My Marlin configs for Fabrikator Mini and CTC i3 Pro B
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

Marlin_main.cpp 262KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047104810491050105110521053105410551056105710581059106010611062106310641065106610671068106910701071107210731074107510761077107810791080108110821083108410851086108710881089109010911092109310941095109610971098109911001101110211031104110511061107110811091110111111121113111411151116111711181119112011211122112311241125112611271128112911301131113211331134113511361137113811391140114111421143114411451146114711481149115011511152115311541155115611571158115911601161116211631164116511661167116811691170117111721173117411751176117711781179118011811182118311841185118611871188118911901191119211931194119511961197119811991200120112021203120412051206120712081209121012111212121312141215121612171218121912201221122212231224122512261227122812291230123112321233123412351236123712381239124012411242124312441245124612471248124912501251125212531254125512561257125812591260126112621263126412651266126712681269127012711272127312741275127612771278127912801281128212831284128512861287128812891290129112921293129412951296129712981299130013011302130313041305130613071308130913101311131213131314131513161317131813191320132113221323132413251326132713281329133013311332133313341335133613371338133913401341134213431344134513461347134813491350135113521353135413551356135713581359136013611362136313641365136613671368136913701371137213731374137513761377137813791380138113821383138413851386138713881389139013911392139313941395139613971398139914001401140214031404140514061407140814091410141114121413141414151416141714181419142014211422142314241425142614271428142914301431143214331434143514361437143814391440144114421443144414451446144714481449145014511452145314541455145614571458145914601461146214631464146514661467146814691470147114721473147414751476147714781479148014811482148314841485148614871488148914901491149214931494149514961497149814991500150115021503150415051506150715081509151015111512151315141515151615171518151915201521152215231524152515261527152815291530153115321533153415351536153715381539154015411542154315441545154615471548154915501551155215531554155515561557155815591560156115621563156415651566156715681569157015711572157315741575157615771578157915801581158215831584158515861587158815891590159115921593159415951596159715981599160016011602160316041605160616071608160916101611161216131614161516161617161816191620162116221623162416251626162716281629163016311632163316341635163616371638163916401641164216431644164516461647164816491650165116521653165416551656165716581659166016611662166316641665166616671668166916701671167216731674167516761677167816791680168116821683168416851686168716881689169016911692169316941695169616971698169917001701170217031704170517061707170817091710171117121713171417151716171717181719172017211722172317241725172617271728172917301731173217331734173517361737173817391740174117421743174417451746174717481749175017511752175317541755175617571758175917601761176217631764176517661767176817691770177117721773177417751776177717781779178017811782178317841785178617871788178917901791179217931794179517961797179817991800180118021803180418051806180718081809181018111812181318141815181618171818181918201821182218231824182518261827182818291830183118321833183418351836183718381839184018411842184318441845184618471848184918501851185218531854185518561857185818591860186118621863186418651866186718681869187018711872187318741875187618771878187918801881188218831884188518861887188818891890189118921893189418951896189718981899190019011902190319041905190619071908190919101911191219131914191519161917191819191920192119221923192419251926192719281929193019311932193319341935193619371938193919401941194219431944194519461947194819491950195119521953195419551956195719581959196019611962196319641965196619671968196919701971197219731974197519761977197819791980198119821983198419851986198719881989199019911992199319941995199619971998199920002001200220032004200520062007200820092010201120122013201420152016201720182019202020212022202320242025202620272028202920302031203220332034203520362037203820392040204120422043204420452046204720482049205020512052205320542055205620572058205920602061206220632064206520662067206820692070207120722073207420752076207720782079208020812082208320842085208620872088208920902091209220932094209520962097209820992100210121022103210421052106210721082109211021112112211321142115211621172118211921202121212221232124212521262127212821292130213121322133213421352136213721382139214021412142214321442145214621472148214921502151215221532154215521562157215821592160216121622163216421652166216721682169217021712172217321742175217621772178217921802181218221832184218521862187218821892190219121922193219421952196219721982199220022012202220322042205220622072208220922102211221222132214221522162217221822192220222122222223222422252226222722282229223022312232223322342235223622372238223922402241224222432244224522462247224822492250225122522253225422552256225722582259226022612262226322642265226622672268226922702271227222732274227522762277227822792280228122822283228422852286228722882289229022912292229322942295229622972298229923002301230223032304230523062307230823092310231123122313231423152316231723182319232023212322232323242325232623272328232923302331233223332334233523362337233823392340234123422343234423452346234723482349235023512352235323542355235623572358235923602361236223632364236523662367236823692370237123722373237423752376237723782379238023812382238323842385238623872388238923902391239223932394239523962397239823992400240124022403240424052406240724082409241024112412241324142415241624172418241924202421242224232424242524262427242824292430243124322433243424352436243724382439244024412442244324442445244624472448244924502451245224532454245524562457245824592460246124622463246424652466246724682469247024712472247324742475247624772478247924802481248224832484248524862487248824892490249124922493249424952496249724982499250025012502250325042505250625072508250925102511251225132514251525162517251825192520252125222523252425252526252725282529253025312532253325342535253625372538253925402541254225432544254525462547254825492550255125522553255425552556255725582559256025612562256325642565256625672568256925702571257225732574257525762577257825792580258125822583258425852586258725882589259025912592259325942595259625972598259926002601260226032604260526062607260826092610261126122613261426152616261726182619262026212622262326242625262626272628262926302631263226332634263526362637263826392640264126422643264426452646264726482649265026512652265326542655265626572658265926602661266226632664266526662667266826692670267126722673267426752676267726782679268026812682268326842685268626872688268926902691269226932694269526962697269826992700270127022703270427052706270727082709271027112712271327142715271627172718271927202721272227232724272527262727272827292730273127322733273427352736273727382739274027412742274327442745274627472748274927502751275227532754275527562757275827592760276127622763276427652766276727682769277027712772277327742775277627772778277927802781278227832784278527862787278827892790279127922793279427952796279727982799280028012802280328042805280628072808280928102811281228132814281528162817281828192820282128222823282428252826282728282829283028312832283328342835283628372838283928402841284228432844284528462847284828492850285128522853285428552856285728582859286028612862286328642865286628672868286928702871287228732874287528762877287828792880288128822883288428852886288728882889289028912892289328942895289628972898289929002901290229032904290529062907290829092910291129122913291429152916291729182919292029212922292329242925292629272928292929302931293229332934293529362937293829392940294129422943294429452946294729482949295029512952295329542955295629572958295929602961296229632964296529662967296829692970297129722973297429752976297729782979298029812982298329842985298629872988298929902991299229932994299529962997299829993000300130023003300430053006300730083009301030113012301330143015301630173018301930203021302230233024302530263027302830293030303130323033303430353036303730383039304030413042304330443045304630473048304930503051305230533054305530563057305830593060306130623063306430653066306730683069307030713072307330743075307630773078307930803081308230833084308530863087308830893090309130923093309430953096309730983099310031013102310331043105310631073108310931103111311231133114311531163117311831193120312131223123312431253126312731283129313031313132313331343135313631373138313931403141314231433144314531463147314831493150315131523153315431553156315731583159316031613162316331643165316631673168316931703171317231733174317531763177317831793180318131823183318431853186318731883189319031913192319331943195319631973198319932003201320232033204320532063207320832093210321132123213321432153216321732183219322032213222322332243225322632273228322932303231323232333234323532363237323832393240324132423243324432453246324732483249325032513252325332543255325632573258325932603261326232633264326532663267326832693270327132723273327432753276327732783279328032813282328332843285328632873288328932903291329232933294329532963297329832993300330133023303330433053306330733083309331033113312331333143315331633173318331933203321332233233324332533263327332833293330333133323333333433353336333733383339334033413342334333443345334633473348334933503351335233533354335533563357335833593360336133623363336433653366336733683369337033713372337333743375337633773378337933803381338233833384338533863387338833893390339133923393339433953396339733983399340034013402340334043405340634073408340934103411341234133414341534163417341834193420342134223423342434253426342734283429343034313432343334343435343634373438343934403441344234433444344534463447344834493450345134523453345434553456345734583459346034613462346334643465346634673468346934703471347234733474347534763477347834793480348134823483348434853486348734883489349034913492349334943495349634973498349935003501350235033504350535063507350835093510351135123513351435153516351735183519352035213522352335243525352635273528352935303531353235333534353535363537353835393540354135423543354435453546354735483549355035513552355335543555355635573558355935603561356235633564356535663567356835693570357135723573357435753576357735783579358035813582358335843585358635873588358935903591359235933594359535963597359835993600360136023603360436053606360736083609361036113612361336143615361636173618361936203621362236233624362536263627362836293630363136323633363436353636363736383639364036413642364336443645364636473648364936503651365236533654365536563657365836593660366136623663366436653666366736683669367036713672367336743675367636773678367936803681368236833684368536863687368836893690369136923693369436953696369736983699370037013702370337043705370637073708370937103711371237133714371537163717371837193720372137223723372437253726372737283729373037313732373337343735373637373738373937403741374237433744374537463747374837493750375137523753375437553756375737583759376037613762376337643765376637673768376937703771377237733774377537763777377837793780378137823783378437853786378737883789379037913792379337943795379637973798379938003801380238033804380538063807380838093810381138123813381438153816381738183819382038213822382338243825382638273828382938303831383238333834383538363837383838393840384138423843384438453846384738483849385038513852385338543855385638573858385938603861386238633864386538663867386838693870387138723873387438753876387738783879388038813882388338843885388638873888388938903891389238933894389538963897389838993900390139023903390439053906390739083909391039113912391339143915391639173918391939203921392239233924392539263927392839293930393139323933393439353936393739383939394039413942394339443945394639473948394939503951395239533954395539563957395839593960396139623963396439653966396739683969397039713972397339743975397639773978397939803981398239833984398539863987398839893990399139923993399439953996399739983999400040014002400340044005400640074008400940104011401240134014401540164017401840194020402140224023402440254026402740284029403040314032403340344035403640374038403940404041404240434044404540464047404840494050405140524053405440554056405740584059406040614062406340644065406640674068406940704071407240734074407540764077407840794080408140824083408440854086408740884089409040914092409340944095409640974098409941004101410241034104410541064107410841094110411141124113411441154116411741184119412041214122412341244125412641274128412941304131413241334134413541364137413841394140414141424143414441454146414741484149415041514152415341544155415641574158415941604161416241634164416541664167416841694170417141724173417441754176417741784179418041814182418341844185418641874188418941904191419241934194419541964197419841994200420142024203420442054206420742084209421042114212421342144215421642174218421942204221422242234224422542264227422842294230423142324233423442354236423742384239424042414242424342444245424642474248424942504251425242534254425542564257425842594260426142624263426442654266426742684269427042714272427342744275427642774278427942804281428242834284428542864287428842894290429142924293429442954296429742984299430043014302430343044305430643074308430943104311431243134314431543164317431843194320432143224323432443254326432743284329433043314332433343344335433643374338433943404341434243434344434543464347434843494350435143524353435443554356435743584359436043614362436343644365436643674368436943704371437243734374437543764377437843794380438143824383438443854386438743884389439043914392439343944395439643974398439944004401440244034404440544064407440844094410441144124413441444154416441744184419442044214422442344244425442644274428442944304431443244334434443544364437443844394440444144424443444444454446444744484449445044514452445344544455445644574458445944604461446244634464446544664467446844694470447144724473447444754476447744784479448044814482448344844485448644874488448944904491449244934494449544964497449844994500450145024503450445054506450745084509451045114512451345144515451645174518451945204521452245234524452545264527452845294530453145324533453445354536453745384539454045414542454345444545454645474548454945504551455245534554455545564557455845594560456145624563456445654566456745684569457045714572457345744575457645774578457945804581458245834584458545864587458845894590459145924593459445954596459745984599460046014602460346044605460646074608460946104611461246134614461546164617461846194620462146224623462446254626462746284629463046314632463346344635463646374638463946404641464246434644464546464647464846494650465146524653465446554656465746584659466046614662466346644665466646674668466946704671467246734674467546764677467846794680468146824683468446854686468746884689469046914692469346944695469646974698469947004701470247034704470547064707470847094710471147124713471447154716471747184719472047214722472347244725472647274728472947304731473247334734473547364737473847394740474147424743474447454746474747484749475047514752475347544755475647574758475947604761476247634764476547664767476847694770477147724773477447754776477747784779478047814782478347844785478647874788478947904791479247934794479547964797479847994800480148024803480448054806480748084809481048114812481348144815481648174818481948204821482248234824482548264827482848294830483148324833483448354836483748384839484048414842484348444845484648474848484948504851485248534854485548564857485848594860486148624863486448654866486748684869487048714872487348744875487648774878487948804881488248834884488548864887488848894890489148924893489448954896489748984899490049014902490349044905490649074908490949104911491249134914491549164917491849194920492149224923492449254926492749284929493049314932493349344935493649374938493949404941494249434944494549464947494849494950495149524953495449554956495749584959496049614962496349644965496649674968496949704971497249734974497549764977497849794980498149824983498449854986498749884989499049914992499349944995499649974998499950005001500250035004500550065007500850095010501150125013501450155016501750185019502050215022502350245025502650275028502950305031503250335034503550365037503850395040504150425043504450455046504750485049505050515052505350545055505650575058505950605061506250635064506550665067506850695070507150725073507450755076507750785079508050815082508350845085508650875088508950905091509250935094509550965097509850995100510151025103510451055106510751085109511051115112511351145115511651175118511951205121512251235124512551265127512851295130513151325133513451355136513751385139514051415142514351445145514651475148514951505151515251535154515551565157515851595160516151625163516451655166516751685169517051715172517351745175517651775178517951805181518251835184518551865187518851895190519151925193519451955196519751985199520052015202520352045205520652075208520952105211521252135214521552165217521852195220522152225223522452255226522752285229523052315232523352345235523652375238523952405241524252435244524552465247524852495250525152525253525452555256525752585259526052615262526352645265526652675268526952705271527252735274527552765277527852795280528152825283528452855286528752885289529052915292529352945295529652975298529953005301530253035304530553065307530853095310531153125313531453155316531753185319532053215322532353245325532653275328532953305331533253335334533553365337533853395340534153425343534453455346534753485349535053515352535353545355535653575358535953605361536253635364536553665367536853695370537153725373537453755376537753785379538053815382538353845385538653875388538953905391539253935394539553965397539853995400540154025403540454055406540754085409541054115412541354145415541654175418541954205421542254235424542554265427542854295430543154325433543454355436543754385439544054415442544354445445544654475448544954505451545254535454545554565457545854595460546154625463546454655466546754685469547054715472547354745475547654775478547954805481548254835484548554865487548854895490549154925493549454955496549754985499550055015502550355045505550655075508550955105511551255135514551555165517551855195520552155225523552455255526552755285529553055315532553355345535553655375538553955405541554255435544554555465547554855495550555155525553555455555556555755585559556055615562556355645565556655675568556955705571557255735574557555765577557855795580558155825583558455855586558755885589559055915592559355945595559655975598559956005601560256035604560556065607560856095610561156125613561456155616561756185619562056215622562356245625562656275628562956305631563256335634563556365637563856395640564156425643564456455646564756485649565056515652565356545655565656575658565956605661566256635664566556665667566856695670567156725673567456755676567756785679568056815682568356845685568656875688568956905691569256935694569556965697569856995700570157025703570457055706570757085709571057115712571357145715571657175718571957205721572257235724572557265727572857295730573157325733573457355736573757385739574057415742574357445745574657475748574957505751575257535754575557565757575857595760576157625763576457655766576757685769577057715772577357745775577657775778577957805781578257835784578557865787578857895790579157925793579457955796579757985799580058015802580358045805580658075808580958105811581258135814581558165817581858195820582158225823582458255826582758285829583058315832583358345835583658375838583958405841584258435844584558465847584858495850585158525853585458555856585758585859586058615862586358645865586658675868586958705871587258735874587558765877587858795880588158825883588458855886588758885889589058915892589358945895589658975898589959005901590259035904590559065907590859095910591159125913591459155916591759185919592059215922592359245925592659275928592959305931593259335934593559365937593859395940594159425943594459455946594759485949595059515952595359545955595659575958595959605961596259635964596559665967596859695970597159725973597459755976597759785979598059815982598359845985598659875988598959905991599259935994599559965997599859996000600160026003600460056006600760086009601060116012601360146015601660176018601960206021602260236024602560266027602860296030603160326033603460356036603760386039604060416042604360446045604660476048604960506051605260536054605560566057605860596060606160626063606460656066606760686069607060716072607360746075607660776078607960806081608260836084608560866087608860896090609160926093609460956096609760986099610061016102610361046105610661076108610961106111611261136114611561166117611861196120612161226123612461256126612761286129613061316132613361346135613661376138613961406141614261436144614561466147614861496150615161526153615461556156615761586159616061616162616361646165616661676168616961706171617261736174617561766177617861796180618161826183618461856186618761886189619061916192619361946195619661976198619962006201620262036204620562066207620862096210621162126213621462156216621762186219622062216222622362246225622662276228622962306231623262336234623562366237623862396240624162426243624462456246624762486249625062516252625362546255625662576258625962606261626262636264626562666267626862696270627162726273627462756276627762786279628062816282628362846285628662876288628962906291629262936294629562966297629862996300630163026303630463056306630763086309631063116312631363146315631663176318631963206321632263236324632563266327632863296330633163326333633463356336633763386339634063416342634363446345634663476348634963506351635263536354635563566357635863596360636163626363636463656366636763686369637063716372637363746375637663776378637963806381638263836384638563866387638863896390639163926393639463956396639763986399640064016402640364046405640664076408640964106411641264136414641564166417641864196420642164226423642464256426642764286429643064316432643364346435643664376438643964406441644264436444644564466447644864496450645164526453645464556456645764586459646064616462646364646465646664676468646964706471647264736474647564766477647864796480648164826483648464856486648764886489649064916492649364946495649664976498649965006501650265036504650565066507650865096510651165126513651465156516651765186519652065216522652365246525652665276528652965306531653265336534653565366537653865396540654165426543654465456546654765486549655065516552655365546555655665576558655965606561656265636564656565666567656865696570657165726573657465756576657765786579658065816582658365846585658665876588658965906591659265936594659565966597659865996600660166026603660466056606660766086609661066116612661366146615661666176618661966206621662266236624662566266627662866296630663166326633663466356636663766386639664066416642664366446645664666476648664966506651665266536654665566566657665866596660666166626663666466656666666766686669667066716672667366746675667666776678667966806681668266836684668566866687668866896690669166926693669466956696669766986699670067016702670367046705670667076708670967106711671267136714671567166717671867196720672167226723672467256726672767286729673067316732673367346735673667376738673967406741674267436744674567466747674867496750675167526753675467556756675767586759676067616762676367646765676667676768676967706771677267736774677567766777677867796780678167826783678467856786678767886789679067916792679367946795679667976798679968006801680268036804680568066807680868096810681168126813681468156816681768186819682068216822682368246825682668276828682968306831683268336834683568366837683868396840684168426843684468456846684768486849685068516852685368546855685668576858685968606861686268636864686568666867686868696870687168726873687468756876687768786879688068816882688368846885688668876888688968906891689268936894689568966897689868996900690169026903690469056906690769086909691069116912691369146915691669176918691969206921692269236924692569266927692869296930693169326933693469356936693769386939694069416942694369446945694669476948694969506951695269536954695569566957695869596960696169626963696469656966696769686969697069716972697369746975697669776978697969806981698269836984698569866987698869896990699169926993699469956996699769986999700070017002700370047005700670077008700970107011701270137014701570167017701870197020702170227023702470257026702770287029703070317032703370347035703670377038703970407041704270437044704570467047704870497050705170527053705470557056705770587059706070617062706370647065706670677068706970707071707270737074707570767077707870797080708170827083708470857086708770887089709070917092709370947095709670977098709971007101710271037104710571067107710871097110711171127113711471157116711771187119712071217122712371247125712671277128712971307131713271337134713571367137713871397140714171427143714471457146714771487149715071517152715371547155715671577158715971607161716271637164716571667167716871697170717171727173717471757176717771787179718071817182718371847185718671877188718971907191719271937194719571967197719871997200720172027203720472057206720772087209721072117212721372147215721672177218721972207221722272237224722572267227722872297230723172327233723472357236723772387239724072417242724372447245724672477248724972507251725272537254725572567257725872597260726172627263726472657266726772687269727072717272727372747275727672777278727972807281728272837284728572867287728872897290729172927293729472957296729772987299730073017302730373047305730673077308730973107311731273137314731573167317731873197320732173227323732473257326732773287329733073317332733373347335733673377338733973407341734273437344734573467347734873497350735173527353735473557356735773587359736073617362736373647365736673677368736973707371737273737374737573767377737873797380738173827383738473857386738773887389739073917392739373947395739673977398739974007401740274037404740574067407740874097410741174127413741474157416741774187419742074217422742374247425742674277428742974307431743274337434743574367437743874397440744174427443744474457446744774487449745074517452745374547455745674577458745974607461746274637464746574667467746874697470747174727473747474757476747774787479748074817482748374847485748674877488748974907491749274937494749574967497749874997500750175027503750475057506750775087509751075117512751375147515751675177518751975207521752275237524752575267527752875297530753175327533753475357536753775387539754075417542754375447545754675477548754975507551755275537554755575567557755875597560756175627563756475657566756775687569757075717572757375747575757675777578757975807581758275837584758575867587758875897590759175927593759475957596759775987599760076017602760376047605760676077608760976107611761276137614761576167617761876197620762176227623762476257626762776287629763076317632763376347635763676377638763976407641764276437644764576467647764876497650765176527653765476557656765776587659766076617662766376647665766676677668766976707671767276737674767576767677767876797680768176827683768476857686768776887689769076917692769376947695769676977698769977007701770277037704770577067707770877097710771177127713771477157716771777187719772077217722772377247725772677277728772977307731773277337734773577367737773877397740774177427743774477457746774777487749775077517752775377547755775677577758775977607761776277637764776577667767776877697770777177727773777477757776777777787779778077817782778377847785778677877788778977907791779277937794779577967797779877997800780178027803780478057806780778087809781078117812781378147815781678177818781978207821782278237824782578267827782878297830783178327833783478357836783778387839784078417842784378447845784678477848784978507851785278537854785578567857785878597860786178627863786478657866786778687869787078717872787378747875787678777878787978807881788278837884788578867887788878897890789178927893789478957896789778987899790079017902790379047905790679077908790979107911791279137914791579167917791879197920792179227923792479257926792779287929793079317932793379347935793679377938793979407941794279437944794579467947794879497950795179527953795479557956795779587959796079617962796379647965796679677968796979707971797279737974797579767977797879797980798179827983798479857986798779887989799079917992799379947995799679977998799980008001800280038004800580068007800880098010801180128013801480158016801780188019802080218022802380248025802680278028802980308031803280338034803580368037803880398040804180428043804480458046804780488049805080518052805380548055805680578058805980608061806280638064806580668067806880698070807180728073807480758076807780788079808080818082808380848085808680878088808980908091809280938094809580968097809880998100810181028103810481058106810781088109811081118112811381148115811681178118811981208121812281238124812581268127812881298130813181328133813481358136813781388139814081418142814381448145814681478148814981508151815281538154815581568157815881598160816181628163816481658166816781688169817081718172817381748175817681778178817981808181818281838184818581868187818881898190819181928193819481958196819781988199820082018202820382048205820682078208820982108211821282138214821582168217821882198220822182228223822482258226822782288229823082318232823382348235823682378238823982408241824282438244824582468247824882498250825182528253825482558256825782588259826082618262826382648265826682678268826982708271827282738274827582768277827882798280828182828283828482858286828782888289829082918292829382948295829682978298829983008301830283038304830583068307830883098310831183128313831483158316831783188319832083218322832383248325832683278328832983308331833283338334833583368337833883398340834183428343834483458346834783488349835083518352835383548355835683578358835983608361
  1. /**
  2. * Marlin 3D Printer Firmware
  3. * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
  4. *
  5. * Based on Sprinter and grbl.
  6. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
  7. *
  8. * This program is free software: you can redistribute it and/or modify
  9. * it under the terms of the GNU General Public License as published by
  10. * the Free Software Foundation, either version 3 of the License, or
  11. * (at your option) any later version.
  12. *
  13. * This program is distributed in the hope that it will be useful,
  14. * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15. * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  16. * GNU General Public License for more details.
  17. *
  18. * You should have received a copy of the GNU General Public License
  19. * along with this program. If not, see <http://www.gnu.org/licenses/>.
  20. *
  21. */
  22. /**
  23. *
  24. * About Marlin
  25. *
  26. * This firmware is a mashup between Sprinter and grbl.
  27. * - https://github.com/kliment/Sprinter
  28. * - https://github.com/simen/grbl/tree
  29. *
  30. * It has preliminary support for Matthew Roberts advance algorithm
  31. * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
  32. */
  33. #include "Marlin.h"
  34. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  35. #include "vector_3.h"
  36. #if ENABLED(AUTO_BED_LEVELING_GRID)
  37. #include "qr_solve.h"
  38. #endif
  39. #endif // AUTO_BED_LEVELING_FEATURE
  40. #if ENABLED(MESH_BED_LEVELING)
  41. #include "mesh_bed_leveling.h"
  42. #endif
  43. #if ENABLED(BEZIER_CURVE_SUPPORT)
  44. #include "planner_bezier.h"
  45. #endif
  46. #include "ultralcd.h"
  47. #include "planner.h"
  48. #include "stepper.h"
  49. #include "endstops.h"
  50. #include "temperature.h"
  51. #include "cardreader.h"
  52. #include "configuration_store.h"
  53. #include "language.h"
  54. #include "pins_arduino.h"
  55. #include "math.h"
  56. #if ENABLED(USE_WATCHDOG)
  57. #include "watchdog.h"
  58. #endif
  59. #if ENABLED(BLINKM)
  60. #include "blinkm.h"
  61. #include "Wire.h"
  62. #endif
  63. #if HAS_SERVOS
  64. #include "servo.h"
  65. #endif
  66. #if HAS_DIGIPOTSS
  67. #include <SPI.h>
  68. #endif
  69. #if ENABLED(DAC_STEPPER_CURRENT)
  70. #include "stepper_dac.h"
  71. #endif
  72. #if ENABLED(EXPERIMENTAL_I2CBUS)
  73. #include "twibus.h"
  74. #endif
  75. /**
  76. * Look here for descriptions of G-codes:
  77. * - http://linuxcnc.org/handbook/gcode/g-code.html
  78. * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
  79. *
  80. * Help us document these G-codes online:
  81. * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
  82. * - http://reprap.org/wiki/G-code
  83. *
  84. * -----------------
  85. * Implemented Codes
  86. * -----------------
  87. *
  88. * "G" Codes
  89. *
  90. * G0 -> G1
  91. * G1 - Coordinated Movement X Y Z E
  92. * G2 - CW ARC
  93. * G3 - CCW ARC
  94. * G4 - Dwell S<seconds> or P<milliseconds>
  95. * G5 - Cubic B-spline with XYZE destination and IJPQ offsets
  96. * G10 - retract filament according to settings of M207
  97. * G11 - retract recover filament according to settings of M208
  98. * G20 - Set input units to inches
  99. * G21 - Set input units to millimeters
  100. * G28 - Home one or more axes
  101. * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
  102. * G30 - Single Z probe, probes bed at current XY location.
  103. * G31 - Dock sled (Z_PROBE_SLED only)
  104. * G32 - Undock sled (Z_PROBE_SLED only)
  105. * G90 - Use Absolute Coordinates
  106. * G91 - Use Relative Coordinates
  107. * G92 - Set current position to coordinates given
  108. *
  109. * "M" Codes
  110. *
  111. * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
  112. * M1 - Same as M0
  113. * M17 - Enable/Power all stepper motors
  114. * M18 - Disable all stepper motors; same as M84
  115. * M20 - List SD card
  116. * M21 - Init SD card
  117. * M22 - Release SD card
  118. * M23 - Select SD file (M23 filename.g)
  119. * M24 - Start/resume SD print
  120. * M25 - Pause SD print
  121. * M26 - Set SD position in bytes (M26 S12345)
  122. * M27 - Report SD print status
  123. * M28 - Start SD write (M28 filename.g)
  124. * M29 - Stop SD write
  125. * M30 - Delete file from SD (M30 filename.g)
  126. * M31 - Output time since last M109 or SD card start to serial
  127. * M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
  128. * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
  129. * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
  130. * The '#' is necessary when calling from within sd files, as it stops buffer prereading
  131. * M33 - Get the longname version of a path
  132. * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
  133. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
  134. * M75 - Start the print job timer
  135. * M76 - Pause the print job timer
  136. * M77 - Stop the print job timer
  137. * M78 - Show statistical information about the print jobs
  138. * M80 - Turn on Power Supply
  139. * M81 - Turn off Power Supply
  140. * M82 - Set E codes absolute (default)
  141. * M83 - Set E codes relative while in Absolute Coordinates (G90) mode
  142. * M84 - Disable steppers until next move,
  143. * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
  144. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  145. * M92 - Set planner.axis_steps_per_mm - same syntax as G92
  146. * M104 - Set extruder target temp
  147. * M105 - Read current temp
  148. * M106 - Fan on
  149. * M107 - Fan off
  150. * M108 - Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  151. * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
  152. * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
  153. * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
  154. * M110 - Set the current line number
  155. * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
  156. * M112 - Emergency stop
  157. * M113 - Get or set the timeout interval for Host Keepalive "busy" messages
  158. * M114 - Output current position to serial port
  159. * M115 - Capabilities string
  160. * M117 - Display a message on the controller screen
  161. * M119 - Output Endstop status to serial port
  162. * M120 - Enable endstop detection
  163. * M121 - Disable endstop detection
  164. * M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
  165. * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
  166. * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  167. * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
  168. * M140 - Set bed target temp
  169. * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
  170. * M149 - Set temperature units
  171. * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
  172. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  173. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  174. * M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
  175. * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  176. * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
  177. * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  178. * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in units/sec^2
  179. * M205 - Set advanced settings. Current units apply:
  180. S<print> T<travel> minimum speeds
  181. B<minimum segment time>
  182. X<max xy jerk>, Z<max Z jerk>, E<max E jerk>
  183. * M206 - Set additional homing offset
  184. * M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  185. * M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  186. * M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11).
  187. Every normal extrude-only move will be classified as retract depending on the direction.
  188. * M218 - Set a tool offset: T<index> X<offset> Y<offset>
  189. * M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  190. * M221 - Set Flow Percentage: S<percent>
  191. * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
  192. * M240 - Trigger a camera to take a photograph
  193. * M250 - Set LCD contrast C<contrast value> (value 0..63)
  194. * M280 - Set servo position absolute. P: servo index, S: angle or microseconds
  195. * M300 - Play beep sound S<frequency Hz> P<duration ms>
  196. * M301 - Set PID parameters P I and D
  197. * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
  198. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
  199. * M304 - Set bed PID parameters P I and D
  200. * M380 - Activate solenoid on active extruder
  201. * M381 - Disable all solenoids
  202. * M400 - Finish all moves
  203. * M401 - Lower Z probe if present
  204. * M402 - Raise Z probe if present
  205. * M404 - Display or set the Nominal Filament Width: [ N<diameter> ]
  206. * M405 - Enable Filament Sensor extrusion control. Optional delay between sensor and extruder: D<cm>
  207. * M406 - Disable Filament Sensor extrusion control
  208. * M407 - Display measured filament diameter in millimeters
  209. * M410 - Quickstop. Abort all the planned moves
  210. * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
  211. * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<units> Y<units> Z<units>
  212. * M428 - Set the home_offset logically based on the current_position
  213. * M500 - Store parameters in EEPROM
  214. * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
  215. * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
  216. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
  217. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  218. * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  219. * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
  220. * M666 - Set delta endstop adjustment
  221. * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
  222. * M851 - Set Z probe's Z offset in current units. (Negative values apply to probes that extend below the nozzle.)
  223. * M907 - Set digital trimpot motor current using axis codes.
  224. * M908 - Control digital trimpot directly.
  225. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
  226. * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
  227. * M350 - Set microstepping mode.
  228. * M351 - Toggle MS1 MS2 pins directly.
  229. *
  230. * ************ SCARA Specific - This can change to suit future G-code regulations
  231. * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  232. * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  233. * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  234. * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  235. * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  236. * M365 - SCARA calibration: Scaling factor, X, Y, Z axis
  237. * ************* SCARA End ***************
  238. *
  239. * ************ Custom codes - This can change to suit future G-code regulations
  240. * M100 - Watch Free Memory (For Debugging Only)
  241. * M928 - Start SD logging (M928 filename.g) - ended by M29
  242. * M999 - Restart after being stopped by error
  243. *
  244. * "T" Codes
  245. *
  246. * T0-T3 - Select a tool by index (usually an extruder) [ F<units/min> ]
  247. *
  248. */
  249. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  250. void gcode_M100();
  251. #endif
  252. #if ENABLED(SDSUPPORT)
  253. CardReader card;
  254. #endif
  255. #if ENABLED(EXPERIMENTAL_I2CBUS)
  256. TWIBus i2c;
  257. #endif
  258. bool Running = true;
  259. uint8_t marlin_debug_flags = DEBUG_NONE;
  260. static float feedrate = 1500.0, saved_feedrate;
  261. float current_position[NUM_AXIS] = { 0.0 };
  262. static float destination[NUM_AXIS] = { 0.0 };
  263. bool axis_known_position[3] = { false };
  264. bool axis_homed[3] = { false };
  265. static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
  266. static char command_queue[BUFSIZE][MAX_CMD_SIZE];
  267. static char* current_command, *current_command_args;
  268. static uint8_t cmd_queue_index_r = 0,
  269. cmd_queue_index_w = 0,
  270. commands_in_queue = 0;
  271. #if ENABLED(INCH_MODE_SUPPORT)
  272. float linear_unit_factor = 1.0;
  273. float volumetric_unit_factor = 1.0;
  274. #endif
  275. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  276. TempUnit input_temp_units = TEMPUNIT_C;
  277. #endif
  278. const float homing_feedrate[] = HOMING_FEEDRATE;
  279. bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
  280. int feedrate_multiplier = 100; //100->1 200->2
  281. int saved_feedrate_multiplier;
  282. int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
  283. bool volumetric_enabled = false;
  284. float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
  285. float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
  286. // The distance that XYZ has been offset by G92. Reset by G28.
  287. float position_shift[3] = { 0 };
  288. // This offset is added to the configured home position.
  289. // Set by M206, M428, or menu item. Saved to EEPROM.
  290. float home_offset[3] = { 0 };
  291. #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS])
  292. #define RAW_CURRENT_POSITION(AXIS) (RAW_POSITION(current_position[AXIS], AXIS))
  293. // Software Endstops. Default to configured limits.
  294. float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
  295. float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
  296. #if FAN_COUNT > 0
  297. int fanSpeeds[FAN_COUNT] = { 0 };
  298. #endif
  299. // The active extruder (tool). Set with T<extruder> command.
  300. uint8_t active_extruder = 0;
  301. // Relative Mode. Enable with G91, disable with G90.
  302. static bool relative_mode = false;
  303. volatile bool wait_for_heatup = true;
  304. const char errormagic[] PROGMEM = "Error:";
  305. const char echomagic[] PROGMEM = "echo:";
  306. const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
  307. static int serial_count = 0;
  308. // GCode parameter pointer used by code_seen(), code_value_float(), etc.
  309. static char* seen_pointer;
  310. // Next Immediate GCode Command pointer. NULL if none.
