endif
  817. EEPROM_WRITE(cfs);
  818. }
  819. //
  820. // Power-Loss Recovery
  821. //
  822. {
  823. _FIELD_TEST(recovery_enabled);
  824. const bool recovery_enabled = TERN(POWER_LOSS_RECOVERY, recovery.enabled, ENABLED(PLR_ENABLED_DEFAULT));
  825. EEPROM_WRITE(recovery_enabled);
  826. }
  827. //
  828. // Firmware Retraction
  829. //
  830. {
  831. _FIELD_TEST(fwretract_settings);
  832. #if DISABLED(FWRETRACT)
  833. const fwretract_settings_t autoretract_defaults = { 3, 45, 0, 0, 0, 13, 0, 8 };
  834. #endif
  835. EEPROM_WRITE(TERN(FWRETRACT, fwretract.settings, autoretract_defaults));
  836. #if DISABLED(FWRETRACT_AUTORETRACT)
  837. const bool autoretract_enabled = false;
  838. #endif
  839. EEPROM_WRITE(TERN(FWRETRACT_AUTORETRACT, fwretract.autoretract_enabled, autoretract_enabled));
  840. }
  841. //
  842. // Volumetric & Filament Size
  843. //
  844. {
  845. _FIELD_TEST(parser_volumetric_enabled);
  846. #if DISABLED(NO_VOLUMETRICS)
  847. EEPROM_WRITE(parser.volumetric_enabled);
  848. EEPROM_WRITE(planner.filament_size);
  849. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  850. EEPROM_WRITE(planner.volumetric_extruder_limit);
  851. #else
  852. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  853. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  854. #endif
  855. #else
  856. const bool volumetric_enabled = false;
  857. EEPROM_WRITE(volumetric_enabled);
  858. dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
  859. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  860. dummyf = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  861. for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
  862. #endif
  863. }
  864. //
  865. // TMC Configuration
  866. //
  867. {
  868. _FIELD_TEST(tmc_stepper_current);
  869. tmc_stepper_current_t tmc_stepper_current = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  870. #if HAS_TRINAMIC_CONFIG
  871. #if AXIS_IS_TMC(X)
  872. tmc_stepper_current.X = stepperX.getMilliamps();
  873. #endif
  874. #if AXIS_IS_TMC(Y)
  875. tmc_stepper_current.Y = stepperY.getMilliamps();
  876. #endif
  877. #if AXIS_IS_TMC(Z)
  878. tmc_stepper_current.Z = stepperZ.getMilliamps();
  879. #endif
  880. #if AXIS_IS_TMC(X2)
  881. tmc_stepper_current.X2 = stepperX2.getMilliamps();
  882. #endif
  883. #if AXIS_IS_TMC(Y2)
  884. tmc_stepper_current.Y2 = stepperY2.getMilliamps();
  885. #endif
  886. #if AXIS_IS_TMC(Z2)
  887. tmc_stepper_current.Z2 = stepperZ2.getMilliamps();
  888. #endif
  889. #if AXIS_IS_TMC(Z3)
  890. tmc_stepper_current.Z3 = stepperZ3.getMilliamps();
  891. #endif
  892. #if AXIS_IS_TMC(Z4)
  893. tmc_stepper_current.Z4 = stepperZ4.getMilliamps();
  894. #endif
  895. #if MAX_EXTRUDERS
  896. #if AXIS_IS_TMC(E0)
  897. tmc_stepper_current.E0 = stepperE0.getMilliamps();
  898. #endif
  899. #if MAX_EXTRUDERS > 1
  900. #if AXIS_IS_TMC(E1)
  901. tmc_stepper_current.E1 = stepperE1.getMilliamps();
  902. #endif
  903. #if MAX_EXTRUDERS > 2
  904. #if AXIS_IS_TMC(E2)
  905. tmc_stepper_current.E2 = stepperE2.getMilliamps();
  906. #endif
  907. #if MAX_EXTRUDERS > 3
  908. #if AXIS_IS_TMC(E3)
  909. tmc_stepper_current.E3 = stepperE3.getMilliamps();
  910. #endif
  911. #if MAX_EXTRUDERS > 4
  912. #if AXIS_IS_TMC(E4)
  913. tmc_stepper_current.E4 = stepperE4.getMilliamps();
  914. #endif
  915. #if MAX_EXTRUDERS > 5
  916. #if AXIS_IS_TMC(E5)
  917. tmc_stepper_current.E5 = stepperE5.getMilliamps();
  918. #endif
  919. #if MAX_EXTRUDERS > 6
  920. #if AXIS_IS_TMC(E6)
  921. tmc_stepper_current.E6 = stepperE6.getMilliamps();
  922. #endif
  923. #if MAX_EXTRUDERS > 7
  924. #if AXIS_IS_TMC(E7)
  925. tmc_stepper_current.E7 = stepperE7.getMilliamps();
  926. #endif
  927. #endif // MAX_EXTRUDERS > 7
  928. #endif // MAX_EXTRUDERS > 6
  929. #endif // MAX_EXTRUDERS > 5
  930. #endif // MAX_EXTRUDERS > 4
  931. #endif // MAX_EXTRUDERS > 3
  932. #endif // MAX_EXTRUDERS > 2
  933. #endif // MAX_EXTRUDERS > 1
  934. #endif // MAX_EXTRUDERS
  935. #endif
  936. EEPROM_WRITE(tmc_stepper_current);
  937. }
  938. //
  939. // TMC Hybrid Threshold, and placeholder values
  940. //
  941. {
  942. _FIELD_TEST(tmc_hybrid_threshold);
  943. #if ENABLED(HYBRID_THRESHOLD)
  944. tmc_hybrid_threshold_t tmc_hybrid_threshold = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 };
  945. #if AXIS_HAS_STEALTHCHOP(X)
  946. tmc_hybrid_threshold.X = stepperX.get_pwm_thrs();
  947. #endif
  948. #if AXIS_HAS_STEALTHCHOP(Y)
  949. tmc_hybrid_threshold.Y = stepperY.get_pwm_thrs();
  950. #endif
  951. #if AXIS_HAS_STEALTHCHOP(Z)
  952. tmc_hybrid_threshold.Z = stepperZ.get_pwm_thrs();
  953. #endif
  954. #if AXIS_HAS_STEALTHCHOP(X2)
  955. tmc_hybrid_threshold.X2 = stepperX2.get_pwm_thrs();
  956. #endif
  957. #if AXIS_HAS_STEALTHCHOP(Y2)
  958. tmc_hybrid_threshold.Y2 = stepperY2.get_pwm_thrs();
  959. #endif
  960. #if AXIS_HAS_STEALTHCHOP(Z2)
  961. tmc_hybrid_threshold.Z2 = stepperZ2.get_pwm_thrs();
  962. #endif
  963. #if AXIS_HAS_STEALTHCHOP(Z3)
  964. tmc_hybrid_threshold.Z3 = stepperZ3.get_pwm_thrs();
  965. #endif
  966. #if AXIS_HAS_STEALTHCHOP(Z4)
  967. tmc_hybrid_threshold.Z4 = stepperZ4.get_pwm_thrs();
  968. #endif
  969. #if MAX_EXTRUDERS
  970. #if AXIS_HAS_STEALTHCHOP(E0)
  971. tmc_hybrid_threshold.E0 = stepperE0.get_pwm_thrs();
  972. #endif
  973. #if MAX_EXTRUDERS > 1
  974. #if AXIS_HAS_STEALTHCHOP(E1)
  975. tmc_hybrid_threshold.E1 = stepperE1.get_pwm_thrs();
  976. #endif
  977. #if MAX_EXTRUDERS > 2
  978. #if AXIS_HAS_STEALTHCHOP(E2)
  979. tmc_hybrid_threshold.E2 = stepperE2.get_pwm_thrs();
  980. #endif
  981. #if MAX_EXTRUDERS > 3
  982. #if AXIS_HAS_STEALTHCHOP(E3)
  983. tmc_hybrid_threshold.E3 = stepperE3.get_pwm_thrs();
  984. #endif
  985. #if MAX_EXTRUDERS > 4
  986. #if AXIS_HAS_STEALTHCHOP(E4)
  987. tmc_hybrid_threshold.E4 = stepperE4.get_pwm_thrs();
  988. #endif
  989. #if MAX_EXTRUDERS > 5
  990. #if AXIS_HAS_STEALTHCHOP(E5)
  991. tmc_hybrid_threshold.E5 = stepperE5.get_pwm_thrs();
  992. #endif
  993. #if MAX_EXTRUDERS > 6
  994. #if AXIS_HAS_STEALTHCHOP(E6)
  995. tmc_hybrid_threshold.E6 = stepperE6.get_pwm_thrs();
  996. #endif
  997. #if MAX_EXTRUDERS > 7
  998. #if AXIS_HAS_STEALTHCHOP(E7)
  999. tmc_hybrid_threshold.E7 = stepperE7.get_pwm_thrs();
  1000. #endif
  1001. #endif // MAX_EXTRUDERS > 7
  1002. #endif // MAX_EXTRUDERS > 6
  1003. #endif // MAX_EXTRUDERS > 5
  1004. #endif // MAX_EXTRUDERS > 4
  1005. #endif // MAX_EXTRUDERS > 3
  1006. #endif // MAX_EXTRUDERS > 2
  1007. #endif // MAX_EXTRUDERS > 1
  1008. #endif // MAX_EXTRUDERS
  1009. #else
  1010. const tmc_hybrid_threshold_t tmc_hybrid_threshold = {
  1011. .X = 100, .Y = 100, .Z = 3,
  1012. .X2 = 100, .Y2 = 100, .Z2 = 3, .Z3 = 3, .Z4 = 3,
  1013. .E0 = 30, .E1 = 30, .E2 = 30,
  1014. .E3 = 30, .E4 = 30, .E5 = 30
  1015. };
  1016. #endif
  1017. EEPROM_WRITE(tmc_hybrid_threshold);
  1018. }
  1019. //
  1020. // TMC StallGuard threshold
  1021. //
  1022. {
  1023. tmc_sgt_t tmc_sgt{0};
  1024. #if USE_SENSORLESS
  1025. TERN_(X_SENSORLESS, tmc_sgt.X = stepperX.homing_threshold());
  1026. TERN_(X2_SENSORLESS, tmc_sgt.X2 = stepperX2.homing_threshold());
  1027. TERN_(Y_SENSORLESS, tmc_sgt.Y = stepperY.homing_threshold());
  1028. TERN_(Y2_SENSORLESS, tmc_sgt.Y2 = stepperY2.homing_threshold());
  1029. TERN_(Z_SENSORLESS, tmc_sgt.Z = stepperZ.homing_threshold());
  1030. TERN_(Z2_SENSORLESS, tmc_sgt.Z2 = stepperZ2.homing_threshold());
  1031. TERN_(Z3_SENSORLESS, tmc_sgt.Z3 = stepperZ3.homing_threshold());
  1032. TERN_(Z4_SENSORLESS, tmc_sgt.Z4 = stepperZ4.homing_threshold());
  1033. #endif
  1034. EEPROM_WRITE(tmc_sgt);
  1035. }
  1036. //
  1037. // TMC stepping mode
  1038. //
  1039. {
  1040. _FIELD_TEST(tmc_stealth_enabled);
  1041. tmc_stealth_enabled_t tmc_stealth_enabled = { false, false, false, false, false, false, false, false, false, false, false, false, false };
  1042. #if HAS_STEALTHCHOP
  1043. #if AXIS_HAS_STEALTHCHOP(X)
  1044. tmc_stealth_enabled.X = stepperX.get_stored_stealthChop();
  1045. #endif
  1046. #if AXIS_HAS_STEALTHCHOP(Y)
  1047. tmc_stealth_enabled.Y = stepperY.get_stored_stealthChop();
  1048. #endif
  1049. #if AXIS_HAS_STEALTHCHOP(Z)
  1050. tmc_stealth_enabled.Z = stepperZ.get_stored_stealthChop();
  1051. #endif
  1052. #if AXIS_HAS_STEALTHCHOP(X2)
  1053. tmc_stealth_enabled.X2 = stepperX2.get_stored_stealthChop();
  1054. #endif
  1055. #if AXIS_HAS_STEALTHCHOP(Y2)
  1056. tmc_stealth_enabled.Y2 = stepperY2.get_stored_stealthChop();
  1057. #endif
  1058. #if AXIS_HAS_STEALTHCHOP(Z2)
  1059. tmc_stealth_enabled.Z2 = stepperZ2.get_stored_stealthChop();
  1060. #endif
  1061. #if AXIS_HAS_STEALTHCHOP(Z3)
  1062. tmc_stealth_enabled.Z3 = stepperZ3.get_stored_stealthChop();
  1063. #endif
  1064. #if AXIS_HAS_STEALTHCHOP(Z4)
  1065. tmc_stealth_enabled.Z4 = stepperZ4.get_stored_stealthChop();
  1066. #endif
  1067. #if MAX_EXTRUDERS
  1068. #if AXIS_HAS_STEALTHCHOP(E0)
  1069. tmc_stealth_enabled.E0 = stepperE0.get_stored_stealthChop();
  1070. #endif
  1071. #if MAX_EXTRUDERS > 1
  1072. #if AXIS_HAS_STEALTHCHOP(E1)
  1073. tmc_stealth_enabled.E1 = stepperE1.get_stored_stealthChop();
  1074. #endif
  1075. #if MAX_EXTRUDERS > 2
  1076. #if AXIS_HAS_STEALTHCHOP(E2)
  1077. tmc_stealth_enabled.E2 = stepperE2.get_stored_stealthChop();
  1078. #endif
  1079. #if MAX_EXTRUDERS > 3
  1080. #if AXIS_HAS_STEALTHCHOP(E3)
  1081. tmc_stealth_enabled.E3 = stepperE3.get_stored_stealthChop();
  1082. #endif
  1083. #if MAX_EXTRUDERS > 4
  1084. #if AXIS_HAS_STEALTHCHOP(E4)
  1085. tmc_stealth_enabled.E4 = stepperE4.get_stored_stealthChop();
  1086. #endif
  1087. #if MAX_EXTRUDERS > 5
  1088. #if AXIS_HAS_STEALTHCHOP(E5)
  1089. tmc_stealth_enabled.E5 = stepperE5.get_stored_stealthChop();
  1090. #endif
  1091. #if MAX_EXTRUDERS > 6
  1092. #if AXIS_HAS_STEALTHCHOP(E6)
  1093. tmc_stealth_enabled.E6 = stepperE6.get_stored_stealthChop();
  1094. #endif
  1095. #if MAX_EXTRUDERS > 7
  1096. #if AXIS_HAS_STEALTHCHOP(E7)
  1097. tmc_stealth_enabled.E7 = stepperE7.get_stored_stealthChop();
  1098. #endif
  1099. #endif // MAX_EXTRUDERS > 7
  1100. #endif // MAX_EXTRUDERS > 6
  1101. #endif // MAX_EXTRUDERS > 5
  1102. #endif // MAX_EXTRUDERS > 4
  1103. #endif // MAX_EXTRUDERS > 3
  1104. #endif // MAX_EXTRUDERS > 2
  1105. #endif // MAX_EXTRUDERS > 1
  1106. #endif // MAX_EXTRUDERS
  1107. #endif
  1108. EEPROM_WRITE(tmc_stealth_enabled);
  1109. }
  1110. //
  1111. // Linear Advance
  1112. //
  1113. {
  1114. _FIELD_TEST(planner_extruder_advance_K);
  1115. #if ENABLED(LIN_ADVANCE)
  1116. EEPROM_WRITE(planner.extruder_advance_K);
  1117. #else
  1118. dummyf = 0;
  1119. for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
