My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 279KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394959697989910010110210310410510610710810911011111211311411511611711811912012112212312412512612712812913013113213313413513613713813914014114214314414514614714814915015115215315415515615715815916016116216316416516616716816917017117217317417517617717817918018118218318418518618718818919019119219319419519619719819920020120220320420520620720820921021121221321421521621721821922022122222322422522622722822923023123223323423523623723823924024124224324424524624724824925025125225325425525625725825926026126226326426526626726826927027127227327427527627727827928028128228328428528628728828929029129229329429529629729829930030130230330430530630730830931031131231331431531631731831932032132232332432532632732832933033133233333433533633733833934034134234334434534634734834935035135235335435535635735835936036136236336436536636736836937037137237337437537637737837938038138238338438538638738838939039139239339439539639739839940040140240340440540640740840941041141241341441541641741841942042142242342442542642742842943043143243343443543643743843944044144244344444544644744844945045145245345445545645745845946046146246346446546646746846947047147247347447547647747847948048148248348448548648748848949049149249349449549649749849950050150250350450550650750850951051151251351451551651751851952052152252352452552652752852953053153253353453553653753853954054154254354454554654754854955055155255355455555655755855956056156256356456556656756856957057157257357457557657757857958058158258358458558658758858959059159259359459559659759859960060160260360460560660760860961061161261361461561661761861962062162262362462562662762862963063163263363463563663763863964064164264364464564664764864965065165265365465565665765865966066166266366466566666766866967067167267367467567667767867968068168268368468568668768868969069169269369469569669769869970070170270370470570670770870971071171271371471571671771871972072172272372472572672772872973073173273373473573673773873974074174274374474574674774874975075175275375475575675775875976076176276376476576676776876977077177277377477577677777877978078178278378478578678778878979079179279379479579679779879980080180280380480580680780880981081181281381481581681781881982082182282382482582682782882983083183283383483583683783883984084184284384484584684784884985085185285385485585685785885986086186286386486586686786886987087187287387487587687787887988088188288388488588688788888989089189289389489589689789889990090190290390490590690790890991091191291391491591691791891992092192292392492592692792892993093193293393493593693793893994094194294394494594694794894995095195295395495595695795895996096196296396496596696796896997097197297397497597697797897998098198298398498598698798898999099199299399499599699799899910001001100210031004100510061007100810091010101110121013101410151016101710181019102010211022102310241025102610271028102910301031103210331034103510361037103810391040104110421043104410451046104710481049105010511052105310541055105610571058105910601061106210631064106510661067106810691070107110721073107410751076107710781079108010811082108310841085108610871088108910901091109210931094109510961097109810991100110111021103110411051106110711081109111011111112111311141115111611171118111911201121112211231124112511261127112811291130113111321133113411351136113711381139114011411142114311441145114611471148114911501151115211531154115511561157115811591160116111621163116411651166116711681169117011711172117311741175117611771178117911801181118211831184118511861187118811891190119111921193119411951196119711981199120012011202120312041205120612071208120912101211121212131214121512161217121812191220122112221223122412251226122712281229123012311232123312341235123612371238123912401241124212431244124512461247124812491250125112521253125412551256125712581259126012611262126312641265126612671268126912701271127212731274127512761277127812791280128112821283128412851286128712881289129012911292129312941295129612971298129913001301130213031304130513061307130813091310131113121313131413151316131713181319132013211322132313241325132613271328132913301331133213331334133513361337133813391340134113421343134413451346134713481349135013511352135313541355135613571358135913601361136213631364136513661367136813691370137113721373137413751376137713781379138013811382138313841385138613871388138913901391139213931394139513961397139813991400140114021403140414051406140714081409141014111412141314141415141614171418141914201421142214231424142514261427142814291430143114321433143414351436143714381439144014411442144314441445144614471448144914501451145214531454145514561457145814591460146114621463146414651466146714681469147014711472147314741475147614771478147914801481148214831484148514861487148814891490149114921493149414951496149714981499150015011502150315041505150615071508150915101511151215131514151515161517151815191520152115221523152415251526152715281529153015311532153315341535153615371538153915401541154215431544154515461547154815491550155115521553155415551556155715581559156015611562156315641565156615671568156915701571157215731574157515761577157815791580158115821583158415851586158715881589159015911592159315941595159615971598159916001601160216031604160516061607160816091610161116121613161416151616161716181619162016211622162316241625162616271628162916301631163216331634163516361637163816391640164116421643164416451646164716481649165016511652165316541655165616571658165916601661166216631664166516661667166816691670167116721673167416751676167716781679168016811682168316841685168616871688168916901691169216931694169516961697169816991700170117021703170417051706170717081709171017111712171317141715171617171718171917201721172217231724172517261727172817291730173117321733173417351736173717381739174017411742174317441745174617471748174917501751175217531754175517561757175817591760176117621763176417651766176717681769177017711772177317741775177617771778177917801781178217831784178517861787178817891790179117921793179417951796179717981799180018011802180318041805180618071808180918101811181218131814181518161817181818191820182118221823182418251826182718281829183018311832183318341835183618371838183918401841184218431844184518461847184818491850185118521853185418551856185718581859186018611862186318641865186618671868186918701871187218731874187518761877187818791880188118821883188418851886188718881889189018911892189318941895189618971898189919001901190219031904190519061907190819091910191119121913191419151916191719181919192019211922192319241925192619271928192919301931193219331934193519361937193819391940194119421943194419451946194719481949195019511952195319541955195619571958195919601961196219631964196519661967196819691970197119721973197419751976197719781979198019811982198319841985198619871988198919901991199219931994199519961997199819992000200120022003200420052006200720082009201020112012201320142015201620172018201920202021202220232024202520262027202820292030203120322033203420352036203720382039204020412042204320442045204620472048204920502051205220532054205520562057205820592060206120622063206420652066206720682069207020712072207320742075207620772078207920802081208220832084208520862087208820892090209120922093209420952096209720982099210021012102210321042105210621072108210921102111211221132114211521162117211821192120212121222123212421252126212721282129213021312132213321342135213621372138213921402141214221432144214521462147214821492150215121522153215421552156215721582159216021612162216321642165216621672168216921702171217221732174217521762177217821792180218121822183218421852186218721882189219021912192219321942195219621972198219922002201220222032204220522062207220822092210221122122213221422152216221722182219222022212222222322242225222622272228222922302231223222332234223522362237223822392240224122422243224422452246224722482249225022512252225322542255225622572258225922602261226222632264226522662267226822692270227122722273227422752276227722782279228022812282228322842285228622872288228922902291229222932294229522962297229822992300230123022303230423052306230723082309231023112312231323142315231623172318231923202321232223232324232523262327232823292330233123322333233423352336233723382339234023412342234323442345234623472348234923502351235223532354235523562357235823592360236123622363236423652366236723682369237023712372237323742375237623772378237923802381238223832384238523862387238823892390239123922393239423952396239723982399240024012402240324042405240624072408240924102411241224132414241524162417241824192420242124222423242424252426242724282429243024312432243324342435243624372438243924402441244224432444244524462447244824492450245124522453245424552456245724582459246024612462246324642465246624672468246924702471247224732474247524762477247824792480248124822483248424852486248724882489249024912492249324942495249624972498249925002501250225032504250525062507250825092510251125122513251425152516251725182519252025212522252325242525252625272528252925302531253225332534253525362537253825392540254125422543254425452546254725482549255025512552255325542555255625572558255925602561256225632564256525662567256825692570257125722573257425752576257725782579258025812582258325842585258625872588258925902591259225932594259525962597259825992600260126022603260426052606260726082609261026112612261326142615261626172618261926202621262226232624262526262627262826292630263126322633263426352636263726382639264026412642264326442645264626472648264926502651265226532654265526562657265826592660266126622663266426652666266726682669267026712672267326742675267626772678267926802681268226832684268526862687268826892690269126922693269426952696269726982699270027012702270327042705270627072708270927102711271227132714271527162717271827192720272127222723272427252726272727282729273027312732273327342735273627372738273927402741274227432744274527462747274827492750275127522753275427552756275727582759276027612762276327642765276627672768276927702771277227732774277527762777277827792780278127822783278427852786278727882789279027912792279327942795279627972798279928002801280228032804280528062807280828092810281128122813281428152816281728182819282028212822282328242825282628272828282928302831283228332834283528362837283828392840284128422843284428452846284728482849285028512852285328542855285628572858285928602861286228632864286528662867286828692870287128722873287428752876287728782879288028812882288328842885288628872888288928902891289228932894289528962897289828992900290129022903290429052906290729082909291029112912291329142915291629172918291929202921292229232924292529262927292829292930293129322933293429352936293729382939294029412942294329442945294629472948294929502951295229532954295529562957295829592960296129622963296429652966296729682969297029712972297329742975297629772978297929802981298229832984298529862987298829892990299129922993299429952996299729982999300030013002300330043005300630073008300930103011301230133014301530163017301830193020302130223023302430253026302730283029303030313032303330343035303630373038303930403041304230433044304530463047304830493050305130523053305430553056305730583059306030613062306330643065306630673068306930703071307230733074307530763077307830793080308130823083308430853086308730883089309030913092309330943095309630973098309931003101310231033104310531063107310831093110311131123113311431153116311731183119312031213122312331243125312631273128312931303131313231333134313531363137313831393140314131423143314431453146314731483149315031513152315331543155315631573158315931603161316231633164316531663167316831693170317131723173317431753176317731783179318031813182318331843185318631873188318931903191319231933194319531963197319831993200320132023203320432053206320732083209321032113212321332143215321632173218321932203221322232233224322532263227322832293230323132323233323432353236323732383239324032413242324332443245324632473248324932503251325232533254325532563257325832593260326132623263326432653266326732683269327032713272327332743275327632773278327932803281328232833284328532863287328832893290329132923293329432953296329732983299330033013302330333043305330633073308330933103311331233133314331533163317331833193320332133223323332433253326332733283329333033313332333333343335333633373338333933403341334233433344334533463347334833493350335133523353335433553356335733583359336033613362336333643365336633673368336933703371337233733374337533763377337833793380338133823383338433853386338733883389339033913392339333943395339633973398339934003401340234033404340534063407340834093410341134123413341434153416341734183419342034213422342334243425342634273428342934303431343234333434343534363437343834393440344134423443344434453446344734483449345034513452345334543455345634573458345934603461346234633464346534663467346834693470347134723473347434753476347734783479348034813482348334843485348634873488348934903491349234933494349534963497349834993500350135023503350435053506350735083509351035113512351335143515351635173518351935203521352235233524352535263527352835293530353135323533353435353536353735383539354035413542354335443545354635473548354935503551355235533554355535563557355835593560356135623563356435653566356735683569357035713572357335743575357635773578357935803581358235833584358535863587358835893590359135923593359435953596359735983599360036013602360336043605360636073608360936103611361236133614361536163617361836193620362136223623362436253626362736283629363036313632363336343635363636373638363936403641364236433644364536463647364836493650365136523653365436553656365736583659366036613662366336643665366636673668366936703671367236733674367536763677367836793680368136823683368436853686368736883689369036913692369336943695369636973698369937003701370237033704370537063707370837093710371137123713371437153716371737183719372037213722372337243725372637273728372937303731373237333734373537363737373837393740374137423743374437453746374737483749375037513752375337543755375637573758375937603761376237633764376537663767376837693770377137723773377437753776377737783779378037813782378337843785378637873788378937903791379237933794379537963797379837993800380138023803380438053806380738083809381038113812381338143815381638173818381938203821382238233824382538263827382838293830383138323833383438353836383738383839384038413842384338443845384638473848384938503851385238533854385538563857385838593860386138623863386438653866386738683869387038713872387338743875387638773878387938803881388238833884388538863887388838893890389138923893389438953896389738983899390039013902390339043905390639073908390939103911391239133914391539163917391839193920392139223923392439253926392739283929393039313932393339343935393639373938393939403941394239433944394539463947394839493950395139523953395439553956395739583959396039613962396339643965396639673968396939703971397239733974397539763977397839793980398139823983398439853986398739883989399039913992399339943995399639973998399940004001400240034004400540064007400840094010401140124013401440154016401740184019402040214022402340244025402640274028402940304031403240334034403540364037403840394040404140424043404440454046404740484049405040514052405340544055405640574058405940604061406240634064406540664067406840694070407140724073407440754076407740784079408040814082408340844085408640874088408940904091409240934094409540964097409840994100410141024103410441054106410741084109411041114112411341144115411641174118411941204121412241234124412541264127412841294130413141324133413441354136413741384139414041414142414341444145414641474148414941504151415241534154415541564157415841594160416141624163416441654166416741684169417041714172417341744175417641774178417941804181418241834184418541864187418841894190419141924193419441954196419741984199420042014202420342044205420642074208420942104211421242134214421542164217421842194220422142224223422442254226422742284229423042314232423342344235423642374238423942404241424242434244424542464247424842494250425142524253425442554256425742584259426042614262426342644265426642674268426942704271427242734274427542764277427842794280428142824283428442854286428742884289429042914292429342944295429642974298429943004301430243034304430543064307430843094310431143124313431443154316431743184319432043214322432343244325432643274328432943304331433243334334433543364337433843394340434143424343434443454346434743484349435043514352435343544355435643574358435943604361436243634364436543664367436843694370437143724373437443754376437743784379438043814382438343844385438643874388438943904391439243934394439543964397439843994400440144024403440444054406440744084409441044114412441344144415441644174418441944204421442244234424442544264427442844294430443144324433443444354436443744384439444044414442444344444445444644474448444944504451445244534454445544564457445844594460446144624463446444654466446744684469447044714472447344744475447644774478447944804481448244834484448544864487448844894490449144924493449444954496449744984499450045014502450345044505450645074508450945104511451245134514451545164517451845194520452145224523452445254526452745284529453045314532453345344535453645374538453945404541454245434544454545464547454845494550455145524553455445554556455745584559456045614562456345644565456645674568456945704571457245734574457545764577457845794580458145824583458445854586458745884589459045914592459345944595459645974598459946004601460246034604460546064607460846094610461146124613461446154616461746184619462046214622462346244625462646274628462946304631463246334634463546364637463846394640464146424643464446454646464746484649465046514652465346544655465646574658465946604661466246634664466546664667466846694670467146724673467446754676467746784679468046814682468346844685468646874688468946904691469246934694469546964697469846994700470147024703470447054706470747084709471047114712471347144715471647174718471947204721472247234724472547264727472847294730473147324733473447354736473747384739474047414742474347444745474647474748474947504751475247534754475547564757475847594760476147624763476447654766476747684769477047714772477347744775477647774778477947804781478247834784478547864787478847894790479147924793479447954796479747984799480048014802480348044805480648074808480948104811481248134814481548164817481848194820482148224823482448254826482748284829483048314832483348344835483648374838483948404841484248434844484548464847484848494850485148524853485448554856485748584859486048614862486348644865486648674868486948704871487248734874487548764877487848794880488148824883488448854886488748884889489048914892489348944895489648974898489949004901490249034904490549064907490849094910491149124913491449154916491749184919492049214922492349244925492649274928492949304931493249334934493549364937493849394940494149424943494449454946494749484949495049514952495349544955495649574958495949604961496249634964496549664967496849694970497149724973497449754976497749784979498049814982498349844985498649874988498949904991499249934994499549964997499849995000500150025003500450055006500750085009501050115012501350145015501650175018501950205021502250235024502550265027502850295030503150325033503450355036503750385039504050415042504350445045504650475048504950505051505250535054505550565057505850595060506150625063506450655066506750685069507050715072507350745075507650775078507950805081508250835084508550865087508850895090509150925093509450955096509750985099510051015102510351045105510651075108510951105111511251135114511551165117511851195120512151225123512451255126512751285129513051315132513351345135513651375138513951405141514251435144514551465147514851495150515151525153515451555156515751585159516051615162516351645165516651675168516951705171517251735174517551765177517851795180518151825183518451855186518751885189519051915192519351945195519651975198519952005201520252035204520552065207520852095210521152125213521452155216521752185219522052215222522352245225522652275228522952305231523252335234523552365237523852395240524152425243524452455246524752485249525052515252525352545255525652575258525952605261526252635264526552665267526852695270527152725273527452755276527752785279528052815282528352845285528652875288528952905291529252935294529552965297529852995300530153025303530453055306530753085309531053115312531353145315531653175318531953205321532253235324532553265327532853295330533153325333533453355336533753385339534053415342534353445345534653475348534953505351535253535354535553565357535853595360536153625363536453655366536753685369537053715372537353745375537653775378537953805381538253835384538553865387538853895390539153925393539453955396539753985399540054015402540354045405540654075408540954105411541254135414541554165417541854195420542154225423542454255426542754285429543054315432543354345435543654375438543954405441544254435444544554465447544854495450545154525453545454555456545754585459546054615462546354645465546654675468546954705471547254735474547554765477547854795480548154825483548454855486548754885489549054915492549354945495549654975498549955005501550255035504550555065507550855095510551155125513551455155516551755185519552055215522552355245525552655275528552955305531553255335534553555365537553855395540554155425543554455455546554755485549555055515552555355545555555655575558555955605561556255635564556555665567556855695570557155725573557455755576557755785579558055815582558355845585558655875588558955905591559255935594559555965597559855995600560156025603560456055606560756085609561056115612561356145615561656175618561956205621562256235624562556265627562856295630563156325633563456355636563756385639564056415642564356445645564656475648564956505651565256535654565556565657565856595660566156625663566456655666566756685669567056715672567356745675567656775678567956805681568256835684568556865687568856895690569156925693569456955696569756985699570057015702570357045705570657075708570957105711571257135714571557165717571857195720572157225723572457255726572757285729573057315732573357345735573657375738573957405741574257435744574557465747574857495750575157525753575457555756575757585759576057615762576357645765576657675768576957705771577257735774577557765777577857795780578157825783578457855786578757885789579057915792579357945795579657975798579958005801580258035804580558065807580858095810581158125813581458155816581758185819582058215822582358245825582658275828582958305831583258335834583558365837583858395840584158425843584458455846584758485849585058515852585358545855585658575858585958605861586258635864586558665867586858695870587158725873587458755876587758785879588058815882588358845885588658875888588958905891589258935894589558965897589858995900590159025903590459055906590759085909591059115912591359145915591659175918591959205921592259235924592559265927592859295930593159325933593459355936593759385939594059415942594359445945594659475948594959505951595259535954595559565957595859595960596159625963596459655966596759685969597059715972597359745975597659775978597959805981598259835984598559865987598859895990599159925993599459955996599759985999600060016002600360046005600660076008600960106011601260136014601560166017601860196020602160226023602460256026602760286029603060316032603360346035603660376038603960406041604260436044604560466047604860496050605160526053605460556056605760586059606060616062606360646065606660676068606960706071607260736074607560766077607860796080608160826083608460856086608760886089609060916092609360946095609660976098609961006101610261036104610561066107610861096110611161126113611461156116611761186119612061216122612361246125612661276128612961306131613261336134613561366137613861396140614161426143614461456146614761486149615061516152615361546155615661576158615961606161616261636164616561666167616861696170617161726173617461756176617761786179618061816182618361846185618661876188618961906191619261936194619561966197619861996200620162026203620462056206620762086209621062116212621362146215621662176218621962206221622262236224622562266227622862296230623162326233623462356236623762386239624062416242624362446245624662476248624962506251625262536254625562566257625862596260626162626263626462656266626762686269627062716272627362746275627662776278627962806281628262836284628562866287628862896290629162926293629462956296629762986299630063016302630363046305630663076308630963106311631263136314631563166317631863196320632163226323632463256326632763286329633063316332633363346335633663376338633963406341634263436344634563466347634863496350635163526353635463556356635763586359636063616362636363646365636663676368636963706371637263736374637563766377637863796380638163826383638463856386638763886389639063916392639363946395639663976398639964006401640264036404640564066407640864096410641164126413641464156416641764186419642064216422642364246425642664276428642964306431643264336434643564366437643864396440644164426443644464456446644764486449645064516452645364546455645664576458645964606461646264636464646564666467646864696470647164726473647464756476647764786479648064816482648364846485648664876488648964906491649264936494649564966497649864996500650165026503650465056506650765086509651065116512651365146515651665176518651965206521652265236524652565266527652865296530653165326533653465356536653765386539654065416542654365446545654665476548654965506551655265536554655565566557655865596560656165626563656465656566656765686569657065716572657365746575657665776578657965806581658265836584658565866587658865896590659165926593659465956596659765986599660066016602660366046605660666076608660966106611661266136614661566166617661866196620662166226623662466256626662766286629663066316632663366346635663666376638663966406641664266436644664566466647664866496650665166526653665466556656665766586659666066616662666366646665666666676668666966706671667266736674667566766677667866796680668166826683668466856686668766886689669066916692669366946695669666976698669967006701670267036704670567066707670867096710671167126713671467156716671767186719672067216722672367246725672667276728672967306731673267336734673567366737673867396740674167426743674467456746674767486749675067516752675367546755675667576758675967606761676267636764676567666767676867696770677167726773677467756776677767786779678067816782678367846785678667876788678967906791679267936794679567966797679867996800680168026803680468056806680768086809681068116812681368146815681668176818681968206821682268236824682568266827682868296830683168326833683468356836683768386839684068416842684368446845684668476848684968506851685268536854685568566857685868596860686168626863686468656866686768686869687068716872687368746875687668776878687968806881688268836884688568866887688868896890689168926893689468956896689768986899690069016902690369046905690669076908690969106911691269136914691569166917691869196920692169226923692469256926692769286929693069316932693369346935693669376938693969406941694269436944694569466947694869496950695169526953695469556956695769586959696069616962696369646965696669676968696969706971697269736974697569766977697869796980698169826983698469856986698769886989699069916992699369946995699669976998699970007001700270037004700570067007700870097010701170127013701470157016701770187019702070217022702370247025702670277028702970307031703270337034703570367037703870397040704170427043704470457046704770487049705070517052705370547055705670577058705970607061706270637064706570667067706870697070707170727073707470757076707770787079708070817082708370847085708670877088708970907091709270937094709570967097709870997100710171027103710471057106710771087109711071117112711371147115711671177118711971207121712271237124712571267127712871297130713171327133713471357136713771387139714071417142714371447145714671477148714971507151715271537154715571567157715871597160716171627163716471657166716771687169717071717172717371747175717671777178717971807181718271837184718571867187718871897190719171927193719471957196719771987199720072017202720372047205720672077208720972107211721272137214721572167217721872197220722172227223722472257226722772287229723072317232723372347235723672377238723972407241724272437244724572467247724872497250725172527253725472557256725772587259726072617262726372647265726672677268726972707271727272737274727572767277727872797280728172827283728472857286728772887289729072917292729372947295729672977298729973007301730273037304730573067307730873097310731173127313731473157316731773187319732073217322732373247325732673277328732973307331733273337334733573367337733873397340734173427343734473457346734773487349735073517352735373547355735673577358735973607361736273637364736573667367736873697370737173727373737473757376737773787379738073817382738373847385738673877388738973907391739273937394739573967397739873997400740174027403740474057406740774087409741074117412741374147415741674177418741974207421742274237424742574267427742874297430743174327433743474357436743774387439744074417442744374447445744674477448744974507451745274537454745574567457745874597460746174627463746474657466746774687469747074717472747374747475747674777478747974807481748274837484748574867487748874897490749174927493749474957496749774987499750075017502750375047505750675077508750975107511751275137514751575167517751875197520752175227523752475257526752775287529753075317532753375347535753675377538753975407541754275437544754575467547754875497550755175527553755475557556755775587559756075617562756375647565756675677568756975707571757275737574757575767577757875797580758175827583758475857586758775887589759075917592759375947595759675977598759976007601760276037604760576067607760876097610761176127613761476157616761776187619762076217622762376247625762676277628762976307631763276337634763576367637763876397640764176427643764476457646764776487649765076517652765376547655765676577658765976607661766276637664766576667667766876697670767176727673767476757676767776787679768076817682768376847685768676877688768976907691769276937694769576967697769876997700770177027703770477057706770777087709771077117712771377147715771677177718771977207721772277237724772577267727772877297730773177327733773477357736773777387739774077417742774377447745774677477748774977507751775277537754775577567757775877597760776177627763776477657766776777687769777077717772777377747775777677777778777977807781778277837784778577867787778877897790779177927793779477957796779777987799780078017802780378047805780678077808780978107811781278137814781578167817781878197820782178227823782478257826782778287829783078317832783378347835783678377838783978407841784278437844784578467847784878497850785178527853785478557856785778587859786078617862786378647865786678677868786978707871787278737874787578767877787878797880788178827883788478857886788778887889789078917892789378947895789678977898789979007901790279037904790579067907790879097910791179127913791479157916791779187919792079217922792379247925792679277928792979307931793279337934793579367937793879397940794179427943794479457946794779487949795079517952795379547955795679577958795979607961796279637964796579667967796879697970797179727973797479757976797779787979798079817982798379847985798679877988798979907991799279937994799579967997799879998000800180028003800480058006800780088009801080118012801380148015801680178018801980208021802280238024802580268027802880298030803180328033803480358036803780388039804080418042804380448045804680478048804980508051805280538054805580568057805880598060806180628063806480658066806780688069807080718072807380748075807680778078807980808081808280838084808580868087808880898090809180928093809480958096809780988099810081018102810381048105810681078108810981108111811281138114811581168117811881198120812181228123812481258126812781288129813081318132813381348135813681378138813981408141814281438144814581468147814881498150815181528153815481558156815781588159816081618162816381648165816681678168816981708171817281738174817581768177817881798180818181828183818481858186818781888189819081918192819381948195819681978198819982008201820282038204820582068207820882098210821182128213821482158216821782188219822082218222822382248225822682278228822982308231823282338234823582368237823882398240824182428243824482458246824782488249825082518252825382548255825682578258825982608261826282638264826582668267826882698270827182728273827482758276827782788279828082818282828382848285828682878288828982908291829282938294829582968297829882998300830183028303830483058306830783088309831083118312831383148315831683178318831983208321832283238324832583268327832883298330833183328333833483358336833783388339834083418342834383448345834683478348834983508351835283538354835583568357835883598360836183628363836483658366836783688369837083718372837383748375837683778378837983808381838283838384838583868387838883898390839183928393839483958396839783988399840084018402840384048405840684078408840984108411841284138414841584168417841884198420842184228423842484258426842784288429843084318432843384348435843684378438843984408441844284438444844584468447844884498450845184528453845484558456845784588459846084618462846384648465846684678468846984708471847284738474847584768477847884798480848184828483848484858486848784888489849084918492849384948495849684978498849985008501850285038504850585068507850885098510851185128513851485158516851785188519852085218522852385248525852685278528852985308531853285338534853585368537853885398540854185428543854485458546854785488549855085518552855385548555855685578558855985608561856285638564856585668567856885698570857185728573857485758576857785788579858085818582858385848585858685878588858985908591859285938594859585968597859885998600860186028603860486058606860786088609861086118612861386148615861686178618861986208621862286238624862586268627862886298630863186328633863486358636863786388639864086418642864386448645864686478648864986508651865286538654865586568657865886598660866186628663866486658666866786688669867086718672867386748675867686778678867986808681868286838684868586868687868886898690869186928693869486958696869786988699870087018702870387048705870687078708870987108711871287138714871587168717871887198720872187228723872487258726872787288729873087318732873387348735873687378738873987408741874287438744874587468747874887498750875187528753875487558756875787588759876087618762876387648765876687678768876987708771877287738774877587768777877887798780878187828783878487858786878787888789879087918792879387948795879687978798879988008801880288038804880588068807880888098810881188128813881488158816881788188819882088218822882388248825882688278828882988308831883288338834883588368837883888398840884188428843884488458846884788488849885088518852885388548855885688578858885988608861886288638864886588668867886888698870887188728873887488758876887788788879888088818882888388848885888688878888888988908891889288938894889588968897889888998900890189028903890489058906890789088909891089118912891389148915891689178918891989208921892289238924892589268927892889298930893189328933
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #endif
  37. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  38. #include "qr_solve.h"
  39. #elif ENABLED(MESH_BED_LEVELING)
  40. #include "mesh_bed_leveling.h"
  41. #endif
  42. #if ENABLED(BEZIER_CURVE_SUPPORT)
  43. #include "planner_bezier.h"
  44. #endif
  45. #include "ultralcd.h"
  46. #include "planner.h"
  47. #include "stepper.h"
  48. #include "endstops.h"
  49. #include "temperature.h"
  50. #include "cardreader.h"
  51. #include "configuration_store.h"
  52. #include "language.h"
  53. #include "pins_arduino.h"
  54. #include "math.h"
  55. #include "nozzle.h"
  56. #include "duration_t.h"
  57. #include "types.h"
  58. #if ENABLED(USE_WATCHDOG)
  59. #include "watchdog.h"
  60. #endif
  61. #if ENABLED(BLINKM)
  62. #include "blinkm.h"
  63. #include "Wire.h"
  64. #endif
  65. #if HAS_SERVOS
  66. #include "servo.h"
  67. #endif
  68. #if HAS_DIGIPOTSS
  69. #include <SPI.h>
  70. #endif
  71. #if ENABLED(DAC_STEPPER_CURRENT)
  72. #include "stepper_dac.h"
  73. #endif
  74. #if ENABLED(EXPERIMENTAL_I2CBUS)
  75. #include "twibus.h"
  76. #endif
  77. /**
  78. * Look here for descriptions of G-codes:
  79. * - http://linuxcnc.org/handbook/gcode/g-code.html
  80. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  81. *
  82. * Help us document these G-codes online:
  83. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  84. * - http://reprap.org/wiki/G-code
  85. *
  86. * -----------------
  87. * Implemented Codes
  88. * -----------------
  89. *
  90. * "G" Codes
  91. *
  92. * G0 -> G1
  93. * G1 - Coordinated Movement X Y Z E
  94. * G2 - CW ARC
  95. * G3 - CCW ARC
  96. * G4 - Dwell S<seconds> or P<milliseconds>
  97. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  98. * G10 - Retract filament according to settings of M207
  99. * G11 - Retract recover filament according to settings of M208
  100. * G12 - Clean tool
  101. * G20 - Set input units to inches
  102. * G21 - Set input units to millimeters
  103. * G28 - Home one or more axes
  104. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  105. * G30 - Single Z probe, probes bed at current XY location.
  106. * G31 - Dock sled (Z_PROBE_SLED only)
  107. * G32 - Undock sled (Z_PROBE_SLED only)
  108. * G90 - Use Absolute Coordinates
  109. * G91 - Use Relative Coordinates
  110. * G92 - Set current position to coordinates given
  111. *
  112. * "M" Codes
  113. *
  114. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  115. * M1 - Same as M0
  116. * M17 - Enable/Power all stepper motors
  117. * M18 - Disable all stepper motors; same as M84
  118. * M20 - List SD card
  119. * M21 - Init SD card
  120. * M22 - Release SD card
  121. * M23 - Select SD file (M23 filename.g)
  122. * M24 - Start/resume SD print
  123. * M25 - Pause SD print
  124. * M26 - Set SD position in bytes (M26 S12345)
  125. * M27 - Report SD print status
  126. * M28 - Start SD write (M28 filename.g)
  127. * M29 - Stop SD write
  128. * M30 - Delete file from SD (M30 filename.g)
  129. * M31 - Output time since last M109 or SD card start to serial
  130. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  131. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  132. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  133. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  134. * M33 - Get the longname version of a path
  135. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  136. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  137. * M75 - Start the print job timer
  138. * M76 - Pause the print job timer
  139. * M77 - Stop the print job timer
  140. * M78 - Show statistical information about the print jobs
  141. * M80 - Turn on Power Supply
  142. * M81 - Turn off Power Supply
  143. * M82 - Set E codes absolute (default)
  144. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  145. * M84 - Disable steppers until next move,
  146. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  147. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  148. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  149. * M104 - Set extruder target temp
  150. * M105 - Read current temp
  151. * M106 - Fan on
  152. * M107 - Fan off
  153. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  154. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  155. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  156. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  157. * M110 - Set the current line number
  158. * M111 - Set debug flags with S<mask>. See flag bits defined in enum.h.
  159. * M112 - Emergency stop
  160. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  161. * M114 - Output current position to serial port
  162. * M115 - Capabilities string
  163. * M117 - Display a message on the controller screen
  164. * M119 - Output Endstop status to serial port
  165. * M120 - Enable endstop detection
  166. * M121 - Disable endstop detection
  167. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  168. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  169. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  170. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  171. * M140 - Set bed target temp
  172. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  173. * M149 - Set temperature units
  174. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  175. * M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
  176. * M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
  177. * M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
  178. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  179. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  180. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  181. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  182. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  183. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  184. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  185. * M205 - Set advanced settings. Current units apply:
  186. S<print> T<travel> minimum speeds
  187. B<minimum segment time>
  188. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  189. * M206 - Set additional homing offset
  190. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  191. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  192. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  193. Every normal extrude-only move will be classified as retract depending on the direction.
  194. * M211 - Enable, Disable, and/or Report software endstops: [S<bool>]
  195. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  196. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  197. * M221 - Set Flow Percentage: S<percent>
  198. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  199. * M240 - Trigger a camera to take a photograph
  200. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  201. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  202. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  203. * M301 - Set PID parameters P I and D
  204. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  205. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  206. * M304 - Set bed PID parameters P I and D
  207. * M380 - Activate solenoid on active extruder
  208. * M381 - Disable all solenoids
  209. * M400 - Finish all moves
  210. * M401 - Lower Z probe if present
  211. * M402 - Raise Z probe if present
  212. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  213. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  214. * M406 - Disable Filament Sensor extrusion control
  215. * M407 - Display measured filament diameter in millimeters
  216. * M410 - Quickstop. Abort all the planned moves
  217. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  218. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  219. * M428 - Set the home_offset logically based on the current_position
  220. * M500 - Store parameters in EEPROM
  221. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  222. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  223. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  224. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  225. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  226. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  227. * M666 - Set delta endstop adjustment
  228. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  229. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  230. * M907 - Set digital trimpot motor current using axis codes.
  231. * M908 - Control digital trimpot directly.
  232. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  233. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  234. * M350 - Set microstepping mode.
  235. * M351 - Toggle MS1 MS2 pins directly.
  236. *
  237. * ************ SCARA Specific - This can change to suit future G-code regulations
  238. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  239. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  240. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  241. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  242. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  243. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  244. * ************* SCARA End ***************
  245. *
  246. * ************ Custom codes - This can change to suit future G-code regulations
  247. * M100 - Watch Free Memory (For Debugging Only)
  248. * M928 - Start SD logging (M928 filename.g) - ended by M29
  249. * M999 - Restart after being stopped by error
  250. *
  251. * "T" Codes
  252. *
  253. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  254. *
  255. */
  256. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  257. void gcode_M100();
  258. #endif
  259. #if ENABLED(SDSUPPORT)
  260. CardReader card;
  261. #endif
  262. #if ENABLED(EXPERIMENTAL_I2CBUS)
  263. TWIBus i2c;
  264. #endif
  265. bool Running = true;
  266. uint8_t marlin_debug_flags = DEBUG_NONE;
  267. float current_position[NUM_AXIS] = { 0.0 };
  268. static float destination[NUM_AXIS] = { 0.0 };
  269. bool axis_known_position[XYZ] = { false };
  270. bool axis_homed[XYZ] = { false };
  271. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  272. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  273. static char* current_command, *current_command_args;
  274. static uint8_t cmd_queue_index_r = 0,
  275. cmd_queue_index_w = 0,
  276. commands_in_queue = 0;
  277. #if ENABLED(INCH_MODE_SUPPORT)
  278. float linear_unit_factor = 1.0;
  279. float volumetric_unit_factor = 1.0;
  280. #endif
  281. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  282. TempUnit input_temp_units = TEMPUNIT_C;
  283. #endif
  284. /**
  285. * Feed rates are often configured with mm/m
  286. * but the planner and stepper like mm/s units.
  287. */
  288. const float homing_feedrate_mm_s[] = {
  289. #if ENABLED(DELTA)
  290. MMM_TO_MMS(HOMING_FEEDRATE_Z), MMM_TO_MMS(HOMING_FEEDRATE_Z),
  291. #else
  292. MMM_TO_MMS(HOMING_FEEDRATE_XY), MMM_TO_MMS(HOMING_FEEDRATE_XY),
  293. #endif
  294. MMM_TO_MMS(HOMING_FEEDRATE_Z), 0
  295. };
  296. static float feedrate_mm_s = MMM_TO_MMS(1500.0), saved_feedrate_mm_s;
  297. int feedrate_percentage = 100, saved_feedrate_percentage;
  298. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  299. int flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  300. bool volumetric_enabled = false;
  301. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  302. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  303. // The distance that XYZ has been offset by G92. Reset by G28.