  311. const char* queued_commands_P = NULL;
  312. const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
  313. // Inactivity shutdown
  314. millis_t previous_cmd_ms = 0;
  315. static millis_t max_inactive_time = 0;
  316. static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
  317. // Print Job Timer
  318. #if ENABLED(PRINTCOUNTER)
  319. PrintCounter print_job_timer = PrintCounter();
  320. #else
  321. Stopwatch print_job_timer = Stopwatch();
  322. #endif
  323. // Buzzer
  324. #if HAS_BUZZER
  325. #if ENABLED(SPEAKER)
  326. Speaker buzzer;
  327. #else
  328. Buzzer buzzer;
  329. #endif
  330. #endif
  331. static uint8_t target_extruder;
  332. #if HAS_BED_PROBE
  333. float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
  334. #endif
  335. #define PLANNER_XY_FEEDRATE() (min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]))
  336. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  337. int xy_probe_speed = XY_PROBE_SPEED;
  338. bool bed_leveling_in_progress = false;
  339. #define XY_PROBE_FEEDRATE xy_probe_speed
  340. #elif defined(XY_PROBE_SPEED)
  341. #define XY_PROBE_FEEDRATE XY_PROBE_SPEED
  342. #else
  343. #define XY_PROBE_FEEDRATE (PLANNER_XY_FEEDRATE() * 60)
  344. #endif
  345. #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
  346. float z_endstop_adj = 0;
  347. #endif
  348. // Extruder offsets
  349. #if HOTENDS > 1
  350. #ifndef HOTEND_OFFSET_X
  351. #define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
  352. #endif
  353. #ifndef HOTEND_OFFSET_Y
  354. #define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
  355. #endif
  356. float hotend_offset[][HOTENDS] = {
  357. HOTEND_OFFSET_X,
  358. HOTEND_OFFSET_Y
  359. #if ENABLED(DUAL_X_CARRIAGE)
  360. , { 0 } // Z offsets for each extruder
  361. #endif
  362. };
  363. #endif
  364. #if HAS_Z_SERVO_ENDSTOP
  365. const int z_servo_angle[2] = Z_SERVO_ANGLES;
  366. #endif
  367. #if ENABLED(BARICUDA)
  368. int baricuda_valve_pressure = 0;
  369. int baricuda_e_to_p_pressure = 0;
  370. #endif
  371. #if ENABLED(FWRETRACT)
  372. bool autoretract_enabled = false;
  373. bool retracted[EXTRUDERS] = { false };
  374. bool retracted_swap[EXTRUDERS] = { false };
  375. float retract_length = RETRACT_LENGTH;
  376. float retract_length_swap = RETRACT_LENGTH_SWAP;
  377. float retract_feedrate_mm_s = RETRACT_FEEDRATE;
  378. float retract_zlift = RETRACT_ZLIFT;
  379. float retract_recover_length = RETRACT_RECOVER_LENGTH;
  380. float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
  381. float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
  382. #endif // FWRETRACT
  383. #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
  384. bool powersupply =
  385. #if ENABLED(PS_DEFAULT_OFF)
  386. false
  387. #else
  388. true
  389. #endif
  390. ;
  391. #endif
  392. #if ENABLED(DELTA)
  393. #define TOWER_1 X_AXIS
  394. #define TOWER_2 Y_AXIS
  395. #define TOWER_3 Z_AXIS
  396. float delta[3] = { 0 };
  397. #define SIN_60 0.8660254037844386
  398. #define COS_60 0.5
  399. float endstop_adj[3] = { 0 };
  400. // these are the default values, can be overriden with M665
  401. float delta_radius = DELTA_RADIUS;
  402. float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  403. float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
  404. float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  405. float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
  406. float delta_tower3_x = 0; // back middle tower
  407. float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
  408. float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
  409. float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
  410. float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
  411. float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
  412. float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
  413. float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
  414. float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
  415. //float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
  416. float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
  417. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  418. int delta_grid_spacing[2] = { 0, 0 };
  419. float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
  420. #endif
  421. #else
  422. static bool home_all_axis = true;
  423. #endif
  424. #if ENABLED(SCARA)
  425. float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
  426. static float delta[3] = { 0 };
  427. float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
  428. #endif
  429. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  430. //Variables for Filament Sensor input
  431. float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
  432. bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
  433. float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
  434. int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
  435. int filwidth_delay_index1 = 0; //index into ring buffer
  436. int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
  437. int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
  438. #endif
  439. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  440. static bool filament_ran_out = false;
  441. #endif
  442. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  443. FilamentChangeMenuResponse filament_change_menu_response;
  444. #endif
  445. static bool send_ok[BUFSIZE];
  446. #if HAS_SERVOS
  447. Servo servo[NUM_SERVOS];
  448. #define MOVE_SERVO(I, P) servo[I].move(P)
  449. #if HAS_Z_SERVO_ENDSTOP
  450. #define DEPLOY_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[0])
  451. #define STOW_Z_SERVO() MOVE_SERVO(Z_ENDSTOP_SERVO_NR, z_servo_angle[1])
  452. #endif
  453. #endif
  454. #ifdef CHDK
  455. millis_t chdkHigh = 0;
  456. boolean chdkActive = false;
  457. #endif
  458. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  459. int lpq_len = 20;
  460. #endif
  461. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  462. // States for managing Marlin and host communication
  463. // Marlin sends messages if blocked or busy
  464. enum MarlinBusyState {
  465. NOT_BUSY, // Not in a handler
  466. IN_HANDLER, // Processing a GCode
  467. IN_PROCESS, // Known to be blocking command input (as in G29)
  468. PAUSED_FOR_USER, // Blocking pending any input
  469. PAUSED_FOR_INPUT // Blocking pending text input (concept)
  470. };
  471. static MarlinBusyState busy_state = NOT_BUSY;
  472. static millis_t next_busy_signal_ms = 0;
  473. uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
  474. #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
  475. #else
  476. #define host_keepalive() ;
  477. #define KEEPALIVE_STATE(n) ;
  478. #endif // HOST_KEEPALIVE_FEATURE
  479. /**
  480. * ***************************************************************************
  481. * ******************************** FUNCTIONS ********************************
  482. * ***************************************************************************
  483. */
  484. void stop();
  485. void get_available_commands();
  486. void process_next_command();
  487. void prepare_move_to_destination();
  488. #if ENABLED(ARC_SUPPORT)
  489. void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
  490. #endif
  491. #if ENABLED(BEZIER_CURVE_SUPPORT)
  492. void plan_cubic_move(const float offset[4]);
  493. #endif
  494. void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  495. void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  496. void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  497. void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  498. void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
  499. static void report_current_position();
  500. #if ENABLED(DEBUG_LEVELING_FEATURE)
  501. void print_xyz(const char* prefix, const char* suffix, const float x, const float y, const float z) {
  502. serialprintPGM(prefix);
  503. SERIAL_ECHOPAIR("(", x);
  504. SERIAL_ECHOPAIR(", ", y);
  505. SERIAL_ECHOPAIR(", ", z);
  506. SERIAL_ECHOPGM(")");
  507. serialprintPGM(suffix);
  508. }
  509. void print_xyz(const char* prefix,const char* suffix, const float xyz[]) {
  510. print_xyz(prefix, suffix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
  511. }
  512. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  513. void print_xyz(const char* prefix,const char* suffix, const vector_3 &xyz) {
  514. print_xyz(prefix, suffix, xyz.x, xyz.y, xyz.z);
  515. }
  516. #endif
  517. #define DEBUG_POS(SUFFIX,VAR) do{ print_xyz(PSTR(STRINGIFY(VAR) "="), PSTR(" : " SUFFIX "\n"), VAR); }while(0)
  518. #endif
  519. #if ENABLED(DELTA) || ENABLED(SCARA)
  520. inline void sync_plan_position_delta() {
  521. #if ENABLED(DEBUG_LEVELING_FEATURE)
  522. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
  523. #endif
  524. calculate_delta(current_position);
  525. planner.set_position_mm(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
  526. }
  527. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position_delta()
  528. #else
  529. #define SYNC_PLAN_POSITION_KINEMATIC() sync_plan_position()
  530. #endif
  531. #if ENABLED(SDSUPPORT)
  532. #include "SdFatUtil.h"
  533. int freeMemory() { return SdFatUtil::FreeRam(); }
  534. #else
  535. extern "C" {
  536. extern unsigned int __bss_end;
  537. extern unsigned int __heap_start;
  538. extern void* __brkval;
  539. int freeMemory() {
  540. int free_memory;
  541. if ((int)__brkval == 0)
  542. free_memory = ((int)&free_memory) - ((int)&__bss_end);
  543. else
  544. free_memory = ((int)&free_memory) - ((int)__brkval);
  545. return free_memory;
  546. }
  547. }
  548. #endif //!SDSUPPORT
  549. #if ENABLED(DIGIPOT_I2C)
  550. extern void digipot_i2c_set_current(int channel, float current);
  551. extern void digipot_i2c_init();
  552. #endif
  553. /**
  554. * Inject the next "immediate" command, when possible.
  555. * Return true if any immediate commands remain to inject.
  556. */
  557. static bool drain_queued_commands_P() {
  558. if (queued_commands_P != NULL) {
  559. size_t i = 0;
  560. char c, cmd[30];
  561. strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
  562. cmd[sizeof(cmd) - 1] = '\0';
  563. while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
  564. cmd[i] = '\0';
  565. if (enqueue_and_echo_command(cmd)) { // success?
  566. if (c) // newline char?
  567. queued_commands_P += i + 1; // advance to the next command
  568. else
  569. queued_commands_P = NULL; // nul char? no more commands
  570. }
  571. }
  572. return (queued_commands_P != NULL); // return whether any more remain
  573. }
  574. /**
  575. * Record one or many commands to run from program memory.
  576. * Aborts the current queue, if any.
  577. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
  578. */
  579. void enqueue_and_echo_commands_P(const char* pgcode) {
  580. queued_commands_P = pgcode;
  581. drain_queued_commands_P(); // first command executed asap (when possible)
  582. }
  583. void clear_command_queue() {
  584. cmd_queue_index_r = cmd_queue_index_w;
  585. commands_in_queue = 0;
  586. }
  587. /**
  588. * Once a new command is in the ring buffer, call this to commit it
  589. */
  590. inline void _commit_command(bool say_ok) {
  591. send_ok[cmd_queue_index_w] = say_ok;
  592. cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
  593. commands_in_queue++;
  594. }
  595. /**
  596. * Copy a command directly into the main command buffer, from RAM.
  597. * Returns true if successfully adds the command
  598. */
  599. inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
  600. if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
  601. strcpy(command_queue[cmd_queue_index_w], cmd);
  602. _commit_command(say_ok);
  603. return true;
  604. }
  605. void enqueue_and_echo_command_now(const char* cmd) {
  606. while (!enqueue_and_echo_command(cmd)) idle();
  607. }
  608. /**
  609. * Enqueue with Serial Echo
  610. */
  611. bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
  612. if (_enqueuecommand(cmd, say_ok)) {
  613. SERIAL_ECHO_START;
  614. SERIAL_ECHOPGM(MSG_Enqueueing);
  615. SERIAL_ECHO(cmd);
  616. SERIAL_ECHOLNPGM("\"");
  617. return true;
  618. }
  619. return false;
  620. }
  621. void setup_killpin() {
  622. #if HAS_KILL
  623. SET_INPUT(KILL_PIN);
  624. WRITE(KILL_PIN, HIGH);
  625. #endif
  626. }
  627. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  628. void setup_filrunoutpin() {
  629. pinMode(FIL_RUNOUT_PIN, INPUT);
  630. #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
  631. WRITE(FIL_RUNOUT_PIN, HIGH);
  632. #endif
  633. }
  634. #endif
  635. // Set home pin
  636. void setup_homepin(void) {
  637. #if HAS_HOME
  638. SET_INPUT(HOME_PIN);
  639. WRITE(HOME_PIN, HIGH);
  640. #endif
  641. }
  642. void setup_photpin() {
  643. #if HAS_PHOTOGRAPH
  644. OUT_WRITE(PHOTOGRAPH_PIN, LOW);
  645. #endif
  646. }
  647. void setup_powerhold() {
  648. #if HAS_SUICIDE
  649. OUT_WRITE(SUICIDE_PIN, HIGH);
  650. #endif
  651. #if HAS_POWER_SWITCH
  652. #if ENABLED(PS_DEFAULT_OFF)
  653. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  654. #else
  655. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
  656. #endif
  657. #endif
  658. }
  659. void suicide() {
  660. #if HAS_SUICIDE
  661. OUT_WRITE(SUICIDE_PIN, LOW);
  662. #endif
  663. }
  664. void servo_init() {
  665. #if NUM_SERVOS >= 1 && HAS_SERVO_0
  666. servo[0].attach(SERVO0_PIN);
  667. servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
  668. #endif
  669. #if NUM_SERVOS >= 2 && HAS_SERVO_1
  670. servo[1].attach(SERVO1_PIN);
  671. servo[1].detach();
  672. #endif
  673. #if NUM_SERVOS >= 3 && HAS_SERVO_2
  674. servo[2].attach(SERVO2_PIN);
  675. servo[2].detach();
  676. #endif
  677. #if NUM_SERVOS >= 4 && HAS_SERVO_3
  678. servo[3].attach(SERVO3_PIN);
  679. servo[3].detach();
  680. #endif
  681. #if HAS_Z_SERVO_ENDSTOP
  682. /**
  683. * Set position of Z Servo Endstop
  684. *
  685. * The servo might be deployed and positioned too low to stow
  686. * when starting up the machine or rebooting the board.
  687. * There's no way to know where the nozzle is positioned until
  688. * homing has been done - no homing with z-probe without init!
  689. *
  690. */
  691. STOW_Z_SERVO();
  692. #endif
  693. #if HAS_BED_PROBE
  694. endstops.enable_z_probe(false);
  695. #endif
  696. }
  697. /**
  698. * Stepper Reset (RigidBoard, et.al.)
  699. */
  700. #if HAS_STEPPER_RESET
  701. void disableStepperDrivers() {
  702. pinMode(STEPPER_RESET_PIN, OUTPUT);
  703. digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
  704. }
  705. void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
  706. #endif
  707. /**
  708. * Marlin entry-point: Set up before the program loop
  709. * - Set up the kill pin, filament runout, power hold
  710. * - Start the serial port
  711. * - Print startup messages and diagnostics
  712. * - Get EEPROM or default settings
  713. * - Initialize managers for:
  714. * • temperature
  715. * • planner
  716. * • watchdog
  717. * • stepper
  718. * • photo pin
  719. * • servos
  720. * • LCD controller
  721. * • Digipot I2C
  722. * • Z probe sled
  723. * • status LEDs
  724. */
  725. void setup() {
  726. #ifdef DISABLE_JTAG
  727. // Disable JTAG on AT90USB chips to free up pins for IO
  728. MCUCR = 0x80;
  729. MCUCR = 0x80;
  730. #endif
  731. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  732. setup_filrunoutpin();
  733. #endif
  734. setup_killpin();
  735. setup_powerhold();
  736. #if HAS_STEPPER_RESET
  737. disableStepperDrivers();
  738. #endif
  739. MYSERIAL.begin(BAUDRATE);
  740. SERIAL_PROTOCOLLNPGM("start");
  741. SERIAL_ECHO_START;
  742. // Check startup - does nothing if bootloader sets MCUSR to 0
  743. byte mcu = MCUSR;
  744. if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
  745. if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
  746. if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
  747. if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
  748. if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
  749. MCUSR = 0;
  750. SERIAL_ECHOPGM(MSG_MARLIN);
  751. SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
  752. #ifdef STRING_DISTRIBUTION_DATE
  753. #ifdef STRING_CONFIG_H_AUTHOR
  754. SERIAL_ECHO_START;
  755. SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
  756. SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
  757. SERIAL_ECHOPGM(MSG_AUTHOR);
  758. SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
  759. SERIAL_ECHOPGM("Compiled: ");
  760. SERIAL_ECHOLNPGM(__DATE__);
  761. #endif // STRING_CONFIG_H_AUTHOR
  762. #endif // STRING_DISTRIBUTION_DATE
  763. SERIAL_ECHO_START;
  764. SERIAL_ECHOPGM(MSG_FREE_MEMORY);
  765. SERIAL_ECHO(freeMemory());
  766. SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
  767. SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
  768. // Send "ok" after commands by default
  769. for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
  770. // loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
  771. Config_RetrieveSettings();
  772. // Initialize current position based on home_offset
  773. memcpy(current_position, home_offset, sizeof(home_offset));
  774. #if ENABLED(DELTA) || ENABLED(SCARA)
  775. // Vital to init kinematic equivalent for X0 Y0 Z0
  776. SYNC_PLAN_POSITION_KINEMATIC();
  777. #endif
  778. thermalManager.init(); // Initialize temperature loop
  779. #if ENABLED(USE_WATCHDOG)
  780. watchdog_init();
  781. #endif
  782. stepper.init(); // Initialize stepper, this enables interrupts!
  783. setup_photpin();
  784. servo_init();
  785. #if HAS_CONTROLLERFAN
  786. SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
  787. #endif
  788. #if HAS_STEPPER_RESET
  789. enableStepperDrivers();
  790. #endif
  791. #if ENABLED(DIGIPOT_I2C)
  792. digipot_i2c_init();
  793. #endif
  794. #if ENABLED(DAC_STEPPER_CURRENT)
  795. dac_init();
  796. #endif
  797. #if ENABLED(Z_PROBE_SLED)
  798. pinMode(SLED_PIN, OUTPUT);
  799. digitalWrite(SLED_PIN, LOW); // turn it off
  800. #endif // Z_PROBE_SLED
  801. setup_homepin();
  802. #ifdef STAT_LED_RED
  803. pinMode(STAT_LED_RED, OUTPUT);
  804. digitalWrite(STAT_LED_RED, LOW); // turn it off
  805. #endif
  806. #ifdef STAT_LED_BLUE
  807. pinMode(STAT_LED_BLUE, OUTPUT);
  808. digitalWrite(STAT_LED_BLUE, LOW); // turn it off
  809. #endif
  810. lcd_init();
  811. #if ENABLED(SHOW_BOOTSCREEN)
  812. #if ENABLED(DOGLCD)
  813. delay(1000);
  814. #elif ENABLED(ULTRA_LCD)
  815. bootscreen();
  816. lcd_init();
  817. #endif
  818. #endif
  819. }
  820. /**
  821. * The main Marlin program loop
  822. *
  823. * - Save or log commands to SD
  824. * - Process available commands (if not saving)
  825. * - Call heater manager
  826. * - Call inactivity manager
  827. * - Call endstop manager
  828. * - Call LCD update
  829. */
  830. void loop() {
  831. if (commands_in_queue < BUFSIZE) get_available_commands();
  832. #if ENABLED(SDSUPPORT)
  833. card.checkautostart(false);
  834. #endif
  835. if (commands_in_queue) {
  836. #if ENABLED(SDSUPPORT)
  837. if (card.saving) {
  838. char* command = command_queue[cmd_queue_index_r];
  839. if (strstr_P(command, PSTR("M29"))) {
  840. // M29 closes the file
  841. card.closefile();
  842. SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
  843. ok_to_send();
  844. }
  845. else {
  846. // Write the string from the read buffer to SD
  847. card.write_command(command);
  848. if (card.logging)
  849. process_next_command(); // The card is saving because it's logging
  850. else
  851. ok_to_send();
  852. }
  853. }
  854. else
  855. process_next_command();
  856. #else
  857. process_next_command();
  858. #endif // SDSUPPORT
  859. // The queue may be reset by a command handler or by code invoked by idle() within a handler
  860. if (commands_in_queue) {
  861. --commands_in_queue;
  862. cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
  863. }
  864. }
  865. endstops.report_state();
  866. idle();
  867. }
  868. void gcode_line_error(const char* err, bool doFlush = true) {
  869. SERIAL_ERROR_START;
  870. serialprintPGM(err);
  871. SERIAL_ERRORLN(gcode_LastN);
  872. //Serial.println(gcode_N);
  873. if (doFlush) FlushSerialRequestResend();
  874. serial_count = 0;
  875. }
  876. inline void get_serial_commands() {
  877. static char serial_line_buffer[MAX_CMD_SIZE];
  878. static boolean serial_comment_mode = false;
  879. // If the command buffer is empty for too long,
  880. // send "wait" to indicate Marlin is still waiting.
  881. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  882. static millis_t last_command_time = 0;
  883. millis_t ms = millis();
  884. if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
  885. SERIAL_ECHOLNPGM(MSG_WAIT);
  886. last_command_time = ms;
  887. }
  888. #endif
  889. /**
  890. * Loop while serial characters are incoming and the queue is not full
  891. */
  892. while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
  893. char serial_char = MYSERIAL.read();
  894. /**
  895. * If the character ends the line
  896. */
  897. if (serial_char == '\n' || serial_char == '\r') {
  898. serial_comment_mode = false; // end of line == end of comment
  899. if (!serial_count) continue; // skip empty lines
  900. serial_line_buffer[serial_count] = 0; // terminate string
  901. serial_count = 0; //reset buffer
  902. char* command = serial_line_buffer;
  903. while (*command == ' ') command++; // skip any leading spaces
  904. char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
  905. char* apos = strchr(command, '*');
  906. if (npos) {
  907. boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
  908. if (M110) {
  909. char* n2pos = strchr(command + 4, 'N');
  910. if (n2pos) npos = n2pos;
  911. }
  912. gcode_N = strtol(npos + 1, NULL, 10);
  913. if (gcode_N != gcode_LastN + 1 && !M110) {
  914. gcode_line_error(PSTR(MSG_ERR_LINE_NO));
  915. return;
  916. }
  917. if (apos) {
  918. byte checksum = 0, count = 0;
  919. while (command[count] != '*') checksum ^= command[count++];
  920. if (strtol(apos + 1, NULL, 10) != checksum) {
  921. gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
  922. return;
  923. }
  924. // if no errors, continue parsing
  925. }
  926. else {
  927. gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
  928. return;
  929. }
  930. gcode_LastN = gcode_N;
  931. // if no errors, continue parsing
  932. }
  933. else if (apos) { // No '*' without 'N'
  934. gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
  935. return;
  936. }
  937. // Movement commands alert when stopped
  938. if (IsStopped()) {
  939. char* gpos = strchr(command, 'G');
  940. if (gpos) {
  941. int codenum = strtol(gpos + 1, NULL, 10);
  942. switch (codenum) {
  943. case 0:
  944. case 1:
  945. case 2:
  946. case 3:
  947. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  948. LCD_MESSAGEPGM(MSG_STOPPED);
  949. break;
  950. }
  951. }
  952. }
  953. #if DISABLED(EMERGENCY_PARSER)
  954. // If command was e-stop process now
  955. if (strcmp(command, "M108") == 0) wait_for_heatup = false;
  956. if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
  957. if (strcmp(command, "M410") == 0) { quickstop_stepper(); }
  958. #endif
  959. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
  960. last_command_time = ms;
  961. #endif
  962. // Add the command to the queue
  963. _enqueuecommand(serial_line_buffer, true);
  964. }
  965. else if (serial_count >= MAX_CMD_SIZE - 1) {
  966. // Keep fetching, but ignore normal characters beyond the max length
  967. // The command will be injected when EOL is reached
  968. }
  969. else if (serial_char == '\\') { // Handle escapes
  970. if (MYSERIAL.available() > 0) {
  971. // if we have one more character, copy it over
  972. serial_char = MYSERIAL.read();
  973. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  974. }
  975. // otherwise do nothing
  976. }
  977. else { // it's not a newline, carriage return or escape char
  978. if (serial_char == ';') serial_comment_mode = true;
  979. if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
  980. }
  981. } // queue has space, serial has data
  982. }
  983. #if ENABLED(SDSUPPORT)
  984. inline void get_sdcard_commands() {
  985. static bool stop_buffering = false,
  986. sd_comment_mode = false;
  987. if (!card.sdprinting) return;
  988. /**
  989. * '#' stops reading from SD to the buffer prematurely, so procedural
  990. * macro calls are possible. If it occurs, stop_buffering is triggered
  991. * and the buffer is run dry; this character _can_ occur in serial com
  992. * due to checksums, however, no checksums are used in SD printing.
  993. */
  994. if (commands_in_queue == 0) stop_buffering = false;
  995. uint16_t sd_count = 0;
  996. bool card_eof = card.eof();
  997. while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
  998. int16_t n = card.get();
  999. char sd_char = (char)n;
  1000. card_eof = card.eof();
  1001. if (card_eof || n == -1
  1002. || sd_char == '\n' || sd_char == '\r'
  1003. || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
  1004. ) {
  1005. if (card_eof) {
  1006. SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
  1007. print_job_timer.stop();
  1008. char time[30];
  1009. millis_t t = print_job_timer.duration();
  1010. int hours = t / 60 / 60, minutes = (t / 60) % 60;
  1011. sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
  1012. SERIAL_ECHO_START;
  1013. SERIAL_ECHOLN(time);
  1014. lcd_setstatus(time, true);
  1015. card.printingHasFinished();
  1016. card.checkautostart(true);
  1017. }
  1018. else if (n == -1) {
  1019. SERIAL_ERROR_START;
  1020. SERIAL_ECHOLNPGM(MSG_SD_ERR_READ);
  1021. }
  1022. if (sd_char == '#') stop_buffering = true;
  1023. sd_comment_mode = false; //for new command
  1024. if (!sd_count) continue; //skip empty lines
  1025. command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
  1026. sd_count = 0; //clear buffer
  1027. _commit_command(false);
  1028. }
  1029. else if (sd_count >= MAX_CMD_SIZE - 1) {
  1030. /**
  1031. * Keep fetching, but ignore normal characters beyond the max length
  1032. * The command will be injected when EOL is reached
  1033. */
  1034. }
  1035. else {
  1036. if (sd_char == ';') sd_comment_mode = true;
  1037. if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
  1038. }
  1039. }
  1040. }
  1041. #endif // SDSUPPORT
  1042. /**
  1043. * Add to the circular command queue the next command from:
  1044. * - The command-injection queue (queued_commands_P)
  1045. * - The active serial input (usually USB)
  1046. * - The SD card file being actively printed
  1047. */
  1048. void get_available_commands() {
  1049. // if any immediate commands remain, don't get other commands yet
  1050. if (drain_queued_commands_P()) return;
  1051. get_serial_commands();
  1052. #if ENABLED(SDSUPPORT)
  1053. get_sdcard_commands();
  1054. #endif
  1055. }
  1056. inline bool code_has_value() {
  1057. int i = 1;
  1058. char c = seen_pointer[i];
  1059. while (c == ' ') c = seen_pointer[++i];
  1060. if (c == '-' || c == '+') c = seen_pointer[++i];
  1061. if (c == '.') c = seen_pointer[++i];
  1062. return NUMERIC(c);
  1063. }
  1064. inline float code_value_float() {
  1065. float ret;
  1066. char* e = strchr(seen_pointer, 'E');
  1067. if (e) {
  1068. *e = 0;
  1069. ret = strtod(seen_pointer + 1, NULL);
  1070. *e = 'E';
  1071. }
  1072. else
  1073. ret = strtod(seen_pointer + 1, NULL);
  1074. return ret;
  1075. }
  1076. inline unsigned long code_value_ulong() { return strtoul(seen_pointer + 1, NULL, 10); }
  1077. inline long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
  1078. inline int code_value_int() { return (int)strtol(seen_pointer + 1, NULL, 10); }
  1079. inline uint16_t code_value_ushort() { return (uint16_t)strtoul(seen_pointer + 1, NULL, 10); }
  1080. inline uint8_t code_value_byte() { return (uint8_t)(constrain(strtol(seen_pointer + 1, NULL, 10), 0, 255)); }
  1081. inline bool code_value_bool() { return code_value_byte() > 0; }
  1082. #if ENABLED(INCH_MODE_SUPPORT)
  1083. inline void set_input_linear_units(LinearUnit units) {
  1084. switch (units) {
  1085. case LINEARUNIT_INCH:
  1086. linear_unit_factor = 25.4;
  1087. break;
  1088. case LINEARUNIT_MM:
  1089. default:
  1090. linear_unit_factor = 1.0;
  1091. break;
  1092. }
  1093. volumetric_unit_factor = pow(linear_unit_factor, 3.0);
  1094. }
  1095. inline float axis_unit_factor(int axis) {
  1096. return (axis == E_AXIS && volumetric_enabled ? volumetric_unit_factor : linear_unit_factor);
  1097. }
  1098. inline float code_value_linear_units() { return code_value_float() * linear_unit_factor; }
  1099. inline float code_value_axis_units(int axis) { return code_value_float() * axis_unit_factor(axis); }
  1100. inline float code_value_per_axis_unit(int axis) { return code_value_float() / axis_unit_factor(axis); }
  1101. #else
  1102. inline float code_value_linear_units() { return code_value_float(); }
  1103. inline float code_value_axis_units(int axis) { UNUSED(axis); return code_value_float(); }
  1104. inline float code_value_per_axis_unit(int axis) { UNUSED(axis); return code_value_float(); }
  1105. #endif
  1106. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  1107. inline void set_input_temp_units(TempUnit units) { input_temp_units = units; }
  1108. float code_value_temp_abs() {
  1109. switch (input_temp_units) {
  1110. case TEMPUNIT_C:
  1111. return code_value_float();
  1112. case TEMPUNIT_F:
  1113. return (code_value_float() - 32) / 1.8;
  1114. case TEMPUNIT_K:
  1115. return code_value_float() - 272.15;
  1116. default:
  1117. return code_value_float();
  1118. }
  1119. }
  1120. float code_value_temp_diff() {
  1121. switch (input_temp_units) {
  1122. case TEMPUNIT_C:
  1123. case TEMPUNIT_K:
  1124. return code_value_float();
  1125. case TEMPUNIT_F:
  1126. return code_value_float() / 1.8;
  1127. default:
  1128. return code_value_float();
  1129. }
  1130. }
  1131. #else
  1132. float code_value_temp_abs() { return code_value_float(); }
  1133. float code_value_temp_diff() { return code_value_float(); }
  1134. #endif
  1135. FORCE_INLINE millis_t code_value_millis() { return code_value_ulong(); }
  1136. inline millis_t code_value_millis_from_seconds() { return code_value_float() * 1000; }
  1137. bool code_seen(char code) {
  1138. seen_pointer = strchr(current_command_args, code);
  1139. return (seen_pointer != NULL); // Return TRUE if the code-letter was found
  1140. }
  1141. /**
  1142. * Set target_extruder from the T parameter or the active_extruder
  1143. *
  1144. * Returns TRUE if the target is invalid
  1145. */
  1146. bool get_target_extruder_from_command(int code) {
  1147. if (code_seen('T')) {
  1148. if (code_value_byte() >= EXTRUDERS) {
  1149. SERIAL_ECHO_START;
  1150. SERIAL_CHAR('M');
  1151. SERIAL_ECHO(code);
  1152. SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", code_value_byte());
  1153. SERIAL_EOL;
  1154. return true;
  1155. }
  1156. target_extruder = code_value_byte();
  1157. }
  1158. else
  1159. target_extruder = active_extruder;
  1160. return false;
  1161. }
  1162. #define DEFINE_PGM_READ_ANY(type, reader) \
  1163. static inline type pgm_read_any(const type *p) \
  1164. { return pgm_read_##reader##_near(p); }
  1165. DEFINE_PGM_READ_ANY(float, float);
  1166. DEFINE_PGM_READ_ANY(signed char, byte);
  1167. #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
  1168. static const PROGMEM type array##_P[3] = \
  1169. { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
  1170. static inline type array(int axis) \
  1171. { return pgm_read_any(&array##_P[axis]); }
  1172. XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
  1173. XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
  1174. XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
  1175. XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
  1176. XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
  1177. XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
  1178. #if ENABLED(DUAL_X_CARRIAGE)
  1179. #define DXC_FULL_CONTROL_MODE 0
  1180. #define DXC_AUTO_PARK_MODE 1
  1181. #define DXC_DUPLICATION_MODE 2
  1182. static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  1183. static float x_home_pos(int extruder) {
  1184. if (extruder == 0)
  1185. return base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1186. else
  1187. /**
  1188. * In dual carriage mode the extruder offset provides an override of the
  1189. * second X-carriage offset when homed - otherwise X2_HOME_POS is used.
  1190. * This allow soft recalibration of the second extruder offset position
  1191. * without firmware reflash (through the M218 command).
  1192. */
  1193. return (hotend_offset[X_AXIS][1] > 0) ? hotend_offset[X_AXIS][1] : X2_HOME_POS;
  1194. }
  1195. static int x_home_dir(int extruder) {
  1196. return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
  1197. }
  1198. static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
  1199. static bool active_extruder_parked = false; // used in mode 1 & 2
  1200. static float raised_parked_position[NUM_AXIS]; // used in mode 1
  1201. static millis_t delayed_move_time = 0; // used in mode 1
  1202. static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
  1203. static float duplicate_extruder_temp_offset = 0; // used in mode 2
  1204. bool extruder_duplication_enabled = false; // used in mode 2
  1205. #endif //DUAL_X_CARRIAGE
  1206. /**
  1207. * Software endstops can be used to monitor the open end of
  1208. * an axis that has a hardware endstop on the other end. Or
  1209. * they can prevent axes from moving past endstops and grinding.
  1210. *
  1211. * To keep doing their job as the coordinate system changes,
  1212. * the software endstop positions must be refreshed to remain
  1213. * at the same positions relative to the machine.
  1214. */
  1215. static void update_software_endstops(AxisEnum axis) {
  1216. float offs = home_offset[axis] + position_shift[axis];
  1217. #if ENABLED(DUAL_X_CARRIAGE)
  1218. if (axis == X_AXIS) {
  1219. float dual_max_x = max(hotend_offset[X_AXIS][1], X2_MAX_POS);
  1220. if (active_extruder != 0) {
  1221. sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
  1222. sw_endstop_max[X_AXIS] = dual_max_x + offs;
  1223. return;
  1224. }
  1225. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  1226. sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
  1227. sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
  1228. return;
  1229. }
  1230. }
  1231. else
  1232. #endif
  1233. {
  1234. sw_endstop_min[axis] = base_min_pos(axis) + offs;
  1235. sw_endstop_max[axis] = base_max_pos(axis) + offs;
  1236. }
  1237. }
  1238. /**
  1239. * Change the home offset for an axis, update the current
  1240. * position and the software endstops to retain the same
  1241. * relative distance to the new home.
  1242. *
  1243. * Since this changes the current_position, code should
  1244. * call sync_plan_position soon after this.
  1245. */
  1246. static void set_home_offset(AxisEnum axis, float v) {
  1247. current_position[axis] += v - home_offset[axis];
  1248. home_offset[axis] = v;
  1249. update_software_endstops(axis);
  1250. }
  1251. static void set_axis_is_at_home(AxisEnum axis) {
  1252. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1253. if (DEBUGGING(LEVELING)) {
  1254. SERIAL_ECHOPAIR(">>> set_axis_is_at_home(", axis);
  1255. SERIAL_ECHOLNPGM(")");
  1256. }
  1257. #endif
  1258. position_shift[axis] = 0;
  1259. #if ENABLED(DUAL_X_CARRIAGE)
  1260. if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
  1261. if (active_extruder != 0)
  1262. current_position[X_AXIS] = x_home_pos(active_extruder);
  1263. else
  1264. current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
  1265. update_software_endstops(X_AXIS);
  1266. return;
  1267. }
  1268. #endif
  1269. #if ENABLED(SCARA)
  1270. if (axis == X_AXIS || axis == Y_AXIS) {
  1271. float homeposition[3];
  1272. for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
  1273. // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
  1274. // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
  1275. /**
  1276. * Works out real Homeposition angles using inverse kinematics,
  1277. * and calculates homing offset using forward kinematics
  1278. */
  1279. calculate_delta(homeposition);
  1280. // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
  1281. // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1282. for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
  1283. // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
  1284. // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
  1285. // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
  1286. // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1287. calculate_SCARA_forward_Transform(delta);
  1288. // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
  1289. // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
  1290. current_position[axis] = delta[axis];
  1291. /**
  1292. * SCARA home positions are based on configuration since the actual
  1293. * limits are determined by the inverse kinematic transform.
  1294. */
  1295. sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1296. sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
  1297. }
  1298. else
  1299. #endif
  1300. {
  1301. current_position[axis] = base_home_pos(axis) + home_offset[axis];
  1302. update_software_endstops(axis);
  1303. #if HAS_BED_PROBE && Z_HOME_DIR < 0 && DISABLED(Z_MIN_PROBE_ENDSTOP)
  1304. if (axis == Z_AXIS) {
  1305. current_position[Z_AXIS] -= zprobe_zoffset;
  1306. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1307. if (DEBUGGING(LEVELING)) {
  1308. SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
  1309. SERIAL_EOL;
  1310. }
  1311. #endif
  1312. }
  1313. #endif
  1314. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1315. if (DEBUGGING(LEVELING)) {
  1316. SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
  1317. SERIAL_EOL;
  1318. DEBUG_POS("", current_position);
  1319. }
  1320. #endif
  1321. }
  1322. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1323. if (DEBUGGING(LEVELING)) {
  1324. SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
  1325. SERIAL_ECHOLNPGM(")");
  1326. }
  1327. #endif
  1328. }
  1329. /**
  1330. * Some planner shorthand inline functions
  1331. */
  1332. inline void set_homing_bump_feedrate(AxisEnum axis) {
  1333. const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
  1334. int hbd = homing_bump_divisor[axis];
  1335. if (hbd < 1) {
  1336. hbd = 10;
  1337. SERIAL_ECHO_START;
  1338. SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
  1339. }
  1340. feedrate = homing_feedrate[axis] / hbd;
  1341. }
  1342. //
  1343. // line_to_current_position
  1344. // Move the planner to the current position from wherever it last moved
  1345. // (or from wherever it has been told it is located).
  1346. //
  1347. inline void line_to_current_position() {
  1348. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
  1349. }
  1350. inline void line_to_z(float zPosition) {
  1351. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
  1352. }
  1353. //
  1354. // line_to_destination
  1355. // Move the planner, not necessarily synced with current_position
  1356. //
  1357. inline void line_to_destination(float mm_m) {
  1358. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
  1359. }
  1360. inline void line_to_destination() { line_to_destination(feedrate); }
  1361. /**
  1362. * sync_plan_position
  1363. * Set planner / stepper positions to the cartesian current_position.