  1120. #endif
  1121. }
  1122. //
  1123. // Motor Current PWM
  1124. //
  1125. {
  1126. _FIELD_TEST(motor_current_setting);
  1127. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1128. EEPROM_WRITE(stepper.motor_current_setting);
  1129. #else
  1130. const uint32_t no_current[MOTOR_CURRENT_COUNT] = { 0 };
  1131. EEPROM_WRITE(no_current);
  1132. #endif
  1133. }
  1134. //
  1135. // CNC Coordinate Systems
  1136. //
  1137. _FIELD_TEST(coordinate_system);
  1138. #if DISABLED(CNC_COORDINATE_SYSTEMS)
  1139. const xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS] = { { 0 } };
  1140. #endif
  1141. EEPROM_WRITE(TERN(CNC_COORDINATE_SYSTEMS, gcode.coordinate_system, coordinate_system));
  1142. //
  1143. // Skew correction factors
  1144. //
  1145. _FIELD_TEST(planner_skew_factor);
  1146. EEPROM_WRITE(planner.skew_factor);
  1147. //
  1148. // Advanced Pause filament load & unload lengths
  1149. //
  1150. #if EXTRUDERS
  1151. {
  1152. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1153. const fil_change_settings_t fc_settings[EXTRUDERS] = { 0, 0 };
  1154. #endif
  1155. _FIELD_TEST(fc_settings);
  1156. EEPROM_WRITE(fc_settings);
  1157. }
  1158. #endif
  1159. //
  1160. // Multiple Extruders
  1161. //
  1162. #if HAS_MULTI_EXTRUDER
  1163. _FIELD_TEST(toolchange_settings);
  1164. EEPROM_WRITE(toolchange_settings);
  1165. #endif
  1166. //
  1167. // Backlash Compensation
  1168. //
  1169. {
  1170. #if ENABLED(BACKLASH_GCODE)
  1171. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1172. const uint8_t &backlash_correction = backlash.correction;
  1173. #else
  1174. const xyz_float_t backlash_distance_mm{0};
  1175. const uint8_t backlash_correction = 0;
  1176. #endif
  1177. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1178. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1179. #else
  1180. const float backlash_smoothing_mm = 3;
  1181. #endif
  1182. _FIELD_TEST(backlash_distance_mm);
  1183. EEPROM_WRITE(backlash_distance_mm);
  1184. EEPROM_WRITE(backlash_correction);
  1185. EEPROM_WRITE(backlash_smoothing_mm);
  1186. }
  1187. //
  1188. // Extensible UI User Data
  1189. //
  1190. #if ENABLED(EXTENSIBLE_UI)
  1191. {
  1192. char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1193. ExtUI::onStoreSettings(extui_data);
  1194. _FIELD_TEST(extui_data);
  1195. EEPROM_WRITE(extui_data);
  1196. }
  1197. #endif
  1198. //
  1199. // Case Light Brightness
  1200. //
  1201. #if CASELIGHT_USES_BRIGHTNESS
  1202. EEPROM_WRITE(caselight.brightness);
  1203. #endif
  1204. //
  1205. // Password feature
  1206. //
  1207. #if ENABLED(PASSWORD_FEATURE)
  1208. EEPROM_WRITE(password.is_set);
  1209. EEPROM_WRITE(password.value);
  1210. #endif
  1211. //
  1212. // TOUCH_SCREEN_CALIBRATION
  1213. //
  1214. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  1215. EEPROM_WRITE(touch.calibration);
  1216. #endif
  1217. //
  1218. // Ethernet network info
  1219. //
  1220. #if HAS_ETHERNET
  1221. {
  1222. _FIELD_TEST(ethernet_hardware_enabled);
  1223. const bool ethernet_hardware_enabled = ethernet.hardware_enabled;
  1224. const uint32_t ethernet_ip = ethernet.ip,
  1225. ethernet_dns = ethernet.myDns,
  1226. ethernet_gateway = ethernet.gateway,
  1227. ethernet_subnet = ethernet.subnet;
  1228. EEPROM_WRITE(ethernet_hardware_enabled);
  1229. EEPROM_WRITE(ethernet_ip);
  1230. EEPROM_WRITE(ethernet_dns);
  1231. EEPROM_WRITE(ethernet_gateway);
  1232. EEPROM_WRITE(ethernet_subnet);
  1233. }
  1234. #endif
  1235. //
  1236. // Buzzer enable/disable
  1237. //
  1238. #if ENABLED(SOUND_MENU_ITEM)
  1239. EEPROM_WRITE(ui.buzzer_enabled);
  1240. #endif
  1241. //
  1242. // Report final CRC and Data Size
  1243. //
  1244. if (!eeprom_error) {
  1245. const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
  1246. final_crc = working_crc;
  1247. // Write the EEPROM header
  1248. eeprom_index = EEPROM_OFFSET;
  1249. EEPROM_WRITE(version);
  1250. EEPROM_WRITE(final_crc);
  1251. // Report storage size
  1252. DEBUG_ECHO_START();
  1253. DEBUG_ECHOLNPAIR("Settings Stored (", eeprom_size, " bytes; crc ", (uint32_t)final_crc, ")");
  1254. eeprom_error |= size_error(eeprom_size);
  1255. }
  1256. EEPROM_FINISH();
  1257. //
  1258. // UBL Mesh
  1259. //
  1260. #if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
  1261. if (ubl.storage_slot >= 0)
  1262. store_mesh(ubl.storage_slot);
  1263. #endif
  1264. if (!eeprom_error) LCD_MESSAGEPGM(MSG_SETTINGS_STORED);
  1265. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreWritten(!eeprom_error));
  1266. return !eeprom_error;
  1267. }
  1268. /**
  1269. * M501 - Retrieve Configuration
  1270. */
  1271. bool MarlinSettings::_load() {
  1272. uint16_t working_crc = 0;
  1273. EEPROM_START();
  1274. char stored_ver[4];
  1275. EEPROM_READ_ALWAYS(stored_ver);
  1276. uint16_t stored_crc;
  1277. EEPROM_READ_ALWAYS(stored_crc);
  1278. // Version has to match or defaults are used
  1279. if (strncmp(version, stored_ver, 3) != 0) {
  1280. if (stored_ver[3] != '\0') {
  1281. stored_ver[0] = '?';
  1282. stored_ver[1] = '\0';
  1283. }
  1284. DEBUG_ECHO_START();
  1285. DEBUG_ECHOLNPAIR("EEPROM version mismatch (EEPROM=", stored_ver, " Marlin=" EEPROM_VERSION ")");
  1286. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_version());
  1287. eeprom_error = true;
  1288. }
  1289. else {
  1290. float dummyf = 0;
  1291. working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
  1292. _FIELD_TEST(esteppers);
  1293. // Number of esteppers may change
  1294. uint8_t esteppers;
  1295. EEPROM_READ_ALWAYS(esteppers);
  1296. //
  1297. // Planner Motion
  1298. //
  1299. {
  1300. // Get only the number of E stepper parameters previously stored
  1301. // Any steppers added later are set to their defaults
  1302. uint32_t tmp1[XYZ + esteppers];
  1303. float tmp2[XYZ + esteppers];
  1304. feedRate_t tmp3[XYZ + esteppers];
  1305. EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
  1306. EEPROM_READ(planner.settings.min_segment_time_us);
  1307. EEPROM_READ(tmp2); // axis_steps_per_mm
  1308. EEPROM_READ(tmp3); // max_feedrate_mm_s
  1309. if (!validating) LOOP_XYZE_N(i) {
  1310. const bool in = (i < esteppers + XYZ);
  1311. planner.settings.max_acceleration_mm_per_s2[i] = in ? tmp1[i] : pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  1312. planner.settings.axis_steps_per_mm[i] = in ? tmp2[i] : pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  1313. planner.settings.max_feedrate_mm_s[i] = in ? tmp3[i] : pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  1314. }
  1315. EEPROM_READ(planner.settings.acceleration);
  1316. EEPROM_READ(planner.settings.retract_acceleration);
  1317. EEPROM_READ(planner.settings.travel_acceleration);
  1318. EEPROM_READ(planner.settings.min_feedrate_mm_s);
  1319. EEPROM_READ(planner.settings.min_travel_feedrate_mm_s);
  1320. #if HAS_CLASSIC_JERK
  1321. EEPROM_READ(planner.max_jerk);
  1322. #if HAS_LINEAR_E_JERK
  1323. EEPROM_READ(dummyf);
  1324. #endif
  1325. #else
  1326. for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
  1327. #endif
  1328. EEPROM_READ(TERN(CLASSIC_JERK, dummyf, planner.junction_deviation_mm));
  1329. }
  1330. //
  1331. // Home Offset (M206 / M665)
  1332. //
  1333. {
  1334. _FIELD_TEST(home_offset);
  1335. #if HAS_SCARA_OFFSET
  1336. EEPROM_READ(scara_home_offset);
  1337. #else
  1338. #if !HAS_HOME_OFFSET
  1339. xyz_pos_t home_offset;
  1340. #endif
  1341. EEPROM_READ(home_offset);
  1342. #endif
  1343. }
  1344. //
  1345. // Hotend Offsets, if any
  1346. //
  1347. {
  1348. #if HAS_HOTEND_OFFSET
  1349. // Skip hotend 0 which must be 0
  1350. LOOP_S_L_N(e, 1, HOTENDS)
  1351. EEPROM_READ(hotend_offset[e]);
  1352. #endif
  1353. }
  1354. //
  1355. // Filament Runout Sensor
  1356. //
  1357. {
  1358. int8_t runout_sensor_enabled;
  1359. _FIELD_TEST(runout_sensor_enabled);
  1360. EEPROM_READ(runout_sensor_enabled);
  1361. #if HAS_FILAMENT_SENSOR
  1362. runout.enabled = runout_sensor_enabled < 0 ? FIL_RUNOUT_ENABLED_DEFAULT : runout_sensor_enabled;
  1363. #endif
  1364. TERN_(HAS_FILAMENT_SENSOR, if (runout.enabled) runout.reset());
  1365. float runout_distance_mm;
  1366. EEPROM_READ(runout_distance_mm);
  1367. #if HAS_FILAMENT_RUNOUT_DISTANCE
  1368. if (!validating) runout.set_runout_distance(runout_distance_mm);
  1369. #endif
  1370. }
  1371. //
  1372. // Global Leveling
  1373. //
  1374. EEPROM_READ(TERN(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height, dummyf));
  1375. //
  1376. // Mesh (Manual) Bed Leveling
  1377. //
  1378. {
  1379. uint8_t mesh_num_x, mesh_num_y;
  1380. EEPROM_READ(dummyf);
  1381. EEPROM_READ_ALWAYS(mesh_num_x);
  1382. EEPROM_READ_ALWAYS(mesh_num_y);
  1383. #if ENABLED(MESH_BED_LEVELING)
  1384. if (!validating) mbl.z_offset = dummyf;
  1385. if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
  1386. // EEPROM data fits the current mesh
  1387. EEPROM_READ(mbl.z_values);
  1388. }
  1389. else {
  1390. // EEPROM data is stale
  1391. if (!validating) mbl.reset();
  1392. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1393. }
  1394. #else
  1395. // MBL is disabled - skip the stored data
  1396. for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
  1397. #endif // MESH_BED_LEVELING
  1398. }
  1399. //
  1400. // Probe Z Offset
  1401. //
  1402. {
  1403. _FIELD_TEST(probe_offset);
  1404. #if HAS_BED_PROBE
  1405. const xyz_pos_t &zpo = probe.offset;
  1406. #else
  1407. xyz_pos_t zpo;
  1408. #endif
  1409. EEPROM_READ(zpo);
  1410. }
  1411. //
  1412. // Planar Bed Leveling matrix
  1413. //
  1414. {
  1415. #if ABL_PLANAR
  1416. EEPROM_READ(planner.bed_level_matrix);
  1417. #else
  1418. for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
  1419. #endif
  1420. }
  1421. //
  1422. // Bilinear Auto Bed Leveling
  1423. //
  1424. {
  1425. uint8_t grid_max_x, grid_max_y;
  1426. EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
  1427. EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
  1428. #if ENABLED(AUTO_BED_LEVELING_BILINEAR)
  1429. if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
  1430. if (!validating) set_bed_leveling_enabled(false);
  1431. EEPROM_READ(bilinear_grid_spacing); // 2 ints
  1432. EEPROM_READ(bilinear_start); // 2 ints
  1433. EEPROM_READ(z_values); // 9 to 256 floats
  1434. }
  1435. else // EEPROM data is stale
  1436. #endif // AUTO_BED_LEVELING_BILINEAR
  1437. {
  1438. // Skip past disabled (or stale) Bilinear Grid data
  1439. xy_pos_t bgs, bs;
  1440. EEPROM_READ(bgs);
  1441. EEPROM_READ(bs);
  1442. for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
