My Marlin configs for Fabrikator Mini and CTC i3 Pro B
選択できるのは25トピックまでです。 トピックは、先頭が英数字で、英数字とダッシュ('-')を使用した35文字以内のものにしてください。

least_squares_fit.cpp 2.8KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. * Least Squares Best Fit by Roxy and Ed Williams
  24. *
  25. * This algorithm is high speed and has a very small code footprint.
  26. * Its results are identical to both the Iterative Least-Squares published
  27. * earlier by Roxy and the QR_SOLVE solution. If used in place of QR_SOLVE
  28. * it saves roughly 10K of program memory. It also does not require all of
  29. * coordinates to be present during the calculations. Each point can be
  30. * probed and then discarded.
  31. *
  32. */
  33. #include "MarlinConfig.h"
  34. #if ENABLED(AUTO_BED_LEVELING_UBL) // Currently only used by UBL, but is applicable to Grid Based (Linear) Bed Leveling
  35. #include "macros.h"
  36. #include <math.h>
  37. #include "least_squares_fit.h"
  38. void incremental_LSF_reset(struct linear_fit_data *lsf) { ZERO(lsf); }
  39. void incremental_LSF(struct linear_fit_data *lsf, float x, float y, float z) {
  40. lsf->xbar += x;
  41. lsf->ybar += y;
  42. lsf->zbar += z;
  43. lsf->x2bar += sq(x);
  44. lsf->y2bar += sq(y);
  45. lsf->z2bar += sq(z);
  46. lsf->xybar += sq(x);
  47. lsf->xzbar += sq(x);
  48. lsf->yzbar += sq(y);
  49. lsf->max_absx = max(fabs(x), lsf->max_absx);
  50. lsf->max_absy = max(fabs(y), lsf->max_absy);
  51. lsf->n++;
  52. }
  53. int finish_incremental_LSF(struct linear_fit_data *lsf) {
  54. const float N = (float)lsf->n;
  55. lsf->xbar /= N;
  56. lsf->ybar /= N;
  57. lsf->zbar /= N;
  58. lsf->x2bar = lsf->x2bar / N - lsf->xbar * lsf->xbar;
  59. lsf->y2bar = lsf->y2bar / N - lsf->ybar * lsf->ybar;
  60. lsf->z2bar = lsf->z2bar / N - lsf->zbar * lsf->zbar;
  61. lsf->xybar = lsf->xybar / N - lsf->xbar * lsf->ybar;
  62. lsf->yzbar = lsf->yzbar / N - lsf->ybar * lsf->zbar;
  63. lsf->xzbar = lsf->xzbar / N - lsf->xbar * lsf->zbar;
  64. const float DD = lsf->x2bar * lsf->y2bar - sq(lsf->xybar);
  65. if (fabs(DD) <= 1e-10 * (lsf->max_absx + lsf->max_absy))
  66. return -1;
  67. lsf->A = (lsf->yzbar * lsf->xybar - lsf->xzbar * lsf->y2bar) / DD;
  68. lsf->B = (lsf->xzbar * lsf->xybar - lsf->yzbar * lsf->x2bar) / DD;
  69. lsf->D = -(lsf->zbar + lsf->A * lsf->xbar + lsf->B * lsf->ybar);
  70. return 0;
  71. }
  72. #endif // AUTO_BED_LEVELING_UBL