  304. float position_shift[XYZ] = { 0 };
  305. // This offset is added to the configured home position.
  306. // Set by M206, M428, or menu item. Saved to EEPROM.
  307. float home_offset[XYZ] = { 0 };
  308. // Software Endstops are based on the configured limits.
  309. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  310. bool soft_endstops_enabled = true;
  311. #endif
  312. float soft_endstop_min[XYZ] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS },
  313. soft_endstop_max[XYZ] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  314. #if FAN_COUNT > 0
  315. int fanSpeeds[FAN_COUNT] = { 0 };
  316. #endif
  317. // The active extruder (tool). Set with T<extruder> command.
  318. uint8_t active_extruder = 0;
  319. // Relative Mode. Enable with G91, disable with G90.
  320. static bool relative_mode = false;
  321. volatile bool wait_for_heatup = true;
  322. #if ENABLED(EMERGENCY_PARSER) && DISABLED(ULTIPANEL)
  323. wait_for_user = false;
  324. #endif
  325. const char errormagic[] PROGMEM = "Error:";
  326. const char echomagic[] PROGMEM = "echo:";
  327. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  328. static int serial_count = 0;
  329. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  330. static char* seen_pointer;
  331. // Next Immediate GCode Command pointer. NULL if none.
  332. const char* queued_commands_P = NULL;
  333. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  334. // Inactivity shutdown
  335. millis_t previous_cmd_ms = 0;
  336. static millis_t max_inactive_time = 0;
  337. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  338. // Print Job Timer
  339. #if ENABLED(PRINTCOUNTER)
  340. PrintCounter print_job_timer = PrintCounter();
  341. #else
  342. Stopwatch print_job_timer = Stopwatch();
  343. #endif
  344. // Buzzer - I2C on the LCD or a BEEPER_PIN
  345. #if ENABLED(LCD_USE_I2C_BUZZER)
  346. #define BUZZ(d,f) lcd_buzz(d, f)
  347. #elif HAS_BUZZER
  348. Buzzer buzzer;
  349. #define BUZZ(d,f) buzzer.tone(d, f)
  350. #else
  351. #define BUZZ(d,f) NOOP
  352. #endif
  353. static uint8_t target_extruder;
  354. #if HAS_BED_PROBE
  355. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  356. #endif
  357. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS]))
  358. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  359. float xy_probe_feedrate_mm_s = MMM_TO_MMS(XY_PROBE_SPEED);
  360. bool bed_leveling_in_progress = false;
  361. #define XY_PROBE_FEEDRATE_MM_S xy_probe_feedrate_mm_s
  362. #elif defined(XY_PROBE_SPEED)
  363. #define XY_PROBE_FEEDRATE_MM_S MMM_TO_MMS(XY_PROBE_SPEED)
  364. #else
  365. #define XY_PROBE_FEEDRATE_MM_S PLANNER_XY_FEEDRATE()
  366. #endif
  367. #if ENABLED(Z_DUAL_ENDSTOPS)
  368. float z_endstop_adj = 0;
  369. #endif
  370. // Extruder offsets
  371. #if HOTENDS > 1
  372. float hotend_offset[][HOTENDS] = {
  373. HOTEND_OFFSET_X,
  374. HOTEND_OFFSET_Y
  375. #ifdef HOTEND_OFFSET_Z
  376. , HOTEND_OFFSET_Z
  377. #endif
  378. };
  379. #endif
  380. #if HAS_Z_SERVO_ENDSTOP
  381. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  382. #endif
  383. #if ENABLED(BARICUDA)
  384. int baricuda_valve_pressure = 0;
  385. int baricuda_e_to_p_pressure = 0;
  386. #endif
  387. #if ENABLED(FWRETRACT)
  388. bool autoretract_enabled = false;
  389. bool retracted[EXTRUDERS] = { false };
  390. bool retracted_swap[EXTRUDERS] = { false };
  391. float retract_length = RETRACT_LENGTH;
  392. float retract_length_swap = RETRACT_LENGTH_SWAP;
  393. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  394. float retract_zlift = RETRACT_ZLIFT;
  395. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  396. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  397. float retract_recover_feedrate_mm_s = RETRACT_RECOVER_FEEDRATE;
  398. #endif // FWRETRACT
  399. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  400. bool powersupply =
  401. #if ENABLED(PS_DEFAULT_OFF)
  402. false
  403. #else
  404. true
  405. #endif
  406. ;
  407. #endif
  408. #if ENABLED(DELTA)
  409. #define SIN_60 0.8660254037844386
  410. #define COS_60 0.5
  411. float delta[ABC],
  412. cartesian_position[XYZ] = { 0 },
  413. endstop_adj[ABC] = { 0 };
  414. // these are the default values, can be overriden with M665
  415. float delta_radius = DELTA_RADIUS,
  416. delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1), // front left tower
  417. delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1),
  418. delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2), // front right tower
  419. delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2),
  420. delta_tower3_x = 0, // back middle tower
  421. delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3),
  422. delta_diagonal_rod = DELTA_DIAGONAL_ROD,
  423. delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1,
  424. delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2,
  425. delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3,
  426. delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1),
  427. delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2),
  428. delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3),
  429. delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND,
  430. delta_clip_start_height = Z_MAX_POS;
  431. float delta_safe_distance_from_top();
  432. void set_cartesian_from_steppers();
  433. #else
  434. static bool home_all_axis = true;
  435. #endif
  436. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  437. int nonlinear_grid_spacing[2] = { 0 };
  438. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  439. #endif
  440. #if IS_SCARA
  441. // Float constants for SCARA calculations
  442. const float L1 = SCARA_LINKAGE_1, L2 = SCARA_LINKAGE_2,
  443. L1_2 = sq(float(L1)), L1_2_2 = 2.0 * L1_2,
  444. L2_2 = sq(float(L2));
  445. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND,
  446. delta[ABC],
  447. axis_scaling[ABC] = { 1, 1, 1 }, // Build size scaling, default to 1
  448. cartesian_position[XYZ] = { 0 };
  449. void set_cartesian_from_steppers() { } // to be written later
  450. #endif
  451. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  452. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  453. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA, // Nominal filament width. Change with M404
  454. filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; // Measured filament diameter
  455. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; // Ring buffer to delayed measurement. Store extruder factor after subtracting 100
  456. int filwidth_delay_index[2] = { 0, -1 }; // Indexes into ring buffer
  457. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  458. #endif
  459. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  460. static bool filament_ran_out = false;
  461. #endif
  462. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  463. FilamentChangeMenuResponse filament_change_menu_response;
  464. #endif
  465. #if ENABLED(MIXING_EXTRUDER)
  466. float mixing_factor[MIXING_STEPPERS];
  467. #if MIXING_VIRTUAL_TOOLS > 1
  468. float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
  469. #endif
  470. #endif
  471. static bool send_ok[BUFSIZE];
  472. #if HAS_SERVOS
  473. Servo servo[NUM_SERVOS];
  474. #define MOVE_SERVO(I, P) servo[I].move(P)
  475. #if HAS_Z_SERVO_ENDSTOP
  476. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  477. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  478. #endif
  479. #endif
  480. #ifdef CHDK
  481. millis_t chdkHigh = 0;
  482. boolean chdkActive = false;
  483. #endif
  484. #if ENABLED(PID_EXTRUSION_SCALING)
  485. int lpq_len = 20;
  486. #endif
  487. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  488. static MarlinBusyState busy_state = NOT_BUSY;
  489. static millis_t next_busy_signal_ms = 0;
  490. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  491. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  492. #else
  493. #define host_keepalive() ;
  494. #define KEEPALIVE_STATE(n) ;
  495. #endif // HOST_KEEPALIVE_FEATURE
  496. #define DEFINE_PGM_READ_ANY(type, reader) \
  497. static inline type pgm_read_any(const type *p) \
  498. { return pgm_read_##reader##_near(p); }
  499. DEFINE_PGM_READ_ANY(float, float);
  500. DEFINE_PGM_READ_ANY(signed char, byte);
  501. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  502. static const PROGMEM type array##_P[XYZ] = \
  503. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  504. static inline type array(int axis) \
  505. { return pgm_read_any(&array##_P[axis]); }
  506. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  507. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  508. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  509. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  510. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  511. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  512. /**
  513. * ***************************************************************************
  514. * ******************************** FUNCTIONS ********************************
  515. * ***************************************************************************
  516. */
  517. void stop();
  518. void get_available_commands();
  519. void process_next_command();
  520. void prepare_move_to_destination();
  521. void set_current_from_steppers_for_axis(AxisEnum axis);
  522. #if ENABLED(ARC_SUPPORT)
  523. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  524. #endif
  525. #if ENABLED(BEZIER_CURVE_SUPPORT)
  526. void plan_cubic_move(const float offset[4]);
  527. #endif
  528. void serial_echopair_P(const char* s_P, const char *v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  529. void serial_echopair_P(const char* s_P, char v) { serialprintPGM(s_P); SERIAL_CHAR(v); }
  530. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  531. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  532. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  533. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  534. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  535. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s=0.0, bool no_move=false);
  536. static void report_current_position();
  537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  538. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  539. serialprintPGM(prefix);
  540. SERIAL_ECHOPAIR("(", x);
  541. SERIAL_ECHOPAIR(", ", y);
  542. SERIAL_ECHOPAIR(", ", z);
  543. SERIAL_ECHOPGM(")");
  544. if (suffix) serialprintPGM(suffix);
  545. else SERIAL_EOL;
  546. }
  547. void print_xyz(const char* prefix, const char* suffix, const float xyz[]) {
  548. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  549. }
  550. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  551. void print_xyz(const char* prefix, const char* suffix, const vector_3 &xyz) {
  552. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  553. }
  554. #endif
  555. #define DEBUG_POS(SUFFIX,VAR) do { \
  556. print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); } while(0)
  557. #endif
  558. /**
  559. * sync_plan_position
  560. * Set planner / stepper positions to the cartesian current_position.
  561. * The stepper code translates these coordinates into step units.
  562. * Allows translation between steps and millimeters for cartesian & core robots
  563. */
  564. inline void sync_plan_position() {
  565. #if ENABLED(DEBUG_LEVELING_FEATURE)
  566. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  567. #endif
  568. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  569. }
  570. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  571. #if IS_KINEMATIC
  572. inline void sync_plan_position_kinematic() {
  573. #if ENABLED(DEBUG_LEVELING_FEATURE)
  574. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_kinematic", current_position);
  575. #endif
  576. inverse_kinematics(current_position);
  577. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  578. }
  579. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_kinematic()
  580. #else
  581. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  582. #endif
  583. #if ENABLED(SDSUPPORT)
  584. #include "SdFatUtil.h"
  585. int freeMemory() { return SdFatUtil::FreeRam(); }
  586. #else
  587. extern "C" {
  588. extern unsigned int __bss_end;
  589. extern unsigned int __heap_start;
  590. extern void* __brkval;
  591. int freeMemory() {
  592. int free_memory;
  593. if ((int)__brkval == 0)
  594. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  595. else
  596. free_memory = ((int)&free_memory) - ((int)__brkval);
  597. return free_memory;
  598. }
  599. }
  600. #endif //!SDSUPPORT
  601. #if ENABLED(DIGIPOT_I2C)
  602. extern void digipot_i2c_set_current(int channel, float current);
  603. extern void digipot_i2c_init();
  604. #endif
  605. /**
  606. * Inject the next "immediate" command, when possible.
  607. * Return true if any immediate commands remain to inject.
  608. */
  609. static bool drain_queued_commands_P() {
  610. if (queued_commands_P != NULL) {
  611. size_t i = 0;
  612. char c, cmd[30];
  613. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  614. cmd[sizeof(cmd) - 1] = '\0';
  615. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  616. cmd[i] = '\0';
  617. if (enqueue_and_echo_command(cmd)) { // success?
  618. if (c) // newline char?
  619. queued_commands_P += i + 1; // advance to the next command
  620. else
  621. queued_commands_P = NULL; // nul char? no more commands
  622. }
  623. }
  624. return (queued_commands_P != NULL); // return whether any more remain
  625. }
  626. /**
  627. * Record one or many commands to run from program memory.
  628. * Aborts the current queue, if any.
  629. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  630. */
  631. void enqueue_and_echo_commands_P(const char* pgcode) {
  632. queued_commands_P = pgcode;
  633. drain_queued_commands_P(); // first command executed asap (when possible)
  634. }
  635. void clear_command_queue() {
  636. cmd_queue_index_r = cmd_queue_index_w;
  637. commands_in_queue = 0;
  638. }
  639. /**
  640. * Once a new command is in the ring buffer, call this to commit it
  641. */
  642. inline void _commit_command(bool say_ok) {
  643. send_ok[cmd_queue_index_w] = say_ok;
  644. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  645. commands_in_queue++;
  646. }
  647. /**
  648. * Copy a command directly into the main command buffer, from RAM.
  649. * Returns true if successfully adds the command
  650. */
  651. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  652. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  653. strcpy(command_queue[cmd_queue_index_w], cmd);
  654. _commit_command(say_ok);
  655. return true;
  656. }
  657. void enqueue_and_echo_command_now(const char* cmd) {
  658. while (!enqueue_and_echo_command(cmd)) idle();
  659. }
  660. /**
  661. * Enqueue with Serial Echo
  662. */
  663. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  664. if (_enqueuecommand(cmd, say_ok)) {
  665. SERIAL_ECHO_START;
  666. SERIAL_ECHOPGM(MSG_Enqueueing);
  667. SERIAL_ECHO(cmd);
  668. SERIAL_ECHOLNPGM("\"");
  669. return true;
  670. }
  671. return false;
  672. }
  673. void setup_killpin() {
  674. #if HAS_KILL
  675. SET_INPUT(KILL_PIN);
  676. WRITE(KILL_PIN, HIGH);
  677. #endif
  678. }
  679. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  680. void setup_filrunoutpin() {
  681. pinMode(FIL_RUNOUT_PIN, INPUT);
  682. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  683. WRITE(FIL_RUNOUT_PIN, HIGH);
  684. #endif
  685. }
  686. #endif
  687. // Set home pin
  688. void setup_homepin(void) {
  689. #if HAS_HOME
  690. SET_INPUT(HOME_PIN);
  691. WRITE(HOME_PIN, HIGH);
  692. #endif
  693. }
  694. void setup_photpin() {
  695. #if HAS_PHOTOGRAPH
  696. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  697. #endif
  698. }
  699. void setup_powerhold() {
  700. #if HAS_SUICIDE
  701. OUT_WRITE(SUICIDE_PIN, HIGH);
  702. #endif
  703. #if HAS_POWER_SWITCH
  704. #if ENABLED(PS_DEFAULT_OFF)
  705. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  706. #else
  707. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  708. #endif
  709. #endif
  710. }
  711. void suicide() {
  712. #if HAS_SUICIDE
  713. OUT_WRITE(SUICIDE_PIN, LOW);
  714. #endif
  715. }
  716. void servo_init() {
  717. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  718. servo[0].attach(SERVO0_PIN);
  719. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  720. #endif
  721. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  722. servo[1].attach(SERVO1_PIN);
  723. servo[1].detach();
  724. #endif
  725. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  726. servo[2].attach(SERVO2_PIN);
  727. servo[2].detach();
  728. #endif
  729. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  730. servo[3].attach(SERVO3_PIN);
  731. servo[3].detach();
  732. #endif
  733. #if HAS_Z_SERVO_ENDSTOP
  734. /**
  735. * Set position of Z Servo Endstop
  736. *
  737. * The servo might be deployed and positioned too low to stow
  738. * when starting up the machine or rebooting the board.
  739. * There's no way to know where the nozzle is positioned until
  740. * homing has been done - no homing with z-probe without init!
  741. *
  742. */
  743. STOW_Z_SERVO();
  744. #endif
  745. }
  746. /**
  747. * Stepper Reset (RigidBoard, et.al.)
  748. */
  749. #if HAS_STEPPER_RESET
  750. void disableStepperDrivers() {
  751. pinMode(STEPPER_RESET_PIN, OUTPUT);
  752. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  753. }
  754. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  755. #endif
  756. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  757. void i2c_on_receive(int bytes) { // just echo all bytes received to serial
  758. i2c.receive(bytes);
  759. }
  760. void i2c_on_request() { // just send dummy data for now
  761. i2c.reply("Hello World!\n");
  762. }
  763. #endif
  764. void gcode_line_error(const char* err, bool doFlush = true) {
  765. SERIAL_ERROR_START;
  766. serialprintPGM(err);
  767. SERIAL_ERRORLN(gcode_LastN);
  768. //Serial.println(gcode_N);
  769. if (doFlush) FlushSerialRequestResend();
  770. serial_count = 0;
  771. }
  772. inline void get_serial_commands() {
  773. static char serial_line_buffer[MAX_CMD_SIZE];
  774. static boolean serial_comment_mode = false;
  775. // If the command buffer is empty for too long,
  776. // send "wait" to indicate Marlin is still waiting.
  777. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  778. static millis_t last_command_time = 0;
  779. millis_t ms = millis();
  780. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  781. SERIAL_ECHOLNPGM(MSG_WAIT);
  782. last_command_time = ms;
  783. }
  784. #endif
  785. /**
  786. * Loop while serial characters are incoming and the queue is not full
  787. */
  788. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  789. char serial_char = MYSERIAL.read();
  790. /**
  791. * If the character ends the line
  792. */
  793. if (serial_char == '\n' || serial_char == '\r') {
  794. serial_comment_mode = false; // end of line == end of comment
  795. if (!serial_count) continue; // skip empty lines
  796. serial_line_buffer[serial_count] = 0; // terminate string
  797. serial_count = 0; //reset buffer
  798. char* command = serial_line_buffer;
  799. while (*command == ' ') command++; // skip any leading spaces
  800. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  801. char* apos = strchr(command, '*');
  802. if (npos) {
  803. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  804. if (M110) {
  805. char* n2pos = strchr(command + 4, 'N');
  806. if (n2pos) npos = n2pos;
  807. }
  808. gcode_N = strtol(npos + 1, NULL, 10);
  809. if (gcode_N != gcode_LastN + 1 && !M110) {
  810. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  811. return;
  812. }
  813. if (apos) {
  814. byte checksum = 0, count = 0;
  815. while (command[count] != '*') checksum ^= command[count++];
  816. if (strtol(apos + 1, NULL, 10) != checksum) {
  817. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  818. return;
  819. }
  820. // if no errors, continue parsing
  821. }
  822. else {
  823. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  824. return;
  825. }
  826. gcode_LastN = gcode_N;
  827. // if no errors, continue parsing
  828. }
  829. else if (apos) { // No '*' without 'N'
  830. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  831. return;
  832. }
  833. // Movement commands alert when stopped
  834. if (IsStopped()) {
  835. char* gpos = strchr(command, 'G');
  836. if (gpos) {
  837. int codenum = strtol(gpos + 1, NULL, 10);
  838. switch (codenum) {
  839. case 0:
  840. case 1:
  841. case 2:
  842. case 3:
  843. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  844. LCD_MESSAGEPGM(MSG_STOPPED);
  845. break;
  846. }
  847. }
  848. }
  849. #if DISABLED(EMERGENCY_PARSER)
  850. // If command was e-stop process now
  851. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  852. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  853. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  854. #endif
  855. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  856. last_command_time = ms;
  857. #endif
  858. // Add the command to the queue
  859. _enqueuecommand(serial_line_buffer, true);
  860. }
  861. else if (serial_count >= MAX_CMD_SIZE - 1) {
  862. // Keep fetching, but ignore normal characters beyond the max length
  863. // The command will be injected when EOL is reached
  864. }
  865. else if (serial_char == '\\') { // Handle escapes
  866. if (MYSERIAL.available() > 0) {
  867. // if we have one more character, copy it over
  868. serial_char = MYSERIAL.read();
  869. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  870. }
  871. // otherwise do nothing
  872. }
  873. else { // it's not a newline, carriage return or escape char
  874. if (serial_char == ';') serial_comment_mode = true;
  875. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  876. }
  877. } // queue has space, serial has data
  878. }
  879. #if ENABLED(SDSUPPORT)
  880. inline void get_sdcard_commands() {
  881. static bool stop_buffering = false,
  882. sd_comment_mode = false;
  883. if (!card.sdprinting) return;
  884. /**
  885. * '#' stops reading from SD to the buffer prematurely, so procedural
  886. * macro calls are possible. If it occurs, stop_buffering is triggered
  887. * and the buffer is run dry; this character _can_ occur in serial com
  888. * due to checksums, however, no checksums are used in SD printing.
  889. */
  890. if (commands_in_queue == 0) stop_buffering = false;
  891. uint16_t sd_count = 0;
  892. bool card_eof = card.eof();
  893. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  894. int16_t n = card.get();
  895. char sd_char = (char)n;
  896. card_eof = card.eof();
  897. if (card_eof || n == -1
  898. || sd_char == '\n' || sd_char == '\r'
  899. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  900. ) {
  901. if (card_eof) {
  902. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  903. card.printingHasFinished();
  904. card.checkautostart(true);
  905. }
  906. else if (n == -1) {
  907. SERIAL_ERROR_START;
  908. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  909. }
  910. if (sd_char == '#') stop_buffering = true;
  911. sd_comment_mode = false; //for new command
  912. if (!sd_count) continue; //skip empty lines
  913. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  914. sd_count = 0; //clear buffer
  915. _commit_command(false);
  916. }
  917. else if (sd_count >= MAX_CMD_SIZE - 1) {
  918. /**
  919. * Keep fetching, but ignore normal characters beyond the max length
  920. * The command will be injected when EOL is reached
  921. */
  922. }
  923. else {
  924. if (sd_char == ';') sd_comment_mode = true;
  925. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  926. }
  927. }
  928. }
  929. #endif // SDSUPPORT
  930. /**
  931. * Add to the circular command queue the next command from:
  932. * - The command-injection queue (queued_commands_P)
  933. * - The active serial input (usually USB)
  934. * - The SD card file being actively printed
  935. */
  936. void get_available_commands() {
  937. // if any immediate commands remain, don't get other commands yet
  938. if (drain_queued_commands_P()) return;
  939. get_serial_commands();
  940. #if ENABLED(SDSUPPORT)
  941. get_sdcard_commands();
  942. #endif
  943. }
  944. inline bool code_has_value() {
  945. int i = 1;
  946. char c = seen_pointer[i];
  947. while (c == ' ') c = seen_pointer[++i];
  948. if (c == '-' || c == '+') c = seen_pointer[++i];
  949. if (c == '.') c = seen_pointer[++i];
  950. return NUMERIC(c);
  951. }
  952. inline float code_value_float() {
  953. float ret;
  954. char* e = strchr(seen_pointer, 'E');
  955. if (e) {
  956. *e = 0;
  957. ret = strtod(seen_pointer + 1, NULL);
  958. *e = 'E';
  959. }
  960. else
  961. ret = strtod(seen_pointer + 1, NULL);
  962. return ret;
  963. }
  964. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  965. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  966. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  967. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  968. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  969. inline bool code_value_bool() { return code_value_byte() > 0; }
  970. #if ENABLED(INCH_MODE_SUPPORT)
  971. inline void set_input_linear_units(LinearUnit units) {
  972. switch (units) {
  973. case LINEARUNIT_INCH:
  974. linear_unit_factor = 25.4;
  975. break;
  976. case LINEARUNIT_MM:
  977. default:
  978. linear_unit_factor = 1.0;
  979. break;
  980. }
  981. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  982. }
  983. inline float axis_unit_factor(int axis) {
  984. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  985. }
  986. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  987. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  988. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  989. #else
  990. inline float code_value_linear_units() { return code_value_float(); }
  991. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  992. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  993. #endif
  994. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  995. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  996. float code_value_temp_abs() {
  997. switch (input_temp_units) {
  998. case TEMPUNIT_C:
  999. return code_value_float();
  1000. case TEMPUNIT_F:
  1001. return (code_value_float() - 32) * 0.5555555556;
  1002. case TEMPUNIT_K:
  1003. return code_value_float() - 272.15;
  1004. default:
  1005. return code_value_float();
  1006. }
  1007. }
  1008. float code_value_temp_diff() {
  1009. switch (input_temp_units) {
  1010. case TEMPUNIT_C:
  1011. case TEMPUNIT_K:
  1012. return code_value_float();
  1013. case TEMPUNIT_F:
  1014. return code_value_float() * 0.5555555556;
  1015. default:
  1016. return code_value_float();
  1017. }
  1018. }
  1019. #else
  1020. float code_value_temp_abs() { return code_value_float(); }
  1021. float code_value_temp_diff() { return code_value_float(); }
  1022. #endif
  1023. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1024. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1025. bool code_seen(char code) {
  1026. seen_pointer = strchr(current_command_args, code);
  1027. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1028. }
  1029. /**
  1030. * Set target_extruder from the T parameter or the active_extruder
  1031. *
  1032. * Returns TRUE if the target is invalid
  1033. */
  1034. bool get_target_extruder_from_command(int code) {
  1035. if (code_seen('T')) {
  1036. if (code_value_byte() >= EXTRUDERS) {
  1037. SERIAL_ECHO_START;
  1038. SERIAL_CHAR('M');
  1039. SERIAL_ECHO(code);
  1040. SERIAL_ECHOLNPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1041. return true;
  1042. }
  1043. target_extruder = code_value_byte();
  1044. }
  1045. else
  1046. target_extruder = active_extruder;
  1047. return false;
  1048. }
  1049. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  1050. bool extruder_duplication_enabled = false; // Used in Dual X mode 2
  1051. #endif
  1052. #if ENABLED(DUAL_X_CARRIAGE)
  1053. #define DXC_FULL_CONTROL_MODE 0
  1054. #define DXC_AUTO_PARK_MODE 1
  1055. #define DXC_DUPLICATION_MODE 2
  1056. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1057. static float x_home_pos(int extruder) {
  1058. if (extruder == 0)
  1059. return LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1060. else
  1061. /**
  1062. * In dual carriage mode the extruder offset provides an override of the
  1063. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1064. * This allow soft recalibration of the second extruder offset position
  1065. * without firmware reflash (through the M218 command).
  1066. */
  1067. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1068. }
  1069. static int x_home_dir(int extruder) {
  1070. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1071. }
  1072. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1073. static bool active_extruder_parked = false; // used in mode 1 & 2
  1074. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1075. static millis_t delayed_move_time = 0; // used in mode 1
  1076. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1077. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1078. #endif //DUAL_X_CARRIAGE
  1079. /**
  1080. * Software endstops can be used to monitor the open end of
  1081. * an axis that has a hardware endstop on the other end. Or
  1082. * they can prevent axes from moving past endstops and grinding.
  1083. *
  1084. * To keep doing their job as the coordinate system changes,
  1085. * the software endstop positions must be refreshed to remain
  1086. * at the same positions relative to the machine.
  1087. */
  1088. void update_software_endstops(AxisEnum axis) {
  1089. float offs = LOGICAL_POSITION(0, axis);
  1090. #if ENABLED(DUAL_X_CARRIAGE)
  1091. if (axis == X_AXIS) {
  1092. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1093. if (active_extruder != 0) {
  1094. soft_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1095. soft_endstop_max[X_AXIS] = dual_max_x + offs;
  1096. return;
  1097. }
  1098. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1099. soft_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1100. soft_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1101. return;
  1102. }
  1103. }
  1104. else
  1105. #endif
  1106. {
  1107. soft_endstop_min[axis] = base_min_pos(axis) + offs;
  1108. soft_endstop_max[axis] = base_max_pos(axis) + offs;
  1109. }
  1110. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1111. if (DEBUGGING(LEVELING)) {
  1112. SERIAL_ECHOPAIR("For ", axis_codes[axis]);
  1113. SERIAL_ECHOPAIR(" axis:\n home_offset = ", home_offset[axis]);
  1114. SERIAL_ECHOPAIR("\n position_shift = ", position_shift[axis]);
  1115. SERIAL_ECHOPAIR("\n soft_endstop_min = ", soft_endstop_min[axis]);
  1116. SERIAL_ECHOLNPAIR("\n soft_endstop_max = ", soft_endstop_max[axis]);
  1117. }
  1118. #endif
  1119. #if ENABLED(DELTA)
  1120. if (axis == Z_AXIS)
  1121. delta_clip_start_height = soft_endstop_max[axis] - delta_safe_distance_from_top();
  1122. #endif
  1123. }
  1124. /**
  1125. * Change the home offset for an axis, update the current
  1126. * position and the software endstops to retain the same
  1127. * relative distance to the new home.
  1128. *
  1129. * Since this changes the current_position, code should
  1130. * call sync_plan_position soon after this.
  1131. */
  1132. static void set_home_offset(AxisEnum axis, float v) {
  1133. current_position[axis] += v - home_offset[axis];
  1134. home_offset[axis] = v;
  1135. update_software_endstops(axis);
  1136. }
  1137. static void set_axis_is_at_home(AxisEnum axis) {
  1138. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1139. if (DEBUGGING(LEVELING)) {
  1140. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis_codes[axis]);
  1141. SERIAL_ECHOLNPGM(")");
  1142. }
  1143. #endif
  1144. position_shift[axis] = 0;
  1145. #if ENABLED(DUAL_X_CARRIAGE)
  1146. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1147. if (active_extruder != 0)
  1148. current_position[X_AXIS] = x_home_pos(active_extruder);
  1149. else
  1150. current_position[X_AXIS] = LOGICAL_X_POSITION(base_home_pos(X_AXIS));
  1151. update_software_endstops(X_AXIS);
  1152. return;
  1153. }
  1154. #endif
  1155. #if ENABLED(SCARA)
  1156. if (axis == X_AXIS || axis == Y_AXIS) {
  1157. float homeposition[XYZ];
  1158. LOOP_XYZ(i) homeposition[i] = LOGICAL_POSITION(base_home_pos(i), i);
  1159. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1160. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1161. /**
  1162. * Works out real Homeposition angles using inverse kinematics,
  1163. * and calculates homing offset using forward kinematics
  1164. */
  1165. inverse_kinematics(homeposition);
  1166. forward_kinematics_SCARA(delta);
  1167. // SERIAL_ECHOPAIR("Delta X=", delta[X_AXIS]);
  1168. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1169. current_position[axis] = LOGICAL_POSITION(delta[axis], axis);
  1170. /**
  1171. * SCARA home positions are based on configuration since the actual
  1172. * limits are determined by the inverse kinematic transform.
  1173. */
  1174. soft_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1175. soft_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1176. }
  1177. else
  1178. #endif
  1179. {
  1180. current_position[axis] = LOGICAL_POSITION(base_home_pos(axis), axis);
  1181. update_software_endstops(axis);
  1182. if (axis == Z_AXIS) {
  1183. #if HAS_BED_PROBE && Z_HOME_DIR < 0
  1184. #if HOMING_Z_WITH_PROBE
  1185. current_position[Z_AXIS] -= zprobe_zoffset;
  1186. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1187. if (DEBUGGING(LEVELING)) {
  1188. SERIAL_ECHOLNPGM("*** Z HOMED WITH PROBE (Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) ***");
  1189. SERIAL_ECHOLNPAIR("> zprobe_zoffset = ", zprobe_zoffset);
  1190. }
  1191. #endif
  1192. #elif ENABLED(DEBUG_LEVELING_FEATURE)
  1193. if (DEBUGGING(LEVELING))
  1194. SERIAL_ECHOLNPGM("*** Z HOMED TO ENDSTOP (Z_MIN_PROBE_ENDSTOP) ***");
  1195. #endif
  1196. #endif
  1197. }
  1198. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1199. if (DEBUGGING(LEVELING)) {
  1200. SERIAL_ECHOPAIR("> home_offset[", axis_codes[axis]);
  1201. SERIAL_ECHOLNPAIR("] = ", home_offset[axis]);
  1202. DEBUG_POS("", current_position);
  1203. }
  1204. #endif
  1205. }
  1206. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1207. if (DEBUGGING(LEVELING)) {
  1208. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis_codes[axis]);
  1209. SERIAL_ECHOLNPGM(")");
  1210. }
  1211. #endif
  1212. axis_known_position[axis] = axis_homed[axis] = true;
  1213. }
  1214. /**
  1215. * Some planner shorthand inline functions
  1216. */
  1217. inline float get_homing_bump_feedrate(AxisEnum axis) {
  1218. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1219. int hbd = homing_bump_divisor[axis];
  1220. if (hbd < 1) {
  1221. hbd = 10;
  1222. SERIAL_ECHO_START;
  1223. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1224. }
  1225. return homing_feedrate_mm_s[axis] / hbd;
  1226. }
  1227. //
  1228. // line_to_current_position
  1229. // Move the planner to the current position from wherever it last moved
  1230. // (or from wherever it has been told it is located).
  1231. //
  1232. inline void line_to_current_position() {
  1233. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1234. }
  1235. inline void line_to_z(float zPosition) {
  1236. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate_mm_s, active_extruder);
  1237. }
  1238. //
  1239. // line_to_destination
  1240. // Move the planner, not necessarily synced with current_position
  1241. //
  1242. inline void line_to_destination(float fr_mm_s) {
  1243. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], fr_mm_s, active_extruder);
  1244. }
  1245. inline void line_to_destination() { line_to_destination(feedrate_mm_s); }
  1246. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1247. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1248. #if ENABLED(DELTA)
  1249. /**
  1250. * Calculate delta, start a line, and set current_position to destination
  1251. */
  1252. void prepare_move_to_destination_raw() {
  1253. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1254. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1255. #endif
  1256. refresh_cmd_timeout();
  1257. inverse_kinematics(destination);
  1258. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], MMS_SCALED(feedrate_mm_s), active_extruder);
  1259. set_current_to_destination();
  1260. }
  1261. #endif
  1262. /**
  1263. * Plan a move to (X, Y, Z) and set the current_position
  1264. * The final current_position may not be the one that was requested
  1265. */
  1266. void do_blocking_move_to(const float &x, const float &y, const float &z, const float &fr_mm_s /*=0.0*/) {
  1267. float old_feedrate_mm_s = feedrate_mm_s;
  1268. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1269. if (DEBUGGING(LEVELING)) print_xyz(PSTR(">>> do_blocking_move_to"), NULL, x, y, z);
  1270. #endif
  1271. #if ENABLED(DELTA)
  1272. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1273. set_destination_to_current(); // sync destination at the start
  1274. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1275. if (DEBUGGING(LEVELING)) DEBUG_POS("set_destination_to_current", destination);
  1276. #endif
  1277. // when in the danger zone
  1278. if (current_position[Z_AXIS] > delta_clip_start_height) {
  1279. if (z > delta_clip_start_height) { // staying in the danger zone
  1280. destination[X_AXIS] = x; // move directly (uninterpolated)
  1281. destination[Y_AXIS] = y;
  1282. destination[Z_AXIS] = z;
  1283. prepare_move_to_destination_raw(); // set_current_to_destination
  1284. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1285. if (DEBUGGING(LEVELING)) DEBUG_POS("danger zone move", current_position);
  1286. #endif
  1287. return;
  1288. }
  1289. else {
  1290. destination[Z_AXIS] = delta_clip_start_height;
  1291. prepare_move_to_destination_raw(); // set_current_to_destination
  1292. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1293. if (DEBUGGING(LEVELING)) DEBUG_POS("zone border move", current_position);
  1294. #endif
  1295. }
  1296. }
  1297. if (z > current_position[Z_AXIS]) { // raising?
  1298. destination[Z_AXIS] = z;
  1299. prepare_move_to_destination_raw(); // set_current_to_destination
  1300. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1301. if (DEBUGGING(LEVELING)) DEBUG_POS("z raise move", current_position);
  1302. #endif
  1303. }
  1304. destination[X_AXIS] = x;
  1305. destination[Y_AXIS] = y;
  1306. prepare_move_to_destination(); // set_current_to_destination
  1307. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1308. if (DEBUGGING(LEVELING)) DEBUG_POS("xy move", current_position);
  1309. #endif
  1310. if (z < current_position[Z_AXIS]) { // lowering?