  1443. }
  1444. }
  1445. //
  1446. // Unified Bed Leveling active state
  1447. //
  1448. {
  1449. _FIELD_TEST(planner_leveling_active);
  1450. #if ENABLED(AUTO_BED_LEVELING_UBL)
  1451. const bool &planner_leveling_active = planner.leveling_active;
  1452. const int8_t &ubl_storage_slot = ubl.storage_slot;
  1453. #else
  1454. bool planner_leveling_active;
  1455. int8_t ubl_storage_slot;
  1456. #endif
  1457. EEPROM_READ(planner_leveling_active);
  1458. EEPROM_READ(ubl_storage_slot);
  1459. }
  1460. //
  1461. // SERVO_ANGLES
  1462. //
  1463. {
  1464. _FIELD_TEST(servo_angles);
  1465. #if ENABLED(EDITABLE_SERVO_ANGLES)
  1466. uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
  1467. #else
  1468. uint16_t servo_angles_arr[EEPROM_NUM_SERVOS][2];
  1469. #endif
  1470. EEPROM_READ(servo_angles_arr);
  1471. }
  1472. //
  1473. // Thermal first layer compensation values
  1474. //
  1475. #if ENABLED(PROBE_TEMP_COMPENSATION)
  1476. EEPROM_READ(temp_comp.z_offsets_probe);
  1477. EEPROM_READ(temp_comp.z_offsets_bed);
  1478. #if ENABLED(USE_TEMP_EXT_COMPENSATION)
  1479. EEPROM_READ(temp_comp.z_offsets_ext);
  1480. #endif
  1481. temp_comp.reset_index();
  1482. #else
  1483. // No placeholder data for this feature
  1484. #endif
  1485. //
  1486. // BLTOUCH
  1487. //
  1488. {
  1489. _FIELD_TEST(bltouch_last_written_mode);
  1490. #if ENABLED(BLTOUCH)
  1491. const bool &bltouch_last_written_mode = bltouch.last_written_mode;
  1492. #else
  1493. bool bltouch_last_written_mode;
  1494. #endif
  1495. EEPROM_READ(bltouch_last_written_mode);
  1496. }
  1497. //
  1498. // DELTA Geometry or Dual Endstops offsets
  1499. //
  1500. {
  1501. #if ENABLED(DELTA)
  1502. _FIELD_TEST(delta_height);
  1503. EEPROM_READ(delta_height); // 1 float
  1504. EEPROM_READ(delta_endstop_adj); // 3 floats
  1505. EEPROM_READ(delta_radius); // 1 float
  1506. EEPROM_READ(delta_diagonal_rod); // 1 float
  1507. EEPROM_READ(delta_segments_per_second); // 1 float
  1508. EEPROM_READ(delta_tower_angle_trim); // 3 floats
  1509. EEPROM_READ(delta_diagonal_rod_trim); // 3 floats
  1510. #elif HAS_EXTRA_ENDSTOPS
  1511. _FIELD_TEST(x2_endstop_adj);
  1512. EEPROM_READ(TERN(X_DUAL_ENDSTOPS, endstops.x2_endstop_adj, dummyf)); // 1 float
  1513. EEPROM_READ(TERN(Y_DUAL_ENDSTOPS, endstops.y2_endstop_adj, dummyf)); // 1 float
  1514. EEPROM_READ(TERN(Z_MULTI_ENDSTOPS, endstops.z2_endstop_adj, dummyf)); // 1 float
  1515. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
  1516. EEPROM_READ(endstops.z3_endstop_adj); // 1 float
  1517. #else
  1518. EEPROM_READ(dummyf);
  1519. #endif
  1520. #if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
  1521. EEPROM_READ(endstops.z4_endstop_adj); // 1 float
  1522. #else
  1523. EEPROM_READ(dummyf);
  1524. #endif
  1525. #endif
  1526. }
  1527. #if ENABLED(Z_STEPPER_AUTO_ALIGN)
  1528. EEPROM_READ(z_stepper_align.xy);
  1529. #if ENABLED(Z_STEPPER_ALIGN_KNOWN_STEPPER_POSITIONS)
  1530. EEPROM_READ(z_stepper_align.stepper_xy);
  1531. #endif
  1532. #endif
  1533. //
  1534. // LCD Preheat settings
  1535. //
  1536. #if PREHEAT_COUNT
  1537. _FIELD_TEST(ui_material_preset);
  1538. EEPROM_READ(ui.material_preset);
  1539. #endif
  1540. //
  1541. // Hotend PID
  1542. //
  1543. {
  1544. HOTEND_LOOP() {
  1545. PIDCF_t pidcf;
  1546. EEPROM_READ(pidcf);
  1547. #if ENABLED(PIDTEMP)
  1548. if (!validating && !isnan(pidcf.Kp)) {
  1549. // Scale PID values since EEPROM values are unscaled
  1550. PID_PARAM(Kp, e) = pidcf.Kp;
  1551. PID_PARAM(Ki, e) = scalePID_i(pidcf.Ki);
  1552. PID_PARAM(Kd, e) = scalePID_d(pidcf.Kd);
  1553. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = pidcf.Kc);
  1554. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = pidcf.Kf);
  1555. }
  1556. #endif
  1557. }
  1558. }
  1559. //
  1560. // PID Extrusion Scaling
  1561. //
  1562. {
  1563. _FIELD_TEST(lpq_len);
  1564. #if ENABLED(PID_EXTRUSION_SCALING)
  1565. const int16_t &lpq_len = thermalManager.lpq_len;
  1566. #else
  1567. int16_t lpq_len;
  1568. #endif
  1569. EEPROM_READ(lpq_len);
  1570. }
  1571. //
  1572. // Heated Bed PID
  1573. //
  1574. {
  1575. PID_t pid;
  1576. EEPROM_READ(pid);
  1577. #if ENABLED(PIDTEMPBED)
  1578. if (!validating && !isnan(pid.Kp)) {
  1579. // Scale PID values since EEPROM values are unscaled
  1580. thermalManager.temp_bed.pid.Kp = pid.Kp;
  1581. thermalManager.temp_bed.pid.Ki = scalePID_i(pid.Ki);
  1582. thermalManager.temp_bed.pid.Kd = scalePID_d(pid.Kd);
  1583. }
  1584. #endif
  1585. }
  1586. //
  1587. // User-defined Thermistors
  1588. //
  1589. #if HAS_USER_THERMISTORS
  1590. {
  1591. _FIELD_TEST(user_thermistor);
  1592. EEPROM_READ(thermalManager.user_thermistor);
  1593. }
  1594. #endif
  1595. //
  1596. // Power monitor
  1597. //
  1598. {
  1599. #if HAS_POWER_MONITOR
  1600. uint8_t &power_monitor_flags = power_monitor.flags;
  1601. #else
  1602. uint8_t power_monitor_flags;
  1603. #endif
  1604. _FIELD_TEST(power_monitor_flags);
  1605. EEPROM_READ(power_monitor_flags);
  1606. }
  1607. //
  1608. // LCD Contrast
  1609. //
  1610. {
  1611. _FIELD_TEST(lcd_contrast);
  1612. int16_t lcd_contrast;
  1613. EEPROM_READ(lcd_contrast);
  1614. if (!validating) {
  1615. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(lcd_contrast));
  1616. }
  1617. }
  1618. //
  1619. // Controller Fan
  1620. //
  1621. {
  1622. _FIELD_TEST(controllerFan_settings);
  1623. #if ENABLED(CONTROLLER_FAN_EDITABLE)
  1624. const controllerFan_settings_t &cfs = controllerFan.settings;
  1625. #else
  1626. controllerFan_settings_t cfs = { 0 };
  1627. #endif
  1628. EEPROM_READ(cfs);
  1629. }
  1630. //
  1631. // Power-Loss Recovery
  1632. //
  1633. {
  1634. _FIELD_TEST(recovery_enabled);
  1635. #if ENABLED(POWER_LOSS_RECOVERY)
  1636. const bool &recovery_enabled = recovery.enabled;
  1637. #else
  1638. bool recovery_enabled;
  1639. #endif
  1640. EEPROM_READ(recovery_enabled);
  1641. }
  1642. //
  1643. // Firmware Retraction
  1644. //
  1645. {
  1646. _FIELD_TEST(fwretract_settings);
  1647. #if ENABLED(FWRETRACT)
  1648. EEPROM_READ(fwretract.settings);
  1649. #else
  1650. fwretract_settings_t fwretract_settings;
  1651. EEPROM_READ(fwretract_settings);
  1652. #endif
  1653. #if BOTH(FWRETRACT, FWRETRACT_AUTORETRACT)
  1654. EEPROM_READ(fwretract.autoretract_enabled);
  1655. #else
  1656. bool autoretract_enabled;
  1657. EEPROM_READ(autoretract_enabled);
  1658. #endif
  1659. }
  1660. //
  1661. // Volumetric & Filament Size
  1662. //
  1663. {
  1664. struct {
  1665. bool volumetric_enabled;
  1666. float filament_size[EXTRUDERS];
  1667. float volumetric_extruder_limit[EXTRUDERS];
  1668. } storage;
  1669. _FIELD_TEST(parser_volumetric_enabled);
  1670. EEPROM_READ(storage);
  1671. #if DISABLED(NO_VOLUMETRICS)
  1672. if (!validating) {
  1673. parser.volumetric_enabled = storage.volumetric_enabled;
  1674. COPY(planner.filament_size, storage.filament_size);
  1675. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  1676. COPY(planner.volumetric_extruder_limit, storage.volumetric_extruder_limit);
  1677. #endif
  1678. }
  1679. #endif
  1680. }
  1681. //
  1682. // TMC Stepper Settings
  1683. //
  1684. if (!validating) reset_stepper_drivers();
  1685. // TMC Stepper Current
  1686. {
  1687. _FIELD_TEST(tmc_stepper_current);
  1688. tmc_stepper_current_t currents;
  1689. EEPROM_READ(currents);
  1690. #if HAS_TRINAMIC_CONFIG
  1691. #define SET_CURR(Q) stepper##Q.rms_current(currents.Q ? currents.Q : Q##_CURRENT)
  1692. if (!validating) {
  1693. #if AXIS_IS_TMC(X)
  1694. SET_CURR(X);
  1695. #endif
  1696. #if AXIS_IS_TMC(Y)
  1697. SET_CURR(Y);
  1698. #endif
  1699. #if AXIS_IS_TMC(Z)
  1700. SET_CURR(Z);
  1701. #endif
  1702. #if AXIS_IS_TMC(X2)
  1703. SET_CURR(X2);
  1704. #endif
  1705. #if AXIS_IS_TMC(Y2)
  1706. SET_CURR(Y2);
  1707. #endif
  1708. #if AXIS_IS_TMC(Z2)
  1709. SET_CURR(Z2);
  1710. #endif
  1711. #if AXIS_IS_TMC(Z3)
  1712. SET_CURR(Z3);
  1713. #endif
  1714. #if AXIS_IS_TMC(Z4)
  1715. SET_CURR(Z4);
  1716. #endif
  1717. #if AXIS_IS_TMC(E0)
  1718. SET_CURR(E0);
  1719. #endif
  1720. #if AXIS_IS_TMC(E1)
  1721. SET_CURR(E1);
  1722. #endif
  1723. #if AXIS_IS_TMC(E2)
  1724. SET_CURR(E2);
  1725. #endif
  1726. #if AXIS_IS_TMC(E3)
  1727. SET_CURR(E3);
  1728. #endif
  1729. #if AXIS_IS_TMC(E4)
  1730. SET_CURR(E4);
  1731. #endif
  1732. #if AXIS_IS_TMC(E5)
  1733. SET_CURR(E5);
  1734. #endif
  1735. #if AXIS_IS_TMC(E6)
  1736. SET_CURR(E6);
  1737. #endif
  1738. #if AXIS_IS_TMC(E7)
  1739. SET_CURR(E7);
  1740. #endif
  1741. }
  1742. #endif
  1743. }
  1744. // TMC Hybrid Threshold
  1745. {
  1746. tmc_hybrid_threshold_t tmc_hybrid_threshold;
  1747. _FIELD_TEST(tmc_hybrid_threshold);
  1748. EEPROM_READ(tmc_hybrid_threshold);
  1749. #if ENABLED(HYBRID_THRESHOLD)
  1750. if (!validating) {
  1751. #if AXIS_HAS_STEALTHCHOP(X)
  1752. stepperX.set_pwm_thrs(tmc_hybrid_threshold.X);
  1753. #endif
  1754. #if AXIS_HAS_STEALTHCHOP(Y)
  1755. stepperY.set_pwm_thrs(tmc_hybrid_threshold.Y);
  1756. #endif
  1757. #if AXIS_HAS_STEALTHCHOP(Z)
  1758. stepperZ.set_pwm_thrs(tmc_hybrid_threshold.Z);
  1759. #endif
  1760. #if AXIS_HAS_STEALTHCHOP(X2)
  1761. stepperX2.set_pwm_thrs(tmc_hybrid_threshold.X2);
  1762. #endif
  1763. #if AXIS_HAS_STEALTHCHOP(Y2)
  1764. stepperY2.set_pwm_thrs(tmc_hybrid_threshold.Y2);
  1765. #endif
  1766. #if AXIS_HAS_STEALTHCHOP(Z2)
  1767. stepperZ2.set_pwm_thrs(tmc_hybrid_threshold.Z2);
  1768. #endif
  1769. #if AXIS_HAS_STEALTHCHOP(Z3)
  1770. stepperZ3.set_pwm_thrs(tmc_hybrid_threshold.Z3);
  1771. #endif
  1772. #if AXIS_HAS_STEALTHCHOP(Z4)
  1773. stepperZ4.set_pwm_thrs(tmc_hybrid_threshold.Z4);
  1774. #endif
  1775. #if AXIS_HAS_STEALTHCHOP(E0)
  1776. stepperE0.set_pwm_thrs(tmc_hybrid_threshold.E0);
  1777. #endif
  1778. #if AXIS_HAS_STEALTHCHOP(E1)
  1779. stepperE1.set_pwm_thrs(tmc_hybrid_threshold.E1);
  1780. #endif
  1781. #if AXIS_HAS_STEALTHCHOP(E2)
  1782. stepperE2.set_pwm_thrs(tmc_hybrid_threshold.E2);
  1783. #endif
  1784. #if AXIS_HAS_STEALTHCHOP(E3)
  1785. stepperE3.set_pwm_thrs(tmc_hybrid_threshold.E3);
  1786. #endif
  1787. #if AXIS_HAS_STEALTHCHOP(E4)
  1788. stepperE4.set_pwm_thrs(tmc_hybrid_threshold.E4);
  1789. #endif
  1790. #if AXIS_HAS_STEALTHCHOP(E5)
  1791. stepperE5.set_pwm_thrs(tmc_hybrid_threshold.E5);
  1792. #endif
  1793. #if AXIS_HAS_STEALTHCHOP(E6)
  1794. stepperE6.set_pwm_thrs(tmc_hybrid_threshold.E6);
  1795. #endif
  1796. #if AXIS_HAS_STEALTHCHOP(E7)
  1797. stepperE7.set_pwm_thrs(tmc_hybrid_threshold.E7);
  1798. #endif
  1799. }
  1800. #endif
  1801. }
  1802. //
  1803. // TMC StallGuard threshold.