  1364. * The stepper code translates these coordinates into step units.
  1365. * Allows translation between steps and millimeters for cartesian & core robots
  1366. */
  1367. inline void sync_plan_position() {
  1368. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1369. if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
  1370. #endif
  1371. planner.set_position_mm(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  1372. }
  1373. inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); }
  1374. inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
  1375. inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
  1376. //
  1377. // Prepare to do endstop or probe moves
  1378. // with custom feedrates.
  1379. //
  1380. // - Save current feedrates
  1381. // - Reset the rate multiplier
  1382. // - Reset the command timeout
  1383. // - Enable the endstops (for endstop moves)
  1384. //
  1385. static void setup_for_endstop_or_probe_move() {
  1386. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1387. if (DEBUGGING(LEVELING)) DEBUG_POS("setup_for_endstop_or_probe_move", current_position);
  1388. #endif
  1389. saved_feedrate = feedrate;
  1390. saved_feedrate_multiplier = feedrate_multiplier;
  1391. feedrate_multiplier = 100;
  1392. refresh_cmd_timeout();
  1393. }
  1394. static void clean_up_after_endstop_or_probe_move() {
  1395. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1396. if (DEBUGGING(LEVELING)) DEBUG_POS("clean_up_after_endstop_or_probe_move", current_position);
  1397. #endif
  1398. feedrate = saved_feedrate;
  1399. feedrate_multiplier = saved_feedrate_multiplier;
  1400. refresh_cmd_timeout();
  1401. }
  1402. #if HAS_BED_PROBE
  1403. #if ENABLED(DELTA)
  1404. /**
  1405. * Calculate delta, start a line, and set current_position to destination
  1406. */
  1407. void prepare_move_to_destination_raw() {
  1408. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1409. if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_to_destination_raw", destination);
  1410. #endif
  1411. refresh_cmd_timeout();
  1412. calculate_delta(destination);
  1413. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  1414. set_current_to_destination();
  1415. }
  1416. #endif
  1417. /**
  1418. * Plan a move to (X, Y, Z) and set the current_position
  1419. * The final current_position may not be the one that was requested
  1420. */
  1421. static void do_blocking_move_to(float x, float y, float z, float feed_rate = 0.0) {
  1422. float old_feedrate = feedrate;
  1423. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1424. if (DEBUGGING(LEVELING)) print_xyz(PSTR("do_blocking_move_to"), "", x, y, z);
  1425. #endif
  1426. #if ENABLED(DELTA)
  1427. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1428. destination[X_AXIS] = x;
  1429. destination[Y_AXIS] = y;
  1430. destination[Z_AXIS] = z;
  1431. if (x == current_position[X_AXIS] && y == current_position[Y_AXIS])
  1432. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1433. else
  1434. prepare_move_to_destination(); // this will also set_current_to_destination
  1435. #else
  1436. // If Z needs to raise, do it before moving XY
  1437. if (current_position[Z_AXIS] < z) {
  1438. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1439. current_position[Z_AXIS] = z;
  1440. line_to_current_position();
  1441. }
  1442. feedrate = (feed_rate != 0.0) ? feed_rate : XY_PROBE_FEEDRATE;
  1443. current_position[X_AXIS] = x;
  1444. current_position[Y_AXIS] = y;
  1445. line_to_current_position();
  1446. // If Z needs to lower, do it after moving XY
  1447. if (current_position[Z_AXIS] > z) {
  1448. feedrate = (feed_rate != 0.0) ? feed_rate : homing_feedrate[Z_AXIS];
  1449. current_position[Z_AXIS] = z;
  1450. line_to_current_position();
  1451. }
  1452. #endif
  1453. stepper.synchronize();
  1454. feedrate = old_feedrate;
  1455. }
  1456. inline void do_blocking_move_to_x(float x, float feed_rate = 0.0) {
  1457. do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS], feed_rate);
  1458. }
  1459. inline void do_blocking_move_to_z(float z, float feed_rate = 0.0) {
  1460. do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z, feed_rate);
  1461. }
  1462. /**
  1463. * Raise Z to a minimum height to make room for a probe to move
  1464. */
  1465. inline void do_probe_raise(float z_raise) {
  1466. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1467. if (DEBUGGING(LEVELING)) {
  1468. SERIAL_ECHOPAIR("do_probe_raise(", z_raise);
  1469. SERIAL_ECHOLNPGM(")");
  1470. }
  1471. #endif
  1472. float z_dest = home_offset[Z_AXIS] + z_raise;
  1473. if (zprobe_zoffset < 0)
  1474. z_dest -= zprobe_zoffset;
  1475. if (z_dest > current_position[Z_AXIS])
  1476. do_blocking_move_to_z(z_dest);
  1477. }
  1478. #endif //HAS_BED_PROBE
  1479. #if ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || HAS_PROBING_PROCEDURE
  1480. static bool axis_unhomed_error(const bool x, const bool y, const bool z) {
  1481. const bool xx = x && !axis_homed[X_AXIS],
  1482. yy = y && !axis_homed[Y_AXIS],
  1483. zz = z && !axis_homed[Z_AXIS];
  1484. if (xx || yy || zz) {
  1485. SERIAL_ECHO_START;
  1486. SERIAL_ECHOPGM(MSG_HOME " ");
  1487. if (xx) SERIAL_ECHOPGM(MSG_X);
  1488. if (yy) SERIAL_ECHOPGM(MSG_Y);
  1489. if (zz) SERIAL_ECHOPGM(MSG_Z);
  1490. SERIAL_ECHOLNPGM(" " MSG_FIRST);
  1491. #if ENABLED(ULTRA_LCD)
  1492. char message[3 * (LCD_WIDTH) + 1] = ""; // worst case is kana.utf with up to 3*LCD_WIDTH+1
  1493. strcat_P(message, PSTR(MSG_HOME " "));
  1494. if (xx) strcat_P(message, PSTR(MSG_X));
  1495. if (yy) strcat_P(message, PSTR(MSG_Y));
  1496. if (zz) strcat_P(message, PSTR(MSG_Z));
  1497. strcat_P(message, PSTR(" " MSG_FIRST));
  1498. lcd_setstatus(message);
  1499. #endif
  1500. return true;
  1501. }
  1502. return false;
  1503. }
  1504. #endif
  1505. #if ENABLED(Z_PROBE_SLED)
  1506. #ifndef SLED_DOCKING_OFFSET
  1507. #define SLED_DOCKING_OFFSET 0
  1508. #endif
  1509. /**
  1510. * Method to dock/undock a sled designed by Charles Bell.
  1511. *
  1512. * stow[in] If false, move to MAX_X and engage the solenoid
  1513. * If true, move to MAX_X and release the solenoid
  1514. */
  1515. static void dock_sled(bool stow) {
  1516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1517. if (DEBUGGING(LEVELING)) {
  1518. SERIAL_ECHOPAIR("dock_sled(", stow);
  1519. SERIAL_ECHOLNPGM(")");
  1520. }
  1521. #endif
  1522. // Dock sled a bit closer to ensure proper capturing
  1523. do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET - ((stow) ? 1 : 0));
  1524. digitalWrite(SLED_PIN, !stow); // switch solenoid
  1525. }
  1526. #endif // Z_PROBE_SLED
  1527. #if ENABLED(Z_PROBE_ALLEN_KEY)
  1528. void run_deploy_moves_script() {
  1529. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
  1530. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_X
  1531. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_X current_position[X_AXIS]
  1532. #endif
  1533. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Y
  1534. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Y current_position[Y_AXIS]
  1535. #endif
  1536. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_Z
  1537. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_Z current_position[Z_AXIS]
  1538. #endif
  1539. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE
  1540. #define Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE 0.0
  1541. #endif
  1542. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_1_X, Z_PROBE_ALLEN_KEY_DEPLOY_1_Y, Z_PROBE_ALLEN_KEY_DEPLOY_1_Z, Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE);
  1543. #endif
  1544. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
  1545. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_X
  1546. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_X current_position[X_AXIS]
  1547. #endif
  1548. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Y
  1549. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Y current_position[Y_AXIS]
  1550. #endif
  1551. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_Z
  1552. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_Z current_position[Z_AXIS]
  1553. #endif
  1554. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE
  1555. #define Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE 0.0
  1556. #endif
  1557. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_2_X, Z_PROBE_ALLEN_KEY_DEPLOY_2_Y, Z_PROBE_ALLEN_KEY_DEPLOY_2_Z, Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE);
  1558. #endif
  1559. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_3_Z)
  1560. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
  1561. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_X current_position[X_AXIS]
  1562. #endif
  1563. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Y
  1564. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Y current_position[Y_AXIS]
  1565. #endif
  1566. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_Z
  1567. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_Z current_position[Z_AXIS]
  1568. #endif
  1569. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE
  1570. #define Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE 0.0
  1571. #endif
  1572. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_3_X, Z_PROBE_ALLEN_KEY_DEPLOY_3_Y, Z_PROBE_ALLEN_KEY_DEPLOY_3_Z, Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE);
  1573. #endif
  1574. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_4_Z)
  1575. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_X
  1576. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_X current_position[X_AXIS]
  1577. #endif
  1578. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Y
  1579. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Y current_position[Y_AXIS]
  1580. #endif
  1581. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_Z
  1582. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_Z current_position[Z_AXIS]
  1583. #endif
  1584. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE
  1585. #define Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE 0.0
  1586. #endif
  1587. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_4_X, Z_PROBE_ALLEN_KEY_DEPLOY_4_Y, Z_PROBE_ALLEN_KEY_DEPLOY_4_Z, Z_PROBE_ALLEN_KEY_DEPLOY_4_FEEDRATE);
  1588. #endif
  1589. #if defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_X) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Y) || defined(Z_PROBE_ALLEN_KEY_DEPLOY_5_Z)
  1590. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_X
  1591. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_X current_position[X_AXIS]
  1592. #endif
  1593. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Y
  1594. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Y current_position[Y_AXIS]
  1595. #endif
  1596. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_Z
  1597. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_Z current_position[Z_AXIS]
  1598. #endif
  1599. #ifndef Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE
  1600. #define Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE 0.0
  1601. #endif
  1602. do_blocking_move_to(Z_PROBE_ALLEN_KEY_DEPLOY_5_X, Z_PROBE_ALLEN_KEY_DEPLOY_5_Y, Z_PROBE_ALLEN_KEY_DEPLOY_5_Z, Z_PROBE_ALLEN_KEY_DEPLOY_5_FEEDRATE);
  1603. #endif
  1604. }
  1605. void run_stow_moves_script() {
  1606. #if defined(Z_PROBE_ALLEN_KEY_STOW_1_X) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_1_Z)
  1607. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_X
  1608. #define Z_PROBE_ALLEN_KEY_STOW_1_X current_position[X_AXIS]
  1609. #endif
  1610. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Y
  1611. #define Z_PROBE_ALLEN_KEY_STOW_1_Y current_position[Y_AXIS]
  1612. #endif
  1613. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_Z
  1614. #define Z_PROBE_ALLEN_KEY_STOW_1_Z current_position[Z_AXIS]
  1615. #endif
  1616. #ifndef Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE
  1617. #define Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE 0.0
  1618. #endif
  1619. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_1_X, Z_PROBE_ALLEN_KEY_STOW_1_Y, Z_PROBE_ALLEN_KEY_STOW_1_Z, Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE);
  1620. #endif
  1621. #if defined(Z_PROBE_ALLEN_KEY_STOW_2_X) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_2_Z)
  1622. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_X
  1623. #define Z_PROBE_ALLEN_KEY_STOW_2_X current_position[X_AXIS]
  1624. #endif
  1625. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Y
  1626. #define Z_PROBE_ALLEN_KEY_STOW_2_Y current_position[Y_AXIS]
  1627. #endif
  1628. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_Z
  1629. #define Z_PROBE_ALLEN_KEY_STOW_2_Z current_position[Z_AXIS]
  1630. #endif
  1631. #ifndef Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE
  1632. #define Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE 0.0
  1633. #endif
  1634. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_2_X, Z_PROBE_ALLEN_KEY_STOW_2_Y, Z_PROBE_ALLEN_KEY_STOW_2_Z, Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE);
  1635. #endif
  1636. #if defined(Z_PROBE_ALLEN_KEY_STOW_3_X) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_3_Z)
  1637. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_X
  1638. #define Z_PROBE_ALLEN_KEY_STOW_3_X current_position[X_AXIS]
  1639. #endif
  1640. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Y
  1641. #define Z_PROBE_ALLEN_KEY_STOW_3_Y current_position[Y_AXIS]
  1642. #endif
  1643. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_Z
  1644. #define Z_PROBE_ALLEN_KEY_STOW_3_Z current_position[Z_AXIS]
  1645. #endif
  1646. #ifndef Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE
  1647. #define Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE 0.0
  1648. #endif
  1649. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_3_X, Z_PROBE_ALLEN_KEY_STOW_3_Y, Z_PROBE_ALLEN_KEY_STOW_3_Z, Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE);
  1650. #endif
  1651. #if defined(Z_PROBE_ALLEN_KEY_STOW_4_X) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_4_Z)
  1652. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_X
  1653. #define Z_PROBE_ALLEN_KEY_STOW_4_X current_position[X_AXIS]
  1654. #endif
  1655. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Y
  1656. #define Z_PROBE_ALLEN_KEY_STOW_4_Y current_position[Y_AXIS]
  1657. #endif
  1658. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_Z
  1659. #define Z_PROBE_ALLEN_KEY_STOW_4_Z current_position[Z_AXIS]
  1660. #endif
  1661. #ifndef Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE
  1662. #define Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE 0.0
  1663. #endif
  1664. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_4_X, Z_PROBE_ALLEN_KEY_STOW_4_Y, Z_PROBE_ALLEN_KEY_STOW_4_Z, Z_PROBE_ALLEN_KEY_STOW_4_FEEDRATE);
  1665. #endif
  1666. #if defined(Z_PROBE_ALLEN_KEY_STOW_5_X) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Y) || defined(Z_PROBE_ALLEN_KEY_STOW_5_Z)
  1667. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_X
  1668. #define Z_PROBE_ALLEN_KEY_STOW_5_X current_position[X_AXIS]
  1669. #endif
  1670. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Y
  1671. #define Z_PROBE_ALLEN_KEY_STOW_5_Y current_position[Y_AXIS]
  1672. #endif
  1673. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_Z
  1674. #define Z_PROBE_ALLEN_KEY_STOW_5_Z current_position[Z_AXIS]
  1675. #endif
  1676. #ifndef Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE
  1677. #define Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE 0.0
  1678. #endif
  1679. do_blocking_move_to(Z_PROBE_ALLEN_KEY_STOW_5_X, Z_PROBE_ALLEN_KEY_STOW_5_Y, Z_PROBE_ALLEN_KEY_STOW_5_Z, Z_PROBE_ALLEN_KEY_STOW_5_FEEDRATE);
  1680. #endif
  1681. }
  1682. #endif
  1683. #if HAS_BED_PROBE
  1684. // TRIGGERED_WHEN_STOWED_TEST can easily be extended to servo probes, ... if needed.
  1685. #if ENABLED(PROBE_IS_TRIGGERED_WHEN_STOWED_TEST)
  1686. #if ENABLED(Z_MIN_PROBE_ENDSTOP)
  1687. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING)
  1688. #else
  1689. #define _TRIGGERED_WHEN_STOWED_TEST (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING)
  1690. #endif
  1691. #endif
  1692. #define DEPLOY_PROBE() set_probe_deployed( true )
  1693. #define STOW_PROBE() set_probe_deployed( false )
  1694. // returns false for ok and true for failure
  1695. static bool set_probe_deployed(bool deploy) {
  1696. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1697. if (DEBUGGING(LEVELING)) {
  1698. DEBUG_POS("set_probe_deployed", current_position);
  1699. SERIAL_ECHOPAIR("deploy: ", deploy);
  1700. }
  1701. #endif
  1702. if (endstops.z_probe_enabled == deploy) return false;
  1703. // Make room for probe
  1704. do_probe_raise(_Z_RAISE_PROBE_DEPLOY_STOW);
  1705. #if ENABLED(Z_PROBE_SLED)
  1706. if (axis_unhomed_error(true, false, false)) { stop(); return true; }
  1707. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1708. if (axis_unhomed_error(true, true, true )) { stop(); return true; }
  1709. #endif
  1710. float oldXpos = current_position[X_AXIS]; // save x position
  1711. float oldYpos = current_position[Y_AXIS]; // save y position
  1712. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1713. // If endstop is already false, the Z probe is deployed
  1714. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) { // closed after the probe specific actions.
  1715. // Would a goto be less ugly?
  1716. //while (!_TRIGGERED_WHEN_STOWED_TEST) { idle(); // would offer the opportunity
  1717. // for a triggered when stowed manual probe.
  1718. #endif
  1719. #if ENABLED(Z_PROBE_SLED)
  1720. dock_sled(!deploy);
  1721. #elif HAS_Z_SERVO_ENDSTOP
  1722. servo[Z_ENDSTOP_SERVO_NR].move(z_servo_angle[((deploy) ? 0 : 1)]);
  1723. #elif ENABLED(Z_PROBE_ALLEN_KEY)
  1724. if (!deploy) run_stow_moves_script();
  1725. else run_deploy_moves_script();
  1726. #else
  1727. // Nothing to be done. Just enable_z_probe below...
  1728. #endif
  1729. #ifdef _TRIGGERED_WHEN_STOWED_TEST
  1730. }; // opened before the probe specific actions
  1731. if (_TRIGGERED_WHEN_STOWED_TEST == deploy) {
  1732. if (IsRunning()) {
  1733. SERIAL_ERROR_START;
  1734. SERIAL_ERRORLNPGM("Z-Probe failed");
  1735. LCD_ALERTMESSAGEPGM("Err: ZPROBE");
  1736. }
  1737. stop();
  1738. return true;
  1739. }
  1740. #endif
  1741. do_blocking_move_to(oldXpos, oldYpos, current_position[Z_AXIS]); // return to position before deploy
  1742. endstops.enable_z_probe( deploy );
  1743. return false;
  1744. }
  1745. // Do a single Z probe and return with current_position[Z_AXIS]
  1746. // at the height where the probe triggered.
  1747. static float run_z_probe() {
  1748. float old_feedrate = feedrate;
  1749. // Prevent stepper_inactive_time from running out and EXTRUDER_RUNOUT_PREVENT from extruding
  1750. refresh_cmd_timeout();
  1751. #if ENABLED(DELTA)
  1752. float start_z = current_position[Z_AXIS];
  1753. long start_steps = stepper.position(Z_AXIS);
  1754. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1755. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 1", current_position);
  1756. #endif
  1757. // move down slowly until you find the bed
  1758. feedrate = homing_feedrate[Z_AXIS] / 4;
  1759. destination[Z_AXIS] = -10;
  1760. prepare_move_to_destination_raw(); // this will also set_current_to_destination
  1761. stepper.synchronize();
  1762. endstops.hit_on_purpose(); // clear endstop hit flags
  1763. /**
  1764. * We have to let the planner know where we are right now as it
  1765. * is not where we said to go.
  1766. */
  1767. long stop_steps = stepper.position(Z_AXIS);
  1768. float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_mm[Z_AXIS];
  1769. current_position[Z_AXIS] = mm;
  1770. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1771. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
  1772. #endif
  1773. #else // !DELTA
  1774. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1775. planner.bed_level_matrix.set_to_identity();
  1776. #endif
  1777. feedrate = homing_feedrate[Z_AXIS];
  1778. // Move down until the Z probe (or endstop?) is triggered
  1779. float zPosition = -(Z_MAX_LENGTH + 10);
  1780. line_to_z(zPosition);
  1781. stepper.synchronize();
  1782. // Tell the planner where we ended up - Get this from the stepper handler
  1783. zPosition = stepper.get_axis_position_mm(Z_AXIS);
  1784. planner.set_position_mm(
  1785. current_position[X_AXIS], current_position[Y_AXIS], zPosition,
  1786. current_position[E_AXIS]
  1787. );
  1788. // move up the retract distance
  1789. zPosition += home_bump_mm(Z_AXIS);
  1790. line_to_z(zPosition);
  1791. stepper.synchronize();
  1792. endstops.hit_on_purpose(); // clear endstop hit flags
  1793. // move back down slowly to find bed
  1794. set_homing_bump_feedrate(Z_AXIS);
  1795. zPosition -= home_bump_mm(Z_AXIS) * 2;
  1796. line_to_z(zPosition);
  1797. stepper.synchronize();
  1798. endstops.hit_on_purpose(); // clear endstop hit flags
  1799. // Get the current stepper position after bumping an endstop
  1800. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  1801. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1802. if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
  1803. #endif
  1804. #endif // !DELTA
  1805. SYNC_PLAN_POSITION_KINEMATIC();
  1806. feedrate = old_feedrate;
  1807. return current_position[Z_AXIS];
  1808. }
  1809. inline void do_blocking_move_to_xy(float x, float y, float feed_rate = 0.0) {
  1810. do_blocking_move_to(x, y, current_position[Z_AXIS], feed_rate);
  1811. }
  1812. //
  1813. // - Move to the given XY
  1814. // - Deploy the probe, if not already deployed
  1815. // - Probe the bed, get the Z position
  1816. // - Depending on the 'stow' flag
  1817. // - Stow the probe, or
  1818. // - Raise to the BETWEEN height
  1819. // - Return the probed Z position
  1820. //
  1821. static float probe_pt(float x, float y, bool stow = true, int verbose_level = 1) {
  1822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1823. if (DEBUGGING(LEVELING)) {
  1824. SERIAL_ECHOPAIR(">>> probe_pt(", x);
  1825. SERIAL_ECHOPAIR(", ", y);
  1826. SERIAL_ECHOPAIR(", ", stow ? "stow" : "no stow");
  1827. SERIAL_ECHOLNPGM(")");
  1828. DEBUG_POS("", current_position);
  1829. }
  1830. #endif
  1831. float old_feedrate = feedrate;
  1832. // Ensure a minimum height before moving the probe
  1833. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1834. // Move to the XY where we shall probe
  1835. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1836. if (DEBUGGING(LEVELING)) {
  1837. SERIAL_ECHOPAIR("> do_blocking_move_to_xy(", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
  1838. SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1839. SERIAL_ECHOLNPGM(")");
  1840. }
  1841. #endif
  1842. feedrate = XY_PROBE_FEEDRATE;
  1843. do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  1844. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1845. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1846. #endif
  1847. if (DEPLOY_PROBE()) return NAN;
  1848. float measured_z = run_z_probe();
  1849. if (stow) {
  1850. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1851. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  1852. #endif
  1853. if (STOW_PROBE()) return NAN;
  1854. }
  1855. else {
  1856. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1857. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> do_probe_raise");
  1858. #endif
  1859. do_probe_raise(Z_RAISE_BETWEEN_PROBINGS);
  1860. }
  1861. if (verbose_level > 2) {
  1862. SERIAL_PROTOCOLPGM("Bed X: ");
  1863. SERIAL_PROTOCOL_F(x, 3);
  1864. SERIAL_PROTOCOLPGM(" Y: ");
  1865. SERIAL_PROTOCOL_F(y, 3);
  1866. SERIAL_PROTOCOLPGM(" Z: ");
  1867. SERIAL_PROTOCOL_F(measured_z, 3);
  1868. SERIAL_EOL;
  1869. }
  1870. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1871. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
  1872. #endif
  1873. feedrate = old_feedrate;
  1874. return measured_z;
  1875. }
  1876. #endif // HAS_BED_PROBE
  1877. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  1878. #if ENABLED(AUTO_BED_LEVELING_GRID)
  1879. #if DISABLED(DELTA)
  1880. static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
  1881. //planner.bed_level_matrix.debug("bed level before");
  1882. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1883. planner.bed_level_matrix.set_to_identity();
  1884. if (DEBUGGING(LEVELING)) {
  1885. vector_3 uncorrected_position = planner.adjusted_position();
  1886. DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
  1887. DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
  1888. }
  1889. #endif
  1890. vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
  1891. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1892. vector_3 corrected_position = planner.adjusted_position();
  1893. current_position[X_AXIS] = corrected_position.x;
  1894. current_position[Y_AXIS] = corrected_position.y;
  1895. current_position[Z_AXIS] = corrected_position.z;
  1896. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1897. if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
  1898. #endif
  1899. SYNC_PLAN_POSITION_KINEMATIC();
  1900. }
  1901. #endif // !DELTA
  1902. #else // !AUTO_BED_LEVELING_GRID
  1903. static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
  1904. planner.bed_level_matrix.set_to_identity();
  1905. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1906. if (DEBUGGING(LEVELING)) {
  1907. vector_3 uncorrected_position = planner.adjusted_position();
  1908. DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
  1909. }
  1910. #endif
  1911. vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
  1912. vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
  1913. vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
  1914. vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
  1915. if (planeNormal.z < 0) {
  1916. planeNormal.x = -planeNormal.x;
  1917. planeNormal.y = -planeNormal.y;
  1918. planeNormal.z = -planeNormal.z;
  1919. }
  1920. planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
  1921. vector_3 corrected_position = planner.adjusted_position();
  1922. current_position[X_AXIS] = corrected_position.x;
  1923. current_position[Y_AXIS] = corrected_position.y;
  1924. current_position[Z_AXIS] = corrected_position.z;
  1925. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1926. if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
  1927. #endif
  1928. SYNC_PLAN_POSITION_KINEMATIC();
  1929. }
  1930. #endif // !AUTO_BED_LEVELING_GRID
  1931. #if ENABLED(DELTA)
  1932. /**
  1933. * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
  1934. */
  1935. static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
  1936. if (bed_level[x][y] != 0.0) {
  1937. return; // Don't overwrite good values.
  1938. }
  1939. float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
  1940. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
  1941. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
  1942. float median = c; // Median is robust (ignores outliers).
  1943. if (a < b) {
  1944. if (b < c) median = b;
  1945. if (c < a) median = a;
  1946. }
  1947. else { // b <= a
  1948. if (c < b) median = b;
  1949. if (a < c) median = a;
  1950. }
  1951. bed_level[x][y] = median;
  1952. }
  1953. /**
  1954. * Fill in the unprobed points (corners of circular print surface)
  1955. * using linear extrapolation, away from the center.
  1956. */
  1957. static void extrapolate_unprobed_bed_level() {
  1958. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  1959. for (int y = 0; y <= half; y++) {
  1960. for (int x = 0; x <= half; x++) {
  1961. if (x + y < 3) continue;
  1962. extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
  1963. extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
  1964. extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
  1965. extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
  1966. }
  1967. }
  1968. }
  1969. /**
  1970. * Print calibration results for plotting or manual frame adjustment.
  1971. */
  1972. static void print_bed_level() {
  1973. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1974. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1975. SERIAL_PROTOCOL_F(bed_level[x][y], 2);
  1976. SERIAL_PROTOCOLCHAR(' ');
  1977. }
  1978. SERIAL_EOL;
  1979. }
  1980. }
  1981. /**
  1982. * Reset calibration results to zero.
  1983. */
  1984. void reset_bed_level() {
  1985. #if ENABLED(DEBUG_LEVELING_FEATURE)
  1986. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
  1987. #endif
  1988. for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
  1989. for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
  1990. bed_level[x][y] = 0.0;
  1991. }
  1992. }
  1993. }
  1994. #endif // DELTA
  1995. #endif // AUTO_BED_LEVELING_FEATURE
  1996. /**
  1997. * Home an individual axis
  1998. */
  1999. #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
  2000. static void homeaxis(AxisEnum axis) {
  2001. #define HOMEAXIS_DO(LETTER) \
  2002. ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
  2003. if (!(axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0)) return;
  2004. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2005. if (DEBUGGING(LEVELING)) {
  2006. SERIAL_ECHOPAIR(">>> homeaxis(", axis);
  2007. SERIAL_ECHOLNPGM(")");
  2008. }
  2009. #endif
  2010. int axis_home_dir =
  2011. #if ENABLED(DUAL_X_CARRIAGE)
  2012. (axis == X_AXIS) ? x_home_dir(active_extruder) :
  2013. #endif
  2014. home_dir(axis);
  2015. // Homing Z towards the bed? Deploy the Z probe or endstop.
  2016. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2017. if (axis == Z_AXIS && axis_home_dir < 0) {
  2018. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2019. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2020. #endif
  2021. if (DEPLOY_PROBE()) return;
  2022. }
  2023. #endif
  2024. // Set the axis position as setup for the move
  2025. current_position[axis] = 0;
  2026. sync_plan_position();
  2027. // Set a flag for Z motor locking
  2028. #if ENABLED(Z_DUAL_ENDSTOPS)
  2029. if (axis == Z_AXIS) stepper.set_homing_flag(true);
  2030. #endif
  2031. // Move towards the endstop until an endstop is triggered
  2032. destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
  2033. feedrate = homing_feedrate[axis];
  2034. line_to_destination();
  2035. stepper.synchronize();
  2036. // Set the axis position as setup for the move
  2037. current_position[axis] = 0;
  2038. sync_plan_position();
  2039. // Move away from the endstop by the axis HOME_BUMP_MM
  2040. destination[axis] = -home_bump_mm(axis) * axis_home_dir;
  2041. line_to_destination();
  2042. stepper.synchronize();
  2043. // Slow down the feedrate for the next move
  2044. set_homing_bump_feedrate(axis);
  2045. // Move slowly towards the endstop until triggered
  2046. destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
  2047. line_to_destination();
  2048. stepper.synchronize();
  2049. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2050. if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
  2051. #endif
  2052. #if ENABLED(Z_DUAL_ENDSTOPS)
  2053. if (axis == Z_AXIS) {
  2054. float adj = fabs(z_endstop_adj);
  2055. bool lockZ1;
  2056. if (axis_home_dir > 0) {
  2057. adj = -adj;
  2058. lockZ1 = (z_endstop_adj > 0);
  2059. }
  2060. else
  2061. lockZ1 = (z_endstop_adj < 0);
  2062. if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
  2063. sync_plan_position();
  2064. // Move to the adjusted endstop height
  2065. feedrate = homing_feedrate[axis];
  2066. destination[Z_AXIS] = adj;
  2067. line_to_destination();
  2068. stepper.synchronize();
  2069. if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
  2070. stepper.set_homing_flag(false);
  2071. } // Z_AXIS
  2072. #endif
  2073. #if ENABLED(DELTA)
  2074. // retrace by the amount specified in endstop_adj
  2075. if (endstop_adj[axis] * axis_home_dir < 0) {
  2076. sync_plan_position();
  2077. destination[axis] = endstop_adj[axis];
  2078. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2079. if (DEBUGGING(LEVELING)) {
  2080. SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
  2081. DEBUG_POS("", destination);
  2082. }
  2083. #endif
  2084. line_to_destination();
  2085. stepper.synchronize();
  2086. }
  2087. #endif
  2088. // Set the axis position to its home position (plus home offsets)
  2089. set_axis_is_at_home(axis);
  2090. SYNC_PLAN_POSITION_KINEMATIC();
  2091. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2092. if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
  2093. #endif
  2094. destination[axis] = current_position[axis];
  2095. endstops.hit_on_purpose(); // clear endstop hit flags
  2096. axis_known_position[axis] = true;
  2097. axis_homed[axis] = true;
  2098. // Put away the Z probe
  2099. #if HAS_BED_PROBE && DISABLED(Z_MIN_PROBE_ENDSTOP)
  2100. if (axis == Z_AXIS && axis_home_dir < 0) {
  2101. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2102. if (DEBUGGING(LEVELING)) SERIAL_ECHOPGM("> ");
  2103. #endif
  2104. if (STOW_PROBE()) return;
  2105. }
  2106. #endif
  2107. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2108. if (DEBUGGING(LEVELING)) {
  2109. SERIAL_ECHOPAIR("<<< homeaxis(", axis);
  2110. SERIAL_ECHOLNPGM(")");
  2111. }
  2112. #endif
  2113. }
  2114. #if ENABLED(FWRETRACT)
  2115. void retract(bool retracting, bool swapping = false) {
  2116. if (retracting == retracted[active_extruder]) return;
  2117. float old_feedrate = feedrate;
  2118. set_destination_to_current();
  2119. if (retracting) {
  2120. feedrate = retract_feedrate_mm_s * 60;
  2121. current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
  2122. sync_plan_position_e();
  2123. prepare_move_to_destination();
  2124. if (retract_zlift > 0.01) {
  2125. current_position[Z_AXIS] -= retract_zlift;
  2126. SYNC_PLAN_POSITION_KINEMATIC();
  2127. prepare_move_to_destination();
  2128. }
  2129. }
  2130. else {
  2131. if (retract_zlift > 0.01) {
  2132. current_position[Z_AXIS] += retract_zlift;
  2133. SYNC_PLAN_POSITION_KINEMATIC();
  2134. }
  2135. feedrate = retract_recover_feedrate * 60;
  2136. float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
  2137. current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
  2138. sync_plan_position_e();
  2139. prepare_move_to_destination();
  2140. }
  2141. feedrate = old_feedrate;
  2142. retracted[active_extruder] = retracting;
  2143. } // retract()
  2144. #endif // FWRETRACT
  2145. /**
  2146. * ***************************************************************************
  2147. * ***************************** G-CODE HANDLING *****************************
  2148. * ***************************************************************************
  2149. */
  2150. /**
  2151. * Set XYZE destination and feedrate from the current GCode command
  2152. *
  2153. * - Set destination from included axis codes
  2154. * - Set to current for missing axis codes
  2155. * - Set the feedrate, if included
  2156. */
  2157. void gcode_get_destination() {
  2158. for (int i = 0; i < NUM_AXIS; i++) {
  2159. if (code_seen(axis_codes[i]))
  2160. destination[i] = code_value_axis_units(i) + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
  2161. else
  2162. destination[i] = current_position[i];
  2163. }
  2164. if (code_seen('F') && code_value_linear_units() > 0.0)
  2165. feedrate = code_value_linear_units();
  2166. }
  2167. void unknown_command_error() {
  2168. SERIAL_ECHO_START;
  2169. SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
  2170. SERIAL_ECHO(current_command);
  2171. SERIAL_ECHOLNPGM("\"");
  2172. }
  2173. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  2174. /**
  2175. * Output a "busy" message at regular intervals
  2176. * while the machine is not accepting commands.
  2177. */
  2178. void host_keepalive() {
  2179. millis_t ms = millis();
  2180. if (host_keepalive_interval && busy_state != NOT_BUSY) {
  2181. if (PENDING(ms, next_busy_signal_ms)) return;
  2182. switch (busy_state) {
  2183. case IN_HANDLER:
  2184. case IN_PROCESS:
  2185. SERIAL_ECHO_START;
  2186. SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
  2187. break;
  2188. case PAUSED_FOR_USER:
  2189. SERIAL_ECHO_START;
  2190. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
  2191. break;
  2192. case PAUSED_FOR_INPUT:
  2193. SERIAL_ECHO_START;
  2194. SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
  2195. break;
  2196. default:
  2197. break;
  2198. }
  2199. }
  2200. next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
  2201. }
  2202. #endif //HOST_KEEPALIVE_FEATURE
  2203. /**
  2204. * G0, G1: Coordinated movement of X Y Z E axes
  2205. */
  2206. inline void gcode_G0_G1() {
  2207. if (IsRunning()) {
  2208. gcode_get_destination(); // For X Y Z E F
  2209. #if ENABLED(FWRETRACT)
  2210. if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
  2211. float echange = destination[E_AXIS] - current_position[E_AXIS];
  2212. // Is this move an attempt to retract or recover?
  2213. if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
  2214. current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
  2215. sync_plan_position_e(); // AND from the planner
  2216. retract(!retracted[active_extruder]);
  2217. return;
  2218. }
  2219. }
  2220. #endif //FWRETRACT
  2221. prepare_move_to_destination();
  2222. }
  2223. }
  2224. /**
  2225. * G2: Clockwise Arc
  2226. * G3: Counterclockwise Arc
  2227. */
  2228. #if ENABLED(ARC_SUPPORT)
  2229. inline void gcode_G2_G3(bool clockwise) {
  2230. if (IsRunning()) {
  2231. #if ENABLED(SF_ARC_FIX)
  2232. bool relative_mode_backup = relative_mode;
  2233. relative_mode = true;
  2234. #endif
  2235. gcode_get_destination();
  2236. #if ENABLED(SF_ARC_FIX)
  2237. relative_mode = relative_mode_backup;
  2238. #endif
  2239. // Center of arc as offset from current_position
  2240. float arc_offset[2] = {
  2241. code_seen('I') ? code_value_axis_units(X_AXIS) : 0,
  2242. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0
  2243. };
  2244. // Send an arc to the planner
  2245. plan_arc(destination, arc_offset, clockwise);
  2246. refresh_cmd_timeout();
  2247. }
  2248. }
  2249. #endif
  2250. /**
  2251. * G4: Dwell S<seconds> or P<milliseconds>
  2252. */
  2253. inline void gcode_G4() {
  2254. millis_t codenum = 0;
  2255. if (code_seen('P')) codenum = code_value_millis(); // milliseconds to wait
  2256. if (code_seen('S')) codenum = code_value_millis_from_seconds(); // seconds to wait
  2257. stepper.synchronize();
  2258. refresh_cmd_timeout();
  2259. codenum += previous_cmd_ms; // keep track of when we started waiting
  2260. if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
  2261. while (PENDING(millis(), codenum)) idle();
  2262. }
  2263. #if ENABLED(BEZIER_CURVE_SUPPORT)
  2264. /**
  2265. * Parameters interpreted according to:
  2266. * http://linuxcnc.org/docs/2.6/html/gcode/gcode.html#sec:G5-Cubic-Spline
  2267. * However I, J omission is not supported at this point; all
  2268. * parameters can be omitted and default to zero.
