My Marlin configs for Fabrikator Mini and CTC i3 Pro B
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798991001011021031041051061071081091101111121131141151161171181191201211221231241251261271281291301311321331341351361371381391401411421431441451461471481491501511521531541551561571581591601611621631641651661671681691701711721731741751761771781791801811821831841851861871881891901911921931941951961971981992002012022032042052062072082092102112122132142152162172182192202212222232242252262272282292302312322332342352362372382392402412422432442452462472482492502512522532542552562572582592602612622632642652662672682692702712722732742752762772782792802812822832842852862872882892902912922932942952962972982993003013023033043053063073083093103113123133143153163173183193203213223233243253263273283293303313323333343353363373383393403413423433443453463473483493503513523533543553563573583593603613623633643653663673683693703713723733743753763773783793803813823833843853863873883893903913923933943953963973983994004014024034044054064074084094104114124134144154164174184194204214224234244254264274284294304314324334344354364374384394404414424434444454464474484494504514524534544554564574584594604614624634644654664674684694704714724734744754764774784794804814824834844854864874884894904914924934944954964974984995005015025035045055065075085095105115125135145155165175185195205215225235245255265275285295305315325335345355365375385395405415425435445455465475485495505515525535545555565575585595605615625635645655665675685695705715725735745755765775785795805815825835845855865875885895905915925935945955965975985996006016026036046056066076086096106116126136146156166176186196206216226236246256266276286296306316326336346356366376386396406416426436446456466476486496506516526536546556566576586596606616626636646656666676686696706716726736746756766776786796806816826836846856866876886896906916926936946956966976986997007017027037047057067077087097107117127137147157167177187197207217227237247257267277287297307317327337347357367377387397407417427437447457467477487497507517527537547557567577587597607617627637647657667677687697707717727737747757767777787797807817827837847857867877887897907917927937947957967977987998008018028038048058068078088098108118128138148158168178188198208218228238248258268278288298308318328338348358368378388398408418428438448458468478488498508518528538548558568578588598608618628638648658668678688698708718728738748758768778788798808818828838848858868878888898908918928938948958968978988999009019029039049059069079089099109119129139149159169179189199209219229239249259269279289299309319329339349359369379389399409419429439449459469479489499509519529539549559569579589599609619629639649659669679689699709719729739749759769779789799809819829839849859869879889899909919929939949959969979989991000100110021003100410051006100710081009101010111012101310141015101610171018101910201021102210231024102510261027102810291030103110321033103410351036103710381039104010411042104310441045104610471048104910501051105210531054105510561057105810591060106110621063106410651066106710681069107010711072107310741075107610771078107910801081108210831084108510861087108810891090109110921093109410951096109710981099110011011102110311041105110611071108110911101111
  1. /*
  2. Reprap firmware based on Sprinter and grbl.
  3. Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  4. This program is free software: you can redistribute it and/or modify
  5. it under the terms of the GNU General Public License as published by
  6. the Free Software Foundation, either version 3 of the License, or
  7. (at your option) any later version.
  8. This program is distributed in the hope that it will be useful,
  9. but WITHOUT ANY WARRANTY; without even the implied warranty of
  10. MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  11. GNU General Public License for more details.
  12. You should have received a copy of the GNU General Public License
  13. along with this program. If not, see <http://www.gnu.org/licenses/>.
  14. */
  15. /*
  16. This firmware is a mashup between Sprinter and grbl.
  17. (https://github.com/kliment/Sprinter)
  18. (https://github.com/simen/grbl/tree)
  19. It has preliminary support for Matthew Roberts advance algorithm
  20. http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  21. */
  22. #include <EEPROM.h>
  23. #include "EEPROMwrite.h"
  24. #include "fastio.h"
  25. #include "Configuration.h"
  26. #include "pins.h"
  27. #include "Marlin.h"
  28. #include "ultralcd.h"
  29. #include "planner.h"
  30. #include "stepper.h"
  31. #include "temperature.h"
  32. #include "motion_control.h"
  33. #include "cardreader.h"
  34. #include "watchdog.h"
  35. #define VERSION_STRING "1.0.0 Beta 1"
  36. // look here for descriptions of gcodes: http://linuxcnc.org/handbook/gcode/g-code.html
  37. // http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  38. //Implemented Codes
  39. //-------------------
  40. // G0 -> G1
  41. // G1 - Coordinated Movement X Y Z E
  42. // G2 - CW ARC
  43. // G3 - CCW ARC
  44. // G4 - Dwell S<seconds> or P<milliseconds>
  45. // G28 - Home all Axis
  46. // G90 - Use Absolute Coordinates
  47. // G91 - Use Relative Coordinates
  48. // G92 - Set current position to cordinates given
  49. //RepRap M Codes
  50. // M104 - Set extruder target temp
  51. // M105 - Read current temp
  52. // M106 - Fan on
  53. // M107 - Fan off
  54. // M109 - Wait for extruder current temp to reach target temp.