  1804. //
  1805. {
  1806. tmc_sgt_t tmc_sgt;
  1807. _FIELD_TEST(tmc_sgt);
  1808. EEPROM_READ(tmc_sgt);
  1809. #if USE_SENSORLESS
  1810. if (!validating) {
  1811. TERN_(X_SENSORLESS, stepperX.homing_threshold(tmc_sgt.X));
  1812. TERN_(X2_SENSORLESS, stepperX2.homing_threshold(tmc_sgt.X2));
  1813. TERN_(Y_SENSORLESS, stepperY.homing_threshold(tmc_sgt.Y));
  1814. TERN_(Y2_SENSORLESS, stepperY2.homing_threshold(tmc_sgt.Y2));
  1815. TERN_(Z_SENSORLESS, stepperZ.homing_threshold(tmc_sgt.Z));
  1816. TERN_(Z2_SENSORLESS, stepperZ2.homing_threshold(tmc_sgt.Z2));
  1817. TERN_(Z3_SENSORLESS, stepperZ3.homing_threshold(tmc_sgt.Z3));
  1818. TERN_(Z4_SENSORLESS, stepperZ4.homing_threshold(tmc_sgt.Z4));
  1819. }
  1820. #endif
  1821. }
  1822. // TMC stepping mode
  1823. {
  1824. _FIELD_TEST(tmc_stealth_enabled);
  1825. tmc_stealth_enabled_t tmc_stealth_enabled;
  1826. EEPROM_READ(tmc_stealth_enabled);
  1827. #if HAS_TRINAMIC_CONFIG
  1828. #define SET_STEPPING_MODE(ST) stepper##ST.stored.stealthChop_enabled = tmc_stealth_enabled.ST; stepper##ST.refresh_stepping_mode();
  1829. if (!validating) {
  1830. #if AXIS_HAS_STEALTHCHOP(X)
  1831. SET_STEPPING_MODE(X);
  1832. #endif
  1833. #if AXIS_HAS_STEALTHCHOP(Y)
  1834. SET_STEPPING_MODE(Y);
  1835. #endif
  1836. #if AXIS_HAS_STEALTHCHOP(Z)
  1837. SET_STEPPING_MODE(Z);
  1838. #endif
  1839. #if AXIS_HAS_STEALTHCHOP(X2)
  1840. SET_STEPPING_MODE(X2);
  1841. #endif
  1842. #if AXIS_HAS_STEALTHCHOP(Y2)
  1843. SET_STEPPING_MODE(Y2);
  1844. #endif
  1845. #if AXIS_HAS_STEALTHCHOP(Z2)
  1846. SET_STEPPING_MODE(Z2);
  1847. #endif
  1848. #if AXIS_HAS_STEALTHCHOP(Z3)
  1849. SET_STEPPING_MODE(Z3);
  1850. #endif
  1851. #if AXIS_HAS_STEALTHCHOP(Z4)
  1852. SET_STEPPING_MODE(Z4);
  1853. #endif
  1854. #if AXIS_HAS_STEALTHCHOP(E0)
  1855. SET_STEPPING_MODE(E0);
  1856. #endif
  1857. #if AXIS_HAS_STEALTHCHOP(E1)
  1858. SET_STEPPING_MODE(E1);
  1859. #endif
  1860. #if AXIS_HAS_STEALTHCHOP(E2)
  1861. SET_STEPPING_MODE(E2);
  1862. #endif
  1863. #if AXIS_HAS_STEALTHCHOP(E3)
  1864. SET_STEPPING_MODE(E3);
  1865. #endif
  1866. #if AXIS_HAS_STEALTHCHOP(E4)
  1867. SET_STEPPING_MODE(E4);
  1868. #endif
  1869. #if AXIS_HAS_STEALTHCHOP(E5)
  1870. SET_STEPPING_MODE(E5);
  1871. #endif
  1872. #if AXIS_HAS_STEALTHCHOP(E6)
  1873. SET_STEPPING_MODE(E6);
  1874. #endif
  1875. #if AXIS_HAS_STEALTHCHOP(E7)
  1876. SET_STEPPING_MODE(E7);
  1877. #endif
  1878. }
  1879. #endif
  1880. }
  1881. //
  1882. // Linear Advance
  1883. //
  1884. {
  1885. float extruder_advance_K[_MAX(EXTRUDERS, 1)];
  1886. _FIELD_TEST(planner_extruder_advance_K);
  1887. EEPROM_READ(extruder_advance_K);
  1888. #if ENABLED(LIN_ADVANCE)
  1889. if (!validating)
  1890. COPY(planner.extruder_advance_K, extruder_advance_K);
  1891. #endif
  1892. }
  1893. //
  1894. // Motor Current PWM
  1895. //
  1896. {
  1897. _FIELD_TEST(motor_current_setting);
  1898. uint32_t motor_current_setting[MOTOR_CURRENT_COUNT]
  1899. #if HAS_MOTOR_CURRENT_SPI
  1900. = DIGIPOT_MOTOR_CURRENT
  1901. #endif
  1902. ;
  1903. DEBUG_ECHOLNPGM("DIGIPOTS Loading");
  1904. EEPROM_READ(motor_current_setting);
  1905. DEBUG_ECHOLNPGM("DIGIPOTS Loaded");
  1906. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  1907. if (!validating)
  1908. COPY(stepper.motor_current_setting, motor_current_setting);
  1909. #endif
  1910. }
  1911. //
  1912. // CNC Coordinate System
  1913. //
  1914. {
  1915. _FIELD_TEST(coordinate_system);
  1916. #if ENABLED(CNC_COORDINATE_SYSTEMS)
  1917. if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
  1918. EEPROM_READ(gcode.coordinate_system);
  1919. #else
  1920. xyz_pos_t coordinate_system[MAX_COORDINATE_SYSTEMS];
  1921. EEPROM_READ(coordinate_system);
  1922. #endif
  1923. }
  1924. //
  1925. // Skew correction factors
  1926. //
  1927. {
  1928. skew_factor_t skew_factor;
  1929. _FIELD_TEST(planner_skew_factor);
  1930. EEPROM_READ(skew_factor);
  1931. #if ENABLED(SKEW_CORRECTION_GCODE)
  1932. if (!validating) {
  1933. planner.skew_factor.xy = skew_factor.xy;
  1934. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  1935. planner.skew_factor.xz = skew_factor.xz;
  1936. planner.skew_factor.yz = skew_factor.yz;
  1937. #endif
  1938. }
  1939. #endif
  1940. }
  1941. //
  1942. // Advanced Pause filament load & unload lengths
  1943. //
  1944. #if EXTRUDERS
  1945. {
  1946. #if DISABLED(ADVANCED_PAUSE_FEATURE)
  1947. fil_change_settings_t fc_settings[EXTRUDERS];
  1948. #endif
  1949. _FIELD_TEST(fc_settings);
  1950. EEPROM_READ(fc_settings);
  1951. }
  1952. #endif
  1953. //
  1954. // Tool-change settings
  1955. //
  1956. #if HAS_MULTI_EXTRUDER
  1957. _FIELD_TEST(toolchange_settings);
  1958. EEPROM_READ(toolchange_settings);
  1959. #endif
  1960. //
  1961. // Backlash Compensation
  1962. //
  1963. {
  1964. #if ENABLED(BACKLASH_GCODE)
  1965. const xyz_float_t &backlash_distance_mm = backlash.distance_mm;
  1966. const uint8_t &backlash_correction = backlash.correction;
  1967. #else
  1968. float backlash_distance_mm[XYZ];
  1969. uint8_t backlash_correction;
  1970. #endif
  1971. #if ENABLED(BACKLASH_GCODE) && defined(BACKLASH_SMOOTHING_MM)
  1972. const float &backlash_smoothing_mm = backlash.smoothing_mm;
  1973. #else
  1974. float backlash_smoothing_mm;
  1975. #endif
  1976. _FIELD_TEST(backlash_distance_mm);
  1977. EEPROM_READ(backlash_distance_mm);
  1978. EEPROM_READ(backlash_correction);
  1979. EEPROM_READ(backlash_smoothing_mm);
  1980. }
  1981. //
  1982. // Extensible UI User Data
  1983. //
  1984. #if ENABLED(EXTENSIBLE_UI)
  1985. // This is a significant hardware change; don't reserve EEPROM space when not present
  1986. {
  1987. const char extui_data[ExtUI::eeprom_data_size] = { 0 };
  1988. _FIELD_TEST(extui_data);
  1989. EEPROM_READ(extui_data);
  1990. if (!validating) ExtUI::onLoadSettings(extui_data);
  1991. }
  1992. #endif
  1993. //
  1994. // Case Light Brightness
  1995. //
  1996. #if CASELIGHT_USES_BRIGHTNESS
  1997. _FIELD_TEST(caselight_brightness);
  1998. EEPROM_READ(caselight.brightness);
  1999. #endif
  2000. //
  2001. // Password feature
  2002. //
  2003. #if ENABLED(PASSWORD_FEATURE)
  2004. _FIELD_TEST(password_is_set);
  2005. EEPROM_READ(password.is_set);
  2006. EEPROM_READ(password.value);
  2007. #endif
  2008. //
  2009. // TOUCH_SCREEN_CALIBRATION
  2010. //
  2011. #if ENABLED(TOUCH_SCREEN_CALIBRATION)
  2012. _FIELD_TEST(touch.calibration);
  2013. EEPROM_READ(touch.calibration);
  2014. #endif
  2015. //
  2016. // Ethernet network info
  2017. //
  2018. #if HAS_ETHERNET
  2019. _FIELD_TEST(ethernet_hardware_enabled);
  2020. uint32_t ethernet_ip, ethernet_dns, ethernet_gateway, ethernet_subnet;
  2021. EEPROM_READ(ethernet.hardware_enabled);
  2022. EEPROM_READ(ethernet_ip); ethernet.ip = ethernet_ip;
  2023. EEPROM_READ(ethernet_dns); ethernet.myDns = ethernet_dns;
  2024. EEPROM_READ(ethernet_gateway); ethernet.gateway = ethernet_gateway;
  2025. EEPROM_READ(ethernet_subnet); ethernet.subnet = ethernet_subnet;
  2026. #endif
  2027. //
  2028. // Buzzer enable/disable
  2029. //
  2030. #if ENABLED(SOUND_MENU_ITEM)
  2031. _FIELD_TEST(buzzer_enabled);
  2032. EEPROM_READ(ui.buzzer_enabled);
  2033. #endif
  2034. //
  2035. // Validate Final Size and CRC
  2036. //
  2037. eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
  2038. if (eeprom_error) {
  2039. DEBUG_ECHO_START();
  2040. DEBUG_ECHOLNPAIR("Index: ", int(eeprom_index - (EEPROM_OFFSET)), " Size: ", datasize());
  2041. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_index());
  2042. }
  2043. else if (working_crc != stored_crc) {
  2044. eeprom_error = true;
  2045. DEBUG_ERROR_START();
  2046. DEBUG_ECHOLNPAIR("EEPROM CRC mismatch - (stored) ", stored_crc, " != ", working_crc, " (calculated)!");
  2047. TERN(EEPROM_AUTO_INIT,,ui.eeprom_alert_crc());
  2048. }
  2049. else if (!validating) {
  2050. DEBUG_ECHO_START();
  2051. DEBUG_ECHO(version);
  2052. DEBUG_ECHOLNPAIR(" stored settings retrieved (", eeprom_index - (EEPROM_OFFSET), " bytes; crc ", (uint32_t)working_crc, ")");
  2053. }
  2054. if (!validating && !eeprom_error) postprocess();
  2055. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2056. if (!validating) {
  2057. ubl.report_state();
  2058. if (!ubl.sanity_check()) {
  2059. SERIAL_EOL();
  2060. #if ENABLED(EEPROM_CHITCHAT)
  2061. ubl.echo_name();
  2062. DEBUG_ECHOLNPGM(" initialized.\n");
  2063. #endif
  2064. }
  2065. else {
  2066. eeprom_error = true;
  2067. #if ENABLED(EEPROM_CHITCHAT)
  2068. DEBUG_ECHOPGM("?Can't enable ");
  2069. ubl.echo_name();
  2070. DEBUG_ECHOLNPGM(".");
  2071. #endif
  2072. ubl.reset();
  2073. }
  2074. if (ubl.storage_slot >= 0) {
  2075. load_mesh(ubl.storage_slot);
  2076. DEBUG_ECHOLNPAIR("Mesh ", ubl.storage_slot, " loaded from storage.");
  2077. }
  2078. else {
  2079. ubl.reset();
  2080. DEBUG_ECHOLNPGM("UBL reset");
  2081. }
  2082. }
  2083. #endif
  2084. }
  2085. #if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
  2086. // Report the EEPROM settings
  2087. if (!validating && TERN1(EEPROM_BOOT_SILENT, IsRunning())) report();
  2088. #endif
  2089. EEPROM_FINISH();
  2090. return !eeprom_error;
  2091. }
  2092. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2093. extern bool restoreEEPROM();
  2094. #endif
  2095. bool MarlinSettings::validate() {
  2096. validating = true;
  2097. #ifdef ARCHIM2_SPI_FLASH_EEPROM_BACKUP_SIZE
  2098. bool success = _load();
  2099. if (!success && restoreEEPROM()) {
  2100. SERIAL_ECHOLNPGM("Recovered backup EEPROM settings from SPI Flash");
  2101. success = _load();
  2102. }
  2103. #else
  2104. const bool success = _load();
  2105. #endif
  2106. validating = false;
  2107. return success;
  2108. }
  2109. bool MarlinSettings::load() {
  2110. if (validate()) {
  2111. const bool success = _load();
  2112. TERN_(EXTENSIBLE_UI, ExtUI::onConfigurationStoreRead(success));
  2113. return success;
  2114. }
  2115. reset();
  2116. #if ENABLED(EEPROM_AUTO_INIT)
  2117. (void)save();
  2118. SERIAL_ECHO_MSG("EEPROM Initialized");
  2119. #endif
  2120. return false;
  2121. }
  2122. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2123. inline void ubl_invalid_slot(const int s) {
  2124. #if ENABLED(EEPROM_CHITCHAT)
  2125. DEBUG_ECHOLNPGM("?Invalid slot.");
  2126. DEBUG_ECHO(s);
  2127. DEBUG_ECHOLNPGM(" mesh slots available.");
  2128. #else
  2129. UNUSED(s);
  2130. #endif
  2131. }
  2132. const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
  2133. // is a placeholder for the size of the MAT; the MAT will always
  2134. // live at the very end of the eeprom
  2135. uint16_t MarlinSettings::meshes_start_index() {
  2136. return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
  2137. // or down a little bit without disrupting the mesh data
  2138. }
  2139. uint16_t MarlinSettings::calc_num_meshes() {
  2140. return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
  2141. }
  2142. int MarlinSettings::mesh_slot_offset(const int8_t slot) {
  2143. return meshes_end - (slot + 1) * sizeof(ubl.z_values);
  2144. }
  2145. void MarlinSettings::store_mesh(const int8_t slot) {
  2146. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2147. const int16_t a = calc_num_meshes();
  2148. if (!WITHIN(slot, 0, a - 1)) {
  2149. ubl_invalid_slot(a);
  2150. DEBUG_ECHOLNPAIR("E2END=", persistentStore.capacity() - 1, " meshes_end=", meshes_end, " slot=", slot);
  2151. DEBUG_EOL();
  2152. return;
  2153. }
  2154. int pos = mesh_slot_offset(slot);
  2155. uint16_t crc = 0;
  2156. // Write crc to MAT along with other data, or just tack on to the beginning or end
  2157. persistentStore.access_start();
  2158. const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
  2159. persistentStore.access_finish();
  2160. if (status) SERIAL_ECHOLNPGM("?Unable to save mesh data.");
  2161. else DEBUG_ECHOLNPAIR("Mesh saved in slot ", slot);
  2162. #else
  2163. // Other mesh types
  2164. #endif
  2165. }
  2166. void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=nullptr*/) {
  2167. #if ENABLED(AUTO_BED_LEVELING_UBL)