  2269. */
  2270. /**
  2271. * G5: Cubic B-spline
  2272. */
  2273. inline void gcode_G5() {
  2274. if (IsRunning()) {
  2275. gcode_get_destination();
  2276. float offset[] = {
  2277. code_seen('I') ? code_value_axis_units(X_AXIS) : 0.0,
  2278. code_seen('J') ? code_value_axis_units(Y_AXIS) : 0.0,
  2279. code_seen('P') ? code_value_axis_units(X_AXIS) : 0.0,
  2280. code_seen('Q') ? code_value_axis_units(Y_AXIS) : 0.0
  2281. };
  2282. plan_cubic_move(offset);
  2283. }
  2284. }
  2285. #endif // BEZIER_CURVE_SUPPORT
  2286. #if ENABLED(FWRETRACT)
  2287. /**
  2288. * G10 - Retract filament according to settings of M207
  2289. * G11 - Recover filament according to settings of M208
  2290. */
  2291. inline void gcode_G10_G11(bool doRetract=false) {
  2292. #if EXTRUDERS > 1
  2293. if (doRetract) {
  2294. retracted_swap[active_extruder] = (code_seen('S') && code_value_bool()); // checks for swap retract argument
  2295. }
  2296. #endif
  2297. retract(doRetract
  2298. #if EXTRUDERS > 1
  2299. , retracted_swap[active_extruder]
  2300. #endif
  2301. );
  2302. }
  2303. #endif //FWRETRACT
  2304. #if ENABLED(INCH_MODE_SUPPORT)
  2305. /**
  2306. * G20: Set input mode to inches
  2307. */
  2308. inline void gcode_G20() {
  2309. set_input_linear_units(LINEARUNIT_INCH);
  2310. }
  2311. /**
  2312. * G21: Set input mode to millimeters
  2313. */
  2314. inline void gcode_G21() {
  2315. set_input_linear_units(LINEARUNIT_MM);
  2316. }
  2317. #endif
  2318. #if ENABLED(QUICK_HOME)
  2319. static void quick_home_xy() {
  2320. current_position[X_AXIS] = current_position[Y_AXIS] = 0;
  2321. #if ENABLED(DUAL_X_CARRIAGE)
  2322. int x_axis_home_dir = x_home_dir(active_extruder);
  2323. extruder_duplication_enabled = false;
  2324. #else
  2325. int x_axis_home_dir = home_dir(X_AXIS);
  2326. #endif
  2327. float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
  2328. mlratio = mlx > mly ? mly / mlx : mlx / mly;
  2329. destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
  2330. destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
  2331. feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
  2332. line_to_destination();
  2333. stepper.synchronize();
  2334. endstops.hit_on_purpose(); // clear endstop hit flags
  2335. destination[X_AXIS] = destination[Y_AXIS] = 0;
  2336. }
  2337. #endif // QUICK_HOME
  2338. /**
  2339. * G28: Home all axes according to settings
  2340. *
  2341. * Parameters
  2342. *
  2343. * None Home to all axes with no parameters.
  2344. * With QUICK_HOME enabled XY will home together, then Z.
  2345. *
  2346. * Cartesian parameters
  2347. *
  2348. * X Home to the X endstop
  2349. * Y Home to the Y endstop
  2350. * Z Home to the Z endstop
  2351. *
  2352. */
  2353. inline void gcode_G28() {
  2354. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2355. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM(">>> gcode_G28");
  2356. #endif
  2357. // Wait for planner moves to finish!
  2358. stepper.synchronize();
  2359. // For auto bed leveling, clear the level matrix
  2360. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  2361. planner.bed_level_matrix.set_to_identity();
  2362. #if ENABLED(DELTA)
  2363. reset_bed_level();
  2364. #endif
  2365. #endif
  2366. /**
  2367. * For mesh bed leveling deactivate the mesh calculations, will be turned
  2368. * on again when homing all axis
  2369. */
  2370. #if ENABLED(MESH_BED_LEVELING)
  2371. float pre_home_z = MESH_HOME_SEARCH_Z;
  2372. if (mbl.active()) {
  2373. // Save known Z position if already homed
  2374. if (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) {
  2375. pre_home_z = current_position[Z_AXIS];
  2376. pre_home_z += mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2377. }
  2378. mbl.set_active(false);
  2379. current_position[Z_AXIS] = pre_home_z;
  2380. }
  2381. #endif
  2382. setup_for_endstop_or_probe_move();
  2383. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2384. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
  2385. #endif
  2386. endstops.enable(true); // Enable endstops for next homing move
  2387. #if ENABLED(DELTA)
  2388. /**
  2389. * A delta can only safely home all axes at the same time
  2390. */
  2391. // Pretend the current position is 0,0,0
  2392. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
  2393. sync_plan_position();
  2394. // Move all carriages up together until the first endstop is hit.
  2395. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
  2396. feedrate = 1.732 * homing_feedrate[X_AXIS];
  2397. line_to_destination();
  2398. stepper.synchronize();
  2399. endstops.hit_on_purpose(); // clear endstop hit flags
  2400. // Destination reached
  2401. for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
  2402. // take care of back off and rehome now we are all at the top
  2403. HOMEAXIS(X);
  2404. HOMEAXIS(Y);
  2405. HOMEAXIS(Z);
  2406. SYNC_PLAN_POSITION_KINEMATIC();
  2407. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2408. if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
  2409. #endif
  2410. #else // NOT DELTA
  2411. bool homeX = code_seen('X'), homeY = code_seen('Y'), homeZ = code_seen('Z');
  2412. home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
  2413. set_destination_to_current();
  2414. #if Z_HOME_DIR > 0 // If homing away from BED do Z first
  2415. if (home_all_axis || homeZ) {
  2416. HOMEAXIS(Z);
  2417. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2418. if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
  2419. #endif
  2420. }
  2421. #else
  2422. if (home_all_axis || homeX || homeY) {
  2423. // Raise Z before homing any other axes and z is not already high enough (never lower z)
  2424. float z_dest = home_offset[Z_AXIS] + MIN_Z_HEIGHT_FOR_HOMING;
  2425. if (z_dest > current_position[Z_AXIS]) {
  2426. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2427. if (DEBUGGING(LEVELING)) {
  2428. SERIAL_ECHOPAIR("Raise Z (before homing) to ", z_dest);
  2429. SERIAL_EOL;
  2430. }
  2431. #endif
  2432. feedrate = homing_feedrate[Z_AXIS];
  2433. line_to_z(z_dest);
  2434. stepper.synchronize();
  2435. destination[Z_AXIS] = current_position[Z_AXIS] = z_dest;
  2436. }
  2437. }
  2438. #endif
  2439. #if ENABLED(QUICK_HOME)
  2440. if (home_all_axis || (homeX && homeY)) quick_home_xy();
  2441. #endif
  2442. #if ENABLED(HOME_Y_BEFORE_X)
  2443. // Home Y
  2444. if (home_all_axis || homeY) {
  2445. HOMEAXIS(Y);
  2446. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2447. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2448. #endif
  2449. }
  2450. #endif
  2451. // Home X
  2452. if (home_all_axis || homeX) {
  2453. #if ENABLED(DUAL_X_CARRIAGE)
  2454. int tmp_extruder = active_extruder;
  2455. extruder_duplication_enabled = false;
  2456. active_extruder = !active_extruder;
  2457. HOMEAXIS(X);
  2458. inactive_extruder_x_pos = current_position[X_AXIS];
  2459. active_extruder = tmp_extruder;
  2460. HOMEAXIS(X);
  2461. // reset state used by the different modes
  2462. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  2463. delayed_move_time = 0;
  2464. active_extruder_parked = true;
  2465. #else
  2466. HOMEAXIS(X);
  2467. #endif
  2468. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2469. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
  2470. #endif
  2471. }
  2472. #if DISABLED(HOME_Y_BEFORE_X)
  2473. // Home Y
  2474. if (home_all_axis || homeY) {
  2475. HOMEAXIS(Y);
  2476. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2477. if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
  2478. #endif
  2479. }
  2480. #endif
  2481. // Home Z last if homing towards the bed
  2482. #if Z_HOME_DIR < 0
  2483. if (home_all_axis || homeZ) {
  2484. #if ENABLED(Z_SAFE_HOMING)
  2485. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2486. if (DEBUGGING(LEVELING)) {
  2487. SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
  2488. }
  2489. #endif
  2490. if (home_all_axis) {
  2491. /**
  2492. * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
  2493. * No need to move Z any more as this height should already be safe
  2494. * enough to reach Z_SAFE_HOMING XY positions.
  2495. * Just make sure the planner is in sync.
  2496. */
  2497. SYNC_PLAN_POSITION_KINEMATIC();
  2498. /**
  2499. * Set the Z probe (or just the nozzle) destination to the safe
  2500. * homing point
  2501. */
  2502. destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
  2503. destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
  2504. destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
  2505. feedrate = XY_PROBE_FEEDRATE;
  2506. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2507. if (DEBUGGING(LEVELING)) {
  2508. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
  2509. DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
  2510. }
  2511. #endif
  2512. // Move in the XY plane
  2513. line_to_destination();
  2514. stepper.synchronize();
  2515. /**
  2516. * Update the current positions for XY, Z is still at least at
  2517. * MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
  2518. */
  2519. current_position[X_AXIS] = destination[X_AXIS];
  2520. current_position[Y_AXIS] = destination[Y_AXIS];
  2521. }
  2522. // Let's see if X and Y are homed
  2523. if (axis_unhomed_error(true, true, false)) return;
  2524. /**
  2525. * Make sure the Z probe is within the physical limits
  2526. * NOTE: This doesn't necessarily ensure the Z probe is also
  2527. * within the bed!
  2528. */
  2529. float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
  2530. if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2531. && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
  2532. && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
  2533. && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
  2534. // Home the Z axis
  2535. HOMEAXIS(Z);
  2536. }
  2537. else {
  2538. LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
  2539. SERIAL_ECHO_START;
  2540. SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
  2541. }
  2542. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2543. if (DEBUGGING(LEVELING)) {
  2544. SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
  2545. }
  2546. #endif
  2547. #else // !Z_SAFE_HOMING
  2548. HOMEAXIS(Z);
  2549. #endif // !Z_SAFE_HOMING
  2550. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2551. if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
  2552. #endif
  2553. } // home_all_axis || homeZ
  2554. #endif // Z_HOME_DIR < 0
  2555. SYNC_PLAN_POSITION_KINEMATIC();
  2556. #endif // !DELTA (gcode_G28)
  2557. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2558. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.not_homing()");
  2559. #endif
  2560. endstops.not_homing();
  2561. endstops.hit_on_purpose(); // clear endstop hit flags
  2562. // Enable mesh leveling again
  2563. #if ENABLED(MESH_BED_LEVELING)
  2564. if (mbl.has_mesh()) {
  2565. if (home_all_axis || (axis_homed[X_AXIS] && axis_homed[Y_AXIS] && homeZ)) {
  2566. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2567. #if Z_HOME_DIR > 0
  2568. + Z_MAX_POS
  2569. #endif
  2570. ;
  2571. SYNC_PLAN_POSITION_KINEMATIC();
  2572. mbl.set_active(true);
  2573. #if ENABLED(MESH_G28_REST_ORIGIN)
  2574. current_position[Z_AXIS] = 0.0;
  2575. set_destination_to_current();
  2576. feedrate = homing_feedrate[Z_AXIS];
  2577. line_to_destination();
  2578. stepper.synchronize();
  2579. #else
  2580. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z -
  2581. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS))
  2582. #if Z_HOME_DIR > 0
  2583. + Z_MAX_POS
  2584. #endif
  2585. ;
  2586. #endif
  2587. }
  2588. else if ((axis_homed[X_AXIS] && axis_homed[Y_AXIS] && axis_homed[Z_AXIS]) && (homeX || homeY)) {
  2589. current_position[Z_AXIS] = pre_home_z;
  2590. SYNC_PLAN_POSITION_KINEMATIC();
  2591. mbl.set_active(true);
  2592. current_position[Z_AXIS] = pre_home_z -
  2593. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS));
  2594. }
  2595. }
  2596. #endif
  2597. clean_up_after_endstop_or_probe_move();
  2598. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2599. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G28");
  2600. #endif
  2601. report_current_position();
  2602. }
  2603. #if HAS_PROBING_PROCEDURE
  2604. void out_of_range_error(const char* p_edge) {
  2605. SERIAL_PROTOCOLPGM("?Probe ");
  2606. serialprintPGM(p_edge);
  2607. SERIAL_PROTOCOLLNPGM(" position out of range.");
  2608. }
  2609. #endif
  2610. #if ENABLED(MESH_BED_LEVELING)
  2611. enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset, MeshReset };
  2612. inline void _mbl_goto_xy(float x, float y) {
  2613. float old_feedrate = feedrate;
  2614. feedrate = homing_feedrate[X_AXIS];
  2615. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2616. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2617. + Z_RAISE_BETWEEN_PROBINGS
  2618. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2619. + MIN_Z_HEIGHT_FOR_HOMING
  2620. #endif
  2621. ;
  2622. line_to_current_position();
  2623. current_position[X_AXIS] = x + home_offset[X_AXIS];
  2624. current_position[Y_AXIS] = y + home_offset[Y_AXIS];
  2625. line_to_current_position();
  2626. #if Z_RAISE_BETWEEN_PROBINGS > 0 || MIN_Z_HEIGHT_FOR_HOMING > 0
  2627. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
  2628. line_to_current_position();
  2629. #endif
  2630. feedrate = old_feedrate;
  2631. stepper.synchronize();
  2632. }
  2633. /**
  2634. * G29: Mesh-based Z probe, probes a grid and produces a
  2635. * mesh to compensate for variable bed height
  2636. *
  2637. * Parameters With MESH_BED_LEVELING:
  2638. *
  2639. * S0 Produce a mesh report
  2640. * S1 Start probing mesh points
  2641. * S2 Probe the next mesh point
  2642. * S3 Xn Yn Zn.nn Manually modify a single point
  2643. * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
  2644. * S5 Reset and disable mesh
  2645. *
  2646. * The S0 report the points as below
  2647. *
  2648. * +----> X-axis 1-n
  2649. * |
  2650. * |
  2651. * v Y-axis 1-n
  2652. *
  2653. */
  2654. inline void gcode_G29() {
  2655. static int probe_point = -1;
  2656. MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
  2657. if (state < 0 || state > 5) {
  2658. SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
  2659. return;
  2660. }
  2661. int8_t px, py;
  2662. switch (state) {
  2663. case MeshReport:
  2664. if (mbl.has_mesh()) {
  2665. SERIAL_PROTOCOLPAIR("State: ", mbl.active() ? "On" : "Off");
  2666. SERIAL_PROTOCOLPAIR("\nNum X,Y: ", MESH_NUM_X_POINTS);
  2667. SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
  2668. SERIAL_PROTOCOLPAIR("\nZ search height: ", MESH_HOME_SEARCH_Z);
  2669. SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5);
  2670. SERIAL_PROTOCOLLNPGM("\nMeasured points:");
  2671. for (py = 0; py < MESH_NUM_Y_POINTS; py++) {
  2672. for (px = 0; px < MESH_NUM_X_POINTS; px++) {
  2673. SERIAL_PROTOCOLPGM(" ");
  2674. SERIAL_PROTOCOL_F(mbl.z_values[py][px], 5);
  2675. }
  2676. SERIAL_EOL;
  2677. }
  2678. }
  2679. else
  2680. SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
  2681. break;
  2682. case MeshStart:
  2683. mbl.reset();
  2684. probe_point = 0;
  2685. enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
  2686. break;
  2687. case MeshNext:
  2688. if (probe_point < 0) {
  2689. SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
  2690. return;
  2691. }
  2692. // For each G29 S2...
  2693. if (probe_point == 0) {
  2694. // For the intial G29 S2 make Z a positive value (e.g., 4.0)
  2695. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2696. #if Z_HOME_DIR > 0
  2697. + Z_MAX_POS
  2698. #endif
  2699. ;
  2700. SYNC_PLAN_POSITION_KINEMATIC();
  2701. }
  2702. else {
  2703. // For G29 S2 after adjusting Z.
  2704. mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
  2705. }
  2706. // If there's another point to sample, move there with optional lift.
  2707. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
  2708. mbl.zigzag(probe_point, px, py);
  2709. _mbl_goto_xy(mbl.get_probe_x(px), mbl.get_probe_y(py));
  2710. probe_point++;
  2711. }
  2712. else {
  2713. // One last "return to the bed" (as originally coded) at completion
  2714. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
  2715. #if Z_RAISE_BETWEEN_PROBINGS > MIN_Z_HEIGHT_FOR_HOMING
  2716. + Z_RAISE_BETWEEN_PROBINGS
  2717. #elif MIN_Z_HEIGHT_FOR_HOMING > 0
  2718. + MIN_Z_HEIGHT_FOR_HOMING
  2719. #endif
  2720. ;
  2721. line_to_current_position();
  2722. stepper.synchronize();
  2723. // After recording the last point, activate the mbl and home
  2724. SERIAL_PROTOCOLLNPGM("Mesh probing done.");
  2725. probe_point = -1;
  2726. mbl.set_has_mesh(true);
  2727. enqueue_and_echo_commands_P(PSTR("G28"));
  2728. }
  2729. break;
  2730. case MeshSet:
  2731. if (code_seen('X')) {
  2732. px = code_value_int() - 1;
  2733. if (px < 0 || px >= MESH_NUM_X_POINTS) {
  2734. SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
  2735. return;
  2736. }
  2737. }
  2738. else {
  2739. SERIAL_PROTOCOLLNPGM("X not entered.");
  2740. return;
  2741. }
  2742. if (code_seen('Y')) {
  2743. py = code_value_int() - 1;
  2744. if (py < 0 || py >= MESH_NUM_Y_POINTS) {
  2745. SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
  2746. return;
  2747. }
  2748. }
  2749. else {
  2750. SERIAL_PROTOCOLLNPGM("Y not entered.");
  2751. return;
  2752. }
  2753. if (code_seen('Z')) {
  2754. mbl.z_values[py][px] = code_value_axis_units(Z_AXIS);
  2755. }
  2756. else {
  2757. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2758. return;
  2759. }
  2760. break;
  2761. case MeshSetZOffset:
  2762. if (code_seen('Z')) {
  2763. mbl.z_offset = code_value_axis_units(Z_AXIS);
  2764. }
  2765. else {
  2766. SERIAL_PROTOCOLLNPGM("Z not entered.");
  2767. return;
  2768. }
  2769. break;
  2770. case MeshReset:
  2771. if (mbl.active()) {
  2772. current_position[Z_AXIS] +=
  2773. mbl.get_z(RAW_CURRENT_POSITION(X_AXIS), RAW_CURRENT_POSITION(Y_AXIS)) - MESH_HOME_SEARCH_Z;
  2774. mbl.reset();
  2775. SYNC_PLAN_POSITION_KINEMATIC();
  2776. }
  2777. else
  2778. mbl.reset();
  2779. } // switch(state)
  2780. report_current_position();
  2781. }
  2782. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  2783. /**
  2784. * G29: Detailed Z probe, probes the bed at 3 or more points.
  2785. * Will fail if the printer has not been homed with G28.
  2786. *
  2787. * Enhanced G29 Auto Bed Leveling Probe Routine
  2788. *
  2789. * Parameters With AUTO_BED_LEVELING_GRID:
  2790. *
  2791. * P Set the size of the grid that will be probed (P x P points).
  2792. * Not supported by non-linear delta printer bed leveling.
  2793. * Example: "G29 P4"
  2794. *
  2795. * S Set the XY travel speed between probe points (in units/min)
  2796. *
  2797. * D Dry-Run mode. Just evaluate the bed Topology - Don't apply
  2798. * or clean the rotation Matrix. Useful to check the topology
  2799. * after a first run of G29.
  2800. *
  2801. * V Set the verbose level (0-4). Example: "G29 V3"
  2802. *
  2803. * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
  2804. * This is useful for manual bed leveling and finding flaws in the bed (to
  2805. * assist with part placement).
  2806. * Not supported by non-linear delta printer bed leveling.
  2807. *
  2808. * F Set the Front limit of the probing grid
  2809. * B Set the Back limit of the probing grid
  2810. * L Set the Left limit of the probing grid
  2811. * R Set the Right limit of the probing grid
  2812. *
  2813. * Global Parameters:
  2814. *
  2815. * E/e By default G29 will engage the Z probe, test the bed, then disengage.
  2816. * Include "E" to engage/disengage the Z probe for each sample.
  2817. * There's no extra effect if you have a fixed Z probe.
  2818. * Usage: "G29 E" or "G29 e"
  2819. *
  2820. */
  2821. inline void gcode_G29() {
  2822. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2823. if (DEBUGGING(LEVELING)) {
  2824. SERIAL_ECHOLNPGM(">>> gcode_G29");
  2825. DEBUG_POS("", current_position);
  2826. }
  2827. #endif
  2828. // Don't allow auto-leveling without homing first
  2829. if (axis_unhomed_error(true, true, true)) return;
  2830. int verbose_level = code_seen('V') ? code_value_int() : 1;
  2831. if (verbose_level < 0 || verbose_level > 4) {
  2832. SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
  2833. return;
  2834. }
  2835. bool dryrun = code_seen('D');
  2836. bool stow_probe_after_each = code_seen('E');
  2837. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2838. #if DISABLED(DELTA)
  2839. bool do_topography_map = verbose_level > 2 || code_seen('T');
  2840. #endif
  2841. if (verbose_level > 0) {
  2842. SERIAL_PROTOCOLLNPGM("G29 Auto Bed Leveling");
  2843. if (dryrun) SERIAL_PROTOCOLLNPGM("Running in DRY-RUN mode");
  2844. }
  2845. int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
  2846. #if DISABLED(DELTA)
  2847. if (code_seen('P')) auto_bed_leveling_grid_points = code_value_int();
  2848. if (auto_bed_leveling_grid_points < 2) {
  2849. SERIAL_PROTOCOLLNPGM("?Number of probed (P)oints is implausible (2 minimum).");
  2850. return;
  2851. }
  2852. #endif
  2853. xy_probe_speed = code_seen('S') ? (int)code_value_linear_units() : XY_PROBE_SPEED;
  2854. int left_probe_bed_position = code_seen('L') ? (int)code_value_axis_units(X_AXIS) : LEFT_PROBE_BED_POSITION,
  2855. right_probe_bed_position = code_seen('R') ? (int)code_value_axis_units(X_AXIS) : RIGHT_PROBE_BED_POSITION,
  2856. front_probe_bed_position = code_seen('F') ? (int)code_value_axis_units(Y_AXIS) : FRONT_PROBE_BED_POSITION,
  2857. back_probe_bed_position = code_seen('B') ? (int)code_value_axis_units(Y_AXIS) : BACK_PROBE_BED_POSITION;
  2858. bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
  2859. left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
  2860. right_out_r = right_probe_bed_position > MAX_PROBE_X,
  2861. right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
  2862. front_out_f = front_probe_bed_position < MIN_PROBE_Y,
  2863. front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
  2864. back_out_b = back_probe_bed_position > MAX_PROBE_Y,
  2865. back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
  2866. if (left_out || right_out || front_out || back_out) {
  2867. if (left_out) {
  2868. out_of_range_error(PSTR("(L)eft"));
  2869. left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
  2870. }
  2871. if (right_out) {
  2872. out_of_range_error(PSTR("(R)ight"));
  2873. right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
  2874. }
  2875. if (front_out) {
  2876. out_of_range_error(PSTR("(F)ront"));
  2877. front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
  2878. }
  2879. if (back_out) {
  2880. out_of_range_error(PSTR("(B)ack"));
  2881. back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
  2882. }
  2883. return;
  2884. }
  2885. #endif // AUTO_BED_LEVELING_GRID
  2886. if (!dryrun) {
  2887. #if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
  2888. if (DEBUGGING(LEVELING)) {
  2889. vector_3 corrected_position = planner.adjusted_position();
  2890. DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
  2891. DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
  2892. }
  2893. #endif
  2894. // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
  2895. planner.bed_level_matrix.set_to_identity();
  2896. #if ENABLED(DELTA)
  2897. reset_bed_level();
  2898. #else //!DELTA
  2899. //vector_3 corrected_position = planner.adjusted_position();
  2900. //corrected_position.debug("position before G29");
  2901. vector_3 uncorrected_position = planner.adjusted_position();
  2902. //uncorrected_position.debug("position during G29");
  2903. current_position[X_AXIS] = uncorrected_position.x;
  2904. current_position[Y_AXIS] = uncorrected_position.y;
  2905. current_position[Z_AXIS] = uncorrected_position.z;
  2906. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2907. if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
  2908. #endif
  2909. SYNC_PLAN_POSITION_KINEMATIC();
  2910. #endif // !DELTA
  2911. }
  2912. stepper.synchronize();
  2913. setup_for_endstop_or_probe_move();
  2914. // Deploy the probe. Probe will raise if needed.
  2915. if (DEPLOY_PROBE()) return;
  2916. bed_leveling_in_progress = true;
  2917. #if ENABLED(AUTO_BED_LEVELING_GRID)
  2918. // probe at the points of a lattice grid
  2919. const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
  2920. yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
  2921. #if ENABLED(DELTA)
  2922. delta_grid_spacing[0] = xGridSpacing;
  2923. delta_grid_spacing[1] = yGridSpacing;
  2924. float zoffset = zprobe_zoffset;
  2925. if (code_seen('Z')) zoffset += code_value_axis_units(Z_AXIS);
  2926. #else // !DELTA
  2927. /**
  2928. * solve the plane equation ax + by + d = z
  2929. * A is the matrix with rows [x y 1] for all the probed points
  2930. * B is the vector of the Z positions
  2931. * the normal vector to the plane is formed by the coefficients of the
  2932. * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
  2933. * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
  2934. */
  2935. int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
  2936. double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
  2937. eqnBVector[abl2], // "B" vector of Z points
  2938. mean = 0.0;
  2939. int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
  2940. #endif // !DELTA
  2941. int probePointCounter = 0;
  2942. bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
  2943. for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
  2944. double yProbe = front_probe_bed_position + yGridSpacing * yCount;
  2945. int xStart, xStop, xInc;
  2946. if (zig) {
  2947. xStart = 0;
  2948. xStop = auto_bed_leveling_grid_points;
  2949. xInc = 1;
  2950. }
  2951. else {
  2952. xStart = auto_bed_leveling_grid_points - 1;
  2953. xStop = -1;
  2954. xInc = -1;
  2955. }
  2956. zig = !zig;
  2957. for (int xCount = xStart; xCount != xStop; xCount += xInc) {
  2958. double xProbe = left_probe_bed_position + xGridSpacing * xCount;
  2959. #if ENABLED(DELTA)
  2960. // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
  2961. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
  2962. if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
  2963. #endif //DELTA
  2964. float measured_z = probe_pt(xProbe, yProbe, stow_probe_after_each, verbose_level);
  2965. #if DISABLED(DELTA)
  2966. mean += measured_z;
  2967. eqnBVector[probePointCounter] = measured_z;
  2968. eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
  2969. eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
  2970. eqnAMatrix[probePointCounter + 2 * abl2] = 1;
  2971. indexIntoAB[xCount][yCount] = probePointCounter;
  2972. #else
  2973. bed_level[xCount][yCount] = measured_z + zoffset;
  2974. #endif
  2975. probePointCounter++;
  2976. idle();
  2977. } //xProbe
  2978. } //yProbe
  2979. #else // !AUTO_BED_LEVELING_GRID
  2980. #if ENABLED(DEBUG_LEVELING_FEATURE)
  2981. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> 3-point Leveling");
  2982. #endif
  2983. // Probe at 3 arbitrary points
  2984. float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
  2985. ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
  2986. stow_probe_after_each, verbose_level),
  2987. z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
  2988. ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
  2989. stow_probe_after_each, verbose_level),
  2990. z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
  2991. ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
  2992. stow_probe_after_each, verbose_level);
  2993. if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
  2994. #endif // !AUTO_BED_LEVELING_GRID
  2995. // Raise to _Z_RAISE_PROBE_DEPLOY_STOW. Stow the probe.
  2996. if (STOW_PROBE()) return;
  2997. // Restore state after probing
  2998. clean_up_after_endstop_or_probe_move();
  2999. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3000. if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
  3001. #endif
  3002. // Calculate leveling, print reports, correct the position
  3003. #if ENABLED(AUTO_BED_LEVELING_GRID)
  3004. #if ENABLED(DELTA)
  3005. if (!dryrun) extrapolate_unprobed_bed_level();
  3006. print_bed_level();
  3007. #else // !DELTA
  3008. // solve lsq problem
  3009. double plane_equation_coefficients[3];
  3010. qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
  3011. mean /= abl2;
  3012. if (verbose_level) {
  3013. SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
  3014. SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
  3015. SERIAL_PROTOCOLPGM(" b: ");
  3016. SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
  3017. SERIAL_PROTOCOLPGM(" d: ");
  3018. SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
  3019. SERIAL_EOL;
  3020. if (verbose_level > 2) {
  3021. SERIAL_PROTOCOLPGM("Mean of sampled points: ");
  3022. SERIAL_PROTOCOL_F(mean, 8);
  3023. SERIAL_EOL;
  3024. }
  3025. }
  3026. if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
  3027. // Show the Topography map if enabled
  3028. if (do_topography_map) {
  3029. SERIAL_PROTOCOLLNPGM("\nBed Height Topography:\n"
  3030. " +--- BACK --+\n"
  3031. " | |\n"
  3032. " L | (+) | R\n"
  3033. " E | | I\n"
  3034. " F | (-) N (+) | G\n"
  3035. " T | | H\n"
  3036. " | (-) | T\n"
  3037. " | |\n"
  3038. " O-- FRONT --+\n"
  3039. " (0,0)");
  3040. float min_diff = 999;
  3041. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3042. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3043. int ind = indexIntoAB[xx][yy];
  3044. float diff = eqnBVector[ind] - mean;
  3045. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3046. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3047. z_tmp = 0;
  3048. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3049. NOMORE(min_diff, eqnBVector[ind] - z_tmp);
  3050. if (diff >= 0.0)
  3051. SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
  3052. else
  3053. SERIAL_PROTOCOLCHAR(' ');
  3054. SERIAL_PROTOCOL_F(diff, 5);
  3055. } // xx
  3056. SERIAL_EOL;
  3057. } // yy
  3058. SERIAL_EOL;
  3059. if (verbose_level > 3) {
  3060. SERIAL_PROTOCOLLNPGM("\nCorrected Bed Height vs. Bed Topology:");
  3061. for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
  3062. for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
  3063. int ind = indexIntoAB[xx][yy];
  3064. float x_tmp = eqnAMatrix[ind + 0 * abl2],
  3065. y_tmp = eqnAMatrix[ind + 1 * abl2],
  3066. z_tmp = 0;
  3067. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3068. float diff = eqnBVector[ind] - z_tmp - min_diff;
  3069. if (diff >= 0.0)
  3070. SERIAL_PROTOCOLPGM(" +");
  3071. // Include + for column alignment
  3072. else
  3073. SERIAL_PROTOCOLCHAR(' ');
  3074. SERIAL_PROTOCOL_F(diff, 5);
  3075. } // xx
  3076. SERIAL_EOL;
  3077. } // yy
  3078. SERIAL_EOL;
  3079. }
  3080. } //do_topography_map
  3081. #endif //!DELTA
  3082. #endif // AUTO_BED_LEVELING_GRID
  3083. #if DISABLED(DELTA)
  3084. if (verbose_level > 0)
  3085. planner.bed_level_matrix.debug("\n\nBed Level Correction Matrix:");
  3086. if (!dryrun) {
  3087. /**
  3088. * Correct the Z height difference from Z probe position and nozzle tip position.
  3089. * The Z height on homing is measured by Z probe, but the Z probe is quite far
  3090. * from the nozzle. When the bed is uneven, this height must be corrected.
  3091. */
  3092. float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3093. y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3094. z_tmp = current_position[Z_AXIS],
  3095. stepper_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
  3096. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3097. if (DEBUGGING(LEVELING)) {
  3098. SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > stepper_z = ", stepper_z);
  3099. SERIAL_ECHOPAIR(" ... z_tmp = ", z_tmp);
  3100. SERIAL_EOL;
  3101. }
  3102. #endif
  3103. // Apply the correction sending the Z probe offset
  3104. apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
  3105. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3106. if (DEBUGGING(LEVELING)) {
  3107. SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
  3108. SERIAL_EOL;
  3109. }
  3110. #endif
  3111. // Adjust the current Z and send it to the planner.