  55. // M114 - Display current position
  56. //Custom M Codes
  57. // M17 - Enable/Power all stepper motors
  58. // M18 - Disable all stepper motors; same as M84
  59. // M20 - List SD card
  60. // M21 - Init SD card
  61. // M22 - Release SD card
  62. // M23 - Select SD file (M23 filename.g)
  63. // M24 - Start/resume SD print
  64. // M25 - Pause SD print
  65. // M26 - Set SD position in bytes (M26 S12345)
  66. // M27 - Report SD print status
  67. // M28 - Start SD write (M28 filename.g)
  68. // M29 - Stop SD write
  69. // M30 - Output time since last M109 or SD card start to serial
  70. // M42 - Change pin status via gcode
  71. // M80 - Turn on Power Supply
  72. // M81 - Turn off Power Supply
  73. // M82 - Set E codes absolute (default)
  74. // M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  75. // M84 - Disable steppers until next move,
  76. // or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  77. // M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  78. // M92 - Set axis_steps_per_unit - same syntax as G92
  79. // M114 - Output current position to serial port
  80. // M115 - Capabilities string
  81. // M119 - Output Endstop status to serial port
  82. // M140 - Set bed target temp
  83. // M190 - Wait for bed current temp to reach target temp.
  84. // M200 - Set filament diameter
  85. // M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  86. // M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  87. // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
  88. // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
  89. // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  90. // M220 - set speed factor override percentage S:factor in percent
  91. // M301 - Set PID parameters P I and D
  92. // M400 - Finish all moves
  93. // M500 - stores paramters in EEPROM
  94. // M501 - reads parameters from EEPROM (if you need reset them after you changed them temporarily).
  95. // M502 - reverts to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  96. //Stepper Movement Variables
  97. //===========================================================================
  98. //=============================imported variables============================
  99. //===========================================================================
  100. extern float HeaterPower;
  101. //===========================================================================
  102. //=============================public variables=============================
  103. //===========================================================================
  104. #ifdef SDSUPPORT
  105. CardReader card;
  106. #endif
  107. float homing_feedrate[] = HOMING_FEEDRATE;
  108. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  109. volatile int feedmultiply=100; //100->1 200->2
  110. int saved_feedmultiply;
  111. volatile bool feedmultiplychanged=false;
  112. float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  113. //===========================================================================
  114. //=============================private variables=============================
  115. //===========================================================================
  116. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  117. static float destination[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
  118. static float offset[3] = {0.0, 0.0, 0.0};
  119. static bool home_all_axis = true;
  120. static float feedrate = 1500.0, next_feedrate, saved_feedrate;
  121. static long gcode_N, gcode_LastN;
  122. static bool relative_mode = false; //Determines Absolute or Relative Coordinates
  123. static bool relative_mode_e = false; //Determines Absolute or Relative E Codes while in Absolute Coordinates mode. E is always relative in Relative Coordinates mode.
  124. static uint8_t fanpwm=0;
  125. static char cmdbuffer[BUFSIZE][MAX_CMD_SIZE];
  126. static bool fromsd[BUFSIZE];
  127. static int bufindr = 0;
  128. static int bufindw = 0;
  129. static int buflen = 0;
  130. static int i = 0;
  131. static char serial_char;
  132. static int serial_count = 0;
  133. static boolean comment_mode = false;
  134. static char *strchr_pointer; // just a pointer to find chars in the cmd string like X, Y, Z, E, etc
  135. const int sensitive_pins[] = SENSITIVE_PINS; // Sensitive pin list for M42
  136. static float tt = 0, bt = 0;
  137. //Inactivity shutdown variables
  138. static unsigned long previous_millis_cmd = 0;
  139. static unsigned long max_inactive_time = 0;
  140. static unsigned long stepper_inactive_time = 0;
  141. static unsigned long starttime=0;
  142. static unsigned long stoptime=0;
  143. //===========================================================================
  144. //=============================ROUTINES=============================
  145. //===========================================================================
  146. void get_arc_coordinates();
  147. extern "C"{
  148. extern unsigned int __bss_end;
  149. extern unsigned int __heap_start;
  150. extern void *__brkval;
  151. int freeMemory() {
  152. int free_memory;
  153. if((int)__brkval == 0)
  154. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  155. else
  156. free_memory = ((int)&free_memory) - ((int)__brkval);
  157. return free_memory;
  158. }
  159. }
  160. //adds an command to the main command buffer
  161. //thats really done in a non-safe way.