  2168. const int16_t a = settings.calc_num_meshes();
  2169. if (!WITHIN(slot, 0, a - 1)) {
  2170. ubl_invalid_slot(a);
  2171. return;
  2172. }
  2173. int pos = mesh_slot_offset(slot);
  2174. uint16_t crc = 0;
  2175. uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
  2176. persistentStore.access_start();
  2177. const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
  2178. persistentStore.access_finish();
  2179. if (status) SERIAL_ECHOLNPGM("?Unable to load mesh data.");
  2180. else DEBUG_ECHOLNPAIR("Mesh loaded from slot ", slot);
  2181. EEPROM_FINISH();
  2182. #else
  2183. // Other mesh types
  2184. #endif
  2185. }
  2186. //void MarlinSettings::delete_mesh() { return; }
  2187. //void MarlinSettings::defrag_meshes() { return; }
  2188. #endif // AUTO_BED_LEVELING_UBL
  2189. #else // !EEPROM_SETTINGS
  2190. bool MarlinSettings::save() {
  2191. DEBUG_ERROR_MSG("EEPROM disabled");
  2192. return false;
  2193. }
  2194. #endif // !EEPROM_SETTINGS
  2195. /**
  2196. * M502 - Reset Configuration
  2197. */
  2198. void MarlinSettings::reset() {
  2199. LOOP_XYZE_N(i) {
  2200. planner.settings.max_acceleration_mm_per_s2[i] = pgm_read_dword(&_DMA[ALIM(i, _DMA)]);
  2201. planner.settings.axis_steps_per_mm[i] = pgm_read_float(&_DASU[ALIM(i, _DASU)]);
  2202. planner.settings.max_feedrate_mm_s[i] = pgm_read_float(&_DMF[ALIM(i, _DMF)]);
  2203. }
  2204. planner.settings.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
  2205. planner.settings.acceleration = DEFAULT_ACCELERATION;
  2206. planner.settings.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
  2207. planner.settings.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
  2208. planner.settings.min_feedrate_mm_s = feedRate_t(DEFAULT_MINIMUMFEEDRATE);
  2209. planner.settings.min_travel_feedrate_mm_s = feedRate_t(DEFAULT_MINTRAVELFEEDRATE);
  2210. #if HAS_CLASSIC_JERK
  2211. #ifndef DEFAULT_XJERK
  2212. #define DEFAULT_XJERK 0
  2213. #endif
  2214. #ifndef DEFAULT_YJERK
  2215. #define DEFAULT_YJERK 0
  2216. #endif
  2217. #ifndef DEFAULT_ZJERK
  2218. #define DEFAULT_ZJERK 0
  2219. #endif
  2220. planner.max_jerk.set(DEFAULT_XJERK, DEFAULT_YJERK, DEFAULT_ZJERK);
  2221. TERN_(HAS_CLASSIC_E_JERK, planner.max_jerk.e = DEFAULT_EJERK;);
  2222. #endif
  2223. #if HAS_JUNCTION_DEVIATION
  2224. planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
  2225. #endif
  2226. #if HAS_SCARA_OFFSET
  2227. scara_home_offset.reset();
  2228. #elif HAS_HOME_OFFSET
  2229. home_offset.reset();
  2230. #endif
  2231. TERN_(HAS_HOTEND_OFFSET, reset_hotend_offsets());
  2232. //
  2233. // Filament Runout Sensor
  2234. //
  2235. #if HAS_FILAMENT_SENSOR
  2236. runout.enabled = FIL_RUNOUT_ENABLED_DEFAULT;
  2237. runout.reset();
  2238. TERN_(HAS_FILAMENT_RUNOUT_DISTANCE, runout.set_runout_distance(FILAMENT_RUNOUT_DISTANCE_MM));
  2239. #endif
  2240. //
  2241. // Tool-change Settings
  2242. //
  2243. #if HAS_MULTI_EXTRUDER
  2244. #if ENABLED(TOOLCHANGE_FILAMENT_SWAP)
  2245. toolchange_settings.swap_length = TOOLCHANGE_FS_LENGTH;
  2246. toolchange_settings.extra_resume = TOOLCHANGE_FS_EXTRA_RESUME_LENGTH;
  2247. toolchange_settings.retract_speed = TOOLCHANGE_FS_RETRACT_SPEED;
  2248. toolchange_settings.unretract_speed = TOOLCHANGE_FS_UNRETRACT_SPEED;
  2249. toolchange_settings.extra_prime = TOOLCHANGE_FS_EXTRA_PRIME;
  2250. toolchange_settings.prime_speed = TOOLCHANGE_FS_PRIME_SPEED;
  2251. toolchange_settings.fan_speed = TOOLCHANGE_FS_FAN_SPEED;
  2252. toolchange_settings.fan_time = TOOLCHANGE_FS_FAN_TIME;
  2253. #endif
  2254. #if ENABLED(TOOLCHANGE_FS_PRIME_FIRST_USED)
  2255. enable_first_prime = false;
  2256. #endif
  2257. #if ENABLED(TOOLCHANGE_PARK)
  2258. constexpr xyz_pos_t tpxy = TOOLCHANGE_PARK_XY;
  2259. toolchange_settings.enable_park = true;
  2260. toolchange_settings.change_point = tpxy;
  2261. #endif
  2262. toolchange_settings.z_raise = TOOLCHANGE_ZRAISE;
  2263. #if ENABLED(TOOLCHANGE_MIGRATION_FEATURE)
  2264. migration = migration_defaults;
  2265. #endif
  2266. #endif
  2267. #if ENABLED(BACKLASH_GCODE)
  2268. backlash.correction = (BACKLASH_CORRECTION) * 255;
  2269. constexpr xyz_float_t tmp = BACKLASH_DISTANCE_MM;
  2270. backlash.distance_mm = tmp;
  2271. #ifdef BACKLASH_SMOOTHING_MM
  2272. backlash.smoothing_mm = BACKLASH_SMOOTHING_MM;
  2273. #endif
  2274. #endif
  2275. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2276. //
  2277. // Case Light Brightness
  2278. //
  2279. TERN_(CASELIGHT_USES_BRIGHTNESS, caselight.brightness = CASE_LIGHT_DEFAULT_BRIGHTNESS);
  2280. //
  2281. // TOUCH_SCREEN_CALIBRATION
  2282. //
  2283. TERN_(TOUCH_SCREEN_CALIBRATION, touch.calibration_reset());
  2284. //
  2285. // Buzzer enable/disable
  2286. //
  2287. TERN_(SOUND_MENU_ITEM, ui.buzzer_enabled = true);
  2288. //
  2289. // Magnetic Parking Extruder
  2290. //
  2291. TERN_(MAGNETIC_PARKING_EXTRUDER, mpe_settings_init());
  2292. //
  2293. // Global Leveling
  2294. //
  2295. TERN_(ENABLE_LEVELING_FADE_HEIGHT, new_z_fade_height = 0.0);
  2296. TERN_(HAS_LEVELING, reset_bed_level());
  2297. #if HAS_BED_PROBE
  2298. constexpr float dpo[] = NOZZLE_TO_PROBE_OFFSET;
  2299. static_assert(COUNT(dpo) == 3, "NOZZLE_TO_PROBE_OFFSET must contain offsets for X, Y, and Z.");
  2300. #if HAS_PROBE_XY_OFFSET
  2301. LOOP_XYZ(a) probe.offset[a] = dpo[a];
  2302. #else
  2303. probe.offset.set(0, 0, dpo[Z_AXIS]);
  2304. #endif
  2305. #endif
  2306. //
  2307. // Z Stepper Auto-alignment points
  2308. //
  2309. TERN_(Z_STEPPER_AUTO_ALIGN, z_stepper_align.reset_to_default());
  2310. //
  2311. // Servo Angles
  2312. //
  2313. TERN_(EDITABLE_SERVO_ANGLES, COPY(servo_angles, base_servo_angles)); // When not editable only one copy of servo angles exists
  2314. //
  2315. // BLTOUCH
  2316. //
  2317. //#if ENABLED(BLTOUCH)
  2318. // bltouch.last_written_mode;
  2319. //#endif
  2320. //
  2321. // Endstop Adjustments
  2322. //
  2323. #if ENABLED(DELTA)
  2324. const abc_float_t adj = DELTA_ENDSTOP_ADJ, dta = DELTA_TOWER_ANGLE_TRIM, ddr = DELTA_DIAGONAL_ROD_TRIM_TOWER;
  2325. delta_height = DELTA_HEIGHT;
  2326. delta_endstop_adj = adj;
  2327. delta_radius = DELTA_RADIUS;
  2328. delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  2329. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  2330. delta_tower_angle_trim = dta;
  2331. delta_diagonal_rod_trim = ddr;
  2332. #endif
  2333. #if ENABLED(X_DUAL_ENDSTOPS)
  2334. #ifndef X2_ENDSTOP_ADJUSTMENT
  2335. #define X2_ENDSTOP_ADJUSTMENT 0
  2336. #endif
  2337. endstops.x2_endstop_adj = X2_ENDSTOP_ADJUSTMENT;
  2338. #endif
  2339. #if ENABLED(Y_DUAL_ENDSTOPS)
  2340. #ifndef Y2_ENDSTOP_ADJUSTMENT
  2341. #define Y2_ENDSTOP_ADJUSTMENT 0
  2342. #endif
  2343. endstops.y2_endstop_adj = Y2_ENDSTOP_ADJUSTMENT;
  2344. #endif
  2345. #if ENABLED(Z_MULTI_ENDSTOPS)
  2346. #ifndef Z2_ENDSTOP_ADJUSTMENT
  2347. #define Z2_ENDSTOP_ADJUSTMENT 0
  2348. #endif
  2349. endstops.z2_endstop_adj = Z2_ENDSTOP_ADJUSTMENT;
  2350. #if NUM_Z_STEPPER_DRIVERS >= 3
  2351. #ifndef Z3_ENDSTOP_ADJUSTMENT
  2352. #define Z3_ENDSTOP_ADJUSTMENT 0
  2353. #endif
  2354. endstops.z3_endstop_adj = Z3_ENDSTOP_ADJUSTMENT;
  2355. #endif
  2356. #if NUM_Z_STEPPER_DRIVERS >= 4
  2357. #ifndef Z4_ENDSTOP_ADJUSTMENT
  2358. #define Z4_ENDSTOP_ADJUSTMENT 0
  2359. #endif
  2360. endstops.z4_endstop_adj = Z4_ENDSTOP_ADJUSTMENT;
  2361. #endif
  2362. #endif
  2363. //
  2364. // Preheat parameters
  2365. //
  2366. #if PREHEAT_COUNT
  2367. #if HAS_HOTEND
  2368. constexpr uint16_t hpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND, PREHEAT_3_TEMP_HOTEND, PREHEAT_4_TEMP_HOTEND, PREHEAT_5_TEMP_HOTEND);
  2369. #endif
  2370. #if HAS_HEATED_BED
  2371. constexpr uint16_t bpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED, PREHEAT_3_TEMP_BED, PREHEAT_4_TEMP_BED, PREHEAT_5_TEMP_BED);
  2372. #endif
  2373. #if HAS_FAN
  2374. constexpr uint8_t fpre[] = ARRAY_N(PREHEAT_COUNT, PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED, PREHEAT_3_FAN_SPEED, PREHEAT_4_FAN_SPEED, PREHEAT_5_FAN_SPEED);
  2375. #endif
  2376. LOOP_L_N(i, PREHEAT_COUNT) {
  2377. #if HAS_HOTEND
  2378. ui.material_preset[i].hotend_temp = hpre[i];
  2379. #endif
  2380. #if HAS_HEATED_BED
  2381. ui.material_preset[i].bed_temp = bpre[i];
  2382. #endif
  2383. #if HAS_FAN
  2384. ui.material_preset[i].fan_speed = fpre[i];
  2385. #endif
  2386. }
  2387. #endif
  2388. //
  2389. // Hotend PID
  2390. //
  2391. #if ENABLED(PIDTEMP)
  2392. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2393. constexpr float defKp[] =
  2394. #ifdef DEFAULT_Kp_LIST
  2395. DEFAULT_Kp_LIST
  2396. #else
  2397. ARRAY_BY_HOTENDS1(DEFAULT_Kp)
  2398. #endif
  2399. , defKi[] =
  2400. #ifdef DEFAULT_Ki_LIST
  2401. DEFAULT_Ki_LIST
  2402. #else
  2403. ARRAY_BY_HOTENDS1(DEFAULT_Ki)
  2404. #endif
  2405. , defKd[] =
  2406. #ifdef DEFAULT_Kd_LIST
  2407. DEFAULT_Kd_LIST
  2408. #else
  2409. ARRAY_BY_HOTENDS1(DEFAULT_Kd)
  2410. #endif
  2411. ;
  2412. static_assert(WITHIN(COUNT(defKp), 1, HOTENDS), "DEFAULT_Kp_LIST must have between 1 and HOTENDS items.");
  2413. static_assert(WITHIN(COUNT(defKi), 1, HOTENDS), "DEFAULT_Ki_LIST must have between 1 and HOTENDS items.");
  2414. static_assert(WITHIN(COUNT(defKd), 1, HOTENDS), "DEFAULT_Kd_LIST must have between 1 and HOTENDS items.");
  2415. #if ENABLED(PID_EXTRUSION_SCALING)
  2416. constexpr float defKc[] =
  2417. #ifdef DEFAULT_Kc_LIST
  2418. DEFAULT_Kc_LIST
  2419. #else
  2420. ARRAY_BY_HOTENDS1(DEFAULT_Kc)
  2421. #endif
  2422. ;
  2423. static_assert(WITHIN(COUNT(defKc), 1, HOTENDS), "DEFAULT_Kc_LIST must have between 1 and HOTENDS items.");
  2424. #endif
  2425. #if ENABLED(PID_FAN_SCALING)
  2426. constexpr float defKf[] =
  2427. #ifdef DEFAULT_Kf_LIST
  2428. DEFAULT_Kf_LIST
  2429. #else
  2430. ARRAY_BY_HOTENDS1(DEFAULT_Kf)
  2431. #endif
  2432. ;
  2433. static_assert(WITHIN(COUNT(defKf), 1, HOTENDS), "DEFAULT_Kf_LIST must have between 1 and HOTENDS items.");
  2434. #endif
  2435. #define PID_DEFAULT(N,E) def##N[E]
  2436. #else
  2437. #define PID_DEFAULT(N,E) DEFAULT_##N
  2438. #endif
  2439. HOTEND_LOOP() {
  2440. PID_PARAM(Kp, e) = float(PID_DEFAULT(Kp, ALIM(e, defKp)));
  2441. PID_PARAM(Ki, e) = scalePID_i(PID_DEFAULT(Ki, ALIM(e, defKi)));
  2442. PID_PARAM(Kd, e) = scalePID_d(PID_DEFAULT(Kd, ALIM(e, defKd)));
  2443. TERN_(PID_EXTRUSION_SCALING, PID_PARAM(Kc, e) = float(PID_DEFAULT(Kc, ALIM(e, defKc))));
  2444. TERN_(PID_FAN_SCALING, PID_PARAM(Kf, e) = float(PID_DEFAULT(Kf, ALIM(e, defKf))));
  2445. }
  2446. #endif
  2447. //
  2448. // PID Extrusion Scaling
  2449. //
  2450. TERN_(PID_EXTRUSION_SCALING, thermalManager.lpq_len = 20); // Default last-position-queue size
  2451. //
  2452. // Heated Bed PID
  2453. //
  2454. #if ENABLED(PIDTEMPBED)
  2455. thermalManager.temp_bed.pid.Kp = DEFAULT_bedKp;
  2456. thermalManager.temp_bed.pid.Ki = scalePID_i(DEFAULT_bedKi);
  2457. thermalManager.temp_bed.pid.Kd = scalePID_d(DEFAULT_bedKd);
  2458. #endif
  2459. //
  2460. // User-Defined Thermistors
  2461. //
  2462. TERN_(HAS_USER_THERMISTORS, thermalManager.reset_user_thermistors());
  2463. //
  2464. // Power Monitor
  2465. //
  2466. TERN_(POWER_MONITOR, power_monitor.reset());
  2467. //
  2468. // LCD Contrast
  2469. //
  2470. TERN_(HAS_LCD_CONTRAST, ui.set_contrast(DEFAULT_LCD_CONTRAST));
  2471. //
  2472. // Controller Fan
  2473. //
  2474. TERN_(USE_CONTROLLER_FAN, controllerFan.reset());
  2475. //
  2476. // Power-Loss Recovery
  2477. //
  2478. TERN_(POWER_LOSS_RECOVERY, recovery.enable(ENABLED(PLR_ENABLED_DEFAULT)));
  2479. //
  2480. // Firmware Retraction
  2481. //
  2482. TERN_(FWRETRACT, fwretract.reset());
  2483. //
  2484. // Volumetric & Filament Size
  2485. //
  2486. #if DISABLED(NO_VOLUMETRICS)
  2487. parser.volumetric_enabled = ENABLED(VOLUMETRIC_DEFAULT_ON);
  2488. LOOP_L_N(q, COUNT(planner.filament_size))
  2489. planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
  2490. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2491. LOOP_L_N(q, COUNT(planner.volumetric_extruder_limit))