  3112. current_position[Z_AXIS] += z_tmp - stepper_z;
  3113. SYNC_PLAN_POSITION_KINEMATIC();
  3114. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3115. if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
  3116. #endif
  3117. }
  3118. #endif // !DELTA
  3119. #ifdef Z_PROBE_END_SCRIPT
  3120. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3121. if (DEBUGGING(LEVELING)) {
  3122. SERIAL_ECHOPGM("Z Probe End Script: ");
  3123. SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
  3124. }
  3125. #endif
  3126. enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
  3127. stepper.synchronize();
  3128. #endif
  3129. #if ENABLED(DEBUG_LEVELING_FEATURE)
  3130. if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< gcode_G29");
  3131. #endif
  3132. bed_leveling_in_progress = false;
  3133. report_current_position();
  3134. KEEPALIVE_STATE(IN_HANDLER);
  3135. }
  3136. #endif //AUTO_BED_LEVELING_FEATURE
  3137. #if HAS_BED_PROBE
  3138. /**
  3139. * G30: Do a single Z probe at the current XY
  3140. */
  3141. inline void gcode_G30() {
  3142. setup_for_endstop_or_probe_move();
  3143. // TODO: clear the leveling matrix or the planner will be set incorrectly
  3144. float measured_z = probe_pt(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
  3145. current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
  3146. true, 1);
  3147. SERIAL_PROTOCOLPGM("Bed X: ");
  3148. SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3149. SERIAL_PROTOCOLPGM(" Y: ");
  3150. SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
  3151. SERIAL_PROTOCOLPGM(" Z: ");
  3152. SERIAL_PROTOCOL(measured_z + 0.0001);
  3153. SERIAL_EOL;
  3154. clean_up_after_endstop_or_probe_move();
  3155. report_current_position();
  3156. }
  3157. #if ENABLED(Z_PROBE_SLED)
  3158. /**
  3159. * G31: Deploy the Z probe
  3160. */
  3161. inline void gcode_G31() { DEPLOY_PROBE(); }
  3162. /**
  3163. * G32: Stow the Z probe
  3164. */
  3165. inline void gcode_G32() { STOW_PROBE(); }
  3166. #endif // Z_PROBE_SLED
  3167. #endif // HAS_BED_PROBE
  3168. /**
  3169. * G92: Set current position to given X Y Z E
  3170. */
  3171. inline void gcode_G92() {
  3172. bool didE = code_seen('E');
  3173. if (!didE) stepper.synchronize();
  3174. bool didXYZ = false;
  3175. for (int i = 0; i < NUM_AXIS; i++) {
  3176. if (code_seen(axis_codes[i])) {
  3177. float p = current_position[i],
  3178. v = code_value_axis_units(i);
  3179. current_position[i] = v;
  3180. if (i != E_AXIS) {
  3181. position_shift[i] += v - p; // Offset the coordinate space
  3182. update_software_endstops((AxisEnum)i);
  3183. didXYZ = true;
  3184. }
  3185. }
  3186. }
  3187. if (didXYZ)
  3188. SYNC_PLAN_POSITION_KINEMATIC();
  3189. else if (didE)
  3190. sync_plan_position_e();
  3191. }
  3192. #if ENABLED(ULTIPANEL)
  3193. /**
  3194. * M0: Unconditional stop - Wait for user button press on LCD
  3195. * M1: Conditional stop - Wait for user button press on LCD
  3196. */
  3197. inline void gcode_M0_M1() {
  3198. char* args = current_command_args;
  3199. millis_t codenum = 0;
  3200. bool hasP = false, hasS = false;
  3201. if (code_seen('P')) {
  3202. codenum = code_value_millis(); // milliseconds to wait
  3203. hasP = codenum > 0;
  3204. }
  3205. if (code_seen('S')) {
  3206. codenum = code_value_millis_from_seconds(); // seconds to wait
  3207. hasS = codenum > 0;
  3208. }
  3209. if (!hasP && !hasS && *args != '\0')
  3210. lcd_setstatus(args, true);
  3211. else {
  3212. LCD_MESSAGEPGM(MSG_USERWAIT);
  3213. #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
  3214. dontExpireStatus();
  3215. #endif
  3216. }
  3217. lcd_ignore_click();
  3218. stepper.synchronize();
  3219. refresh_cmd_timeout();
  3220. if (codenum > 0) {
  3221. codenum += previous_cmd_ms; // wait until this time for a click
  3222. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3223. while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
  3224. KEEPALIVE_STATE(IN_HANDLER);
  3225. lcd_ignore_click(false);
  3226. }
  3227. else {
  3228. if (!lcd_detected()) return;
  3229. KEEPALIVE_STATE(PAUSED_FOR_USER);
  3230. while (!lcd_clicked()) idle();
  3231. KEEPALIVE_STATE(IN_HANDLER);
  3232. }
  3233. if (IS_SD_PRINTING)
  3234. LCD_MESSAGEPGM(MSG_RESUMING);
  3235. else
  3236. LCD_MESSAGEPGM(WELCOME_MSG);
  3237. }
  3238. #endif // ULTIPANEL
  3239. /**
  3240. * M17: Enable power on all stepper motors
  3241. */
  3242. inline void gcode_M17() {
  3243. LCD_MESSAGEPGM(MSG_NO_MOVE);
  3244. enable_all_steppers();
  3245. }
  3246. #if ENABLED(SDSUPPORT)
  3247. /**
  3248. * M20: List SD card to serial output
  3249. */
  3250. inline void gcode_M20() {
  3251. SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
  3252. card.ls();
  3253. SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
  3254. }
  3255. /**
  3256. * M21: Init SD Card
  3257. */
  3258. inline void gcode_M21() {
  3259. card.initsd();
  3260. }
  3261. /**
  3262. * M22: Release SD Card
  3263. */
  3264. inline void gcode_M22() {
  3265. card.release();
  3266. }
  3267. /**
  3268. * M23: Open a file
  3269. */
  3270. inline void gcode_M23() {
  3271. card.openFile(current_command_args, true);
  3272. }
  3273. /**
  3274. * M24: Start SD Print
  3275. */
  3276. inline void gcode_M24() {
  3277. card.startFileprint();
  3278. print_job_timer.start();
  3279. }
  3280. /**
  3281. * M25: Pause SD Print
  3282. */
  3283. inline void gcode_M25() {
  3284. card.pauseSDPrint();
  3285. }
  3286. /**
  3287. * M26: Set SD Card file index
  3288. */
  3289. inline void gcode_M26() {
  3290. if (card.cardOK && code_seen('S'))
  3291. card.setIndex(code_value_long());
  3292. }
  3293. /**
  3294. * M27: Get SD Card status
  3295. */
  3296. inline void gcode_M27() {
  3297. card.getStatus();
  3298. }
  3299. /**
  3300. * M28: Start SD Write
  3301. */
  3302. inline void gcode_M28() {
  3303. card.openFile(current_command_args, false);
  3304. }
  3305. /**
  3306. * M29: Stop SD Write
  3307. * Processed in write to file routine above
  3308. */
  3309. inline void gcode_M29() {
  3310. // card.saving = false;
  3311. }
  3312. /**
  3313. * M30 <filename>: Delete SD Card file
  3314. */
  3315. inline void gcode_M30() {
  3316. if (card.cardOK) {
  3317. card.closefile();
  3318. card.removeFile(current_command_args);
  3319. }
  3320. }
  3321. #endif //SDSUPPORT
  3322. /**
  3323. * M31: Get the time since the start of SD Print (or last M109)
  3324. */
  3325. inline void gcode_M31() {
  3326. millis_t t = print_job_timer.duration();
  3327. int min = t / 60, sec = t % 60;
  3328. char time[30];
  3329. sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
  3330. SERIAL_ECHO_START;
  3331. SERIAL_ECHOLN(time);
  3332. lcd_setstatus(time);
  3333. thermalManager.autotempShutdown();
  3334. }
  3335. #if ENABLED(SDSUPPORT)
  3336. /**
  3337. * M32: Select file and start SD Print
  3338. */
  3339. inline void gcode_M32() {
  3340. if (card.sdprinting)
  3341. stepper.synchronize();
  3342. char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
  3343. if (!namestartpos)
  3344. namestartpos = current_command_args; // Default name position, 4 letters after the M
  3345. else
  3346. namestartpos++; //to skip the '!'
  3347. bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
  3348. if (card.cardOK) {
  3349. card.openFile(namestartpos, true, call_procedure);
  3350. if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
  3351. card.setIndex(code_value_long());
  3352. card.startFileprint();
  3353. // Procedure calls count as normal print time.
  3354. if (!call_procedure) print_job_timer.start();
  3355. }
  3356. }
  3357. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  3358. /**
  3359. * M33: Get the long full path of a file or folder
  3360. *
  3361. * Parameters:
  3362. * <dospath> Case-insensitive DOS-style path to a file or folder
  3363. *
  3364. * Example:
  3365. * M33 miscel~1/armchair/armcha~1.gco
  3366. *
  3367. * Output:
  3368. * /Miscellaneous/Armchair/Armchair.gcode
  3369. */
  3370. inline void gcode_M33() {
  3371. card.printLongPath(current_command_args);
  3372. }
  3373. #endif
  3374. /**
  3375. * M928: Start SD Write
  3376. */
  3377. inline void gcode_M928() {
  3378. card.openLogFile(current_command_args);
  3379. }
  3380. #endif // SDSUPPORT
  3381. /**
  3382. * M42: Change pin status via GCode
  3383. *
  3384. * P<pin> Pin number (LED if omitted)
  3385. * S<byte> Pin status from 0 - 255
  3386. */
  3387. inline void gcode_M42() {
  3388. if (!code_seen('S')) return;
  3389. int pin_status = code_value_int();
  3390. if (pin_status < 0 || pin_status > 255) return;
  3391. int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
  3392. if (pin_number < 0) return;
  3393. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
  3394. if (pin_number == sensitive_pins[i]) return;
  3395. pinMode(pin_number, OUTPUT);
  3396. digitalWrite(pin_number, pin_status);
  3397. analogWrite(pin_number, pin_status);
  3398. #if FAN_COUNT > 0
  3399. switch (pin_number) {
  3400. #if HAS_FAN0
  3401. case FAN_PIN: fanSpeeds[0] = pin_status; break;
  3402. #endif
  3403. #if HAS_FAN1
  3404. case FAN1_PIN: fanSpeeds[1] = pin_status; break;
  3405. #endif
  3406. #if HAS_FAN2
  3407. case FAN2_PIN: fanSpeeds[2] = pin_status; break;
  3408. #endif
  3409. }
  3410. #endif
  3411. }
  3412. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  3413. /**
  3414. * M48: Z probe repeatability measurement function.
  3415. *
  3416. * Usage:
  3417. * M48 <P#> <X#> <Y#> <V#> <E> <L#>
  3418. * P = Number of sampled points (4-50, default 10)
  3419. * X = Sample X position
  3420. * Y = Sample Y position
  3421. * V = Verbose level (0-4, default=1)
  3422. * E = Engage Z probe for each reading
  3423. * L = Number of legs of movement before probe
  3424. * S = Schizoid (Or Star if you prefer)
  3425. *
  3426. * This function assumes the bed has been homed. Specifically, that a G28 command
  3427. * as been issued prior to invoking the M48 Z probe repeatability measurement function.
  3428. * Any information generated by a prior G29 Bed leveling command will be lost and need to be
  3429. * regenerated.
  3430. */
  3431. inline void gcode_M48() {
  3432. if (axis_unhomed_error(true, true, true)) return;
  3433. int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
  3434. if (verbose_level < 0 || verbose_level > 4) {
  3435. SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
  3436. return;
  3437. }
  3438. if (verbose_level > 0)
  3439. SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability test");
  3440. int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
  3441. if (n_samples < 4 || n_samples > 50) {
  3442. SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
  3443. return;
  3444. }
  3445. float X_current = current_position[X_AXIS],
  3446. Y_current = current_position[Y_AXIS];
  3447. bool stow_probe_after_each = code_seen('E');
  3448. float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
  3449. #if DISABLED(DELTA)
  3450. if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
  3451. out_of_range_error(PSTR("X"));
  3452. return;
  3453. }
  3454. #endif
  3455. float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
  3456. #if DISABLED(DELTA)
  3457. if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
  3458. out_of_range_error(PSTR("Y"));
  3459. return;
  3460. }
  3461. #else
  3462. if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
  3463. SERIAL_PROTOCOLLNPGM("? (X,Y) location outside of probeable radius.");
  3464. return;
  3465. }
  3466. #endif
  3467. bool seen_L = code_seen('L');
  3468. uint8_t n_legs = seen_L ? code_value_byte() : 0;
  3469. if (n_legs > 15) {
  3470. SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
  3471. return;
  3472. }
  3473. if (n_legs == 1) n_legs = 2;
  3474. bool schizoid_flag = code_seen('S');
  3475. if (schizoid_flag && !seen_L) n_legs = 7;
  3476. /**
  3477. * Now get everything to the specified probe point So we can safely do a
  3478. * probe to get us close to the bed. If the Z-Axis is far from the bed,
  3479. * we don't want to use that as a starting point for each probe.
  3480. */
  3481. if (verbose_level > 2)
  3482. SERIAL_PROTOCOLLNPGM("Positioning the probe...");
  3483. #if ENABLED(DELTA)
  3484. // we don't do bed level correction in M48 because we want the raw data when we probe
  3485. reset_bed_level();
  3486. #elif ENABLED(AUTO_BED_LEVELING_FEATURE)
  3487. // we don't do bed level correction in M48 because we want the raw data when we probe
  3488. planner.bed_level_matrix.set_to_identity();
  3489. #endif
  3490. setup_for_endstop_or_probe_move();
  3491. // Move to the first point, deploy, and probe
  3492. probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3493. randomSeed(millis());
  3494. double mean = 0, sigma = 0, sample_set[n_samples];
  3495. for (uint8_t n = 0; n < n_samples; n++) {
  3496. if (n_legs) {
  3497. int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
  3498. float angle = random(0.0, 360.0),
  3499. radius = random(
  3500. #if ENABLED(DELTA)
  3501. DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
  3502. #else
  3503. 5, X_MAX_LENGTH / 8
  3504. #endif
  3505. );
  3506. if (verbose_level > 3) {
  3507. SERIAL_ECHOPAIR("Starting radius: ", radius);
  3508. SERIAL_ECHOPAIR(" angle: ", angle);
  3509. SERIAL_ECHOPGM(" Direction: ");
  3510. if (dir > 0) SERIAL_ECHOPGM("Counter-");
  3511. SERIAL_ECHOLNPGM("Clockwise");
  3512. }
  3513. for (uint8_t l = 0; l < n_legs - 1; l++) {
  3514. double delta_angle;
  3515. if (schizoid_flag)
  3516. // The points of a 5 point star are 72 degrees apart. We need to
  3517. // skip a point and go to the next one on the star.
  3518. delta_angle = dir * 2.0 * 72.0;
  3519. else
  3520. // If we do this line, we are just trying to move further
  3521. // around the circle.
  3522. delta_angle = dir * (float) random(25, 45);
  3523. angle += delta_angle;
  3524. while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
  3525. angle -= 360.0; // Arduino documentation says the trig functions should not be given values
  3526. while (angle < 0.0) // outside of this range. It looks like they behave correctly with
  3527. angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
  3528. X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
  3529. Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
  3530. #if DISABLED(DELTA)
  3531. X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
  3532. Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
  3533. #else
  3534. // If we have gone out too far, we can do a simple fix and scale the numbers
  3535. // back in closer to the origin.
  3536. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
  3537. X_current /= 1.25;
  3538. Y_current /= 1.25;
  3539. if (verbose_level > 3) {
  3540. SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
  3541. SERIAL_ECHOPAIR(", ", Y_current);
  3542. SERIAL_EOL;
  3543. }
  3544. }
  3545. #endif
  3546. if (verbose_level > 3) {
  3547. SERIAL_PROTOCOLPGM("Going to:");
  3548. SERIAL_ECHOPAIR(" X", X_current);
  3549. SERIAL_ECHOPAIR(" Y", Y_current);
  3550. SERIAL_ECHOPAIR(" Z", current_position[Z_AXIS]);
  3551. SERIAL_EOL;
  3552. }
  3553. do_blocking_move_to_xy(X_current, Y_current);
  3554. } // n_legs loop
  3555. } // n_legs
  3556. // Probe a single point
  3557. sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
  3558. /**
  3559. * Get the current mean for the data points we have so far
  3560. */
  3561. double sum = 0.0;
  3562. for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
  3563. mean = sum / (n + 1);
  3564. /**
  3565. * Now, use that mean to calculate the standard deviation for the
  3566. * data points we have so far
  3567. */
  3568. sum = 0.0;
  3569. for (uint8_t j = 0; j <= n; j++) {
  3570. float ss = sample_set[j] - mean;
  3571. sum += ss * ss;
  3572. }
  3573. sigma = sqrt(sum / (n + 1));
  3574. if (verbose_level > 0) {
  3575. if (verbose_level > 1) {
  3576. SERIAL_PROTOCOL(n + 1);
  3577. SERIAL_PROTOCOLPGM(" of ");
  3578. SERIAL_PROTOCOL((int)n_samples);
  3579. SERIAL_PROTOCOLPGM(" z: ");
  3580. SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
  3581. if (verbose_level > 2) {
  3582. SERIAL_PROTOCOLPGM(" mean: ");
  3583. SERIAL_PROTOCOL_F(mean, 6);
  3584. SERIAL_PROTOCOLPGM(" sigma: ");
  3585. SERIAL_PROTOCOL_F(sigma, 6);
  3586. }
  3587. }
  3588. SERIAL_EOL;
  3589. }
  3590. } // End of probe loop
  3591. if (STOW_PROBE()) return;
  3592. if (verbose_level > 0) {
  3593. SERIAL_PROTOCOLPGM("Mean: ");
  3594. SERIAL_PROTOCOL_F(mean, 6);
  3595. SERIAL_EOL;
  3596. }
  3597. SERIAL_PROTOCOLPGM("Standard Deviation: ");
  3598. SERIAL_PROTOCOL_F(sigma, 6);
  3599. SERIAL_EOL; SERIAL_EOL;
  3600. clean_up_after_endstop_or_probe_move();
  3601. report_current_position();
  3602. }
  3603. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  3604. /**
  3605. * M75: Start print timer
  3606. */
  3607. inline void gcode_M75() { print_job_timer.start(); }
  3608. /**
  3609. * M76: Pause print timer
  3610. */
  3611. inline void gcode_M76() { print_job_timer.pause(); }
  3612. /**
  3613. * M77: Stop print timer
  3614. */
  3615. inline void gcode_M77() { print_job_timer.stop(); }
  3616. #if ENABLED(PRINTCOUNTER)
  3617. /*+
  3618. * M78: Show print statistics
  3619. */
  3620. inline void gcode_M78() {
  3621. // "M78 S78" will reset the statistics
  3622. if (code_seen('S') && code_value_int() == 78)
  3623. print_job_timer.initStats();
  3624. else print_job_timer.showStats();
  3625. }
  3626. #endif
  3627. /**
  3628. * M104: Set hot end temperature
  3629. */
  3630. inline void gcode_M104() {
  3631. if (get_target_extruder_from_command(104)) return;
  3632. if (DEBUGGING(DRYRUN)) return;
  3633. #if ENABLED(SINGLENOZZLE)
  3634. if (target_extruder != active_extruder) return;
  3635. #endif
  3636. if (code_seen('S')) {
  3637. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3638. #if ENABLED(DUAL_X_CARRIAGE)
  3639. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3640. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3641. #endif
  3642. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3643. /**
  3644. * Stop the timer at the end of print, starting is managed by
  3645. * 'heat and wait' M109.
  3646. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3647. * stand by mode, for instance in a dual extruder setup, without affecting
  3648. * the running print timer.
  3649. */
  3650. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3651. print_job_timer.stop();
  3652. LCD_MESSAGEPGM(WELCOME_MSG);
  3653. }
  3654. #endif
  3655. if (code_value_temp_abs() > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3656. }
  3657. }
  3658. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3659. void print_heaterstates() {
  3660. #if HAS_TEMP_HOTEND
  3661. SERIAL_PROTOCOLPGM(" T:");
  3662. SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
  3663. SERIAL_PROTOCOLPGM(" /");
  3664. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
  3665. #endif
  3666. #if HAS_TEMP_BED
  3667. SERIAL_PROTOCOLPGM(" B:");
  3668. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3669. SERIAL_PROTOCOLPGM(" /");
  3670. SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
  3671. #endif
  3672. #if HOTENDS > 1
  3673. HOTEND_LOOP() {
  3674. SERIAL_PROTOCOLPGM(" T");
  3675. SERIAL_PROTOCOL(e);
  3676. SERIAL_PROTOCOLCHAR(':');
  3677. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3678. SERIAL_PROTOCOLPGM(" /");
  3679. SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
  3680. }
  3681. #endif
  3682. #if HAS_TEMP_BED
  3683. SERIAL_PROTOCOLPGM(" B@:");
  3684. #ifdef BED_WATTS
  3685. SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
  3686. SERIAL_PROTOCOLCHAR('W');
  3687. #else
  3688. SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
  3689. #endif
  3690. #endif
  3691. SERIAL_PROTOCOLPGM(" @:");
  3692. #ifdef EXTRUDER_WATTS
  3693. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
  3694. SERIAL_PROTOCOLCHAR('W');
  3695. #else
  3696. SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
  3697. #endif
  3698. #if HOTENDS > 1
  3699. HOTEND_LOOP() {
  3700. SERIAL_PROTOCOLPGM(" @");
  3701. SERIAL_PROTOCOL(e);
  3702. SERIAL_PROTOCOLCHAR(':');
  3703. #ifdef EXTRUDER_WATTS
  3704. SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
  3705. SERIAL_PROTOCOLCHAR('W');
  3706. #else
  3707. SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
  3708. #endif
  3709. }
  3710. #endif
  3711. #if ENABLED(SHOW_TEMP_ADC_VALUES)
  3712. #if HAS_TEMP_BED
  3713. SERIAL_PROTOCOLPGM(" ADC B:");
  3714. SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
  3715. SERIAL_PROTOCOLPGM("C->");
  3716. SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
  3717. #endif
  3718. HOTEND_LOOP() {
  3719. SERIAL_PROTOCOLPGM(" T");
  3720. SERIAL_PROTOCOL(e);
  3721. SERIAL_PROTOCOLCHAR(':');
  3722. SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
  3723. SERIAL_PROTOCOLPGM("C->");
  3724. SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(e) / OVERSAMPLENR, 0);
  3725. }
  3726. #endif
  3727. }
  3728. #endif
  3729. /**
  3730. * M105: Read hot end and bed temperature
  3731. */
  3732. inline void gcode_M105() {
  3733. if (get_target_extruder_from_command(105)) return;
  3734. #if HAS_TEMP_HOTEND || HAS_TEMP_BED
  3735. SERIAL_PROTOCOLPGM(MSG_OK);
  3736. print_heaterstates();
  3737. #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
  3738. SERIAL_ERROR_START;
  3739. SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
  3740. #endif
  3741. SERIAL_EOL;
  3742. }
  3743. #if FAN_COUNT > 0
  3744. /**
  3745. * M106: Set Fan Speed
  3746. *
  3747. * S<int> Speed between 0-255
  3748. * P<index> Fan index, if more than one fan
  3749. */
  3750. inline void gcode_M106() {
  3751. uint16_t s = code_seen('S') ? code_value_ushort() : 255,
  3752. p = code_seen('P') ? code_value_ushort() : 0;
  3753. NOMORE(s, 255);
  3754. if (p < FAN_COUNT) fanSpeeds[p] = s;
  3755. }
  3756. /**
  3757. * M107: Fan Off
  3758. */
  3759. inline void gcode_M107() {
  3760. uint16_t p = code_seen('P') ? code_value_ushort() : 0;
  3761. if (p < FAN_COUNT) fanSpeeds[p] = 0;
  3762. }
  3763. #endif // FAN_COUNT > 0
  3764. #if DISABLED(EMERGENCY_PARSER)
  3765. /**
  3766. * M108: Stop the waiting for heaters in M109, M190, M303. Does not affect the target temperature.
  3767. */
  3768. inline void gcode_M108() { wait_for_heatup = false; }
  3769. /**
  3770. * M112: Emergency Stop
  3771. */
  3772. inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
  3773. /**
  3774. * M410: Quickstop - Abort all planned moves
  3775. *
  3776. * This will stop the carriages mid-move, so most likely they
  3777. * will be out of sync with the stepper position after this.
  3778. */
  3779. inline void gcode_M410() { quickstop_stepper(); }
  3780. #endif
  3781. #ifndef MIN_COOLING_SLOPE_DEG
  3782. #define MIN_COOLING_SLOPE_DEG 1.50
  3783. #endif
  3784. #ifndef MIN_COOLING_SLOPE_TIME
  3785. #define MIN_COOLING_SLOPE_TIME 60
  3786. #endif
  3787. /**
  3788. * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
  3789. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
  3790. */
  3791. inline void gcode_M109() {
  3792. if (get_target_extruder_from_command(109)) return;
  3793. if (DEBUGGING(DRYRUN)) return;
  3794. #if ENABLED(SINGLENOZZLE)
  3795. if (target_extruder != active_extruder) return;
  3796. #endif
  3797. bool no_wait_for_cooling = code_seen('S');
  3798. if (no_wait_for_cooling || code_seen('R')) {
  3799. thermalManager.setTargetHotend(code_value_temp_abs(), target_extruder);
  3800. #if ENABLED(DUAL_X_CARRIAGE)
  3801. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
  3802. thermalManager.setTargetHotend(code_value_temp_abs() == 0.0 ? 0.0 : code_value_temp_abs() + duplicate_extruder_temp_offset, 1);
  3803. #endif
  3804. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3805. /**
  3806. * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
  3807. * stand by mode, for instance in a dual extruder setup, without affecting
  3808. * the running print timer.
  3809. */
  3810. if (code_value_temp_abs() <= (EXTRUDE_MINTEMP)/2) {
  3811. print_job_timer.stop();
  3812. LCD_MESSAGEPGM(WELCOME_MSG);
  3813. }
  3814. /**
  3815. * We do not check if the timer is already running because this check will
  3816. * be done for us inside the Stopwatch::start() method thus a running timer
  3817. * will not restart.
  3818. */
  3819. else print_job_timer.start();
  3820. #endif
  3821. if (thermalManager.isHeatingHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
  3822. }
  3823. #if ENABLED(AUTOTEMP)
  3824. planner.autotemp_M109();
  3825. #endif
  3826. #if TEMP_RESIDENCY_TIME > 0
  3827. millis_t residency_start_ms = 0;
  3828. // Loop until the temperature has stabilized
  3829. #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
  3830. #else
  3831. // Loop until the temperature is very close target
  3832. #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
  3833. #endif //TEMP_RESIDENCY_TIME > 0
  3834. float theTarget = -1.0, old_temp = 9999.0;
  3835. bool wants_to_cool = false;
  3836. wait_for_heatup = true;
  3837. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3838. KEEPALIVE_STATE(NOT_BUSY);
  3839. do {
  3840. // Target temperature might be changed during the loop
  3841. if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
  3842. wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
  3843. theTarget = thermalManager.degTargetHotend(target_extruder);
  3844. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3845. if (no_wait_for_cooling && wants_to_cool) break;
  3846. }
  3847. now = millis();
  3848. if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
  3849. next_temp_ms = now + 1000UL;
  3850. print_heaterstates();
  3851. #if TEMP_RESIDENCY_TIME > 0
  3852. SERIAL_PROTOCOLPGM(" W:");
  3853. if (residency_start_ms) {
  3854. long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3855. SERIAL_PROTOCOLLN(rem);
  3856. }
  3857. else {
  3858. SERIAL_PROTOCOLLNPGM("?");
  3859. }
  3860. #else
  3861. SERIAL_EOL;
  3862. #endif
  3863. }
  3864. idle();
  3865. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3866. float temp = thermalManager.degHotend(target_extruder);
  3867. #if TEMP_RESIDENCY_TIME > 0
  3868. float temp_diff = fabs(theTarget - temp);
  3869. if (!residency_start_ms) {
  3870. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
  3871. if (temp_diff < TEMP_WINDOW) residency_start_ms = now;
  3872. }
  3873. else if (temp_diff > TEMP_HYSTERESIS) {
  3874. // Restart the timer whenever the temperature falls outside the hysteresis.
  3875. residency_start_ms = now;
  3876. }
  3877. #endif //TEMP_RESIDENCY_TIME > 0
  3878. // Prevent a wait-forever situation if R is misused i.e. M109 R0
  3879. if (wants_to_cool) {
  3880. // break after MIN_COOLING_SLOPE_TIME seconds
  3881. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG
  3882. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3883. if (old_temp - temp < MIN_COOLING_SLOPE_DEG) break;
  3884. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME;
  3885. old_temp = temp;
  3886. }
  3887. }
  3888. } while (wait_for_heatup && TEMP_CONDITIONS);
  3889. LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
  3890. KEEPALIVE_STATE(IN_HANDLER);
  3891. }
  3892. #if HAS_TEMP_BED
  3893. #ifndef MIN_COOLING_SLOPE_DEG_BED
  3894. #define MIN_COOLING_SLOPE_DEG_BED 1.50
  3895. #endif
  3896. #ifndef MIN_COOLING_SLOPE_TIME_BED
  3897. #define MIN_COOLING_SLOPE_TIME_BED 60
  3898. #endif
  3899. /**
  3900. * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
  3901. * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
  3902. */
  3903. inline void gcode_M190() {
  3904. if (DEBUGGING(DRYRUN)) return;
  3905. LCD_MESSAGEPGM(MSG_BED_HEATING);
  3906. bool no_wait_for_cooling = code_seen('S');
  3907. if (no_wait_for_cooling || code_seen('R')) {
  3908. thermalManager.setTargetBed(code_value_temp_abs());
  3909. #if ENABLED(PRINTJOB_TIMER_AUTOSTART)
  3910. if (code_value_temp_abs() > BED_MINTEMP) {
  3911. /**
  3912. * We start the timer when 'heating and waiting' command arrives, LCD
  3913. * functions never wait. Cooling down managed by extruders.
  3914. *
  3915. * We do not check if the timer is already running because this check will
  3916. * be done for us inside the Stopwatch::start() method thus a running timer
  3917. * will not restart.
  3918. */
  3919. print_job_timer.start();
  3920. }
  3921. #endif
  3922. }
  3923. #if TEMP_BED_RESIDENCY_TIME > 0
  3924. millis_t residency_start_ms = 0;
  3925. // Loop until the temperature has stabilized
  3926. #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
  3927. #else
  3928. // Loop until the temperature is very close target
  3929. #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
  3930. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3931. float theTarget = -1.0, old_temp = 9999.0;
  3932. bool wants_to_cool = false;
  3933. wait_for_heatup = true;
  3934. millis_t now, next_temp_ms = 0, next_cool_check_ms = 0;
  3935. KEEPALIVE_STATE(NOT_BUSY);
  3936. do {
  3937. // Target temperature might be changed during the loop
  3938. if (theTarget != thermalManager.degTargetBed()) {
  3939. wants_to_cool = thermalManager.isCoolingBed();
  3940. theTarget = thermalManager.degTargetBed();
  3941. // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
  3942. if (no_wait_for_cooling && wants_to_cool) break;
  3943. }
  3944. now = millis();
  3945. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
  3946. next_temp_ms = now + 1000UL;
  3947. print_heaterstates();
  3948. #if TEMP_BED_RESIDENCY_TIME > 0
  3949. SERIAL_PROTOCOLPGM(" W:");
  3950. if (residency_start_ms) {
  3951. long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
  3952. SERIAL_PROTOCOLLN(rem);
  3953. }
  3954. else {
  3955. SERIAL_PROTOCOLLNPGM("?");
  3956. }
  3957. #else
  3958. SERIAL_EOL;
  3959. #endif
  3960. }
  3961. idle();
  3962. refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
  3963. float temp = thermalManager.degBed();
  3964. #if TEMP_BED_RESIDENCY_TIME > 0
  3965. float temp_diff = fabs(theTarget - temp);
  3966. if (!residency_start_ms) {
  3967. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
  3968. if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = now;
  3969. }
  3970. else if (temp_diff > TEMP_BED_HYSTERESIS) {
  3971. // Restart the timer whenever the temperature falls outside the hysteresis.
  3972. residency_start_ms = now;
  3973. }
  3974. #endif //TEMP_BED_RESIDENCY_TIME > 0
  3975. // Prevent a wait-forever situation if R is misused i.e. M190 R0
  3976. if (wants_to_cool) {
  3977. // break after MIN_COOLING_SLOPE_TIME_BED seconds
  3978. // if the temperature did not drop at least MIN_COOLING_SLOPE_DEG_BED
  3979. if (!next_cool_check_ms || ELAPSED(now, next_cool_check_ms)) {
  3980. if (old_temp - temp < MIN_COOLING_SLOPE_DEG_BED) break;
  3981. next_cool_check_ms = now + 1000UL * MIN_COOLING_SLOPE_TIME_BED;
  3982. old_temp = temp;
  3983. }
  3984. }
  3985. } while (wait_for_heatup && TEMP_BED_CONDITIONS);
  3986. LCD_MESSAGEPGM(MSG_BED_DONE);
  3987. KEEPALIVE_STATE(IN_HANDLER);
  3988. }
  3989. #endif // HAS_TEMP_BED
  3990. /**
  3991. * M110: Set Current Line Number
  3992. */
  3993. inline void gcode_M110() {
  3994. if (code_seen('N')) gcode_N = code_value_long();
  3995. }
  3996. /**
  3997. * M111: Set the debug level
  3998. */
  3999. inline void gcode_M111() {
  4000. marlin_debug_flags = code_seen('S') ? code_value_byte() : (uint8_t) DEBUG_NONE;
  4001. const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
  4002. const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
  4003. const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
  4004. const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
  4005. const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
  4006. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4007. const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
  4008. #endif
  4009. const static char* const debug_strings[] PROGMEM = {
  4010. str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
  4011. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4012. str_debug_32
  4013. #endif
  4014. };
  4015. SERIAL_ECHO_START;
  4016. SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
  4017. if (marlin_debug_flags) {
  4018. uint8_t comma = 0;
  4019. for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
  4020. if (TEST(marlin_debug_flags, i)) {
  4021. if (comma++) SERIAL_CHAR(',');
  4022. serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
  4023. }
  4024. }
  4025. }
  4026. else {
  4027. SERIAL_ECHOPGM(MSG_DEBUG_OFF);
  4028. }
  4029. SERIAL_EOL;
  4030. }
  4031. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  4032. /**
  4033. * M113: Get or set Host Keepalive interval (0 to disable)
  4034. *
  4035. * S<seconds> Optional. Set the keepalive interval.
  4036. */
  4037. inline void gcode_M113() {
  4038. if (code_seen('S')) {
  4039. host_keepalive_interval = code_value_byte();
  4040. NOMORE(host_keepalive_interval, 60);
  4041. }
  4042. else {
  4043. SERIAL_ECHO_START;
  4044. SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
  4045. SERIAL_EOL;
  4046. }
  4047. }
  4048. #endif
  4049. #if ENABLED(BARICUDA)
  4050. #if HAS_HEATER_1
  4051. /**
  4052. * M126: Heater 1 valve open
  4053. */
  4054. inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? code_value_byte() : 255; }
  4055. /**
  4056. * M127: Heater 1 valve close
  4057. */
  4058. inline void gcode_M127() { baricuda_valve_pressure = 0; }
  4059. #endif
  4060. #if HAS_HEATER_2
  4061. /**
  4062. * M128: Heater 2 valve open
  4063. */
  4064. inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? code_value_byte() : 255; }
  4065. /**
  4066. * M129: Heater 2 valve close
  4067. */
  4068. inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
  4069. #endif
  4070. #endif //BARICUDA
  4071. /**
  4072. * M140: Set bed temperature
  4073. */
  4074. inline void gcode_M140() {
  4075. if (DEBUGGING(DRYRUN)) return;
  4076. if (code_seen('S')) thermalManager.setTargetBed(code_value_temp_abs());
  4077. }
  4078. #if ENABLED(ULTIPANEL)
  4079. /**
  4080. * M145: Set the heatup state for a material in the LCD menu
  4081. * S<material> (0=PLA, 1=ABS)
  4082. * H<hotend temp>
  4083. * B<bed temp>
  4084. * F<fan speed>
  4085. */
  4086. inline void gcode_M145() {
  4087. int8_t material = code_seen('S') ? (int8_t)code_value_int() : 0;
  4088. if (material < 0 || material > 1) {
  4089. SERIAL_ERROR_START;
  4090. SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
  4091. }
  4092. else {
  4093. int v;
  4094. switch (material) {
  4095. case 0:
  4096. if (code_seen('H')) {
  4097. v = code_value_int();
  4098. preheatHotendTemp1 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4099. }
  4100. if (code_seen('F')) {
  4101. v = code_value_int();
  4102. preheatFanSpeed1 = constrain(v, 0, 255);
  4103. }
  4104. #if TEMP_SENSOR_BED != 0
  4105. if (code_seen('B')) {
  4106. v = code_value_int();
  4107. preheatBedTemp1 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4108. }
  4109. #endif
  4110. break;
  4111. case 1:
  4112. if (code_seen('H')) {
  4113. v = code_value_int();
  4114. preheatHotendTemp2 = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
  4115. }
  4116. if (code_seen('F')) {
  4117. v = code_value_int();
  4118. preheatFanSpeed2 = constrain(v, 0, 255);
  4119. }
  4120. #if TEMP_SENSOR_BED != 0
  4121. if (code_seen('B')) {
  4122. v = code_value_int();
  4123. preheatBedTemp2 = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
  4124. }
  4125. #endif
  4126. break;
  4127. }
  4128. }
  4129. }
  4130. #endif
  4131. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  4132. /**
  4133. * M149: Set temperature units
  4134. */
  4135. inline void gcode_M149() {
  4136. if (code_seen('C')) {
  4137. set_input_temp_units(TEMPUNIT_C);
  4138. } else if (code_seen('K')) {
  4139. set_input_temp_units(TEMPUNIT_K);
  4140. } else if (code_seen('F')) {
  4141. set_input_temp_units(TEMPUNIT_F);
  4142. }
  4143. }
  4144. #endif
  4145. #if HAS_POWER_SWITCH
  4146. /**
  4147. * M80: Turn on Power Supply
  4148. */
  4149. inline void gcode_M80() {
  4150. OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
  4151. /**
  4152. * If you have a switch on suicide pin, this is useful
  4153. * if you want to start another print with suicide feature after
  4154. * a print without suicide...
  4155. */
  4156. #if HAS_SUICIDE
  4157. OUT_WRITE(SUICIDE_PIN, HIGH);
  4158. #endif
  4159. #if ENABLED(ULTIPANEL)
  4160. powersupply = true;
  4161. LCD_MESSAGEPGM(WELCOME_MSG);
  4162. lcd_update();
  4163. #endif
  4164. }
  4165. #endif // HAS_POWER_SWITCH
  4166. /**
  4167. * M81: Turn off Power, including Power Supply, if there is one.