  162. //needs overworking someday
  163. void enquecommand(const char *cmd)
  164. {
  165. if(buflen < BUFSIZE)
  166. {
  167. //this is dangerous if a mixing of serial and this happsens
  168. strcpy(&(cmdbuffer[bufindw][0]),cmd);
  169. SERIAL_ECHO_START;
  170. SERIAL_ECHOPGM("enqueing \"");
  171. SERIAL_ECHO(cmdbuffer[bufindw]);
  172. SERIAL_ECHOLNPGM("\"");
  173. bufindw= (bufindw + 1)%BUFSIZE;
  174. buflen += 1;
  175. }
  176. }
  177. void setup()
  178. {
  179. Serial.begin(BAUDRATE);
  180. SERIAL_ECHO_START;
  181. SERIAL_ECHOLNPGM(VERSION_STRING);
  182. SERIAL_PROTOCOLLNPGM("start");
  183. SERIAL_ECHO_START;
  184. SERIAL_ECHOPGM("Free Memory:");
  185. SERIAL_ECHOLN(freeMemory());
  186. for(int8_t i = 0; i < BUFSIZE; i++)
  187. {
  188. fromsd[i] = false;
  189. }
  190. RetrieveSettings(); // loads data from EEPROM if available
  191. for(int8_t i=0; i < NUM_AXIS; i++)
  192. {
  193. axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i];
  194. }
  195. tp_init(); // Initialize temperature loop
  196. plan_init(); // Initialize planner;
  197. st_init(); // Initialize stepper;
  198. wd_init();
  199. }
  200. void loop()
  201. {
  202. if(buflen<3)
  203. get_command();
  204. #ifdef SDSUPPORT
  205. card.checkautostart(false);
  206. #endif
  207. if(buflen)
  208. {
  209. #ifdef SDSUPPORT
  210. if(card.saving)
  211. {
  212. if(strstr(cmdbuffer[bufindr],"M29") == NULL)
  213. {
  214. card.write_command(cmdbuffer[bufindr]);
  215. SERIAL_PROTOCOLLNPGM("ok");
  216. }
  217. else
  218. {
  219. card.closefile();
  220. SERIAL_PROTOCOLLNPGM("Done saving file.");
  221. }
  222. }
  223. else
  224. {
  225. process_commands();
  226. }
  227. #else
  228. process_commands();
  229. #endif //SDSUPPORT
  230. buflen = (buflen-1);
  231. bufindr = (bufindr + 1)%BUFSIZE;
  232. }
  233. //check heater every n milliseconds
  234. manage_heater();
  235. manage_inactivity(1);
  236. checkHitEndstops();
  237. LCD_STATUS;
  238. }
  239. inline void get_command()
  240. {
  241. while( Serial.available() > 0 && buflen < BUFSIZE) {
  242. serial_char = Serial.read();
  243. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1) )
  244. {
  245. if(!serial_count) return; //if empty line
  246. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  247. if(!comment_mode){
  248. fromsd[bufindw] = false;
  249. if(strstr(cmdbuffer[bufindw], "N") != NULL)
  250. {
  251. strchr_pointer = strchr(cmdbuffer[bufindw], 'N');
  252. gcode_N = (strtol(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL, 10));
  253. if(gcode_N != gcode_LastN+1 && (strstr(cmdbuffer[bufindw], "M110") == NULL) ) {
  254. SERIAL_ERROR_START;
  255. SERIAL_ERRORPGM("Line Number is not Last Line Number+1, Last Line:");
  256. SERIAL_ERRORLN(gcode_LastN);
  257. //Serial.println(gcode_N);
  258. FlushSerialRequestResend();
  259. serial_count = 0;
  260. return;
  261. }
  262. if(strstr(cmdbuffer[bufindw], "*") != NULL)
  263. {
  264. byte checksum = 0;
  265. byte count = 0;
  266. while(cmdbuffer[bufindw][count] != '*') checksum = checksum^cmdbuffer[bufindw][count++];
  267. strchr_pointer = strchr(cmdbuffer[bufindw], '*');
  268. if( (int)(strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)) != checksum) {
  269. SERIAL_ERROR_START;
  270. SERIAL_ERRORPGM("checksum mismatch, Last Line:");
  271. SERIAL_ERRORLN(gcode_LastN);
  272. FlushSerialRequestResend();
  273. serial_count = 0;
  274. return;
  275. }
  276. //if no errors, continue parsing
  277. }
  278. else
  279. {
  280. SERIAL_ERROR_START;
  281. SERIAL_ERRORPGM("No Checksum with line number, Last Line:");
  282. SERIAL_ERRORLN(gcode_LastN);
  283. FlushSerialRequestResend();
  284. serial_count = 0;
  285. return;
  286. }
  287. gcode_LastN = gcode_N;
  288. //if no errors, continue parsing
  289. }
  290. else // if we don't receive 'N' but still see '*'
  291. {
  292. if((strstr(cmdbuffer[bufindw], "*") != NULL))
  293. {
  294. SERIAL_ERROR_START;
  295. SERIAL_ERRORPGM("No Line Number with checksum, Last Line:");
  296. SERIAL_ERRORLN(gcode_LastN);
  297. serial_count = 0;
  298. return;
  299. }
  300. }
  301. if((strstr(cmdbuffer[bufindw], "G") != NULL)){
  302. strchr_pointer = strchr(cmdbuffer[bufindw], 'G');
  303. switch((int)((strtod(&cmdbuffer[bufindw][strchr_pointer - cmdbuffer[bufindw] + 1], NULL)))){
  304. case 0:
  305. case 1:
  306. case 2:
  307. case 3:
  308. #ifdef SDSUPPORT
  309. if(card.saving)
  310. break;
  311. #endif //SDSUPPORT
  312. SERIAL_PROTOCOLLNPGM("ok");
  313. break;
  314. default:
  315. break;
  316. }
  317. }
  318. bufindw = (bufindw + 1)%BUFSIZE;
  319. buflen += 1;
  320. }