  1311. destination[Z_AXIS] = z;
  1312. prepare_move_to_destination_raw(); // set_current_to_destination
  1313. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1314. if (DEBUGGING(LEVELING)) DEBUG_POS("z lower move", current_position);
  1315. #endif
  1316. }
  1317. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1318. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< do_blocking_move_to");
  1319. #endif
  1320. #else
  1321. // If Z needs to raise, do it before moving XY
  1322. if (current_position[Z_AXIS] < z) {
  1323. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1324. current_position[Z_AXIS] = z;
  1325. line_to_current_position();
  1326. }
  1327. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : XY_PROBE_FEEDRATE_MM_S;
  1328. current_position[X_AXIS] = x;
  1329. current_position[Y_AXIS] = y;
  1330. line_to_current_position();
  1331. // If Z needs to lower, do it after moving XY
  1332. if (current_position[Z_AXIS] > z) {
  1333. feedrate_mm_s = (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[Z_AXIS];
  1334. current_position[Z_AXIS] = z;
  1335. line_to_current_position();
  1336. }
  1337. #endif
  1338. stepper.synchronize();
  1339. feedrate_mm_s = old_feedrate_mm_s;
  1340. }
  1341. void do_blocking_move_to_x(const float &x, const float &fr_mm_s/*=0.0*/) {
  1342. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], fr_mm_s);
  1343. }
  1344. void do_blocking_move_to_z(const float &z, const float &fr_mm_s/*=0.0*/) {
  1345. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, fr_mm_s);
  1346. }
  1347. void do_blocking_move_to_xy(const float &x, const float &y, const float &fr_mm_s/*=0.0*/) {
  1348. do_blocking_move_to(x, y, current_position[Z_AXIS], fr_mm_s);
  1349. }
  1350. //
  1351. // Prepare to do endstop or probe moves
  1352. // with custom feedrates.
  1353. //
  1354. // - Save current feedrates
  1355. // - Reset the rate multiplier
  1356. // - Reset the command timeout
  1357. // - Enable the endstops (for endstop moves)
  1358. //
  1359. static void setup_for_endstop_or_probe_move() {
  1360. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1361. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1362. #endif
  1363. saved_feedrate_mm_s = feedrate_mm_s;
  1364. saved_feedrate_percentage = feedrate_percentage;
  1365. feedrate_percentage = 100;
  1366. refresh_cmd_timeout();
  1367. }
  1368. static void clean_up_after_endstop_or_probe_move() {
  1369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1370. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1371. #endif
  1372. feedrate_mm_s = saved_feedrate_mm_s;
  1373. feedrate_percentage = saved_feedrate_percentage;
  1374. refresh_cmd_timeout();
  1375. }
  1376. #if HAS_BED_PROBE
  1377. /**
  1378. * Raise Z to a minimum height to make room for a probe to move
  1379. */
  1380. inline void do_probe_raise(float z_raise) {
  1381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1382. if (DEBUGGING(LEVELING)) {
  1383. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1384. SERIAL_ECHOLNPGM(")");
  1385. }
  1386. #endif
  1387. float z_dest = LOGICAL_Z_POSITION(z_raise);
  1388. if (z_dest > current_position[Z_AXIS])
  1389. do_blocking_move_to_z(z_dest);
  1390. }
  1391. #endif //HAS_BED_PROBE
  1392. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE || HOTENDS > 1 || ENABLED(NOZZLE_CLEAN_FEATURE) || ENABLED(NOZZLE_PARK_FEATURE)
  1393. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1394. const bool xx = x && !axis_homed[X_AXIS],
  1395. yy = y && !axis_homed[Y_AXIS],
  1396. zz = z && !axis_homed[Z_AXIS];
  1397. if (xx || yy || zz) {
  1398. SERIAL_ECHO_START;
  1399. SERIAL_ECHOPGM(MSG_HOME " ");
  1400. if (xx) SERIAL_ECHOPGM(MSG_X);
  1401. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1402. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1403. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1404. #if ENABLED(ULTRA_LCD)
  1405. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1406. strcat_P(message, PSTR(MSG_HOME " "));
  1407. if (xx) strcat_P(message, PSTR(MSG_X));
  1408. if (yy) strcat_P(message, PSTR(MSG_Y));
  1409. if (zz) strcat_P(message, PSTR(MSG_Z));
  1410. strcat_P(message, PSTR(" " MSG_FIRST));
  1411. lcd_setstatus(message);
  1412. #endif
  1413. return true;
  1414. }
  1415. return false;
  1416. }
  1417. #endif
  1418. #if ENABLED(Z_PROBE_SLED)
  1419. #ifndef SLED_DOCKING_OFFSET
  1420. #define SLED_DOCKING_OFFSET 0
  1421. #endif
  1422. /**
  1423. * Method to dock/undock a sled designed by Charles Bell.
  1424. *
  1425. * stow[in] If false, move to MAX_X and engage the solenoid
  1426. * If true, move to MAX_X and release the solenoid
  1427. */
  1428. static void dock_sled(bool stow) {
  1429. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1430. if (DEBUGGING(LEVELING)) {
  1431. SERIAL_ECHOPAIR("dock_sled(", stow);
  1432. SERIAL_ECHOLNPGM(")");
  1433. }
  1434. #endif
  1435. // Dock sled a bit closer to ensure proper capturing
  1436. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1437. #if PIN_EXISTS(SLED)
  1438. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1439. #endif
  1440. }
  1441. #endif // Z_PROBE_SLED
  1442. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1443. void run_deploy_moves_script() {
  1444. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1445. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1446. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1447. #endif
  1448. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1449. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1450. #endif
  1451. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1452. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1453. #endif
  1454. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1455. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1456. #endif
  1457. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE));
  1458. #endif
  1459. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1460. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1461. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1462. #endif
  1463. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1464. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1465. #endif
  1466. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1467. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1468. #endif
  1469. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1470. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1471. #endif
  1472. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE));
  1473. #endif
  1474. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1475. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1476. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1477. #endif
  1478. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1479. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1480. #endif
  1481. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1482. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1483. #endif
  1484. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1485. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1486. #endif
  1487. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE));
  1488. #endif
  1489. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1490. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1491. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1492. #endif
  1493. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1494. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1495. #endif
  1496. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1497. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1498. #endif
  1499. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1500. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1501. #endif
  1502. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE));
  1503. #endif
  1504. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1505. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1506. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1507. #endif
  1508. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1509. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1510. #endif
  1511. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1512. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1513. #endif
  1514. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1515. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1516. #endif
  1517. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE));
  1518. #endif
  1519. }
  1520. void run_stow_moves_script() {
  1521. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1522. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1523. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1524. #endif
  1525. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1526. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1527. #endif
  1528. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1529. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1530. #endif
  1531. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1532. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1533. #endif
  1534. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE));
  1535. #endif
  1536. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1537. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1538. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1539. #endif
  1540. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1541. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1542. #endif
  1543. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1544. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1545. #endif
  1546. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1547. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1548. #endif
  1549. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE));
  1550. #endif
  1551. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1552. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1553. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1554. #endif
  1555. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1556. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1557. #endif
  1558. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1559. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1560. #endif
  1561. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1562. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1563. #endif
  1564. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE));
  1565. #endif
  1566. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1567. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1568. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1569. #endif
  1570. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1571. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1572. #endif
  1573. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1574. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1575. #endif
  1576. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1577. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1578. #endif
  1579. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE));
  1580. #endif
  1581. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1582. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1583. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1584. #endif
  1585. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1586. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1587. #endif
  1588. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1589. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1590. #endif
  1591. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1592. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1593. #endif
  1594. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, MMM_TO_MMS(Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE));
  1595. #endif
  1596. }
  1597. #endif
  1598. #if HAS_BED_PROBE
  1599. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1600. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1601. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1602. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1603. #else
  1604. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1605. #endif
  1606. #endif
  1607. #define DEPLOY_PROBE() set_probe_deployed(true)
  1608. #define STOW_PROBE() set_probe_deployed(false)
  1609. // returns false for ok and true for failure
  1610. static bool set_probe_deployed(bool deploy) {
  1611. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1612. if (DEBUGGING(LEVELING)) {
  1613. DEBUG_POS("set_probe_deployed", current_position);
  1614. SERIAL_ECHOLNPAIR("deploy: ", deploy);
  1615. }
  1616. #endif
  1617. if (endstops.z_probe_enabled == deploy) return false;
  1618. // Make room for probe
  1619. do_probe_raise(_Z_PROBE_DEPLOY_HEIGHT);
  1620. #if ENABLED(Z_PROBE_SLED)
  1621. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1622. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1623. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1624. #endif
  1625. float oldXpos = current_position[X_AXIS],
  1626. oldYpos = current_position[Y_AXIS];
  1627. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1628. // If endstop is already false, the Z probe is deployed
  1629. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1630. // Would a goto be less ugly?
  1631. //while (!_TRIGGERED_WHEN_STOWED_TEST) idle(); // would offer the opportunity
  1632. // for a triggered when stowed manual probe.
  1633. if (!deploy) endstops.enable_z_probe(false); // Switch off triggered when stowed probes early
  1634. // otherwise an Allen-Key probe can't be stowed.
  1635. #endif
  1636. #if ENABLED(Z_PROBE_SLED)
  1637. dock_sled(!deploy);
  1638. #elif HAS_Z_SERVO_ENDSTOP
  1639. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[deploy ? 0 : 1]);
  1640. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1641. deploy ? run_deploy_moves_script() : run_stow_moves_script();
  1642. #endif
  1643. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1644. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1645. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // State hasn't changed?
  1646. if (IsRunning()) {
  1647. SERIAL_ERROR_START;
  1648. SERIAL_ERRORLNPGM("Z-Probe failed");
  1649. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1650. }
  1651. stop();
  1652. return true;
  1653. } // _TRIGGERED_WHEN_STOWED_TEST == deploy
  1654. #endif
  1655. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1656. endstops.enable_z_probe(deploy);
  1657. return false;
  1658. }
  1659. static void do_probe_move(float z, float fr_mm_m) {
  1660. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1661. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> do_probe_move", current_position);
  1662. #endif
  1663. // Move down until probe triggered
  1664. do_blocking_move_to_z(LOGICAL_Z_POSITION(z), MMM_TO_MMS(fr_mm_m));
  1665. // Clear endstop flags
  1666. endstops.hit_on_purpose();
  1667. // Get Z where the steppers were interrupted
  1668. set_current_from_steppers_for_axis(Z_AXIS);
  1669. // Tell the planner where we actually are
  1670. SYNC_PLAN_POSITION_KINEMATIC();
  1671. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1672. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< do_probe_move", current_position);
  1673. #endif
  1674. }
  1675. // Do a single Z probe and return with current_position[Z_AXIS]
  1676. // at the height where the probe triggered.
  1677. static float run_z_probe() {
  1678. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1679. if (DEBUGGING(LEVELING)) DEBUG_POS(">>> run_z_probe", current_position);
  1680. #endif
  1681. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1682. refresh_cmd_timeout();
  1683. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1684. planner.bed_level_matrix.set_to_identity();
  1685. #endif
  1686. #if ENABLED(PROBE_DOUBLE_TOUCH)
  1687. // Do a first probe at the fast speed
  1688. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_FAST);
  1689. // move up by the bump distance
  1690. do_blocking_move_to_z(current_position[Z_AXIS] + home_bump_mm(Z_AXIS), MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1691. #else
  1692. // If the nozzle is above the travel height then
  1693. // move down quickly before doing the slow probe
  1694. float z = LOGICAL_Z_POSITION(Z_PROBE_TRAVEL_HEIGHT);
  1695. if (z < current_position[Z_AXIS])
  1696. do_blocking_move_to_z(z, MMM_TO_MMS(Z_PROBE_SPEED_FAST));
  1697. #endif
  1698. // move down slowly to find bed
  1699. do_probe_move(-(Z_MAX_LENGTH) - 10, Z_PROBE_SPEED_SLOW);
  1700. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1701. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< run_z_probe", current_position);
  1702. #endif
  1703. return current_position[Z_AXIS];
  1704. }
  1705. //
  1706. // - Move to the given XY
  1707. // - Deploy the probe, if not already deployed
  1708. // - Probe the bed, get the Z position
  1709. // - Depending on the 'stow' flag
  1710. // - Stow the probe, or
  1711. // - Raise to the BETWEEN height
  1712. // - Return the probed Z position
  1713. //
  1714. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1715. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1716. if (DEBUGGING(LEVELING)) {
  1717. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1718. SERIAL_ECHOPAIR(", ", y);
  1719. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1720. SERIAL_ECHOLNPGM(")");
  1721. DEBUG_POS("", current_position);
  1722. }
  1723. #endif
  1724. float old_feedrate_mm_s = feedrate_mm_s;
  1725. // Ensure a minimum height before moving the probe
  1726. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1727. // Move to the XY where we shall probe
  1728. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1729. if (DEBUGGING(LEVELING)) {
  1730. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1731. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1732. SERIAL_ECHOLNPGM(")");
  1733. }
  1734. #endif
  1735. feedrate_mm_s = XY_PROBE_FEEDRATE_MM_S;
  1736. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1737. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1738. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1739. #endif
  1740. if (DEPLOY_PROBE()) return NAN;
  1741. float measured_z = run_z_probe();
  1742. if (stow) {
  1743. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1744. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1745. #endif
  1746. if (STOW_PROBE()) return NAN;
  1747. }
  1748. else {
  1749. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1750. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1751. #endif
  1752. do_probe_raise(Z_PROBE_TRAVEL_HEIGHT);
  1753. }
  1754. if (verbose_level > 2) {
  1755. SERIAL_PROTOCOLPGM("Bed X: ");
  1756. SERIAL_PROTOCOL_F(x, 3);
  1757. SERIAL_PROTOCOLPGM(" Y: ");
  1758. SERIAL_PROTOCOL_F(y, 3);
  1759. SERIAL_PROTOCOLPGM(" Z: ");
  1760. SERIAL_PROTOCOL_F(measured_z, 3);
  1761. SERIAL_EOL;
  1762. }
  1763. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1764. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1765. #endif
  1766. feedrate_mm_s = old_feedrate_mm_s;
  1767. return measured_z;
  1768. }
  1769. #endif // HAS_BED_PROBE
  1770. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1771. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  1772. /**
  1773. * Get the stepper positions, apply the rotation matrix
  1774. * using the home XY and Z0 position as the fulcrum.
  1775. */
  1776. vector_3 untilted_stepper_position() {
  1777. vector_3 pos = vector_3(
  1778. RAW_X_POSITION(stepper.get_axis_position_mm(X_AXIS)) - X_TILT_FULCRUM,
  1779. RAW_Y_POSITION(stepper.get_axis_position_mm(Y_AXIS)) - Y_TILT_FULCRUM,
  1780. RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS))
  1781. );
  1782. matrix_3x3 inverse = matrix_3x3::transpose(planner.bed_level_matrix);
  1783. //pos.debug("untilted_stepper_position offset");
  1784. //bed_level_matrix.debug("untilted_stepper_position");
  1785. //inverse.debug("in untilted_stepper_position");
  1786. pos.apply_rotation(inverse);
  1787. pos.x = LOGICAL_X_POSITION(pos.x + X_TILT_FULCRUM);
  1788. pos.y = LOGICAL_Y_POSITION(pos.y + Y_TILT_FULCRUM);
  1789. pos.z = LOGICAL_Z_POSITION(pos.z);
  1790. //pos.debug("after rotation and reorientation");
  1791. return pos;
  1792. }
  1793. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  1794. /**
  1795. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1796. */
  1797. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1798. if (bed_level[x][y] != 0.0) {
  1799. return; // Don't overwrite good values.
  1800. }
  1801. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1802. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1803. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1804. float median = c; // Median is robust (ignores outliers).
  1805. if (a < b) {
  1806. if (b < c) median = b;
  1807. if (c < a) median = a;
  1808. }
  1809. else { // b <= a
  1810. if (c < b) median = b;
  1811. if (a < c) median = a;
  1812. }
  1813. bed_level[x][y] = median;
  1814. }
  1815. /**
  1816. * Fill in the unprobed points (corners of circular print surface)
  1817. * using linear extrapolation, away from the center.
  1818. */
  1819. static void extrapolate_unprobed_bed_level() {
  1820. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1821. for (int y = 0; y <= half; y++) {
  1822. for (int x = 0; x <= half; x++) {
  1823. if (x + y < 3) continue;
  1824. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1825. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1826. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1827. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1828. }
  1829. }
  1830. }
  1831. /**
  1832. * Print calibration results for plotting or manual frame adjustment.
  1833. */
  1834. static void print_bed_level() {
  1835. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1836. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1837. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1838. SERIAL_PROTOCOLCHAR(' ');
  1839. }
  1840. SERIAL_EOL;
  1841. }
  1842. }
  1843. /**
  1844. * Reset calibration results to zero.
  1845. */
  1846. void reset_bed_level() {
  1847. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1848. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1849. #endif
  1850. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1851. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1852. bed_level[x][y] = 0.0;
  1853. }
  1854. }
  1855. }
  1856. #endif // DELTA
  1857. #endif // AUTO_BED_LEVELING_FEATURE
  1858. /**
  1859. * Home an individual axis
  1860. */
  1861. static void do_homing_move(AxisEnum axis, float where, float fr_mm_s = 0.0) {
  1862. current_position[axis] = 0;
  1863. sync_plan_position();
  1864. current_position[axis] = where;
  1865. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], (fr_mm_s != 0.0) ? fr_mm_s : homing_feedrate_mm_s[axis], active_extruder);
  1866. stepper.synchronize();
  1867. endstops.hit_on_purpose();
  1868. }
  1869. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  1870. static void homeaxis(AxisEnum axis) {
  1871. #define CAN_HOME(A) \
  1872. (axis == A##_AXIS && ((A##_MIN_PIN > -1 && A##_HOME_DIR < 0) || (A##_MAX_PIN > -1 && A##_HOME_DIR > 0)))
  1873. if (!CAN_HOME(X) && !CAN_HOME(Y) && !CAN_HOME(Z)) return;
  1874. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1875. if (DEBUGGING(LEVELING)) {
  1876. SERIAL_ECHOPAIR(">>> homeaxis(", axis_codes[axis]);
  1877. SERIAL_ECHOLNPGM(")");
  1878. }
  1879. #endif
  1880. int axis_home_dir =
  1881. #if ENABLED(DUAL_X_CARRIAGE)
  1882. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  1883. #endif
  1884. home_dir(axis);
  1885. // Homing Z towards the bed? Deploy the Z probe or endstop.
  1886. #if HOMING_Z_WITH_PROBE
  1887. if (axis == Z_AXIS) {
  1888. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1889. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1890. #endif
  1891. if (DEPLOY_PROBE()) return;
  1892. }
  1893. #endif
  1894. // Set a flag for Z motor locking
  1895. #if ENABLED(Z_DUAL_ENDSTOPS)
  1896. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  1897. #endif
  1898. // Move towards the endstop until an endstop is triggered
  1899. do_homing_move(axis, 1.5 * max_length(axis) * axis_home_dir);
  1900. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1901. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 1st Home ", current_position[axis]);
  1902. #endif
  1903. // Move away from the endstop by the axis HOME_BUMP_MM
  1904. do_homing_move(axis, -home_bump_mm(axis) * axis_home_dir);
  1905. // Move slowly towards the endstop until triggered
  1906. do_homing_move(axis, 2 * home_bump_mm(axis) * axis_home_dir, get_homing_bump_feedrate(axis));
  1907. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1908. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPAIR("> 2nd Home ", current_position[axis]);
  1909. #endif
  1910. #if ENABLED(Z_DUAL_ENDSTOPS)
  1911. if (axis == Z_AXIS) {
  1912. float adj = fabs(z_endstop_adj);
  1913. bool lockZ1;
  1914. if (axis_home_dir > 0) {
  1915. adj = -adj;
  1916. lockZ1 = (z_endstop_adj > 0);
  1917. }
  1918. else
  1919. lockZ1 = (z_endstop_adj < 0);
  1920. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  1921. // Move to the adjusted endstop height
  1922. do_homing_move(axis, adj);
  1923. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  1924. stepper.set_homing_flag(false);
  1925. } // Z_AXIS
  1926. #endif
  1927. // Delta has already moved all three towers up in G28
  1928. // so here it re-homes each tower in turn.
  1929. // Delta homing treats the axes as normal linear axes.
  1930. #if ENABLED(DELTA)
  1931. // retrace by the amount specified in endstop_adj
  1932. if (endstop_adj[axis] * Z_HOME_DIR < 0) {
  1933. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1934. if (DEBUGGING(LEVELING)) {
  1935. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis] * Z_HOME_DIR);
  1936. DEBUG_POS("", current_position);
  1937. }
  1938. #endif
  1939. do_homing_move(axis, endstop_adj[axis]);
  1940. }
  1941. #else
  1942. // Set the axis position to its home position (plus home offsets)
  1943. set_axis_is_at_home(axis);
  1944. sync_plan_position();
  1945. destination[axis] = current_position[axis];
  1946. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1947. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  1948. #endif
  1949. #endif
  1950. // Put away the Z probe
  1951. #if HOMING_Z_WITH_PROBE
  1952. if (axis == Z_AXIS) {
  1953. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1954. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1955. #endif
  1956. if (STOW_PROBE()) return;
  1957. }
  1958. #endif
  1959. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1960. if (DEBUGGING(LEVELING)) {
  1961. SERIAL_ECHOPAIR("<<< homeaxis(", axis_codes[axis]);
  1962. SERIAL_ECHOLNPGM(")");
  1963. }
  1964. #endif
  1965. } // homeaxis()
  1966. #if ENABLED(FWRETRACT)
  1967. void retract(bool retracting, bool swapping = false) {
  1968. if (retracting == retracted[active_extruder]) return;
  1969. float old_feedrate_mm_s = feedrate_mm_s;
  1970. set_destination_to_current();
  1971. if (retracting) {
  1972. feedrate_mm_s = retract_feedrate_mm_s;
  1973. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  1974. sync_plan_position_e();
  1975. prepare_move_to_destination();
  1976. if (retract_zlift > 0.01) {
  1977. current_position[Z_AXIS] -= retract_zlift;
  1978. SYNC_PLAN_POSITION_KINEMATIC();
  1979. prepare_move_to_destination();
  1980. }
  1981. }
  1982. else {
  1983. if (retract_zlift > 0.01) {
  1984. current_position[Z_AXIS] += retract_zlift;
  1985. SYNC_PLAN_POSITION_KINEMATIC();
  1986. }
  1987. feedrate_mm_s = retract_recover_feedrate_mm_s;
  1988. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  1989. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  1990. sync_plan_position_e();
  1991. prepare_move_to_destination();
  1992. }
  1993. feedrate_mm_s = old_feedrate_mm_s;
  1994. retracted[active_extruder] = retracting;
  1995. } // retract()
  1996. #endif // FWRETRACT
  1997. #if ENABLED(MIXING_EXTRUDER)
  1998. void normalize_mix() {
  1999. float mix_total = 0.0;
  2000. for (int i = 0; i < MIXING_STEPPERS; i++) {
  2001. float v = mixing_factor[i];
  2002. if (v < 0) v = mixing_factor[i] = 0;
  2003. mix_total += v;
  2004. }
  2005. // Scale all values if they don't add up to ~1.0
  2006. if (mix_total < 0.9999 || mix_total > 1.0001) {
  2007. SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
  2008. float mix_scale = 1.0 / mix_total;
  2009. for (int i = 0; i < MIXING_STEPPERS; i++)
  2010. mixing_factor[i] *= mix_scale;
  2011. }
  2012. }
  2013. #if ENABLED(DIRECT_MIXING_IN_G1)
  2014. // Get mixing parameters from the GCode
  2015. // Factors that are left out are set to 0
  2016. // The total "must" be 1.0 (but it will be normalized)
  2017. void gcode_get_mix() {
  2018. const char* mixing_codes = "ABCDHI";
  2019. for (int i = 0; i < MIXING_STEPPERS; i++)
  2020. mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
  2021. normalize_mix();
  2022. }
  2023. #endif
  2024. #endif
  2025. /**
  2026. * ***************************************************************************
  2027. * ***************************** G-CODE HANDLING *****************************
  2028. * ***************************************************************************
  2029. */
  2030. /**
  2031. * Set XYZE destination and feedrate from the current GCode command
  2032. *
  2033. * - Set destination from included axis codes
  2034. * - Set to current for missing axis codes
  2035. * - Set the feedrate, if included
  2036. */
  2037. void gcode_get_destination() {
  2038. LOOP_XYZE(i) {
  2039. if (code_seen(axis_codes[i]))
  2040. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2041. else
  2042. destination[i] = current_position[i];
  2043. }
  2044. if (code_seen('F') && code_value_linear_units() > 0.0)
  2045. feedrate_mm_s = MMM_TO_MMS(code_value_linear_units());
  2046. #if ENABLED(PRINTCOUNTER)
  2047. if (!DEBUGGING(DRYRUN))
  2048. print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
  2049. #endif
  2050. // Get ABCDHI mixing factors
  2051. #if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
  2052. gcode_get_mix();
  2053. #endif
  2054. }
  2055. void unknown_command_error() {
  2056. SERIAL_ECHO_START;
  2057. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2058. SERIAL_ECHO(current_command);
  2059. SERIAL_ECHOLNPGM("\"");
  2060. }
  2061. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2062. /**
  2063. * Output a "busy" message at regular intervals
  2064. * while the machine is not accepting commands.
  2065. */
  2066. void host_keepalive() {
  2067. millis_t ms = millis();
  2068. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2069. if (PENDING(ms, next_busy_signal_ms)) return;
  2070. switch (busy_state) {
  2071. case IN_HANDLER:
  2072. case IN_PROCESS:
  2073. SERIAL_ECHO_START;
  2074. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2075. break;
  2076. case PAUSED_FOR_USER:
  2077. SERIAL_ECHO_START;
  2078. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2079. break;
  2080. case PAUSED_FOR_INPUT:
  2081. SERIAL_ECHO_START;
  2082. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2083. break;
  2084. default:
  2085. break;
  2086. }
  2087. }
  2088. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2089. }
  2090. #endif //HOST_KEEPALIVE_FEATURE
  2091. bool position_is_reachable(float target[XYZ]) {
  2092. float dx = RAW_X_POSITION(target[X_AXIS]),
  2093. dy = RAW_Y_POSITION(target[Y_AXIS]);
  2094. #if ENABLED(DELTA)
  2095. return HYPOT2(dx, dy) <= sq(DELTA_PRINTABLE_RADIUS);
  2096. #else
  2097. float dz = RAW_Z_POSITION(target[Z_AXIS]);
  2098. return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
  2099. && dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
  2100. && dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
  2101. #endif
  2102. }
  2103. /**
  2104. * G0, G1: Coordinated movement of X Y Z E axes
  2105. */
  2106. inline void gcode_G0_G1() {
  2107. if (IsRunning()) {
  2108. gcode_get_destination(); // For X Y Z E F
  2109. #if ENABLED(FWRETRACT)
  2110. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2111. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2112. // Is this move an attempt to retract or recover?
  2113. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2114. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2115. sync_plan_position_e(); // AND from the planner
  2116. retract(!retracted[active_extruder]);
  2117. return;
  2118. }
  2119. }
  2120. #endif //FWRETRACT
  2121. prepare_move_to_destination();
  2122. }
  2123. }
  2124. /**
  2125. * G2: Clockwise Arc
  2126. * G3: Counterclockwise Arc
  2127. */
  2128. #if ENABLED(ARC_SUPPORT)
  2129. inline void gcode_G2_G3(bool clockwise) {
  2130. if (IsRunning()) {
  2131. #if ENABLED(SF_ARC_FIX)
  2132. bool relative_mode_backup = relative_mode;
  2133. relative_mode = true;
  2134. #endif
  2135. gcode_get_destination();
  2136. #if ENABLED(SF_ARC_FIX)
  2137. relative_mode = relative_mode_backup;
  2138. #endif
  2139. // Center of arc as offset from current_position
  2140. float arc_offset[2] = {
  2141. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2142. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2143. };
  2144. // Send an arc to the planner
  2145. plan_arc(destination, arc_offset, clockwise);
  2146. refresh_cmd_timeout();
  2147. }
  2148. }
  2149. #endif
  2150. /**
  2151. * G4: Dwell S<seconds> or P<milliseconds>
  2152. */
  2153. inline void gcode_G4() {
  2154. millis_t dwell_ms = 0;
  2155. if (code_seen('P')) dwell_ms = code_value_millis(); // milliseconds to wait
  2156. if (code_seen('S')) dwell_ms = code_value_millis_from_seconds(); // seconds to wait
  2157. stepper.synchronize();
  2158. refresh_cmd_timeout();
  2159. dwell_ms += previous_cmd_ms; // keep track of when we started waiting
  2160. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2161. while (PENDING(millis(), dwell_ms)) idle();
  2162. }
  2163. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2164. /**
  2165. * Parameters interpreted according to:
  2166. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2167. * However I, J omission is not supported at this point; all
  2168. * parameters can be omitted and default to zero.
  2169. */
  2170. /**
  2171. * G5: Cubic B-spline
  2172. */
  2173. inline void gcode_G5() {
  2174. if (IsRunning()) {
  2175. gcode_get_destination();
  2176. float offset[] = {
  2177. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2178. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2179. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2180. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2181. };
  2182. plan_cubic_move(offset);
  2183. }
  2184. }
  2185. #endif // BEZIER_CURVE_SUPPORT
  2186. #if ENABLED(FWRETRACT)
  2187. /**
  2188. * G10 - Retract filament according to settings of M207
  2189. * G11 - Recover filament according to settings of M208
  2190. */
  2191. inline void gcode_G10_G11(bool doRetract=false) {
  2192. #if EXTRUDERS > 1
  2193. if (doRetract) {
  2194. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2195. }
  2196. #endif
  2197. retract(doRetract
  2198. #if EXTRUDERS > 1
  2199. , retracted_swap[active_extruder]
  2200. #endif
  2201. );
  2202. }
  2203. #endif //FWRETRACT
  2204. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  2205. /**
  2206. * G12: Clean the nozzle
  2207. */
  2208. inline void gcode_G12() {
  2209. // Don't allow nozzle cleaning without homing first
  2210. if (axis_unhomed_error(true, true, true)) { return; }
  2211. uint8_t const pattern = code_seen('P') ? code_value_ushort() : 0;
  2212. uint8_t const strokes = code_seen('S') ? code_value_ushort() : NOZZLE_CLEAN_STROKES;
  2213. uint8_t const objects = code_seen('T') ? code_value_ushort() : 3;
  2214. Nozzle::clean(pattern, strokes, objects);
  2215. }
  2216. #endif
  2217. #if ENABLED(INCH_MODE_SUPPORT)
  2218. /**
  2219. * G20: Set input mode to inches
  2220. */
  2221. inline void gcode_G20() {
  2222. set_input_linear_units(LINEARUNIT_INCH);
  2223. }
  2224. /**
  2225. * G21: Set input mode to millimeters
  2226. */
  2227. inline void gcode_G21() {
  2228. set_input_linear_units(LINEARUNIT_MM);
  2229. }
  2230. #endif
  2231. #if ENABLED(NOZZLE_PARK_FEATURE)
  2232. /**
  2233. * G27: Park the nozzle
  2234. */
  2235. inline void gcode_G27() {
  2236. // Don't allow nozzle parking without homing first
  2237. if (axis_unhomed_error(true, true, true)) { return; }
  2238. uint8_t const z_action = code_seen('P') ? code_value_ushort() : 0;
  2239. Nozzle::park(z_action);
  2240. }
  2241. #endif // NOZZLE_PARK_FEATURE
  2242. #if ENABLED(QUICK_HOME)
  2243. static void quick_home_xy() {
  2244. // Pretend the current position is 0,0
  2245. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2246. sync_plan_position();
  2247. int x_axis_home_dir =
  2248. #if ENABLED(DUAL_X_CARRIAGE)
  2249. x_home_dir(active_extruder)
  2250. #else
  2251. home_dir(X_AXIS)
  2252. #endif
  2253. ;
  2254. float mlx = max_length(X_AXIS),
  2255. mly = max_length(Y_AXIS),
  2256. mlratio = mlx > mly ? mly / mlx : mlx / mly,
  2257. fr_mm_s = min(homing_feedrate_mm_s[X_AXIS], homing_feedrate_mm_s[Y_AXIS]) * sqrt(sq(mlratio) + 1.0);
  2258. do_blocking_move_to_xy(1.5 * mlx * x_axis_home_dir, 1.5 * mly * home_dir(Y_AXIS), fr_mm_s);
  2259. endstops.hit_on_purpose(); // clear endstop hit flags
  2260. current_position[X_AXIS] = current_position[Y_AXIS] = 0.0;
  2261. }
  2262. #endif // QUICK_HOME
  2263. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2264. void log_machine_info() {
  2265. SERIAL_ECHOPGM("Machine Type: ");
  2266. #if ENABLED(DELTA)
  2267. SERIAL_ECHOLNPGM("Delta");
  2268. #elif IS_SCARA
  2269. SERIAL_ECHOLNPGM("SCARA");
  2270. #elif ENABLED(COREXY) || ENABLED(COREXZ) || ENABLED(COREYZ)
  2271. SERIAL_ECHOLNPGM("Core");
  2272. #else
  2273. SERIAL_ECHOLNPGM("Cartesian");
  2274. #endif
  2275. SERIAL_ECHOPGM("Probe: ");
  2276. #if ENABLED(FIX_MOUNTED_PROBE)
  2277. SERIAL_ECHOLNPGM("FIX_MOUNTED_PROBE");
  2278. #elif HAS_Z_SERVO_ENDSTOP
  2279. SERIAL_ECHOLNPGM("SERVO PROBE");
  2280. #elif ENABLED(BLTOUCH)
  2281. SERIAL_ECHOLNPGM("BLTOUCH");
  2282. #elif ENABLED(Z_PROBE_SLED)
  2283. SERIAL_ECHOLNPGM("Z_PROBE_SLED");
  2284. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  2285. SERIAL_ECHOLNPGM("Z_PROBE_ALLEN_KEY");
  2286. #else
  2287. SERIAL_ECHOLNPGM("NONE");
  2288. #endif
  2289. #if HAS_BED_PROBE
  2290. SERIAL_ECHOPAIR("Probe Offset X:", X_PROBE_OFFSET_FROM_EXTRUDER);
  2291. SERIAL_ECHOPAIR(" Y:", Y_PROBE_OFFSET_FROM_EXTRUDER);
  2292. SERIAL_ECHOPAIR(" Z:", zprobe_zoffset);
  2293. #if (X_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2294. SERIAL_ECHOPGM(" (Right");
  2295. #elif (X_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2296. SERIAL_ECHOPGM(" (Left");
  2297. #endif
  2298. #if (Y_PROBE_OFFSET_FROM_EXTRUDER > 0)
  2299. SERIAL_ECHOPGM("-Back");
  2300. #elif (Y_PROBE_OFFSET_FROM_EXTRUDER < 0)
  2301. SERIAL_ECHOPGM("-Front");
  2302. #endif
  2303. if (zprobe_zoffset < 0)
  2304. SERIAL_ECHOPGM(" & Below");
  2305. else if (zprobe_zoffset > 0)
  2306. SERIAL_ECHOPGM(" & Above");
  2307. else
  2308. SERIAL_ECHOPGM(" & Same Z as");
  2309. SERIAL_ECHOLNPGM(" Nozzle)");
  2310. #endif
  2311. }
  2312. #endif // DEBUG_LEVELING_FEATURE
  2313. #if ENABLED(DELTA)
  2314. /**
  2315. * A delta can only safely home all axes at the same time
  2316. * This is like quick_home_xy() but for 3 towers.
  2317. */
  2318. inline void home_delta() {
  2319. // Init the current position of all carriages to 0,0,0
  2320. memset(current_position, 0, sizeof(current_position));
  2321. sync_plan_position();
  2322. // Move all carriages together linearly until an endstop is hit.
  2323. current_position[X_AXIS] = current_position[Y_AXIS] = current_position[Z_AXIS] = (Z_MAX_LENGTH + 10);
  2324. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2325. line_to_current_position();
  2326. stepper.synchronize();
  2327. endstops.hit_on_purpose(); // clear endstop hit flags
  2328. // Probably not needed. Double-check this line:
  2329. memset(current_position, 0, sizeof(current_position));
  2330. // At least one carriage has reached the top.
  2331. // Now back off and re-home each carriage separately.
  2332. HOMEAXIS(A);
  2333. HOMEAXIS(B);
  2334. HOMEAXIS(C);
  2335. // Set all carriages to their home positions
  2336. // Do this here all at once for Delta, because
  2337. // XYZ isn't ABC. Applying this per-tower would
  2338. // give the impression that they are the same.