  4168. *
  4169. * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
  4170. */
  4171. inline void gcode_M81() {
  4172. thermalManager.disable_all_heaters();
  4173. stepper.finish_and_disable();
  4174. #if FAN_COUNT > 0
  4175. #if FAN_COUNT > 1
  4176. for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
  4177. #else
  4178. fanSpeeds[0] = 0;
  4179. #endif
  4180. #endif
  4181. delay(1000); // Wait 1 second before switching off
  4182. #if HAS_SUICIDE
  4183. stepper.synchronize();
  4184. suicide();
  4185. #elif HAS_POWER_SWITCH
  4186. OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
  4187. #endif
  4188. #if ENABLED(ULTIPANEL)
  4189. #if HAS_POWER_SWITCH
  4190. powersupply = false;
  4191. #endif
  4192. LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
  4193. lcd_update();
  4194. #endif
  4195. }
  4196. /**
  4197. * M82: Set E codes absolute (default)
  4198. */
  4199. inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
  4200. /**
  4201. * M83: Set E codes relative while in Absolute Coordinates (G90) mode
  4202. */
  4203. inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
  4204. /**
  4205. * M18, M84: Disable all stepper motors
  4206. */
  4207. inline void gcode_M18_M84() {
  4208. if (code_seen('S')) {
  4209. stepper_inactive_time = code_value_millis_from_seconds();
  4210. }
  4211. else {
  4212. bool all_axis = !((code_seen('X')) || (code_seen('Y')) || (code_seen('Z')) || (code_seen('E')));
  4213. if (all_axis) {
  4214. stepper.finish_and_disable();
  4215. }
  4216. else {
  4217. stepper.synchronize();
  4218. if (code_seen('X')) disable_x();
  4219. if (code_seen('Y')) disable_y();
  4220. if (code_seen('Z')) disable_z();
  4221. #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
  4222. if (code_seen('E')) {
  4223. disable_e0();
  4224. disable_e1();
  4225. disable_e2();
  4226. disable_e3();
  4227. }
  4228. #endif
  4229. }
  4230. }
  4231. }
  4232. /**
  4233. * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
  4234. */
  4235. inline void gcode_M85() {
  4236. if (code_seen('S')) max_inactive_time = code_value_millis_from_seconds();
  4237. }
  4238. /**
  4239. * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
  4240. * (Follows the same syntax as G92)
  4241. */
  4242. inline void gcode_M92() {
  4243. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4244. if (code_seen(axis_codes[i])) {
  4245. if (i == E_AXIS) {
  4246. float value = code_value_per_axis_unit(i);
  4247. if (value < 20.0) {
  4248. float factor = planner.axis_steps_per_mm[i] / value; // increase e constants if M92 E14 is given for netfab.
  4249. planner.max_e_jerk *= factor;
  4250. planner.max_feedrate[i] *= factor;
  4251. planner.max_acceleration_steps_per_s2[i] *= factor;
  4252. }
  4253. planner.axis_steps_per_mm[i] = value;
  4254. }
  4255. else {
  4256. planner.axis_steps_per_mm[i] = code_value_per_axis_unit(i);
  4257. }
  4258. }
  4259. }
  4260. }
  4261. /**
  4262. * Output the current position to serial
  4263. */
  4264. static void report_current_position() {
  4265. SERIAL_PROTOCOLPGM("X:");
  4266. SERIAL_PROTOCOL(current_position[X_AXIS]);
  4267. SERIAL_PROTOCOLPGM(" Y:");
  4268. SERIAL_PROTOCOL(current_position[Y_AXIS]);
  4269. SERIAL_PROTOCOLPGM(" Z:");
  4270. SERIAL_PROTOCOL(current_position[Z_AXIS]);
  4271. SERIAL_PROTOCOLPGM(" E:");
  4272. SERIAL_PROTOCOL(current_position[E_AXIS]);
  4273. stepper.report_positions();
  4274. #if ENABLED(SCARA)
  4275. SERIAL_PROTOCOLPGM("SCARA Theta:");
  4276. SERIAL_PROTOCOL(delta[X_AXIS]);
  4277. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4278. SERIAL_PROTOCOL(delta[Y_AXIS]);
  4279. SERIAL_EOL;
  4280. SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
  4281. SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
  4282. SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
  4283. SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
  4284. SERIAL_EOL;
  4285. SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
  4286. SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_mm[X_AXIS]);
  4287. SERIAL_PROTOCOLPGM(" Psi+Theta:");
  4288. SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_mm[Y_AXIS]);
  4289. SERIAL_EOL; SERIAL_EOL;
  4290. #endif
  4291. }
  4292. /**
  4293. * M114: Output current position to serial port
  4294. */
  4295. inline void gcode_M114() { report_current_position(); }
  4296. /**
  4297. * M115: Capabilities string
  4298. */
  4299. inline void gcode_M115() {
  4300. SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
  4301. }
  4302. /**
  4303. * M117: Set LCD Status Message
  4304. */
  4305. inline void gcode_M117() {
  4306. lcd_setstatus(current_command_args);
  4307. }
  4308. /**
  4309. * M119: Output endstop states to serial output
  4310. */
  4311. inline void gcode_M119() { endstops.M119(); }
  4312. /**
  4313. * M120: Enable endstops and set non-homing endstop state to "enabled"
  4314. */
  4315. inline void gcode_M120() { endstops.enable_globally(true); }
  4316. /**
  4317. * M121: Disable endstops and set non-homing endstop state to "disabled"
  4318. */
  4319. inline void gcode_M121() { endstops.enable_globally(false); }
  4320. #if ENABLED(BLINKM)
  4321. /**
  4322. * M150: Set Status LED Color - Use R-U-B for R-G-B
  4323. */
  4324. inline void gcode_M150() {
  4325. SendColors(
  4326. code_seen('R') ? code_value_byte() : 0,
  4327. code_seen('U') ? code_value_byte() : 0,
  4328. code_seen('B') ? code_value_byte() : 0
  4329. );
  4330. }
  4331. #endif // BLINKM
  4332. #if ENABLED(EXPERIMENTAL_I2CBUS)
  4333. /**
  4334. * M155: Send data to a I2C slave device
  4335. *
  4336. * This is a PoC, the formating and arguments for the GCODE will
  4337. * change to be more compatible, the current proposal is:
  4338. *
  4339. * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
  4340. *
  4341. * M155 B<byte-1 value in base 10>
  4342. * M155 B<byte-2 value in base 10>
  4343. * M155 B<byte-3 value in base 10>
  4344. *
  4345. * M155 S1 ; Send the buffered data and reset the buffer
  4346. * M155 R1 ; Reset the buffer without sending data
  4347. *
  4348. */
  4349. inline void gcode_M155() {
  4350. // Set the target address
  4351. if (code_seen('A'))
  4352. i2c.address(code_value_byte());
  4353. // Add a new byte to the buffer
  4354. else if (code_seen('B'))
  4355. i2c.addbyte(code_value_int());
  4356. // Flush the buffer to the bus
  4357. else if (code_seen('S')) i2c.send();
  4358. // Reset and rewind the buffer
  4359. else if (code_seen('R')) i2c.reset();
  4360. }
  4361. /**
  4362. * M156: Request X bytes from I2C slave device
  4363. *
  4364. * Usage: M156 A<slave device address base 10> B<number of bytes>
  4365. */
  4366. inline void gcode_M156() {
  4367. uint8_t addr = code_seen('A') ? code_value_byte() : 0;
  4368. int bytes = code_seen('B') ? code_value_int() : 1;
  4369. if (addr && bytes > 0 && bytes <= 32) {
  4370. i2c.address(addr);
  4371. i2c.reqbytes(bytes);
  4372. }
  4373. else {
  4374. SERIAL_ERROR_START;
  4375. SERIAL_ERRORLN("Bad i2c request");
  4376. }
  4377. }
  4378. #endif //EXPERIMENTAL_I2CBUS
  4379. /**
  4380. * M200: Set filament diameter and set E axis units to cubic units
  4381. *
  4382. * T<extruder> - Optional extruder number. Current extruder if omitted.
  4383. * D<linear> - Diameter of the filament. Use "D0" to switch back to linear units on the E axis.
  4384. */
  4385. inline void gcode_M200() {
  4386. if (get_target_extruder_from_command(200)) return;
  4387. if (code_seen('D')) {
  4388. // setting any extruder filament size disables volumetric on the assumption that
  4389. // slicers either generate in extruder values as cubic mm or as as filament feeds
  4390. // for all extruders
  4391. volumetric_enabled = (code_value_linear_units() != 0.0);
  4392. if (volumetric_enabled) {
  4393. filament_size[target_extruder] = code_value_linear_units();
  4394. // make sure all extruders have some sane value for the filament size
  4395. for (int i = 0; i < EXTRUDERS; i++)
  4396. if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
  4397. }
  4398. }
  4399. else {
  4400. //reserved for setting filament diameter via UFID or filament measuring device
  4401. return;
  4402. }
  4403. calculate_volumetric_multipliers();
  4404. }
  4405. /**
  4406. * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
  4407. */
  4408. inline void gcode_M201() {
  4409. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4410. if (code_seen(axis_codes[i])) {
  4411. planner.max_acceleration_mm_per_s2[i] = code_value_axis_units(i);
  4412. }
  4413. }
  4414. // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
  4415. planner.reset_acceleration_rates();
  4416. }
  4417. #if 0 // Not used for Sprinter/grbl gen6
  4418. inline void gcode_M202() {
  4419. for (int8_t i = 0; i < NUM_AXIS; i++) {
  4420. if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value_axis_units(i) * planner.axis_steps_per_mm[i];
  4421. }
  4422. }
  4423. #endif
  4424. /**
  4425. * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in units/sec
  4426. */
  4427. inline void gcode_M203() {
  4428. for (int8_t i = 0; i < NUM_AXIS; i++)
  4429. if (code_seen(axis_codes[i]))
  4430. planner.max_feedrate[i] = code_value_axis_units(i);
  4431. }
  4432. /**
  4433. * M204: Set Accelerations in units/sec^2 (M204 P1200 R3000 T3000)
  4434. *
  4435. * P = Printing moves
  4436. * R = Retract only (no X, Y, Z) moves
  4437. * T = Travel (non printing) moves
  4438. *
  4439. * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
  4440. */
  4441. inline void gcode_M204() {
  4442. if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
  4443. planner.travel_acceleration = planner.acceleration = code_value_linear_units();
  4444. SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
  4445. SERIAL_EOL;
  4446. }
  4447. if (code_seen('P')) {
  4448. planner.acceleration = code_value_linear_units();
  4449. SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
  4450. SERIAL_EOL;
  4451. }
  4452. if (code_seen('R')) {
  4453. planner.retract_acceleration = code_value_linear_units();
  4454. SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
  4455. SERIAL_EOL;
  4456. }
  4457. if (code_seen('T')) {
  4458. planner.travel_acceleration = code_value_linear_units();
  4459. SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
  4460. SERIAL_EOL;
  4461. }
  4462. }
  4463. /**
  4464. * M205: Set Advanced Settings
  4465. *
  4466. * S = Min Feed Rate (units/s)
  4467. * T = Min Travel Feed Rate (units/s)
  4468. * B = Min Segment Time (µs)
  4469. * X = Max XY Jerk (units/sec^2)
  4470. * Z = Max Z Jerk (units/sec^2)
  4471. * E = Max E Jerk (units/sec^2)
  4472. */
  4473. inline void gcode_M205() {
  4474. if (code_seen('S')) planner.min_feedrate = code_value_linear_units();
  4475. if (code_seen('T')) planner.min_travel_feedrate = code_value_linear_units();
  4476. if (code_seen('B')) planner.min_segment_time = code_value_millis();
  4477. if (code_seen('X')) planner.max_xy_jerk = code_value_linear_units();
  4478. if (code_seen('Z')) planner.max_z_jerk = code_value_axis_units(Z_AXIS);
  4479. if (code_seen('E')) planner.max_e_jerk = code_value_axis_units(E_AXIS);
  4480. }
  4481. /**
  4482. * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
  4483. */
  4484. inline void gcode_M206() {
  4485. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4486. if (code_seen(axis_codes[i]))
  4487. set_home_offset((AxisEnum)i, code_value_axis_units(i));
  4488. #if ENABLED(SCARA)
  4489. if (code_seen('T')) set_home_offset(X_AXIS, code_value_axis_units(X_AXIS)); // Theta
  4490. if (code_seen('P')) set_home_offset(Y_AXIS, code_value_axis_units(Y_AXIS)); // Psi
  4491. #endif
  4492. SYNC_PLAN_POSITION_KINEMATIC();
  4493. report_current_position();
  4494. }
  4495. #if ENABLED(DELTA)
  4496. /**
  4497. * M665: Set delta configurations
  4498. *
  4499. * L = diagonal rod
  4500. * R = delta radius
  4501. * S = segments per second
  4502. * A = Alpha (Tower 1) diagonal rod trim
  4503. * B = Beta (Tower 2) diagonal rod trim
  4504. * C = Gamma (Tower 3) diagonal rod trim
  4505. */
  4506. inline void gcode_M665() {
  4507. if (code_seen('L')) delta_diagonal_rod = code_value_linear_units();
  4508. if (code_seen('R')) delta_radius = code_value_linear_units();
  4509. if (code_seen('S')) delta_segments_per_second = code_value_float();
  4510. if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value_linear_units();
  4511. if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value_linear_units();
  4512. if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value_linear_units();
  4513. recalc_delta_settings(delta_radius, delta_diagonal_rod);
  4514. }
  4515. /**
  4516. * M666: Set delta endstop adjustment
  4517. */
  4518. inline void gcode_M666() {
  4519. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4520. if (DEBUGGING(LEVELING)) {
  4521. SERIAL_ECHOLNPGM(">>> gcode_M666");
  4522. }
  4523. #endif
  4524. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  4525. if (code_seen(axis_codes[i])) {
  4526. endstop_adj[i] = code_value_axis_units(i);
  4527. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4528. if (DEBUGGING(LEVELING)) {
  4529. SERIAL_ECHOPGM("endstop_adj[");
  4530. SERIAL_ECHO(axis_codes[i]);
  4531. SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
  4532. SERIAL_EOL;
  4533. }
  4534. #endif
  4535. }
  4536. }
  4537. #if ENABLED(DEBUG_LEVELING_FEATURE)
  4538. if (DEBUGGING(LEVELING)) {
  4539. SERIAL_ECHOLNPGM("<<< gcode_M666");
  4540. }
  4541. #endif
  4542. }
  4543. #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
  4544. /**
  4545. * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
  4546. */
  4547. inline void gcode_M666() {
  4548. if (code_seen('Z')) z_endstop_adj = code_value_axis_units(Z_AXIS);
  4549. SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
  4550. SERIAL_EOL;
  4551. }
  4552. #endif // !DELTA && Z_DUAL_ENDSTOPS
  4553. #if ENABLED(FWRETRACT)
  4554. /**
  4555. * M207: Set firmware retraction values
  4556. *
  4557. * S[+units] retract_length
  4558. * W[+units] retract_length_swap (multi-extruder)
  4559. * F[units/min] retract_feedrate_mm_s
  4560. * Z[units] retract_zlift
  4561. */
  4562. inline void gcode_M207() {
  4563. if (code_seen('S')) retract_length = code_value_axis_units(E_AXIS);
  4564. if (code_seen('F')) retract_feedrate_mm_s = code_value_axis_units(E_AXIS) / 60;
  4565. if (code_seen('Z')) retract_zlift = code_value_axis_units(Z_AXIS);
  4566. #if EXTRUDERS > 1
  4567. if (code_seen('W')) retract_length_swap = code_value_axis_units(E_AXIS);
  4568. #endif
  4569. }
  4570. /**
  4571. * M208: Set firmware un-retraction values
  4572. *
  4573. * S[+units] retract_recover_length (in addition to M207 S*)
  4574. * W[+units] retract_recover_length_swap (multi-extruder)
  4575. * F[units/min] retract_recover_feedrate
  4576. */
  4577. inline void gcode_M208() {
  4578. if (code_seen('S')) retract_recover_length = code_value_axis_units(E_AXIS);
  4579. if (code_seen('F')) retract_recover_feedrate = code_value_axis_units(E_AXIS) / 60;
  4580. #if EXTRUDERS > 1
  4581. if (code_seen('W')) retract_recover_length_swap = code_value_axis_units(E_AXIS);
  4582. #endif
  4583. }
  4584. /**
  4585. * M209: Enable automatic retract (M209 S1)
  4586. * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
  4587. */
  4588. inline void gcode_M209() {
  4589. if (code_seen('S')) {
  4590. int t = code_value_int();
  4591. switch (t) {
  4592. case 0:
  4593. autoretract_enabled = false;
  4594. break;
  4595. case 1:
  4596. autoretract_enabled = true;
  4597. break;
  4598. default:
  4599. unknown_command_error();
  4600. return;
  4601. }
  4602. for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
  4603. }
  4604. }
  4605. #endif // FWRETRACT
  4606. #if HOTENDS > 1
  4607. /**
  4608. * M218 - set hotend offset (in linear units)
  4609. *
  4610. * T<tool>
  4611. * X<xoffset>
  4612. * Y<yoffset>
  4613. * Z<zoffset> - Available with DUAL_X_CARRIAGE
  4614. */
  4615. inline void gcode_M218() {
  4616. if (get_target_extruder_from_command(218)) return;
  4617. if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
  4618. if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
  4619. #if ENABLED(DUAL_X_CARRIAGE)
  4620. if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
  4621. #endif
  4622. SERIAL_ECHO_START;
  4623. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  4624. HOTEND_LOOP() {
  4625. SERIAL_CHAR(' ');
  4626. SERIAL_ECHO(hotend_offset[X_AXIS][e]);
  4627. SERIAL_CHAR(',');
  4628. SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
  4629. #if ENABLED(DUAL_X_CARRIAGE)
  4630. SERIAL_CHAR(',');
  4631. SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
  4632. #endif
  4633. }
  4634. SERIAL_EOL;
  4635. }
  4636. #endif // HOTENDS > 1
  4637. /**
  4638. * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
  4639. */
  4640. inline void gcode_M220() {
  4641. if (code_seen('S')) feedrate_multiplier = code_value_int();
  4642. }
  4643. /**
  4644. * M221: Set extrusion percentage (M221 T0 S95)
  4645. */
  4646. inline void gcode_M221() {
  4647. if (get_target_extruder_from_command(221)) return;
  4648. if (code_seen('S'))
  4649. extruder_multiplier[target_extruder] = code_value_int();
  4650. }
  4651. /**
  4652. * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
  4653. */
  4654. inline void gcode_M226() {
  4655. if (code_seen('P')) {
  4656. int pin_number = code_value_int();
  4657. int pin_state = code_seen('S') ? code_value_int() : -1; // required pin state - default is inverted
  4658. if (pin_state >= -1 && pin_state <= 1) {
  4659. for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
  4660. if (sensitive_pins[i] == pin_number) {
  4661. pin_number = -1;
  4662. break;
  4663. }
  4664. }
  4665. if (pin_number > -1) {
  4666. int target = LOW;
  4667. stepper.synchronize();
  4668. pinMode(pin_number, INPUT);
  4669. switch (pin_state) {
  4670. case 1:
  4671. target = HIGH;
  4672. break;
  4673. case 0:
  4674. target = LOW;
  4675. break;
  4676. case -1:
  4677. target = !digitalRead(pin_number);
  4678. break;
  4679. }
  4680. while (digitalRead(pin_number) != target) idle();
  4681. } // pin_number > -1
  4682. } // pin_state -1 0 1
  4683. } // code_seen('P')
  4684. }
  4685. #if HAS_SERVOS
  4686. /**
  4687. * M280: Get or set servo position. P<index> [S<angle>]
  4688. */
  4689. inline void gcode_M280() {
  4690. if (!code_seen('P')) return;
  4691. int servo_index = code_value_int();
  4692. if (servo_index >= 0 && servo_index < NUM_SERVOS) {
  4693. if (code_seen('S'))
  4694. MOVE_SERVO(servo_index, code_value_int());
  4695. else {
  4696. SERIAL_ECHO_START;
  4697. SERIAL_ECHOPGM(" Servo ");
  4698. SERIAL_ECHO(servo_index);
  4699. SERIAL_ECHOPGM(": ");
  4700. SERIAL_ECHOLN(servo[servo_index].read());
  4701. }
  4702. }
  4703. else {
  4704. SERIAL_ERROR_START;
  4705. SERIAL_ERROR("Servo ");
  4706. SERIAL_ERROR(servo_index);
  4707. SERIAL_ERRORLN(" out of range");
  4708. }
  4709. }
  4710. #endif // HAS_SERVOS
  4711. #if HAS_BUZZER
  4712. /**
  4713. * M300: Play beep sound S<frequency Hz> P<duration ms>
  4714. */
  4715. inline void gcode_M300() {
  4716. uint16_t const frequency = code_seen('S') ? code_value_ushort() : 260;
  4717. uint16_t duration = code_seen('P') ? code_value_ushort() : 1000;
  4718. // Limits the tone duration to 0-5 seconds.
  4719. NOMORE(duration, 5000);
  4720. buzzer.tone(duration, frequency);
  4721. }
  4722. #endif // HAS_BUZZER
  4723. #if ENABLED(PIDTEMP)
  4724. /**
  4725. * M301: Set PID parameters P I D (and optionally C, L)
  4726. *
  4727. * P[float] Kp term
  4728. * I[float] Ki term (unscaled)
  4729. * D[float] Kd term (unscaled)
  4730. *
  4731. * With PID_ADD_EXTRUSION_RATE:
  4732. *
  4733. * C[float] Kc term
  4734. * L[float] LPQ length
  4735. */
  4736. inline void gcode_M301() {
  4737. // multi-extruder PID patch: M301 updates or prints a single extruder's PID values
  4738. // default behaviour (omitting E parameter) is to update for extruder 0 only
  4739. int e = code_seen('E') ? code_value_int() : 0; // extruder being updated
  4740. if (e < HOTENDS) { // catch bad input value
  4741. if (code_seen('P')) PID_PARAM(Kp, e) = code_value_float();
  4742. if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value_float());
  4743. if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value_float());
  4744. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4745. if (code_seen('C')) PID_PARAM(Kc, e) = code_value_float();
  4746. if (code_seen('L')) lpq_len = code_value_float();
  4747. NOMORE(lpq_len, LPQ_MAX_LEN);
  4748. #endif
  4749. thermalManager.updatePID();
  4750. SERIAL_ECHO_START;
  4751. #if ENABLED(PID_PARAMS_PER_HOTEND)
  4752. SERIAL_ECHOPGM(" e:"); // specify extruder in serial output
  4753. SERIAL_ECHO(e);
  4754. #endif // PID_PARAMS_PER_HOTEND
  4755. SERIAL_ECHOPGM(" p:");
  4756. SERIAL_ECHO(PID_PARAM(Kp, e));
  4757. SERIAL_ECHOPGM(" i:");
  4758. SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
  4759. SERIAL_ECHOPGM(" d:");
  4760. SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
  4761. #if ENABLED(PID_ADD_EXTRUSION_RATE)
  4762. SERIAL_ECHOPGM(" c:");
  4763. //Kc does not have scaling applied above, or in resetting defaults
  4764. SERIAL_ECHO(PID_PARAM(Kc, e));
  4765. #endif
  4766. SERIAL_EOL;
  4767. }
  4768. else {
  4769. SERIAL_ERROR_START;
  4770. SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
  4771. }
  4772. }
  4773. #endif // PIDTEMP
  4774. #if ENABLED(PIDTEMPBED)
  4775. inline void gcode_M304() {
  4776. if (code_seen('P')) thermalManager.bedKp = code_value_float();
  4777. if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value_float());
  4778. if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value_float());
  4779. thermalManager.updatePID();
  4780. SERIAL_ECHO_START;
  4781. SERIAL_ECHOPGM(" p:");
  4782. SERIAL_ECHO(thermalManager.bedKp);
  4783. SERIAL_ECHOPGM(" i:");
  4784. SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
  4785. SERIAL_ECHOPGM(" d:");
  4786. SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
  4787. }
  4788. #endif // PIDTEMPBED
  4789. #if defined(CHDK) || HAS_PHOTOGRAPH
  4790. /**
  4791. * M240: Trigger a camera by emulating a Canon RC-1
  4792. * See http://www.doc-diy.net/photo/rc-1_hacked/
  4793. */
  4794. inline void gcode_M240() {
  4795. #ifdef CHDK
  4796. OUT_WRITE(CHDK, HIGH);
  4797. chdkHigh = millis();
  4798. chdkActive = true;
  4799. #elif HAS_PHOTOGRAPH
  4800. const uint8_t NUM_PULSES = 16;
  4801. const float PULSE_LENGTH = 0.01524;
  4802. for (int i = 0; i < NUM_PULSES; i++) {
  4803. WRITE(PHOTOGRAPH_PIN, HIGH);
  4804. _delay_ms(PULSE_LENGTH);
  4805. WRITE(PHOTOGRAPH_PIN, LOW);
  4806. _delay_ms(PULSE_LENGTH);
  4807. }
  4808. delay(7.33);
  4809. for (int i = 0; i < NUM_PULSES; i++) {
  4810. WRITE(PHOTOGRAPH_PIN, HIGH);
  4811. _delay_ms(PULSE_LENGTH);
  4812. WRITE(PHOTOGRAPH_PIN, LOW);
  4813. _delay_ms(PULSE_LENGTH);
  4814. }
  4815. #endif // !CHDK && HAS_PHOTOGRAPH
  4816. }
  4817. #endif // CHDK || PHOTOGRAPH_PIN
  4818. #if HAS_LCD_CONTRAST
  4819. /**
  4820. * M250: Read and optionally set the LCD contrast
  4821. */
  4822. inline void gcode_M250() {
  4823. if (code_seen('C')) set_lcd_contrast(code_value_int());
  4824. SERIAL_PROTOCOLPGM("lcd contrast value: ");
  4825. SERIAL_PROTOCOL(lcd_contrast);
  4826. SERIAL_EOL;
  4827. }
  4828. #endif // HAS_LCD_CONTRAST
  4829. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  4830. /**
  4831. * M302: Allow cold extrudes, or set the minimum extrude temperature
  4832. *
  4833. * S<temperature> sets the minimum extrude temperature
  4834. * P<bool> enables (1) or disables (0) cold extrusion
  4835. *
  4836. * Examples:
  4837. *
  4838. * M302 ; report current cold extrusion state
  4839. * M302 P0 ; enable cold extrusion checking
  4840. * M302 P1 ; disables cold extrusion checking
  4841. * M302 S0 ; always allow extrusion (disables checking)
  4842. * M302 S170 ; only allow extrusion above 170
  4843. * M302 S170 P1 ; set min extrude temp to 170 but leave disabled
  4844. */
  4845. inline void gcode_M302() {
  4846. bool seen_S = code_seen('S');
  4847. if (seen_S) {
  4848. thermalManager.extrude_min_temp = code_value_temp_abs();
  4849. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0);
  4850. }
  4851. if (code_seen('P'))
  4852. thermalManager.allow_cold_extrude = (thermalManager.extrude_min_temp == 0) || code_value_bool();
  4853. else if (!seen_S) {
  4854. // Report current state
  4855. SERIAL_ECHO_START;
  4856. SERIAL_ECHOPAIR("Cold extrudes are ", (thermalManager.allow_cold_extrude ? "en" : "dis"));
  4857. SERIAL_ECHOPAIR("abled (min temp ", int(thermalManager.extrude_min_temp + 0.5));
  4858. SERIAL_ECHOLNPGM("C)");
  4859. }
  4860. }
  4861. #endif // PREVENT_DANGEROUS_EXTRUDE
  4862. /**
  4863. * M303: PID relay autotune
  4864. *
  4865. * S<temperature> sets the target temperature. (default 150C)
  4866. * E<extruder> (-1 for the bed) (default 0)
  4867. * C<cycles>
  4868. * U<bool> with a non-zero value will apply the result to current settings
  4869. */
  4870. inline void gcode_M303() {
  4871. #if HAS_PID_HEATING
  4872. int e = code_seen('E') ? code_value_int() : 0;
  4873. int c = code_seen('C') ? code_value_int() : 5;
  4874. bool u = code_seen('U') && code_value_bool();
  4875. float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
  4876. if (e >= 0 && e < HOTENDS)
  4877. target_extruder = e;
  4878. KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
  4879. thermalManager.PID_autotune(temp, e, c, u);
  4880. KEEPALIVE_STATE(IN_HANDLER);
  4881. #else
  4882. SERIAL_ERROR_START;
  4883. SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
  4884. #endif
  4885. }
  4886. #if ENABLED(SCARA)
  4887. bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
  4888. //SoftEndsEnabled = false; // Ignore soft endstops during calibration
  4889. //SERIAL_ECHOLNPGM(" Soft endstops disabled");
  4890. if (IsRunning()) {
  4891. //gcode_get_destination(); // For X Y Z E F
  4892. delta[X_AXIS] = delta_x;
  4893. delta[Y_AXIS] = delta_y;
  4894. calculate_SCARA_forward_Transform(delta);
  4895. destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
  4896. destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
  4897. prepare_move_to_destination();
  4898. //ok_to_send();
  4899. return true;
  4900. }
  4901. return false;
  4902. }
  4903. /**
  4904. * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
  4905. */
  4906. inline bool gcode_M360() {
  4907. SERIAL_ECHOLNPGM(" Cal: Theta 0");
  4908. return SCARA_move_to_cal(0, 120);
  4909. }
  4910. /**
  4911. * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
  4912. */
  4913. inline bool gcode_M361() {
  4914. SERIAL_ECHOLNPGM(" Cal: Theta 90");
  4915. return SCARA_move_to_cal(90, 130);
  4916. }
  4917. /**
  4918. * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
  4919. */
  4920. inline bool gcode_M362() {
  4921. SERIAL_ECHOLNPGM(" Cal: Psi 0");
  4922. return SCARA_move_to_cal(60, 180);
  4923. }
  4924. /**
  4925. * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
  4926. */
  4927. inline bool gcode_M363() {
  4928. SERIAL_ECHOLNPGM(" Cal: Psi 90");
  4929. return SCARA_move_to_cal(50, 90);
  4930. }
  4931. /**
  4932. * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
  4933. */
  4934. inline bool gcode_M364() {
  4935. SERIAL_ECHOLNPGM(" Cal: Theta-Psi 90");
  4936. return SCARA_move_to_cal(45, 135);
  4937. }
  4938. /**
  4939. * M365: SCARA calibration: Scaling factor, X, Y, Z axis
  4940. */
  4941. inline void gcode_M365() {
  4942. for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
  4943. if (code_seen(axis_codes[i]))
  4944. axis_scaling[i] = code_value_float();
  4945. }
  4946. #endif // SCARA
  4947. #if ENABLED(EXT_SOLENOID)
  4948. void enable_solenoid(uint8_t num) {
  4949. switch (num) {
  4950. case 0:
  4951. OUT_WRITE(SOL0_PIN, HIGH);
  4952. break;
  4953. #if HAS_SOLENOID_1
  4954. case 1:
  4955. OUT_WRITE(SOL1_PIN, HIGH);
  4956. break;
  4957. #endif
  4958. #if HAS_SOLENOID_2
  4959. case 2:
  4960. OUT_WRITE(SOL2_PIN, HIGH);
  4961. break;
  4962. #endif
  4963. #if HAS_SOLENOID_3
  4964. case 3:
  4965. OUT_WRITE(SOL3_PIN, HIGH);
  4966. break;
  4967. #endif
  4968. default:
  4969. SERIAL_ECHO_START;
  4970. SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
  4971. break;
  4972. }
  4973. }
  4974. void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
  4975. void disable_all_solenoids() {
  4976. OUT_WRITE(SOL0_PIN, LOW);
  4977. OUT_WRITE(SOL1_PIN, LOW);
  4978. OUT_WRITE(SOL2_PIN, LOW);
  4979. OUT_WRITE(SOL3_PIN, LOW);
  4980. }
  4981. /**
  4982. * M380: Enable solenoid on the active extruder
  4983. */
  4984. inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
  4985. /**
  4986. * M381: Disable all solenoids
  4987. */
  4988. inline void gcode_M381() { disable_all_solenoids(); }
  4989. #endif // EXT_SOLENOID
  4990. /**
  4991. * M400: Finish all moves
  4992. */
  4993. inline void gcode_M400() { stepper.synchronize(); }
  4994. #if HAS_BED_PROBE
  4995. /**
  4996. * M401: Engage Z Servo endstop if available
  4997. */
  4998. inline void gcode_M401() { DEPLOY_PROBE(); }
  4999. /**
  5000. * M402: Retract Z Servo endstop if enabled
  5001. */
  5002. inline void gcode_M402() { STOW_PROBE(); }
  5003. #endif // HAS_BED_PROBE
  5004. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  5005. /**
  5006. * M404: Display or set (in current units) the nominal filament width (3mm, 1.75mm ) W<3.0>
  5007. */
  5008. inline void gcode_M404() {
  5009. if (code_seen('W')) {
  5010. filament_width_nominal = code_value_linear_units();
  5011. }
  5012. else {
  5013. SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
  5014. SERIAL_PROTOCOLLN(filament_width_nominal);
  5015. }
  5016. }
  5017. /**
  5018. * M405: Turn on filament sensor for control
  5019. */
  5020. inline void gcode_M405() {
  5021. // This is technically a linear measurement, but since it's quantized to centimeters and is a different unit than
  5022. // everything else, it uses code_value_int() instead of code_value_linear_units().
  5023. if (code_seen('D')) meas_delay_cm = code_value_int();
  5024. NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
  5025. if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
  5026. int temp_ratio = thermalManager.widthFil_to_size_ratio();
  5027. for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
  5028. measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
  5029. filwidth_delay_index1 = filwidth_delay_index2 = 0;
  5030. }
  5031. filament_sensor = true;
  5032. //SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5033. //SERIAL_PROTOCOL(filament_width_meas);
  5034. //SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
  5035. //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
  5036. }
  5037. /**
  5038. * M406: Turn off filament sensor for control
  5039. */
  5040. inline void gcode_M406() { filament_sensor = false; }
  5041. /**
  5042. * M407: Get measured filament diameter on serial output
  5043. */
  5044. inline void gcode_M407() {
  5045. SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
  5046. SERIAL_PROTOCOLLN(filament_width_meas);
  5047. }
  5048. #endif // FILAMENT_WIDTH_SENSOR
  5049. void quickstop_stepper() {
  5050. stepper.quick_stop();
  5051. #if DISABLED(DELTA) && DISABLED(SCARA)
  5052. stepper.synchronize();
  5053. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5054. vector_3 pos = planner.adjusted_position(); // values directly from steppers...
  5055. current_position[X_AXIS] = pos.x;
  5056. current_position[Y_AXIS] = pos.y;
  5057. current_position[Z_AXIS] = pos.z;
  5058. #else
  5059. current_position[X_AXIS] = stepper.get_axis_position_mm(X_AXIS);
  5060. current_position[Y_AXIS] = stepper.get_axis_position_mm(Y_AXIS);
  5061. current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
  5062. #endif
  5063. sync_plan_position(); // ...re-apply to planner position
  5064. #endif
  5065. }
  5066. #if ENABLED(MESH_BED_LEVELING)
  5067. /**
  5068. * M420: Enable/Disable Mesh Bed Leveling
  5069. */
  5070. inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.set_has_mesh(code_value_bool()); }
  5071. /**
  5072. * M421: Set a single Mesh Bed Leveling Z coordinate
  5073. * Use either 'M421 X<linear> Y<linear> Z<linear>' or 'M421 I<xindex> J<yindex> Z<linear>'
  5074. */
  5075. inline void gcode_M421() {
  5076. int8_t px = 0, py = 0;
  5077. float z = 0;
  5078. bool hasX, hasY, hasZ, hasI, hasJ;
  5079. if ((hasX = code_seen('X'))) px = mbl.probe_index_x(code_value_axis_units(X_AXIS));
  5080. if ((hasY = code_seen('Y'))) py = mbl.probe_index_y(code_value_axis_units(Y_AXIS));
  5081. if ((hasI = code_seen('I'))) px = code_value_axis_units(X_AXIS);
  5082. if ((hasJ = code_seen('J'))) py = code_value_axis_units(Y_AXIS);
  5083. if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
  5084. if (hasX && hasY && hasZ) {
  5085. if (px >= 0 && py >= 0)
  5086. mbl.set_z(px, py, z);
  5087. else {
  5088. SERIAL_ERROR_START;
  5089. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5090. }
  5091. }
  5092. else if (hasI && hasJ && hasZ) {
  5093. if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
  5094. mbl.set_z(px, py, z);
  5095. else {
  5096. SERIAL_ERROR_START;
  5097. SERIAL_ERRORLNPGM(MSG_ERR_MESH_XY);
  5098. }
  5099. }
  5100. else {
  5101. SERIAL_ERROR_START;
  5102. SERIAL_ERRORLNPGM(MSG_ERR_M421_PARAMETERS);
  5103. }
  5104. }
  5105. #endif
  5106. /**
  5107. * M428: Set home_offset based on the distance between the
  5108. * current_position and the nearest "reference point."
  5109. * If an axis is past center its endstop position
  5110. * is the reference-point. Otherwise it uses 0. This allows
  5111. * the Z offset to be set near the bed when using a max endstop.
  5112. *
  5113. * M428 can't be used more than 2cm away from 0 or an endstop.
  5114. *
  5115. * Use M206 to set these values directly.