  321. comment_mode = false; //for new command
  322. serial_count = 0; //clear buffer
  323. }
  324. else
  325. {
  326. if(serial_char == ';') comment_mode = true;
  327. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  328. }
  329. }
  330. #ifdef SDSUPPORT
  331. if(!card.sdprinting || serial_count!=0){
  332. return;
  333. }
  334. while( !card.eof() && buflen < BUFSIZE) {
  335. int16_t n=card.get();
  336. serial_char = (char)n;
  337. if(serial_char == '\n' || serial_char == '\r' || serial_char == ':' || serial_count >= (MAX_CMD_SIZE - 1)||n==-1)
  338. {
  339. if(card.eof()){
  340. card.sdprinting = false;
  341. SERIAL_PROTOCOLLNPGM("Done printing file");
  342. stoptime=millis();
  343. char time[30];
  344. unsigned long t=(stoptime-starttime)/1000;
  345. int sec,min;
  346. min=t/60;
  347. sec=t%60;
  348. sprintf(time,"%i min, %i sec",min,sec);
  349. SERIAL_ECHO_START;
  350. SERIAL_ECHOLN(time);
  351. LCD_MESSAGE(time);
  352. card.checkautostart(true);
  353. }
  354. if(serial_char=='\n')
  355. comment_mode = false; //for new command
  356. if(!serial_count)
  357. {
  358. return; //if empty line
  359. }
  360. cmdbuffer[bufindw][serial_count] = 0; //terminate string
  361. if(!comment_mode){
  362. fromsd[bufindw] = true;
  363. buflen += 1;
  364. bufindw = (bufindw + 1)%BUFSIZE;
  365. }
  366. serial_count = 0; //clear buffer
  367. }
  368. else
  369. {
  370. if(serial_char == ';') comment_mode = true;
  371. if(!comment_mode) cmdbuffer[bufindw][serial_count++] = serial_char;
  372. }
  373. }
  374. #endif //SDSUPPORT
  375. }
  376. inline float code_value()
  377. {
  378. return (strtod(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL));
  379. }
  380. inline long code_value_long()
  381. {
  382. return (strtol(&cmdbuffer[bufindr][strchr_pointer - cmdbuffer[bufindr] + 1], NULL, 10));
  383. }
  384. inline bool code_seen(char code_string[]) //Return True if the string was found
  385. {
  386. return (strstr(cmdbuffer[bufindr], code_string) != NULL);
  387. }
  388. inline bool code_seen(char code)
  389. {
  390. strchr_pointer = strchr(cmdbuffer[bufindr], code);
  391. return (strchr_pointer != NULL); //Return True if a character was found
  392. }
  393. #define HOMEAXIS(LETTER) \
  394. if ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))\
  395. { \
  396. current_position[LETTER##_AXIS] = 0; \
  397. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); \
  398. destination[LETTER##_AXIS] = 1.5 * LETTER##_MAX_LENGTH * LETTER##_HOME_DIR; \
  399. feedrate = homing_feedrate[LETTER##_AXIS]; \
  400. prepare_move(); \
  401. \
  402. current_position[LETTER##_AXIS] = 0;\
  403. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  404. destination[LETTER##_AXIS] = -5 * LETTER##_HOME_DIR;\
  405. prepare_move(); \
  406. \
  407. destination[LETTER##_AXIS] = 10 * LETTER##_HOME_DIR;\
  408. feedrate = homing_feedrate[LETTER##_AXIS]/2 ; \
  409. prepare_move(); \
  410. \
  411. current_position[LETTER##_AXIS] = (LETTER##_HOME_DIR == -1) ? 0 : LETTER##_MAX_LENGTH;\
  412. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  413. destination[LETTER##_AXIS] = current_position[LETTER##_AXIS];\
  414. feedrate = 0.0;\
  415. st_synchronize();\
  416. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);\
  417. endstops_hit_on_purpose();\
  418. }
  419. inline void process_commands()
  420. {
  421. unsigned long codenum; //throw away variable
  422. char *starpos = NULL;
  423. if(code_seen('G'))
  424. {
  425. switch((int)code_value())
  426. {
  427. case 0: // G0 -> G1
  428. case 1: // G1
  429. get_coordinates(); // For X Y Z E F
  430. prepare_move();
  431. previous_millis_cmd = millis();
  432. //ClearToSend();
  433. return;
  434. //break;
  435. case 2: // G2 - CW ARC
  436. get_arc_coordinates();
  437. prepare_arc_move(true);
  438. previous_millis_cmd = millis();
  439. return;
  440. case 3: // G3 - CCW ARC
  441. get_arc_coordinates();
  442. prepare_arc_move(false);
  443. previous_millis_cmd = millis();
  444. return;
  445. case 4: // G4 dwell
  446. LCD_MESSAGEPGM("DWELL...");
  447. codenum = 0;
  448. if(code_seen('P')) codenum = code_value(); // milliseconds to wait
  449. if(code_seen('S')) codenum = code_value() * 1000; // seconds to wait
  450. codenum += millis(); // keep track of when we started waiting
  451. while(millis() < codenum ){
  452. manage_heater();
  453. }
  454. break;
  455. case 28: //G28 Home all Axis one at a time
  456. saved_feedrate = feedrate;
  457. saved_feedmultiply = feedmultiply;
  458. feedmultiply = 100;
  459. for(int8_t i=0; i < NUM_AXIS; i++) {
  460. destination[i] = current_position[i];
  461. }
  462. feedrate = 0.0;