  2339. LOOP_XYZ(i) set_axis_is_at_home((AxisEnum)i);
  2340. SYNC_PLAN_POSITION_KINEMATIC();
  2341. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2342. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2343. #endif
  2344. }
  2345. #endif // DELTA
  2346. #if ENABLED(Z_SAFE_HOMING)
  2347. inline void home_z_safely() {
  2348. // Disallow Z homing if X or Y are unknown
  2349. if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
  2350. LCD_MESSAGEPGM(MSG_ERR_Z_HOMING);
  2351. SERIAL_ECHO_START;
  2352. SERIAL_ECHOLNPGM(MSG_ERR_Z_HOMING);
  2353. return;
  2354. }
  2355. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2356. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("Z_SAFE_HOMING >>>");
  2357. #endif
  2358. SYNC_PLAN_POSITION_KINEMATIC();
  2359. /**
  2360. * Move the Z probe (or just the nozzle) to the safe homing point
  2361. */
  2362. destination[X_AXIS] = LOGICAL_X_POSITION(Z_SAFE_HOMING_X_POINT);
  2363. destination[Y_AXIS] = LOGICAL_Y_POSITION(Z_SAFE_HOMING_Y_POINT);
  2364. destination[Z_AXIS] = current_position[Z_AXIS]; // Z is already at the right height
  2365. #if HAS_BED_PROBE
  2366. destination[X_AXIS] -= X_PROBE_OFFSET_FROM_EXTRUDER;
  2367. destination[Y_AXIS] -= Y_PROBE_OFFSET_FROM_EXTRUDER;
  2368. #endif
  2369. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2370. if (DEBUGGING(LEVELING)) DEBUG_POS("Z_SAFE_HOMING", destination);
  2371. #endif
  2372. if (position_is_reachable(destination)) {
  2373. do_blocking_move_to_xy(destination[X_AXIS], destination[Y_AXIS]);
  2374. HOMEAXIS(Z);
  2375. }
  2376. else {
  2377. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2378. SERIAL_ECHO_START;
  2379. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2380. }
  2381. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2382. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2383. #endif
  2384. }
  2385. #endif // Z_SAFE_HOMING
  2386. /**
  2387. * G28: Home all axes according to settings
  2388. *
  2389. * Parameters
  2390. *
  2391. * None Home to all axes with no parameters.
  2392. * With QUICK_HOME enabled XY will home together, then Z.
  2393. *
  2394. * Cartesian parameters
  2395. *
  2396. * X Home to the X endstop
  2397. * Y Home to the Y endstop
  2398. * Z Home to the Z endstop
  2399. *
  2400. */
  2401. inline void gcode_G28() {
  2402. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2403. if (DEBUGGING(LEVELING)) {
  2404. SERIAL_ECHOLNPGM(">>> gcode_G28");
  2405. log_machine_info();
  2406. }
  2407. #endif
  2408. // Wait for planner moves to finish!
  2409. stepper.synchronize();
  2410. // For auto bed leveling, clear the level matrix
  2411. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2412. planner.bed_level_matrix.set_to_identity();
  2413. #endif
  2414. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2415. reset_bed_level();
  2416. #endif
  2417. // Always home with tool 0 active
  2418. #if HOTENDS > 1
  2419. uint8_t old_tool_index = active_extruder;
  2420. tool_change(0, 0, true);
  2421. #endif
  2422. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  2423. extruder_duplication_enabled = false;
  2424. #endif
  2425. /**
  2426. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2427. * on again when homing all axis
  2428. */
  2429. #if ENABLED(MESH_BED_LEVELING)
  2430. float pre_home_z = MESH_HOME_SEARCH_Z;
  2431. if (mbl.active()) {
  2432. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2433. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL was active");
  2434. #endif
  2435. // Save known Z position if already homed
  2436. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2437. pre_home_z = current_position[Z_AXIS];
  2438. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2439. }
  2440. mbl.set_active(false);
  2441. current_position[Z_AXIS] = pre_home_z;
  2442. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2443. if (DEBUGGING(LEVELING)) DEBUG_POS("Set Z to pre_home_z", current_position);
  2444. #endif
  2445. }
  2446. #endif
  2447. setup_for_endstop_or_probe_move();
  2448. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2449. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2450. #endif
  2451. endstops.enable(true); // Enable endstops for next homing move
  2452. #if ENABLED(DELTA)
  2453. home_delta();
  2454. #else // NOT DELTA
  2455. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2456. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2457. set_destination_to_current();
  2458. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2459. if (home_all_axis || homeZ) {
  2460. HOMEAXIS(Z);
  2461. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2462. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2463. #endif
  2464. }
  2465. #else
  2466. if (home_all_axis || homeX || homeY) {
  2467. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2468. destination[Z_AXIS] = LOGICAL_Z_POSITION(Z_HOMING_HEIGHT);
  2469. if (destination[Z_AXIS] > current_position[Z_AXIS]) {
  2470. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2471. if (DEBUGGING(LEVELING))
  2472. SERIAL_ECHOLNPAIR("Raise Z (before homing) to ", destination[Z_AXIS]);
  2473. #endif
  2474. do_blocking_move_to_z(destination[Z_AXIS]);
  2475. }
  2476. }
  2477. #endif
  2478. #if ENABLED(QUICK_HOME)
  2479. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2480. #endif
  2481. #if ENABLED(HOME_Y_BEFORE_X)
  2482. // Home Y
  2483. if (home_all_axis || homeY) {
  2484. HOMEAXIS(Y);
  2485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2486. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2487. #endif
  2488. }
  2489. #endif
  2490. // Home X
  2491. if (home_all_axis || homeX) {
  2492. #if ENABLED(DUAL_X_CARRIAGE)
  2493. int tmp_extruder = active_extruder;
  2494. active_extruder = !active_extruder;
  2495. HOMEAXIS(X);
  2496. inactive_extruder_x_pos = RAW_X_POSITION(current_position[X_AXIS]);
  2497. active_extruder = tmp_extruder;
  2498. HOMEAXIS(X);
  2499. // reset state used by the different modes
  2500. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2501. delayed_move_time = 0;
  2502. active_extruder_parked = true;
  2503. #else
  2504. HOMEAXIS(X);
  2505. #endif
  2506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2507. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2508. #endif
  2509. }
  2510. #if DISABLED(HOME_Y_BEFORE_X)
  2511. // Home Y
  2512. if (home_all_axis || homeY) {
  2513. HOMEAXIS(Y);
  2514. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2515. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2516. #endif
  2517. }
  2518. #endif
  2519. // Home Z last if homing towards the bed
  2520. #if Z_HOME_DIR < 0
  2521. if (home_all_axis || homeZ) {
  2522. #if ENABLED(Z_SAFE_HOMING)
  2523. home_z_safely();
  2524. #else
  2525. HOMEAXIS(Z);
  2526. #endif
  2527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2528. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2529. #endif
  2530. } // home_all_axis || homeZ
  2531. #endif // Z_HOME_DIR < 0
  2532. SYNC_PLAN_POSITION_KINEMATIC();
  2533. #endif // !DELTA (gcode_G28)
  2534. endstops.not_homing();
  2535. // Enable mesh leveling again
  2536. #if ENABLED(MESH_BED_LEVELING)
  2537. if (mbl.has_mesh()) {
  2538. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2539. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL has mesh");
  2540. #endif
  2541. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2543. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("MBL Z homing");
  2544. #endif
  2545. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2546. #if Z_HOME_DIR > 0
  2547. + Z_MAX_POS
  2548. #endif
  2549. ;
  2550. SYNC_PLAN_POSITION_KINEMATIC();
  2551. mbl.set_active(true);
  2552. #if ENABLED(MESH_G28_REST_ORIGIN)
  2553. current_position[Z_AXIS] = 0.0;
  2554. set_destination_to_current();
  2555. feedrate_mm_s = homing_feedrate_mm_s[Z_AXIS];
  2556. line_to_destination();
  2557. stepper.synchronize();
  2558. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2559. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Rest Origin", current_position);
  2560. #endif
  2561. #else
  2562. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2563. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2564. #if Z_HOME_DIR > 0
  2565. + Z_MAX_POS
  2566. #endif
  2567. ;
  2568. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2569. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL adjusted MESH_HOME_SEARCH_Z", current_position);
  2570. #endif
  2571. #endif
  2572. }
  2573. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2574. current_position[Z_AXIS] = pre_home_z;
  2575. SYNC_PLAN_POSITION_KINEMATIC();
  2576. mbl.set_active(true);
  2577. current_position[Z_AXIS] = pre_home_z -
  2578. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2579. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2580. if (DEBUGGING(LEVELING)) DEBUG_POS("MBL Home X or Y", current_position);
  2581. #endif
  2582. }
  2583. }
  2584. #endif
  2585. #if ENABLED(DELTA)
  2586. // move to a height where we can use the full xy-area
  2587. do_blocking_move_to_z(delta_clip_start_height);
  2588. #endif
  2589. clean_up_after_endstop_or_probe_move();
  2590. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2591. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2592. #endif
  2593. // Restore the active tool after homing
  2594. #if HOTENDS > 1
  2595. tool_change(old_tool_index, 0, true);
  2596. #endif
  2597. report_current_position();
  2598. }
  2599. #if HAS_PROBING_PROCEDURE
  2600. void out_of_range_error(const char* p_edge) {
  2601. SERIAL_PROTOCOLPGM("?Probe ");
  2602. serialprintPGM(p_edge);
  2603. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2604. }
  2605. #endif
  2606. #if ENABLED(MESH_BED_LEVELING)
  2607. inline void _mbl_goto_xy(float x, float y) {
  2608. float old_feedrate_mm_s = feedrate_mm_s;
  2609. feedrate_mm_s = homing_feedrate_mm_s[X_AXIS];
  2610. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2611. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2612. + Z_PROBE_TRAVEL_HEIGHT
  2613. #elif Z_HOMING_HEIGHT > 0
  2614. + Z_HOMING_HEIGHT
  2615. #endif
  2616. ;
  2617. line_to_current_position();
  2618. current_position[X_AXIS] = LOGICAL_X_POSITION(x);
  2619. current_position[Y_AXIS] = LOGICAL_Y_POSITION(y);
  2620. line_to_current_position();
  2621. #if Z_PROBE_TRAVEL_HEIGHT > 0 || Z_HOMING_HEIGHT > 0
  2622. current_position[Z_AXIS] = LOGICAL_Z_POSITION(MESH_HOME_SEARCH_Z);
  2623. line_to_current_position();
  2624. #endif
  2625. feedrate_mm_s = old_feedrate_mm_s;
  2626. stepper.synchronize();
  2627. }
  2628. /**
  2629. * G29: Mesh-based Z probe, probes a grid and produces a
  2630. * mesh to compensate for variable bed height
  2631. *
  2632. * Parameters With MESH_BED_LEVELING:
  2633. *
  2634. * S0 Produce a mesh report
  2635. * S1 Start probing mesh points
  2636. * S2 Probe the next mesh point
  2637. * S3 Xn Yn Zn.nn Manually modify a single point
  2638. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2639. * S5 Reset and disable mesh
  2640. *
  2641. * The S0 report the points as below
  2642. *
  2643. * +----> X-axis 1-n
  2644. * |
  2645. * |
  2646. * v Y-axis 1-n
  2647. *
  2648. */
  2649. inline void gcode_G29() {
  2650. static int probe_point = -1;
  2651. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2652. if (state < 0 || state > 5) {
  2653. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2654. return;
  2655. }
  2656. int8_t px, py;
  2657. switch (state) {
  2658. case MeshReport:
  2659. if (mbl.has_mesh()) {
  2660. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? MSG_ON : MSG_OFF);
  2661. SERIAL_PROTOCOLLNPGM("\nNum X,Y: " STRINGIFY(MESH_NUM_X_POINTS) "," STRINGIFY(MESH_NUM_Y_POINTS));
  2662. SERIAL_PROTOCOLLNPGM("Z search height: " STRINGIFY(MESH_HOME_SEARCH_Z));
  2663. SERIAL_PROTOCOLPGM("Z offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2664. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2665. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2666. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2667. SERIAL_PROTOCOLPGM(" ");
  2668. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2669. }
  2670. SERIAL_EOL;
  2671. }
  2672. }
  2673. else
  2674. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2675. break;
  2676. case MeshStart:
  2677. mbl.reset();
  2678. probe_point = 0;
  2679. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2680. break;
  2681. case MeshNext:
  2682. if (probe_point < 0) {
  2683. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2684. return;
  2685. }
  2686. // For each G29 S2...
  2687. if (probe_point == 0) {
  2688. // For the initial G29 S2 make Z a positive value (e.g., 4.0)
  2689. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2690. #if Z_HOME_DIR > 0
  2691. + Z_MAX_POS
  2692. #endif
  2693. ;
  2694. SYNC_PLAN_POSITION_KINEMATIC();
  2695. }
  2696. else {
  2697. // For G29 S2 after adjusting Z.
  2698. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2699. }
  2700. // If there's another point to sample, move there with optional lift.
  2701. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2702. mbl.zigzag(probe_point, px, py);
  2703. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2704. probe_point++;
  2705. }
  2706. else {
  2707. // One last "return to the bed" (as originally coded) at completion
  2708. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2709. #if Z_PROBE_TRAVEL_HEIGHT > Z_HOMING_HEIGHT
  2710. + Z_PROBE_TRAVEL_HEIGHT
  2711. #elif Z_HOMING_HEIGHT > 0
  2712. + Z_HOMING_HEIGHT
  2713. #endif
  2714. ;
  2715. line_to_current_position();
  2716. stepper.synchronize();
  2717. // After recording the last point, activate the mbl and home
  2718. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2719. probe_point = -1;
  2720. mbl.set_has_mesh(true);
  2721. enqueue_and_echo_commands_P(PSTR("G28"));
  2722. }
  2723. break;
  2724. case MeshSet:
  2725. if (code_seen('X')) {
  2726. px = code_value_int() - 1;
  2727. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2728. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2729. return;
  2730. }
  2731. }
  2732. else {
  2733. SERIAL_PROTOCOLLNPGM("X not entered.");
  2734. return;
  2735. }
  2736. if (code_seen('Y')) {
  2737. py = code_value_int() - 1;
  2738. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2739. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2740. return;
  2741. }
  2742. }
  2743. else {
  2744. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2745. return;
  2746. }
  2747. if (code_seen('Z')) {
  2748. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2749. }
  2750. else {
  2751. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2752. return;
  2753. }
  2754. break;
  2755. case MeshSetZOffset:
  2756. if (code_seen('Z')) {
  2757. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2758. }
  2759. else {
  2760. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2761. return;
  2762. }
  2763. break;
  2764. case MeshReset:
  2765. if (mbl.active()) {
  2766. current_position[Z_AXIS] +=
  2767. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2768. mbl.reset();
  2769. SYNC_PLAN_POSITION_KINEMATIC();
  2770. }
  2771. else
  2772. mbl.reset();
  2773. } // switch(state)
  2774. report_current_position();
  2775. }
  2776. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2777. /**
  2778. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2779. * Will fail if the printer has not been homed with G28.
  2780. *
  2781. * Enhanced G29 Auto Bed Leveling Probe Routine
  2782. *
  2783. * Parameters With AUTO_BED_LEVELING_GRID:
  2784. *
  2785. * P Set the size of the grid that will be probed (P x P points).
  2786. * Not supported by non-linear delta printer bed leveling.
  2787. * Example: "G29 P4"
  2788. *
  2789. * S Set the XY travel speed between probe points (in units/min)
  2790. *
  2791. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2792. * or clean the rotation Matrix. Useful to check the topology
  2793. * after a first run of G29.
  2794. *
  2795. * V Set the verbose level (0-4). Example: "G29 V3"
  2796. *
  2797. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2798. * This is useful for manual bed leveling and finding flaws in the bed (to
  2799. * assist with part placement).
  2800. * Not supported by non-linear delta printer bed leveling.
  2801. *
  2802. * F Set the Front limit of the probing grid
  2803. * B Set the Back limit of the probing grid
  2804. * L Set the Left limit of the probing grid
  2805. * R Set the Right limit of the probing grid
  2806. *
  2807. * Global Parameters:
  2808. *
  2809. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2810. * Include "E" to engage/disengage the Z probe for each sample.
  2811. * There's no extra effect if you have a fixed Z probe.
  2812. * Usage: "G29 E" or "G29 e"
  2813. *
  2814. */
  2815. inline void gcode_G29() {
  2816. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2817. if (DEBUGGING(LEVELING)) {
  2818. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2819. DEBUG_POS("", current_position);
  2820. log_machine_info();
  2821. }
  2822. #endif
  2823. // Don't allow auto-leveling without homing first
  2824. if (axis_unhomed_error(true, true, true)) return;
  2825. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2826. if (verbose_level < 0 || verbose_level > 4) {
  2827. SERIAL_PROTOCOLLNPGM("?(V)erbose Level is implausible (0-4).");
  2828. return;
  2829. }
  2830. bool dryrun = code_seen('D');
  2831. bool stow_probe_after_each = code_seen('E');
  2832. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2833. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2834. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2835. #endif
  2836. if (verbose_level > 0) {
  2837. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2838. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2839. }
  2840. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2841. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2842. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2843. if (auto_bed_leveling_grid_points < 2) {
  2844. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2845. return;
  2846. }
  2847. #endif
  2848. xy_probe_feedrate_mm_s = MMM_TO_MMS(code_seen('S') ? code_value_linear_units() : XY_PROBE_SPEED);
  2849. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(LEFT_PROBE_BED_POSITION),
  2850. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : LOGICAL_X_POSITION(RIGHT_PROBE_BED_POSITION),
  2851. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(FRONT_PROBE_BED_POSITION),
  2852. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : LOGICAL_Y_POSITION(BACK_PROBE_BED_POSITION);
  2853. bool left_out_l = left_probe_bed_position < LOGICAL_X_POSITION(MIN_PROBE_X),
  2854. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2855. right_out_r = right_probe_bed_position > LOGICAL_X_POSITION(MAX_PROBE_X),
  2856. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2857. front_out_f = front_probe_bed_position < LOGICAL_Y_POSITION(MIN_PROBE_Y),
  2858. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2859. back_out_b = back_probe_bed_position > LOGICAL_Y_POSITION(MAX_PROBE_Y),
  2860. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2861. if (left_out || right_out || front_out || back_out) {
  2862. if (left_out) {
  2863. out_of_range_error(PSTR("(L)eft"));
  2864. left_probe_bed_position = left_out_l ? LOGICAL_X_POSITION(MIN_PROBE_X) : right_probe_bed_position - (MIN_PROBE_EDGE);
  2865. }
  2866. if (right_out) {
  2867. out_of_range_error(PSTR("(R)ight"));
  2868. right_probe_bed_position = right_out_r ? LOGICAL_Y_POSITION(MAX_PROBE_X) : left_probe_bed_position + MIN_PROBE_EDGE;
  2869. }
  2870. if (front_out) {
  2871. out_of_range_error(PSTR("(F)ront"));
  2872. front_probe_bed_position = front_out_f ? LOGICAL_Y_POSITION(MIN_PROBE_Y) : back_probe_bed_position - (MIN_PROBE_EDGE);
  2873. }
  2874. if (back_out) {
  2875. out_of_range_error(PSTR("(B)ack"));
  2876. back_probe_bed_position = back_out_b ? LOGICAL_Y_POSITION(MAX_PROBE_Y) : front_probe_bed_position + MIN_PROBE_EDGE;
  2877. }
  2878. return;
  2879. }
  2880. #endif // AUTO_BED_LEVELING_GRID
  2881. stepper.synchronize();
  2882. if (!dryrun) {
  2883. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2884. // Reset the bed_level_matrix because leveling
  2885. // needs to be done without leveling enabled.
  2886. planner.bed_level_matrix.set_to_identity();
  2887. #endif
  2888. //
  2889. // Re-orient the current position without leveling
  2890. // based on where the steppers are positioned.
  2891. //
  2892. #if IS_KINEMATIC
  2893. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2894. reset_bed_level();
  2895. #endif
  2896. // For DELTA/SCARA we need to apply forward kinematics.
  2897. // This returns raw positions and we remap to the space.
  2898. set_cartesian_from_steppers();
  2899. LOOP_XYZ(i) current_position[i] = LOGICAL_POSITION(cartesian_position[i], i);
  2900. #else
  2901. // For cartesian/core the steppers are already mapped to
  2902. // the coordinate space by design.
  2903. LOOP_XYZ(i) current_position[i] = stepper.get_axis_position_mm((AxisEnum)i);
  2904. #endif // !DELTA
  2905. // Inform the planner about the new coordinates
  2906. // (This is probably not needed here)
  2907. SYNC_PLAN_POSITION_KINEMATIC();
  2908. }
  2909. setup_for_endstop_or_probe_move();
  2910. // Deploy the probe. Probe will raise if needed.
  2911. if (DEPLOY_PROBE()) return;
  2912. bed_leveling_in_progress = true;
  2913. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2914. // probe at the points of a lattice grid
  2915. const float xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2916. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2917. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2918. nonlinear_grid_spacing[X_AXIS] = xGridSpacing;
  2919. nonlinear_grid_spacing[Y_AXIS] = yGridSpacing;
  2920. float zoffset = zprobe_zoffset;
  2921. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2922. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  2923. /**
  2924. * solve the plane equation ax + by + d = z
  2925. * A is the matrix with rows [x y 1] for all the probed points
  2926. * B is the vector of the Z positions
  2927. * the normal vector to the plane is formed by the coefficients of the
  2928. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2929. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2930. */
  2931. int abl2 = sq(auto_bed_leveling_grid_points);
  2932. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2933. eqnBVector[abl2], // "B" vector of Z points
  2934. mean = 0.0;
  2935. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2936. #endif // AUTO_BED_LEVELING_LINEAR
  2937. int probePointCounter = 0;
  2938. bool zig = auto_bed_leveling_grid_points & 1; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2939. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2940. float yBase = front_probe_bed_position + yGridSpacing * yCount,
  2941. yProbe = floor(yBase + (yBase < 0 ? 0 : 0.5));
  2942. int xStart, xStop, xInc;
  2943. if (zig) {
  2944. xStart = 0;
  2945. xStop = auto_bed_leveling_grid_points;
  2946. xInc = 1;
  2947. }
  2948. else {
  2949. xStart = auto_bed_leveling_grid_points - 1;
  2950. xStop = -1;
  2951. xInc = -1;
  2952. }
  2953. zig = !zig;
  2954. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2955. float xBase = left_probe_bed_position + xGridSpacing * xCount,
  2956. xProbe = floor(xBase + (xBase < 0 ? 0 : 0.5));
  2957. #if ENABLED(DELTA)
  2958. // Avoid probing outside the round or hexagonal area of a delta printer
  2959. if (sq(xProbe) + sq(yProbe) > sq(DELTA_PROBEABLE_RADIUS) + 0.1) continue;
  2960. #endif
  2961. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2962. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  2963. mean += measured_z;
  2964. eqnBVector[probePointCounter] = measured_z;
  2965. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2966. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2967. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2968. indexIntoAB[xCount][yCount] = probePointCounter;
  2969. #elif ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  2970. bed_level[xCount][yCount] = measured_z + zoffset;
  2971. #endif
  2972. probePointCounter++;
  2973. idle();
  2974. } //xProbe
  2975. } //yProbe
  2976. #elif ENABLED(AUTO_BED_LEVELING_3POINT)
  2977. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2978. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2979. #endif
  2980. // Probe at 3 arbitrary points
  2981. float z_at_pt_1 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_1_X),
  2982. LOGICAL_Y_POSITION(ABL_PROBE_PT_1_Y),
  2983. stow_probe_after_each, verbose_level),
  2984. z_at_pt_2 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_2_X),
  2985. LOGICAL_Y_POSITION(ABL_PROBE_PT_2_Y),
  2986. stow_probe_after_each, verbose_level),
  2987. z_at_pt_3 = probe_pt( LOGICAL_X_POSITION(ABL_PROBE_PT_3_X),
  2988. LOGICAL_Y_POSITION(ABL_PROBE_PT_3_Y),
  2989. stow_probe_after_each, verbose_level);
  2990. if (!dryrun) {
  2991. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1),
  2992. pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2),
  2993. pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  2994. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  2995. if (planeNormal.z < 0) {
  2996. planeNormal.x *= -1;
  2997. planeNormal.y *= -1;
  2998. planeNormal.z *= -1;
  2999. }
  3000. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  3001. }
  3002. #endif // !AUTO_BED_LEVELING_GRID
  3003. // Raise to _Z_PROBE_DEPLOY_HEIGHT. Stow the probe.
  3004. if (STOW_PROBE()) return;
  3005. // Restore state after probing
  3006. clean_up_after_endstop_or_probe_move();
  3007. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3008. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3009. #endif
  3010. // Calculate leveling, print reports, correct the position
  3011. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3012. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3013. if (!dryrun) extrapolate_unprobed_bed_level();
  3014. print_bed_level();
  3015. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3016. // solve lsq problem
  3017. double plane_equation_coefficients[3];
  3018. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3019. mean /= abl2;
  3020. if (verbose_level) {
  3021. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3022. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3023. SERIAL_PROTOCOLPGM(" b: ");
  3024. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3025. SERIAL_PROTOCOLPGM(" d: ");
  3026. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3027. SERIAL_EOL;
  3028. if (verbose_level > 2) {
  3029. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3030. SERIAL_PROTOCOL_F(mean, 8);
  3031. SERIAL_EOL;
  3032. }
  3033. }
  3034. // Create the matrix but don't correct the position yet
  3035. if (!dryrun) {
  3036. planner.bed_level_matrix = matrix_3x3::create_look_at(
  3037. vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1)
  3038. );
  3039. }
  3040. // Show the Topography map if enabled
  3041. if (do_topography_map) {
  3042. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3043. " +--- BACK --+\n"
  3044. " | |\n"
  3045. " L | (+) | R\n"
  3046. " E | | I\n"
  3047. " F | (-) N (+) | G\n"
  3048. " T | | H\n"
  3049. " | (-) | T\n"
  3050. " | |\n"
  3051. " O-- FRONT --+\n"
  3052. " (0,0)");
  3053. float min_diff = 999;
  3054. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3055. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3056. int ind = indexIntoAB[xx][yy];
  3057. float diff = eqnBVector[ind] - mean;
  3058. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3059. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3060. z_tmp = 0;
  3061. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3062. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3063. if (diff >= 0.0)
  3064. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3065. else
  3066. SERIAL_PROTOCOLCHAR(' ');
  3067. SERIAL_PROTOCOL_F(diff, 5);
  3068. } // xx
  3069. SERIAL_EOL;
  3070. } // yy
  3071. SERIAL_EOL;
  3072. if (verbose_level > 3) {
  3073. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3074. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3075. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3076. int ind = indexIntoAB[xx][yy];
  3077. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3078. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3079. z_tmp = 0;
  3080. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3081. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3082. if (diff >= 0.0)
  3083. SERIAL_PROTOCOLPGM(" +");
  3084. // Include + for column alignment
  3085. else
  3086. SERIAL_PROTOCOLCHAR(' ');
  3087. SERIAL_PROTOCOL_F(diff, 5);
  3088. } // xx
  3089. SERIAL_EOL;
  3090. } // yy
  3091. SERIAL_EOL;
  3092. }
  3093. } //do_topography_map
  3094. #endif // AUTO_BED_LEVELING_LINEAR
  3095. #endif // AUTO_BED_LEVELING_GRID
  3096. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  3097. if (verbose_level > 0)
  3098. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3099. if (!dryrun) {
  3100. //
  3101. // Correct the current XYZ position based on the tilted plane.
  3102. //
  3103. // Get the distance from the reference point to the current position
  3104. // The current XY is in sync with the planner/steppers at this point
  3105. // but the current Z is only known to the steppers.
  3106. float x_dist = RAW_CURRENT_POSITION(X_AXIS) - X_TILT_FULCRUM,
  3107. y_dist = RAW_CURRENT_POSITION(Y_AXIS) - Y_TILT_FULCRUM,
  3108. z_real = RAW_Z_POSITION(stepper.get_axis_position_mm(Z_AXIS));
  3109. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3110. if (DEBUGGING(LEVELING)) {
  3111. SERIAL_ECHOPAIR("BEFORE ROTATION ... x_dist:", x_dist);
  3112. SERIAL_ECHOPAIR("y_dist:", y_dist);
  3113. SERIAL_ECHOPAIR("z_real:", z_real);
  3114. }
  3115. #endif
  3116. // Apply the matrix to the distance from the reference point to XY,
  3117. // and from the homed Z to the current Z.
  3118. apply_rotation_xyz(planner.bed_level_matrix, x_dist, y_dist, z_real);
  3119. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3120. if (DEBUGGING(LEVELING)) {
  3121. SERIAL_ECHOPAIR("AFTER ROTATION ... x_dist:", x_dist);
  3122. SERIAL_ECHOPAIR("y_dist:", y_dist);
  3123. SERIAL_ECHOPAIR("z_real:", z_real);
  3124. }
  3125. #endif
  3126. // Apply the rotated distance and Z to the current position
  3127. current_position[X_AXIS] = LOGICAL_X_POSITION(X_TILT_FULCRUM + x_dist);
  3128. current_position[Y_AXIS] = LOGICAL_Y_POSITION(Y_TILT_FULCRUM + y_dist);
  3129. current_position[Z_AXIS] = LOGICAL_Z_POSITION(z_real);
  3130. SYNC_PLAN_POSITION_KINEMATIC();
  3131. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3132. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected XYZ in G29", current_position);
  3133. #endif
  3134. }
  3135. #endif // !DELTA
  3136. #ifdef Z_PROBE_END_SCRIPT
  3137. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3138. if (DEBUGGING(LEVELING)) {
  3139. SERIAL_ECHOPGM("Z Probe End Script: ");
  3140. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3141. }
  3142. #endif
  3143. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3144. stepper.synchronize();
  3145. #endif
  3146. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3147. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3148. #endif
  3149. bed_leveling_in_progress = false;
  3150. report_current_position();
  3151. KEEPALIVE_STATE(IN_HANDLER);
  3152. }
  3153. #endif //AUTO_BED_LEVELING_FEATURE
  3154. #if HAS_BED_PROBE
  3155. /**
  3156. * G30: Do a single Z probe at the current XY
  3157. */
  3158. inline void gcode_G30() {
  3159. setup_for_endstop_or_probe_move();
  3160. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3161. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3162. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3163. true, 1);
  3164. SERIAL_PROTOCOLPGM("Bed X: ");
  3165. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3166. SERIAL_PROTOCOLPGM(" Y: ");
  3167. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3168. SERIAL_PROTOCOLPGM(" Z: ");
  3169. SERIAL_PROTOCOL(measured_z + 0.0001);
  3170. SERIAL_EOL;
  3171. clean_up_after_endstop_or_probe_move();
  3172. report_current_position();
  3173. }
  3174. #if ENABLED(Z_PROBE_SLED)
  3175. /**
  3176. * G31: Deploy the Z probe
  3177. */
  3178. inline void gcode_G31() { DEPLOY_PROBE(); }
  3179. /**
  3180. * G32: Stow the Z probe
  3181. */
  3182. inline void gcode_G32() { STOW_PROBE(); }
  3183. #endif // Z_PROBE_SLED
  3184. #endif // HAS_BED_PROBE
  3185. /**
  3186. * G92: Set current position to given X Y Z E
  3187. */
  3188. inline void gcode_G92() {
  3189. bool didE = code_seen('E');
  3190. if (!didE) stepper.synchronize();
  3191. bool didXYZ = false;
  3192. LOOP_XYZE(i) {
  3193. if (code_seen(axis_codes[i])) {
  3194. float p = current_position[i],
  3195. v = code_value_axis_units(i);
  3196. current_position[i] = v;
  3197. if (i != E_AXIS) {
  3198. position_shift[i] += v - p; // Offset the coordinate space
  3199. update_software_endstops((AxisEnum)i);
  3200. didXYZ = true;
  3201. }
  3202. }
  3203. }
  3204. if (didXYZ)
  3205. SYNC_PLAN_POSITION_KINEMATIC();
  3206. else if (didE)
  3207. sync_plan_position_e();
  3208. }
  3209. #if ENABLED(ULTIPANEL) || ENABLED(EMERGENCY_PARSER)
  3210. /**
  3211. * M0: Unconditional stop - Wait for user button press on LCD
  3212. * M1: Conditional stop - Wait for user button press on LCD
  3213. */
  3214. inline void gcode_M0_M1() {
  3215. char* args = current_command_args;
  3216. millis_t codenum = 0;
  3217. bool hasP = false, hasS = false;
  3218. if (code_seen('P')) {
  3219. codenum = code_value_millis(); // milliseconds to wait
  3220. hasP = codenum > 0;
  3221. }
  3222. if (code_seen('S')) {
  3223. codenum = code_value_millis_from_seconds(); // seconds to wait
  3224. hasS = codenum > 0;
  3225. }
  3226. #if ENABLED(ULTIPANEL)
  3227. if (!hasP && !hasS && *args != '\0')
  3228. lcd_setstatus(args, true);
  3229. else {
  3230. LCD_MESSAGEPGM(MSG_USERWAIT);
  3231. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3232. dontExpireStatus();
  3233. #endif
  3234. }
  3235. lcd_ignore_click();
  3236. #else
  3237. if (!hasP && !hasS && *args != '\0') {
  3238. SERIAL_ECHO_START;
  3239. SERIAL_ECHOLN(args);
  3240. }
  3241. #endif
  3242. stepper.synchronize();
  3243. refresh_cmd_timeout();
  3244. #if ENABLED(ULTIPANEL)
  3245. if (codenum > 0) {
  3246. codenum += previous_cmd_ms; // wait until this time for a click
  3247. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3248. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3249. lcd_ignore_click(false);
  3250. }
  3251. else if (lcd_detected()) {
  3252. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3253. while (!lcd_clicked()) idle();
  3254. }
  3255. else return;
  3256. if (IS_SD_PRINTING)
  3257. LCD_MESSAGEPGM(MSG_RESUMING);
  3258. else
  3259. LCD_MESSAGEPGM(WELCOME_MSG);
  3260. #else
  3261. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3262. wait_for_user = true;
  3263. if (codenum > 0) {
  3264. codenum += previous_cmd_ms; // wait until this time for an M108
  3265. while (PENDING(millis(), codenum) && wait_for_user) idle();
  3266. }
  3267. else while (wait_for_user) idle();
  3268. wait_for_user = false;
  3269. #endif
  3270. KEEPALIVE_STATE(IN_HANDLER);
  3271. }
  3272. #endif // ULTIPANEL || EMERGENCY_PARSER
  3273. /**
  3274. * M17: Enable power on all stepper motors
  3275. */
  3276. inline void gcode_M17() {
  3277. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3278. enable_all_steppers();
  3279. }
  3280. #if ENABLED(SDSUPPORT)
  3281. /**
  3282. * M20: List SD card to serial output
  3283. */
  3284. inline void gcode_M20() {
  3285. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3286. card.ls();
  3287. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3288. }
  3289. /**
  3290. * M21: Init SD Card
  3291. */
  3292. inline void gcode_M21() {
  3293. card.initsd();
  3294. }
  3295. /**
  3296. * M22: Release SD Card
  3297. */
  3298. inline void gcode_M22() {
  3299. card.release();
  3300. }
  3301. /**
  3302. * M23: Open a file
  3303. */
  3304. inline void gcode_M23() {
  3305. card.openFile(current_command_args, true);
  3306. }
  3307. /**
  3308. * M24: Start SD Print
  3309. */
  3310. inline void gcode_M24() {
  3311. card.startFileprint();
  3312. print_job_timer.start();
  3313. }
  3314. /**
  3315. * M25: Pause SD Print
  3316. */
  3317. inline void gcode_M25() {
  3318. card.pauseSDPrint();
  3319. }
  3320. /**
  3321. * M26: Set SD Card file index
  3322. */
  3323. inline void gcode_M26() {
  3324. if (card.cardOK && code_seen('S'))
  3325. card.setIndex(code_value_long());
  3326. }
  3327. /**
  3328. * M27: Get SD Card status
  3329. */
  3330. inline void gcode_M27() {
  3331. card.getStatus();
  3332. }
  3333. /**
  3334. * M28: Start SD Write
  3335. */
  3336. inline void gcode_M28() {
  3337. card.openFile(current_command_args, false);
  3338. }
  3339. /**
  3340. * M29: Stop SD Write
  3341. * Processed in write to file routine above
  3342. */
  3343. inline void gcode_M29() {
  3344. // card.saving = false;
  3345. }
  3346. /**
  3347. * M30 <filename>: Delete SD Card file
  3348. */
  3349. inline void gcode_M30() {
  3350. if (card.cardOK) {
  3351. card.closefile();
  3352. card.removeFile(current_command_args);
  3353. }
  3354. }
  3355. #endif //SDSUPPORT
  3356. /**
  3357. * M31: Get the time since the start of SD Print (or last M109)
  3358. */
  3359. inline void gcode_M31() {
  3360. char buffer[21];
  3361. duration_t elapsed = print_job_timer.duration();
  3362. elapsed.toString(buffer);
  3363. lcd_setstatus(buffer);
  3364. SERIAL_ECHO_START;
  3365. SERIAL_ECHOPGM("Print time: ");
  3366. SERIAL_ECHOLN(buffer);
  3367. thermalManager.autotempShutdown();
  3368. }
  3369. #if ENABLED(SDSUPPORT)
  3370. /**
  3371. * M32: Select file and start SD Print
  3372. */
  3373. inline void gcode_M32() {
  3374. if (card.sdprinting)
  3375. stepper.synchronize();
  3376. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3377. if (!namestartpos)
  3378. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3379. else
  3380. namestartpos++; //to skip the '!'