  2492. planner.volumetric_extruder_limit[q] = DEFAULT_VOLUMETRIC_EXTRUDER_LIMIT;
  2493. #endif
  2494. #endif
  2495. endstops.enable_globally(ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT));
  2496. reset_stepper_drivers();
  2497. //
  2498. // Linear Advance
  2499. //
  2500. #if ENABLED(LIN_ADVANCE)
  2501. LOOP_L_N(i, EXTRUDERS) {
  2502. planner.extruder_advance_K[i] = LIN_ADVANCE_K;
  2503. TERN_(EXTRA_LIN_ADVANCE_K, other_extruder_advance_K[i] = LIN_ADVANCE_K);
  2504. }
  2505. #endif
  2506. //
  2507. // Motor Current PWM
  2508. //
  2509. #if HAS_MOTOR_CURRENT_PWM
  2510. constexpr uint32_t tmp_motor_current_setting[MOTOR_CURRENT_COUNT] = PWM_MOTOR_CURRENT;
  2511. LOOP_L_N(q, MOTOR_CURRENT_COUNT)
  2512. stepper.set_digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
  2513. #endif
  2514. //
  2515. // DIGIPOTS
  2516. //
  2517. #if HAS_MOTOR_CURRENT_SPI
  2518. static constexpr uint32_t tmp_motor_current_setting[] = DIGIPOT_MOTOR_CURRENT;
  2519. DEBUG_ECHOLNPGM("Writing Digipot");
  2520. LOOP_L_N(q, COUNT(tmp_motor_current_setting))
  2521. stepper.set_digipot_current(q, tmp_motor_current_setting[q]);
  2522. DEBUG_ECHOLNPGM("Digipot Written");
  2523. #endif
  2524. //
  2525. // CNC Coordinate System
  2526. //
  2527. TERN_(CNC_COORDINATE_SYSTEMS, (void)gcode.select_coordinate_system(-1)); // Go back to machine space
  2528. //
  2529. // Skew Correction
  2530. //
  2531. #if ENABLED(SKEW_CORRECTION_GCODE)
  2532. planner.skew_factor.xy = XY_SKEW_FACTOR;
  2533. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  2534. planner.skew_factor.xz = XZ_SKEW_FACTOR;
  2535. planner.skew_factor.yz = YZ_SKEW_FACTOR;
  2536. #endif
  2537. #endif
  2538. //
  2539. // Advanced Pause filament load & unload lengths
  2540. //
  2541. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2542. LOOP_L_N(e, EXTRUDERS) {
  2543. fc_settings[e].unload_length = FILAMENT_CHANGE_UNLOAD_LENGTH;
  2544. fc_settings[e].load_length = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
  2545. }
  2546. #endif
  2547. #if ENABLED(PASSWORD_FEATURE)
  2548. #ifdef PASSWORD_DEFAULT_VALUE
  2549. password.is_set = true;
  2550. password.value = PASSWORD_DEFAULT_VALUE;
  2551. #else
  2552. password.is_set = false;
  2553. #endif
  2554. #endif
  2555. postprocess();
  2556. DEBUG_ECHO_START();
  2557. DEBUG_ECHOLNPGM("Hardcoded Default Settings Loaded");
  2558. TERN_(EXTENSIBLE_UI, ExtUI::onFactoryReset());
  2559. }
  2560. #if DISABLED(DISABLE_M503)
  2561. static void config_heading(const bool repl, PGM_P const pstr, const bool eol=true) {
  2562. if (!repl) {
  2563. SERIAL_ECHO_START();
  2564. SERIAL_ECHOPGM("; ");
  2565. serialprintPGM(pstr);
  2566. if (eol) SERIAL_EOL();
  2567. }
  2568. }
  2569. #define CONFIG_ECHO_START() do{ if (!forReplay) SERIAL_ECHO_START(); }while(0)
  2570. #define CONFIG_ECHO_MSG(STR) do{ CONFIG_ECHO_START(); SERIAL_ECHOLNPGM(STR); }while(0)
  2571. #define CONFIG_ECHO_HEADING(STR) config_heading(forReplay, PSTR(STR))
  2572. #if HAS_TRINAMIC_CONFIG
  2573. inline void say_M906(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M906"); }
  2574. #if HAS_STEALTHCHOP
  2575. void say_M569(const bool forReplay, const char * const etc=nullptr, const bool newLine = false) {
  2576. CONFIG_ECHO_START();
  2577. SERIAL_ECHOPGM(" M569 S1");
  2578. if (etc) {
  2579. SERIAL_CHAR(' ');
  2580. serialprintPGM(etc);
  2581. }
  2582. if (newLine) SERIAL_EOL();
  2583. }
  2584. #endif
  2585. #if ENABLED(HYBRID_THRESHOLD)
  2586. inline void say_M913(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M913"); }
  2587. #endif
  2588. #if USE_SENSORLESS
  2589. inline void say_M914() { SERIAL_ECHOPGM(" M914"); }
  2590. #endif
  2591. #endif
  2592. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  2593. inline void say_M603(const bool forReplay) { CONFIG_ECHO_START(); SERIAL_ECHOPGM(" M603 "); }
  2594. #endif
  2595. inline void say_units(const bool colon) {
  2596. serialprintPGM(
  2597. #if ENABLED(INCH_MODE_SUPPORT)
  2598. parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
  2599. #endif
  2600. PSTR(" (mm)")
  2601. );
  2602. if (colon) SERIAL_ECHOLNPGM(":");
  2603. }
  2604. void report_M92(const bool echo=true, const int8_t e=-1);
  2605. /**
  2606. * M503 - Report current settings in RAM
  2607. *
  2608. * Unless specifically disabled, M503 is available even without EEPROM
  2609. */
  2610. void MarlinSettings::report(const bool forReplay) {
  2611. /**
  2612. * Announce current units, in case inches are being displayed
  2613. */
  2614. CONFIG_ECHO_START();
  2615. #if ENABLED(INCH_MODE_SUPPORT)
  2616. SERIAL_ECHOPGM(" G2");
  2617. SERIAL_CHAR(parser.linear_unit_factor == 1.0 ? '1' : '0');
  2618. SERIAL_ECHOPGM(" ;");
  2619. say_units(false);
  2620. #else
  2621. SERIAL_ECHOPGM(" G21 ; Units in mm");
  2622. say_units(false);
  2623. #endif
  2624. SERIAL_EOL();
  2625. #if HAS_LCD_MENU
  2626. // Temperature units - for Ultipanel temperature options
  2627. CONFIG_ECHO_START();
  2628. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  2629. SERIAL_ECHOPGM(" M149 ");
  2630. SERIAL_CHAR(parser.temp_units_code());
  2631. SERIAL_ECHOPGM(" ; Units in ");
  2632. serialprintPGM(parser.temp_units_name());
  2633. #else
  2634. SERIAL_ECHOLNPGM(" M149 C ; Units in Celsius");
  2635. #endif
  2636. #endif
  2637. SERIAL_EOL();
  2638. #if EXTRUDERS && DISABLED(NO_VOLUMETRICS)
  2639. /**
  2640. * Volumetric extrusion M200
  2641. */
  2642. if (!forReplay) {
  2643. config_heading(forReplay, PSTR("Filament settings:"), false);
  2644. if (parser.volumetric_enabled)
  2645. SERIAL_EOL();
  2646. else
  2647. SERIAL_ECHOLNPGM(" Disabled");
  2648. }
  2649. #if EXTRUDERS == 1
  2650. CONFIG_ECHO_START();
  2651. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled)
  2652. , " D", LINEAR_UNIT(planner.filament_size[0])
  2653. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2654. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[0])
  2655. #endif
  2656. );
  2657. #else
  2658. LOOP_L_N(i, EXTRUDERS) {
  2659. CONFIG_ECHO_START();
  2660. SERIAL_ECHOLNPAIR(" M200 T", int(i)
  2661. , " D", LINEAR_UNIT(planner.filament_size[i])
  2662. #if ENABLED(VOLUMETRIC_EXTRUDER_LIMIT)
  2663. , " L", LINEAR_UNIT(planner.volumetric_extruder_limit[i])
  2664. #endif
  2665. );
  2666. }
  2667. CONFIG_ECHO_START();
  2668. SERIAL_ECHOLNPAIR(" M200 S", int(parser.volumetric_enabled));
  2669. #endif
  2670. #endif // EXTRUDERS && !NO_VOLUMETRICS
  2671. CONFIG_ECHO_HEADING("Steps per unit:");
  2672. report_M92(!forReplay);
  2673. CONFIG_ECHO_HEADING("Maximum feedrates (units/s):");
  2674. CONFIG_ECHO_START();
  2675. SERIAL_ECHOLNPAIR_P(
  2676. PSTR(" M203 X"), LINEAR_UNIT(planner.settings.max_feedrate_mm_s[X_AXIS])
  2677. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Y_AXIS])
  2678. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_feedrate_mm_s[Z_AXIS])
  2679. #if DISABLED(DISTINCT_E_FACTORS)
  2680. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS])
  2681. #endif
  2682. );
  2683. #if ENABLED(DISTINCT_E_FACTORS)
  2684. LOOP_L_N(i, E_STEPPERS) {
  2685. CONFIG_ECHO_START();
  2686. SERIAL_ECHOLNPAIR_P(
  2687. PSTR(" M203 T"), (int)i
  2688. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_feedrate_mm_s[E_AXIS_N(i)])
  2689. );
  2690. }
  2691. #endif
  2692. CONFIG_ECHO_HEADING("Maximum Acceleration (units/s2):");
  2693. CONFIG_ECHO_START();
  2694. SERIAL_ECHOLNPAIR_P(
  2695. PSTR(" M201 X"), LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[X_AXIS])
  2696. , SP_Y_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Y_AXIS])
  2697. , SP_Z_STR, LINEAR_UNIT(planner.settings.max_acceleration_mm_per_s2[Z_AXIS])
  2698. #if DISABLED(DISTINCT_E_FACTORS)
  2699. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS])
  2700. #endif
  2701. );
  2702. #if ENABLED(DISTINCT_E_FACTORS)
  2703. LOOP_L_N(i, E_STEPPERS) {
  2704. CONFIG_ECHO_START();
  2705. SERIAL_ECHOLNPAIR_P(
  2706. PSTR(" M201 T"), (int)i
  2707. , SP_E_STR, VOLUMETRIC_UNIT(planner.settings.max_acceleration_mm_per_s2[E_AXIS_N(i)])
  2708. );
  2709. }
  2710. #endif
  2711. CONFIG_ECHO_HEADING("Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
  2712. CONFIG_ECHO_START();
  2713. SERIAL_ECHOLNPAIR_P(
  2714. PSTR(" M204 P"), LINEAR_UNIT(planner.settings.acceleration)
  2715. , PSTR(" R"), LINEAR_UNIT(planner.settings.retract_acceleration)
  2716. , SP_T_STR, LINEAR_UNIT(planner.settings.travel_acceleration)
  2717. );
  2718. CONFIG_ECHO_HEADING(
  2719. "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>"
  2720. #if HAS_JUNCTION_DEVIATION
  2721. " J<junc_dev>"
  2722. #endif
  2723. #if HAS_CLASSIC_JERK
  2724. " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>"
  2725. TERN_(HAS_CLASSIC_E_JERK, " E<max_e_jerk>")
  2726. #endif
  2727. );
  2728. CONFIG_ECHO_START();
  2729. SERIAL_ECHOLNPAIR_P(
  2730. PSTR(" M205 B"), LINEAR_UNIT(planner.settings.min_segment_time_us)
  2731. , PSTR(" S"), LINEAR_UNIT(planner.settings.min_feedrate_mm_s)
  2732. , SP_T_STR, LINEAR_UNIT(planner.settings.min_travel_feedrate_mm_s)
  2733. #if HAS_JUNCTION_DEVIATION
  2734. , PSTR(" J"), LINEAR_UNIT(planner.junction_deviation_mm)
  2735. #endif
  2736. #if HAS_CLASSIC_JERK
  2737. , SP_X_STR, LINEAR_UNIT(planner.max_jerk.x)
  2738. , SP_Y_STR, LINEAR_UNIT(planner.max_jerk.y)
  2739. , SP_Z_STR, LINEAR_UNIT(planner.max_jerk.z)
  2740. #if HAS_CLASSIC_E_JERK
  2741. , SP_E_STR, LINEAR_UNIT(planner.max_jerk.e)
  2742. #endif
  2743. #endif
  2744. );
  2745. #if HAS_M206_COMMAND
  2746. CONFIG_ECHO_HEADING("Home offset:");
  2747. CONFIG_ECHO_START();
  2748. SERIAL_ECHOLNPAIR_P(
  2749. #if IS_CARTESIAN
  2750. PSTR(" M206 X"), LINEAR_UNIT(home_offset.x)
  2751. , SP_Y_STR, LINEAR_UNIT(home_offset.y)
  2752. , SP_Z_STR
  2753. #else
  2754. PSTR(" M206 Z")
  2755. #endif
  2756. , LINEAR_UNIT(home_offset.z)
  2757. );
  2758. #endif
  2759. #if HAS_HOTEND_OFFSET
  2760. CONFIG_ECHO_HEADING("Hotend offsets:");
  2761. CONFIG_ECHO_START();
  2762. LOOP_S_L_N(e, 1, HOTENDS) {
  2763. SERIAL_ECHOPAIR_P(
  2764. PSTR(" M218 T"), (int)e,
  2765. SP_X_STR, LINEAR_UNIT(hotend_offset[e].x),
  2766. SP_Y_STR, LINEAR_UNIT(hotend_offset[e].y)
  2767. );
  2768. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(hotend_offset[e].z), 3);
  2769. }
  2770. #endif
  2771. /**
  2772. * Bed Leveling
  2773. */
  2774. #if HAS_LEVELING
  2775. #if ENABLED(MESH_BED_LEVELING)
  2776. CONFIG_ECHO_HEADING("Mesh Bed Leveling:");
  2777. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2778. config_heading(forReplay, PSTR(""), false);
  2779. if (!forReplay) {
  2780. ubl.echo_name();
  2781. SERIAL_CHAR(':');
  2782. SERIAL_EOL();
  2783. }
  2784. #elif HAS_ABL_OR_UBL
  2785. CONFIG_ECHO_HEADING("Auto Bed Leveling:");
  2786. #endif
  2787. CONFIG_ECHO_START();
  2788. SERIAL_ECHOLNPAIR_P(
  2789. PSTR(" M420 S"), planner.leveling_active ? 1 : 0
  2790. #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
  2791. , SP_Z_STR, LINEAR_UNIT(planner.z_fade_height)
  2792. #endif
  2793. );
  2794. #if ENABLED(MESH_BED_LEVELING)
  2795. if (leveling_is_valid()) {
  2796. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2797. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2798. CONFIG_ECHO_START();
  2799. SERIAL_ECHOPAIR_P(PSTR(" G29 S3 I"), (int)px, PSTR(" J"), (int)py);
  2800. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(mbl.z_values[px][py]), 5);
  2801. }
  2802. }
  2803. CONFIG_ECHO_START();
  2804. SERIAL_ECHOLNPAIR_F_P(PSTR(" G29 S4 Z"), LINEAR_UNIT(mbl.z_offset), 5);
  2805. }
  2806. #elif ENABLED(AUTO_BED_LEVELING_UBL)
  2807. if (!forReplay) {
  2808. SERIAL_EOL();
  2809. ubl.report_state();
  2810. SERIAL_EOL();
  2811. config_heading(false, PSTR("Active Mesh Slot: "), false);
  2812. SERIAL_ECHOLN(ubl.storage_slot);
  2813. config_heading(false, PSTR("EEPROM can hold "), false);
  2814. SERIAL_ECHO(calc_num_meshes());
  2815. SERIAL_ECHOLNPGM(" meshes.\n");
  2816. }
  2817. //ubl.report_current_mesh(); // This is too verbose for large meshes. A better (more terse)
  2818. // solution needs to be found.