  463. home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
  464. if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
  465. {
  466. HOMEAXIS(X);
  467. }
  468. if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
  469. HOMEAXIS(Y);
  470. }
  471. if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
  472. HOMEAXIS(Z);
  473. }
  474. feedrate = saved_feedrate;
  475. feedmultiply = saved_feedmultiply;
  476. previous_millis_cmd = millis();
  477. endstops_hit_on_purpose();
  478. break;
  479. case 90: // G90
  480. relative_mode = false;
  481. break;
  482. case 91: // G91
  483. relative_mode = true;
  484. break;
  485. case 92: // G92
  486. if(!code_seen(axis_codes[E_AXIS]))
  487. st_synchronize();
  488. for(int8_t i=0; i < NUM_AXIS; i++) {
  489. if(code_seen(axis_codes[i])) {
  490. current_position[i] = code_value();
  491. if(i == E_AXIS) {
  492. plan_set_e_position(current_position[E_AXIS]);
  493. }
  494. else {
  495. plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  496. }
  497. }
  498. }
  499. break;
  500. }
  501. }
  502. else if(code_seen('M'))
  503. {
  504. switch( (int)code_value() )
  505. {
  506. case 17:
  507. LCD_MESSAGEPGM("No move.");
  508. enable_x();
  509. enable_y();
  510. enable_z();
  511. enable_e();
  512. break;
  513. #ifdef SDSUPPORT
  514. case 20: // M20 - list SD card
  515. SERIAL_PROTOCOLLNPGM("Begin file list");
  516. card.ls();
  517. SERIAL_PROTOCOLLNPGM("End file list");
  518. break;
  519. case 21: // M21 - init SD card
  520. card.initsd();
  521. break;
  522. case 22: //M22 - release SD card
  523. card.release();
  524. break;
  525. case 23: //M23 - Select file
  526. starpos = (strchr(strchr_pointer + 4,'*'));
  527. if(starpos!=NULL)
  528. *(starpos-1)='\0';
  529. card.openFile(strchr_pointer + 4,true);
  530. break;
  531. case 24: //M24 - Start SD print
  532. card.startFileprint();
  533. starttime=millis();
  534. break;
  535. case 25: //M25 - Pause SD print
  536. card.pauseSDPrint();
  537. break;
  538. case 26: //M26 - Set SD index
  539. if(card.cardOK && code_seen('S')){
  540. card.setIndex(code_value_long());
  541. }
  542. break;
  543. case 27: //M27 - Get SD status
  544. card.getStatus();
  545. break;
  546. case 28: //M28 - Start SD write
  547. starpos = (strchr(strchr_pointer + 4,'*'));
  548. if(starpos != NULL){
  549. char* npos = strchr(cmdbuffer[bufindr], 'N');
  550. strchr_pointer = strchr(npos,' ') + 1;
  551. *(starpos-1) = '\0';
  552. }
  553. card.openFile(strchr_pointer+4,false);
  554. break;
  555. case 29: //M29 - Stop SD write
  556. //processed in write to file routine above
  557. //card,saving = false;
  558. break;
  559. #endif //SDSUPPORT
  560. case 30: //M30 take time since the start of the SD print or an M109 command
  561. {
  562. stoptime=millis();
  563. char time[30];
  564. unsigned long t=(stoptime-starttime)/1000;
  565. int sec,min;
  566. min=t/60;
  567. sec=t%60;
  568. sprintf(time,"%i min, %i sec",min,sec);
  569. SERIAL_ECHO_START;
  570. SERIAL_ECHOLN(time);
  571. LCD_MESSAGE(time);
  572. }
  573. break;
  574. case 42: //M42 -Change pin status via gcode
  575. if (code_seen('S'))
  576. {
  577. int pin_status = code_value();
  578. if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
  579. {
  580. int pin_number = code_value();
  581. for(int8_t i = 0; i < (int8_t)sizeof(sensitive_pins); i++)
  582. {
  583. if (sensitive_pins[i] == pin_number)
  584. {
  585. pin_number = -1;
  586. break;
  587. }
  588. }
  589. if (pin_number > -1)
  590. {
  591. pinMode(pin_number, OUTPUT);
  592. digitalWrite(pin_number, pin_status);
  593. analogWrite(pin_number, pin_status);
  594. }
  595. }
  596. }
  597. break;
  598. case 104: // M104
  599. if (code_seen('S')) setTargetHotend0(code_value());
  600. setWatch();
  601. break;
  602. case 140: // M140 set bed temp
  603. if (code_seen('S')) setTargetBed(code_value());
  604. break;
  605. case 105 : // M105
  606. //SERIAL_ECHOLN(freeMemory());
  607. //test watchdog:
  608. //delay(20000);
  609. #if (TEMP_0_PIN > -1) || defined (HEATER_USES_AD595)
  610. SERIAL_PROTOCOLPGM("ok T:");
  611. SERIAL_PROTOCOL( degHotend0());
  612. #if TEMP_1_PIN > -1
  613. SERIAL_PROTOCOLPGM(" B:");
  614. SERIAL_PROTOCOL(degBed());
  615. #endif //TEMP_1_PIN
  616. #else
  617. SERIAL_ERROR_START;
  618. SERIAL_ERRORLNPGM("No thermistors - no temp");
  619. #endif
  620. #ifdef PIDTEMP
  621. SERIAL_PROTOCOLPGM(" @:");
  622. SERIAL_PROTOCOL( HeaterPower);
  623. #endif
  624. SERIAL_PROTOCOLLN("");
  625. return;
  626. break;
  627. case 109:
  628. {// M109 - Wait for extruder heater to reach target.