  3381. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3382. if (card.cardOK) {
  3383. card.openFile(namestartpos, true, call_procedure);
  3384. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3385. card.setIndex(code_value_long());
  3386. card.startFileprint();
  3387. // Procedure calls count as normal print time.
  3388. if (!call_procedure) print_job_timer.start();
  3389. }
  3390. }
  3391. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3392. /**
  3393. * M33: Get the long full path of a file or folder
  3394. *
  3395. * Parameters:
  3396. * <dospath> Case-insensitive DOS-style path to a file or folder
  3397. *
  3398. * Example:
  3399. * M33 miscel~1/armchair/armcha~1.gco
  3400. *
  3401. * Output:
  3402. * /Miscellaneous/Armchair/Armchair.gcode
  3403. */
  3404. inline void gcode_M33() {
  3405. card.printLongPath(current_command_args);
  3406. }
  3407. #endif
  3408. /**
  3409. * M928: Start SD Write
  3410. */
  3411. inline void gcode_M928() {
  3412. card.openLogFile(current_command_args);
  3413. }
  3414. #endif // SDSUPPORT
  3415. /**
  3416. * M42: Change pin status via GCode
  3417. *
  3418. * P<pin> Pin number (LED if omitted)
  3419. * S<byte> Pin status from 0 - 255
  3420. */
  3421. inline void gcode_M42() {
  3422. if (!code_seen('S')) return;
  3423. int pin_status = code_value_int();
  3424. if (pin_status < 0 || pin_status > 255) return;
  3425. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3426. if (pin_number < 0) return;
  3427. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3428. if (pin_number == sensitive_pins[i]) return;
  3429. pinMode(pin_number, OUTPUT);
  3430. digitalWrite(pin_number, pin_status);
  3431. analogWrite(pin_number, pin_status);
  3432. #if FAN_COUNT > 0
  3433. switch (pin_number) {
  3434. #if HAS_FAN0
  3435. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3436. #endif
  3437. #if HAS_FAN1
  3438. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3439. #endif
  3440. #if HAS_FAN2
  3441. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3442. #endif
  3443. }
  3444. #endif
  3445. }
  3446. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3447. /**
  3448. * M48: Z probe repeatability measurement function.
  3449. *
  3450. * Usage:
  3451. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3452. * P = Number of sampled points (4-50, default 10)
  3453. * X = Sample X position
  3454. * Y = Sample Y position
  3455. * V = Verbose level (0-4, default=1)
  3456. * E = Engage Z probe for each reading
  3457. * L = Number of legs of movement before probe
  3458. * S = Schizoid (Or Star if you prefer)
  3459. *
  3460. * This function assumes the bed has been homed. Specifically, that a G28 command
  3461. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3462. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3463. * regenerated.
  3464. */
  3465. inline void gcode_M48() {
  3466. if (axis_unhomed_error(true, true, true)) return;
  3467. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3468. if (verbose_level < 0 || verbose_level > 4) {
  3469. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3470. return;
  3471. }
  3472. if (verbose_level > 0)
  3473. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3474. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3475. if (n_samples < 4 || n_samples > 50) {
  3476. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3477. return;
  3478. }
  3479. float X_current = current_position[X_AXIS],
  3480. Y_current = current_position[Y_AXIS];
  3481. bool stow_probe_after_each = code_seen('E');
  3482. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3483. #if DISABLED(DELTA)
  3484. if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
  3485. out_of_range_error(PSTR("X"));
  3486. return;
  3487. }
  3488. #endif
  3489. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3490. #if DISABLED(DELTA)
  3491. if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
  3492. out_of_range_error(PSTR("Y"));
  3493. return;
  3494. }
  3495. #else
  3496. if (HYPOT(RAW_X_POSITION(X_probe_location), RAW_Y_POSITION(Y_probe_location)) > DELTA_PROBEABLE_RADIUS) {
  3497. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3498. return;
  3499. }
  3500. #endif
  3501. bool seen_L = code_seen('L');
  3502. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3503. if (n_legs > 15) {
  3504. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3505. return;
  3506. }
  3507. if (n_legs == 1) n_legs = 2;
  3508. bool schizoid_flag = code_seen('S');
  3509. if (schizoid_flag && !seen_L) n_legs = 7;
  3510. /**
  3511. * Now get everything to the specified probe point So we can safely do a
  3512. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3513. * we don't want to use that as a starting point for each probe.
  3514. */
  3515. if (verbose_level > 2)
  3516. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3517. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  3518. // we don't do bed level correction in M48 because we want the raw data when we probe
  3519. reset_bed_level();
  3520. #elif ENABLED(AUTO_BED_LEVELING_LINEAR)
  3521. // we don't do bed level correction in M48 because we want the raw data when we probe
  3522. planner.bed_level_matrix.set_to_identity();
  3523. #endif
  3524. setup_for_endstop_or_probe_move();
  3525. // Move to the first point, deploy, and probe
  3526. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3527. randomSeed(millis());
  3528. double mean = 0, sigma = 0, sample_set[n_samples];
  3529. for (uint8_t n = 0; n < n_samples; n++) {
  3530. if (n_legs) {
  3531. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3532. float angle = random(0.0, 360.0),
  3533. radius = random(
  3534. #if ENABLED(DELTA)
  3535. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3536. #else
  3537. 5, X_MAX_LENGTH / 8
  3538. #endif
  3539. );
  3540. if (verbose_level > 3) {
  3541. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3542. SERIAL_ECHOPAIR(" angle: ", angle);
  3543. SERIAL_ECHOPGM(" Direction: ");
  3544. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3545. SERIAL_ECHOLNPGM("Clockwise");
  3546. }
  3547. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3548. double delta_angle;
  3549. if (schizoid_flag)
  3550. // The points of a 5 point star are 72 degrees apart. We need to
  3551. // skip a point and go to the next one on the star.
  3552. delta_angle = dir * 2.0 * 72.0;
  3553. else
  3554. // If we do this line, we are just trying to move further
  3555. // around the circle.
  3556. delta_angle = dir * (float) random(25, 45);
  3557. angle += delta_angle;
  3558. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3559. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3560. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3561. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3562. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3563. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3564. #if DISABLED(DELTA)
  3565. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3566. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3567. #else
  3568. // If we have gone out too far, we can do a simple fix and scale the numbers
  3569. // back in closer to the origin.
  3570. while (HYPOT(X_current, Y_current) > DELTA_PROBEABLE_RADIUS) {
  3571. X_current /= 1.25;
  3572. Y_current /= 1.25;
  3573. if (verbose_level > 3) {
  3574. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3575. SERIAL_ECHOLNPAIR(", ", Y_current);
  3576. }
  3577. }
  3578. #endif
  3579. if (verbose_level > 3) {
  3580. SERIAL_PROTOCOLPGM("Going to:");
  3581. SERIAL_ECHOPAIR(" X", X_current);
  3582. SERIAL_ECHOPAIR(" Y", Y_current);
  3583. SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
  3584. }
  3585. do_blocking_move_to_xy(X_current, Y_current);
  3586. } // n_legs loop
  3587. } // n_legs
  3588. // Probe a single point
  3589. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3590. /**
  3591. * Get the current mean for the data points we have so far
  3592. */
  3593. double sum = 0.0;
  3594. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3595. mean = sum / (n + 1);
  3596. /**
  3597. * Now, use that mean to calculate the standard deviation for the
  3598. * data points we have so far
  3599. */
  3600. sum = 0.0;
  3601. for (uint8_t j = 0; j <= n; j++)
  3602. sum += sq(sample_set[j] - mean);
  3603. sigma = sqrt(sum / (n + 1));
  3604. if (verbose_level > 0) {
  3605. if (verbose_level > 1) {
  3606. SERIAL_PROTOCOL(n + 1);
  3607. SERIAL_PROTOCOLPGM(" of ");
  3608. SERIAL_PROTOCOL((int)n_samples);
  3609. SERIAL_PROTOCOLPGM(" z: ");
  3610. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3611. if (verbose_level > 2) {
  3612. SERIAL_PROTOCOLPGM(" mean: ");
  3613. SERIAL_PROTOCOL_F(mean, 6);
  3614. SERIAL_PROTOCOLPGM(" sigma: ");
  3615. SERIAL_PROTOCOL_F(sigma, 6);
  3616. }
  3617. }
  3618. SERIAL_EOL;
  3619. }
  3620. } // End of probe loop
  3621. if (STOW_PROBE()) return;
  3622. if (verbose_level > 0) {
  3623. SERIAL_PROTOCOLPGM("Mean: ");
  3624. SERIAL_PROTOCOL_F(mean, 6);
  3625. SERIAL_EOL;
  3626. }
  3627. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3628. SERIAL_PROTOCOL_F(sigma, 6);
  3629. SERIAL_EOL; SERIAL_EOL;
  3630. clean_up_after_endstop_or_probe_move();
  3631. report_current_position();
  3632. }
  3633. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3634. /**
  3635. * M75: Start print timer
  3636. */
  3637. inline void gcode_M75() { print_job_timer.start(); }
  3638. /**
  3639. * M76: Pause print timer
  3640. */
  3641. inline void gcode_M76() { print_job_timer.pause(); }
  3642. /**
  3643. * M77: Stop print timer
  3644. */
  3645. inline void gcode_M77() { print_job_timer.stop(); }
  3646. #if ENABLED(PRINTCOUNTER)
  3647. /**
  3648. * M78: Show print statistics
  3649. */
  3650. inline void gcode_M78() {
  3651. // "M78 S78" will reset the statistics
  3652. if (code_seen('S') && code_value_int() == 78)
  3653. print_job_timer.initStats();
  3654. else print_job_timer.showStats();
  3655. }
  3656. #endif
  3657. /**
  3658. * M104: Set hot end temperature
  3659. */
  3660. inline void gcode_M104() {
  3661. if (get_target_extruder_from_command(104)) return;
  3662. if (DEBUGGING(DRYRUN)) return;
  3663. #if ENABLED(SINGLENOZZLE)
  3664. if (target_extruder != active_extruder) return;
  3665. #endif
  3666. if (code_seen('S')) {
  3667. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3668. #if ENABLED(DUAL_X_CARRIAGE)
  3669. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3670. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3671. #endif
  3672. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3673. /**
  3674. * Stop the timer at the end of print, starting is managed by
  3675. * 'heat and wait' M109.
  3676. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3677. * stand by mode, for instance in a dual extruder setup, without affecting
  3678. * the running print timer.
  3679. */
  3680. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3681. print_job_timer.stop();
  3682. LCD_MESSAGEPGM(WELCOME_MSG);
  3683. }
  3684. #endif
  3685. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3686. }
  3687. }
  3688. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3689. void print_heaterstates() {
  3690. #if HAS_TEMP_HOTEND
  3691. SERIAL_PROTOCOLPGM(" T:");
  3692. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3693. SERIAL_PROTOCOLPGM(" /");
  3694. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3695. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3696. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[target_extruder] / OVERSAMPLENR);
  3697. SERIAL_CHAR(')');
  3698. #endif
  3699. #endif
  3700. #if HAS_TEMP_BED
  3701. SERIAL_PROTOCOLPGM(" B:");
  3702. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3703. SERIAL_PROTOCOLPGM(" /");
  3704. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3705. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3706. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_bed_raw / OVERSAMPLENR);
  3707. SERIAL_CHAR(')');
  3708. #endif
  3709. #endif
  3710. #if HOTENDS > 1
  3711. HOTEND_LOOP() {
  3712. SERIAL_PROTOCOLPAIR(" T", e);
  3713. SERIAL_PROTOCOLCHAR(':');
  3714. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3715. SERIAL_PROTOCOLPGM(" /");
  3716. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3717. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3718. SERIAL_PROTOCOLPAIR(" (", thermalManager.current_temperature_raw[e] / OVERSAMPLENR);
  3719. SERIAL_CHAR(')');
  3720. #endif
  3721. }
  3722. #endif
  3723. SERIAL_PROTOCOLPGM(" @:");
  3724. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3725. #if HAS_TEMP_BED
  3726. SERIAL_PROTOCOLPGM(" B@:");
  3727. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3728. #endif
  3729. #if HOTENDS > 1
  3730. HOTEND_LOOP() {
  3731. SERIAL_PROTOCOLPAIR(" @", e);
  3732. SERIAL_PROTOCOLCHAR(':');
  3733. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3734. }
  3735. #endif
  3736. }
  3737. #endif
  3738. /**
  3739. * M105: Read hot end and bed temperature
  3740. */
  3741. inline void gcode_M105() {
  3742. if (get_target_extruder_from_command(105)) return;
  3743. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3744. SERIAL_PROTOCOLPGM(MSG_OK);
  3745. print_heaterstates();
  3746. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3747. SERIAL_ERROR_START;
  3748. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3749. #endif
  3750. SERIAL_EOL;
  3751. }
  3752. #if FAN_COUNT > 0
  3753. /**
  3754. * M106: Set Fan Speed
  3755. *
  3756. * S<int> Speed between 0-255
  3757. * P<index> Fan index, if more than one fan
  3758. */
  3759. inline void gcode_M106() {
  3760. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3761. p = code_seen('P') ? code_value_ushort() : 0;
  3762. NOMORE(s, 255);
  3763. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3764. }
  3765. /**
  3766. * M107: Fan Off
  3767. */
  3768. inline void gcode_M107() {
  3769. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3770. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3771. }
  3772. #endif // FAN_COUNT > 0
  3773. #if DISABLED(EMERGENCY_PARSER)
  3774. /**
  3775. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3776. */
  3777. inline void gcode_M108() { wait_for_heatup = false; }
  3778. /**
  3779. * M112: Emergency Stop
  3780. */
  3781. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3782. /**
  3783. * M410: Quickstop - Abort all planned moves
  3784. *
  3785. * This will stop the carriages mid-move, so most likely they
  3786. * will be out of sync with the stepper position after this.
  3787. */
  3788. inline void gcode_M410() { quickstop_stepper(); }
  3789. #endif
  3790. #ifndef MIN_COOLING_SLOPE_DEG
  3791. #define MIN_COOLING_SLOPE_DEG 1.50
  3792. #endif
  3793. #ifndef MIN_COOLING_SLOPE_TIME
  3794. #define MIN_COOLING_SLOPE_TIME 60
  3795. #endif
  3796. /**
  3797. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3798. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3799. */
  3800. inline void gcode_M109() {
  3801. if (get_target_extruder_from_command(109)) return;
  3802. if (DEBUGGING(DRYRUN)) return;
  3803. #if ENABLED(SINGLENOZZLE)
  3804. if (target_extruder != active_extruder) return;
  3805. #endif
  3806. bool no_wait_for_cooling = code_seen('S');
  3807. if (no_wait_for_cooling || code_seen('R')) {
  3808. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3809. #if ENABLED(DUAL_X_CARRIAGE)
  3810. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3811. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3812. #endif
  3813. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3814. /**
  3815. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3816. * stand by mode, for instance in a dual extruder setup, without affecting
  3817. * the running print timer.
  3818. */
  3819. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3820. print_job_timer.stop();
  3821. LCD_MESSAGEPGM(WELCOME_MSG);
  3822. }
  3823. /**
  3824. * We do not check if the timer is already running because this check will
  3825. * be done for us inside the Stopwatch::start() method thus a running timer
  3826. * will not restart.
  3827. */
  3828. else print_job_timer.start();
  3829. #endif
  3830. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3831. }
  3832. #if ENABLED(AUTOTEMP)
  3833. planner.autotemp_M109();
  3834. #endif
  3835. #if TEMP_RESIDENCY_TIME > 0
  3836. millis_t residency_start_ms = 0;
  3837. // Loop until the temperature has stabilized
  3838. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3839. #else
  3840. // Loop until the temperature is very close target
  3841. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3842. #endif //TEMP_RESIDENCY_TIME > 0
  3843. float theTarget = -1.0, old_temp = 9999.0;
  3844. bool wants_to_cool = false;
  3845. wait_for_heatup = true;
  3846. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3847. KEEPALIVE_STATE(NOT_BUSY);
  3848. do {
  3849. // Target temperature might be changed during the loop
  3850. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3851. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3852. theTarget = thermalManager.degTargetHotend(target_extruder);
  3853. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3854. if (no_wait_for_cooling && wants_to_cool) break;
  3855. }
  3856. now = millis();
  3857. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3858. next_temp_ms = now + 1000UL;
  3859. print_heaterstates();
  3860. #if TEMP_RESIDENCY_TIME > 0
  3861. SERIAL_PROTOCOLPGM(" W:");
  3862. if (residency_start_ms) {
  3863. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3864. SERIAL_PROTOCOLLN(rem);
  3865. }
  3866. else {
  3867. SERIAL_PROTOCOLLNPGM("?");
  3868. }
  3869. #else
  3870. SERIAL_EOL;
  3871. #endif
  3872. }
  3873. idle();
  3874. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3875. float temp = thermalManager.degHotend(target_extruder);
  3876. #if TEMP_RESIDENCY_TIME > 0
  3877. float temp_diff = fabs(theTarget - temp);
  3878. if (!residency_start_ms) {
  3879. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3880. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3881. }
  3882. else if (temp_diff > TEMP_HYSTERESIS) {
  3883. // Restart the timer whenever the temperature falls outside the hysteresis.
  3884. residency_start_ms = now;
  3885. }
  3886. #endif //TEMP_RESIDENCY_TIME > 0
  3887. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3888. if (wants_to_cool) {
  3889. // break after MIN_COOLING_SLOPE_TIME seconds
  3890. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3891. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3892. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3893. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3894. old_temp = temp;
  3895. }
  3896. }
  3897. } while (wait_for_heatup && TEMP_CONDITIONS);
  3898. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3899. KEEPALIVE_STATE(IN_HANDLER);
  3900. }
  3901. #if HAS_TEMP_BED
  3902. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3903. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3904. #endif
  3905. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3906. #define MIN_COOLING_SLOPE_TIME_BED 60
  3907. #endif
  3908. /**
  3909. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3910. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3911. */
  3912. inline void gcode_M190() {
  3913. if (DEBUGGING(DRYRUN)) return;
  3914. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3915. bool no_wait_for_cooling = code_seen('S');
  3916. if (no_wait_for_cooling || code_seen('R')) {
  3917. thermalManager.setTargetBed(code_value_temp_abs());
  3918. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3919. if (code_value_temp_abs() > BED_MINTEMP) {
  3920. /**
  3921. * We start the timer when 'heating and waiting' command arrives, LCD
  3922. * functions never wait. Cooling down managed by extruders.
  3923. *
  3924. * We do not check if the timer is already running because this check will
  3925. * be done for us inside the Stopwatch::start() method thus a running timer
  3926. * will not restart.
  3927. */
  3928. print_job_timer.start();
  3929. }
  3930. #endif
  3931. }
  3932. #if TEMP_BED_RESIDENCY_TIME > 0
  3933. millis_t residency_start_ms = 0;
  3934. // Loop until the temperature has stabilized
  3935. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3936. #else
  3937. // Loop until the temperature is very close target
  3938. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3939. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3940. float theTarget = -1.0, old_temp = 9999.0;
  3941. bool wants_to_cool = false;
  3942. wait_for_heatup = true;
  3943. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3944. KEEPALIVE_STATE(NOT_BUSY);
  3945. target_extruder = active_extruder; // for print_heaterstates
  3946. do {
  3947. // Target temperature might be changed during the loop
  3948. if (theTarget != thermalManager.degTargetBed()) {
  3949. wants_to_cool = thermalManager.isCoolingBed();
  3950. theTarget = thermalManager.degTargetBed();
  3951. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3952. if (no_wait_for_cooling && wants_to_cool) break;
  3953. }
  3954. now = millis();
  3955. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3956. next_temp_ms = now + 1000UL;
  3957. print_heaterstates();
  3958. #if TEMP_BED_RESIDENCY_TIME > 0
  3959. SERIAL_PROTOCOLPGM(" W:");
  3960. if (residency_start_ms) {
  3961. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3962. SERIAL_PROTOCOLLN(rem);
  3963. }
  3964. else {
  3965. SERIAL_PROTOCOLLNPGM("?");
  3966. }
  3967. #else
  3968. SERIAL_EOL;
  3969. #endif
  3970. }
  3971. idle();
  3972. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3973. float temp = thermalManager.degBed();
  3974. #if TEMP_BED_RESIDENCY_TIME > 0
  3975. float temp_diff = fabs(theTarget - temp);
  3976. if (!residency_start_ms) {
  3977. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3978. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3979. }
  3980. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3981. // Restart the timer whenever the temperature falls outside the hysteresis.
  3982. residency_start_ms = now;
  3983. }
  3984. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3985. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3986. if (wants_to_cool) {
  3987. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3988. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3989. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3990. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3991. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3992. old_temp = temp;
  3993. }
  3994. }
  3995. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3996. if (wait_for_heatup) LCD_MESSAGEPGM(MSG_BED_DONE);
  3997. KEEPALIVE_STATE(IN_HANDLER);
  3998. }
  3999. #endif // HAS_TEMP_BED
  4000. /**
  4001. * M110: Set Current Line Number
  4002. */
  4003. inline void gcode_M110() {
  4004. if (code_seen('N')) gcode_N = code_value_long();
  4005. }
  4006. /**
  4007. * M111: Set the debug level
  4008. */
  4009. inline void gcode_M111() {
  4010. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4011. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4012. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4013. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4014. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4015. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4016. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4017. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4018. #endif
  4019. const static char* const debug_strings[] PROGMEM = {
  4020. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4021. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4022. str_debug_32
  4023. #endif
  4024. };
  4025. SERIAL_ECHO_START;
  4026. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4027. if (marlin_debug_flags) {
  4028. uint8_t comma = 0;
  4029. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4030. if (TEST(marlin_debug_flags, i)) {
  4031. if (comma++) SERIAL_CHAR(',');
  4032. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4033. }
  4034. }
  4035. }
  4036. else {
  4037. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4038. }
  4039. SERIAL_EOL;
  4040. }
  4041. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4042. /**
  4043. * M113: Get or set Host Keepalive interval (0 to disable)
  4044. *
  4045. * S<seconds> Optional. Set the keepalive interval.
  4046. */
  4047. inline void gcode_M113() {
  4048. if (code_seen('S')) {
  4049. host_keepalive_interval = code_value_byte();
  4050. NOMORE(host_keepalive_interval, 60);
  4051. }
  4052. else {
  4053. SERIAL_ECHO_START;
  4054. SERIAL_ECHOLNPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4055. }
  4056. }
  4057. #endif
  4058. #if ENABLED(BARICUDA)
  4059. #if HAS_HEATER_1
  4060. /**
  4061. * M126: Heater 1 valve open
  4062. */
  4063. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4064. /**
  4065. * M127: Heater 1 valve close
  4066. */
  4067. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4068. #endif
  4069. #if HAS_HEATER_2
  4070. /**
  4071. * M128: Heater 2 valve open
  4072. */
  4073. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4074. /**
  4075. * M129: Heater 2 valve close
  4076. */
  4077. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4078. #endif
  4079. #endif //BARICUDA
  4080. /**
  4081. * M140: Set bed temperature
  4082. */
  4083. inline void gcode_M140() {
  4084. if (DEBUGGING(DRYRUN)) return;
  4085. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4086. }
  4087. #if ENABLED(ULTIPANEL)
  4088. /**
  4089. * M145: Set the heatup state for a material in the LCD menu
  4090. * S<material> (0=PLA, 1=ABS)
  4091. * H<hotend temp>
  4092. * B<bed temp>
  4093. * F<fan speed>
  4094. */
  4095. inline void gcode_M145() {
  4096. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4097. if (material < 0 || material > 1) {
  4098. SERIAL_ERROR_START;
  4099. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4100. }
  4101. else {
  4102. int v;
  4103. switch (material) {
  4104. case 0:
  4105. if (code_seen('H')) {
  4106. v = code_value_int();
  4107. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4108. }
  4109. if (code_seen('F')) {
  4110. v = code_value_int();
  4111. preheatFanSpeed1 = constrain(v, 0, 255);
  4112. }
  4113. #if TEMP_SENSOR_BED != 0
  4114. if (code_seen('B')) {
  4115. v = code_value_int();
  4116. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4117. }
  4118. #endif
  4119. break;
  4120. case 1:
  4121. if (code_seen('H')) {
  4122. v = code_value_int();
  4123. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4124. }
  4125. if (code_seen('F')) {
  4126. v = code_value_int();
  4127. preheatFanSpeed2 = constrain(v, 0, 255);
  4128. }
  4129. #if TEMP_SENSOR_BED != 0
  4130. if (code_seen('B')) {
  4131. v = code_value_int();
  4132. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4133. }
  4134. #endif
  4135. break;
  4136. }
  4137. }
  4138. }
  4139. #endif
  4140. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4141. /**
  4142. * M149: Set temperature units
  4143. */
  4144. inline void gcode_M149() {
  4145. if (code_seen('C')) {
  4146. set_input_temp_units(TEMPUNIT_C);
  4147. } else if (code_seen('K')) {
  4148. set_input_temp_units(TEMPUNIT_K);
  4149. } else if (code_seen('F')) {
  4150. set_input_temp_units(TEMPUNIT_F);
  4151. }
  4152. }
  4153. #endif
  4154. #if HAS_POWER_SWITCH
  4155. /**
  4156. * M80: Turn on Power Supply
  4157. */
  4158. inline void gcode_M80() {
  4159. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4160. /**
  4161. * If you have a switch on suicide pin, this is useful
  4162. * if you want to start another print with suicide feature after
  4163. * a print without suicide...
  4164. */
  4165. #if HAS_SUICIDE
  4166. OUT_WRITE(SUICIDE_PIN, HIGH);
  4167. #endif
  4168. #if ENABLED(ULTIPANEL)
  4169. powersupply = true;
  4170. LCD_MESSAGEPGM(WELCOME_MSG);
  4171. lcd_update();
  4172. #endif
  4173. }
  4174. #endif // HAS_POWER_SWITCH
  4175. /**
  4176. * M81: Turn off Power, including Power Supply, if there is one.
  4177. *
  4178. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4179. */
  4180. inline void gcode_M81() {
  4181. thermalManager.disable_all_heaters();
  4182. stepper.finish_and_disable();
  4183. #if FAN_COUNT > 0
  4184. #if FAN_COUNT > 1
  4185. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4186. #else
  4187. fanSpeeds[0] = 0;
  4188. #endif
  4189. #endif
  4190. delay(1000); // Wait 1 second before switching off
  4191. #if HAS_SUICIDE
  4192. stepper.synchronize();
  4193. suicide();
  4194. #elif HAS_POWER_SWITCH
  4195. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4196. #endif
  4197. #if ENABLED(ULTIPANEL)
  4198. #if HAS_POWER_SWITCH
  4199. powersupply = false;
  4200. #endif
  4201. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4202. lcd_update();
  4203. #endif
  4204. }
  4205. /**
  4206. * M82: Set E codes absolute (default)
  4207. */
  4208. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4209. /**
  4210. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4211. */
  4212. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4213. /**
  4214. * M18, M84: Disable all stepper motors
  4215. */
  4216. inline void gcode_M18_M84() {
  4217. if (code_seen('S')) {
  4218. stepper_inactive_time = code_value_millis_from_seconds();
  4219. }
  4220. else {
  4221. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4222. if (all_axis) {
  4223. stepper.finish_and_disable();
  4224. }
  4225. else {
  4226. stepper.synchronize();
  4227. if (code_seen('X')) disable_x();
  4228. if (code_seen('Y')) disable_y();
  4229. if (code_seen('Z')) disable_z();
  4230. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4231. if (code_seen('E')) {
  4232. disable_e0();
  4233. disable_e1();
  4234. disable_e2();
  4235. disable_e3();
  4236. }
  4237. #endif
  4238. }
  4239. }
  4240. }
  4241. /**
  4242. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4243. */
  4244. inline void gcode_M85() {
  4245. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4246. }
  4247. /**
  4248. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4249. * (Follows the same syntax as G92)
  4250. */
  4251. inline void gcode_M92() {
  4252. LOOP_XYZE(i) {
  4253. if (code_seen(axis_codes[i])) {
  4254. if (i == E_AXIS) {
  4255. float value = code_value_per_axis_unit(i);
  4256. if (value < 20.0) {
  4257. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4258. planner.max_e_jerk *= factor;
  4259. planner.max_feedrate_mm_s[i] *= factor;
  4260. planner.max_acceleration_steps_per_s2[i] *= factor;
  4261. }
  4262. planner.axis_steps_per_mm[i] = value;
  4263. }
  4264. else {
  4265. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4266. }
  4267. }
  4268. }
  4269. planner.refresh_positioning();
  4270. }
  4271. /**
  4272. * Output the current position to serial
  4273. */
  4274. static void report_current_position() {
  4275. SERIAL_PROTOCOLPGM("X:");
  4276. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4277. SERIAL_PROTOCOLPGM(" Y:");
  4278. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4279. SERIAL_PROTOCOLPGM(" Z:");
  4280. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4281. SERIAL_PROTOCOLPGM(" E:");
  4282. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4283. stepper.report_positions();
  4284. #if ENABLED(SCARA)
  4285. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4286. SERIAL_PROTOCOL(delta[X_AXIS]);
  4287. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4288. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4289. SERIAL_EOL;
  4290. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4291. SERIAL_PROTOCOL(delta[X_AXIS]);
  4292. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4293. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90);
  4294. SERIAL_EOL;
  4295. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4296. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4297. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4298. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4299. SERIAL_EOL; SERIAL_EOL;
  4300. #endif
  4301. }
  4302. /**
  4303. * M114: Output current position to serial port
  4304. */
  4305. inline void gcode_M114() { report_current_position(); }
  4306. /**
  4307. * M115: Capabilities string
  4308. */
  4309. inline void gcode_M115() {
  4310. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4311. }
  4312. /**
  4313. * M117: Set LCD Status Message
  4314. */
  4315. inline void gcode_M117() {
  4316. lcd_setstatus(current_command_args);
  4317. }
  4318. /**
  4319. * M119: Output endstop states to serial output
  4320. */
  4321. inline void gcode_M119() { endstops.M119(); }
  4322. /**
  4323. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4324. */
  4325. inline void gcode_M120() { endstops.enable_globally(true); }
  4326. /**
  4327. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4328. */
  4329. inline void gcode_M121() { endstops.enable_globally(false); }
  4330. #if ENABLED(BLINKM)
  4331. /**
  4332. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4333. */
  4334. inline void gcode_M150() {
  4335. SendColors(
  4336. code_seen('R') ? code_value_byte() : 0,
  4337. code_seen('U') ? code_value_byte() : 0,
  4338. code_seen('B') ? code_value_byte() : 0
  4339. );
  4340. }
  4341. #endif // BLINKM
  4342. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4343. /**
  4344. * M155: Send data to a I2C slave device
  4345. *
  4346. * This is a PoC, the formating and arguments for the GCODE will
  4347. * change to be more compatible, the current proposal is:
  4348. *
  4349. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4350. *
  4351. * M155 B<byte-1 value in base 10>
  4352. * M155 B<byte-2 value in base 10>
  4353. * M155 B<byte-3 value in base 10>
  4354. *
  4355. * M155 S1 ; Send the buffered data and reset the buffer
  4356. * M155 R1 ; Reset the buffer without sending data
  4357. *
  4358. */
  4359. inline void gcode_M155() {
  4360. // Set the target address
  4361. if (code_seen('A')) i2c.address(code_value_byte());
  4362. // Add a new byte to the buffer
  4363. if (code_seen('B')) i2c.addbyte(code_value_byte());
  4364. // Flush the buffer to the bus
  4365. if (code_seen('S')) i2c.send();
  4366. // Reset and rewind the buffer
  4367. else if (code_seen('R')) i2c.reset();
  4368. }
  4369. /**
  4370. * M156: Request X bytes from I2C slave device
  4371. *
  4372. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4373. */
  4374. inline void gcode_M156() {
  4375. if (code_seen('A')) i2c.address(code_value_byte());
  4376. uint8_t bytes = code_seen('B') ? code_value_byte() : 1;
  4377. if (i2c.addr && bytes && bytes <= TWIBUS_BUFFER_SIZE) {
  4378. i2c.relay(bytes);
  4379. }
  4380. else {
  4381. SERIAL_ERROR_START;
  4382. SERIAL_ERRORLN("Bad i2c request");
  4383. }
  4384. }
  4385. #endif // EXPERIMENTAL_I2CBUS
  4386. /**
  4387. * M200: Set filament diameter and set E axis units to cubic units
  4388. *
  4389. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4390. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4391. */
  4392. inline void gcode_M200() {
  4393. if (get_target_extruder_from_command(200)) return;
  4394. if (code_seen('D')) {
  4395. // setting any extruder filament size disables volumetric on the assumption that
  4396. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4397. // for all extruders
  4398. volumetric_enabled = (code_value_linear_units() != 0.0);
  4399. if (volumetric_enabled) {
  4400. filament_size[target_extruder] = code_value_linear_units();
  4401. // make sure all extruders have some sane value for the filament size
  4402. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  4403. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4404. }
  4405. }
  4406. else {
  4407. //reserved for setting filament diameter via UFID or filament measuring device
  4408. return;
  4409. }
  4410. calculate_volumetric_multipliers();
  4411. }
  4412. /**
  4413. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4414. */
  4415. inline void gcode_M201() {
  4416. LOOP_XYZE(i) {
  4417. if (code_seen(axis_codes[i])) {
  4418. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4419. }
  4420. }
  4421. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4422. planner.reset_acceleration_rates();
  4423. }
  4424. #if 0 // Not used for Sprinter/grbl gen6
  4425. inline void gcode_M202() {
  4426. LOOP_XYZE(i) {
  4427. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4428. }
  4429. }
  4430. #endif
  4431. /**
  4432. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4433. */
  4434. inline void gcode_M203() {
  4435. LOOP_XYZE(i)
  4436. if (code_seen(axis_codes[i]))
  4437. planner.max_feedrate_mm_s[i] = code_value_axis_units(i);
  4438. }
  4439. /**
  4440. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4441. *
  4442. * P = Printing moves
  4443. * R = Retract only (no X, Y, Z) moves
  4444. * T = Travel (non printing) moves
  4445. *
  4446. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4447. */
  4448. inline void gcode_M204() {
  4449. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4450. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4451. SERIAL_ECHOLNPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4452. }
  4453. if (code_seen('P')) {
  4454. planner.acceleration = code_value_linear_units();
  4455. SERIAL_ECHOLNPAIR("Setting Print Acceleration: ", planner.acceleration);
  4456. }
  4457. if (code_seen('R')) {
  4458. planner.retract_acceleration = code_value_linear_units();
  4459. SERIAL_ECHOLNPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4460. }
  4461. if (code_seen('T')) {
  4462. planner.travel_acceleration = code_value_linear_units();
  4463. SERIAL_ECHOLNPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4464. }
  4465. }
  4466. /**
  4467. * M205: Set Advanced Settings
  4468. *
  4469. * S = Min Feed Rate (units/s)
  4470. * T = Min Travel Feed Rate (units/s)
  4471. * B = Min Segment Time (µs)
  4472. * X = Max XY Jerk (units/sec^2)
  4473. * Z = Max Z Jerk (units/sec^2)
  4474. * E = Max E Jerk (units/sec^2)
  4475. */
  4476. inline void gcode_M205() {
  4477. if (code_seen('S')) planner.min_feedrate_mm_s = code_value_linear_units();
  4478. if (code_seen('T')) planner.min_travel_feedrate_mm_s = code_value_linear_units();
  4479. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4480. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4481. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4482. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4483. }
  4484. /**
  4485. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4486. */
  4487. inline void gcode_M206() {
  4488. LOOP_XYZ(i)
  4489. if (code_seen(axis_codes[i]))
  4490. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4491. #if ENABLED(SCARA)
  4492. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4493. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4494. #endif
  4495. SYNC_PLAN_POSITION_KINEMATIC();
  4496. report_current_position();
  4497. }
  4498. #if ENABLED(DELTA)
  4499. /**
  4500. * M665: Set delta configurations
  4501. *
  4502. * L = diagonal rod
  4503. * R = delta radius
  4504. * S = segments per second
  4505. * A = Alpha (Tower 1) diagonal rod trim
  4506. * B = Beta (Tower 2) diagonal rod trim
  4507. * C = Gamma (Tower 3) diagonal rod trim
  4508. */
  4509. inline void gcode_M665() {
  4510. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4511. if (code_seen('R')) delta_radius = code_value_linear_units();
  4512. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4513. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4514. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4515. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4516. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4517. }
  4518. /**
  4519. * M666: Set delta endstop adjustment
  4520. */
  4521. inline void gcode_M666() {
  4522. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4523. if (DEBUGGING(LEVELING)) {
  4524. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4525. }
  4526. #endif
  4527. LOOP_XYZ(i) {
  4528. if (code_seen(axis_codes[i])) {
  4529. endstop_adj[i] = code_value_axis_units(i);
  4530. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4531. if (DEBUGGING(LEVELING)) {
  4532. SERIAL_ECHOPGM("endstop_adj[");
  4533. SERIAL_ECHO(axis_codes[i]);
  4534. SERIAL_ECHOLNPAIR("] = ", endstop_adj[i]);
  4535. }
  4536. #endif
  4537. }
  4538. }
  4539. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4540. if (DEBUGGING(LEVELING)) {
  4541. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4542. }
  4543. #endif
  4544. }
  4545. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4546. /**
  4547. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4548. */
  4549. inline void gcode_M666() {
  4550. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4551. SERIAL_ECHOLNPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4552. }
  4553. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4554. #if ENABLED(FWRETRACT)
  4555. /**
  4556. * M207: Set firmware retraction values
  4557. *
  4558. * S[+units] retract_length
  4559. * W[+units] retract_length_swap (multi-extruder)
  4560. * F[units/min] retract_feedrate_mm_s
  4561. * Z[units] retract_zlift
  4562. */
  4563. inline void gcode_M207() {
  4564. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4565. if (code_seen('F')) retract_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4566. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4567. #if EXTRUDERS > 1
  4568. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4569. #endif
  4570. }
  4571. /**
  4572. * M208: Set firmware un-retraction values
  4573. *
  4574. * S[+units] retract_recover_length (in addition to M207 S*)
  4575. * W[+units] retract_recover_length_swap (multi-extruder)
  4576. * F[units/min] retract_recover_feedrate_mm_s
  4577. */
  4578. inline void gcode_M208() {
  4579. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4580. if (code_seen('F')) retract_recover_feedrate_mm_s = MMM_TO_MMS(code_value_axis_units(E_AXIS));
  4581. #if EXTRUDERS > 1
  4582. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4583. #endif
  4584. }
  4585. /**
  4586. * M209: Enable automatic retract (M209 S1)
  4587. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4588. */
  4589. inline void gcode_M209() {
  4590. if (code_seen('S')) {
  4591. autoretract_enabled = code_value_bool();
  4592. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4593. }
  4594. }
  4595. #endif // FWRETRACT
  4596. /**
  4597. * M211: Enable, Disable, and/or Report software endstops
  4598. *
  4599. * Usage: M211 S1 to enable, M211 S0 to disable, M211 alone for report
  4600. */
  4601. inline void gcode_M211() {
  4602. SERIAL_ECHO_START;
  4603. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4604. if (code_seen('S')) soft_endstops_enabled = code_value_bool();
  4605. #endif
  4606. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  4607. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": ");
  4608. serialprintPGM(soft_endstops_enabled ? PSTR(MSG_ON) : PSTR(MSG_OFF));
  4609. #else
  4610. SERIAL_ECHOPGM(MSG_SOFT_ENDSTOPS ": " MSG_OFF);
  4611. #endif
  4612. SERIAL_ECHOPGM(" " MSG_SOFT_MIN ": ");
  4613. SERIAL_ECHOPAIR( MSG_X, soft_endstop_min[X_AXIS]);
  4614. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_min[Y_AXIS]);
  4615. SERIAL_ECHOPAIR(" " MSG_Z, soft_endstop_min[Z_AXIS]);
  4616. SERIAL_ECHOPGM(" " MSG_SOFT_MAX ": ");
  4617. SERIAL_ECHOPAIR( MSG_X, soft_endstop_max[X_AXIS]);
  4618. SERIAL_ECHOPAIR(" " MSG_Y, soft_endstop_max[Y_AXIS]);
  4619. SERIAL_ECHOLNPAIR(" " MSG_Z, soft_endstop_max[Z_AXIS]);
  4620. }
  4621. #if HOTENDS > 1
  4622. /**
  4623. * M218 - set hotend offset (in linear units)
  4624. *
  4625. * T<tool>
  4626. * X<xoffset>
  4627. * Y<yoffset>
  4628. * Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
  4629. */
  4630. inline void gcode_M218() {
  4631. if (get_target_extruder_from_command(218)) return;
  4632. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4633. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4634. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4635. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4636. #endif
  4637. SERIAL_ECHO_START;
  4638. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4639. HOTEND_LOOP() {
  4640. SERIAL_CHAR(' ');
  4641. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4642. SERIAL_CHAR(',');
  4643. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4644. #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
  4645. SERIAL_CHAR(',');
  4646. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4647. #endif
  4648. }
  4649. SERIAL_EOL;
  4650. }
  4651. #endif // HOTENDS > 1
  4652. /**
  4653. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4654. */
  4655. inline void gcode_M220() {
  4656. if (code_seen('S')) feedrate_percentage = code_value_int();
  4657. }
  4658. /**
  4659. * M221: Set extrusion percentage (M221 T0 S95)
  4660. */
  4661. inline void gcode_M221() {
  4662. if (get_target_extruder_from_command(221)) return;
  4663. if (code_seen('S'))
  4664. flow_percentage[target_extruder] = code_value_int();
  4665. }
  4666. /**
  4667. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4668. */
  4669. inline void gcode_M226() {
  4670. if (code_seen('P')) {
  4671. int pin_number = code_value_int();
  4672. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4673. if (pin_state >= -1 && pin_state <= 1) {
  4674. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4675. if (sensitive_pins[i] == pin_number) {
  4676. pin_number = -1;
  4677. break;
  4678. }
  4679. }
  4680. if (pin_number > -1) {
  4681. int target = LOW;
  4682. stepper.synchronize();
  4683. pinMode(pin_number, INPUT);
  4684. switch (pin_state) {
  4685. case 1:
  4686. target = HIGH;
  4687. break;
  4688. case 0:
  4689. target = LOW;
  4690. break;
  4691. case -1:
  4692. target = !digitalRead(pin_number);
  4693. break;
  4694. }
  4695. while (digitalRead(pin_number) != target) idle();
  4696. } // pin_number > -1
  4697. } // pin_state -1 0 1
  4698. } // code_seen('P')
  4699. }
  4700. #if HAS_SERVOS
  4701. /**
  4702. * M280: Get or set servo position. P<index> [S<angle>]
  4703. */
  4704. inline void gcode_M280() {
  4705. if (!code_seen('P')) return;
  4706. int servo_index = code_value_int();
  4707. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4708. if (code_seen('S'))
  4709. MOVE_SERVO(servo_index, code_value_int());
  4710. else {
  4711. SERIAL_ECHO_START;
  4712. SERIAL_ECHOPGM(" Servo ");
  4713. SERIAL_ECHO(servo_index);
  4714. SERIAL_ECHOPGM(": ");
  4715. SERIAL_ECHOLN(servo[servo_index].read());
  4716. }
  4717. }
  4718. else {
  4719. SERIAL_ERROR_START;
  4720. SERIAL_ERROR("Servo ");
  4721. SERIAL_ERROR(servo_index);
  4722. SERIAL_ERRORLN(" out of range");
  4723. }
  4724. }
  4725. #endif // HAS_SERVOS
  4726. #if HAS_BUZZER
  4727. /**
  4728. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4729. */
  4730. inline void gcode_M300() {
  4731. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4732. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4733. // Limits the tone duration to 0-5 seconds.