  2819. #elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
  2820. if (leveling_is_valid()) {
  2821. LOOP_L_N(py, GRID_MAX_POINTS_Y) {
  2822. LOOP_L_N(px, GRID_MAX_POINTS_X) {
  2823. CONFIG_ECHO_START();
  2824. SERIAL_ECHOPAIR(" G29 W I", (int)px, " J", (int)py);
  2825. SERIAL_ECHOLNPAIR_F_P(SP_Z_STR, LINEAR_UNIT(z_values[px][py]), 5);
  2826. }
  2827. }
  2828. }
  2829. #endif
  2830. #endif // HAS_LEVELING
  2831. #if ENABLED(EDITABLE_SERVO_ANGLES)
  2832. CONFIG_ECHO_HEADING("Servo Angles:");
  2833. LOOP_L_N(i, NUM_SERVOS) {
  2834. switch (i) {
  2835. #if ENABLED(SWITCHING_EXTRUDER)
  2836. case SWITCHING_EXTRUDER_SERVO_NR:
  2837. #if EXTRUDERS > 3
  2838. case SWITCHING_EXTRUDER_E23_SERVO_NR:
  2839. #endif
  2840. #elif ENABLED(SWITCHING_NOZZLE)
  2841. case SWITCHING_NOZZLE_SERVO_NR:
  2842. #elif ENABLED(BLTOUCH) || (HAS_Z_SERVO_PROBE && defined(Z_SERVO_ANGLES))
  2843. case Z_PROBE_SERVO_NR:
  2844. #endif
  2845. CONFIG_ECHO_START();
  2846. SERIAL_ECHOLNPAIR(" M281 P", int(i), " L", servo_angles[i][0], " U", servo_angles[i][1]);
  2847. default: break;
  2848. }
  2849. }
  2850. #endif // EDITABLE_SERVO_ANGLES
  2851. #if HAS_SCARA_OFFSET
  2852. CONFIG_ECHO_HEADING("SCARA settings: S<seg-per-sec> P<theta-psi-offset> T<theta-offset>");
  2853. CONFIG_ECHO_START();
  2854. SERIAL_ECHOLNPAIR_P(
  2855. PSTR(" M665 S"), delta_segments_per_second
  2856. , SP_P_STR, scara_home_offset.a
  2857. , SP_T_STR, scara_home_offset.b
  2858. , SP_Z_STR, LINEAR_UNIT(scara_home_offset.z)
  2859. );
  2860. #elif ENABLED(DELTA)
  2861. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2862. CONFIG_ECHO_START();
  2863. SERIAL_ECHOLNPAIR_P(
  2864. PSTR(" M666 X"), LINEAR_UNIT(delta_endstop_adj.a)
  2865. , SP_Y_STR, LINEAR_UNIT(delta_endstop_adj.b)
  2866. , SP_Z_STR, LINEAR_UNIT(delta_endstop_adj.c)
  2867. );
  2868. CONFIG_ECHO_HEADING("Delta settings: L<diagonal rod> R<radius> H<height> S<segments per sec> XYZ<tower angle trim> ABC<rod trim>");
  2869. CONFIG_ECHO_START();
  2870. SERIAL_ECHOLNPAIR_P(
  2871. PSTR(" M665 L"), LINEAR_UNIT(delta_diagonal_rod)
  2872. , PSTR(" R"), LINEAR_UNIT(delta_radius)
  2873. , PSTR(" H"), LINEAR_UNIT(delta_height)
  2874. , PSTR(" S"), delta_segments_per_second
  2875. , SP_X_STR, LINEAR_UNIT(delta_tower_angle_trim.a)
  2876. , SP_Y_STR, LINEAR_UNIT(delta_tower_angle_trim.b)
  2877. , SP_Z_STR, LINEAR_UNIT(delta_tower_angle_trim.c)
  2878. , PSTR(" A"), LINEAR_UNIT(delta_diagonal_rod_trim.a)
  2879. , PSTR(" B"), LINEAR_UNIT(delta_diagonal_rod_trim.b)
  2880. , PSTR(" C"), LINEAR_UNIT(delta_diagonal_rod_trim.c)
  2881. );
  2882. #elif HAS_EXTRA_ENDSTOPS
  2883. CONFIG_ECHO_HEADING("Endstop adjustment:");
  2884. CONFIG_ECHO_START();
  2885. SERIAL_ECHOPGM(" M666");
  2886. #if ENABLED(X_DUAL_ENDSTOPS)
  2887. SERIAL_ECHOLNPAIR_P(SP_X_STR, LINEAR_UNIT(endstops.x2_endstop_adj));
  2888. #endif
  2889. #if ENABLED(Y_DUAL_ENDSTOPS)
  2890. SERIAL_ECHOLNPAIR_P(SP_Y_STR, LINEAR_UNIT(endstops.y2_endstop_adj));
  2891. #endif
  2892. #if ENABLED(Z_MULTI_ENDSTOPS)
  2893. #if NUM_Z_STEPPER_DRIVERS >= 3
  2894. SERIAL_ECHOPAIR(" S2 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2895. CONFIG_ECHO_START();
  2896. SERIAL_ECHOPAIR(" M666 S3 Z", LINEAR_UNIT(endstops.z3_endstop_adj));
  2897. #if NUM_Z_STEPPER_DRIVERS >= 4
  2898. CONFIG_ECHO_START();
  2899. SERIAL_ECHOPAIR(" M666 S4 Z", LINEAR_UNIT(endstops.z4_endstop_adj));
  2900. #endif
  2901. #else
  2902. SERIAL_ECHOLNPAIR_P(SP_Z_STR, LINEAR_UNIT(endstops.z2_endstop_adj));
  2903. #endif
  2904. #endif
  2905. #endif // [XYZ]_DUAL_ENDSTOPS
  2906. #if PREHEAT_COUNT
  2907. CONFIG_ECHO_HEADING("Material heatup parameters:");
  2908. LOOP_L_N(i, PREHEAT_COUNT) {
  2909. CONFIG_ECHO_START();
  2910. SERIAL_ECHOLNPAIR_P(
  2911. PSTR(" M145 S"), (int)i
  2912. #if HAS_HOTEND
  2913. , PSTR(" H"), TEMP_UNIT(ui.material_preset[i].hotend_temp)
  2914. #endif
  2915. #if HAS_HEATED_BED
  2916. , SP_B_STR, TEMP_UNIT(ui.material_preset[i].bed_temp)
  2917. #endif
  2918. #if HAS_FAN
  2919. , PSTR(" F"), ui.material_preset[i].fan_speed
  2920. #endif
  2921. );
  2922. }
  2923. #endif
  2924. #if HAS_PID_HEATING
  2925. CONFIG_ECHO_HEADING("PID settings:");
  2926. #if ENABLED(PIDTEMP)
  2927. HOTEND_LOOP() {
  2928. CONFIG_ECHO_START();
  2929. SERIAL_ECHOPAIR_P(
  2930. #if ENABLED(PID_PARAMS_PER_HOTEND)
  2931. PSTR(" M301 E"), e,
  2932. SP_P_STR
  2933. #else
  2934. PSTR(" M301 P")
  2935. #endif
  2936. , PID_PARAM(Kp, e)
  2937. , PSTR(" I"), unscalePID_i(PID_PARAM(Ki, e))
  2938. , PSTR(" D"), unscalePID_d(PID_PARAM(Kd, e))
  2939. );
  2940. #if ENABLED(PID_EXTRUSION_SCALING)
  2941. SERIAL_ECHOPAIR_P(SP_C_STR, PID_PARAM(Kc, e));
  2942. if (e == 0) SERIAL_ECHOPAIR(" L", thermalManager.lpq_len);
  2943. #endif
  2944. #if ENABLED(PID_FAN_SCALING)
  2945. SERIAL_ECHOPAIR(" F", PID_PARAM(Kf, e));
  2946. #endif
  2947. SERIAL_EOL();
  2948. }
  2949. #endif // PIDTEMP
  2950. #if ENABLED(PIDTEMPBED)
  2951. CONFIG_ECHO_START();
  2952. SERIAL_ECHOLNPAIR(
  2953. " M304 P", thermalManager.temp_bed.pid.Kp
  2954. , " I", unscalePID_i(thermalManager.temp_bed.pid.Ki)
  2955. , " D", unscalePID_d(thermalManager.temp_bed.pid.Kd)
  2956. );
  2957. #endif
  2958. #endif // PIDTEMP || PIDTEMPBED
  2959. #if HAS_USER_THERMISTORS
  2960. CONFIG_ECHO_HEADING("User thermistors:");
  2961. LOOP_L_N(i, USER_THERMISTORS)
  2962. thermalManager.log_user_thermistor(i, true);
  2963. #endif
  2964. #if HAS_LCD_CONTRAST
  2965. CONFIG_ECHO_HEADING("LCD Contrast:");
  2966. CONFIG_ECHO_START();
  2967. SERIAL_ECHOLNPAIR(" M250 C", ui.contrast);
  2968. #endif
  2969. TERN_(CONTROLLER_FAN_EDITABLE, M710_report(forReplay));
  2970. #if ENABLED(POWER_LOSS_RECOVERY)
  2971. CONFIG_ECHO_HEADING("Power-Loss Recovery:");
  2972. CONFIG_ECHO_START();
  2973. SERIAL_ECHOLNPAIR(" M413 S", int(recovery.enabled));
  2974. #endif
  2975. #if ENABLED(FWRETRACT)
  2976. CONFIG_ECHO_HEADING("Retract: S<length> F<units/m> Z<lift>");
  2977. CONFIG_ECHO_START();
  2978. SERIAL_ECHOLNPAIR_P(
  2979. PSTR(" M207 S"), LINEAR_UNIT(fwretract.settings.retract_length)
  2980. , PSTR(" W"), LINEAR_UNIT(fwretract.settings.swap_retract_length)
  2981. , PSTR(" F"), LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_feedrate_mm_s))
  2982. , SP_Z_STR, LINEAR_UNIT(fwretract.settings.retract_zraise)
  2983. );
  2984. CONFIG_ECHO_HEADING("Recover: S<length> F<units/m>");
  2985. CONFIG_ECHO_START();
  2986. SERIAL_ECHOLNPAIR(
  2987. " M208 S", LINEAR_UNIT(fwretract.settings.retract_recover_extra)
  2988. , " W", LINEAR_UNIT(fwretract.settings.swap_retract_recover_extra)
  2989. , " F", LINEAR_UNIT(MMS_TO_MMM(fwretract.settings.retract_recover_feedrate_mm_s))
  2990. );
  2991. #if ENABLED(FWRETRACT_AUTORETRACT)
  2992. CONFIG_ECHO_HEADING("Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
  2993. CONFIG_ECHO_START();
  2994. SERIAL_ECHOLNPAIR(" M209 S", fwretract.autoretract_enabled ? 1 : 0);
  2995. #endif // FWRETRACT_AUTORETRACT
  2996. #endif // FWRETRACT
  2997. /**
  2998. * Probe Offset
  2999. */
  3000. #if HAS_BED_PROBE
  3001. config_heading(forReplay, PSTR("Z-Probe Offset"), false);
  3002. if (!forReplay) say_units(true);
  3003. CONFIG_ECHO_START();
  3004. SERIAL_ECHOLNPAIR_P(
  3005. #if HAS_PROBE_XY_OFFSET
  3006. PSTR(" M851 X"), LINEAR_UNIT(probe.offset_xy.x),
  3007. SP_Y_STR, LINEAR_UNIT(probe.offset_xy.y),
  3008. SP_Z_STR
  3009. #else
  3010. PSTR(" M851 X0 Y0 Z")
  3011. #endif
  3012. , LINEAR_UNIT(probe.offset.z)
  3013. );
  3014. #endif
  3015. /**
  3016. * Bed Skew Correction
  3017. */
  3018. #if ENABLED(SKEW_CORRECTION_GCODE)
  3019. CONFIG_ECHO_HEADING("Skew Factor: ");
  3020. CONFIG_ECHO_START();
  3021. #if ENABLED(SKEW_CORRECTION_FOR_Z)
  3022. SERIAL_ECHOPAIR_F(" M852 I", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3023. SERIAL_ECHOPAIR_F(" J", LINEAR_UNIT(planner.skew_factor.xz), 6);
  3024. SERIAL_ECHOLNPAIR_F(" K", LINEAR_UNIT(planner.skew_factor.yz), 6);
  3025. #else
  3026. SERIAL_ECHOLNPAIR_F(" M852 S", LINEAR_UNIT(planner.skew_factor.xy), 6);
  3027. #endif
  3028. #endif
  3029. #if HAS_TRINAMIC_CONFIG
  3030. /**
  3031. * TMC stepper driver current
  3032. */
  3033. CONFIG_ECHO_HEADING("Stepper driver current:");
  3034. #if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
  3035. say_M906(forReplay);
  3036. #if AXIS_IS_TMC(X)
  3037. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.getMilliamps());
  3038. #endif
  3039. #if AXIS_IS_TMC(Y)
  3040. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.getMilliamps());
  3041. #endif
  3042. #if AXIS_IS_TMC(Z)
  3043. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.getMilliamps());
  3044. #endif
  3045. SERIAL_EOL();
  3046. #endif
  3047. #if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
  3048. say_M906(forReplay);
  3049. SERIAL_ECHOPGM(" I1");
  3050. #if AXIS_IS_TMC(X2)
  3051. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.getMilliamps());
  3052. #endif
  3053. #if AXIS_IS_TMC(Y2)
  3054. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.getMilliamps());
  3055. #endif
  3056. #if AXIS_IS_TMC(Z2)
  3057. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.getMilliamps());
  3058. #endif
  3059. SERIAL_EOL();
  3060. #endif
  3061. #if AXIS_IS_TMC(Z3)
  3062. say_M906(forReplay);
  3063. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.getMilliamps());
  3064. #endif
  3065. #if AXIS_IS_TMC(Z4)
  3066. say_M906(forReplay);
  3067. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.getMilliamps());
  3068. #endif
  3069. #if AXIS_IS_TMC(E0)
  3070. say_M906(forReplay);
  3071. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.getMilliamps());
  3072. #endif
  3073. #if AXIS_IS_TMC(E1)
  3074. say_M906(forReplay);
  3075. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.getMilliamps());
  3076. #endif
  3077. #if AXIS_IS_TMC(E2)
  3078. say_M906(forReplay);
  3079. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.getMilliamps());
  3080. #endif
  3081. #if AXIS_IS_TMC(E3)
  3082. say_M906(forReplay);
  3083. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.getMilliamps());
  3084. #endif
  3085. #if AXIS_IS_TMC(E4)
  3086. say_M906(forReplay);
  3087. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.getMilliamps());
  3088. #endif
  3089. #if AXIS_IS_TMC(E5)
  3090. say_M906(forReplay);
  3091. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.getMilliamps());
  3092. #endif
  3093. #if AXIS_IS_TMC(E6)
  3094. say_M906(forReplay);
  3095. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.getMilliamps());
  3096. #endif
  3097. #if AXIS_IS_TMC(E7)
  3098. say_M906(forReplay);
  3099. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.getMilliamps());
  3100. #endif
  3101. SERIAL_EOL();
  3102. /**
  3103. * TMC Hybrid Threshold
  3104. */
  3105. #if ENABLED(HYBRID_THRESHOLD)
  3106. CONFIG_ECHO_HEADING("Hybrid Threshold:");