  629. LCD_MESSAGEPGM("Heating...");
  630. #ifdef AUTOTEMP
  631. autotemp_enabled=false;
  632. #endif
  633. if (code_seen('S')) setTargetHotend0(code_value());
  634. #ifdef AUTOTEMP
  635. if (code_seen('S')) autotemp_min=code_value();
  636. if (code_seen('T')) autotemp_max=code_value();
  637. if (code_seen('F'))
  638. {
  639. autotemp_factor=code_value();
  640. autotemp_enabled=true;
  641. }
  642. #endif
  643. setWatch();
  644. codenum = millis();
  645. /* See if we are heating up or cooling down */
  646. bool target_direction = isHeatingHotend0(); // true if heating, false if cooling
  647. #ifdef TEMP_RESIDENCY_TIME
  648. long residencyStart;
  649. residencyStart = -1;
  650. /* continue to loop until we have reached the target temp
  651. _and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
  652. while((target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ||
  653. (residencyStart > -1 && (millis() - residencyStart) < TEMP_RESIDENCY_TIME*1000) ) {
  654. #else
  655. while ( target_direction ? (isHeatingHotend0()) : (isCoolingHotend0()) ) {
  656. #endif //TEMP_RESIDENCY_TIME
  657. if( (millis() - codenum) > 1000 )
  658. { //Print Temp Reading every 1 second while heating up/cooling down
  659. SERIAL_PROTOCOLPGM("T:");
  660. SERIAL_PROTOCOLLN( degHotend0() );
  661. codenum = millis();
  662. }
  663. manage_heater();
  664. LCD_STATUS;
  665. #ifdef TEMP_RESIDENCY_TIME
  666. /* start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
  667. or when current temp falls outside the hysteresis after target temp was reached */
  668. if ((residencyStart == -1 && target_direction && !isHeatingHotend0()) ||
  669. (residencyStart == -1 && !target_direction && !isCoolingHotend0()) ||
  670. (residencyStart > -1 && labs(degHotend0() - degTargetHotend0()) > TEMP_HYSTERESIS) )
  671. {
  672. residencyStart = millis();
  673. }
  674. #endif //TEMP_RESIDENCY_TIME
  675. }
  676. LCD_MESSAGEPGM("Heating done.");
  677. starttime=millis();
  678. }
  679. break;
  680. case 190: // M190 - Wait bed for heater to reach target.
  681. #if TEMP_1_PIN > -1
  682. LCD_MESSAGEPGM("Bed Heating.");
  683. if (code_seen('S')) setTargetBed(code_value());
  684. codenum = millis();
  685. while(isHeatingBed())
  686. {
  687. if( (millis()-codenum) > 1000 ) //Print Temp Reading every 1 second while heating up.
  688. {
  689. float tt=degHotend0();
  690. SERIAL_PROTOCOLPGM("T:");
  691. SERIAL_PROTOCOLLN(tt );
  692. SERIAL_PROTOCOLPGM("ok T:");
  693. SERIAL_PROTOCOL(tt );
  694. SERIAL_PROTOCOLPGM(" B:");
  695. SERIAL_PROTOCOLLN(degBed() );
  696. codenum = millis();
  697. }
  698. manage_heater();
  699. }
  700. LCD_MESSAGEPGM("Bed done.");
  701. #endif
  702. break;
  703. #if FAN_PIN > -1
  704. case 106: //M106 Fan On
  705. if (code_seen('S')){
  706. WRITE(FAN_PIN,HIGH);
  707. fanpwm=constrain(code_value(),0,255);
  708. analogWrite(FAN_PIN, fanpwm);
  709. }
  710. else {
  711. WRITE(FAN_PIN,HIGH);
  712. fanpwm=255;
  713. analogWrite(FAN_PIN, fanpwm);
  714. }
  715. break;
  716. case 107: //M107 Fan Off
  717. WRITE(FAN_PIN,LOW);
  718. analogWrite(FAN_PIN, 0);
  719. break;
  720. #endif //FAN_PIN
  721. #if (PS_ON_PIN > -1)
  722. case 80: // M80 - ATX Power On
  723. SET_OUTPUT(PS_ON_PIN); //GND
  724. break;
  725. case 81: // M81 - ATX Power Off
  726. SET_INPUT(PS_ON_PIN); //Floating
  727. break;
  728. #endif
  729. case 82:
  730. axis_relative_modes[3] = false;
  731. break;
  732. case 83:
  733. axis_relative_modes[3] = true;
  734. break;
  735. case 18: //compatibility
  736. case 84: // M84
  737. if(code_seen('S')){
  738. stepper_inactive_time = code_value() * 1000;
  739. }
  740. else
  741. {
  742. st_synchronize();
  743. LCD_MESSAGEPGM("Free move.");
  744. disable_x();
  745. disable_y();
  746. disable_z();
  747. disable_e();
  748. }
  749. break;
  750. case 85: // M85
  751. code_seen('S');
  752. max_inactive_time = code_value() * 1000;
  753. break;
  754. case 92: // M92
  755. for(int8_t i=0; i < NUM_AXIS; i++)