  4734. NOMORE(duration, 5000);
  4735. BUZZ(duration, frequency);
  4736. }
  4737. #endif // HAS_BUZZER
  4738. #if ENABLED(PIDTEMP)
  4739. /**
  4740. * M301: Set PID parameters P I D (and optionally C, L)
  4741. *
  4742. * P[float] Kp term
  4743. * I[float] Ki term (unscaled)
  4744. * D[float] Kd term (unscaled)
  4745. *
  4746. * With PID_EXTRUSION_SCALING:
  4747. *
  4748. * C[float] Kc term
  4749. * L[float] LPQ length
  4750. */
  4751. inline void gcode_M301() {
  4752. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4753. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4754. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4755. if (e < HOTENDS) { // catch bad input value
  4756. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4757. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4758. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4759. #if ENABLED(PID_EXTRUSION_SCALING)
  4760. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4761. if (code_seen('L')) lpq_len = code_value_float();
  4762. NOMORE(lpq_len, LPQ_MAX_LEN);
  4763. #endif
  4764. thermalManager.updatePID();
  4765. SERIAL_ECHO_START;
  4766. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4767. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4768. SERIAL_ECHO(e);
  4769. #endif // PID_PARAMS_PER_HOTEND
  4770. SERIAL_ECHOPGM(" p:");
  4771. SERIAL_ECHO(PID_PARAM(Kp, e));
  4772. SERIAL_ECHOPGM(" i:");
  4773. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4774. SERIAL_ECHOPGM(" d:");
  4775. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4776. #if ENABLED(PID_EXTRUSION_SCALING)
  4777. SERIAL_ECHOPGM(" c:");
  4778. //Kc does not have scaling applied above, or in resetting defaults
  4779. SERIAL_ECHO(PID_PARAM(Kc, e));
  4780. #endif
  4781. SERIAL_EOL;
  4782. }
  4783. else {
  4784. SERIAL_ERROR_START;
  4785. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4786. }
  4787. }
  4788. #endif // PIDTEMP
  4789. #if ENABLED(PIDTEMPBED)
  4790. inline void gcode_M304() {
  4791. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4792. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4793. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4794. thermalManager.updatePID();
  4795. SERIAL_ECHO_START;
  4796. SERIAL_ECHOPGM(" p:");
  4797. SERIAL_ECHO(thermalManager.bedKp);
  4798. SERIAL_ECHOPGM(" i:");
  4799. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4800. SERIAL_ECHOPGM(" d:");
  4801. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4802. }
  4803. #endif // PIDTEMPBED
  4804. #if defined(CHDK) || HAS_PHOTOGRAPH
  4805. /**
  4806. * M240: Trigger a camera by emulating a Canon RC-1
  4807. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4808. */
  4809. inline void gcode_M240() {
  4810. #ifdef CHDK
  4811. OUT_WRITE(CHDK, HIGH);
  4812. chdkHigh = millis();
  4813. chdkActive = true;
  4814. #elif HAS_PHOTOGRAPH
  4815. const uint8_t NUM_PULSES = 16;
  4816. const float PULSE_LENGTH = 0.01524;
  4817. for (int i = 0; i < NUM_PULSES; i++) {
  4818. WRITE(PHOTOGRAPH_PIN, HIGH);
  4819. _delay_ms(PULSE_LENGTH);
  4820. WRITE(PHOTOGRAPH_PIN, LOW);
  4821. _delay_ms(PULSE_LENGTH);
  4822. }
  4823. delay(7.33);
  4824. for (int i = 0; i < NUM_PULSES; i++) {
  4825. WRITE(PHOTOGRAPH_PIN, HIGH);
  4826. _delay_ms(PULSE_LENGTH);
  4827. WRITE(PHOTOGRAPH_PIN, LOW);
  4828. _delay_ms(PULSE_LENGTH);
  4829. }
  4830. #endif // !CHDK && HAS_PHOTOGRAPH
  4831. }
  4832. #endif // CHDK || PHOTOGRAPH_PIN
  4833. #if HAS_LCD_CONTRAST
  4834. /**
  4835. * M250: Read and optionally set the LCD contrast
  4836. */
  4837. inline void gcode_M250() {
  4838. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4839. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4840. SERIAL_PROTOCOL(lcd_contrast);
  4841. SERIAL_EOL;
  4842. }
  4843. #endif // HAS_LCD_CONTRAST
  4844. #if ENABLED(PREVENT_COLD_EXTRUSION)
  4845. /**
  4846. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4847. *
  4848. * S<temperature> sets the minimum extrude temperature
  4849. * P<bool> enables (1) or disables (0) cold extrusion
  4850. *
  4851. * Examples:
  4852. *
  4853. * M302 ; report current cold extrusion state
  4854. * M302 P0 ; enable cold extrusion checking
  4855. * M302 P1 ; disables cold extrusion checking
  4856. * M302 S0 ; always allow extrusion (disables checking)
  4857. * M302 S170 ; only allow extrusion above 170
  4858. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4859. */
  4860. inline void gcode_M302() {
  4861. bool seen_S = code_seen('S');
  4862. if (seen_S) {
  4863. thermalManager.extrude_min_temp = code_value_temp_abs();
  4864. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4865. }
  4866. if (code_seen('P'))
  4867. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4868. else if (!seen_S) {
  4869. // Report current state
  4870. SERIAL_ECHO_START;
  4871. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4872. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4873. SERIAL_ECHOLNPGM("C)");
  4874. }
  4875. }
  4876. #endif // PREVENT_COLD_EXTRUSION
  4877. /**
  4878. * M303: PID relay autotune
  4879. *
  4880. * S<temperature> sets the target temperature. (default 150C)
  4881. * E<extruder> (-1 for the bed) (default 0)
  4882. * C<cycles>
  4883. * U<bool> with a non-zero value will apply the result to current settings
  4884. */
  4885. inline void gcode_M303() {
  4886. #if HAS_PID_HEATING
  4887. int e = code_seen('E') ? code_value_int() : 0;
  4888. int c = code_seen('C') ? code_value_int() : 5;
  4889. bool u = code_seen('U') && code_value_bool();
  4890. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4891. if (e >= 0 && e < HOTENDS)
  4892. target_extruder = e;
  4893. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4894. thermalManager.PID_autotune(temp, e, c, u);
  4895. KEEPALIVE_STATE(IN_HANDLER);
  4896. #else
  4897. SERIAL_ERROR_START;
  4898. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4899. #endif
  4900. }
  4901. #if ENABLED(SCARA)
  4902. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4903. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4904. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4905. if (IsRunning()) {
  4906. //gcode_get_destination(); // For X Y Z E F
  4907. delta[X_AXIS] = delta_x;
  4908. delta[Y_AXIS] = delta_y;
  4909. forward_kinematics_SCARA(delta);
  4910. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4911. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4912. prepare_move_to_destination();
  4913. //ok_to_send();
  4914. return true;
  4915. }
  4916. return false;
  4917. }
  4918. /**
  4919. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4920. */
  4921. inline bool gcode_M360() {
  4922. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4923. return SCARA_move_to_cal(0, 120);
  4924. }
  4925. /**
  4926. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4927. */
  4928. inline bool gcode_M361() {
  4929. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4930. return SCARA_move_to_cal(90, 130);
  4931. }
  4932. /**
  4933. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4934. */
  4935. inline bool gcode_M362() {
  4936. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4937. return SCARA_move_to_cal(60, 180);
  4938. }
  4939. /**
  4940. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4941. */
  4942. inline bool gcode_M363() {
  4943. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4944. return SCARA_move_to_cal(50, 90);
  4945. }
  4946. /**
  4947. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4948. */
  4949. inline bool gcode_M364() {
  4950. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4951. return SCARA_move_to_cal(45, 135);
  4952. }
  4953. /**
  4954. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4955. */
  4956. inline void gcode_M365() {
  4957. LOOP_XYZ(i)
  4958. if (code_seen(axis_codes[i]))
  4959. axis_scaling[i] = code_value_float();
  4960. }
  4961. #endif // SCARA
  4962. #if ENABLED(EXT_SOLENOID)
  4963. void enable_solenoid(uint8_t num) {
  4964. switch (num) {
  4965. case 0:
  4966. OUT_WRITE(SOL0_PIN, HIGH);
  4967. break;
  4968. #if HAS_SOLENOID_1
  4969. case 1:
  4970. OUT_WRITE(SOL1_PIN, HIGH);
  4971. break;
  4972. #endif
  4973. #if HAS_SOLENOID_2
  4974. case 2:
  4975. OUT_WRITE(SOL2_PIN, HIGH);
  4976. break;
  4977. #endif
  4978. #if HAS_SOLENOID_3
  4979. case 3:
  4980. OUT_WRITE(SOL3_PIN, HIGH);
  4981. break;
  4982. #endif
  4983. default:
  4984. SERIAL_ECHO_START;
  4985. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4986. break;
  4987. }
  4988. }
  4989. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4990. void disable_all_solenoids() {
  4991. OUT_WRITE(SOL0_PIN, LOW);
  4992. OUT_WRITE(SOL1_PIN, LOW);
  4993. OUT_WRITE(SOL2_PIN, LOW);
  4994. OUT_WRITE(SOL3_PIN, LOW);
  4995. }
  4996. /**
  4997. * M380: Enable solenoid on the active extruder
  4998. */
  4999. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  5000. /**
  5001. * M381: Disable all solenoids
  5002. */
  5003. inline void gcode_M381() { disable_all_solenoids(); }
  5004. #endif // EXT_SOLENOID
  5005. /**
  5006. * M400: Finish all moves
  5007. */
  5008. inline void gcode_M400() { stepper.synchronize(); }
  5009. #if HAS_BED_PROBE
  5010. /**
  5011. * M401: Engage Z Servo endstop if available
  5012. */
  5013. inline void gcode_M401() { DEPLOY_PROBE(); }
  5014. /**
  5015. * M402: Retract Z Servo endstop if enabled
  5016. */
  5017. inline void gcode_M402() { STOW_PROBE(); }
  5018. #endif // HAS_BED_PROBE
  5019. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5020. /**
  5021. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5022. */
  5023. inline void gcode_M404() {
  5024. if (code_seen('W')) {
  5025. filament_width_nominal = code_value_linear_units();
  5026. }
  5027. else {
  5028. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5029. SERIAL_PROTOCOLLN(filament_width_nominal);
  5030. }
  5031. }
  5032. /**
  5033. * M405: Turn on filament sensor for control
  5034. */
  5035. inline void gcode_M405() {
  5036. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5037. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5038. if (code_seen('D')) meas_delay_cm = code_value_int();
  5039. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5040. if (filwidth_delay_index[1] == -1) { // Initialize the ring buffer if not done since startup
  5041. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5042. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5043. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5044. filwidth_delay_index[0] = filwidth_delay_index[1] = 0;
  5045. }
  5046. filament_sensor = true;
  5047. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5048. //SERIAL_PROTOCOL(filament_width_meas);
  5049. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5050. //SERIAL_PROTOCOL(flow_percentage[active_extruder]);
  5051. }
  5052. /**
  5053. * M406: Turn off filament sensor for control
  5054. */
  5055. inline void gcode_M406() { filament_sensor = false; }
  5056. /**
  5057. * M407: Get measured filament diameter on serial output
  5058. */
  5059. inline void gcode_M407() {
  5060. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5061. SERIAL_PROTOCOLLN(filament_width_meas);
  5062. }
  5063. #endif // FILAMENT_WIDTH_SENSOR
  5064. void quickstop_stepper() {
  5065. stepper.quick_stop();
  5066. #if DISABLED(SCARA)
  5067. stepper.synchronize();
  5068. LOOP_XYZ(i) set_current_from_steppers_for_axis((AxisEnum)i);
  5069. SYNC_PLAN_POSITION_KINEMATIC();
  5070. #endif
  5071. }
  5072. #if ENABLED(MESH_BED_LEVELING)
  5073. /**
  5074. * M420: Enable/Disable Mesh Bed Leveling
  5075. */
  5076. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5077. /**
  5078. * M421: Set a single Mesh Bed Leveling Z coordinate
  5079. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5080. */
  5081. inline void gcode_M421() {
  5082. int8_t px = 0, py = 0;
  5083. float z = 0;
  5084. bool hasX, hasY, hasZ, hasI, hasJ;
  5085. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5086. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5087. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5088. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5089. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5090. if (hasX && hasY && hasZ) {
  5091. if (px >= 0 && py >= 0)
  5092. mbl.set_z(px, py, z);
  5093. else {
  5094. SERIAL_ERROR_START;
  5095. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5096. }
  5097. }
  5098. else if (hasI && hasJ && hasZ) {
  5099. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5100. mbl.set_z(px, py, z);
  5101. else {
  5102. SERIAL_ERROR_START;
  5103. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5104. }
  5105. }
  5106. else {
  5107. SERIAL_ERROR_START;
  5108. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5109. }
  5110. }
  5111. #endif
  5112. /**
  5113. * M428: Set home_offset based on the distance between the
  5114. * current_position and the nearest "reference point."
  5115. * If an axis is past center its endstop position
  5116. * is the reference-point. Otherwise it uses 0. This allows
  5117. * the Z offset to be set near the bed when using a max endstop.
  5118. *
  5119. * M428 can't be used more than 2cm away from 0 or an endstop.
  5120. *
  5121. * Use M206 to set these values directly.
  5122. */
  5123. inline void gcode_M428() {
  5124. bool err = false;
  5125. LOOP_XYZ(i) {
  5126. if (axis_homed[i]) {
  5127. float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos(i) : 0,
  5128. diff = current_position[i] - LOGICAL_POSITION(base, i);
  5129. if (diff > -20 && diff < 20) {
  5130. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5131. }
  5132. else {
  5133. SERIAL_ERROR_START;
  5134. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5135. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5136. BUZZ(200, 40);
  5137. err = true;
  5138. break;
  5139. }
  5140. }
  5141. }
  5142. if (!err) {
  5143. SYNC_PLAN_POSITION_KINEMATIC();
  5144. report_current_position();
  5145. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5146. BUZZ(200, 659);
  5147. BUZZ(200, 698);
  5148. }
  5149. }
  5150. /**
  5151. * M500: Store settings in EEPROM
  5152. */
  5153. inline void gcode_M500() {
  5154. Config_StoreSettings();
  5155. }
  5156. /**
  5157. * M501: Read settings from EEPROM
  5158. */
  5159. inline void gcode_M501() {
  5160. Config_RetrieveSettings();
  5161. }
  5162. /**
  5163. * M502: Revert to default settings
  5164. */
  5165. inline void gcode_M502() {
  5166. Config_ResetDefault();
  5167. }
  5168. /**
  5169. * M503: print settings currently in memory
  5170. */
  5171. inline void gcode_M503() {
  5172. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5173. }
  5174. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5175. /**
  5176. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5177. */
  5178. inline void gcode_M540() {
  5179. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5180. }
  5181. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5182. #if HAS_BED_PROBE
  5183. inline void gcode_M851() {
  5184. SERIAL_ECHO_START;
  5185. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5186. SERIAL_CHAR(' ');
  5187. if (code_seen('Z')) {
  5188. float value = code_value_axis_units(Z_AXIS);
  5189. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5190. zprobe_zoffset = value;
  5191. SERIAL_ECHO(zprobe_zoffset);
  5192. }
  5193. else {
  5194. SERIAL_ECHOPGM(MSG_Z_MIN);
  5195. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5196. SERIAL_CHAR(' ');
  5197. SERIAL_ECHOPGM(MSG_Z_MAX);
  5198. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5199. }
  5200. }
  5201. else {
  5202. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5203. }
  5204. SERIAL_EOL;
  5205. }
  5206. #endif // HAS_BED_PROBE
  5207. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5208. /**
  5209. * M600: Pause for filament change
  5210. *
  5211. * E[distance] - Retract the filament this far (negative value)
  5212. * Z[distance] - Move the Z axis by this distance
  5213. * X[position] - Move to this X position, with Y
  5214. * Y[position] - Move to this Y position, with X
  5215. * L[distance] - Retract distance for removal (manual reload)
  5216. *
  5217. * Default values are used for omitted arguments.
  5218. *
  5219. */
  5220. inline void gcode_M600() {
  5221. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5222. SERIAL_ERROR_START;
  5223. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5224. return;
  5225. }
  5226. // Show initial message and wait for synchronize steppers
  5227. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5228. stepper.synchronize();
  5229. float lastpos[NUM_AXIS];
  5230. // Save current position of all axes
  5231. LOOP_XYZE(i)
  5232. lastpos[i] = destination[i] = current_position[i];
  5233. // Define runplan for move axes
  5234. #if IS_KINEMATIC
  5235. #define RUNPLAN(RATE_MM_S) inverse_kinematics(destination); \
  5236. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE_MM_S, active_extruder);
  5237. #else
  5238. #define RUNPLAN(RATE_MM_S) line_to_destination(RATE_MM_S);
  5239. #endif
  5240. KEEPALIVE_STATE(IN_HANDLER);
  5241. // Initial retract before move to filament change position
  5242. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5243. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5244. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5245. #endif
  5246. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5247. // Lift Z axis
  5248. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5249. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5250. FILAMENT_CHANGE_Z_ADD
  5251. #else
  5252. 0
  5253. #endif
  5254. ;
  5255. if (z_lift > 0) {
  5256. destination[Z_AXIS] += z_lift;
  5257. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5258. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5259. }
  5260. // Move XY axes to filament exchange position
  5261. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5262. #ifdef FILAMENT_CHANGE_X_POS
  5263. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5264. #endif
  5265. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5266. #ifdef FILAMENT_CHANGE_Y_POS
  5267. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5268. #endif
  5269. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5270. stepper.synchronize();
  5271. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5272. // Unload filament
  5273. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5274. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5275. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5276. #endif
  5277. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5278. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5279. stepper.synchronize();
  5280. disable_e0();
  5281. disable_e1();
  5282. disable_e2();
  5283. disable_e3();
  5284. delay(100);
  5285. #if HAS_BUZZER
  5286. millis_t next_tick = 0;
  5287. #endif
  5288. // Wait for filament insert by user and press button
  5289. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5290. while (!lcd_clicked()) {
  5291. #if HAS_BUZZER
  5292. millis_t ms = millis();
  5293. if (ms >= next_tick) {
  5294. BUZZ(300, 2000);
  5295. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5296. }
  5297. #endif
  5298. idle(true);
  5299. }
  5300. delay(100);
  5301. while (lcd_clicked()) idle(true);
  5302. delay(100);
  5303. // Show load message
  5304. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5305. // Load filament
  5306. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5307. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5308. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5309. #endif
  5310. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5311. stepper.synchronize();
  5312. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5313. do {
  5314. // Extrude filament to get into hotend
  5315. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5316. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5317. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5318. stepper.synchronize();
  5319. // Ask user if more filament should be extruded
  5320. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5321. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5322. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5323. KEEPALIVE_STATE(IN_HANDLER);
  5324. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5325. #endif
  5326. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5327. KEEPALIVE_STATE(IN_HANDLER);
  5328. // Set extruder to saved position
  5329. current_position[E_AXIS] = lastpos[E_AXIS];
  5330. destination[E_AXIS] = lastpos[E_AXIS];
  5331. planner.set_e_position_mm(current_position[E_AXIS]);
  5332. #if IS_KINEMATIC
  5333. // Move XYZ to starting position, then E
  5334. inverse_kinematics(lastpos);
  5335. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5336. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5337. #else
  5338. // Move XY to starting position, then Z, then E
  5339. destination[X_AXIS] = lastpos[X_AXIS];
  5340. destination[Y_AXIS] = lastpos[Y_AXIS];
  5341. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5342. destination[Z_AXIS] = lastpos[Z_AXIS];
  5343. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5344. #endif
  5345. stepper.synchronize();
  5346. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5347. filament_ran_out = false;
  5348. #endif
  5349. // Show status screen
  5350. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5351. }
  5352. #endif // FILAMENT_CHANGE_FEATURE
  5353. #if ENABLED(DUAL_X_CARRIAGE)
  5354. /**
  5355. * M605: Set dual x-carriage movement mode
  5356. *
  5357. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5358. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5359. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5360. * units x-offset and an optional differential hotend temperature of
  5361. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5362. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5363. *
  5364. * Note: the X axis should be homed after changing dual x-carriage mode.
  5365. */
  5366. inline void gcode_M605() {
  5367. stepper.synchronize();
  5368. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5369. switch (dual_x_carriage_mode) {
  5370. case DXC_DUPLICATION_MODE:
  5371. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5372. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5373. SERIAL_ECHO_START;
  5374. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5375. SERIAL_CHAR(' ');
  5376. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5377. SERIAL_CHAR(',');
  5378. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5379. SERIAL_CHAR(' ');
  5380. SERIAL_ECHO(duplicate_extruder_x_offset);
  5381. SERIAL_CHAR(',');
  5382. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5383. break;
  5384. case DXC_FULL_CONTROL_MODE:
  5385. case DXC_AUTO_PARK_MODE:
  5386. break;
  5387. default:
  5388. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5389. break;
  5390. }
  5391. active_extruder_parked = false;
  5392. extruder_duplication_enabled = false;
  5393. delayed_move_time = 0;
  5394. }
  5395. #elif ENABLED(DUAL_NOZZLE_DUPLICATION_MODE)
  5396. inline void gcode_M605() {
  5397. stepper.synchronize();
  5398. extruder_duplication_enabled = code_seen('S') && code_value_int() == 2;
  5399. SERIAL_ECHO_START;
  5400. SERIAL_ECHOLNPAIR(MSG_DUPLICATION_MODE, extruder_duplication_enabled ? MSG_ON : MSG_OFF);
  5401. }
  5402. #endif // M605
  5403. #if ENABLED(LIN_ADVANCE)
  5404. /**
  5405. * M905: Set advance factor
  5406. */
  5407. inline void gcode_M905() {
  5408. stepper.synchronize();
  5409. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5410. }
  5411. #endif
  5412. /**
  5413. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5414. */
  5415. inline void gcode_M907() {
  5416. #if HAS_DIGIPOTSS
  5417. LOOP_XYZE(i)
  5418. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5419. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5420. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5421. #endif
  5422. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5423. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5424. #endif
  5425. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5426. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5427. #endif
  5428. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5429. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5430. #endif
  5431. #if ENABLED(DIGIPOT_I2C)
  5432. // this one uses actual amps in floating point
  5433. LOOP_XYZE(i) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5434. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5435. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5436. #endif
  5437. #if ENABLED(DAC_STEPPER_CURRENT)
  5438. if (code_seen('S')) {
  5439. float dac_percent = code_value_float();
  5440. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5441. }
  5442. LOOP_XYZE(i) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5443. #endif
  5444. }
  5445. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5446. /**
  5447. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5448. */
  5449. inline void gcode_M908() {
  5450. #if HAS_DIGIPOTSS
  5451. stepper.digitalPotWrite(
  5452. code_seen('P') ? code_value_int() : 0,
  5453. code_seen('S') ? code_value_int() : 0
  5454. );
  5455. #endif
  5456. #ifdef DAC_STEPPER_CURRENT
  5457. dac_current_raw(
  5458. code_seen('P') ? code_value_byte() : -1,
  5459. code_seen('S') ? code_value_ushort() : 0
  5460. );
  5461. #endif
  5462. }
  5463. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5464. inline void gcode_M909() { dac_print_values(); }
  5465. inline void gcode_M910() { dac_commit_eeprom(); }
  5466. #endif
  5467. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5468. #if HAS_MICROSTEPS
  5469. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5470. inline void gcode_M350() {
  5471. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5472. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5473. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5474. stepper.microstep_readings();
  5475. }
  5476. /**
  5477. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5478. * S# determines MS1 or MS2, X# sets the pin high/low.
  5479. */
  5480. inline void gcode_M351() {
  5481. if (code_seen('S')) switch (code_value_byte()) {
  5482. case 1:
  5483. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5484. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5485. break;
  5486. case 2:
  5487. LOOP_XYZE(i) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5488. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5489. break;
  5490. }
  5491. stepper.microstep_readings();
  5492. }
  5493. #endif // HAS_MICROSTEPS
  5494. #if ENABLED(MIXING_EXTRUDER)
  5495. /**
  5496. * M163: Set a single mix factor for a mixing extruder
  5497. * This is called "weight" by some systems.
  5498. *
  5499. * S[index] The channel index to set
  5500. * P[float] The mix value
  5501. *
  5502. */
  5503. inline void gcode_M163() {
  5504. int mix_index = code_seen('S') ? code_value_int() : 0;
  5505. float mix_value = code_seen('P') ? code_value_float() : 0.0;
  5506. if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
  5507. }
  5508. #if MIXING_VIRTUAL_TOOLS > 1
  5509. /**
  5510. * M164: Store the current mix factors as a virtual tool.
  5511. *
  5512. * S[index] The virtual tool to store
  5513. *
  5514. */
  5515. inline void gcode_M164() {
  5516. int tool_index = code_seen('S') ? code_value_int() : 0;
  5517. if (tool_index < MIXING_VIRTUAL_TOOLS) {
  5518. normalize_mix();
  5519. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  5520. mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
  5521. }
  5522. }
  5523. #endif
  5524. #if ENABLED(DIRECT_MIXING_IN_G1)
  5525. /**
  5526. * M165: Set multiple mix factors for a mixing extruder.
  5527. * Factors that are left out will be set to 0.
  5528. * All factors together must add up to 1.0.
  5529. *
  5530. * A[factor] Mix factor for extruder stepper 1
  5531. * B[factor] Mix factor for extruder stepper 2
  5532. * C[factor] Mix factor for extruder stepper 3
  5533. * D[factor] Mix factor for extruder stepper 4
  5534. * H[factor] Mix factor for extruder stepper 5
  5535. * I[factor] Mix factor for extruder stepper 6
  5536. *
  5537. */
  5538. inline void gcode_M165() { gcode_get_mix(); }
  5539. #endif
  5540. #endif // MIXING_EXTRUDER
  5541. /**
  5542. * M999: Restart after being stopped
  5543. *
  5544. * Default behaviour is to flush the serial buffer and request
  5545. * a resend to the host starting on the last N line received.
  5546. *
  5547. * Sending "M999 S1" will resume printing without flushing the
  5548. * existing command buffer.
  5549. *
  5550. */
  5551. inline void gcode_M999() {
  5552. Running = true;
  5553. lcd_reset_alert_level();
  5554. if (code_seen('S') && code_value_bool()) return;
  5555. // gcode_LastN = Stopped_gcode_LastN;
  5556. FlushSerialRequestResend();
  5557. }
  5558. #if ENABLED(SWITCHING_EXTRUDER)
  5559. inline void move_extruder_servo(uint8_t e) {
  5560. const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
  5561. MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
  5562. }
  5563. #endif
  5564. inline void invalid_extruder_error(const uint8_t &e) {
  5565. SERIAL_ECHO_START;
  5566. SERIAL_CHAR('T');
  5567. SERIAL_PROTOCOL_F(e, DEC);
  5568. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5569. }
  5570. void tool_change(const uint8_t tmp_extruder, const float fr_mm_s/*=0.0*/, bool no_move/*=false*/) {
  5571. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  5572. if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
  5573. invalid_extruder_error(tmp_extruder);
  5574. return;
  5575. }
  5576. // T0-Tnnn: Switch virtual tool by changing the mix
  5577. for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
  5578. mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
  5579. #else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5580. #if HOTENDS > 1
  5581. if (tmp_extruder >= EXTRUDERS) {
  5582. invalid_extruder_error(tmp_extruder);
  5583. return;
  5584. }
  5585. float old_feedrate_mm_s = feedrate_mm_s;
  5586. feedrate_mm_s = fr_mm_s > 0.0 ? (old_feedrate_mm_s = fr_mm_s) : XY_PROBE_FEEDRATE_MM_S;
  5587. if (tmp_extruder != active_extruder) {
  5588. if (!no_move && axis_unhomed_error(true, true, true)) {
  5589. SERIAL_ECHOLNPGM("No move on toolchange");
  5590. no_move = true;
  5591. }
  5592. // Save current position to destination, for use later
  5593. set_destination_to_current();
  5594. #if ENABLED(DUAL_X_CARRIAGE)
  5595. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5596. if (DEBUGGING(LEVELING)) {
  5597. SERIAL_ECHOPGM("Dual X Carriage Mode ");
  5598. switch (dual_x_carriage_mode) {
  5599. case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
  5600. case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
  5601. case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
  5602. }
  5603. }
  5604. #endif
  5605. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5606. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
  5607. ) {
  5608. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5609. if (DEBUGGING(LEVELING)) {
  5610. SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
  5611. SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
  5612. SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
  5613. }
  5614. #endif
  5615. // Park old head: 1) raise 2) move to park position 3) lower
  5616. for (uint8_t i = 0; i < 3; i++)
  5617. planner.buffer_line(
  5618. i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
  5619. current_position[Y_AXIS],
  5620. current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
  5621. current_position[E_AXIS],
  5622. planner.max_feedrate_mm_s[i == 1 ? X_AXIS : Z_AXIS],
  5623. active_extruder
  5624. );
  5625. stepper.synchronize();
  5626. }
  5627. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5628. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5629. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5630. active_extruder = tmp_extruder;
  5631. // This function resets the max/min values - the current position may be overwritten below.