  5116. */
  5117. inline void gcode_M428() {
  5118. bool err = false;
  5119. for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
  5120. if (axis_homed[i]) {
  5121. float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
  5122. diff = current_position[i] - base;
  5123. if (diff > -20 && diff < 20) {
  5124. set_home_offset((AxisEnum)i, home_offset[i] - diff);
  5125. }
  5126. else {
  5127. SERIAL_ERROR_START;
  5128. SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
  5129. LCD_ALERTMESSAGEPGM("Err: Too far!");
  5130. #if HAS_BUZZER
  5131. buzzer.tone(200, 40);
  5132. #endif
  5133. err = true;
  5134. break;
  5135. }
  5136. }
  5137. }
  5138. if (!err) {
  5139. SYNC_PLAN_POSITION_KINEMATIC();
  5140. report_current_position();
  5141. LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
  5142. #if HAS_BUZZER
  5143. buzzer.tone(200, 659);
  5144. buzzer.tone(200, 698);
  5145. #endif
  5146. }
  5147. }
  5148. /**
  5149. * M500: Store settings in EEPROM
  5150. */
  5151. inline void gcode_M500() {
  5152. Config_StoreSettings();
  5153. }
  5154. /**
  5155. * M501: Read settings from EEPROM
  5156. */
  5157. inline void gcode_M501() {
  5158. Config_RetrieveSettings();
  5159. }
  5160. /**
  5161. * M502: Revert to default settings
  5162. */
  5163. inline void gcode_M502() {
  5164. Config_ResetDefault();
  5165. }
  5166. /**
  5167. * M503: print settings currently in memory
  5168. */
  5169. inline void gcode_M503() {
  5170. Config_PrintSettings(code_seen('S') && !code_value_bool());
  5171. }
  5172. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  5173. /**
  5174. * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
  5175. */
  5176. inline void gcode_M540() {
  5177. if (code_seen('S')) stepper.abort_on_endstop_hit = code_value_bool();
  5178. }
  5179. #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
  5180. #if HAS_BED_PROBE
  5181. inline void gcode_M851() {
  5182. SERIAL_ECHO_START;
  5183. SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
  5184. SERIAL_CHAR(' ');
  5185. if (code_seen('Z')) {
  5186. float value = code_value_axis_units(Z_AXIS);
  5187. if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
  5188. zprobe_zoffset = value;
  5189. SERIAL_ECHO(zprobe_zoffset);
  5190. }
  5191. else {
  5192. SERIAL_ECHOPGM(MSG_Z_MIN);
  5193. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
  5194. SERIAL_CHAR(' ');
  5195. SERIAL_ECHOPGM(MSG_Z_MAX);
  5196. SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
  5197. }
  5198. }
  5199. else {
  5200. SERIAL_ECHOPAIR(": ", zprobe_zoffset);
  5201. }
  5202. SERIAL_EOL;
  5203. }
  5204. #endif // HAS_BED_PROBE
  5205. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  5206. /**
  5207. * M600: Pause for filament change
  5208. *
  5209. * E[distance] - Retract the filament this far (negative value)
  5210. * Z[distance] - Move the Z axis by this distance
  5211. * X[position] - Move to this X position, with Y
  5212. * Y[position] - Move to this Y position, with X
  5213. * L[distance] - Retract distance for removal (manual reload)
  5214. *
  5215. * Default values are used for omitted arguments.
  5216. *
  5217. */
  5218. inline void gcode_M600() {
  5219. if (thermalManager.tooColdToExtrude(active_extruder)) {
  5220. SERIAL_ERROR_START;
  5221. SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
  5222. return;
  5223. }
  5224. // Show initial message and wait for synchronize steppers
  5225. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INIT);
  5226. stepper.synchronize();
  5227. float lastpos[NUM_AXIS];
  5228. // Save current position of all axes
  5229. for (uint8_t i = 0; i < NUM_AXIS; i++)
  5230. lastpos[i] = destination[i] = current_position[i];
  5231. // Define runplan for move axes
  5232. #if ENABLED(DELTA)
  5233. #define RUNPLAN(RATE) calculate_delta(destination); \
  5234. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], RATE, active_extruder);
  5235. #else
  5236. #define RUNPLAN(RATE) line_to_destination(RATE * 60);
  5237. #endif
  5238. KEEPALIVE_STATE(IN_HANDLER);
  5239. // Initial retract before move to filament change position
  5240. if (code_seen('E')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5241. #if defined(FILAMENT_CHANGE_RETRACT_LENGTH) && FILAMENT_CHANGE_RETRACT_LENGTH > 0
  5242. else destination[E_AXIS] -= FILAMENT_CHANGE_RETRACT_LENGTH;
  5243. #endif
  5244. RUNPLAN(FILAMENT_CHANGE_RETRACT_FEEDRATE);
  5245. // Lift Z axis
  5246. float z_lift = code_seen('Z') ? code_value_axis_units(Z_AXIS) :
  5247. #if defined(FILAMENT_CHANGE_Z_ADD) && FILAMENT_CHANGE_Z_ADD > 0
  5248. FILAMENT_CHANGE_Z_ADD
  5249. #else
  5250. 0
  5251. #endif
  5252. ;
  5253. if (z_lift > 0) {
  5254. destination[Z_AXIS] += z_lift;
  5255. NOMORE(destination[Z_AXIS], Z_MAX_POS);
  5256. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5257. }
  5258. // Move XY axes to filament exchange position
  5259. if (code_seen('X')) destination[X_AXIS] = code_value_axis_units(X_AXIS);
  5260. #ifdef FILAMENT_CHANGE_X_POS
  5261. else destination[X_AXIS] = FILAMENT_CHANGE_X_POS;
  5262. #endif
  5263. if (code_seen('Y')) destination[Y_AXIS] = code_value_axis_units(Y_AXIS);
  5264. #ifdef FILAMENT_CHANGE_Y_POS
  5265. else destination[Y_AXIS] = FILAMENT_CHANGE_Y_POS;
  5266. #endif
  5267. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5268. stepper.synchronize();
  5269. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_UNLOAD);
  5270. // Unload filament
  5271. if (code_seen('L')) destination[E_AXIS] += code_value_axis_units(E_AXIS);
  5272. #if defined(FILAMENT_CHANGE_UNLOAD_LENGTH) && FILAMENT_CHANGE_UNLOAD_LENGTH > 0
  5273. else destination[E_AXIS] -= FILAMENT_CHANGE_UNLOAD_LENGTH;
  5274. #endif
  5275. RUNPLAN(FILAMENT_CHANGE_UNLOAD_FEEDRATE);
  5276. // Synchronize steppers and then disable extruders steppers for manual filament changing
  5277. stepper.synchronize();
  5278. disable_e0();
  5279. disable_e1();
  5280. disable_e2();
  5281. disable_e3();
  5282. delay(100);
  5283. #if HAS_BUZZER
  5284. millis_t next_tick = 0;
  5285. #endif
  5286. // Wait for filament insert by user and press button
  5287. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_INSERT);
  5288. while (!lcd_clicked()) {
  5289. #if HAS_BUZZER
  5290. millis_t ms = millis();
  5291. if (ms >= next_tick) {
  5292. buzzer.tone(300, 2000);
  5293. next_tick = ms + 2500; // Beep every 2.5s while waiting
  5294. }
  5295. #endif
  5296. idle(true);
  5297. }
  5298. delay(100);
  5299. while (lcd_clicked()) idle(true);
  5300. delay(100);
  5301. // Show load message
  5302. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_LOAD);
  5303. // Load filament
  5304. if (code_seen('L')) destination[E_AXIS] -= code_value_axis_units(E_AXIS);
  5305. #if defined(FILAMENT_CHANGE_LOAD_LENGTH) && FILAMENT_CHANGE_LOAD_LENGTH > 0
  5306. else destination[E_AXIS] += FILAMENT_CHANGE_LOAD_LENGTH;
  5307. #endif
  5308. RUNPLAN(FILAMENT_CHANGE_LOAD_FEEDRATE);
  5309. stepper.synchronize();
  5310. #if defined(FILAMENT_CHANGE_EXTRUDE_LENGTH) && FILAMENT_CHANGE_EXTRUDE_LENGTH > 0
  5311. do {
  5312. // Extrude filament to get into hotend
  5313. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_EXTRUDE);
  5314. destination[E_AXIS] += FILAMENT_CHANGE_EXTRUDE_LENGTH;
  5315. RUNPLAN(FILAMENT_CHANGE_EXTRUDE_FEEDRATE);
  5316. stepper.synchronize();
  5317. // Ask user if more filament should be extruded
  5318. KEEPALIVE_STATE(PAUSED_FOR_USER);
  5319. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_OPTION);
  5320. while (filament_change_menu_response == FILAMENT_CHANGE_RESPONSE_WAIT_FOR) idle(true);
  5321. KEEPALIVE_STATE(IN_HANDLER);
  5322. } while (filament_change_menu_response != FILAMENT_CHANGE_RESPONSE_RESUME_PRINT);
  5323. #endif
  5324. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_RESUME);
  5325. KEEPALIVE_STATE(IN_HANDLER);
  5326. // Set extruder to saved position
  5327. current_position[E_AXIS] = lastpos[E_AXIS];
  5328. destination[E_AXIS] = lastpos[E_AXIS];
  5329. planner.set_e_position_mm(current_position[E_AXIS]);
  5330. #if ENABLED(DELTA)
  5331. // Move XYZ to starting position, then E
  5332. calculate_delta(lastpos);
  5333. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5334. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], FILAMENT_CHANGE_XY_FEEDRATE, active_extruder);
  5335. #else
  5336. // Move XY to starting position, then Z, then E
  5337. destination[X_AXIS] = lastpos[X_AXIS];
  5338. destination[Y_AXIS] = lastpos[Y_AXIS];
  5339. RUNPLAN(FILAMENT_CHANGE_XY_FEEDRATE);
  5340. destination[Z_AXIS] = lastpos[Z_AXIS];
  5341. RUNPLAN(FILAMENT_CHANGE_Z_FEEDRATE);
  5342. #endif
  5343. stepper.synchronize();
  5344. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  5345. filament_ran_out = false;
  5346. #endif
  5347. // Show status screen
  5348. lcd_filament_change_show_message(FILAMENT_CHANGE_MESSAGE_STATUS);
  5349. }
  5350. #endif // FILAMENT_CHANGE_FEATURE
  5351. #if ENABLED(DUAL_X_CARRIAGE)
  5352. /**
  5353. * M605: Set dual x-carriage movement mode
  5354. *
  5355. * M605 S0: Full control mode. The slicer has full control over x-carriage movement
  5356. * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
  5357. * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
  5358. * units x-offset and an optional differential hotend temperature of
  5359. * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
  5360. * the first with a spacing of 100mm in the x direction and 2 degrees hotter.
  5361. *
  5362. * Note: the X axis should be homed after changing dual x-carriage mode.
  5363. */
  5364. inline void gcode_M605() {
  5365. stepper.synchronize();
  5366. if (code_seen('S')) dual_x_carriage_mode = code_value_byte();
  5367. switch (dual_x_carriage_mode) {
  5368. case DXC_DUPLICATION_MODE:
  5369. if (code_seen('X')) duplicate_extruder_x_offset = max(code_value_axis_units(X_AXIS), X2_MIN_POS - x_home_pos(0));
  5370. if (code_seen('R')) duplicate_extruder_temp_offset = code_value_temp_diff();
  5371. SERIAL_ECHO_START;
  5372. SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
  5373. SERIAL_CHAR(' ');
  5374. SERIAL_ECHO(hotend_offset[X_AXIS][0]);
  5375. SERIAL_CHAR(',');
  5376. SERIAL_ECHO(hotend_offset[Y_AXIS][0]);
  5377. SERIAL_CHAR(' ');
  5378. SERIAL_ECHO(duplicate_extruder_x_offset);
  5379. SERIAL_CHAR(',');
  5380. SERIAL_ECHOLN(hotend_offset[Y_AXIS][1]);
  5381. break;
  5382. case DXC_FULL_CONTROL_MODE:
  5383. case DXC_AUTO_PARK_MODE:
  5384. break;
  5385. default:
  5386. dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
  5387. break;
  5388. }
  5389. active_extruder_parked = false;
  5390. extruder_duplication_enabled = false;
  5391. delayed_move_time = 0;
  5392. }
  5393. #endif // DUAL_X_CARRIAGE
  5394. #if ENABLED(LIN_ADVANCE)
  5395. /**
  5396. * M905: Set advance factor
  5397. */
  5398. inline void gcode_M905() {
  5399. stepper.synchronize();
  5400. stepper.advance_M905(code_seen('K') ? code_value_float() : -1.0);
  5401. }
  5402. #endif
  5403. /**
  5404. * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
  5405. */
  5406. inline void gcode_M907() {
  5407. #if HAS_DIGIPOTSS
  5408. for (int i = 0; i < NUM_AXIS; i++)
  5409. if (code_seen(axis_codes[i])) stepper.digipot_current(i, code_value_int());
  5410. if (code_seen('B')) stepper.digipot_current(4, code_value_int());
  5411. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.digipot_current(i, code_value_int());
  5412. #endif
  5413. #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
  5414. if (code_seen('X')) stepper.digipot_current(0, code_value_int());
  5415. #endif
  5416. #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
  5417. if (code_seen('Z')) stepper.digipot_current(1, code_value_int());
  5418. #endif
  5419. #if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
  5420. if (code_seen('E')) stepper.digipot_current(2, code_value_int());
  5421. #endif
  5422. #if ENABLED(DIGIPOT_I2C)
  5423. // this one uses actual amps in floating point
  5424. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value_float());
  5425. // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
  5426. for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value_float());
  5427. #endif
  5428. #if ENABLED(DAC_STEPPER_CURRENT)
  5429. if (code_seen('S')) {
  5430. float dac_percent = code_value_float();
  5431. for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
  5432. }
  5433. for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value_float());
  5434. #endif
  5435. }
  5436. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  5437. /**
  5438. * M908: Control digital trimpot directly (M908 P<pin> S<current>)
  5439. */
  5440. inline void gcode_M908() {
  5441. #if HAS_DIGIPOTSS
  5442. stepper.digitalPotWrite(
  5443. code_seen('P') ? code_value_int() : 0,
  5444. code_seen('S') ? code_value_int() : 0
  5445. );
  5446. #endif
  5447. #ifdef DAC_STEPPER_CURRENT
  5448. dac_current_raw(
  5449. code_seen('P') ? code_value_byte() : -1,
  5450. code_seen('S') ? code_value_ushort() : 0
  5451. );
  5452. #endif
  5453. }
  5454. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  5455. inline void gcode_M909() { dac_print_values(); }
  5456. inline void gcode_M910() { dac_commit_eeprom(); }
  5457. #endif
  5458. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  5459. #if HAS_MICROSTEPS
  5460. // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  5461. inline void gcode_M350() {
  5462. if (code_seen('S')) for (int i = 0; i <= 4; i++) stepper.microstep_mode(i, code_value_byte());
  5463. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_mode(i, code_value_byte());
  5464. if (code_seen('B')) stepper.microstep_mode(4, code_value_byte());
  5465. stepper.microstep_readings();
  5466. }
  5467. /**
  5468. * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
  5469. * S# determines MS1 or MS2, X# sets the pin high/low.
  5470. */
  5471. inline void gcode_M351() {
  5472. if (code_seen('S')) switch (code_value_byte()) {
  5473. case 1:
  5474. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, code_value_byte(), -1);
  5475. if (code_seen('B')) stepper.microstep_ms(4, code_value_byte(), -1);
  5476. break;
  5477. case 2:
  5478. for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) stepper.microstep_ms(i, -1, code_value_byte());
  5479. if (code_seen('B')) stepper.microstep_ms(4, -1, code_value_byte());
  5480. break;
  5481. }
  5482. stepper.microstep_readings();
  5483. }
  5484. #endif // HAS_MICROSTEPS
  5485. /**
  5486. * M999: Restart after being stopped
  5487. *
  5488. * Default behaviour is to flush the serial buffer and request
  5489. * a resend to the host starting on the last N line received.
  5490. *
  5491. * Sending "M999 S1" will resume printing without flushing the
  5492. * existing command buffer.
  5493. *
  5494. */
  5495. inline void gcode_M999() {
  5496. Running = true;
  5497. lcd_reset_alert_level();
  5498. if (code_seen('S') && code_value_bool()) return;
  5499. // gcode_LastN = Stopped_gcode_LastN;
  5500. FlushSerialRequestResend();
  5501. }
  5502. /**
  5503. * T0-T3: Switch tool, usually switching extruders
  5504. *
  5505. * F[units/min] Set the movement feedrate
  5506. * S1 Don't move the tool in XY after change
  5507. */
  5508. inline void gcode_T(uint8_t tmp_extruder) {
  5509. if (tmp_extruder >= EXTRUDERS) {
  5510. SERIAL_ECHO_START;
  5511. SERIAL_CHAR('T');
  5512. SERIAL_PROTOCOL_F(tmp_extruder, DEC);
  5513. SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
  5514. return;
  5515. }
  5516. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5517. if (DEBUGGING(LEVELING)) {
  5518. SERIAL_ECHOLNPGM(">>> gcode_T");
  5519. DEBUG_POS("BEFORE", current_position);
  5520. }
  5521. #endif
  5522. #if HOTENDS > 1
  5523. float old_feedrate = feedrate;
  5524. if (code_seen('F')) {
  5525. float next_feedrate = code_value_axis_units(X_AXIS);
  5526. if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
  5527. }
  5528. else
  5529. feedrate = XY_PROBE_FEEDRATE;
  5530. if (tmp_extruder != active_extruder) {
  5531. bool no_move = code_seen('S') && code_value_bool();
  5532. // Save current position to return to after applying extruder offset
  5533. if (!no_move) set_destination_to_current();
  5534. #if ENABLED(DUAL_X_CARRIAGE)
  5535. if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
  5536. (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
  5537. // Park old head: 1) raise 2) move to park position 3) lower
  5538. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5539. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5540. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
  5541. current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
  5542. planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
  5543. current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  5544. stepper.synchronize();
  5545. }
  5546. // apply Y & Z extruder offset (x offset is already used in determining home pos)
  5547. current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
  5548. current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
  5549. active_extruder = tmp_extruder;
  5550. // This function resets the max/min values - the current position may be overwritten below.
  5551. set_axis_is_at_home(X_AXIS);
  5552. if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
  5553. current_position[X_AXIS] = inactive_extruder_x_pos;
  5554. inactive_extruder_x_pos = destination[X_AXIS];
  5555. }
  5556. else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
  5557. active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
  5558. if (active_extruder_parked)
  5559. current_position[X_AXIS] = inactive_extruder_x_pos;
  5560. else
  5561. current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
  5562. inactive_extruder_x_pos = destination[X_AXIS];
  5563. extruder_duplication_enabled = false;
  5564. }
  5565. else {
  5566. // record raised toolhead position for use by unpark
  5567. memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
  5568. raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
  5569. active_extruder_parked = true;
  5570. delayed_move_time = 0;
  5571. }
  5572. // No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
  5573. #else // !DUAL_X_CARRIAGE
  5574. //
  5575. // Set current_position to the position of the new nozzle.
  5576. // Offsets are based on linear distance, so we need to get
  5577. // the resulting position in coordinate space.
  5578. //
  5579. // - With grid or 3-point leveling, offset XYZ by a tilted vector
  5580. // - With mesh leveling, update Z for the new position
  5581. // - Otherwise, just use the raw linear distance
  5582. //
  5583. // Software endstops are altered here too. Consider a case where:
  5584. // E0 at X=0 ... E1 at X=10
  5585. // When we switch to E1 now X=10, but E1 can't move left.
  5586. // To express this we apply the change in XY to the software endstops.
  5587. // E1 can move farther right than E0, so the right limit is extended.
  5588. //
  5589. // Note that we don't adjust the Z software endstops. Why not?
  5590. // Consider a case where Z=0 (here) and switching to E1 makes Z=1
  5591. // because the bed is 1mm lower at the new position. As long as
  5592. // the first nozzle is out of the way, the carriage should be
  5593. // allowed to move 1mm lower. This technically "breaks" the
  5594. // Z software endstop. But this is technically correct (and
  5595. // there is no viable alternative).
  5596. //
  5597. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  5598. // Offset extruder, make sure to apply the bed level rotation matrix
  5599. vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
  5600. hotend_offset[Y_AXIS][tmp_extruder],
  5601. 0),
  5602. act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
  5603. hotend_offset[Y_AXIS][active_extruder],
  5604. 0),
  5605. offset_vec = tmp_offset_vec - act_offset_vec;
  5606. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5607. if (DEBUGGING(LEVELING)) {
  5608. tmp_offset_vec.debug("tmp_offset_vec");
  5609. act_offset_vec.debug("act_offset_vec");
  5610. offset_vec.debug("offset_vec (BEFORE)");
  5611. }
  5612. #endif
  5613. offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
  5614. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5615. if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
  5616. #endif
  5617. // Adjustments to the current position
  5618. float xydiff[2] = { offset_vec.x, offset_vec.y };
  5619. current_position[Z_AXIS] += offset_vec.z;
  5620. #else // !AUTO_BED_LEVELING_FEATURE
  5621. float xydiff[2] = {
  5622. hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
  5623. hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
  5624. };
  5625. #if ENABLED(MESH_BED_LEVELING)
  5626. if (mbl.active()) {
  5627. float xpos = RAW_CURRENT_POSITION(X_AXIS),
  5628. ypos = RAW_CURRENT_POSITION(Y_AXIS);
  5629. current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
  5630. }
  5631. #endif // MESH_BED_LEVELING
  5632. #endif // !AUTO_BED_LEVELING_FEATURE
  5633. // The newly-selected extruder XY is actually at...
  5634. current_position[X_AXIS] += xydiff[X_AXIS];
  5635. current_position[Y_AXIS] += xydiff[Y_AXIS];
  5636. for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
  5637. position_shift[i] += xydiff[i];
  5638. update_software_endstops((AxisEnum)i);
  5639. }
  5640. // Set the new active extruder
  5641. active_extruder = tmp_extruder;
  5642. #endif // !DUAL_X_CARRIAGE
  5643. // Tell the planner the new "current position"
  5644. SYNC_PLAN_POSITION_KINEMATIC();
  5645. // Move to the "old position" (move the extruder into place)
  5646. if (!no_move && IsRunning()) prepare_move_to_destination();
  5647. } // (tmp_extruder != active_extruder)
  5648. #if ENABLED(EXT_SOLENOID)
  5649. stepper.synchronize();
  5650. disable_all_solenoids();
  5651. enable_solenoid_on_active_extruder();
  5652. #endif // EXT_SOLENOID
  5653. feedrate = old_feedrate;
  5654. #else // !HOTENDS > 1
  5655. // Set the new active extruder
  5656. active_extruder = tmp_extruder;
  5657. #endif
  5658. #if ENABLED(DEBUG_LEVELING_FEATURE)
  5659. if (DEBUGGING(LEVELING)) {
  5660. DEBUG_POS("AFTER", current_position);
  5661. SERIAL_ECHOLNPGM("<<< gcode_T");
  5662. }
  5663. #endif
  5664. SERIAL_ECHO_START;
  5665. SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
  5666. SERIAL_PROTOCOLLN((int)active_extruder);
  5667. }
  5668. /**
  5669. * Process a single command and dispatch it to its handler
  5670. * This is called from the main loop()
  5671. */
  5672. void process_next_command() {
  5673. current_command = command_queue[cmd_queue_index_r];
  5674. if (DEBUGGING(ECHO)) {
  5675. SERIAL_ECHO_START;
  5676. SERIAL_ECHOLN(current_command);
  5677. }
  5678. // Sanitize the current command:
  5679. // - Skip leading spaces
  5680. // - Bypass N[-0-9][0-9]*[ ]*
  5681. // - Overwrite * with nul to mark the end
  5682. while (*current_command == ' ') ++current_command;
  5683. if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
  5684. current_command += 2; // skip N[-0-9]
  5685. while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
  5686. while (*current_command == ' ') ++current_command; // skip [ ]*
  5687. }
  5688. char* starpos = strchr(current_command, '*'); // * should always be the last parameter
  5689. if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
  5690. char *cmd_ptr = current_command;
  5691. // Get the command code, which must be G, M, or T
  5692. char command_code = *cmd_ptr++;
  5693. // Skip spaces to get the numeric part
  5694. while (*cmd_ptr == ' ') cmd_ptr++;
  5695. uint16_t codenum = 0; // define ahead of goto
  5696. // Bail early if there's no code
  5697. bool code_is_good = NUMERIC(*cmd_ptr);
  5698. if (!code_is_good) goto ExitUnknownCommand;
  5699. // Get and skip the code number
  5700. do {
  5701. codenum = (codenum * 10) + (*cmd_ptr - '0');
  5702. cmd_ptr++;
  5703. } while (NUMERIC(*cmd_ptr));
  5704. // Skip all spaces to get to the first argument, or nul
  5705. while (*cmd_ptr == ' ') cmd_ptr++;
  5706. // The command's arguments (if any) start here, for sure!
  5707. current_command_args = cmd_ptr;
  5708. KEEPALIVE_STATE(IN_HANDLER);
  5709. // Handle a known G, M, or T
  5710. switch (command_code) {
  5711. case 'G': switch (codenum) {
  5712. // G0, G1
  5713. case 0:
  5714. case 1:
  5715. gcode_G0_G1();
  5716. break;
  5717. // G2, G3
  5718. #if ENABLED(ARC_SUPPORT) && DISABLED(SCARA)
  5719. case 2: // G2 - CW ARC
  5720. case 3: // G3 - CCW ARC
  5721. gcode_G2_G3(codenum == 2);
  5722. break;
  5723. #endif
  5724. // G4 Dwell
  5725. case 4:
  5726. gcode_G4();
  5727. break;
  5728. #if ENABLED(BEZIER_CURVE_SUPPORT)
  5729. // G5
  5730. case 5: // G5 - Cubic B_spline
  5731. gcode_G5();
  5732. break;
  5733. #endif // BEZIER_CURVE_SUPPORT
  5734. #if ENABLED(FWRETRACT)
  5735. case 10: // G10: retract
  5736. case 11: // G11: retract_recover
  5737. gcode_G10_G11(codenum == 10);
  5738. break;
  5739. #endif // FWRETRACT
  5740. #if ENABLED(INCH_MODE_SUPPORT)
  5741. case 20: //G20: Inch Mode
  5742. gcode_G20();
  5743. break;
  5744. case 21: //G21: MM Mode
  5745. gcode_G21();
  5746. break;
  5747. #endif
  5748. case 28: // G28: Home all axes, one at a time
  5749. gcode_G28();
  5750. break;
  5751. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
  5752. case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
  5753. gcode_G29();
  5754. break;
  5755. #endif
  5756. #if HAS_BED_PROBE
  5757. case 30: // G30 Single Z probe
  5758. gcode_G30();
  5759. break;
  5760. #if ENABLED(Z_PROBE_SLED)
  5761. case 31: // G31: dock the sled
  5762. gcode_G31();
  5763. break;
  5764. case 32: // G32: undock the sled
  5765. gcode_G32();
  5766. break;
  5767. #endif // Z_PROBE_SLED
  5768. #endif // HAS_BED_PROBE
  5769. case 90: // G90
  5770. relative_mode = false;
  5771. break;
  5772. case 91: // G91
  5773. relative_mode = true;
  5774. break;
  5775. case 92: // G92
  5776. gcode_G92();
  5777. break;
  5778. }
  5779. break;
  5780. case 'M': switch (codenum) {
  5781. #if ENABLED(ULTIPANEL)
  5782. case 0: // M0 - Unconditional stop - Wait for user button press on LCD
  5783. case 1: // M1 - Conditional stop - Wait for user button press on LCD
  5784. gcode_M0_M1();
  5785. break;
  5786. #endif // ULTIPANEL
  5787. case 17:
  5788. gcode_M17();
  5789. break;
  5790. #if ENABLED(SDSUPPORT)
  5791. case 20: // M20 - list SD card
  5792. gcode_M20(); break;
  5793. case 21: // M21 - init SD card
  5794. gcode_M21(); break;
  5795. case 22: //M22 - release SD card
  5796. gcode_M22(); break;
  5797. case 23: //M23 - Select file
  5798. gcode_M23(); break;
  5799. case 24: //M24 - Start SD print
  5800. gcode_M24(); break;
  5801. case 25: //M25 - Pause SD print
  5802. gcode_M25(); break;
  5803. case 26: //M26 - Set SD index
  5804. gcode_M26(); break;
  5805. case 27: //M27 - Get SD status
  5806. gcode_M27(); break;
  5807. case 28: //M28 - Start SD write
  5808. gcode_M28(); break;
  5809. case 29: //M29 - Stop SD write
  5810. gcode_M29(); break;
  5811. case 30: //M30 <filename> Delete File
  5812. gcode_M30(); break;
  5813. case 32: //M32 - Select file and start SD print
  5814. gcode_M32(); break;
  5815. #if ENABLED(LONG_FILENAME_HOST_SUPPORT)
  5816. case 33: //M33 - Get the long full path to a file or folder
  5817. gcode_M33(); break;
  5818. #endif // LONG_FILENAME_HOST_SUPPORT
  5819. case 928: //M928 - Start SD write
  5820. gcode_M928(); break;
  5821. #endif //SDSUPPORT
  5822. case 31: //M31 take time since the start of the SD print or an M109 command
  5823. gcode_M31();
  5824. break;
  5825. case 42: //M42 -Change pin status via gcode
  5826. gcode_M42();
  5827. break;
  5828. #if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
  5829. case 48: // M48 Z probe repeatability
  5830. gcode_M48();
  5831. break;
  5832. #endif // Z_MIN_PROBE_REPEATABILITY_TEST
  5833. case 75: // Start print timer
  5834. gcode_M75();
  5835. break;
  5836. case 76: // Pause print timer
  5837. gcode_M76();
  5838. break;
  5839. case 77: // Stop print timer
  5840. gcode_M77();
  5841. break;
  5842. #if ENABLED(PRINTCOUNTER)
  5843. case 78: // Show print statistics
  5844. gcode_M78();
  5845. break;
  5846. #endif
  5847. #if ENABLED(M100_FREE_MEMORY_WATCHER)
  5848. case 100:
  5849. gcode_M100();
  5850. break;
  5851. #endif
  5852. case 104: // M104
  5853. gcode_M104();
  5854. break;
  5855. case 110: // M110: Set Current Line Number
  5856. gcode_M110();
  5857. break;
  5858. case 111: // M111: Set debug level
  5859. gcode_M111();
  5860. break;
  5861. #if DISABLED(EMERGENCY_PARSER)
  5862. case 108: // M108: Cancel Waiting
  5863. gcode_M108();
  5864. break;
  5865. case 112: // M112: Emergency Stop
  5866. gcode_M112();
  5867. break;
  5868. case 410: // M410 quickstop - Abort all the planned moves.
  5869. gcode_M410();
  5870. break;
  5871. #endif
  5872. #if ENABLED(HOST_KEEPALIVE_FEATURE)
  5873. case 113: // M113: Set Host Keepalive interval
  5874. gcode_M113();
  5875. break;
  5876. #endif
  5877. case 140: // M140: Set bed temp
  5878. gcode_M140();
  5879. break;
  5880. case 105: // M105: Read current temperature
  5881. gcode_M105();
  5882. KEEPALIVE_STATE(NOT_BUSY);
  5883. return; // "ok" already printed
  5884. case 109: // M109: Wait for temperature
  5885. gcode_M109();
  5886. break;
  5887. #if HAS_TEMP_BED
  5888. case 190: // M190: Wait for bed heater to reach target
  5889. gcode_M190();
  5890. break;
  5891. #endif // HAS_TEMP_BED
  5892. #if FAN_COUNT > 0
  5893. case 106: // M106: Fan On
  5894. gcode_M106();
  5895. break;
  5896. case 107: // M107: Fan Off
  5897. gcode_M107();
  5898. break;
  5899. #endif // FAN_COUNT > 0
  5900. #if ENABLED(BARICUDA)
  5901. // PWM for HEATER_1_PIN
  5902. #if HAS_HEATER_1
  5903. case 126: // M126: valve open
  5904. gcode_M126();
  5905. break;
  5906. case 127: // M127: valve closed
  5907. gcode_M127();
  5908. break;
  5909. #endif // HAS_HEATER_1
  5910. // PWM for HEATER_2_PIN
  5911. #if HAS_HEATER_2
  5912. case 128: // M128: valve open
  5913. gcode_M128();
  5914. break;
  5915. case 129: // M129: valve closed
  5916. gcode_M129();
  5917. break;
  5918. #endif // HAS_HEATER_2
  5919. #endif // BARICUDA
  5920. #if HAS_POWER_SWITCH
  5921. case 80: // M80: Turn on Power Supply
  5922. gcode_M80();
  5923. break;
  5924. #endif // HAS_POWER_SWITCH
  5925. case 81: // M81: Turn off Power, including Power Supply, if possible
  5926. gcode_M81();
  5927. break;
  5928. case 82:
  5929. gcode_M82();
  5930. break;
  5931. case 83:
  5932. gcode_M83();
  5933. break;
  5934. case 18: // (for compatibility)
  5935. case 84: // M84
  5936. gcode_M18_M84();
  5937. break;
  5938. case 85: // M85
  5939. gcode_M85();
  5940. break;
  5941. case 92: // M92: Set the steps-per-unit for one or more axes
  5942. gcode_M92();
  5943. break;
  5944. case 115: // M115: Report capabilities
  5945. gcode_M115();
  5946. break;
  5947. case 117: // M117: Set LCD message text, if possible
  5948. gcode_M117();
  5949. break;
  5950. case 114: // M114: Report current position
  5951. gcode_M114();
  5952. break;
  5953. case 120: // M120: Enable endstops
  5954. gcode_M120();
  5955. break;
  5956. case 121: // M121: Disable endstops
  5957. gcode_M121();
  5958. break;
  5959. case 119: // M119: Report endstop states
  5960. gcode_M119();
  5961. break;
  5962. #if ENABLED(ULTIPANEL)
  5963. case 145: // M145: Set material heatup parameters
  5964. gcode_M145();
  5965. break;
  5966. #endif
  5967. #if ENABLED(TEMPERATURE_UNITS_SUPPORT)
  5968. case 149:
  5969. gcode_M149();
  5970. break;
  5971. #endif
  5972. #if ENABLED(BLINKM)
  5973. case 150: // M150
  5974. gcode_M150();
  5975. break;
  5976. #endif //BLINKM
  5977. #if ENABLED(EXPERIMENTAL_I2CBUS)
  5978. case 155:
  5979. gcode_M155();
  5980. break;
  5981. case 156:
  5982. gcode_M156();
  5983. break;
  5984. #endif //EXPERIMENTAL_I2CBUS
  5985. case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
  5986. gcode_M200();
  5987. break;
  5988. case 201: // M201
  5989. gcode_M201();
  5990. break;
  5991. #if 0 // Not used for Sprinter/grbl gen6
  5992. case 202: // M202
  5993. gcode_M202();
  5994. break;
  5995. #endif
  5996. case 203: // M203 max feedrate units/sec
  5997. gcode_M203();
  5998. break;
  5999. case 204: // M204 acclereration S normal moves T filmanent only moves
  6000. gcode_M204();
  6001. break;
  6002. case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
  6003. gcode_M205();
  6004. break;
  6005. case 206: // M206 additional homing offset
  6006. gcode_M206();
  6007. break;
  6008. #if ENABLED(DELTA)
  6009. case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
  6010. gcode_M665();
  6011. break;
  6012. #endif
  6013. #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
  6014. case 666: // M666 set delta / dual endstop adjustment
  6015. gcode_M666();
  6016. break;
  6017. #endif
  6018. #if ENABLED(FWRETRACT)
  6019. case 207: // M207 - Set Retract Length: S<length>, Feedrate: F<units/min>, and Z lift: Z<distance>
  6020. gcode_M207();
  6021. break;
  6022. case 208: // M208 - Set Recover (unretract) Additional (!) Length: S<length> and Feedrate: F<units/min>
  6023. gcode_M208();
  6024. break;
  6025. case 209: // M209 - Turn Automatic Retract Detection on/off: S<bool> (For slicers that don't support G10/11). Every normal extrude-only move will be classified as retract depending on the direction.