  756. {
  757. if(code_seen(axis_codes[i]))
  758. axis_steps_per_unit[i] = code_value();
  759. }
  760. break;
  761. case 115: // M115
  762. SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
  763. break;
  764. case 114: // M114
  765. SERIAL_PROTOCOLPGM("X:");
  766. SERIAL_PROTOCOL(current_position[X_AXIS]);
  767. SERIAL_PROTOCOLPGM("Y:");
  768. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  769. SERIAL_PROTOCOLPGM("Z:");
  770. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  771. SERIAL_PROTOCOLPGM("E:");
  772. SERIAL_PROTOCOL(current_position[E_AXIS]);
  773. SERIAL_PROTOCOLPGM(" Count X:");
  774. SERIAL_PROTOCOL(float(st_get_position(X_AXIS))/axis_steps_per_unit[X_AXIS]);
  775. SERIAL_PROTOCOLPGM("Y:");
  776. SERIAL_PROTOCOL(float(st_get_position(Y_AXIS))/axis_steps_per_unit[Y_AXIS]);
  777. SERIAL_PROTOCOLPGM("Z:");
  778. SERIAL_PROTOCOL(float(st_get_position(Z_AXIS))/axis_steps_per_unit[Z_AXIS]);
  779. SERIAL_PROTOCOLLN("");
  780. break;
  781. case 119: // M119
  782. #if (X_MIN_PIN > -1)
  783. SERIAL_PROTOCOLPGM("x_min:");
  784. SERIAL_PROTOCOL(((READ(X_MIN_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  785. #endif
  786. #if (X_MAX_PIN > -1)
  787. SERIAL_PROTOCOLPGM("x_max:");
  788. SERIAL_PROTOCOL(((READ(X_MAX_PIN)^X_ENDSTOPS_INVERTING)?"H ":"L "));
  789. #endif
  790. #if (Y_MIN_PIN > -1)
  791. SERIAL_PROTOCOLPGM("y_min:");
  792. SERIAL_PROTOCOL(((READ(Y_MIN_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  793. #endif
  794. #if (Y_MAX_PIN > -1)
  795. SERIAL_PROTOCOLPGM("y_max:");
  796. SERIAL_PROTOCOL(((READ(Y_MAX_PIN)^Y_ENDSTOPS_INVERTING)?"H ":"L "));
  797. #endif
  798. #if (Z_MIN_PIN > -1)
  799. SERIAL_PROTOCOLPGM("z_min:");
  800. SERIAL_PROTOCOL(((READ(Z_MIN_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  801. #endif
  802. #if (Z_MAX_PIN > -1)
  803. SERIAL_PROTOCOLPGM("z_max:");
  804. SERIAL_PROTOCOL(((READ(Z_MAX_PIN)^Z_ENDSTOPS_INVERTING)?"H ":"L "));
  805. #endif
  806. SERIAL_PROTOCOLLN("");
  807. break;
  808. //TODO: update for all axis, use for loop
  809. case 201: // M201
  810. for(int8_t i=0; i < NUM_AXIS; i++)
  811. {
  812. if(code_seen(axis_codes[i])) axis_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  813. }
  814. break;
  815. #if 0 // Not used for Sprinter/grbl gen6
  816. case 202: // M202
  817. for(int8_t i=0; i < NUM_AXIS; i++) {
  818. if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
  819. }
  820. break;
  821. #endif
  822. case 203: // M203 max feedrate mm/sec
  823. for(int8_t i=0; i < NUM_AXIS; i++) {
  824. if(code_seen(axis_codes[i])) max_feedrate[i] = code_value()*60 ;
  825. }
  826. break;
  827. case 204: // M204 acclereration S normal moves T filmanent only moves
  828. {
  829. if(code_seen('S')) acceleration = code_value() ;
  830. if(code_seen('T')) retract_acceleration = code_value() ;
  831. }
  832. break;
  833. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  834. {
  835. if(code_seen('S')) minimumfeedrate = code_value()*60 ;
  836. if(code_seen('T')) mintravelfeedrate = code_value()*60 ;
  837. if(code_seen('B')) minsegmenttime = code_value() ;
  838. if(code_seen('X')) max_xy_jerk = code_value()*60 ;
  839. if(code_seen('Z')) max_z_jerk = code_value()*60 ;
  840. }
  841. break;
  842. case 220: // M220 S<factor in percent>- set speed factor override percentage
  843. {
  844. if(code_seen('S'))
  845. {
  846. feedmultiply = code_value() ;
  847. feedmultiplychanged=true;
  848. }
  849. }
  850. break;
  851. #ifdef PIDTEMP
  852. case 301: // M301
  853. {
  854. if(code_seen('P')) Kp = code_value();
  855. if(code_seen('I')) Ki = code_value()*PID_dT;
  856. if(code_seen('D')) Kd = code_value()/PID_dT;
  857. #ifdef PID_ADD_EXTRUSION_RATE
  858. if(code_seen('C')) Kc = code_value();
  859. #endif
  860. updatePID();
  861. SERIAL_PROTOCOL("ok p:");
  862. SERIAL_PROTOCOL(Kp);
  863. SERIAL_PROTOCOL(" i:");
  864. SERIAL_PROTOCOL(Ki/PID_dT);
  865. SERIAL_PROTOCOL(" d:");
  866. SERIAL_PROTOCOL(Kd*PID_dT);
  867. #ifdef PID_ADD_EXTRUSION_RATE