  5632. set_axis_is_at_home(X_AXIS);
  5633. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5634. if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
  5635. #endif
  5636. switch (dual_x_carriage_mode) {
  5637. case DXC_FULL_CONTROL_MODE:
  5638. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5639. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5640. break;
  5641. case DXC_DUPLICATION_MODE:
  5642. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5643. if (active_extruder_parked)
  5644. current_position[X_AXIS] = LOGICAL_X_POSITION(inactive_extruder_x_pos);
  5645. else
  5646. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5647. inactive_extruder_x_pos = RAW_X_POSITION(destination[X_AXIS]);
  5648. extruder_duplication_enabled = false;
  5649. break;
  5650. default:
  5651. // record raised toolhead position for use by unpark
  5652. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5653. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5654. active_extruder_parked = true;
  5655. delayed_move_time = 0;
  5656. break;
  5657. }
  5658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5659. if (DEBUGGING(LEVELING)) {
  5660. SERIAL_ECHOLNPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
  5661. DEBUG_POS("New extruder (parked)", current_position);
  5662. }
  5663. #endif
  5664. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5665. #else // !DUAL_X_CARRIAGE
  5666. #if ENABLED(SWITCHING_EXTRUDER)
  5667. // <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
  5668. float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
  5669. z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
  5670. // Always raise by some amount
  5671. planner.buffer_line(
  5672. current_position[X_AXIS],
  5673. current_position[Y_AXIS],
  5674. current_position[Z_AXIS] + z_raise,
  5675. current_position[E_AXIS],
  5676. planner.max_feedrate_mm_s[Z_AXIS],
  5677. active_extruder
  5678. );
  5679. stepper.synchronize();
  5680. move_extruder_servo(active_extruder);
  5681. delay(500);
  5682. // Move back down, if needed
  5683. if (z_raise != z_diff) {
  5684. planner.buffer_line(
  5685. current_position[X_AXIS],
  5686. current_position[Y_AXIS],
  5687. current_position[Z_AXIS] + z_diff,
  5688. current_position[E_AXIS],
  5689. planner.max_feedrate_mm_s[Z_AXIS],
  5690. active_extruder
  5691. );
  5692. stepper.synchronize();
  5693. }
  5694. #endif
  5695. /**
  5696. * Set current_position to the position of the new nozzle.
  5697. * Offsets are based on linear distance, so we need to get
  5698. * the resulting position in coordinate space.
  5699. *
  5700. * - With grid or 3-point leveling, offset XYZ by a tilted vector
  5701. * - With mesh leveling, update Z for the new position
  5702. * - Otherwise, just use the raw linear distance
  5703. *
  5704. * Software endstops are altered here too. Consider a case where:
  5705. * E0 at X=0 ... E1 at X=10
  5706. * When we switch to E1 now X=10, but E1 can't move left.
  5707. * To express this we apply the change in XY to the software endstops.
  5708. * E1 can move farther right than E0, so the right limit is extended.
  5709. *
  5710. * Note that we don't adjust the Z software endstops. Why not?
  5711. * Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5712. * because the bed is 1mm lower at the new position. As long as
  5713. * the first nozzle is out of the way, the carriage should be
  5714. * allowed to move 1mm lower. This technically "breaks" the
  5715. * Z software endstop. But this is technically correct (and
  5716. * there is no viable alternative).
  5717. */
  5718. #if ENABLED(AUTO_BED_LEVELING_LINEAR)
  5719. // Offset extruder, make sure to apply the bed level rotation matrix
  5720. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5721. hotend_offset[Y_AXIS][tmp_extruder],
  5722. 0),
  5723. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5724. hotend_offset[Y_AXIS][active_extruder],
  5725. 0),
  5726. offset_vec = tmp_offset_vec - act_offset_vec;
  5727. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5728. if (DEBUGGING(LEVELING)) {
  5729. tmp_offset_vec.debug("tmp_offset_vec");
  5730. act_offset_vec.debug("act_offset_vec");
  5731. offset_vec.debug("offset_vec (BEFORE)");
  5732. }
  5733. #endif
  5734. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5735. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5736. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5737. #endif
  5738. // Adjustments to the current position
  5739. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5740. current_position[Z_AXIS] += offset_vec.z;
  5741. #else // !AUTO_BED_LEVELING_FEATURE
  5742. float xydiff[2] = {
  5743. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5744. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5745. };
  5746. #if ENABLED(MESH_BED_LEVELING)
  5747. if (mbl.active()) {
  5748. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5749. if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
  5750. #endif
  5751. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5752. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5753. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5755. if (DEBUGGING(LEVELING))
  5756. SERIAL_ECHOLNPAIR(" after: ", current_position[Z_AXIS]);
  5757. #endif
  5758. }
  5759. #endif // MESH_BED_LEVELING
  5760. #endif // !AUTO_BED_LEVELING_FEATURE
  5761. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5762. if (DEBUGGING(LEVELING)) {
  5763. SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
  5764. SERIAL_ECHOPAIR(", ", xydiff[Y_AXIS]);
  5765. SERIAL_ECHOLNPGM(" }");
  5766. }
  5767. #endif
  5768. // The newly-selected extruder XY is actually at...
  5769. current_position[X_AXIS] += xydiff[X_AXIS];
  5770. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5771. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5772. position_shift[i] += xydiff[i];
  5773. update_software_endstops((AxisEnum)i);
  5774. }
  5775. // Set the new active extruder
  5776. active_extruder = tmp_extruder;
  5777. #endif // !DUAL_X_CARRIAGE
  5778. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5779. if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
  5780. #endif
  5781. // Tell the planner the new "current position"
  5782. SYNC_PLAN_POSITION_KINEMATIC();
  5783. // Move to the "old position" (move the extruder into place)
  5784. if (!no_move && IsRunning()) {
  5785. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5786. if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
  5787. #endif
  5788. prepare_move_to_destination();
  5789. }
  5790. } // (tmp_extruder != active_extruder)
  5791. stepper.synchronize();
  5792. #if ENABLED(EXT_SOLENOID)
  5793. disable_all_solenoids();
  5794. enable_solenoid_on_active_extruder();
  5795. #endif // EXT_SOLENOID
  5796. feedrate_mm_s = old_feedrate_mm_s;
  5797. #else // HOTENDS <= 1
  5798. // Set the new active extruder
  5799. active_extruder = tmp_extruder;
  5800. UNUSED(fr_mm_s);
  5801. UNUSED(no_move);
  5802. #endif // HOTENDS <= 1
  5803. SERIAL_ECHO_START;
  5804. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5805. SERIAL_PROTOCOLLN((int)active_extruder);
  5806. #endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
  5807. }
  5808. /**
  5809. * T0-T3: Switch tool, usually switching extruders
  5810. *
  5811. * F[units/min] Set the movement feedrate
  5812. * S1 Don't move the tool in XY after change
  5813. */
  5814. inline void gcode_T(uint8_t tmp_extruder) {
  5815. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5816. if (DEBUGGING(LEVELING)) {
  5817. SERIAL_ECHOPAIR(">>> gcode_T(", tmp_extruder);
  5818. SERIAL_ECHOLNPGM(")");
  5819. DEBUG_POS("BEFORE", current_position);
  5820. }
  5821. #endif
  5822. #if HOTENDS == 1 || (ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1)
  5823. tool_change(tmp_extruder);
  5824. #elif HOTENDS > 1
  5825. tool_change(
  5826. tmp_extruder,
  5827. code_seen('F') ? MMM_TO_MMS(code_value_axis_units(X_AXIS)) : 0.0,
  5828. (tmp_extruder == active_extruder) || (code_seen('S') && code_value_bool())
  5829. );
  5830. #endif
  5831. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5832. if (DEBUGGING(LEVELING)) {
  5833. DEBUG_POS("AFTER", current_position);
  5834. SERIAL_ECHOLNPGM("<<< gcode_T");
  5835. }
  5836. #endif
  5837. }
  5838. /**
  5839. * Process a single command and dispatch it to its handler
  5840. * This is called from the main loop()
  5841. */
  5842. void process_next_command() {
  5843. current_command = command_queue[cmd_queue_index_r];
  5844. if (DEBUGGING(ECHO)) {
  5845. SERIAL_ECHO_START;
  5846. SERIAL_ECHOLN(current_command);
  5847. }
  5848. // Sanitize the current command:
  5849. // - Skip leading spaces
  5850. // - Bypass N[-0-9][0-9]*[ ]*
  5851. // - Overwrite * with nul to mark the end
  5852. while (*current_command == ' ') ++current_command;
  5853. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5854. current_command += 2; // skip N[-0-9]
  5855. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5856. while (*current_command == ' ') ++current_command; // skip [ ]*
  5857. }
  5858. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5859. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5860. char *cmd_ptr = current_command;
  5861. // Get the command code, which must be G, M, or T
  5862. char command_code = *cmd_ptr++;
  5863. // Skip spaces to get the numeric part
  5864. while (*cmd_ptr == ' ') cmd_ptr++;
  5865. uint16_t codenum = 0; // define ahead of goto
  5866. // Bail early if there's no code
  5867. bool code_is_good = NUMERIC(*cmd_ptr);
  5868. if (!code_is_good) goto ExitUnknownCommand;
  5869. // Get and skip the code number
  5870. do {
  5871. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5872. cmd_ptr++;
  5873. } while (NUMERIC(*cmd_ptr));
  5874. // Skip all spaces to get to the first argument, or nul
  5875. while (*cmd_ptr == ' ') cmd_ptr++;
  5876. // The command's arguments (if any) start here, for sure!
  5877. current_command_args = cmd_ptr;
  5878. KEEPALIVE_STATE(IN_HANDLER);
  5879. // Handle a known G, M, or T
  5880. switch (command_code) {
  5881. case 'G': switch (codenum) {
  5882. // G0, G1
  5883. case 0:
  5884. case 1:
  5885. gcode_G0_G1();
  5886. break;
  5887. // G2, G3
  5888. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5889. case 2: // G2 - CW ARC
  5890. case 3: // G3 - CCW ARC
  5891. gcode_G2_G3(codenum == 2);
  5892. break;
  5893. #endif
  5894. // G4 Dwell
  5895. case 4:
  5896. gcode_G4();
  5897. break;
  5898. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5899. // G5
  5900. case 5: // G5 - Cubic B_spline
  5901. gcode_G5();
  5902. break;
  5903. #endif // BEZIER_CURVE_SUPPORT
  5904. #if ENABLED(FWRETRACT)
  5905. case 10: // G10: retract
  5906. case 11: // G11: retract_recover
  5907. gcode_G10_G11(codenum == 10);
  5908. break;
  5909. #endif // FWRETRACT
  5910. #if ENABLED(NOZZLE_CLEAN_FEATURE)
  5911. case 12:
  5912. gcode_G12(); // G12: Nozzle Clean
  5913. break;
  5914. #endif // NOZZLE_CLEAN_FEATURE
  5915. #if ENABLED(INCH_MODE_SUPPORT)
  5916. case 20: //G20: Inch Mode
  5917. gcode_G20();
  5918. break;
  5919. case 21: //G21: MM Mode
  5920. gcode_G21();
  5921. break;
  5922. #endif // INCH_MODE_SUPPORT
  5923. #if ENABLED(NOZZLE_PARK_FEATURE)
  5924. case 27: // G27: Nozzle Park
  5925. gcode_G27();
  5926. break;
  5927. #endif // NOZZLE_PARK_FEATURE
  5928. case 28: // G28: Home all axes, one at a time
  5929. gcode_G28();
  5930. break;
  5931. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5932. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5933. gcode_G29();
  5934. break;
  5935. #endif // AUTO_BED_LEVELING_FEATURE
  5936. #if HAS_BED_PROBE
  5937. case 30: // G30 Single Z probe
  5938. gcode_G30();
  5939. break;
  5940. #if ENABLED(Z_PROBE_SLED)
  5941. case 31: // G31: dock the sled
  5942. gcode_G31();
  5943. break;
  5944. case 32: // G32: undock the sled
  5945. gcode_G32();
  5946. break;
  5947. #endif // Z_PROBE_SLED
  5948. #endif // HAS_BED_PROBE
  5949. case 90: // G90
  5950. relative_mode = false;
  5951. break;
  5952. case 91: // G91
  5953. relative_mode = true;
  5954. break;
  5955. case 92: // G92
  5956. gcode_G92();
  5957. break;
  5958. }
  5959. break;
  5960. case 'M': switch (codenum) {
  5961. #if ENABLED(ULTIPANEL)
  5962. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5963. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5964. gcode_M0_M1();
  5965. break;
  5966. #endif // ULTIPANEL
  5967. case 17:
  5968. gcode_M17();
  5969. break;
  5970. #if ENABLED(SDSUPPORT)
  5971. case 20: // M20 - list SD card
  5972. gcode_M20(); break;
  5973. case 21: // M21 - init SD card
  5974. gcode_M21(); break;
  5975. case 22: //M22 - release SD card
  5976. gcode_M22(); break;
  5977. case 23: //M23 - Select file
  5978. gcode_M23(); break;
  5979. case 24: //M24 - Start SD print
  5980. gcode_M24(); break;
  5981. case 25: //M25 - Pause SD print
  5982. gcode_M25(); break;
  5983. case 26: //M26 - Set SD index
  5984. gcode_M26(); break;
  5985. case 27: //M27 - Get SD status
  5986. gcode_M27(); break;
  5987. case 28: //M28 - Start SD write
  5988. gcode_M28(); break;
  5989. case 29: //M29 - Stop SD write
  5990. gcode_M29(); break;
  5991. case 30: //M30 <filename> Delete File
  5992. gcode_M30(); break;
  5993. case 32: //M32 - Select file and start SD print
  5994. gcode_M32(); break;
  5995. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5996. case 33: //M33 - Get the long full path to a file or folder
  5997. gcode_M33(); break;
  5998. #endif // LONG_FILENAME_HOST_SUPPORT
  5999. case 928: //M928 - Start SD write
  6000. gcode_M928(); break;
  6001. #endif //SDSUPPORT
  6002. case 31: //M31 take time since the start of the SD print or an M109 command
  6003. gcode_M31();
  6004. break;
  6005. case 42: //M42 -Change pin status via gcode
  6006. gcode_M42();
  6007. break;
  6008. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  6009. case 48: // M48 Z probe repeatability
  6010. gcode_M48();
  6011. break;
  6012. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  6013. case 75: // Start print timer
  6014. gcode_M75();
  6015. break;
  6016. case 76: // Pause print timer
  6017. gcode_M76();
  6018. break;
  6019. case 77: // Stop print timer
  6020. gcode_M77();
  6021. break;
  6022. #if ENABLED(PRINTCOUNTER)
  6023. case 78: // Show print statistics
  6024. gcode_M78();
  6025. break;
  6026. #endif
  6027. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  6028. case 100:
  6029. gcode_M100();
  6030. break;
  6031. #endif
  6032. case 104: // M104
  6033. gcode_M104();
  6034. break;
  6035. case 110: // M110: Set Current Line Number
  6036. gcode_M110();
  6037. break;
  6038. case 111: // M111: Set debug level
  6039. gcode_M111();
  6040. break;
  6041. #if DISABLED(EMERGENCY_PARSER)
  6042. case 108: // M108: Cancel Waiting
  6043. gcode_M108();
  6044. break;
  6045. case 112: // M112: Emergency Stop
  6046. gcode_M112();
  6047. break;
  6048. case 410: // M410 quickstop - Abort all the planned moves.
  6049. gcode_M410();
  6050. break;
  6051. #endif
  6052. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  6053. case 113: // M113: Set Host Keepalive interval
  6054. gcode_M113();
  6055. break;
  6056. #endif
  6057. case 140: // M140: Set bed temp
  6058. gcode_M140();
  6059. break;
  6060. case 105: // M105: Read current temperature
  6061. gcode_M105();
  6062. KEEPALIVE_STATE(NOT_BUSY);
  6063. return; // "ok" already printed
  6064. case 109: // M109: Wait for temperature
  6065. gcode_M109();
  6066. break;
  6067. #if HAS_TEMP_BED
  6068. case 190: // M190: Wait for bed heater to reach target
  6069. gcode_M190();
  6070. break;
  6071. #endif // HAS_TEMP_BED
  6072. #if FAN_COUNT > 0
  6073. case 106: // M106: Fan On
  6074. gcode_M106();
  6075. break;
  6076. case 107: // M107: Fan Off
  6077. gcode_M107();
  6078. break;
  6079. #endif // FAN_COUNT > 0
  6080. #if ENABLED(BARICUDA)
  6081. // PWM for HEATER_1_PIN
  6082. #if HAS_HEATER_1
  6083. case 126: // M126: valve open
  6084. gcode_M126();
  6085. break;
  6086. case 127: // M127: valve closed
  6087. gcode_M127();
  6088. break;
  6089. #endif // HAS_HEATER_1
  6090. // PWM for HEATER_2_PIN
  6091. #if HAS_HEATER_2
  6092. case 128: // M128: valve open
  6093. gcode_M128();
  6094. break;
  6095. case 129: // M129: valve closed
  6096. gcode_M129();
  6097. break;
  6098. #endif // HAS_HEATER_2
  6099. #endif // BARICUDA
  6100. #if HAS_POWER_SWITCH
  6101. case 80: // M80: Turn on Power Supply
  6102. gcode_M80();
  6103. break;
  6104. #endif // HAS_POWER_SWITCH
  6105. case 81: // M81: Turn off Power, including Power Supply, if possible
  6106. gcode_M81();
  6107. break;
  6108. case 82:
  6109. gcode_M82();
  6110. break;
  6111. case 83:
  6112. gcode_M83();
  6113. break;
  6114. case 18: // (for compatibility)
  6115. case 84: // M84
  6116. gcode_M18_M84();
  6117. break;
  6118. case 85: // M85
  6119. gcode_M85();
  6120. break;
  6121. case 92: // M92: Set the steps-per-unit for one or more axes
  6122. gcode_M92();
  6123. break;
  6124. case 115: // M115: Report capabilities
  6125. gcode_M115();
  6126. break;
  6127. case 117: // M117: Set LCD message text, if possible
  6128. gcode_M117();
  6129. break;
  6130. case 114: // M114: Report current position
  6131. gcode_M114();
  6132. break;
  6133. case 120: // M120: Enable endstops
  6134. gcode_M120();
  6135. break;
  6136. case 121: // M121: Disable endstops
  6137. gcode_M121();
  6138. break;
  6139. case 119: // M119: Report endstop states
  6140. gcode_M119();
  6141. break;
  6142. #if ENABLED(ULTIPANEL)
  6143. case 145: // M145: Set material heatup parameters
  6144. gcode_M145();
  6145. break;
  6146. #endif
  6147. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  6148. case 149:
  6149. gcode_M149();
  6150. break;
  6151. #endif
  6152. #if ENABLED(BLINKM)
  6153. case 150: // M150
  6154. gcode_M150();
  6155. break;
  6156. #endif //BLINKM
  6157. #if ENABLED(EXPERIMENTAL_I2CBUS)
  6158. case 155:
  6159. gcode_M155();
  6160. break;
  6161. case 156:
  6162. gcode_M156();
  6163. break;
  6164. #endif //EXPERIMENTAL_I2CBUS
  6165. #if ENABLED(MIXING_EXTRUDER)
  6166. case 163: // M163 S<int> P<float> set weight for a mixing extruder
  6167. gcode_M163();
  6168. break;
  6169. #if MIXING_VIRTUAL_TOOLS > 1
  6170. case 164: // M164 S<int> save current mix as a virtual extruder
  6171. gcode_M164();
  6172. break;
  6173. #endif
  6174. #if ENABLED(DIRECT_MIXING_IN_G1)
  6175. case 165: // M165 [ABCDHI]<float> set multiple mix weights
  6176. gcode_M165();
  6177. break;
  6178. #endif
  6179. #endif
  6180. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  6181. gcode_M200();
  6182. break;
  6183. case 201: // M201
  6184. gcode_M201();
  6185. break;
  6186. #if 0 // Not used for Sprinter/grbl gen6
  6187. case 202: // M202
  6188. gcode_M202();
  6189. break;
  6190. #endif
  6191. case 203: // M203 max feedrate units/sec
  6192. gcode_M203();
  6193. break;
  6194. case 204: // M204 acclereration S normal moves T filmanent only moves
  6195. gcode_M204();
  6196. break;
  6197. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6198. gcode_M205();
  6199. break;
  6200. case 206: // M206 additional homing offset
  6201. gcode_M206();
  6202. break;
  6203. #if ENABLED(DELTA)
  6204. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6205. gcode_M665();
  6206. break;
  6207. #endif
  6208. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6209. case 666: // M666 set delta / dual endstop adjustment
  6210. gcode_M666();
  6211. break;
  6212. #endif
  6213. #if ENABLED(FWRETRACT)
  6214. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6215. gcode_M207();
  6216. break;
  6217. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6218. gcode_M208();
  6219. break;
  6220. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6221. gcode_M209();
  6222. break;
  6223. #endif // FWRETRACT
  6224. case 211: // M211 - Enable, Disable, and/or Report software endstops
  6225. gcode_M211();
  6226. break;
  6227. #if HOTENDS > 1
  6228. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6229. gcode_M218();
  6230. break;
  6231. #endif
  6232. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6233. gcode_M220();
  6234. break;
  6235. case 221: // M221 - Set Flow Percentage: S<percent>
  6236. gcode_M221();
  6237. break;
  6238. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6239. gcode_M226();
  6240. break;
  6241. #if HAS_SERVOS
  6242. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6243. gcode_M280();
  6244. break;
  6245. #endif // HAS_SERVOS
  6246. #if HAS_BUZZER
  6247. case 300: // M300 - Play beep tone
  6248. gcode_M300();
  6249. break;
  6250. #endif // HAS_BUZZER
  6251. #if ENABLED(PIDTEMP)
  6252. case 301: // M301
  6253. gcode_M301();
  6254. break;
  6255. #endif // PIDTEMP
  6256. #if ENABLED(PIDTEMPBED)
  6257. case 304: // M304
  6258. gcode_M304();
  6259. break;
  6260. #endif // PIDTEMPBED
  6261. #if defined(CHDK) || HAS_PHOTOGRAPH
  6262. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6263. gcode_M240();
  6264. break;
  6265. #endif // CHDK || PHOTOGRAPH_PIN
  6266. #if HAS_LCD_CONTRAST
  6267. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6268. gcode_M250();
  6269. break;
  6270. #endif // HAS_LCD_CONTRAST
  6271. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6272. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6273. gcode_M302();
  6274. break;
  6275. #endif // PREVENT_COLD_EXTRUSION
  6276. case 303: // M303 PID autotune
  6277. gcode_M303();
  6278. break;
  6279. #if ENABLED(SCARA)
  6280. case 360: // M360 SCARA Theta pos1
  6281. if (gcode_M360()) return;
  6282. break;
  6283. case 361: // M361 SCARA Theta pos2
  6284. if (gcode_M361()) return;
  6285. break;
  6286. case 362: // M362 SCARA Psi pos1
  6287. if (gcode_M362()) return;
  6288. break;
  6289. case 363: // M363 SCARA Psi pos2
  6290. if (gcode_M363()) return;
  6291. break;
  6292. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6293. if (gcode_M364()) return;
  6294. break;
  6295. case 365: // M365 Set SCARA scaling for X Y Z
  6296. gcode_M365();
  6297. break;
  6298. #endif // SCARA
  6299. case 400: // M400 finish all moves
  6300. gcode_M400();
  6301. break;
  6302. #if HAS_BED_PROBE
  6303. case 401:
  6304. gcode_M401();
  6305. break;
  6306. case 402:
  6307. gcode_M402();
  6308. break;
  6309. #endif // HAS_BED_PROBE
  6310. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6311. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6312. gcode_M404();
  6313. break;
  6314. case 405: //M405 Turn on filament sensor for control
  6315. gcode_M405();
  6316. break;
  6317. case 406: //M406 Turn off filament sensor for control
  6318. gcode_M406();
  6319. break;
  6320. case 407: //M407 Display measured filament diameter
  6321. gcode_M407();
  6322. break;
  6323. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6324. #if ENABLED(MESH_BED_LEVELING)
  6325. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6326. gcode_M420();
  6327. break;
  6328. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6329. gcode_M421();
  6330. break;
  6331. #endif
  6332. case 428: // M428 Apply current_position to home_offset
  6333. gcode_M428();
  6334. break;
  6335. case 500: // M500 Store settings in EEPROM
  6336. gcode_M500();
  6337. break;
  6338. case 501: // M501 Read settings from EEPROM
  6339. gcode_M501();
  6340. break;
  6341. case 502: // M502 Revert to default settings
  6342. gcode_M502();
  6343. break;
  6344. case 503: // M503 print settings currently in memory
  6345. gcode_M503();
  6346. break;
  6347. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6348. case 540:
  6349. gcode_M540();
  6350. break;
  6351. #endif
  6352. #if HAS_BED_PROBE
  6353. case 851:
  6354. gcode_M851();
  6355. break;
  6356. #endif // HAS_BED_PROBE
  6357. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6358. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6359. gcode_M600();
  6360. break;
  6361. #endif // FILAMENT_CHANGE_FEATURE
  6362. #if ENABLED(DUAL_X_CARRIAGE)
  6363. case 605:
  6364. gcode_M605();
  6365. break;
  6366. #endif // DUAL_X_CARRIAGE
  6367. #if ENABLED(LIN_ADVANCE)
  6368. case 905: // M905 Set advance factor.
  6369. gcode_M905();
  6370. break;
  6371. #endif
  6372. case 907: // M907 Set digital trimpot motor current using axis codes.
  6373. gcode_M907();
  6374. break;
  6375. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6376. case 908: // M908 Control digital trimpot directly.
  6377. gcode_M908();
  6378. break;
  6379. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6380. case 909: // M909 Print digipot/DAC current value
  6381. gcode_M909();
  6382. break;
  6383. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6384. gcode_M910();
  6385. break;
  6386. #endif
  6387. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6388. #if HAS_MICROSTEPS
  6389. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6390. gcode_M350();
  6391. break;
  6392. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6393. gcode_M351();
  6394. break;
  6395. #endif // HAS_MICROSTEPS
  6396. case 999: // M999: Restart after being Stopped
  6397. gcode_M999();
  6398. break;
  6399. }
  6400. break;
  6401. case 'T':
  6402. gcode_T(codenum);
  6403. break;
  6404. default: code_is_good = false;
  6405. }
  6406. KEEPALIVE_STATE(NOT_BUSY);
  6407. ExitUnknownCommand:
  6408. // Still unknown command? Throw an error
  6409. if (!code_is_good) unknown_command_error();
  6410. ok_to_send();
  6411. }
  6412. void FlushSerialRequestResend() {
  6413. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6414. MYSERIAL.flush();
  6415. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6416. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6417. ok_to_send();
  6418. }
  6419. void ok_to_send() {
  6420. refresh_cmd_timeout();
  6421. if (!send_ok[cmd_queue_index_r]) return;
  6422. SERIAL_PROTOCOLPGM(MSG_OK);
  6423. #if ENABLED(ADVANCED_OK)
  6424. char* p = command_queue[cmd_queue_index_r];
  6425. if (*p == 'N') {
  6426. SERIAL_PROTOCOL(' ');
  6427. SERIAL_ECHO(*p++);
  6428. while (NUMERIC_SIGNED(*p))
  6429. SERIAL_ECHO(*p++);
  6430. }
  6431. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6432. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6433. #endif
  6434. SERIAL_EOL;
  6435. }
  6436. #if ENABLED(min_software_endstops) || ENABLED(max_software_endstops)
  6437. void clamp_to_software_endstops(float target[XYZ]) {
  6438. #if ENABLED(min_software_endstops)
  6439. NOLESS(target[X_AXIS], soft_endstop_min[X_AXIS]);
  6440. NOLESS(target[Y_AXIS], soft_endstop_min[Y_AXIS]);
  6441. NOLESS(target[Z_AXIS], soft_endstop_min[Z_AXIS]);
  6442. #endif
  6443. #if ENABLED(max_software_endstops)
  6444. NOMORE(target[X_AXIS], soft_endstop_max[X_AXIS]);
  6445. NOMORE(target[Y_AXIS], soft_endstop_max[Y_AXIS]);
  6446. NOMORE(target[Z_AXIS], soft_endstop_max[Z_AXIS]);
  6447. #endif
  6448. }
  6449. #endif
  6450. #if ENABLED(DELTA)
  6451. void recalc_delta_settings(float radius, float diagonal_rod) {
  6452. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6453. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6454. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6455. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6456. delta_tower3_x = 0.0; // back middle tower
  6457. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6458. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6459. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6460. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6461. }
  6462. void inverse_kinematics(const float in_cartesian[XYZ]) {
  6463. const float cartesian[XYZ] = {
  6464. RAW_X_POSITION(in_cartesian[X_AXIS]),
  6465. RAW_Y_POSITION(in_cartesian[Y_AXIS]),
  6466. RAW_Z_POSITION(in_cartesian[Z_AXIS])
  6467. };
  6468. delta[A_AXIS] = sqrt(delta_diagonal_rod_2_tower_1
  6469. - sq(delta_tower1_x - cartesian[X_AXIS])
  6470. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6471. ) + cartesian[Z_AXIS];
  6472. delta[B_AXIS] = sqrt(delta_diagonal_rod_2_tower_2
  6473. - sq(delta_tower2_x - cartesian[X_AXIS])
  6474. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6475. ) + cartesian[Z_AXIS];
  6476. delta[C_AXIS] = sqrt(delta_diagonal_rod_2_tower_3
  6477. - sq(delta_tower3_x - cartesian[X_AXIS])
  6478. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6479. ) + cartesian[Z_AXIS];
  6480. /**
  6481. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6482. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6483. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6484. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[A_AXIS]);
  6485. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[B_AXIS]);
  6486. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[C_AXIS]);
  6487. */
  6488. }
  6489. float delta_safe_distance_from_top() {
  6490. float cartesian[XYZ] = {
  6491. LOGICAL_X_POSITION(0),
  6492. LOGICAL_Y_POSITION(0),
  6493. LOGICAL_Z_POSITION(0)
  6494. };
  6495. inverse_kinematics(cartesian);
  6496. float distance = delta[A_AXIS];
  6497. cartesian[Y_AXIS] = LOGICAL_Y_POSITION(DELTA_PRINTABLE_RADIUS);
  6498. inverse_kinematics(cartesian);
  6499. return abs(distance - delta[A_AXIS]);
  6500. }
  6501. void forward_kinematics_DELTA(float z1, float z2, float z3) {
  6502. //As discussed in Wikipedia "Trilateration"
  6503. //we are establishing a new coordinate
  6504. //system in the plane of the three carriage points.
  6505. //This system will have the origin at tower1 and
  6506. //tower2 is on the x axis. tower3 is in the X-Y
  6507. //plane with a Z component of zero. We will define unit
  6508. //vectors in this coordinate system in our original
  6509. //coordinate system. Then when we calculate the
  6510. //Xnew, Ynew and Znew values, we can translate back into
  6511. //the original system by moving along those unit vectors
  6512. //by the corresponding values.
  6513. // https://en.wikipedia.org/wiki/Trilateration
  6514. // Variable names matched to Marlin, c-version
  6515. // and avoiding a vector library
  6516. // by Andreas Hardtung 2016-06-7
  6517. // based on a Java function from
  6518. // "Delta Robot Kinematics by Steve Graves" V3
  6519. // Result is in cartesian_position[].
  6520. //Create a vector in old coordinates along x axis of new coordinate
  6521. float p12[3] = { delta_tower2_x - delta_tower1_x, delta_tower2_y - delta_tower1_y, z2 - z1 };
  6522. //Get the Magnitude of vector.
  6523. float d = sqrt( p12[0]*p12[0] + p12[1]*p12[1] + p12[2]*p12[2] );
  6524. //Create unit vector by dividing by magnitude.
  6525. float ex[3] = { p12[0]/d, p12[1]/d, p12[2]/d };
  6526. //Now find vector from the origin of the new system to the third point.
  6527. float p13[3] = { delta_tower3_x - delta_tower1_x, delta_tower3_y - delta_tower1_y, z3 - z1 };
  6528. //Now use dot product to find the component of this vector on the X axis.
  6529. float i = ex[0]*p13[0] + ex[1]*p13[1] + ex[2]*p13[2];
  6530. //Now create a vector along the x axis that represents the x component of p13.
  6531. float iex[3] = { ex[0]*i, ex[1]*i, ex[2]*i };
  6532. //Now subtract the X component away from the original vector leaving only the Y component. We use the
  6533. //variable that will be the unit vector after we scale it.
  6534. float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2]};
  6535. //The magnitude of Y component
  6536. float j = sqrt(sq(ey[0]) + sq(ey[1]) + sq(ey[2]));
  6537. //Now make vector a unit vector
  6538. ey[0] /= j; ey[1] /= j; ey[2] /= j;
  6539. //The cross product of the unit x and y is the unit z
  6540. //float[] ez = vectorCrossProd(ex, ey);
  6541. float ez[3] = { ex[1]*ey[2] - ex[2]*ey[1], ex[2]*ey[0] - ex[0]*ey[2], ex[0]*ey[1] - ex[1]*ey[0] };
  6542. //Now we have the d, i and j values defined in Wikipedia.
  6543. //We can plug them into the equations defined in
  6544. //Wikipedia for Xnew, Ynew and Znew
  6545. float Xnew = (delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_2 + d*d)/(d*2);
  6546. float Ynew = ((delta_diagonal_rod_2_tower_1 - delta_diagonal_rod_2_tower_3 + i*i + j*j)/2 - i*Xnew) /j;
  6547. float Znew = sqrt(delta_diagonal_rod_2_tower_1 - Xnew*Xnew - Ynew*Ynew);
  6548. //Now we can start from the origin in the old coords and
  6549. //add vectors in the old coords that represent the
  6550. //Xnew, Ynew and Znew to find the point in the old system
  6551. cartesian_position[X_AXIS] = delta_tower1_x + ex[0]*Xnew + ey[0]*Ynew - ez[0]*Znew;
  6552. cartesian_position[Y_AXIS] = delta_tower1_y + ex[1]*Xnew + ey[1]*Ynew - ez[1]*Znew;
  6553. cartesian_position[Z_AXIS] = z1 + ex[2]*Xnew + ey[2]*Ynew - ez[2]*Znew;
  6554. };
  6555. void forward_kinematics_DELTA(float point[ABC]) {
  6556. forward_kinematics_DELTA(point[A_AXIS], point[B_AXIS], point[C_AXIS]);
  6557. }
  6558. void set_cartesian_from_steppers() {
  6559. forward_kinematics_DELTA(stepper.get_axis_position_mm(A_AXIS),
  6560. stepper.get_axis_position_mm(B_AXIS),
  6561. stepper.get_axis_position_mm(C_AXIS));
  6562. }
  6563. #if ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6564. // Adjust print surface height by linear interpolation over the bed_level array.
  6565. void adjust_delta(float cartesian[XYZ]) {
  6566. if (nonlinear_grid_spacing[X_AXIS] == 0 || nonlinear_grid_spacing[Y_AXIS] == 0) return; // G29 not done!