  3107. #if AXIS_HAS_STEALTHCHOP(X) || AXIS_HAS_STEALTHCHOP(Y) || AXIS_HAS_STEALTHCHOP(Z)
  3108. say_M913(forReplay);
  3109. #if AXIS_HAS_STEALTHCHOP(X)
  3110. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.get_pwm_thrs());
  3111. #endif
  3112. #if AXIS_HAS_STEALTHCHOP(Y)
  3113. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.get_pwm_thrs());
  3114. #endif
  3115. #if AXIS_HAS_STEALTHCHOP(Z)
  3116. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.get_pwm_thrs());
  3117. #endif
  3118. SERIAL_EOL();
  3119. #endif
  3120. #if AXIS_HAS_STEALTHCHOP(X2) || AXIS_HAS_STEALTHCHOP(Y2) || AXIS_HAS_STEALTHCHOP(Z2)
  3121. say_M913(forReplay);
  3122. SERIAL_ECHOPGM(" I1");
  3123. #if AXIS_HAS_STEALTHCHOP(X2)
  3124. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.get_pwm_thrs());
  3125. #endif
  3126. #if AXIS_HAS_STEALTHCHOP(Y2)
  3127. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.get_pwm_thrs());
  3128. #endif
  3129. #if AXIS_HAS_STEALTHCHOP(Z2)
  3130. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.get_pwm_thrs());
  3131. #endif
  3132. SERIAL_EOL();
  3133. #endif
  3134. #if AXIS_HAS_STEALTHCHOP(Z3)
  3135. say_M913(forReplay);
  3136. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.get_pwm_thrs());
  3137. #endif
  3138. #if AXIS_HAS_STEALTHCHOP(Z4)
  3139. say_M913(forReplay);
  3140. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.get_pwm_thrs());
  3141. #endif
  3142. #if AXIS_HAS_STEALTHCHOP(E0)
  3143. say_M913(forReplay);
  3144. SERIAL_ECHOLNPAIR(" T0 E", stepperE0.get_pwm_thrs());
  3145. #endif
  3146. #if AXIS_HAS_STEALTHCHOP(E1)
  3147. say_M913(forReplay);
  3148. SERIAL_ECHOLNPAIR(" T1 E", stepperE1.get_pwm_thrs());
  3149. #endif
  3150. #if AXIS_HAS_STEALTHCHOP(E2)
  3151. say_M913(forReplay);
  3152. SERIAL_ECHOLNPAIR(" T2 E", stepperE2.get_pwm_thrs());
  3153. #endif
  3154. #if AXIS_HAS_STEALTHCHOP(E3)
  3155. say_M913(forReplay);
  3156. SERIAL_ECHOLNPAIR(" T3 E", stepperE3.get_pwm_thrs());
  3157. #endif
  3158. #if AXIS_HAS_STEALTHCHOP(E4)
  3159. say_M913(forReplay);
  3160. SERIAL_ECHOLNPAIR(" T4 E", stepperE4.get_pwm_thrs());
  3161. #endif
  3162. #if AXIS_HAS_STEALTHCHOP(E5)
  3163. say_M913(forReplay);
  3164. SERIAL_ECHOLNPAIR(" T5 E", stepperE5.get_pwm_thrs());
  3165. #endif
  3166. #if AXIS_HAS_STEALTHCHOP(E6)
  3167. say_M913(forReplay);
  3168. SERIAL_ECHOLNPAIR(" T6 E", stepperE6.get_pwm_thrs());
  3169. #endif
  3170. #if AXIS_HAS_STEALTHCHOP(E7)
  3171. say_M913(forReplay);
  3172. SERIAL_ECHOLNPAIR(" T7 E", stepperE7.get_pwm_thrs());
  3173. #endif
  3174. SERIAL_EOL();
  3175. #endif // HYBRID_THRESHOLD
  3176. /**
  3177. * TMC Sensorless homing thresholds
  3178. */
  3179. #if USE_SENSORLESS
  3180. CONFIG_ECHO_HEADING("StallGuard threshold:");
  3181. #if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
  3182. CONFIG_ECHO_START();
  3183. say_M914();
  3184. #if X_SENSORLESS
  3185. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX.homing_threshold());
  3186. #endif
  3187. #if Y_SENSORLESS
  3188. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY.homing_threshold());
  3189. #endif
  3190. #if Z_SENSORLESS
  3191. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ.homing_threshold());
  3192. #endif
  3193. SERIAL_EOL();
  3194. #endif
  3195. #if X2_SENSORLESS || Y2_SENSORLESS || Z2_SENSORLESS
  3196. CONFIG_ECHO_START();
  3197. say_M914();
  3198. SERIAL_ECHOPGM(" I1");
  3199. #if X2_SENSORLESS
  3200. SERIAL_ECHOPAIR_P(SP_X_STR, stepperX2.homing_threshold());
  3201. #endif
  3202. #if Y2_SENSORLESS
  3203. SERIAL_ECHOPAIR_P(SP_Y_STR, stepperY2.homing_threshold());
  3204. #endif
  3205. #if Z2_SENSORLESS
  3206. SERIAL_ECHOPAIR_P(SP_Z_STR, stepperZ2.homing_threshold());
  3207. #endif
  3208. SERIAL_EOL();
  3209. #endif
  3210. #if Z3_SENSORLESS
  3211. CONFIG_ECHO_START();
  3212. say_M914();
  3213. SERIAL_ECHOLNPAIR(" I2 Z", stepperZ3.homing_threshold());
  3214. #endif
  3215. #if Z4_SENSORLESS
  3216. CONFIG_ECHO_START();
  3217. say_M914();
  3218. SERIAL_ECHOLNPAIR(" I3 Z", stepperZ4.homing_threshold());
  3219. #endif
  3220. #endif // USE_SENSORLESS
  3221. /**
  3222. * TMC stepping mode
  3223. */
  3224. #if HAS_STEALTHCHOP
  3225. CONFIG_ECHO_HEADING("Driver stepping mode:");
  3226. #if AXIS_HAS_STEALTHCHOP(X)
  3227. const bool chop_x = stepperX.get_stored_stealthChop();
  3228. #else
  3229. constexpr bool chop_x = false;
  3230. #endif
  3231. #if AXIS_HAS_STEALTHCHOP(Y)
  3232. const bool chop_y = stepperY.get_stored_stealthChop();
  3233. #else
  3234. constexpr bool chop_y = false;
  3235. #endif
  3236. #if AXIS_HAS_STEALTHCHOP(Z)
  3237. const bool chop_z = stepperZ.get_stored_stealthChop();
  3238. #else
  3239. constexpr bool chop_z = false;
  3240. #endif
  3241. if (chop_x || chop_y || chop_z) {
  3242. say_M569(forReplay);
  3243. if (chop_x) SERIAL_ECHOPGM_P(SP_X_STR);
  3244. if (chop_y) SERIAL_ECHOPGM_P(SP_Y_STR);
  3245. if (chop_z) SERIAL_ECHOPGM_P(SP_Z_STR);
  3246. SERIAL_EOL();
  3247. }
  3248. #if AXIS_HAS_STEALTHCHOP(X2)
  3249. const bool chop_x2 = stepperX2.get_stored_stealthChop();
  3250. #else
  3251. constexpr bool chop_x2 = false;
  3252. #endif
  3253. #if AXIS_HAS_STEALTHCHOP(Y2)
  3254. const bool chop_y2 = stepperY2.get_stored_stealthChop();
  3255. #else
  3256. constexpr bool chop_y2 = false;
  3257. #endif
  3258. #if AXIS_HAS_STEALTHCHOP(Z2)
  3259. const bool chop_z2 = stepperZ2.get_stored_stealthChop();
  3260. #else
  3261. constexpr bool chop_z2 = false;
  3262. #endif
  3263. if (chop_x2 || chop_y2 || chop_z2) {
  3264. say_M569(forReplay, PSTR("I1"));
  3265. if (chop_x2) SERIAL_ECHOPGM_P(SP_X_STR);
  3266. if (chop_y2) SERIAL_ECHOPGM_P(SP_Y_STR);
  3267. if (chop_z2) SERIAL_ECHOPGM_P(SP_Z_STR);
  3268. SERIAL_EOL();
  3269. }
  3270. #if AXIS_HAS_STEALTHCHOP(Z3)
  3271. if (stepperZ3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I2 Z"), true); }
  3272. #endif
  3273. #if AXIS_HAS_STEALTHCHOP(Z4)
  3274. if (stepperZ4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("I3 Z"), true); }
  3275. #endif
  3276. #if AXIS_HAS_STEALTHCHOP(E0)
  3277. if (stepperE0.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T0 E"), true); }
  3278. #endif
  3279. #if AXIS_HAS_STEALTHCHOP(E1)
  3280. if (stepperE1.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T1 E"), true); }
  3281. #endif
  3282. #if AXIS_HAS_STEALTHCHOP(E2)
  3283. if (stepperE2.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T2 E"), true); }
  3284. #endif
  3285. #if AXIS_HAS_STEALTHCHOP(E3)
  3286. if (stepperE3.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T3 E"), true); }
  3287. #endif
  3288. #if AXIS_HAS_STEALTHCHOP(E4)
  3289. if (stepperE4.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T4 E"), true); }
  3290. #endif
  3291. #if AXIS_HAS_STEALTHCHOP(E5)
  3292. if (stepperE5.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T5 E"), true); }
  3293. #endif
  3294. #if AXIS_HAS_STEALTHCHOP(E6)
  3295. if (stepperE6.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T6 E"), true); }
  3296. #endif
  3297. #if AXIS_HAS_STEALTHCHOP(E7)
  3298. if (stepperE7.get_stored_stealthChop()) { say_M569(forReplay, PSTR("T7 E"), true); }
  3299. #endif
  3300. #endif // HAS_STEALTHCHOP
  3301. #endif // HAS_TRINAMIC_CONFIG
  3302. /**
  3303. * Linear Advance
  3304. */
  3305. #if ENABLED(LIN_ADVANCE)
  3306. CONFIG_ECHO_HEADING("Linear Advance:");
  3307. #if EXTRUDERS < 2
  3308. CONFIG_ECHO_START();
  3309. SERIAL_ECHOLNPAIR(" M900 K", planner.extruder_advance_K[0]);
  3310. #else
  3311. LOOP_L_N(i, EXTRUDERS) {
  3312. CONFIG_ECHO_START();
  3313. SERIAL_ECHOLNPAIR(" M900 T", int(i), " K", planner.extruder_advance_K[i]);
  3314. }
  3315. #endif
  3316. #endif
  3317. #if HAS_MOTOR_CURRENT_SPI || HAS_MOTOR_CURRENT_PWM
  3318. CONFIG_ECHO_HEADING("Stepper motor currents:");
  3319. CONFIG_ECHO_START();
  3320. #if HAS_MOTOR_CURRENT_PWM
  3321. SERIAL_ECHOLNPAIR_P( // PWM-based has 3 values:
  3322. PSTR(" M907 X"), stepper.motor_current_setting[0] // X and Y
  3323. , SP_Z_STR, stepper.motor_current_setting[1] // Z
  3324. , SP_E_STR, stepper.motor_current_setting[2] // E
  3325. );
  3326. #elif HAS_MOTOR_CURRENT_SPI
  3327. SERIAL_ECHOPGM(" M907"); // SPI-based has 5 values:
  3328. LOOP_XYZE(q) { // X Y Z E (map to X Y Z E0 by default)
  3329. SERIAL_CHAR(' ', axis_codes[q]);
  3330. SERIAL_ECHO(stepper.motor_current_setting[q]);
  3331. }
  3332. SERIAL_CHAR(' ', 'B'); // B (maps to E1 by default)
  3333. SERIAL_ECHOLN(stepper.motor_current_setting[4]);
  3334. #endif
  3335. #elif HAS_MOTOR_CURRENT_I2C // i2c-based has any number of values
  3336. // Values sent over i2c are not stored.
  3337. // Indexes map directly to drivers, not axes.
  3338. #elif HAS_MOTOR_CURRENT_DAC // DAC-based has 4 values, for X Y Z E
  3339. // Values sent over i2c are not stored. Uses indirect mapping.
  3340. #endif
  3341. /**
  3342. * Advanced Pause filament load & unload lengths
  3343. */
  3344. #if ENABLED(ADVANCED_PAUSE_FEATURE)
  3345. CONFIG_ECHO_HEADING("Filament load/unload lengths:");
  3346. #if EXTRUDERS == 1
  3347. say_M603(forReplay);
  3348. SERIAL_ECHOLNPAIR("L", LINEAR_UNIT(fc_settings[0].load_length), " U", LINEAR_UNIT(fc_settings[0].unload_length));
  3349. #else
  3350. #define _ECHO_603(N) do{ say_M603(forReplay); SERIAL_ECHOLNPAIR("T" STRINGIFY(N) " L", LINEAR_UNIT(fc_settings[N].load_length), " U", LINEAR_UNIT(fc_settings[N].unload_length)); }while(0);
  3351. REPEAT(EXTRUDERS, _ECHO_603)
  3352. #endif
  3353. #endif
  3354. #if HAS_MULTI_EXTRUDER
  3355. CONFIG_ECHO_HEADING("Tool-changing:");
  3356. CONFIG_ECHO_START();
  3357. M217_report(true);
  3358. #endif
  3359. #if ENABLED(BACKLASH_GCODE)
  3360. CONFIG_ECHO_HEADING("Backlash compensation:");
  3361. CONFIG_ECHO_START();
  3362. SERIAL_ECHOLNPAIR_P(
  3363. PSTR(" M425 F"), backlash.get_correction()
  3364. , SP_X_STR, LINEAR_UNIT(backlash.distance_mm.x)
  3365. , SP_Y_STR, LINEAR_UNIT(backlash.distance_mm.y)
  3366. , SP_Z_STR, LINEAR_UNIT(backlash.distance_mm.z)
  3367. #ifdef BACKLASH_SMOOTHING_MM
  3368. , PSTR(" S"), LINEAR_UNIT(backlash.smoothing_mm)
  3369. #endif
  3370. );
  3371. #endif
  3372. #if HAS_FILAMENT_SENSOR
  3373. CONFIG_ECHO_HEADING("Filament runout sensor:");
  3374. CONFIG_ECHO_START();
  3375. SERIAL_ECHOLNPAIR(
  3376. " M412 S", int(runout.enabled)
  3377. #if HAS_FILAMENT_RUNOUT_DISTANCE
  3378. , " D", LINEAR_UNIT(runout.runout_distance())
  3379. #endif
  3380. );
  3381. #endif
  3382. #if HAS_ETHERNET
  3383. CONFIG_ECHO_HEADING("Ethernet:");
  3384. if (!forReplay) { CONFIG_ECHO_START(); ETH0_report(); }
  3385. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); MAC_report();
  3386. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M552_report();
  3387. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M553_report();
  3388. CONFIG_ECHO_START(); SERIAL_ECHO_SP(2); M554_report();
  3389. #endif
  3390. }
  3391. #endif // !DISABLE_M503
  3392. #pragma pack(pop)