  868. SERIAL_PROTOCOL(" c:");
  869. SERIAL_PROTOCOL(Kc*PID_dT);
  870. #endif
  871. SERIAL_PROTOCOLLN("");
  872. }
  873. break;
  874. #endif //PIDTEMP
  875. case 400: // finish all moves
  876. {
  877. st_synchronize();
  878. }
  879. break;
  880. case 500: // Store settings in EEPROM
  881. {
  882. StoreSettings();
  883. }
  884. break;
  885. case 501: // Read settings from EEPROM
  886. {
  887. RetrieveSettings();
  888. }
  889. break;
  890. case 502: // Revert to default settings
  891. {
  892. RetrieveSettings(true);
  893. }
  894. break;
  895. }
  896. }
  897. else
  898. {
  899. SERIAL_ECHO_START;
  900. SERIAL_ECHOPGM("Unknown command:\"");
  901. SERIAL_ECHO(cmdbuffer[bufindr]);
  902. SERIAL_ECHOLNPGM("\"");
  903. }
  904. ClearToSend();
  905. }
  906. void FlushSerialRequestResend()
  907. {
  908. //char cmdbuffer[bufindr][100]="Resend:";
  909. Serial.flush();
  910. SERIAL_PROTOCOLPGM("Resend:");
  911. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  912. ClearToSend();
  913. }
  914. void ClearToSend()
  915. {
  916. previous_millis_cmd = millis();
  917. #ifdef SDSUPPORT
  918. if(fromsd[bufindr])
  919. return;
  920. #endif //SDSUPPORT
  921. SERIAL_PROTOCOLLNPGM("ok");
  922. }
  923. inline void get_coordinates()
  924. {
  925. for(int8_t i=0; i < NUM_AXIS; i++) {
  926. if(code_seen(axis_codes[i])) destination[i] = (float)code_value() + (axis_relative_modes[i] || relative_mode)*current_position[i];
  927. else destination[i] = current_position[i]; //Are these else lines really needed?
  928. }
  929. if(code_seen('F')) {
  930. next_feedrate = code_value();
  931. if(next_feedrate > 0.0) feedrate = next_feedrate;
  932. }
  933. }
  934. inline void get_arc_coordinates()
  935. {
  936. get_coordinates();
  937. if(code_seen('I')) offset[0] = code_value();
  938. if(code_seen('J')) offset[1] = code_value();
  939. }
  940. void prepare_move()
  941. {
  942. if (min_software_endstops) {
  943. if (destination[X_AXIS] < 0) destination[X_AXIS] = 0.0;
  944. if (destination[Y_AXIS] < 0) destination[Y_AXIS] = 0.0;
  945. if (destination[Z_AXIS] < 0) destination[Z_AXIS] = 0.0;
  946. }
  947. if (max_software_endstops) {
  948. if (destination[X_AXIS] > X_MAX_LENGTH) destination[X_AXIS] = X_MAX_LENGTH;
  949. if (destination[Y_AXIS] > Y_MAX_LENGTH) destination[Y_AXIS] = Y_MAX_LENGTH;
  950. if (destination[Z_AXIS] > Z_MAX_LENGTH) destination[Z_AXIS] = Z_MAX_LENGTH;
  951. }
  952. plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feedrate*feedmultiply/60/100.0);
  953. for(int8_t i=0; i < NUM_AXIS; i++) {
  954. current_position[i] = destination[i];
  955. }
  956. }
  957. void prepare_arc_move(char isclockwise) {
  958. float r = hypot(offset[X_AXIS], offset[Y_AXIS]); // Compute arc radius for mc_arc
  959. // Trace the arc
  960. mc_arc(current_position, destination, offset, X_AXIS, Y_AXIS, Z_AXIS, feedrate*feedmultiply/60/100.0, r, isclockwise);
  961. // As far as the parser is concerned, the position is now == target. In reality the
  962. // motion control system might still be processing the action and the real tool position
  963. // in any intermediate location.
  964. for(int8_t i=0; i < NUM_AXIS; i++) {
  965. current_position[i] = destination[i];
  966. }
  967. }
  968. void manage_inactivity(byte debug)
  969. {
  970. if( (millis()-previous_millis_cmd) > max_inactive_time )
  971. if(max_inactive_time)
  972. kill();
  973. if( (millis()-previous_millis_cmd) > stepper_inactive_time )
  974. if(stepper_inactive_time)
  975. {
  976. disable_x();
  977. disable_y();
  978. disable_z();
  979. disable_e();
  980. }
  981. check_axes_activity();
  982. }
  983. void kill()
  984. {
  985. disable_heater();
  986. disable_x();
  987. disable_y();
  988. disable_z();
  989. disable_e();
  990. if(PS_ON_PIN > -1) pinMode(PS_ON_PIN,INPUT);
  991. SERIAL_ERROR_START;
  992. SERIAL_ERRORLNPGM("Printer halted. kill() called !!");
  993. LCD_MESSAGEPGM("KILLED. ");
  994. while(1); // Wait for reset
  995. }