  6567. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6568. float h1 = 0.001 - half, h2 = half - 0.001,
  6569. grid_x = max(h1, min(h2, RAW_X_POSITION(cartesian[X_AXIS]) / nonlinear_grid_spacing[X_AXIS])),
  6570. grid_y = max(h1, min(h2, RAW_Y_POSITION(cartesian[Y_AXIS]) / nonlinear_grid_spacing[Y_AXIS]));
  6571. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6572. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6573. z1 = bed_level[floor_x + half][floor_y + half],
  6574. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6575. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6576. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6577. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6578. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6579. offset = (1 - ratio_x) * left + ratio_x * right;
  6580. delta[X_AXIS] += offset;
  6581. delta[Y_AXIS] += offset;
  6582. delta[Z_AXIS] += offset;
  6583. /**
  6584. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6585. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6586. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6587. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6588. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6589. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6590. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6591. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6592. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6593. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6594. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6595. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6596. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6597. */
  6598. }
  6599. #endif // AUTO_BED_LEVELING_NONLINEAR
  6600. #endif // DELTA
  6601. void set_current_from_steppers_for_axis(AxisEnum axis) {
  6602. #if ENABLED(DELTA)
  6603. set_cartesian_from_steppers();
  6604. current_position[axis] = LOGICAL_POSITION(cartesian_position[axis], axis);
  6605. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  6606. vector_3 pos = untilted_stepper_position();
  6607. current_position[axis] = axis == X_AXIS ? pos.x : axis == Y_AXIS ? pos.y : pos.z;
  6608. #else
  6609. current_position[axis] = stepper.get_axis_position_mm(axis); // CORE handled transparently
  6610. #endif
  6611. }
  6612. #if ENABLED(MESH_BED_LEVELING)
  6613. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6614. void mesh_line_to_destination(float fr_mm_s, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6615. int cx1 = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6616. cy1 = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6617. cx2 = mbl.cell_index_x(RAW_X_POSITION(destination[X_AXIS])),
  6618. cy2 = mbl.cell_index_y(RAW_Y_POSITION(destination[Y_AXIS]));
  6619. NOMORE(cx1, MESH_NUM_X_POINTS - 2);
  6620. NOMORE(cy1, MESH_NUM_Y_POINTS - 2);
  6621. NOMORE(cx2, MESH_NUM_X_POINTS - 2);
  6622. NOMORE(cy2, MESH_NUM_Y_POINTS - 2);
  6623. if (cx1 == cx2 && cy1 == cy2) {
  6624. // Start and end on same mesh square
  6625. line_to_destination(fr_mm_s);
  6626. set_current_to_destination();
  6627. return;
  6628. }
  6629. #define MBL_SEGMENT_END(A) (current_position[A ##_AXIS] + (destination[A ##_AXIS] - current_position[A ##_AXIS]) * normalized_dist)
  6630. float normalized_dist, end[NUM_AXIS];
  6631. // Split at the left/front border of the right/top square
  6632. int8_t gcx = max(cx1, cx2), gcy = max(cy1, cy2);
  6633. if (cx2 != cx1 && TEST(x_splits, gcx)) {
  6634. memcpy(end, destination, sizeof(end));
  6635. destination[X_AXIS] = LOGICAL_X_POSITION(mbl.get_probe_x(gcx));
  6636. normalized_dist = (destination[X_AXIS] - current_position[X_AXIS]) / (end[X_AXIS] - current_position[X_AXIS]);
  6637. destination[Y_AXIS] = MBL_SEGMENT_END(Y);
  6638. CBI(x_splits, gcx);
  6639. }
  6640. else if (cy2 != cy1 && TEST(y_splits, gcy)) {
  6641. memcpy(end, destination, sizeof(end));
  6642. destination[Y_AXIS] = LOGICAL_Y_POSITION(mbl.get_probe_y(gcy));
  6643. normalized_dist = (destination[Y_AXIS] - current_position[Y_AXIS]) / (end[Y_AXIS] - current_position[Y_AXIS]);
  6644. destination[X_AXIS] = MBL_SEGMENT_END(X);
  6645. CBI(y_splits, gcy);
  6646. }
  6647. else {
  6648. // Already split on a border
  6649. line_to_destination(fr_mm_s);
  6650. set_current_to_destination();
  6651. return;
  6652. }
  6653. destination[Z_AXIS] = MBL_SEGMENT_END(Z);
  6654. destination[E_AXIS] = MBL_SEGMENT_END(E);
  6655. // Do the split and look for more borders
  6656. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6657. // Restore destination from stack
  6658. memcpy(destination, end, sizeof(end));
  6659. mesh_line_to_destination(fr_mm_s, x_splits, y_splits);
  6660. }
  6661. #endif // MESH_BED_LEVELING
  6662. #if IS_KINEMATIC
  6663. inline bool prepare_kinematic_move_to(float target[NUM_AXIS]) {
  6664. float difference[NUM_AXIS];
  6665. LOOP_XYZE(i) difference[i] = target[i] - current_position[i];
  6666. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6667. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6668. if (cartesian_mm < 0.000001) return false;
  6669. float _feedrate_mm_s = MMS_SCALED(feedrate_mm_s);
  6670. float seconds = cartesian_mm / _feedrate_mm_s;
  6671. int steps = max(1, int(delta_segments_per_second * seconds));
  6672. float inv_steps = 1.0/steps;
  6673. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6674. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6675. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6676. for (int s = 1; s <= steps; s++) {
  6677. float fraction = float(s) * inv_steps;
  6678. LOOP_XYZE(i)
  6679. target[i] = current_position[i] + difference[i] * fraction;
  6680. inverse_kinematics(target);
  6681. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6682. if (!bed_leveling_in_progress) adjust_delta(target);
  6683. #endif
  6684. //DEBUG_POS("prepare_kinematic_move_to", target);
  6685. //DEBUG_POS("prepare_kinematic_move_to", delta);
  6686. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate_mm_s, active_extruder);
  6687. }
  6688. return true;
  6689. }
  6690. #endif // IS_KINEMATIC
  6691. #if ENABLED(DUAL_X_CARRIAGE)
  6692. inline bool prepare_move_to_destination_dualx() {
  6693. if (active_extruder_parked) {
  6694. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6695. // move duplicate extruder into correct duplication position.
  6696. planner.set_position_mm(
  6697. LOGICAL_X_POSITION(inactive_extruder_x_pos),
  6698. current_position[Y_AXIS],
  6699. current_position[Z_AXIS],
  6700. current_position[E_AXIS]
  6701. );
  6702. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6703. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[X_AXIS], 1);
  6704. SYNC_PLAN_POSITION_KINEMATIC();
  6705. stepper.synchronize();
  6706. extruder_duplication_enabled = true;
  6707. active_extruder_parked = false;
  6708. }
  6709. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6710. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6711. // This is a travel move (with no extrusion)
  6712. // Skip it, but keep track of the current position
  6713. // (so it can be used as the start of the next non-travel move)
  6714. if (delayed_move_time != 0xFFFFFFFFUL) {
  6715. set_current_to_destination();
  6716. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6717. delayed_move_time = millis();
  6718. return false;
  6719. }
  6720. }
  6721. delayed_move_time = 0;
  6722. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6723. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6724. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6725. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate_mm_s[Z_AXIS], active_extruder);
  6726. active_extruder_parked = false;
  6727. }
  6728. }
  6729. return true;
  6730. }
  6731. #endif // DUAL_X_CARRIAGE
  6732. #if !IS_KINEMATIC
  6733. inline bool prepare_move_to_destination_cartesian() {
  6734. // Do not use feedrate_percentage for E or Z only moves
  6735. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6736. line_to_destination();
  6737. }
  6738. else {
  6739. #if ENABLED(MESH_BED_LEVELING)
  6740. if (mbl.active()) {
  6741. mesh_line_to_destination(MMS_SCALED(feedrate_mm_s));
  6742. return false;
  6743. }
  6744. else
  6745. #endif
  6746. line_to_destination(MMS_SCALED(feedrate_mm_s));
  6747. }
  6748. return true;
  6749. }
  6750. #endif // !IS_KINEMATIC
  6751. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6752. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6753. if (DEBUGGING(DRYRUN)) return;
  6754. float de = dest_e - curr_e;
  6755. if (de) {
  6756. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6757. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6758. SERIAL_ECHO_START;
  6759. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6760. }
  6761. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6762. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6763. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6764. SERIAL_ECHO_START;
  6765. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6766. }
  6767. #endif
  6768. }
  6769. }
  6770. #endif // PREVENT_COLD_EXTRUSION
  6771. /**
  6772. * Prepare a single move and get ready for the next one
  6773. *
  6774. * (This may call planner.buffer_line several times to put
  6775. * smaller moves into the planner for DELTA or SCARA.)
  6776. */
  6777. void prepare_move_to_destination() {
  6778. clamp_to_software_endstops(destination);
  6779. refresh_cmd_timeout();
  6780. #if ENABLED(PREVENT_COLD_EXTRUSION)
  6781. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6782. #endif
  6783. #if IS_KINEMATIC
  6784. if (!prepare_kinematic_move_to(destination)) return;
  6785. #else
  6786. #if ENABLED(DUAL_X_CARRIAGE)
  6787. if (!prepare_move_to_destination_dualx()) return;
  6788. #endif
  6789. if (!prepare_move_to_destination_cartesian()) return;
  6790. #endif
  6791. set_current_to_destination();
  6792. }
  6793. #if ENABLED(ARC_SUPPORT)
  6794. /**
  6795. * Plan an arc in 2 dimensions
  6796. *
  6797. * The arc is approximated by generating many small linear segments.
  6798. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6799. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6800. * larger segments will tend to be more efficient. Your slicer should have
  6801. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6802. */
  6803. void plan_arc(
  6804. float target[NUM_AXIS], // Destination position
  6805. float* offset, // Center of rotation relative to current_position
  6806. uint8_t clockwise // Clockwise?
  6807. ) {
  6808. float radius = HYPOT(offset[X_AXIS], offset[Y_AXIS]),
  6809. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6810. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6811. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6812. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6813. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6814. r_Y = -offset[Y_AXIS],
  6815. rt_X = target[X_AXIS] - center_X,
  6816. rt_Y = target[Y_AXIS] - center_Y;
  6817. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6818. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6819. if (angular_travel < 0) angular_travel += RADIANS(360);
  6820. if (clockwise) angular_travel -= RADIANS(360);
  6821. // Make a circle if the angular rotation is 0
  6822. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6823. angular_travel += RADIANS(360);
  6824. float mm_of_travel = HYPOT(angular_travel * radius, fabs(linear_travel));
  6825. if (mm_of_travel < 0.001) return;
  6826. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6827. if (segments == 0) segments = 1;
  6828. float theta_per_segment = angular_travel / segments;
  6829. float linear_per_segment = linear_travel / segments;
  6830. float extruder_per_segment = extruder_travel / segments;
  6831. /**
  6832. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6833. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6834. * r_T = [cos(phi) -sin(phi);
  6835. * sin(phi) cos(phi] * r ;
  6836. *
  6837. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6838. * defined from the circle center to the initial position. Each line segment is formed by successive
  6839. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6840. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6841. * all double numbers are single precision on the Arduino. (True double precision will not have
  6842. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6843. * tool precision in some cases. Therefore, arc path correction is implemented.
  6844. *
  6845. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6846. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6847. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6848. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6849. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6850. * issue for CNC machines with the single precision Arduino calculations.
  6851. *
  6852. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6853. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6854. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6855. * This is important when there are successive arc motions.
  6856. */
  6857. // Vector rotation matrix values
  6858. float cos_T = 1 - 0.5 * sq(theta_per_segment); // Small angle approximation
  6859. float sin_T = theta_per_segment;
  6860. float arc_target[NUM_AXIS];
  6861. float sin_Ti, cos_Ti, r_new_Y;
  6862. uint16_t i;
  6863. int8_t count = 0;
  6864. // Initialize the linear axis
  6865. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6866. // Initialize the extruder axis
  6867. arc_target[E_AXIS] = current_position[E_AXIS];
  6868. float fr_mm_s = MMS_SCALED(feedrate_mm_s);
  6869. millis_t next_idle_ms = millis() + 200UL;
  6870. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6871. thermalManager.manage_heater();
  6872. millis_t now = millis();
  6873. if (ELAPSED(now, next_idle_ms)) {
  6874. next_idle_ms = now + 200UL;
  6875. idle();
  6876. }
  6877. if (++count < N_ARC_CORRECTION) {
  6878. // Apply vector rotation matrix to previous r_X / 1
  6879. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6880. r_X = r_X * cos_T - r_Y * sin_T;
  6881. r_Y = r_new_Y;
  6882. }
  6883. else {
  6884. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6885. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6886. // To reduce stuttering, the sin and cos could be computed at different times.
  6887. // For now, compute both at the same time.
  6888. cos_Ti = cos(i * theta_per_segment);
  6889. sin_Ti = sin(i * theta_per_segment);
  6890. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6891. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6892. count = 0;
  6893. }
  6894. // Update arc_target location
  6895. arc_target[X_AXIS] = center_X + r_X;
  6896. arc_target[Y_AXIS] = center_Y + r_Y;
  6897. arc_target[Z_AXIS] += linear_per_segment;
  6898. arc_target[E_AXIS] += extruder_per_segment;
  6899. clamp_to_software_endstops(arc_target);
  6900. #if IS_KINEMATIC
  6901. inverse_kinematics(arc_target);
  6902. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6903. adjust_delta(arc_target);
  6904. #endif
  6905. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6906. #else
  6907. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], fr_mm_s, active_extruder);
  6908. #endif
  6909. }
  6910. // Ensure last segment arrives at target location.
  6911. #if IS_KINEMATIC
  6912. inverse_kinematics(target);
  6913. #if ENABLED(DELTA) && ENABLED(AUTO_BED_LEVELING_NONLINEAR)
  6914. adjust_delta(target);
  6915. #endif
  6916. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6917. #else
  6918. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], fr_mm_s, active_extruder);
  6919. #endif
  6920. // As far as the parser is concerned, the position is now == target. In reality the
  6921. // motion control system might still be processing the action and the real tool position
  6922. // in any intermediate location.
  6923. set_current_to_destination();
  6924. }
  6925. #endif
  6926. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6927. void plan_cubic_move(const float offset[4]) {
  6928. cubic_b_spline(current_position, destination, offset, MMS_SCALED(feedrate_mm_s), active_extruder);
  6929. // As far as the parser is concerned, the position is now == target. In reality the
  6930. // motion control system might still be processing the action and the real tool position
  6931. // in any intermediate location.
  6932. set_current_to_destination();
  6933. }
  6934. #endif // BEZIER_CURVE_SUPPORT
  6935. #if HAS_CONTROLLERFAN
  6936. void controllerFan() {
  6937. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6938. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6939. millis_t ms = millis();
  6940. if (ELAPSED(ms, nextMotorCheck)) {
  6941. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6942. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6943. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6944. #if E_STEPPERS > 1
  6945. || E1_ENABLE_READ == E_ENABLE_ON
  6946. #if HAS_X2_ENABLE
  6947. || X2_ENABLE_READ == X_ENABLE_ON
  6948. #endif
  6949. #if E_STEPPERS > 2
  6950. || E2_ENABLE_READ == E_ENABLE_ON
  6951. #if E_STEPPERS > 3
  6952. || E3_ENABLE_READ == E_ENABLE_ON
  6953. #endif
  6954. #endif
  6955. #endif
  6956. ) {
  6957. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6958. }
  6959. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6960. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6961. // allows digital or PWM fan output to be used (see M42 handling)
  6962. digitalWrite(CONTROLLERFAN_PIN, speed);
  6963. analogWrite(CONTROLLERFAN_PIN, speed);
  6964. }
  6965. }
  6966. #endif // HAS_CONTROLLERFAN
  6967. #if ENABLED(SCARA)
  6968. void forward_kinematics_SCARA(float f_scara[ABC]) {
  6969. // Perform forward kinematics, and place results in delta[]
  6970. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6971. float x_sin, x_cos, y_sin, y_cos;
  6972. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6973. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6974. x_sin = sin(RADIANS(f_scara[X_AXIS])) * L1;
  6975. x_cos = cos(RADIANS(f_scara[X_AXIS])) * L1;
  6976. y_sin = sin(RADIANS(f_scara[Y_AXIS])) * L2;
  6977. y_cos = cos(RADIANS(f_scara[Y_AXIS])) * L2;
  6978. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6979. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6980. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6981. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6982. delta[X_AXIS] = x_cos + y_cos + SCARA_OFFSET_X; //theta
  6983. delta[Y_AXIS] = x_sin + y_sin + SCARA_OFFSET_Y; //theta+phi
  6984. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6985. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6986. }
  6987. void inverse_kinematics(const float cartesian[XYZ]) {
  6988. // Inverse kinematics.
  6989. // Perform SCARA IK and place results in delta[].
  6990. // The maths and first version were done by QHARLEY.
  6991. // Integrated, tweaked by Joachim Cerny in June 2014.
  6992. static float C2, S2, SK1, SK2, THETA, PSI;
  6993. float sx = RAW_X_POSITION(cartesian[X_AXIS]) * axis_scaling[X_AXIS] - SCARA_OFFSET_X, //Translate SCARA to standard X Y
  6994. sy = RAW_Y_POSITION(cartesian[Y_AXIS]) * axis_scaling[Y_AXIS] - SCARA_OFFSET_Y; // With scaling factor.
  6995. #if (L1 == L2)
  6996. C2 = HYPOT2(sx, sy) / (2 * L1_2) - 1;
  6997. #else
  6998. C2 = (HYPOT2(sx, sy) - L1_2 - L2_2) / 45000;
  6999. #endif
  7000. S2 = sqrt(1 - sq(C2));
  7001. SK1 = L1 + L2 * C2;
  7002. SK2 = L2 * S2;
  7003. THETA = (atan2(sx, sy) - atan2(SK1, SK2)) * -1;
  7004. PSI = atan2(S2, C2);
  7005. delta[A_AXIS] = DEGREES(THETA); // theta is support arm angle
  7006. delta[B_AXIS] = DEGREES(THETA + PSI); // equal to sub arm angle (inverted motor)
  7007. delta[Z_AXIS] = cartesian[Z_AXIS];
  7008. /**
  7009. DEBUG_POS("SCARA IK", cartesian);
  7010. DEBUG_POS("SCARA IK", delta);
  7011. SERIAL_ECHOPAIR(" SCARA (x,y) ", sx);
  7012. SERIAL_ECHOPAIR(",", sy);
  7013. SERIAL_ECHOPAIR(" C2=", C2);
  7014. SERIAL_ECHOPAIR(" S2=", S2);
  7015. SERIAL_ECHOPAIR(" Theta=", THETA);
  7016. SERIAL_ECHOLNPAIR(" Phi=", PHI);
  7017. //*/
  7018. }
  7019. #endif // MORGAN_SCARA
  7020. #if ENABLED(TEMP_STAT_LEDS)
  7021. static bool red_led = false;
  7022. static millis_t next_status_led_update_ms = 0;
  7023. void handle_status_leds(void) {
  7024. if (ELAPSED(millis(), next_status_led_update_ms)) {
  7025. next_status_led_update_ms += 500; // Update every 0.5s
  7026. float max_temp = 0.0;
  7027. #if HAS_TEMP_BED
  7028. max_temp = MAX3(max_temp, thermalManager.degTargetBed(), thermalManager.degBed());
  7029. #endif
  7030. HOTEND_LOOP() {
  7031. max_temp = MAX3(max_temp, thermalManager.degHotend(e), thermalManager.degTargetHotend(e));
  7032. }
  7033. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  7034. if (new_led != red_led) {
  7035. red_led = new_led;
  7036. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  7037. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  7038. }
  7039. }
  7040. }
  7041. #endif
  7042. void enable_all_steppers() {
  7043. enable_x();
  7044. enable_y();
  7045. enable_z();
  7046. enable_e0();
  7047. enable_e1();
  7048. enable_e2();
  7049. enable_e3();
  7050. }
  7051. void disable_all_steppers() {
  7052. disable_x();
  7053. disable_y();
  7054. disable_z();
  7055. disable_e0();
  7056. disable_e1();
  7057. disable_e2();
  7058. disable_e3();
  7059. }
  7060. /**
  7061. * Standard idle routine keeps the machine alive
  7062. */
  7063. void idle(
  7064. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7065. bool no_stepper_sleep/*=false*/
  7066. #endif
  7067. ) {
  7068. lcd_update();
  7069. host_keepalive();
  7070. manage_inactivity(
  7071. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  7072. no_stepper_sleep
  7073. #endif
  7074. );
  7075. thermalManager.manage_heater();
  7076. #if ENABLED(PRINTCOUNTER)
  7077. print_job_timer.tick();
  7078. #endif
  7079. #if HAS_BUZZER && PIN_EXISTS(BEEPER)
  7080. buzzer.tick();
  7081. #endif
  7082. }
  7083. /**
  7084. * Manage several activities:
  7085. * - Check for Filament Runout
  7086. * - Keep the command buffer full
  7087. * - Check for maximum inactive time between commands
  7088. * - Check for maximum inactive time between stepper commands
  7089. * - Check if pin CHDK needs to go LOW
  7090. * - Check for KILL button held down
  7091. * - Check for HOME button held down
  7092. * - Check if cooling fan needs to be switched on
  7093. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  7094. */
  7095. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  7096. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7097. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  7098. handle_filament_runout();
  7099. #endif
  7100. if (commands_in_queue < BUFSIZE) get_available_commands();
  7101. millis_t ms = millis();
  7102. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  7103. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  7104. && !ignore_stepper_queue && !planner.blocks_queued()) {
  7105. #if ENABLED(DISABLE_INACTIVE_X)
  7106. disable_x();
  7107. #endif
  7108. #if ENABLED(DISABLE_INACTIVE_Y)
  7109. disable_y();
  7110. #endif
  7111. #if ENABLED(DISABLE_INACTIVE_Z)
  7112. disable_z();
  7113. #endif
  7114. #if ENABLED(DISABLE_INACTIVE_E)
  7115. disable_e0();
  7116. disable_e1();
  7117. disable_e2();
  7118. disable_e3();
  7119. #endif
  7120. }
  7121. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  7122. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  7123. chdkActive = false;
  7124. WRITE(CHDK, LOW);
  7125. }
  7126. #endif
  7127. #if HAS_KILL
  7128. // Check if the kill button was pressed and wait just in case it was an accidental
  7129. // key kill key press
  7130. // -------------------------------------------------------------------------------
  7131. static int killCount = 0; // make the inactivity button a bit less responsive
  7132. const int KILL_DELAY = 750;
  7133. if (!READ(KILL_PIN))
  7134. killCount++;
  7135. else if (killCount > 0)
  7136. killCount--;
  7137. // Exceeded threshold and we can confirm that it was not accidental
  7138. // KILL the machine
  7139. // ----------------------------------------------------------------
  7140. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  7141. #endif
  7142. #if HAS_HOME
  7143. // Check to see if we have to home, use poor man's debouncer
  7144. // ---------------------------------------------------------
  7145. static int homeDebounceCount = 0; // poor man's debouncing count
  7146. const int HOME_DEBOUNCE_DELAY = 2500;
  7147. if (!READ(HOME_PIN)) {
  7148. if (!homeDebounceCount) {
  7149. enqueue_and_echo_commands_P(PSTR("G28"));
  7150. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  7151. }
  7152. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  7153. homeDebounceCount++;
  7154. else
  7155. homeDebounceCount = 0;
  7156. }
  7157. #endif
  7158. #if HAS_CONTROLLERFAN
  7159. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  7160. #endif
  7161. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  7162. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
  7163. && thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  7164. #if ENABLED(SWITCHING_EXTRUDER)
  7165. bool oldstatus = E0_ENABLE_READ;
  7166. enable_e0();
  7167. #else // !SWITCHING_EXTRUDER
  7168. bool oldstatus;
  7169. switch (active_extruder) {
  7170. case 0:
  7171. oldstatus = E0_ENABLE_READ;
  7172. enable_e0();
  7173. break;
  7174. #if E_STEPPERS > 1
  7175. case 1:
  7176. oldstatus = E1_ENABLE_READ;
  7177. enable_e1();
  7178. break;
  7179. #if E_STEPPERS > 2
  7180. case 2:
  7181. oldstatus = E2_ENABLE_READ;
  7182. enable_e2();
  7183. break;
  7184. #if E_STEPPERS > 3
  7185. case 3:
  7186. oldstatus = E3_ENABLE_READ;
  7187. enable_e3();
  7188. break;
  7189. #endif
  7190. #endif
  7191. #endif
  7192. }
  7193. #endif // !SWITCHING_EXTRUDER
  7194. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  7195. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  7196. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS],
  7197. MMM_TO_MMS(EXTRUDER_RUNOUT_SPEED) * (EXTRUDER_RUNOUT_ESTEPS) * planner.steps_to_mm[E_AXIS], active_extruder);
  7198. current_position[E_AXIS] = oldepos;
  7199. destination[E_AXIS] = oldedes;
  7200. planner.set_e_position_mm(oldepos);
  7201. previous_cmd_ms = ms; // refresh_cmd_timeout()
  7202. stepper.synchronize();
  7203. #if ENABLED(SWITCHING_EXTRUDER)
  7204. E0_ENABLE_WRITE(oldstatus);
  7205. #else
  7206. switch (active_extruder) {
  7207. case 0:
  7208. E0_ENABLE_WRITE(oldstatus);
  7209. break;
  7210. #if E_STEPPERS > 1
  7211. case 1:
  7212. E1_ENABLE_WRITE(oldstatus);
  7213. break;
  7214. #if E_STEPPERS > 2
  7215. case 2:
  7216. E2_ENABLE_WRITE(oldstatus);
  7217. break;
  7218. #if E_STEPPERS > 3
  7219. case 3:
  7220. E3_ENABLE_WRITE(oldstatus);
  7221. break;
  7222. #endif
  7223. #endif
  7224. #endif
  7225. }
  7226. #endif // !SWITCHING_EXTRUDER
  7227. }
  7228. #endif // EXTRUDER_RUNOUT_PREVENT
  7229. #if ENABLED(DUAL_X_CARRIAGE)
  7230. // handle delayed move timeout
  7231. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  7232. // travel moves have been received so enact them
  7233. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  7234. set_destination_to_current();
  7235. prepare_move_to_destination();
  7236. }
  7237. #endif
  7238. #if ENABLED(TEMP_STAT_LEDS)
  7239. handle_status_leds();
  7240. #endif
  7241. planner.check_axes_activity();
  7242. }
  7243. void kill(const char* lcd_msg) {
  7244. SERIAL_ERROR_START;
  7245. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  7246. #if ENABLED(ULTRA_LCD)
  7247. kill_screen(lcd_msg);
  7248. #else
  7249. UNUSED(lcd_msg);
  7250. #endif
  7251. delay(500); // Wait a short time
  7252. cli(); // Stop interrupts
  7253. thermalManager.disable_all_heaters();
  7254. disable_all_steppers();
  7255. #if HAS_POWER_SWITCH
  7256. pinMode(PS_ON_PIN, INPUT);
  7257. #endif
  7258. suicide();
  7259. while (1) {
  7260. #if ENABLED(USE_WATCHDOG)
  7261. watchdog_reset();
  7262. #endif
  7263. } // Wait for reset
  7264. }
  7265. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7266. void handle_filament_runout() {
  7267. if (!filament_ran_out) {
  7268. filament_ran_out = true;
  7269. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  7270. stepper.synchronize();
  7271. }
  7272. }
  7273. #endif // FILAMENT_RUNOUT_SENSOR
  7274. #if ENABLED(FAST_PWM_FAN)
  7275. void setPwmFrequency(uint8_t pin, int val) {
  7276. val &= 0x07;
  7277. switch (digitalPinToTimer(pin)) {
  7278. #if defined(TCCR0A)
  7279. case TIMER0A:
  7280. case TIMER0B:
  7281. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7282. // TCCR0B |= val;
  7283. break;
  7284. #endif
  7285. #if defined(TCCR1A)
  7286. case TIMER1A:
  7287. case TIMER1B:
  7288. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7289. // TCCR1B |= val;
  7290. break;
  7291. #endif
  7292. #if defined(TCCR2)
  7293. case TIMER2:
  7294. case TIMER2:
  7295. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7296. TCCR2 |= val;
  7297. break;
  7298. #endif
  7299. #if defined(TCCR2A)
  7300. case TIMER2A:
  7301. case TIMER2B:
  7302. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7303. TCCR2B |= val;
  7304. break;
  7305. #endif
  7306. #if defined(TCCR3A)
  7307. case TIMER3A:
  7308. case TIMER3B:
  7309. case TIMER3C:
  7310. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7311. TCCR3B |= val;
  7312. break;
  7313. #endif
  7314. #if defined(TCCR4A)
  7315. case TIMER4A:
  7316. case TIMER4B:
  7317. case TIMER4C:
  7318. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7319. TCCR4B |= val;
  7320. break;
  7321. #endif
  7322. #if defined(TCCR5A)
  7323. case TIMER5A:
  7324. case TIMER5B:
  7325. case TIMER5C:
  7326. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7327. TCCR5B |= val;
  7328. break;
  7329. #endif
  7330. }
  7331. }
  7332. #endif // FAST_PWM_FAN
  7333. void stop() {
  7334. thermalManager.disable_all_heaters();
  7335. if (IsRunning()) {
  7336. Running = false;
  7337. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7338. SERIAL_ERROR_START;
  7339. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7340. LCD_MESSAGEPGM(MSG_STOPPED);
  7341. }
  7342. }
  7343. float calculate_volumetric_multiplier(float diameter) {
  7344. if (!volumetric_enabled || diameter == 0) return 1.0;
  7345. float d2 = diameter * 0.5;
  7346. return 1.0 / (M_PI * d2 * d2);
  7347. }
  7348. void calculate_volumetric_multipliers() {
  7349. for (uint8_t i = 0; i < COUNT(filament_size); i++)
  7350. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7351. }
  7352. /**
  7353. * Marlin entry-point: Set up before the program loop
  7354. * - Set up the kill pin, filament runout, power hold
  7355. * - Start the serial port
  7356. * - Print startup messages and diagnostics
  7357. * - Get EEPROM or default settings
  7358. * - Initialize managers for:
  7359. * • temperature
  7360. * • planner
  7361. * • watchdog
  7362. * • stepper
  7363. * • photo pin
  7364. * • servos
  7365. * • LCD controller
  7366. * • Digipot I2C
  7367. * • Z probe sled
  7368. * • status LEDs
  7369. */
  7370. void setup() {
  7371. #ifdef DISABLE_JTAG
  7372. // Disable JTAG on AT90USB chips to free up pins for IO
  7373. MCUCR = 0x80;
  7374. MCUCR = 0x80;
  7375. #endif
  7376. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  7377. setup_filrunoutpin();
  7378. #endif
  7379. setup_killpin();
  7380. setup_powerhold();
  7381. #if HAS_STEPPER_RESET
  7382. disableStepperDrivers();
  7383. #endif
  7384. MYSERIAL.begin(BAUDRATE);
  7385. SERIAL_PROTOCOLLNPGM("start");
  7386. SERIAL_ECHO_START;
  7387. // Check startup - does nothing if bootloader sets MCUSR to 0
  7388. byte mcu = MCUSR;
  7389. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  7390. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  7391. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  7392. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  7393. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  7394. MCUSR = 0;
  7395. SERIAL_ECHOPGM(MSG_MARLIN);
  7396. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  7397. #ifdef STRING_DISTRIBUTION_DATE
  7398. #ifdef STRING_CONFIG_H_AUTHOR
  7399. SERIAL_ECHO_START;
  7400. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  7401. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  7402. SERIAL_ECHOPGM(MSG_AUTHOR);
  7403. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  7404. SERIAL_ECHOPGM("Compiled: ");
  7405. SERIAL_ECHOLNPGM(__DATE__);
  7406. #endif // STRING_CONFIG_H_AUTHOR
  7407. #endif // STRING_DISTRIBUTION_DATE
  7408. SERIAL_ECHO_START;
  7409. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  7410. SERIAL_ECHO(freeMemory());
  7411. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  7412. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  7413. // Send "ok" after commands by default
  7414. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  7415. // Load data from EEPROM if available (or use defaults)
  7416. // This also updates variables in the planner, elsewhere
  7417. Config_RetrieveSettings();
  7418. // Initialize current position based on home_offset
  7419. memcpy(current_position, home_offset, sizeof(home_offset));
  7420. // Vital to init stepper/planner equivalent for current_position
  7421. SYNC_PLAN_POSITION_KINEMATIC();
  7422. thermalManager.init(); // Initialize temperature loop
  7423. #if ENABLED(USE_WATCHDOG)
  7424. watchdog_init();
  7425. #endif
  7426. stepper.init(); // Initialize stepper, this enables interrupts!
  7427. setup_photpin();
  7428. servo_init();
  7429. #if HAS_BED_PROBE
  7430. endstops.enable_z_probe(false);
  7431. #endif
  7432. #if HAS_CONTROLLERFAN
  7433. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  7434. #endif
  7435. #if HAS_STEPPER_RESET
  7436. enableStepperDrivers();
  7437. #endif
  7438. #if ENABLED(DIGIPOT_I2C)
  7439. digipot_i2c_init();
  7440. #endif
  7441. #if ENABLED(DAC_STEPPER_CURRENT)
  7442. dac_init();
  7443. #endif
  7444. #if ENABLED(Z_PROBE_SLED) && PIN_EXISTS(SLED)
  7445. pinMode(SLED_PIN, OUTPUT);
  7446. digitalWrite(SLED_PIN, LOW); // turn it off
  7447. #endif // Z_PROBE_SLED
  7448. setup_homepin();
  7449. #ifdef STAT_LED_RED
  7450. pinMode(STAT_LED_RED, OUTPUT);
  7451. digitalWrite(STAT_LED_RED, LOW); // turn it off
  7452. #endif
  7453. #ifdef STAT_LED_BLUE
  7454. pinMode(STAT_LED_BLUE, OUTPUT);
  7455. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  7456. #endif
  7457. lcd_init();
  7458. #if ENABLED(SHOW_BOOTSCREEN)
  7459. #if ENABLED(DOGLCD)
  7460. safe_delay(BOOTSCREEN_TIMEOUT);
  7461. #elif ENABLED(ULTRA_LCD)
  7462. bootscreen();
  7463. lcd_init();
  7464. #endif
  7465. #endif
  7466. #if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
  7467. // Initialize mixing to 100% color 1
  7468. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7469. mixing_factor[i] = (i == 0) ? 1 : 0;
  7470. for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
  7471. for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
  7472. mixing_virtual_tool_mix[t][i] = mixing_factor[i];
  7473. #endif
  7474. #if ENABLED(EXPERIMENTAL_I2CBUS) && I2C_SLAVE_ADDRESS > 0
  7475. i2c.onReceive(i2c_on_receive);
  7476. i2c.onRequest(i2c_on_request);
  7477. #endif
  7478. }
  7479. /**
  7480. * The main Marlin program loop
  7481. *
  7482. * - Save or log commands to SD
  7483. * - Process available commands (if not saving)
  7484. * - Call heater manager
  7485. * - Call inactivity manager
  7486. * - Call endstop manager
  7487. * - Call LCD update
  7488. */
  7489. void loop() {
  7490. if (commands_in_queue < BUFSIZE) get_available_commands();
  7491. #if ENABLED(SDSUPPORT)
  7492. card.checkautostart(false);
  7493. #endif
  7494. if (commands_in_queue) {
  7495. #if ENABLED(SDSUPPORT)
  7496. if (card.saving) {
  7497. char* command = command_queue[cmd_queue_index_r];
  7498. if (strstr_P(command, PSTR("M29"))) {
  7499. // M29 closes the file
  7500. card.closefile();
  7501. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  7502. ok_to_send();
  7503. }
  7504. else {
  7505. // Write the string from the read buffer to SD
  7506. card.write_command(command);
  7507. if (card.logging)
  7508. process_next_command(); // The card is saving because it's logging
  7509. else
  7510. ok_to_send();
  7511. }
  7512. }
  7513. else
  7514. process_next_command();
  7515. #else
  7516. process_next_command();
  7517. #endif // SDSUPPORT
  7518. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  7519. if (commands_in_queue) {
  7520. --commands_in_queue;
  7521. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  7522. }
  7523. }
  7524. endstops.report_state();
  7525. idle();
  7526. }