  6026. gcode_M209();
  6027. break;
  6028. #endif // FWRETRACT
  6029. #if HOTENDS > 1
  6030. case 218: // M218 - Set a tool offset: T<index> X<offset> Y<offset>
  6031. gcode_M218();
  6032. break;
  6033. #endif
  6034. case 220: // M220 - Set Feedrate Percentage: S<percent> ("FR" on your LCD)
  6035. gcode_M220();
  6036. break;
  6037. case 221: // M221 - Set Flow Percentage: S<percent>
  6038. gcode_M221();
  6039. break;
  6040. case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
  6041. gcode_M226();
  6042. break;
  6043. #if HAS_SERVOS
  6044. case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
  6045. gcode_M280();
  6046. break;
  6047. #endif // HAS_SERVOS
  6048. #if HAS_BUZZER
  6049. case 300: // M300 - Play beep tone
  6050. gcode_M300();
  6051. break;
  6052. #endif // HAS_BUZZER
  6053. #if ENABLED(PIDTEMP)
  6054. case 301: // M301
  6055. gcode_M301();
  6056. break;
  6057. #endif // PIDTEMP
  6058. #if ENABLED(PIDTEMPBED)
  6059. case 304: // M304
  6060. gcode_M304();
  6061. break;
  6062. #endif // PIDTEMPBED
  6063. #if defined(CHDK) || HAS_PHOTOGRAPH
  6064. case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
  6065. gcode_M240();
  6066. break;
  6067. #endif // CHDK || PHOTOGRAPH_PIN
  6068. #if HAS_LCD_CONTRAST
  6069. case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
  6070. gcode_M250();
  6071. break;
  6072. #endif // HAS_LCD_CONTRAST
  6073. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6074. case 302: // allow cold extrudes, or set the minimum extrude temperature
  6075. gcode_M302();
  6076. break;
  6077. #endif // PREVENT_DANGEROUS_EXTRUDE
  6078. case 303: // M303 PID autotune
  6079. gcode_M303();
  6080. break;
  6081. #if ENABLED(SCARA)
  6082. case 360: // M360 SCARA Theta pos1
  6083. if (gcode_M360()) return;
  6084. break;
  6085. case 361: // M361 SCARA Theta pos2
  6086. if (gcode_M361()) return;
  6087. break;
  6088. case 362: // M362 SCARA Psi pos1
  6089. if (gcode_M362()) return;
  6090. break;
  6091. case 363: // M363 SCARA Psi pos2
  6092. if (gcode_M363()) return;
  6093. break;
  6094. case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
  6095. if (gcode_M364()) return;
  6096. break;
  6097. case 365: // M365 Set SCARA scaling for X Y Z
  6098. gcode_M365();
  6099. break;
  6100. #endif // SCARA
  6101. case 400: // M400 finish all moves
  6102. gcode_M400();
  6103. break;
  6104. #if HAS_BED_PROBE
  6105. case 401:
  6106. gcode_M401();
  6107. break;
  6108. case 402:
  6109. gcode_M402();
  6110. break;
  6111. #endif // HAS_BED_PROBE
  6112. #if ENABLED(FILAMENT_WIDTH_SENSOR)
  6113. case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
  6114. gcode_M404();
  6115. break;
  6116. case 405: //M405 Turn on filament sensor for control
  6117. gcode_M405();
  6118. break;
  6119. case 406: //M406 Turn off filament sensor for control
  6120. gcode_M406();
  6121. break;
  6122. case 407: //M407 Display measured filament diameter
  6123. gcode_M407();
  6124. break;
  6125. #endif // ENABLED(FILAMENT_WIDTH_SENSOR)
  6126. #if ENABLED(MESH_BED_LEVELING)
  6127. case 420: // M420 Enable/Disable Mesh Bed Leveling
  6128. gcode_M420();
  6129. break;
  6130. case 421: // M421 Set a Mesh Bed Leveling Z coordinate
  6131. gcode_M421();
  6132. break;
  6133. #endif
  6134. case 428: // M428 Apply current_position to home_offset
  6135. gcode_M428();
  6136. break;
  6137. case 500: // M500 Store settings in EEPROM
  6138. gcode_M500();
  6139. break;
  6140. case 501: // M501 Read settings from EEPROM
  6141. gcode_M501();
  6142. break;
  6143. case 502: // M502 Revert to default settings
  6144. gcode_M502();
  6145. break;
  6146. case 503: // M503 print settings currently in memory
  6147. gcode_M503();
  6148. break;
  6149. #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
  6150. case 540:
  6151. gcode_M540();
  6152. break;
  6153. #endif
  6154. #if HAS_BED_PROBE
  6155. case 851:
  6156. gcode_M851();
  6157. break;
  6158. #endif // HAS_BED_PROBE
  6159. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6160. case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
  6161. gcode_M600();
  6162. break;
  6163. #endif // FILAMENT_CHANGE_FEATURE
  6164. #if ENABLED(DUAL_X_CARRIAGE)
  6165. case 605:
  6166. gcode_M605();
  6167. break;
  6168. #endif // DUAL_X_CARRIAGE
  6169. #if ENABLED(LIN_ADVANCE)
  6170. case 905: // M905 Set advance factor.
  6171. gcode_M905();
  6172. break;
  6173. #endif
  6174. case 907: // M907 Set digital trimpot motor current using axis codes.
  6175. gcode_M907();
  6176. break;
  6177. #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
  6178. case 908: // M908 Control digital trimpot directly.
  6179. gcode_M908();
  6180. break;
  6181. #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
  6182. case 909: // M909 Print digipot/DAC current value
  6183. gcode_M909();
  6184. break;
  6185. case 910: // M910 Commit digipot/DAC value to external EEPROM
  6186. gcode_M910();
  6187. break;
  6188. #endif
  6189. #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
  6190. #if HAS_MICROSTEPS
  6191. case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
  6192. gcode_M350();
  6193. break;
  6194. case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
  6195. gcode_M351();
  6196. break;
  6197. #endif // HAS_MICROSTEPS
  6198. case 999: // M999: Restart after being Stopped
  6199. gcode_M999();
  6200. break;
  6201. }
  6202. break;
  6203. case 'T':
  6204. gcode_T(codenum);
  6205. break;
  6206. default: code_is_good = false;
  6207. }
  6208. KEEPALIVE_STATE(NOT_BUSY);
  6209. ExitUnknownCommand:
  6210. // Still unknown command? Throw an error
  6211. if (!code_is_good) unknown_command_error();
  6212. ok_to_send();
  6213. }
  6214. void FlushSerialRequestResend() {
  6215. //char command_queue[cmd_queue_index_r][100]="Resend:";
  6216. MYSERIAL.flush();
  6217. SERIAL_PROTOCOLPGM(MSG_RESEND);
  6218. SERIAL_PROTOCOLLN(gcode_LastN + 1);
  6219. ok_to_send();
  6220. }
  6221. void ok_to_send() {
  6222. refresh_cmd_timeout();
  6223. if (!send_ok[cmd_queue_index_r]) return;
  6224. SERIAL_PROTOCOLPGM(MSG_OK);
  6225. #if ENABLED(ADVANCED_OK)
  6226. char* p = command_queue[cmd_queue_index_r];
  6227. if (*p == 'N') {
  6228. SERIAL_PROTOCOL(' ');
  6229. SERIAL_ECHO(*p++);
  6230. while (NUMERIC_SIGNED(*p))
  6231. SERIAL_ECHO(*p++);
  6232. }
  6233. SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - planner.movesplanned() - 1));
  6234. SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
  6235. #endif
  6236. SERIAL_EOL;
  6237. }
  6238. void clamp_to_software_endstops(float target[3]) {
  6239. if (min_software_endstops) {
  6240. NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
  6241. NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
  6242. NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS]);
  6243. }
  6244. if (max_software_endstops) {
  6245. NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
  6246. NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
  6247. NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
  6248. }
  6249. }
  6250. #if ENABLED(DELTA)
  6251. void recalc_delta_settings(float radius, float diagonal_rod) {
  6252. delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
  6253. delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
  6254. delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
  6255. delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
  6256. delta_tower3_x = 0.0; // back middle tower
  6257. delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
  6258. delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
  6259. delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
  6260. delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
  6261. }
  6262. void calculate_delta(float cartesian[3]) {
  6263. delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
  6264. - sq(delta_tower1_x - cartesian[X_AXIS])
  6265. - sq(delta_tower1_y - cartesian[Y_AXIS])
  6266. ) + cartesian[Z_AXIS];
  6267. delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
  6268. - sq(delta_tower2_x - cartesian[X_AXIS])
  6269. - sq(delta_tower2_y - cartesian[Y_AXIS])
  6270. ) + cartesian[Z_AXIS];
  6271. delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
  6272. - sq(delta_tower3_x - cartesian[X_AXIS])
  6273. - sq(delta_tower3_y - cartesian[Y_AXIS])
  6274. ) + cartesian[Z_AXIS];
  6275. /**
  6276. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6277. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6278. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6279. SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
  6280. SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
  6281. SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
  6282. */
  6283. }
  6284. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6285. // Adjust print surface height by linear interpolation over the bed_level array.
  6286. void adjust_delta(float cartesian[3]) {
  6287. if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
  6288. int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
  6289. float h1 = 0.001 - half, h2 = half - 0.001,
  6290. grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
  6291. grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
  6292. int floor_x = floor(grid_x), floor_y = floor(grid_y);
  6293. float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
  6294. z1 = bed_level[floor_x + half][floor_y + half],
  6295. z2 = bed_level[floor_x + half][floor_y + half + 1],
  6296. z3 = bed_level[floor_x + half + 1][floor_y + half],
  6297. z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
  6298. left = (1 - ratio_y) * z1 + ratio_y * z2,
  6299. right = (1 - ratio_y) * z3 + ratio_y * z4,
  6300. offset = (1 - ratio_x) * left + ratio_x * right;
  6301. delta[X_AXIS] += offset;
  6302. delta[Y_AXIS] += offset;
  6303. delta[Z_AXIS] += offset;
  6304. /**
  6305. SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
  6306. SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
  6307. SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
  6308. SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
  6309. SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
  6310. SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
  6311. SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
  6312. SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
  6313. SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
  6314. SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
  6315. SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
  6316. SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
  6317. SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
  6318. */
  6319. }
  6320. #endif // AUTO_BED_LEVELING_FEATURE
  6321. #endif // DELTA
  6322. #if ENABLED(MESH_BED_LEVELING)
  6323. // This function is used to split lines on mesh borders so each segment is only part of one mesh area
  6324. void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
  6325. if (!mbl.active()) {
  6326. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6327. set_current_to_destination();
  6328. return;
  6329. }
  6330. int pcx = mbl.cell_index_x(RAW_CURRENT_POSITION(X_AXIS)),
  6331. pcy = mbl.cell_index_y(RAW_CURRENT_POSITION(Y_AXIS)),
  6332. cx = mbl.cell_index_x(RAW_POSITION(x, X_AXIS)),
  6333. cy = mbl.cell_index_y(RAW_POSITION(y, Y_AXIS));
  6334. NOMORE(pcx, MESH_NUM_X_POINTS - 2);
  6335. NOMORE(pcy, MESH_NUM_Y_POINTS - 2);
  6336. NOMORE(cx, MESH_NUM_X_POINTS - 2);
  6337. NOMORE(cy, MESH_NUM_Y_POINTS - 2);
  6338. if (pcx == cx && pcy == cy) {
  6339. // Start and end on same mesh square
  6340. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6341. set_current_to_destination();
  6342. return;
  6343. }
  6344. float nx, ny, nz, ne, normalized_dist;
  6345. if (cx > pcx && TEST(x_splits, cx)) {
  6346. nx = mbl.get_probe_x(cx) + home_offset[X_AXIS];
  6347. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6348. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6349. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6350. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6351. CBI(x_splits, cx);
  6352. }
  6353. else if (cx < pcx && TEST(x_splits, pcx)) {
  6354. nx = mbl.get_probe_x(pcx) + home_offset[X_AXIS];
  6355. normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
  6356. ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
  6357. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6358. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6359. CBI(x_splits, pcx);
  6360. }
  6361. else if (cy > pcy && TEST(y_splits, cy)) {
  6362. ny = mbl.get_probe_y(cy) + home_offset[Y_AXIS];
  6363. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6364. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6365. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6366. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6367. CBI(y_splits, cy);
  6368. }
  6369. else if (cy < pcy && TEST(y_splits, pcy)) {
  6370. ny = mbl.get_probe_y(pcy) + home_offset[Y_AXIS];
  6371. normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
  6372. nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
  6373. nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
  6374. ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
  6375. CBI(y_splits, pcy);
  6376. }
  6377. else {
  6378. // Already split on a border
  6379. planner.buffer_line(x, y, z, e, feed_rate, extruder);
  6380. set_current_to_destination();
  6381. return;
  6382. }
  6383. // Do the split and look for more borders
  6384. destination[X_AXIS] = nx;
  6385. destination[Y_AXIS] = ny;
  6386. destination[Z_AXIS] = nz;
  6387. destination[E_AXIS] = ne;
  6388. mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
  6389. destination[X_AXIS] = x;
  6390. destination[Y_AXIS] = y;
  6391. destination[Z_AXIS] = z;
  6392. destination[E_AXIS] = e;
  6393. mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
  6394. }
  6395. #endif // MESH_BED_LEVELING
  6396. #if ENABLED(DELTA) || ENABLED(SCARA)
  6397. inline bool prepare_delta_move_to(float target[NUM_AXIS]) {
  6398. float difference[NUM_AXIS];
  6399. for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
  6400. float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
  6401. if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
  6402. if (cartesian_mm < 0.000001) return false;
  6403. float _feedrate = feedrate * feedrate_multiplier / 6000.0;
  6404. float seconds = cartesian_mm / _feedrate;
  6405. int steps = max(1, int(delta_segments_per_second * seconds));
  6406. float inv_steps = 1.0/steps;
  6407. // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
  6408. // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
  6409. // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
  6410. for (int s = 1; s <= steps; s++) {
  6411. float fraction = float(s) * inv_steps;
  6412. for (int8_t i = 0; i < NUM_AXIS; i++)
  6413. target[i] = current_position[i] + difference[i] * fraction;
  6414. calculate_delta(target);
  6415. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6416. if (!bed_leveling_in_progress) adjust_delta(target);
  6417. #endif
  6418. //DEBUG_POS("prepare_delta_move_to", target);
  6419. //DEBUG_POS("prepare_delta_move_to", delta);
  6420. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], _feedrate, active_extruder);
  6421. }
  6422. return true;
  6423. }
  6424. #endif // DELTA || SCARA
  6425. #if ENABLED(SCARA)
  6426. inline bool prepare_scara_move_to(float target[NUM_AXIS]) { return prepare_delta_move_to(target); }
  6427. #endif
  6428. #if ENABLED(DUAL_X_CARRIAGE)
  6429. inline bool prepare_move_to_destination_dualx() {
  6430. if (active_extruder_parked) {
  6431. if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
  6432. // move duplicate extruder into correct duplication position.
  6433. planner.set_position_mm(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
  6434. planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
  6435. current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
  6436. SYNC_PLAN_POSITION_KINEMATIC();
  6437. stepper.synchronize();
  6438. extruder_duplication_enabled = true;
  6439. active_extruder_parked = false;
  6440. }
  6441. else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
  6442. if (current_position[E_AXIS] == destination[E_AXIS]) {
  6443. // This is a travel move (with no extrusion)
  6444. // Skip it, but keep track of the current position
  6445. // (so it can be used as the start of the next non-travel move)
  6446. if (delayed_move_time != 0xFFFFFFFFUL) {
  6447. set_current_to_destination();
  6448. NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
  6449. delayed_move_time = millis();
  6450. return false;
  6451. }
  6452. }
  6453. delayed_move_time = 0;
  6454. // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
  6455. planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6456. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], PLANNER_XY_FEEDRATE(), active_extruder);
  6457. planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
  6458. active_extruder_parked = false;
  6459. }
  6460. }
  6461. return true;
  6462. }
  6463. #endif // DUAL_X_CARRIAGE
  6464. #if DISABLED(DELTA) && DISABLED(SCARA)
  6465. inline bool prepare_move_to_destination_cartesian() {
  6466. // Do not use feedrate_multiplier for E or Z only moves
  6467. if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
  6468. line_to_destination();
  6469. }
  6470. else {
  6471. #if ENABLED(MESH_BED_LEVELING)
  6472. mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
  6473. return false;
  6474. #else
  6475. line_to_destination(feedrate * feedrate_multiplier / 100.0);
  6476. #endif
  6477. }
  6478. return true;
  6479. }
  6480. #endif // !DELTA && !SCARA
  6481. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6482. inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
  6483. if (DEBUGGING(DRYRUN)) return;
  6484. float de = dest_e - curr_e;
  6485. if (de) {
  6486. if (thermalManager.tooColdToExtrude(active_extruder)) {
  6487. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6488. SERIAL_ECHO_START;
  6489. SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
  6490. }
  6491. #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
  6492. if (labs(de) > EXTRUDE_MAXLENGTH) {
  6493. curr_e = dest_e; // Behave as if the move really took place, but ignore E part
  6494. SERIAL_ECHO_START;
  6495. SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
  6496. }
  6497. #endif
  6498. }
  6499. }
  6500. #endif // PREVENT_DANGEROUS_EXTRUDE
  6501. /**
  6502. * Prepare a single move and get ready for the next one
  6503. *
  6504. * (This may call planner.buffer_line several times to put
  6505. * smaller moves into the planner for DELTA or SCARA.)
  6506. */
  6507. void prepare_move_to_destination() {
  6508. clamp_to_software_endstops(destination);
  6509. refresh_cmd_timeout();
  6510. #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
  6511. prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
  6512. #endif
  6513. #if ENABLED(SCARA)
  6514. if (!prepare_scara_move_to(destination)) return;
  6515. #elif ENABLED(DELTA)
  6516. if (!prepare_delta_move_to(destination)) return;
  6517. #else
  6518. #if ENABLED(DUAL_X_CARRIAGE)
  6519. if (!prepare_move_to_destination_dualx()) return;
  6520. #endif
  6521. if (!prepare_move_to_destination_cartesian()) return;
  6522. #endif
  6523. set_current_to_destination();
  6524. }
  6525. #if ENABLED(ARC_SUPPORT)
  6526. /**
  6527. * Plan an arc in 2 dimensions
  6528. *
  6529. * The arc is approximated by generating many small linear segments.
  6530. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
  6531. * Arcs should only be made relatively large (over 5mm), as larger arcs with
  6532. * larger segments will tend to be more efficient. Your slicer should have
  6533. * options for G2/G3 arc generation. In future these options may be GCode tunable.
  6534. */
  6535. void plan_arc(
  6536. float target[NUM_AXIS], // Destination position
  6537. float* offset, // Center of rotation relative to current_position
  6538. uint8_t clockwise // Clockwise?
  6539. ) {
  6540. float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
  6541. center_X = current_position[X_AXIS] + offset[X_AXIS],
  6542. center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
  6543. linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
  6544. extruder_travel = target[E_AXIS] - current_position[E_AXIS],
  6545. r_X = -offset[X_AXIS], // Radius vector from center to current location
  6546. r_Y = -offset[Y_AXIS],
  6547. rt_X = target[X_AXIS] - center_X,
  6548. rt_Y = target[Y_AXIS] - center_Y;
  6549. // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
  6550. float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
  6551. if (angular_travel < 0) angular_travel += RADIANS(360);
  6552. if (clockwise) angular_travel -= RADIANS(360);
  6553. // Make a circle if the angular rotation is 0
  6554. if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
  6555. angular_travel += RADIANS(360);
  6556. float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
  6557. if (mm_of_travel < 0.001) return;
  6558. uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
  6559. if (segments == 0) segments = 1;
  6560. float theta_per_segment = angular_travel / segments;
  6561. float linear_per_segment = linear_travel / segments;
  6562. float extruder_per_segment = extruder_travel / segments;
  6563. /**
  6564. * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
  6565. * and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
  6566. * r_T = [cos(phi) -sin(phi);
  6567. * sin(phi) cos(phi] * r ;
  6568. *
  6569. * For arc generation, the center of the circle is the axis of rotation and the radius vector is
  6570. * defined from the circle center to the initial position. Each line segment is formed by successive
  6571. * vector rotations. This requires only two cos() and sin() computations to form the rotation
  6572. * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
  6573. * all double numbers are single precision on the Arduino. (True double precision will not have
  6574. * round off issues for CNC applications.) Single precision error can accumulate to be greater than
  6575. * tool precision in some cases. Therefore, arc path correction is implemented.
  6576. *
  6577. * Small angle approximation may be used to reduce computation overhead further. This approximation
  6578. * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
  6579. * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
  6580. * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
  6581. * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
  6582. * issue for CNC machines with the single precision Arduino calculations.
  6583. *
  6584. * This approximation also allows plan_arc to immediately insert a line segment into the planner
  6585. * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
  6586. * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
  6587. * This is important when there are successive arc motions.
  6588. */
  6589. // Vector rotation matrix values
  6590. float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
  6591. float sin_T = theta_per_segment;
  6592. float arc_target[NUM_AXIS];
  6593. float sin_Ti, cos_Ti, r_new_Y;
  6594. uint16_t i;
  6595. int8_t count = 0;
  6596. // Initialize the linear axis
  6597. arc_target[Z_AXIS] = current_position[Z_AXIS];
  6598. // Initialize the extruder axis
  6599. arc_target[E_AXIS] = current_position[E_AXIS];
  6600. float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
  6601. millis_t next_idle_ms = millis() + 200UL;
  6602. for (i = 1; i < segments; i++) { // Iterate (segments-1) times
  6603. thermalManager.manage_heater();
  6604. millis_t now = millis();
  6605. if (ELAPSED(now, next_idle_ms)) {
  6606. next_idle_ms = now + 200UL;
  6607. idle();
  6608. }
  6609. if (++count < N_ARC_CORRECTION) {
  6610. // Apply vector rotation matrix to previous r_X / 1
  6611. r_new_Y = r_X * sin_T + r_Y * cos_T;
  6612. r_X = r_X * cos_T - r_Y * sin_T;
  6613. r_Y = r_new_Y;
  6614. }
  6615. else {
  6616. // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
  6617. // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
  6618. // To reduce stuttering, the sin and cos could be computed at different times.
  6619. // For now, compute both at the same time.
  6620. cos_Ti = cos(i * theta_per_segment);
  6621. sin_Ti = sin(i * theta_per_segment);
  6622. r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
  6623. r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
  6624. count = 0;
  6625. }
  6626. // Update arc_target location
  6627. arc_target[X_AXIS] = center_X + r_X;
  6628. arc_target[Y_AXIS] = center_Y + r_Y;
  6629. arc_target[Z_AXIS] += linear_per_segment;
  6630. arc_target[E_AXIS] += extruder_per_segment;
  6631. clamp_to_software_endstops(arc_target);
  6632. #if ENABLED(DELTA) || ENABLED(SCARA)
  6633. calculate_delta(arc_target);
  6634. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6635. adjust_delta(arc_target);
  6636. #endif
  6637. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6638. #else
  6639. planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
  6640. #endif
  6641. }
  6642. // Ensure last segment arrives at target location.
  6643. #if ENABLED(DELTA) || ENABLED(SCARA)
  6644. calculate_delta(target);
  6645. #if ENABLED(AUTO_BED_LEVELING_FEATURE)
  6646. adjust_delta(target);
  6647. #endif
  6648. planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6649. #else
  6650. planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
  6651. #endif
  6652. // As far as the parser is concerned, the position is now == target. In reality the
  6653. // motion control system might still be processing the action and the real tool position
  6654. // in any intermediate location.
  6655. set_current_to_destination();
  6656. }
  6657. #endif
  6658. #if ENABLED(BEZIER_CURVE_SUPPORT)
  6659. void plan_cubic_move(const float offset[4]) {
  6660. cubic_b_spline(current_position, destination, offset, feedrate * feedrate_multiplier / 60 / 100.0, active_extruder);
  6661. // As far as the parser is concerned, the position is now == target. In reality the
  6662. // motion control system might still be processing the action and the real tool position
  6663. // in any intermediate location.
  6664. set_current_to_destination();
  6665. }
  6666. #endif // BEZIER_CURVE_SUPPORT
  6667. #if HAS_CONTROLLERFAN
  6668. void controllerFan() {
  6669. static millis_t lastMotorOn = 0; // Last time a motor was turned on
  6670. static millis_t nextMotorCheck = 0; // Last time the state was checked
  6671. millis_t ms = millis();
  6672. if (ELAPSED(ms, nextMotorCheck)) {
  6673. nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
  6674. if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
  6675. || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
  6676. #if EXTRUDERS > 1
  6677. || E1_ENABLE_READ == E_ENABLE_ON
  6678. #if HAS_X2_ENABLE
  6679. || X2_ENABLE_READ == X_ENABLE_ON
  6680. #endif
  6681. #if EXTRUDERS > 2
  6682. || E2_ENABLE_READ == E_ENABLE_ON
  6683. #if EXTRUDERS > 3
  6684. || E3_ENABLE_READ == E_ENABLE_ON
  6685. #endif
  6686. #endif
  6687. #endif
  6688. ) {
  6689. lastMotorOn = ms; //... set time to NOW so the fan will turn on
  6690. }
  6691. // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
  6692. uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
  6693. // allows digital or PWM fan output to be used (see M42 handling)
  6694. digitalWrite(CONTROLLERFAN_PIN, speed);
  6695. analogWrite(CONTROLLERFAN_PIN, speed);
  6696. }
  6697. }
  6698. #endif // HAS_CONTROLLERFAN
  6699. #if ENABLED(SCARA)
  6700. void calculate_SCARA_forward_Transform(float f_scara[3]) {
  6701. // Perform forward kinematics, and place results in delta[3]
  6702. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6703. float x_sin, x_cos, y_sin, y_cos;
  6704. //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
  6705. //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
  6706. x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6707. x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
  6708. y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6709. y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
  6710. //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
  6711. //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
  6712. //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
  6713. //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
  6714. delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
  6715. delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
  6716. //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
  6717. //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
  6718. }
  6719. void calculate_delta(float cartesian[3]) {
  6720. //reverse kinematics.
  6721. // Perform reversed kinematics, and place results in delta[3]
  6722. // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
  6723. float SCARA_pos[2];
  6724. static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
  6725. SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
  6726. SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
  6727. #if (Linkage_1 == Linkage_2)
  6728. SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
  6729. #else
  6730. SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
  6731. #endif
  6732. SCARA_S2 = sqrt(1 - sq(SCARA_C2));
  6733. SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
  6734. SCARA_K2 = Linkage_2 * SCARA_S2;
  6735. SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
  6736. SCARA_psi = atan2(SCARA_S2, SCARA_C2);
  6737. delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
  6738. delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
  6739. delta[Z_AXIS] = cartesian[Z_AXIS];
  6740. /**
  6741. SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
  6742. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
  6743. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
  6744. SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
  6745. SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
  6746. SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
  6747. SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
  6748. SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
  6749. SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
  6750. SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
  6751. SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
  6752. SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
  6753. SERIAL_EOL;
  6754. */
  6755. }
  6756. #endif // SCARA
  6757. #if ENABLED(TEMP_STAT_LEDS)
  6758. static bool red_led = false;
  6759. static millis_t next_status_led_update_ms = 0;
  6760. void handle_status_leds(void) {
  6761. float max_temp = 0.0;
  6762. if (ELAPSED(millis(), next_status_led_update_ms)) {
  6763. next_status_led_update_ms += 500; // Update every 0.5s
  6764. HOTEND_LOOP() {
  6765. max_temp = max(max(max_temp, thermalManager.degHotend(e)), thermalManager.degTargetHotend(e));
  6766. }
  6767. #if HAS_TEMP_BED
  6768. max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
  6769. #endif
  6770. bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
  6771. if (new_led != red_led) {
  6772. red_led = new_led;
  6773. digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
  6774. digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
  6775. }
  6776. }
  6777. }
  6778. #endif
  6779. void enable_all_steppers() {
  6780. enable_x();
  6781. enable_y();
  6782. enable_z();
  6783. enable_e0();
  6784. enable_e1();
  6785. enable_e2();
  6786. enable_e3();
  6787. }
  6788. void disable_all_steppers() {
  6789. disable_x();
  6790. disable_y();
  6791. disable_z();
  6792. disable_e0();
  6793. disable_e1();
  6794. disable_e2();
  6795. disable_e3();
  6796. }
  6797. /**
  6798. * Standard idle routine keeps the machine alive
  6799. */
  6800. void idle(
  6801. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6802. bool no_stepper_sleep/*=false*/
  6803. #endif
  6804. ) {
  6805. lcd_update();
  6806. host_keepalive();
  6807. manage_inactivity(
  6808. #if ENABLED(FILAMENT_CHANGE_FEATURE)
  6809. no_stepper_sleep
  6810. #endif
  6811. );
  6812. thermalManager.manage_heater();
  6813. #if ENABLED(PRINTCOUNTER)
  6814. print_job_timer.tick();
  6815. #endif
  6816. #if HAS_BUZZER
  6817. buzzer.tick();
  6818. #endif
  6819. }
  6820. /**
  6821. * Manage several activities:
  6822. * - Check for Filament Runout
  6823. * - Keep the command buffer full
  6824. * - Check for maximum inactive time between commands
  6825. * - Check for maximum inactive time between stepper commands
  6826. * - Check if pin CHDK needs to go LOW
  6827. * - Check for KILL button held down
  6828. * - Check for HOME button held down
  6829. * - Check if cooling fan needs to be switched on
  6830. * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
  6831. */
  6832. void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
  6833. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6834. if ((IS_SD_PRINTING || print_job_timer.isRunning()) && !(READ(FIL_RUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
  6835. handle_filament_runout();
  6836. #endif
  6837. if (commands_in_queue < BUFSIZE) get_available_commands();
  6838. millis_t ms = millis();
  6839. if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
  6840. if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
  6841. && !ignore_stepper_queue && !planner.blocks_queued()) {
  6842. #if ENABLED(DISABLE_INACTIVE_X)
  6843. disable_x();
  6844. #endif
  6845. #if ENABLED(DISABLE_INACTIVE_Y)
  6846. disable_y();
  6847. #endif
  6848. #if ENABLED(DISABLE_INACTIVE_Z)
  6849. disable_z();
  6850. #endif
  6851. #if ENABLED(DISABLE_INACTIVE_E)
  6852. disable_e0();
  6853. disable_e1();
  6854. disable_e2();
  6855. disable_e3();
  6856. #endif
  6857. }
  6858. #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
  6859. if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
  6860. chdkActive = false;
  6861. WRITE(CHDK, LOW);
  6862. }
  6863. #endif
  6864. #if HAS_KILL
  6865. // Check if the kill button was pressed and wait just in case it was an accidental
  6866. // key kill key press
  6867. // -------------------------------------------------------------------------------
  6868. static int killCount = 0; // make the inactivity button a bit less responsive
  6869. const int KILL_DELAY = 750;
  6870. if (!READ(KILL_PIN))
  6871. killCount++;
  6872. else if (killCount > 0)
  6873. killCount--;
  6874. // Exceeded threshold and we can confirm that it was not accidental
  6875. // KILL the machine
  6876. // ----------------------------------------------------------------
  6877. if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
  6878. #endif
  6879. #if HAS_HOME
  6880. // Check to see if we have to home, use poor man's debouncer
  6881. // ---------------------------------------------------------
  6882. static int homeDebounceCount = 0; // poor man's debouncing count
  6883. const int HOME_DEBOUNCE_DELAY = 2500;
  6884. if (!READ(HOME_PIN)) {
  6885. if (!homeDebounceCount) {
  6886. enqueue_and_echo_commands_P(PSTR("G28"));
  6887. LCD_MESSAGEPGM(MSG_AUTO_HOME);
  6888. }
  6889. if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
  6890. homeDebounceCount++;
  6891. else
  6892. homeDebounceCount = 0;
  6893. }
  6894. #endif
  6895. #if HAS_CONTROLLERFAN
  6896. controllerFan(); // Check if fan should be turned on to cool stepper drivers down
  6897. #endif
  6898. #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
  6899. if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
  6900. if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
  6901. bool oldstatus;
  6902. switch (active_extruder) {
  6903. case 0:
  6904. oldstatus = E0_ENABLE_READ;
  6905. enable_e0();
  6906. break;
  6907. #if EXTRUDERS > 1
  6908. case 1:
  6909. oldstatus = E1_ENABLE_READ;
  6910. enable_e1();
  6911. break;
  6912. #if EXTRUDERS > 2
  6913. case 2:
  6914. oldstatus = E2_ENABLE_READ;
  6915. enable_e2();
  6916. break;
  6917. #if EXTRUDERS > 3
  6918. case 3:
  6919. oldstatus = E3_ENABLE_READ;
  6920. enable_e3();
  6921. break;
  6922. #endif
  6923. #endif
  6924. #endif
  6925. }
  6926. float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
  6927. planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
  6928. destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
  6929. (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
  6930. current_position[E_AXIS] = oldepos;
  6931. destination[E_AXIS] = oldedes;
  6932. planner.set_e_position_mm(oldepos);
  6933. previous_cmd_ms = ms; // refresh_cmd_timeout()
  6934. stepper.synchronize();
  6935. switch (active_extruder) {
  6936. case 0:
  6937. E0_ENABLE_WRITE(oldstatus);
  6938. break;
  6939. #if EXTRUDERS > 1
  6940. case 1:
  6941. E1_ENABLE_WRITE(oldstatus);
  6942. break;
  6943. #if EXTRUDERS > 2
  6944. case 2:
  6945. E2_ENABLE_WRITE(oldstatus);
  6946. break;
  6947. #if EXTRUDERS > 3
  6948. case 3:
  6949. E3_ENABLE_WRITE(oldstatus);
  6950. break;
  6951. #endif
  6952. #endif
  6953. #endif
  6954. }
  6955. }
  6956. #endif
  6957. #if ENABLED(DUAL_X_CARRIAGE)
  6958. // handle delayed move timeout
  6959. if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
  6960. // travel moves have been received so enact them
  6961. delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
  6962. set_destination_to_current();
  6963. prepare_move_to_destination();
  6964. }
  6965. #endif
  6966. #if ENABLED(TEMP_STAT_LEDS)
  6967. handle_status_leds();
  6968. #endif
  6969. planner.check_axes_activity();
  6970. }
  6971. void kill(const char* lcd_msg) {
  6972. SERIAL_ERROR_START;
  6973. SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
  6974. #if ENABLED(ULTRA_LCD)
  6975. kill_screen(lcd_msg);
  6976. #else
  6977. UNUSED(lcd_msg);
  6978. #endif
  6979. for (int i = 5; i--;) delay(100); // Wait a short time
  6980. cli(); // Stop interrupts
  6981. thermalManager.disable_all_heaters();
  6982. disable_all_steppers();
  6983. #if HAS_POWER_SWITCH
  6984. pinMode(PS_ON_PIN, INPUT);
  6985. #endif
  6986. suicide();
  6987. while (1) {
  6988. #if ENABLED(USE_WATCHDOG)
  6989. watchdog_reset();
  6990. #endif
  6991. } // Wait for reset
  6992. }
  6993. #if ENABLED(FILAMENT_RUNOUT_SENSOR)
  6994. void handle_filament_runout() {
  6995. if (!filament_ran_out) {
  6996. filament_ran_out = true;
  6997. enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
  6998. stepper.synchronize();
  6999. }
  7000. }
  7001. #endif // FILAMENT_RUNOUT_SENSOR
  7002. #if ENABLED(FAST_PWM_FAN)
  7003. void setPwmFrequency(uint8_t pin, int val) {
  7004. val &= 0x07;
  7005. switch (digitalPinToTimer(pin)) {
  7006. #if defined(TCCR0A)
  7007. case TIMER0A:
  7008. case TIMER0B:
  7009. // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
  7010. // TCCR0B |= val;
  7011. break;
  7012. #endif
  7013. #if defined(TCCR1A)
  7014. case TIMER1A:
  7015. case TIMER1B:
  7016. // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7017. // TCCR1B |= val;
  7018. break;
  7019. #endif
  7020. #if defined(TCCR2)
  7021. case TIMER2:
  7022. case TIMER2:
  7023. TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
  7024. TCCR2 |= val;
  7025. break;
  7026. #endif
  7027. #if defined(TCCR2A)
  7028. case TIMER2A:
  7029. case TIMER2B:
  7030. TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
  7031. TCCR2B |= val;
  7032. break;
  7033. #endif
  7034. #if defined(TCCR3A)
  7035. case TIMER3A:
  7036. case TIMER3B:
  7037. case TIMER3C:
  7038. TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
  7039. TCCR3B |= val;
  7040. break;
  7041. #endif
  7042. #if defined(TCCR4A)
  7043. case TIMER4A:
  7044. case TIMER4B:
  7045. case TIMER4C:
  7046. TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
  7047. TCCR4B |= val;
  7048. break;
  7049. #endif
  7050. #if defined(TCCR5A)
  7051. case TIMER5A:
  7052. case TIMER5B:
  7053. case TIMER5C:
  7054. TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
  7055. TCCR5B |= val;
  7056. break;
  7057. #endif
  7058. }
  7059. }
  7060. #endif // FAST_PWM_FAN
  7061. void stop() {
  7062. thermalManager.disable_all_heaters();
  7063. if (IsRunning()) {
  7064. Running = false;
  7065. Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
  7066. SERIAL_ERROR_START;
  7067. SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
  7068. LCD_MESSAGEPGM(MSG_STOPPED);
  7069. }
  7070. }
  7071. float calculate_volumetric_multiplier(float diameter) {
  7072. if (!volumetric_enabled || diameter == 0) return 1.0;
  7073. float d2 = diameter * 0.5;
  7074. return 1.0 / (M_PI * d2 * d2);
  7075. }
  7076. void calculate_volumetric_multipliers() {
  7077. for (int i = 0; i < EXTRUDERS; i++)
  7078. volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
  7079. }